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1.1 Introduction

The primary aim of this thesis is the study of various geometric and probabilistic
properties of symmetric Banach and quasi-Banach spaces.

In Chapter 1, we gather the necessary background material and technical
preliminary information.

In Chapter 2, we study the action of some important semi-groups in sym-
metric (quasi-)Banach spaces. Our aim is to determine the geometric structure
of their orbits and to give simple and constructive criteria which characterise
the orbits in terms of their extreme points.

In Chapter 3, we study various generalizations of Khinchine and Johnson-
Schechtman inequalities. These important inequalities are shown to be useful
tools for studying connections between the geometric and probabilistic struc-
tures of symmetric spaces. We prove the most general possible form of the
Johnson-Schechtman inequalities. This allows us to prove the Khinchine in-
equality in very general form. As a bonus, our proof, which is based on an
inequality of Prokhorov, is radically simpler than any currently available in the
literature.

A further important topic covered in Chapter 3 is the connection between the
Kruglov operator (see Section 1.2 below) and random permutations of matrices.
An important estimate due to Montgomery-Smith and Semenov is proved to be
valid if and only if the space satisfies the Kruglov property.

The last sections of the thesis deal with various analogs of the Banach-Saks
index. We introduce an operator estimate which is equivalent to the latter
index being non-trivial. In particular, this allows us to completely characterize
Lorentz spaces with non-trivial (modified) Banach-Saks index.

1.1.1 Orbits and their importance

The most important object in the theory of interpolation of two symmetric
(quasi-)Banach spaces is the semigroup of operators which are simultaneously
contractions in both spaces.

Historically, interpolation spaces between L and L., were studied first. Or-
bits of the interpolation semigroup in this case have been precisely characterised
via the Calderon-Mityagin theorem in terms of submajorization in the sense of
Hardy, Littlewood and Polya.

We are also interested in the other semigroups such as the positive part of
the interpolation semigroup and the bistochastic semigroup. The former con-
sists of all positive operators from the interpolation semi-group. The latter
consists of all bistochastic operators and is, therefore, a subset of the interpola-
tion semigroup associated with Ly and L. Arguing as in the Calderon-Mityagin
theorem, one can obtain a precise description for the orbits of these two semi-
groups.

Let E be a symmetric (quasi-)Banach function space which is an interpola-
tion space for the Banach couple (L1, L ). This thesis will study the following
question.
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Question 1.1.1. Which conditions guarantee that the orbits of the element
x € E (corresponding to the interpolation semigroup, the positive part of the
interpolation semigroup and the bistochastic semigroup, respectively) coincide
with the closed convex hull of their extreme points?

The answer to this question depends strongly on the topology in which the
closure is taken.

If E = L1(0,1), then it has been shown by Ryff (see [49]) that the bistochastic
orbit of every element is weakly compact. It follows now from the Krein-Milman
theorem that the bistochastic orbit is the weak (and hence norm)-closed convex
hull of its extreme points. A generalisation of this result can be found in [22].
According to [22], the bistochastic orbit of every element is weakly compact in
any separable symmetric Banach space on the interval (0,1). Thus, in any such
space, the bistochastic orbit is the weak (and hence norm)-closed convex hull of
its extreme points.

The situation is very different for non-separable spaces. First of all, orbits are
not weakly compact anymore. For example, if £ = L., then the interpolation
orbit of a constant is a ball. Clearly, a ball in L., is not a weakly-compact set
because L, is not a reflexive space. Hence, the proofs given in [49] and [22] are
not valid for non-separable spaces.

We wish to determine whether the orbits of a given element are the closed
convex hulls of their extreme points in the natural topology of a space induced
by the (quasi-)norm. Such studies were pioneered by Braverman and Mekler
(see [11]) for symmetric Banach spaces on the interval (0,1). They proved that,
for every fully symmetric space F on (0,1) (i.e. exact interpolation space for
the couple (L1, L)) with non-trivial upper Boyd index, the interpolation orbit
of every element coincides with the norm-closed convex hull of the set of its
extreme points.

They also proved the converse assertion for Marcinkiewicz spaces. In general,
however, this converse assertion is false. As shown above, any separable space
(such as L) would be a counter-example.

We show (Theorem 2.7.1) that, in every symmetric quasi-Banach space FE
which is an (L1, L )—interpolation space, the interpolation orbit of an element
x € E is the norm-closed convex hull of its extreme points if and only if

o(z) = lim Los(@)|s = 0. (1.1)

s—00 §

This result trivially implies the result of Braverman and Mekler mentioned
above. Here, o, denotes the dilation operator (see Subsection 1.2.8 below).

