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1.1 Introduction

The primary aim of this thesis is the study of various geometric and probabilistic
properties of symmetric Banach and quasi-Banach spaces.

In Chapter 1, we gather the necessary background material and technical
preliminary information.

In Chapter 2, we study the action of some important semi-groups in sym-
metric (quasi-)Banach spaces. Our aim is to determine the geometric structure
of their orbits and to give simple and constructive criteria which characterise
the orbits in terms of their extreme points.

In Chapter 3, we study various generalizations of Khinchine and Johnson-
Schechtman inequalities. These important inequalities are shown to be useful
tools for studying connections between the geometric and probabilistic struc-
tures of symmetric spaces. We prove the most general possible form of the
Johnson-Schechtman inequalities. This allows us to prove the Khinchine in-
equality in very general form. As a bonus, our proof, which is based on an
inequality of Prokhorov, is radically simpler than any currently available in the
literature.

A further important topic covered in Chapter 3 is the connection between the
Kruglov operator (see Section 1.2 below) and random permutations of matrices.
An important estimate due to Montgomery-Smith and Semenov is proved to be
valid if and only if the space satisfies the Kruglov property.

The last sections of the thesis deal with various analogs of the Banach-Saks
index. We introduce an operator estimate which is equivalent to the latter
index being non-trivial. In particular, this allows us to completely characterize
Lorentz spaces with non-trivial (modified) Banach-Saks index.

1.1.1 Orbits and their importance

The most important object in the theory of interpolation of two symmetric
(quasi-)Banach spaces is the semigroup of operators which are simultaneously
contractions in both spaces.

Historically, interpolation spaces between L1 and L., were studied first. Or-
bits of the interpolation semigroup in this case have been precisely characterised
via the Calderon-Mityagin theorem in terms of submajorization in the sense of
Hardy, Littlewood and Polya.

We are also interested in the other semigroups such as the positive part of
the interpolation semigroup and the bistochastic semigroup. The former con-
sists of all positive operators from the interpolation semi-group. The latter
consists of all bistochastic operators and is, therefore, a subset of the interpola-
tion semigroup associated with Ly and L. Arguing as in the Calderon-Mityagin
theorem, one can obtain a precise description for the orbits of these two semi-
groups.

Let E be a symmetric (quasi-)Banach function space which is an interpola-
tion space for the Banach couple (L1, L ). This thesis will study the following
question.
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Question 1.1.1. Which conditions guarantee that the orbits of the element
x € E (corresponding to the interpolation semigroup, the positive part of the
interpolation semigroup and the bistochastic semigroup, respectively) coincide
with the closed convex hull of their extreme points?

The answer to this question depends strongly on the topology in which the
closure is taken.

If E = L1(0,1), then it has been shown by Ryff (see [49]) that the bistochastic
orbit of every element is weakly compact. It follows now from the Krein-Milman
theorem that the bistochastic orbit is the weak (and hence norm)-closed convex
hull of its extreme points. A generalisation of this result can be found in [22].
According to [22], the bistochastic orbit of every element is weakly compact in
any separable symmetric Banach space on the interval (0,1). Thus, in any such
space, the bistochastic orbit is the weak (and hence norm)-closed convex hull of
its extreme points.

The situation is very different for non-separable spaces. First of all, orbits are
not weakly compact anymore. For example, if £ = L., then the interpolation
orbit of a constant is a ball. Clearly, a ball in L., is not a weakly-compact set
because L, is not a reflexive space. Hence, the proofs given in [49] and [22] are
not valid for non-separable spaces.

We wish to determine whether the orbits of a given element are the closed
convex hulls of their extreme points in the natural topology of a space induced
by the (quasi-)norm. Such studies were pioneered by Braverman and Mekler
(see [11]) for symmetric Banach spaces on the interval (0,1). They proved that,
for every fully symmetric space F on (0,1) (i.e. exact interpolation space for
the couple (L1, Lso)) with non-trivial upper Boyd index, the interpolation orbit
of every element coincides with the norm-closed convex hull of the set of its
extreme points.

They also proved the converse assertion for Marcinkiewicz spaces. In general,
however, this converse assertion is false. As shown above, any separable space
(such as L) would be a counter-example.

We show (Theorem 2.7.1) that, in every symmetric quasi-Banach space E
which is an (L1, L )—interpolation space, the interpolation orbit of an element
x € E is the norm-closed convex hull of its extreme points if and only if

o(z) = lim Los(@)|s = 0. (1.1)

s—00 §

This result trivially implies the result of Braverman and Mekler mentioned
above. Here, o, denotes the dilation operator (see Subsection 1.2.8 below).

The important class of Orlicz spaces is considered in section 2.10. We demon-
strate that the condition (1.1) is always valid in these spaces. Thus, for Orlicz
spaces, the answer to Question 1.1.1 is always positive. Note, that the results of
[22] and [11] are insufficient to cover this result in such generality. Indeed, the
results of [22] are only applicable to separable Orlicz space, that is, those with
non-trivial lower Boyd index. The results from [11] are only applicable to Orlicz
spaces with non-trivial upper Boyd index. However, one can easily construct
(see Appendix B) an Orlicz space with both Boyd indices being trivial.
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As an application, we study the notion of symmetric and fully symmetric
functionals in Section 2.10. The latter are a ”commutative” counterpart of the
Dixmier traces which appear in non-commutative geometry (see e.g. [16]). Sym-
metric and fully symmetric functionals are extensively studied in [23], [30] (see
also [16] and the references therein). Note, however, that our terminology differs
from that used in the articles just cited. These classes of symmetric and fully
symmetric functionals are different in general. For example, the Marcinkiewicz
space M1 o admits symmetric functionals which fail to be fully symmetric (see
paper for details [29]). It follows from Theorem 2.7.1 that any symmetric func-
tional on a fully symmetric space satisfying (1.1) is automatically fully symmet-
ric. In particular, this implies that an Orlicz space does not possess any singular
symmetric functionals (see Proposition 2.10.6). This latter result strengthens
Theorem 3.1 from [23] which states that an Orlicz space does not possess any
singular fully symmetric functionals.

The main results of Chapter 2 are contained in Sections 2.7 and 2.8 which
deal with function spaces. In Section 2.9, we derive similar results for sequence
spaces. Section 2.1 treats various properties of the functional ¢ and the mod-
ifications needed in later sections. In the section 2.4, we obtain some results
about expectation operators. Section 2.5 is devoted to a theorem of Mekler (see
[39, 40]). This Theorem (see Theorem 2.5.8) is an important ingredient in the
original proof of Braverman and Mekler but is also of interest in its own right
and and can be treated as a generalization of Birkhoff theorem.

The precise description of the extreme points of the orbits is heavily used
in the chapter. This description is due to Ryff (see [48]) for the bistochastic
semi-group. Descriptions for the other 2 semi-groups are less well-known. We
present them in an Appendix for the convenience of the reader, together with
details of proof.

1.1.2 The Kruglov operator
The Khinchine inequality

const - H{an}H2 < || Zanran < const 'pl/QH{an}HQ

n

is one of the most important inequalities in analysis. In this classical setting,
the proof of the left hand side inequality is almost trivial. In this thesis, we will
be concerned only with the generalisation of the right hand side inequality.

The proof of the Khinchine inequality heavily uses the fact that the Rademacher
functions are independent. It seems natural to extend the Khinchine inequality
so that it is valid for arbitrary sequences {a,}52; of independent mean zero
functions.

