Characterisation of Mammalian Cell Lines for use in Proliferative and Estrogenic Response Assays

A thesis submitted in fulfilment of the requirements for the Degree of Doctor of Philosophy at Flinders University

by D. J. Inglis

Bachelor of Biotechnology (Honours)

Department of Medical Biotechnology Faculty of Health Sciences Flinders University

2011

Table of Contents

List of Figures	
List of Tables	
Summary	
Declaration	
Acknowledgements List of Abbreviations	
Publications and Conference Proceedings	
CHAPTER 1	
Introduction and Literature Review	
1 Introduction	
1.1 Endocrine disrupting chemicals (EDCs)	2
1.2 Objectives	3
1.3 Hypotheses	4
1.4 Steroid receptors of the endocrine system	4
1.5 Endocrinology of estrogen	11
1.6 Xenoestrogens and endocrine disruption	16
1.7 Xenoestrogens	18
1.8 Exposure risks	21
1.9 EDCs in surface water and STP effluent	23
1.10 Xenoestrogens and the Water Industry	23
1.11 Assays for detecting estrogens	25
1.12 Bioassays in perspective	
1.13 Bioassays within the scope of this project	40
CHAPTER 2	42
General Materials and Methods	42
2.1 Materials	43
2.2. Methods	44
CHAPTER 3	47
Characterisation of mammalian cell lines for use in proliferative and estrogenic	
response assays	
3.1 Introduction	
3.2. Material and Methods	
3.3 Results:	
3.4 Discussion:	72
CHAPTER 4 Assessment of MCF7, T-47D and ZR-75-1 cell lines for use in the E-screen 4.1 Introduction:	77
4.2 Methods:	
4.3 Results:	
4.4 Discussion:	
	-

CHAPTER 5	142
Estrogen Activated Gene-linked Luciferase Expression	
5.1 Introduction	
5.2 Methods:	153
5.3 Results:	166
5.4 Discussion	
CHAPTER 6	190
General Discussion	190
6.1 General Discussion	191
6.2 Conclusions	198
Appendix 1	
Appendix 2	
Bibliography	

List of Figures

Figure 1.1: The human ER α and ER β coding regions and a comparison of their	
homology	8
Figure 1.2: Protein Structure of the Estrogen Receptor	9
Figure 1.3: Synthesis of Estrogens in the human body	15
Figure 1.4: The Yeast Estrogen Screen (YES)	28
Figure 1.5: The yeast two hybrid assay	30
Figure 1.6: The pEREtata-luc vector	33
Figure 1.7: Induction of luciferase expression in ER-CALUX	34
Figure 3.1: A comparison of attachment of each cell line to the growth surface at	4,
6 and 24 hours	57
Figure 3.2: A comparison of standard curves of MCF7, T-47D, ZR-75-1 and Ovca	ar
after 4, 6 or 24 hours	60
Figure 3.3: Proliferation of MCF7, T-47D, ZR-75-1, Ovcar, H23 and RL95-2 for	72
hours at initial densities of 5000, 10000 and 20000 cells/well	63
Figure 3.4: Intra- and Inter-Assay CV after 72 hours of culture of MCF7, T-47D,	
ZR-75-1, Ovcar, H23 and RL95-2 with initial densities of 5000, 10000 and 20000	
cells/ well	66
Figure 3.5: Amplification Efficiency of Cyclophilin A and ERα primer set	67
Figure 3.6: Melt Curve Analysis of Cyclophilin A amplicon from MCF7, T-47D,	
ZR-75-1, Ovcar, H23 and RL95-2 cell lines	68
Figure 3.7: Melt Curve Analysis of ERα amplicon from MCF7, T-47D, ZR-75-1,	
Ovcar, H23 and RL95-2 cell lines	69
Figure 3.8: RT-qPCR using ERα primers resolved on 1.8% agarose gel	69
Figure 3.9: Relative abundance of ER α mRNA compared with the reference gene	:
Cyclophilin A in MCF7, T-47D, ZR-75-1, RL95-2, Ovcar and H23	70
Figure 3.10: Reverse Transcription PCR of ERβ	71
Figure 3.11: Western blot of MCF7, ZR-75-1, T-47D, H23, Ovcar, RL95-2 and	
1064Sk probed with anti-ERα (HC-20)	72
Figure 4.1: Modelling of the E-screen using non-linear regression	90
Figure 4.2: Proliferation of 20000 cells/well MCF7, T-47D, ZR-75-1, Ovcar, H23	3
and RL95-2 for 72 hours in 10% FCS, 1% DC-FCS or 0% FCS with or without	
PR	103