The important class of Orlicz spaces is considered in section 2.10. We demon-
strate that the condition (1.1) is always valid in these spaces. Thus, for Orlicz
spaces, the answer to Question 1.1.1 is always positive. Note, that the results of
[22] and [11] are insufficient to cover this result in such generality. Indeed, the
results of [22] are only applicable to separable Orlicz space, that is, those with
non-trivial lower Boyd index. The results from [11] are only applicable to Orlicz
spaces with non-trivial upper Boyd index. However, one can easily construct
(see Appendix B) an Orlicz space with both Boyd indices being trivial.
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As an application, we study the notion of symmetric and fully symmetric
functionals in Section 2.10. The latter are a ”commutative” counterpart of the
Dixmier traces which appear in non-commutative geometry (see e.g. [16]). Sym-
metric and fully symmetric functionals are extensively studied in [23], [30] (see
also [16] and the references therein). Note, however, that our terminology differs
from that used in the articles just cited. These classes of symmetric and fully
symmetric functionals are different in general. For example, the Marcinkiewicz
space M1 o admits symmetric functionals which fail to be fully symmetric (see
paper for details [29]). It follows from Theorem 2.7.1 that any symmetric func-
tional on a fully symmetric space satisfying (1.1) is automatically fully symmet-
ric. In particular, this implies that an Orlicz space does not possess any singular
symmetric functionals (see Proposition 2.10.6). This latter result strengthens
Theorem 3.1 from [23] which states that an Orlicz space does not possess any
singular fully symmetric functionals.

The main results of Chapter 2 are contained in Sections 2.7 and 2.8 which
deal with function spaces. In Section 2.9, we derive similar results for sequence
spaces. Section 2.1 treats various properties of the functional ¢ and the mod-
ifications needed in later sections. In the section 2.4, we obtain some results
about expectation operators. Section 2.5 is devoted to a theorem of Mekler (see
[39, 40]). This Theorem (see Theorem 2.5.8) is an important ingredient in the
original proof of Braverman and Mekler but is also of interest in its own right
and and can be treated as a generalization of Birkhoff theorem.

The precise description of the extreme points of the orbits is heavily used
in the chapter. This description is due to Ryff (see [48]) for the bistochastic
semi-group. Descriptions for the other 2 semi-groups are less well-known. We
present them in an Appendix for the convenience of the reader, together with
details of proof.

1.1.2 The Kruglov operator
The Khinchine inequality

const - [[{an} 2 < || Y antally < const - p"/*|[{an} |2

n

is one of the most important inequalities in analysis. In this classical setting,
the proof of the left hand side inequality is almost trivial. In this thesis, we will
be concerned only with the generalisation of the right hand side inequality.

The proof of the Khinchine inequality heavily uses the fact that the Rademacher
functions are independent. It seems natural to extend the Khinchine inequality
so that it is valid for arbitrary sequences {a,}52; of independent mean zero
functions.

Most attempts at such a generalisation have proved ineffective because their
unnatural formulation prevented any interesting applications. Rosenthal [46]
was probably the first who found a useful general inequality of Khinchine type.
The best constants for the Rosenthal inequality may be found in the paper [27].
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All these papers, however, are generalisations of the Khinchine inequality in
the classic setting of L,—spaces. In 1989, Johnson and Schechtman introduced
a new inequality and proved it for all symmetric Banach spaces E such that
EDL,forl<p<oo.

Braverman (see [12]) applied some earlier ideas of Kruglov to the Johnson-
Schechtman inequalities. He was able to generalize them to a significantly wider
class of symmetric spaces under an additional assumption. More precisely, he
required that the supports supp(z,), n € N, of the independent functions .,
n € N should be such that

Z m(supp(x,)) < 1. (1.2)

An equivalent characterisation of the spaces considered by Braverman was
discovered by Astashkin & Sukochev (see [6]). They observed that a complicated
non-linear condition used by Braverman may be reformulated in terms of the
boundedness of a linear operator introduced by Kruglov. Hence, the powerful
machinery of linear operator theory could now be applied. In this way, Astashkin
& Sukochev (see [3]) managed to prove the Johnson-Schechtman inequality for
all spaces considered by Braverman. They also showed that the rather technical
assumption (1.2) is superfluous.

The Kruglov operator K maps a symmetric quasi-Banach space F(0,1) into
the space E((0,1)*°) according to the formula

ZZ wF)xa, @), w={w®,e(0,1)>
n=1k=1

Here, {A,}52, is a fixed collection of disjoint subsets of the interval (0, 1) such
that m(4,) = 1/en!.

In order to emphasize the contribution of Kruglov to probability theory, this
class of spaces considered by Astashkin & Sukochev is called the Kruglov class
or K in [6]. We usually refer to its members as spaces with the Kruglov property.

The proof of the Johnson-Schechtman inequality in [3] is quite complicated.
In this thesis, proof is considerably simplified and generalised to the quasi-
Banach setting. This is presented in Chapter 3 (see Theorems 3.1.15 and 3.2.4).

It is well-known (see [34],[12]) that the Orlicz space exp(L;) defined by the
function e! — 1 satisfies the Kruglov property. The latter property also holds for
the separable part (exp(L1))o.

All previously known symmetric spaces E with the Kruglov property satisfy
the inclusion E O (exp(L1))o. This, together with Theorem 7.2 of [6] suggests
that (exp(L1))o is the minimal space with the Kruglov property.