Most attempts at such a generalisation have proved ineffective because their
unnatural formulation prevented any interesting applications. Rosenthal [46]
was probably the first who found a useful general inequality of Khinchine type.
The best constants for the Rosenthal inequality may be found in the paper [27].
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All these papers, however, are generalisations of the Khinchine inequality in
the classic setting of L,—spaces. In 1989, Johnson and Schechtman introduced
a new inequality and proved it for all symmetric Banach spaces E such that
EDL,forl<p<oo.

Braverman (see [12]) applied some earlier ideas of Kruglov to the Johnson-
Schechtman inequalities. He was able to generalize them to a significantly wider
class of symmetric spaces under an additional assumption. More precisely, he
required that the supports supp(x,), n € N, of the independent functions .,
n € N should be such that

Z m(supp(x,)) < 1. (1.2)

An equivalent characterisation of the spaces considered by Braverman was
discovered by Astashkin & Sukochev (see [6]). They observed that a complicated
non-linear condition used by Braverman may be reformulated in terms of the
boundedness of a linear operator introduced by Kruglov. Hence, the powerful
machinery of linear operator theory could now be applied. In this way, Astashkin
& Sukochev (see [3]) managed to prove the Johnson-Schechtman inequality for
all spaces considered by Braverman. They also showed that the rather technical
assumption (1.2) is superfluous.

The Kruglov operator K maps a symmetric quasi-Banach space F(0,1) into
the space E((0,1)*°) according to the formula

ZZ wF)xa, @), w={w®,e(0,1)>
n=1k=1

Here, {A,}52, is a fixed collection of disjoint subsets of the interval (0, 1) such
that m(4,) = 1/en!.

In order to emphasize the contribution of Kruglov to probability theory, this
class of spaces considered by Astashkin & Sukochev is called the Kruglov class
or K in [6]. We usually refer to its members as spaces with the Kruglov property.

The proof of the Johnson-Schechtman inequality in [3] is quite complicated.
In this thesis, proof is considerably simplified and generalised to the quasi-
Banach setting. This is presented in Chapter 3 (see Theorems 3.1.15 and 3.2.4).

It is well-known (see [34],[12]) that the Orlicz space exp(L;) defined by the
function e! — 1 satisfies the Kruglov property. The latter property also holds for
the separable part (exp(L1))o.

All previously known symmetric spaces E with the Kruglov property satisfy
the inclusion £ O (exp(L1))o. This, together with Theorem 7.2 of [6] suggests
that (exp(L1))o is the minimal space with the Kruglov property.

In section 4.1, we show that this hypothesis fails. Moreover, for every
given symmetric space F € K, there exists a Marcinkiewicz space satisfying
the Kruglov property such that My C E and My # E.

The situation is quite different in the subclass of Lorentz spaces. Indeed,
every Lorentz space satisfying the Kruglov property necessarily contains exp(L;)
(see Theorem 4.2.6).
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1.1.3 The operators 7T,

In [35], S. Kwapien and C. Schutt considered random permutations and applied
their results to the geometry of Banach spaces. The results of [35] were further
strengthened in [54] and [41] via an operator approach. The following family of
operators was introduced there.

Given a symmetric norm || - || on L (0, 1), one may define a symmetric norm
on R™ by the formula

Izl = 1Y zeX(h-1ymasmll, = {zr}ie; €R™
k=1

Let n € N and let .S,, be the set of all permutations of the set 1,2,...,n. Let
M,, be the algebra of all n x n matrices. Consider the operator A,, : M,, — R"
defined by the following formula

(Apz)(m) = in),r(i) Tes,. (1.3)
i=1

The uniform boundedness of the operators A,,, n € N, is essential for appli-
cations in the geometry of symmetric Banach spaces. One of the major results
of [41] (see Corollary 8 there) says that if the sequence of operators {4, },>1 is
uniformly bounded on the set of diagonal matrices, then it is uniformly bounded
on the set of all matrices.

For every x € L1(0,1), we define the vector B,z € R™ by the formula

i/n
(Bnx)i = n/ w(t)dt, i=1,2---n.
(i=1)/n

For every © = (21, ,x,) € R", we define the function C,x € L (0, 1) by the
formula

Chz = Z TEX((k—1)/nk/n)-
k=1

We now define the operator T,, : L1(0,1) — Lo (0,1) by setting
Tn = CnIAan, n € N.

For every n € N, T,, is a positive operator. Sometimes, we also use the notation
T,, for the operator C,,1A,, defined on R™ (this does not cause any ambiguity).

Example 1.1.2. FEvidently,
[Tnzl|, = llzlL,

for every positive x € L1(0,1). It follows that the sequence of operators A, :
Ly — L1, n € N, is uniformly bounded.



CHAPTER 1. INTRODUCTION & PRELIMINARIES 9

There is not any immediately obvious connection between the operator K
and the sequence T}, n > 1. Nevertheless, the following interesting fact follows
from comparison of results in [41] and [6]: the criterion for boundedness of
the operator K in any Lorentz space Ay coincides with that for the uniform
boundedness of the family of operators {T},}n>1 in Ay.

Theorem 1.1.3. The operator K maps the Lorentz space Ay into itself if and
only if

1
sup ——
o<t<1 Y(t) P

—

Theorem 1.1.4. The family of operators {T,,}n>1 is uniformly bounded in the
Lorentz space Ay if and only if

1 ot
SHATOPI I

It is now natural to ask whether the boundedness of the operator K in an
arbitrary symmetric space F is equivalent to the uniform boundedness of the
family of operators {7, },>1 in E. In Chapter 3, we establish that it is indeed
the case. The proof is based on combinatorial estimates for the correspond-
ing distribution functions. The equivalence that we establish implies some new
corollaries for the operator K and operators T}, n > 1. In particular, Corollary
4.5.2 strengthens Theorem 19 from [41] by showing that the uniform bounded-
ness of the family of operators {T}, },,>1 in the Orlicz space exp(L,) is equivalent
to the condition p < 1.

1.1.4 The Banach-Saks indices

The Banach-Saks theorem says that if a sequence in L, is weakly null, then
there exists a subsequence which converges to 0 in the sense of Cesaro.

A sequence {z1}72, in the Banach space is called a p-Banach-Saks-sequence
if, for every subsequence {yx}32, C {zx}3>,, we have

1> wille = 0mM/?).
k=1

A symmetric Banach space is said to have the p-Banach-Saks property if ev-
ery weakly null sequence {z,}22 ; C E contains a p-Banach-Saks-subsequence.
The infimum of all such p is called the Banach-Saks index of E. It was proved
in [4] that the Banach-Saks index is non-trivial (i.e. is not equal to 1) if and
only if 0 < ag SﬁE < 1.

In section 1.2, we introduce modified versions of the Banach-Saks index. In
our setting, we require the weakly null sequence to be independent (respectively,
independent and identically distributed; respectively, disjoint). It is not clear,
a priori, how to compute these modified indices.
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It is shown in this thesis that the modified Banach-Saks index for inde-
pendent sequences is the minimum of that for disjoint sequences and that for
independent identically distributed sequences. The former is usually easier to
compute. As for the latter, we show how to compute it in terms of the estimates
on the norms of certain sequences of operators.

This sequence of operators is a semigroup. This allows us to characterise pre-
cisely those spaces for which the modified Banach-Saks index (for independent
identically distributed functions) is trivial.