Figure 4.3: Proliferation of 20000 cells/well MCF7, T-47D, ZR-75-1, Ovcar, H23	
and RL95-2 for 72 hours in 10% FCS, 1% DC-FCS or 0% FCS with or without	
PR 1	05
Figure 4.4: Western blot analysis monitoring the expression of ER α after 48 hours	5
growth of H23, T-47D, ZR-75-1, MCF7 in PR-free medium supplemented with	
1%DC-FCS or PR+medium supplement with 10%FCS 1	06
Figure 4.5: Proliferative response of MCF7, T-47D, ZR-75-1 and H23 cells after	72
hours exposure to E2 with a 48 hour pre-treatment and daily media	
changes1	09
Figure 4.6: E-screen using 5000 cells/well MCF7, T-47D, ZR-75-1 (Passage <	
18)	13
Figure 4.7: E-screen using 5000 cells/well MCF7, T-47D, ZR-75-1 with the	
inclusion of the E ₂ antagonist, Fulvestrant (Passage < 18)	115
Figure 4.8: E-screen using 5000 cells/well MCF7, T-47D, ZR-75- and 6 h	our
attachment1	119
Figure 4.9: E-Screen of MCF7, T-47D and ZR-75-1 cells (Passage > 18) overni	ght
attachment 1	123
Figure 4.10: E-Screen of MCF7, T-47D and ZR-75-1 cells (Passage > 18) 6 h	our
attachment 1	127
Figure 4.11: Western blot analysis of ER α expression after adaptation of ZR-7	5-1
cells to growth in medium supplemented with 10% FCS, 5% FCS or 2.	5%
FCS 1	28
Figure 4.12:. E-screen of ZR-75-1 cells adapted to 2.5 and 5% FCS supplement	ted
medium exposed to E_2 in the corresponding % DC-FCS or 10% DC-F	CS
	132
Figure 5.1: Amplification of the promoter sequence and the pGL4.21(luc2P/Pu	ıro)
vector	152
Figure 5.2: Gradient PCR of the five promoters	157
Figure 5.3: Preparation of pGL4.21 for insert ligation	158
Figure 5.4: Restriction digest analysis of plasmid isolated from transform	ned
competent cells following ligation	167
Figure 5.5: Sequence of pGL4.21-pS2 promoter insert and vector boundar	ries
including major features of the promoter	169
Figure 5.6: Sequence of pGL4.21-MaoA promoter insert and vector boundar	ries
including major features of the promoter	171

Figure 5.7 : Dose response of T-47D-pGL4.21-pS2 clone 3 and 13 to $E_2 \dots$	173
Figure 5.8: T-47D-pGL4.21-pS2 clone 3 and 13 luciferase down-regulation.	175
Figure 5.9: Time-response of T-47D-pGL4.21-pS2 clone 3 and 13	176
Figure 5.10: Luficerase Response of non-clonal T-47D-pGL4.21-pS2 cells	177
Figure 5.11: Response of T-47D-pGL4.21-MaoA clones 1 - 4 to E ₂	178
Figure 5.12: Response of T-47D-pGL4.21-MaoA clones 1 to E_2	179
Figure 5.13: Transient Transfection of pGL4.21-pS2 and pGL4.21-MaoA	181
Figure 5.14: Transient Transfection of pGL4.21-pS2 and pGL4.21-MaoA	184

List of Tables

Table 2.1: Summary of cell lines used	43
Table 3.1: Primer Sequences for PCR	53
Table 3.2: The doubling time (hours) of each cell line at three initial densitie	es of
5000, 10000 and 20000 cells/well	64
Table 4.1: Summary of E-screen protocols.	74
Table 4.2: EC ₅₀ value for each cell line after an overnight attachment and expo	sure
to E_2 for 5 or 7 days	111
Table 4.3: EC ₅₀ value for each cell line after a 6 hour attachment and exposure t	o E ₂
for 5 or 7 days	117
Table 4.4: EC ₅₀ value for each cell line (passage>18) after an overnight attachr	nent
and exposure to E ₂ for 5 or 7 days	121
Table 4.5: EC ₅₀ value for each cell line (passage>18) after a 6 hour attachment	and
exposure to E_2 for 5 or 7 days	125
Table 4.6: EC_{50} value for ZR-75-1 cells adapted to medium supplemented to 5 or	r 2.5
% FCS, after a 6 hour attachment, and exposure to E_2 for 5 or 7 days	130

Summary

Characterisation of Mammalian Cell Lines for use in Proliferative and Estrogenic Response Assays

A significant number of endocrine disrupting chemicals (EDCs), which have the ability to act as estrogens or disrupt the estrogen signalling pathway in humans and other species, have been reported in environmental waters,. Bioassays using human cell lines, which contain endogenous or inserted estrogen receptors, are useful to rapidly assess this (xeno)estrogen content of water.