In section 4.1, we show that this hypothesis fails. Moreover, for every
given symmetric space £ € K, there exists a Marcinkiewicz space satisfying
the Kruglov property such that My, C E and My # E.

The situation is quite different in the subclass of Lorentz spaces. Indeed,
every Lorentz space satisfying the Kruglov property necessarily contains exp(L;)
(see Theorem 4.2.6).
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1.1.3 The operators 7T,

In [35], S. Kwapien and C. Schutt considered random permutations and applied
their results to the geometry of Banach spaces. The results of [35] were further
strengthened in [54] and [41] via an operator approach. The following family of
operators was introduced there.

Given a symmetric norm || - || on L (0, 1), one may define a symmetric norm
on R™ by the formula

Izl = 1Y zeX(-1ymasmll, = {zr}ie; €R™
k=1

Let n € N and let .S,, be the set of all permutations of the set 1,2,...,n. Let
M,, be the algebra of all n x n matrices. Consider the operator A,, : M,, — R"
defined by the following formula

(Anx)(ﬂ-) = in,ﬂ(i) s Sn- (13)
=1

The uniform boundedness of the operators A,,, n € N, is essential for appli-
cations in the geometry of symmetric Banach spaces. One of the major results
of [41] (see Corollary 8 there) says that if the sequence of operators {4, },>1 is
uniformly bounded on the set of diagonal matrices, then it is uniformly bounded
on the set of all matrices.

For every x € L1(0,1), we define the vector B,z € R™ by the formula

i/n
(Bnx)i = n/ w(t)dt, i=1,2--,n.
(i=1)/n

For every © = (21, ,x,) € R", we define the function C,x € Ly (0, 1) by the
formula

Chz = Z TEX((k=1)/nk/n)-
k=1

We now define the operator T,, : L1(0,1) — Lo (0,1) by setting
Tn = CnIAan, n € N.

For every n € N, T,, is a positive operator. Sometimes, we also use the notation
T,, for the operator C,,1A,, defined on R™ (this does not cause any ambiguity).

Example 1.1.2. FEvidently,
[Tnzl|, = llzlL,

for every positive x € L1(0,1). It follows that the sequence of operators A, :
Ly — L1, n € N, is uniformly bounded.
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There is not any immediately obvious connection between the operator K
and the sequence T}, n > 1. Nevertheless, the following interesting fact follows
from comparison of results in [41] and [6]: the criterion for boundedness of
the operator K in any Lorentz space Ay coincides with that for the uniform
boundedness of the family of operators {7}, }n>1 in Ay.

Theorem 1.1.3. The operator K maps the Lorentz space Ay into itself if and
only if
Z 1/’(@) < 0.

1
sup ——
o<t<1 P(t) P

—

Theorem 1.1.4. The family of operators {T,,}n>1 is uniformly bounded in the
Lorentz space Ay if and only if

1 tF
SEITOPIAL

It is now natural to ask whether the boundedness of the operator K in an
arbitrary symmetric space F is equivalent to the uniform boundedness of the
family of operators {7, },>1 in E. In Chapter 3, we establish that it is indeed
the case. The proof is based on combinatorial estimates for the correspond-
ing distribution functions. The equivalence that we establish implies some new
corollaries for the operator K and operators T;,, n > 1. In particular, Corollary
4.5.2 strengthens Theorem 19 from [41] by showing that the uniform bounded-
ness of the family of operators {T}, },,>1 in the Orlicz space exp(L,) is equivalent
to the condition p < 1.

1.1.4 The Banach-Saks indices

The Banach-Saks theorem says that if a sequence in L, is weakly null, then
there exists a subsequence which converges to 0 in the sense of Cesaro.

A sequence {z1}72, in the Banach space is called a p-Banach-Saks-sequence
if, for every subsequence {yx}32, C {zx}3>,, we have

1> wille = 0m/?).
k=1

A symmetric Banach space is said to have the p-Banach-Saks property if ev-
ery weakly null sequence {z,}22 ; C E contains a p-Banach-Saks-subsequence.
The infimum of all such p is called the Banach-Saks index of E. It was proved
in [4] that the Banach-Saks index is non-trivial (i.e. is not equal to 1) if and
only if 0 < ag SﬁE < 1.

In section 1.2, we introduce modified versions of the Banach-Saks index. In
our setting, we require the weakly null sequence to be independent (respectively,
independent and identically distributed; respectively, disjoint). It is not clear,
a priori, how to compute these modified indices.
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It is shown in this thesis that the modified Banach-Saks index for inde-
pendent sequences is the minimum of that for disjoint sequences and that for
independent identically distributed sequences. The former is usually easier to
compute. As for the latter, we show how to compute it in terms of the estimates
on the norms of certain sequences of operators.

This sequence of operators is a semigroup. This allows us to characterise pre-
cisely those spaces for which the modified Banach-Saks index (for independent
identically distributed functions) is trivial.

As an application, we establish a criterion for the triviality of those indices
for Lorentz spaces. Such questions were considered earlier in the literature by
Carothers & Dilworth (see [18, 17]) in the setting of L, 4—spaces.