As an application, we establish a criterion for the triviality of those indices
for Lorentz spaces. Such questions were considered earlier in the literature by
Carothers & Dilworth (see [18, 17]) in the setting of L, 4—spaces.
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1.2 Preliminaries

1.2.1 Rearrangements & their properties

Let Ly be the space of Lebesgue measurable functions either on (0,1) or on
(0,00) which are finite almost everywhere (with identification m—a.e.). Here
m is Lebesgue measure. Define Sy to be the subset of Ly which consists of all
functions x such that m({t : |x(t)| > s}) is finite for some s > 0.

Definition 1.2.1. Let z € Sy. The function d, defined by the formula
d.(s) =m{t:|z(t)| >s}), s>0
18 called the distribution function of z.

Definition 1.2.2. Two functions x and y are called equimeasurable if their
distribution functions coincide, that is d, = d,.

Equimeasurability is an binary relation. Clearly, this relation is reflexive,
symmetric and transitive. Therefore, it is an equivalence relation.

Definition 1.2.3. Let x € Sy. We define the right-continuous rearrange-
ment of x by the formula

z*(t) =inf{s > 0: m({|z| > s}) < t}.
Lemma 1.2.4. For every x € Sy, the function x* is equimeasurable with x.

Thus, x* is the unique monotone representative of the equivalence class of
functions equimeasurable with x. The term ”rearrangement” we apply to z* is
widely used in a literature. The following theorem (see [50]) clarifies the naming
convention.

Theorem 1.2.5. Let x € Sy be a function on the interval (0,1). Let x* be the
right-continuous rearrangement of x. Then there exists a measure-preserving
transformation from (0,1) to itself such that |z| = x* o ~.

Note that the converse assertion is false, as is shown by the following exam-
ple.

Example 1.2.6. Let

2%, 0<t<1/2
x(t) =
2—1, 1/2<t<1

Here, we have that ©*(t) = 1—t, t > 0. However, there is no measure-preserving
transform from (0,1) to itself such that ©* = x o+.

In the case of the semi-axis, the preceding theorem is not valid and the
situation is more complicated. The following example is worth noting.
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Example 1.2.7. If z(t) = %arctg(t), t > 0, then, x*(t) = 1 for all t > 0.
Therefore, x* oy =1 for every measure preserving transform ~.

However, under mild additional restriction, then preceding theorem is valid
on the semi-axis.

Theorem 1.2.8. Let x € Sy be a function on the semi-axis. If x > x*(00),
then there exists a measure-preserving transformation from the semi-azis into
itself such that © = x* o .

Example 1.2.9. Let z(t) =t and y(t) = 1 —t for every t € (0,1). We have
¥ =y* =y and (x +y)* = 1. Thus, the inequality

(z+y)"(t) < 2"(t) +y" (1)
fails for every t € (0,1/2).
However, the following weaker inequality is valid (see [33])

Lemma 1.2.10. Let x,y € Sy. For every ti,ta > 0 we have
(+y)"(tr +t2) < a"(t1) +y"(L2). (1.4)

The following proposition follows directly from the definition of rearrange-
ment (see [33, I1.2.2]).

Proposition 1.2.11. Let x € Sy. For every t > 0,

t
/x*(s)ds: sup /|:E(S)|d5
0 m(A)=tJA

In general, one cannot replace sup in the proposition above with a max
(see Example 1.2.7). However, if z € Sy5(0,1) or & > x*(00), then sup may be
replaced by max in Proposition 1.2.11 (see [33, 11.2.2]).

The following semi-orderings play an important role in the theory of sym-
metric spaces.

Definition 1.2.12. Let z,y € Sy. We say that y is submajorized by x in the
sense of Hardy-Littlewood-Polya if

t t
/ y*(s)ds < / x*(s)ds, Vt>0.
0 0

In this case, we write y << x.

Definition 1.2.13. Let 0 < z,y € Li. We say that y is majorized by = in
the sense of Hardy-Littlewood-Polya if y << z and |ly|1 = ||z||1. In this
case, we write y < x.
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Lemma 1.2.14. Let {z1}72, C Sy and {yr}72, C Sy be sequences of mutually
disjoint functions. If yi, << xy, for every k, then

y:Zyk -<-<Zxk:x.
k k

Proof. Fix € > 0. There exists a set A such that m(A4) =¢ and

Af®@9+Ay®MH%; i (5)]ds.

Ansupp(yx)

However,

m(ANsupp(yx)) m(ANsupp(yr))
/ msllds < | its)ds < [ 23 (s)ds
Ansupp(yr) 0 0

Again, there exist sets By, C supp(z) such that m(By) = m(ANsupp(yx)) and

m(ANsupp(yx))
/ x5 (s)ds < 5-2—’%+/ |21(s)|ds.
0 By

Set B = U By,. It follows that

t t
/ y*(s)ds < 2e —|—/ |x(s)|ds < 2¢ —|—/ x*(s)ds.
0 B 0

Since € is arbitrary, we are done. O

The following properties of rearrangement are well-known and can be found
in Chapter IT of [33] (see Equation (2.17), Theorem 3.1 and Section 6.1 there).

Proposition 1.2.15. If x,y € Sy, then
(+y)" <<z +y" (1.5)

and
(" —y") =< (z—y)" (1.6)

In fact, even stronger version of (1.5) is valid. If z € Sy, k € N, then

ixk <= f:m;;, (1.7)
k=1 k=1

provided that the latter series converges pointwise.
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1.2.2 Convergence almost everywhere, in measure and in
distribution

The following definitions of convergence are well-known.

Definition 1.2.16. Let x,, € Sy be a sequence of functions and let x € Sy. We
say that x, converges to x

1. almost everywhere if the set of non-convergence has measure 0, that is
m({t: wa(t) £ 2()}) = 0.
2. in measure if for any fixed € > 0,

m({t: |z,(t)—=x()] >e}) — 0.

3. in distribution if d,, (t) converges to d(t) for allt > 0.

The following result gathers several well-known properties which will be
needed in sequel.

Lemma 1.2.17. Let {x,}nen C So be a sequence of functions on the interval
(0,1) and let x € Sp.

1. If x,, — x almost everywhere, then x,, — x in measure.
2. If x,, — x in measure, then x, — x in distribution.

3. Let xp, = x}, for alln € N and let x = z*. If x,, — x in distribution, then
T, — T almost everywhere.

4. If x,, — x in measure, then there exists a subsequence {yx tren C {Tn}nen
which converges to x almost everywhere.
1.2.3 Quasi-Banach spaces
We recall the definition of a quasi-Banach space (see [43]).

Definition 1.2.18. Let E be a linear space over R. A function ||-|| : E — R is
called quasi-norm if the following conditions are satisfied.

1. There exists a constant C(FE) (which depends only on E) such that ||z 4+
yll < CE) [zl + llyll) for every x,y € E.

2. For every x € E and ¢ € R, we have ||cx| = |c| - ||z]|
3. For every x € E, we have ||z|| > 0. Moreover, if ||z| =0, then z = 0.
We refer to the constant C(FE) as the concavity modulus of E.

Definition 1.2.19. If E is a linear space over R and if || - ||g : E — R is a
quasi-norm, then the pair (E, || - ||g) is called a quasi-normed space.
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For brevity, we will say that F is a quasi-normed space since this will not
cause any confusion in the current text.
As in the case of normed spaces, we have the following definition.

Definition 1.2.20. Let {z,}nen be a sequence in a quasi-normed space E. We
say that the sequence x,, n € N, is a Cauchy sequence if ||z, — ||z — 0
provided that m,n — oo.

The usual definition of completeness follows.