This thesis presents a comparative assessment of the suitability of MCF7, ZR-75-1, H23, RL95-2, Ovcar and T-47D cell lines for (xeno)estrogen testing in a 96 well plate format. Cell lines were assessed for attachment time, proliferation rate, optimal time for producing a standard curve relating absorbance to cell number and the expression of ER α and ER β mRNA and protein. Six hours was the optimum time for attachment and gave the smallest 95% confidence interval (CI) for a standard curve for MCF7, Ovcar, RL95-2 and T-47D cells. ZR-75-1 and H23 cells were best after 4 hours of attachment. Incubation for 24 hours gave the highest 95% CI and produced the least accurate standard curve. The reporting of a single doubling time for each cell line may not be accurate as cell lines had a doubling time that was density related. ER α expression was greatest in MCF7, followed by T-47D and ZR-75-1. ER β was not detected in any cell line.

MCF7 cells are characterised as proliferating in response to (xeno)estrogens primarily via the ER α . The E-screen was originally developed using MCF7 cells, however, many modifications have lead to only semi-standardisation of the methodology. T-47D and ZR-75-1 cells have also been shown to proliferate in response to estrogen and were compared to MCF7 cells in an E-screen assay. The responses of cells using a 4hr or 6hr or an overnight attachment period in estrogenfree pre-treatment before exposure to estrogen for 3, 5 or 7 days were compared. The pre-treatment/attachment period did not affect EC₅₀ values, however the proliferation of MCF7 cells almost doubled and the 95% CI was greatly reduced by reducing the attachment/ pre-treatment time to 6 hours. MCF7 cells are used in the E-screen within a given passage range. The changes in sensitivity and response to estrogen of the three cell lines after extended time in culture (>18 passages) were also assessed. Although each cell line maintained similar EC_{50} values, the proliferative response decreased and variability increased.

The regulation of individual genes by estrogen has been widely studied. VEGF, IGFBP-4, pS2, MaoA and EGR1 were selected from microarray and *in vivo* data based on the magnitude and speed of response to estrogen exposure. The promoter regions, inclusive of their estrogen responsive elements, were identified. pS2 and MaoA promoter regions were successfully amplified and inserted into the pGL4.21(luc2P/Puro) reporter vector. Stable integration into T-47D cells resulted in non-estrogen inducible expression of the luciferase gene. Transient transfection of the vector into MCF7, ZR-75-1 and T-47D cells also resulted in expression of luciferase that could not be induced by estrogen.

Declaration

I certify that this thesis does not incorporate without acknowledgement any material previously submitted for a degree or diploma in and university; and that to the best of my knowledge and belief it does not contain any material previously published or written by another person except where due reference is made in the text.

Signed

Daniel Inglis

Acknowledgements

I sincerely thank Drs. Fiona Young and Andrew Humpage for their guidance, support and enthusiasm towards this project. With their supervision and critique, I have been able to contribute my small piece towards the field of Environmental Toxicology.

I also thank Dr Suzanne Froscio for reviewing earlier manuscripts and providing additional guidance. Thank you also to Dr George Mayne for guiding me in the use and analysis of real-time PCR.

Thanks also to all those in the Department of Medical Biotechnology and at the Australian Water Quality Centre for their support and contribution during this project, with special mention to Dina Zebian, Vicki Edwards, Rhys Hamon, Roshini Somashekar and visiting students. Also many thanks to Professor Dayanthi Nugegoda for her entertaining and educational visiting fellowship.

I would like to acknowledge the Australian Research Council (ARC) and SA Water for their generous financial support towards this project and its completion.

Finally, I would like to express my deepest gratitude towards my family who have supported me throughout this project, with patience and understanding.