Definition 1.2.21. If F is a quasi-normed space such that every Cauchy se-
quence in E converges, then E is called quasi-Banach space.

Example 1.2.22. If E = L,(0,1) or E = L,(0,00) with 0 < p < 1, then E is
a quasi-Banach space with concavity modulus C(Ly) = 21/p—1,

In many cases, the study of quasi-Banach spaces is significantly more diffi-
cult than that of Banach spaces. The reason is that many basic principles of
functional analysis fail in quasi-Banach spaces. The most common example is
that Hahn-Banach theorem fails even for such simple quasi-normed spaces as
L, 0<p<l.

Lemma 1.2.23. The quasi-Banach space L,, 0 < p < 1, does not admit any
continuous linear functional (see Section 1.47 of [47]). Moreover, there are no
convex open subsets in this space (except the trivial ones).

1.2.4 The Aoki-Rolewicz theorem

The very worst property of a quasi-Banach space is that the quasi-norm is not
necessarily continuous in the topology induced by the quasi-norm itself. In
order to somehow deal with such spaces, we need the Aoki-Rolewicz theorem.
For completeness, we include the details of proof and will follow that given by
Gustavsson (see [25]).

Lemma 1.2.24. Let E be a linear space and let f : E — R be such that

fle+y) <2max{f(z), f(y)}, Va,ye€E.

If i >0 are such that 377 _, 274 <1, then

n
) < 2% f(x).
f(Z; zj) < max 29 f(z))
]:
Proof. We use induction on n. The assertion is valid for n = 1. Assume it is
valid for n < k and let us prove it for n = k. After permutation (if necessary),
one can find 1 <1 < k such that
1 k
Souel Y aus
Jj=1 Jj=l+1

N |

9

N | =
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By induction,

1 k
N < ij—1p(, . N < =1 ().
f(zxj)ffg?gﬂJ f(z;), f(z xﬂ)*zﬁ?f{gﬁ f(z;)
j=1 J=l+1
Hence,
k 1 k
FO ) <2max{f( ), f( Y x;)} < max 2Y f(z;).
j=1 j=1 j=1+1 =J=
O
Definition 1.2.25. Two quasi-norms || - ||1,2 on E are said to be equivalent
if there exist constants c1,co such that
alzli < llzllz < 2|z, Vo€ E.
Theorem 1.2.26. FEvery quasi-Banach space (E, || - ||) admits an equivalent
quasi-norm || + ||new such that
||J} + y”%,new S Hx”%,new + ||y||%,new7 V$, Y =) (18)

for some p < 1.
Proof. Let p =logy ' (2C(E)). Tt is clear that

lz+ylle < CE(Izlle + lyle)” < 2max{|«]%, [ylE}, Vz,y € E.

Define f : E — R by the formula f(z) = ||z|/%,. Clearly, f satisfies the assump-
tion of Lemma 1.2.24.
Let x1,--- , 2, € E. For every 1 < j <n, find i; such that

-y £ i
27 % S __INE S 11,
> sl

It follows that

n

n
I a5l < s 290l < 23 o -
J= J=

Define the new quasi-norm by the formula
121 % e = WED il s D wa = 2.
i i

It follows from the above that
2l 2 new < [|2]lE < 21/])H39||E,new = 2C(E)|z] B,new-

Tt is clear that the new quasi-norm satisfies the condition (1.8). O
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Corollary 1.2.27. Every quasi-Banach space admits an equivalent continuous
quasi-norm.

Proof. By the Aoki-Rolewicz theorem, we may assume that the inequality (1.8)
holds for our quasi-norm. It follows that E is a metric space with a distance
given by the formula

dist(z,y) = ||z -yl

Since distance is continuous in any metric space, we are done. O

Note, that if the original quasi-norm takes the same value on equimeasurable
functions, then so does the quasi-norm given by the Aoki-Rolewicz theorem.
From now on, we assume that quasi-norm is continuous.

1.2.5 Symmetric spaces & their properties

Definition 1.2.28. Let F be a quasi-Banach space of real-valued Lebesgue mea-
surable functions either on (0,1) or (0,00) (with identification m—a.e.). E
is said to be ideal lattice if x € E and |y| < |z| implies that y € E and

lylle < ll=lle-

Definition 1.2.29. The ideal lattice E C Sy is said to be a symmetric quasi-
Banach space if for every x € E and every y € Sy the assumption y* = x*
implies that y € E and |ly||g = ||z|| &

In particular, if E is a Banach space, the following assertion is valid.

Lemma 1.2.30. Let E be a symmetric Banach space either on the interval
(0,1) or on the semi-azis.

1. If E = E(0,1) is a symmetric Banach space on (0,1), then
Lo CECL,.

These inclusions are continuous. Moreover, there exist absolute constants
c1 and ¢y such that

allzlle, < llzlle < coll@fl oo,
for every x € E.
2. If E = E(0,00) is a symmetric Banach space on (0,00), then
LiNLey CECL + L.

These inclusions are continuous. Moreover, there exist absolute constants
c1 and ¢y such that

allzlirre < llzlle < collzloinc.

for every x € E.
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Definition 1.2.31. Let E be a symmetric quasi-Banach space. The space E is
said to have order-continuous quasi-norm if ||z, ||g — 0 for every sequence
{xn}2, C E such that x, | 0 almost everywhere.

The following theorem can be found in [8] (see Theorem 5.5 of Chapter II
there).

Theorem 1.2.32. If E is a symmetric Banach space, then E is separable if
and only if the norm in E is order-continuous.

Definition 1.2.33. The symmetric quasi-Banach space E is said to have the
Fatou property if, whenever {x,}°2; is a bounded sequence in E such that
Tn, — T almost everywhere for some x € Sy, it follows that x € E and

lz||g < liminf ||z, | g.
n—oo

The following notion is somewhat weaker.

Definition 1.2.34. Let E be a symmetric space. If unit ball of E is closed in
E with respect to almost everywhere convergence, then the quasi-norm on E is
said to be a Fatou quasi-norm.

Example 1.2.35. If the quasi-norm on E is order-continuous, then it is a
Fatou quasi-norm.

Note that if F is a symmetric Banach space, then the Banach dual of E
is not necessarily a symmetric space. In this setting, the appropriate notion is
that of Koéthe duality. The necessary definition now follows.

Definition 1.2.36. The Kdithe dual space E* of a symmetric Banach space E
consists of all functions x € Sy for which the norm

1

lzlzx = sup / (D) (t)dt
lylle<1J0

s finite.

If F is a symmetric Banach space, then E* is also a symmetric Banach space
which is isometrically embedded into the Banach dual E* of the space F.
The following theorem is proved in Zaanen [58] (see Chapter 15 there).

Theorem 1.2.37. Let E be a symmetric Banach space.
1. The Kéthe dual E* satisfies the Fatou property.

2. The norm on E is order-continuous if and only if its Kéthe dual E*
coincides with its Banach dual E*.

8. E is equipped with a Fatou norm if and only if it can be isometrically
embedded into its second Kothe dual E**.
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4. E satisfies the Fatou property if and only if the natural embedding of E
into E** is a surjective isometry.

Definition 1.2.38. Let E be a symmetric quasi-Banach space. E is said to be
fully symmetric if and only if x € E, y € L1+ Lo, y << x implies thaty € E
and |ly|le < [|z]|e-

The following assertion can be found in Chapter II of [33] (see Theorem 4.9
and 4.10 there).

Theorem 1.2.39. Let E be a symmetric Banach space.
1. If E is separable, then E is fully symmetric.
2. If E satisfies the Fatou property, then E is fully symmetric.

For symmetric quasi-Banach space E, define Fy to be closure of the set of
simple functions with finite support in E.

Lemma 1.2.40. If E = FE(0,1) is a symmetric quasi-Banach space on the
interval (0,1) and if E # Lo (0,1), then Ey is separable.

Proof. For every x € E,
x|z = = (w)llxo,ull -

If z is unbounded, then ||x(o,.)||z — 0 as u — 0. The assertion follows now from
Theorem 4.8 of [33]. O

If £ is as in the lemma above, then Ej is called the separable part of E.

1.2.6 Interpolation

Let Ey and F; be quasi-Banach function spaces. The intersection Ey N Ey
equipped with the quasi-norm

2]l one, = max{[|z||e,, lz]le, ), =€ Eon Ey
is a quasi-Banach space. The sum Ey + E; equipped with the norm
% £o+2, = inf{|[zol| gy +|21lE, © @ = Tot21, i € B3y i = 0,1}, Vo € Eg+Ey
is a quasi-Banach space.

Definition 1.2.41. The quasi-Banach space F with EoNEy C F C Ey + E4
is called an interpolation space with respect to Ey and Ei if every linear
operator T' bounded in Eg and in Ep is also bounded in F.



CHAPTER 1. INTRODUCTION & PRELIMINARIES 20

It follows from the closed graph theorem that there exists a constant C' > 0
such that
1T p—r < Cmax{|T|| gy~ £, | Tl 2 —E, }-

If C =1, the space F' is called an exact interpolation space with respect to
FEy and Ej.

The following theorem due to Calderon and Mityagin can be found in Chap-
ter IT of [33] (see Theorem 4.3 there).

Theorem 1.2.42. A symmetric quasi-Banach space E is an exact interpolation
space with respect to Ly and Lo if and only if E is fully symmetric.

In fact, every interpolation space with respect to L1 and L., can be made
fully symmetric by equivalent renorming.

1.2.7 Symmetric sequence spaces

Symmetric sequence spaces are the natural couterpart of the symmetric function
spaces.

Let z = {Zn}nen € loo and let @, — 0 as n — oco. The sequence z* is a
rearrangement of the sequence |z| = {2, }nen in decreasing order.

Definition 1.2.43. The quasi-Banach space E C ¢y is called a symmetric
quasi-Banach sequence space if

1. x € E and |y| < |z| implies that y € E and ||y||g < ||z| &,

*

2. for every x € E and every y € Sy the assumption y* = x
y € E and ||yl = ||lz||e-

implies that

It is also convenient to call [, a Banach sequence space.

Definition 1.2.44. Let z,y € co. We say that y is submajorized by = in the
sense of Hardy-Littlewood-Polya if

In this case, we write y << x.

Definition 1.2.45. Let 0 < z,y € ;. We say that y is majorized by z in the
sense of Hardy-Littlewood-Polya if y << z and ||y||1 = ||z||1. In this case,
we write y < .

Definition 1.2.46. Let E be a symmetric quasi-Banach space. E is said to be
fully symmetric if and only if x € E, y € lo, y << x implies that y € E and
lylle < zl&.

Theorem 1.2.47. A symmetric quasi-Banach space E is an exact interpolation
space with respect to ly and ly if and only if E is fully symmetric.

In fact, every interpolation space with respect to /1 and l,, can be made
fully symmetric by equivalent renorming.
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1.2.8 Dilation operators & Boyd indices
If 7 > 0, the dilation operator o, is defined by setting

(o (@))(s) =2(2), 5>0

in the case of the semi-axis. In the case of the interval (0, 1), the operator o is
defined by
x(s/7), s <min{l, 7}
(0r2)(s) =
0, T<s<1.

Lemma 1.2.48. If x,y € L1 + Lo and y << x, then,

(0:(y)" < or(y*) << o (27).

Proof. In the case of the semi-axis, dy , = 7d, = ds_(y+). In the case of the
interval (0,1), dy,, < 7dy, and d,_(,-) = min{l,7d,}. Hence, dy y < d, (4
and so (0(y))* < o, (y*). Finally,

/Ot o-(y")(s)ds = 7'/i y*(s)ds < 7/: 2*(s)ds = /Ot o (2%)(5)ds.

0 0
0

The following assertion is widely used in the literature. However, no direct
reference seems to be available. We include the proof for convenience of the
reader.

Lemma 1.2.49. If 0 <z,y € L1 + Lo, then
"+ Yyt << 201 ((x+y)"). (1.9)
Proof. Fix € > 0. It follows from Proposition 1.2.11 that, for each ¢t > 0,

/0 e (s)ds < e + / (s, / y(s)ds < e+ / (s

for some e; and ey with m(e;) = t. However,

/el a:(S)d5+/e2 y(s)ds < /eluez(z+y)(s)ds <

< s [+ - /:t<x+y>*<s>ds7

m(e)=2t

again using Lemma 1.2.11. Since € > 0 is arbitrary, it follows that

t 2t
/0($ +y )(S)dSS/O (x +y)*(s)ds.

/o%“(sms - /Ot@%w(s)ds,

the assertion follows immediately. O

Observing that
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If F is a symmetric quasi-Banach space and if 7 > 0, then the dilation
operator o, is a bounded operator on E (see [33], Chapter I1.4, Theorem 4.4).
If, in addition, F is a Banach space, then

lorllp—r < max{1l,7}, 7 >0.
As is easily seen, the operators o, (7 > 1) satisfy the semi-group property
07101y = Ory73-

Theorem 1.2.50. Let E be a symmetric quasi-Banach space. The following
two limits exist.

. 1
ap = }T})mlog(“UrHE—E)

and

1
= lim — log(||os |l p—p).
fp = lim og(llor| k)

These two numbers ap and (g are called the Boyd indices of the symmetric
space FE.

Lemma 1.2.51. For every symmetric Banach space E, 0 < ap < g < 1.

Thus, ag is called the lower Boyd index and (g is called the upper Boyd
index.

In a some sense, if agp = 0, then the symmetric Banach space F is close to
L. Similarly, if 8 = 1, then the symmetric Banach F is close to L. For any
other case, the following theorem is valid

Theorem 1.2.52. Let E be a symmetric Banach space either on the interval
(0,1) or on the semi-azis. If 0 < ap and Bg < 1, then E is an interpolation
space between L, and Ly for some 1 < p < g < oo.
1.2.9 Convex and concave functions
Definition 1.2.53. A function f : R — R is called convex if
Fats + Aata) < Aif(t) + Aaf(t2) Vit €R
provided that 0 < A1, Ay and A1 + Ay = 1.
Definition 1.2.54. A function f: R — R is called concave if
JAats + Xato) > A f(t1) + Mo f(t2) Vi, t2 €R
provided that 0 < X1, Ao and A1 + Ao = 1.
The following theorem is well-known.

Theorem 1.2.55. If a function f is convex (respectively, concave), then it is
continuous. Moreover, it is right-differentiable and left-differentiable at every
point and the derivative function f’ is increasing (respectively, decreasing).
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Definition 1.2.56. The function f : R — R is called quasi-concave if there
exists a concave function g and constant ¢ > 0 such that ¢~ f < g < cf.

The following theorem can be found in Chapter II of [33] (see Theorem 1.1
there).

Theorem 1.2.57. The function f : Ry — Ry is quasi-concave if and only if
the following inequalities are valid

f(tl) < Cf(t2)7 g(t1> < Cg(lfg), Y0 < t1 < ta.