List of Abbreviations

Amp	Ampicillin
ANOVA	Analysis of variance
AR	Androgen receptor
ATCC	American type culture collection
AU	Absorbance unit
bp	Base pairs
BPA	Bisphenol A
CHX	Cycloheximide
CI	Confidence interval
CPS	Counts per second
Cq	Quantification cycle
DBD	Deoxyribonucleic acid binding domain
DC-FCS	Dextran-charcoal treated fetal calf serum
DMEM	Dulbecco's modified Earles' medium
DNA	Deoxyribonucleic acid
E_2	17β-estradiol
EC ₅₀	Effective concentration for half-maximal effect
EDC	Endocrine disrupting chemical
eGFP	Enhanced green fluorescent protein
ER	Estrogen receptor
ERE	Estrogen response element
EtBr	Ethidium bromide
EtOH	Ethanol
FCS	Fetal calf serum
GCMS	Gas chromatography / mass spectrometry
GWRC	Global water research coalition
HEPES	N-2-hydroxyethylpiperazine-N'-2-ethansulphonic acid
Hsp	Heat shock protein
kDa	kilodalton
LB	Luria broth
LBD	Ligand binding domain
LOD	Limit of detection

Luc	Luciferase
mRNA	Messenger ribonucleic acid
MTT	3-(4,5-dimehtylthiazol-2-yl)-2,5-diphenyltetrazolium bromide
OD	Optical density
PCR	Polymerase chain reaction
PE	Proliferative effect
PR	Phenol red
RIA	Radioimmunoassay
RPE	Relative proliferative effect
RPP	Relative proliferative potency
RT	Reverse transcription
RT-PCR	Reverse transcription real-time polymerase chain reaction
RT-PCR SD	Reverse transcription real-time polymerase chain reaction Standard deviation
SD	Standard deviation
SD SEM	Standard deviation Standard error of mean
SD SEM SOC	Standard deviation Standard error of mean Super optimal broth with catabolite repression
SD SEM SOC SPE	Standard deviation Standard error of mean Super optimal broth with catabolite repression Solid phase extraction
SD SEM SOC SPE SRB	Standard deviation Standard error of mean Super optimal broth with catabolite repression Solid phase extraction Sulforhodamine B
SD SEM SOC SPE SRB STP	Standard deviation Standard error of mean Super optimal broth with catabolite repression Solid phase extraction Sulforhodamine B Sewage treatment plant
SD SEM SOC SPE SRB STP TSS	Standard deviation Standard error of mean Super optimal broth with catabolite repression Solid phase extraction Sulforhodamine B Sewage treatment plant Transcription start site
SD SEM SOC SPE SRB STP TSS UTR	Standard deviation Standard error of mean Super optimal broth with catabolite repression Solid phase extraction Sulforhodamine B Sewage treatment plant Transcription start site Untranslated region

Publications and Conference Proceedings

Publications

 Characterisation of Mammalian Cell Lines for use in Proliferative and Estrogenic Response assays. Daniel J Inglis, Andrew R Humpage, Suzanne M Froscio, George C Mayne, Fiona M Young. (*Under Review*)

Conference Proceedings

- Flinders Research Centre for Coastal and Catchment Environments and Flinders University Bioknowledge Research Group Postgraduate Research Conference.. 18th-19th July 2006. Adelaide, Australia. Oral Presentation "Development of a bioassay for measuring xenoestrogens in recycled water"
- Society For Reproductive Biology 38th Annual Conference. 2nd-5th September 2007. Christchurch, New Zealand. Oral Presentation "Development of an improved E-screen"
- The Endocrine Society of Australia 51st Annual Scientific Meeting.. 25th 28th August 2008. Melbourne, Australia. Poster Presentation " A comparative Assessment of three cell lines for use in the E-screen"
- Society of Environmental Toxicology and Chemistry World Congress. 3rd-7th August 2008. Sydney, Australia. Oral Presentation "Improving the E-Screen: Effect of FCS Concentration on ZR75-1 Cell Proliferation and Estrogen Receptor Expression"
- 2nd Australian Symposium on Ecological Risk Assessment and Management of Endocrine Disrupting Chemicals (EDCs), Pharmaceuticals and Personal Care Products (PPCPs) in the Australasian Environment. November 21st-22nd 2007. Canberra, Australia. *Poster Presentation " Development of an Improved E-Screen"*

• 13th Australasian Society for Ecotoxicology Conference: Toxicants in a changing environment. 20-23 September 2009. Adelaide, Australia. Oral Presentation "Passage effect on MCF-7 and T-47D cells for use in the E-screen"