Here, the function g is defined by setting g(t) =t/ f(t) for all t > 0.

Definition 1.2.58. The fundamental function g of a symmetric space E is
defined by setting ©(t) = ||x[0,4llE for every t > 0.

Example 1.2.59. The fundamental function pg of a symmetric Banach space

FE is always quasi-concave.

1.2.10 Examples of symmetric spaces
We list below some of the most important examples of symmetric space.

Definition 1.2.60. A function ® : R — R is called an Orlicz function if it
satisfies the following conditions

1. ®(t) is positive for every t € R.
2. ® is even function, that is ®(—t) = ®(t) for every t € R
3. ® is conver function
4. ®(0)=0
Example 1.2.61. If p > 1, then the function ®, defined by
() =ell" 1, teRr
is an Orlicz function. If 0 < p <1, then the function ®, defined by
(1/p] |t|kp

B, (1) = el — Z b

1s an Orlicz function.

Definition 1.2.62. The Orlicz space Lg consists of all x € Sy such that

1
]z =inf{A>o: / ® (ﬂﬁgﬂ) it < 1} <
0



CHAPTER 1. INTRODUCTION & PRELIMINARIES 24

If @, is the Orlicz function defined in the Example 1.2.61, then the Orlicz
space Lg, is called the exponential Orlicz space and denoted by exp(L,).

Let 1 be an increasing concave continuous function either on (0, 1) or on the
semi-axis such that ¢(4+0) = 0. The following definitions can be found in [33]
(see Chapter II, Section 5 there).

Definition 1.2.63. The Lorentz space Ay, is the space of all measurable func-
tions on the interval (0,1) such that

[z A, :/O ¥ () d(t) < oo.

Definition 1.2.64. The Marcinkiewicz space M, is the space of all mea-
surable functions on (0,1) such that

1 /t
T = sup —— z*(s)ds < 0.
I, 0<t21 Y(t) Jo (#)

Lorentz and Marcinkiewicz spaces on the semi-axis can be defined in similar
manner. We now gather some of the most important properties of Lorentz and
Marcinkiewicz spaces (see [33]).

Theorem 1.2.65. Let 1) be an increasing concave continuous function either
on (0,1) or on the semi-axis such that ¥ (0) = 0.

1. The Lorentz space Ay is always separable.

2. The Kdthe dual of the Lorentz space Ay is the Marcinkiewicz space M.
3. The Kothe dual of the Marcinkiewicz space My, is the Lorentz space Ay .
4. Both Lorentz and Marcinkiewicz spaces satisfy the Fatou property.

5. If E is a symmetric Banach space with fundamental function ¢g, then
Ao CEC My,.

Here, the function ¥ is defined by setting Y (t) =t/pr(t) fort > 0.

We need the following description of the Boyd indices for Lorentz and Marcinkiewicz
spaces.

Lemma 1.2.66. Let Ay be a Lorentz space on the interval (0,1).
1.

L P(28)

hItILlélf ) =l<=ay, =0.
2. o

limsupw( ):2<:>5sz0.

t—0 w(t)
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If Ay is a Lorentz space on the semi-axis, one should replace “t — 0”with “either
t—0ort—o0”.
Lemma 1.2.67. Let My be a Marcinkiewicz space on the interval (0,1).

1.

(20
h?l,%lf w((t)) =1+ fBn, =1

> ¥(2t)
hr?j(l)lpw =2+ apm, =0.

If My, is a Marcinkiewicz space on the semi-axis, one should replace “t — 0”with
“eithert — 0 ort — c0”.

One usually refers to the following class of spaces as “Lorentz spaces®. We
will not use this name in order to avoid confusion with Lorentz spaces defined
above.

Definition 1.2.68. If p,q > 0, then the space L, 4(0,1) is the space of all
measurable functions x on the interval (0,1) such that

|2llp,q = (/O (@*(1)))?dt/7) 1 < oo,

L, 4(0,00) is defined in a similar manner.

Definition 1.2.69. If p > 0, then the space Ly, (0, 1) is the space of all mea-
surable functions x on the interval (0,1) such that

[llpe = sup /72 (1) < oo,
o<t<1

L, o(0,00) is defined in a similar manner.

It is well-known (see [8]) that, for p, ¢ > 1, the quasi-norm |- ||, 4 is equivalent
to a symmetric norm.

For further properties of Lorentz, Marcinkiewicz and Orlicz spaces, we refer
to [33, 36] and [44].

1.2.11 Some special spaces.

Definition 1.2.70. A Poisson random variable with a parameter a > 0 is

—aa”

the random variable which takes values n € Zy with probability e~ <.

Lemma 1.2.71. If N is Poisson random variable, then

exp(~1 ~ 21 aresinh(20) < m({IN| > 1) < exp(1 — o aresinh(1-)).
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Proof. Let us prove the left inequality. Assume first that ¢ > 1. There exists
n € N such that ¢ € [n,n + 1). Clearly,
1 1

MmN > 1) 2 N = n 1)) = g 2 oy =

=exp(—1— (n+1)log(n + 1)) > exp(—1 — (n + 1)arcsinh(n + 1)).
However, n + 1 < 2n < 2t and, therefore,

m({N >t}) > exp(—1 — 2¢ - arcsinh(2t)).

If t € [0,1), then

m({|N| > t}) > m({|N| = 1}) = — > exp(—2tarcsinh(2t)).

Q|

Let us now prove the right inequality. Assume first that ¢ > 5. There exists
n € N such that ¢t € [n,n + 1) and n > 3. Clearly,
=1
mU{IN| > ) =m({N Zn+1h) = 3 =
k=n-+1 :

1 1 1

:e-(n+1)!(1+n+2+ (n+2)(n+3)

+)§

(
1 1 1 1
S CES ';J(nm)k R RSO T eIk

Note that by the Stirling formula,

nt > (2,
e

Therefore,

n+1 n+1

m{IN] > 1)) < (F22) 704 = exp(—(n + 1) log

)-

However,
n+1 t t
log(——) > log(-) > inh(—).
og( . ) > og(e) > arcsin (36)

The latter inequality is valid since ¢ > 5. Hence,
({IN] > 1}) < exp(— o arcsinh ()
m exp(——arcsinh(=—)).
=P 3e e

If ¢ € [0,5), then

m({|N| >t}) <1 <exp(l-— %arcsinh(é)).
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Corollary 1.2.72. If N is a Poisson random variable, then the smallest sym-
metric space containing N is My where ¥(t) = tlog(e/t)/log(log(e®/t)).

Proof. Tt follows from Corollary 3.1.8 that the smallest symmetric space con-
taining N coincides with enveloping Marcinkiewicz space. The computation
above shows that the decreasing rearrangement of N is equivalent to ¢’ at 0.
This suffices to conclude the statement. O

Definition 1.2.73. A Gaussian random variable is any random variable &
such that

—u* /2y,

1 S
m(t: §(F) < sp) = — e
(e <sh=—=[
Lemma 1.2.74. If £ is a Gaussian random variable, then the smallest sym-

metric space containing & is exp(La).

Proof. Let 1) be a concave increasing function such that @)’ = £*. It is easy
to show that (2t)/¢(t) — 2 as t — 0. Thus, the smallest symmetric space
containing ¢ coincides with enveloping Marcinkiewicz space, which is exp(Ls).

O

1.2.12 Expectation operators

Let E be a fully symmetric quasi-Banach space either on the interval (0,1) or
on the semi-axis. We need the notion of an averaging operator (see [11]) and
that of an expectation operator.

Let A = {A} be a (finite or infinite) sequence of disjoint sets of finite
measure and denote by 2l the collection of all such sequences. Denote by A,
the complement of Uz Ay.

The partial averaging operator P(:|A) : L1 + Loy — L1 + Lo is defined by
setting

Plld) =3 ([ e, + o

k

Note, that we do not require A, to have finite measure.
The averaging operator E(-|A) : L1 + Lo, — L1 + Lo is defined by setting

Bld) = 3 (e

k

Note, that we do not require A, to have finite measure.

Every partial averaging operator is a contraction both in I.; and L.,. Hence,
P(-|A) is also contraction in E. Moreover, P(:|4) is a doubly stochastic operator
in the sense of [49]. Every averaging operator is a contraction both in Ly and
Lo. Hence, E(-|.A) is also contraction in E.

Since P(-|A) € ¥, it follows that P(z|A) € Q(z) (respectively, P(z|A) €
V() if x € Ly) for every A € . Since E(-|A) € X, it follows that E(x|A) €
Q(z) for every A € 2. As will be seen, elements of the form P(z|A) and E(z|.A)
play a central role.
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1.2.13 The orbits & their properties
Define the semigroups ¥ and X7 by setting
Y={A:L1+Loc = L1+ Lo, [AllL,~1s, [ AllLc—r0 <1}
St={4>0, Aex}.

The positive operator A : L1+ Lo, — L1+ Lo is called bistochastic if A1 =1
and

/OOO(Am)(s)ds = /OOo z(s)ds, € L1+ Leo.

The semigroup of bistochastic operators is denoted by X'.
The orbits of the element x with respect to the semi-groups -, ¥T and ¥’
will be denoted by Q(z), Q% (x) and ' (z) respectively. That is,

Q) ={Az, AecX}, Qf(z)={Az, Aecxt}, Q(z)={Az, Aec¥'}

The following assertion is known as Calderon-Mityagin theorem (see [33]).
Theorem 1.2.75. If x € L1 + L, then

Nz)={y e L1+ Lo : y <<z},
O (2)={0<ye€Li+Lo: y=<=<u},
V(z)={0<yeLi:y=<uxz}
It is clear that for all equimeasurable functions z,y from L; + L., we have
Qz) = Q(y), A" (2) = QT (y), V' (z) = Y (y)-
In particular,
Qx) = Q(z*), QT (z) = QT (), V' (z) = Q' (2%).

The following question was initially investigated by Braverman & Mekler (see
[11]). They only considered symmetric Banach spaces on the interval (0,1).

Question 1.2.76. Find conditions which guarantee that the orbit Q(z) coin-
cides with the norm-closed convex hull of its extreme points.

In this thesis, we study this question also for the sets Q% (z), Q'(z) in the
more general setting of symmetric quasi-Banach spaces on the interval (0, 1) or
on the semi-axis. Necessary and sufficient conditions are given in Chapter 2.

Fo the convenience of the reader, we give here the classification of the extreme
points of the sets Q(z), Q1 (z) and Q' (z) (see Theorem A.0.14).

1. For every = € L1(0,1), we have

)=A{
extr(Q () ={y>0: y* = " X081}
extr(Q(z)) ={y>0: y* =z*}.
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2. For every z € (L1 + Loo)(0,00), we have
extr(Qz)) ={y: y" =2", |yl = y"(c0)},
extr(QF () = {y: y" = 2" xp0,8) |yl > y"(00)}.
3. For every x € L1(0,00), we have

extr(Q(z))={y>0: y* =z*}.

We suppose that F is a fully symmetric quasi-Banach space. Note that since
E is fully symmetric, it follows that each of the orbits Q(z), Q" (z) and Q' (z)
is a subset of E.

Here, we use the notation of [31] as opposed to that of [55]. More precisely,
the following notation is employed.

Q(x) = Conv(extr(Q(x))), Qr(x)= 9(x),
Q* (z) = Conv(extr(2"(2))), Qp(z) = Q¥ (x),
Q'(z) = Conv(extr(Q'(x))), Qx(z)= Q' (x).
Here, closure is taken in the natural topology in E (that is the one generated
by the quasi-norm).
In addition, if ¢ € (L1 + L)(0,00) but = ¢ L1(0,00), we set
Q(x) = Conv({y > 0: y" =a",y > y"(c0)})

and

Qp(x) = Q(x).
A partial answer to Question 1.2.76 was first given by Braverman and Mekler
n [11]. They showed that if

1
lim —||o,|g—g =0, (1.10)
T—00 T
then Q(z) = Qg(r) for symmetric Banach spaces on the interval (0,1). In
contrast, we will show that
1 X
Op(x) =Q(z) —= Tli)ngo ;||0T(x g =0. (1.11)

Note that our condition is a localised version of the global condition (1.10) and
goes much further as it permits us to characterise those elements z € FE for
which the equality Q(z) = Qg(z) is valid.

The implication <= in the equivalence (1.11) was proved by Sukochev and
Zanin in [55]. Also, the implication <= was proved in [55] for every symmetric
Banach space E on the semi-axis such that £ ¢ Ly. If E C Ly is a space on the
semi-axis, then the implication <= in (1.11) must be replaced with the stronger
statement

1 X
Qp(z) = Mz) &= lim —lo-(2")xnle =0.
The implication = was not proved in [55] in full generality. A complete proof

of the implication = was given by Kalton, Sukochev and Zanin in [31] using
very different methods.
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1.2.14 Characteristic function of a random variable

In probability theory, a measurable function on the interval (0,1) is called a
random variable. We refer the reader to [24] for the following assertions.

Definition 1.2.77. Let x be a random variable. The function ¢, : R — C
defined by the following formula

1
= [ e
0

is called the characteristic function of a random variable x.
We need the following basic facts from probability theory.

Lemma 1.2.78. Let x1,x9 be random variables. If ¢, = pq4,, then x1 and x4
are equidistributed.

Lemma 1.2.79. If the random variables x, 1 < k < n are independent, then

n
<‘022:1 T = H <)037k
k=1

Conversely, if, for every real sequence A\, 1 < k < n, we have

n
(JOEZ=1 Ak-Tk = H QOA)‘,’I:]‘,7
k=1

then the random variables xi, 1 < k < n are independent.

Lemma 1.2.80. Let x and x,, n € N, be random variables. If g, (t) — ¢z(t)
for every t € R, then x,, — x in distribution.

1.2.15 Basic properties of the operator K

In [12], Braverman introduced a new approach to the Johnson-Schechtman in-
equality based on earlier ideas of Kruglov and depending on a certain nonlinear
construction. To simplify the approach of Braverman, Astashkin & Sukochev
introduced a linear operator, called the Kruglov operator, which we now de-
scribe.

To do so, it is necessary to change the underlying measure space from the
interval to the space Q) defined by

Q= J]0,1),m).
n=0

It is a well-known fact that the measure space €2 equipped with product measure
is isomorphic to the interval (0,1) equipped with Lebesgue measure.
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Definition 1.2.81. Let x be a random variable (measurable function) on the
interval (0,1). Let {B,}22, be a fized sequence of mutually disjoint measurable
1
subsets of (0,1) such that m(By) = —. The Kruglov operator K : 5,(0,1) —
en!
So(Q2) is defined by setting

Kz(w) = Z Zﬂf(wk)XBn (wo), x€Sp(0,1).

n=1 k=1
Here, w = (wo, w1, ) is an element of ).
Remark 1.2.82. The operator K is well-defined.

Proof. Suppose that x,,x2 are measurable functions such that 7y = xo almost
everywhere. The set A = {w : x1(w) = x2(w)} is a set of full measure in (0, 1).
If wp, € A, then (Kz1)(w) = (Kz2)(w). However, (0,1) x A% is a set of full
measure in ). Thus, Kx; = Kz almost everywhere. O

It is clear that if 0 < x € 54(0,1), then 0 < Kz € Sy(12), so that K is a
positive linear operator. The following assertion was proved in [6] for the case
of symmetric Banach spaces.

Lemma 1.2.83. Let E and F be symmetric quasi-Banach spaces on the interval
(0,1). If K has the property that Kx € F for each x € E, then K : E — F is a
bounded operator.

Proof. Let C(E) be the concavity modulus of F. If K is not bounded, one can
select a sequence {x,}°2; C F of positive elements such that ||z,||g = 1 and
Kzl = n*C(E)".

We claim that the series z = > 2, n=2C(E) "z, converges in E. Indeed,
for every M > N, we have

M M 1

1 . B 1 _
| > —CE) s <CE™N Y —lealls < CE) ™.

n=N+1 n=N+1

For every n € N, x > n=2C(E) "z,. Since the operator K is positive,
we have Kz > n™2C(E) ™Kz, > 0. It follows that ||Kz|r > n for every
n € N. U

The following lemma is similar to Lemma 1 of [12].

Lemma 1.2.84. Let E be an arbitrary symmetric quasi-Banach space on the
interval (0,1). For every x € Sy such that Kz € E we also have x € E.

Proof. We have
|[Kz(w)| > |z(w1)[xB, (wo) ~ 01/¢(2).
Therefore, 0y/.x € E and so x € E. O
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It is now possible to define the Kruglov property for a symmetric quasi-
Banach space E.

Definition 1.2.85. A symmetric quasi-Banach space E on the interval (0,1)
is said to have the Kruglov property (E € K) if and only if x € E implies
that Kx € F.

The following crucial property of the operator K may be found in [6]. This
property was taken by Braverman as a definition of the Kruglov operator.

Lemma 1.2.86. For every x € Sy, we have @i, = exp(pz — 1).

Proof. 1t is clear that

(1) = | eMED)W) dw, = —/ exp(it z(w dwy, =
orealt) = [ [Laon =305 [ oty o [T do

n=0 k=1 k=1

n

— 1 — 1
_ . _ n _ 2(t)—1
= E o] | I /0 exp(ite(wy)dwy, = E peiat (t) =¢¥ .

n=0 k=1 (0,1) n=0

1.2.16 Banach-Saks indices

The following theorem is due to Banach and Saks.

Theorem 1.2.87. Let H be a Hilbert space. If a sequence {x,} C H converges
weakly, then there exists a subsequence {yx}2>, C {zn}22, and there exists

x € E such that
1 n
- E Y — .
n
k=1

This leads to the following definition.

Definition 1.2.88. Let E be a Banach space. If any weakly-convergent sequence
{zn}22, C E contains a subsequence {yr}7>, C {x,}52, such that Cesaro
means n~! > r_1 Yk are convergent in E, then E is said to have Banach-Saks
property.

Definition 1.2.89. Let E be a Banach space and let p > 1. The bounded
sequence {x,}>2, C E is called a p-BS-sequence if for all subsequences

{yk}zo:l c {xn}fol,o=1’

. m
sup m” 7 || ZkaE < 0.
meN 1

Definition 1.2.90. Let E be a Banach space and let p > 1. We say that E has
the p-BS-property if each weakly null sequence contains a p-BS-subsequence.
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Consider the set
I'(E)={p: p=1, E€BS(p)}

Clearly, either I'(E) = [1,4], or T'(E) = [1,) for some v > 1.

If, in the preceding definition, we replace all weakly null sequences by weakly
null sequences of independent random variables (respectively, by weakly null
sequences of pairwise disjoint elements; by weakly null sequences of independent
identically distributed random variables), we obtain the set I';(E) (respectively,
Lq(E), Dia(E)).

The general problem of describing and comparing the sets T'(E), T';(E),
Iiqa(E) and Ty(FE) in various classes of symmetric spaces was addressed in
[61, 21, 53, 4, 52, 5]. In particular, it follows directly from the definition that

It follows from Lemma 3 of [28] that
Ti(E) C Ty(E)

for any symmetric space E.
Moreover, the sets T'(E) and T';(F) often coincide. For example, it follows
from Corollary 4.4 and Theorem 4.5 of [52] that

F(Lp) = Fz(Lp) = Fiid(Lp)7 V1 < p < oo.

If E = A1z is Lorentz space generated by the function ¢ (¢) = t'/2, ¢ > 0, then
it follows from Theorem 5.9 of [52] and Proposition 4.12 of [4] that

T(Apn2) =1[1,2), Ti(Apre)=1]1,2].

The following theorem (see [53, Theorem 9] for the proof) states that these
two situations are typical

Theorem 1.2.91. Let E be a symmetric Banach space on the interval (0,1).
Assume that T'(E) # {1}. One of the following possibilities occur

1. T;(E)=T(F)
2. Ty(F)=[1,2] and T'(E) = [1,2).

In Theorem 3.5.4, we show the connection between the class of all symmetric
spaces with Kruglov property and the estimates on I';;4. We will prove the
general theorem (see Theorem 4.6.3 below) that

Ti(E) =Tua(E)NT4(E). (1.12)
Since every Lorentz space Ay, satisfies the condition

La(Ay) = [1,00),
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the equality (1.12) then shows that I';(Ay) = I'ja(Ay) an this permits us to
describe all Lorentz spaces Ay for which I';(Ay) is non-trivial.

Examples of symmetric spaces F such that T'(E) = {1} but I';(E) # {1} have
been produced in [5] under the assumption that E has the Kruglov property.
We present examples of Lorentz and Marcinkiewicz spaces F such that T';(E) =
Iiia(E) # {1} and which do not possess the Kruglov property (see Example
3.6.8).



Chapter 2

Orbits

35
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The results of this chapter were mostly published in [55] and [31].

2.1 The dilation functional and its properties

The following lemma introduces dilation functionals ¢, @fin and e, on E,
which are a priori non-linear. The behavior of these functionals on the positive
part £, of E provides the key to our main question on orbits.

Lemma 2.1.1. Let E be a fully symmetric quasi-Banach space either on the
interval (0,1) or on the semi-axis. For every x € E, the following limit exists
and is finite.

§— 00

o1 X
p(r) = lim ;HO’S(I Ne, € E. (2.1)
Proof. We prove that the function
1 *
s = —[losa”|[ e
s

is decreasing. Let so > s1. We have so = s3s1 and s3 > 1. Note that according
to the semi-group property of the operators o,

082 (Jﬁ*) = 05381 (Jﬁ*) = 083 (081 (33*))

Therefore,
los (o @Nle < = = los(@)e < o (@")]e,
2 S92 S1
since
los;lle—p < s3.
It follows immediately that the limit in (2.1) exists. O

Lemma 2.1.2. Let E be a fully symmetric quasi-Banach space on the semi-axis.
The following limits exist and are finite.

o1 .

Prin(r) = éhj{)lo ;Has(:c Xpolle, © € E, (2.2)
1 .

peut(2) = lim —|los(z*)xp,llE, @ € E. (2:3)

Proof. 1t is trivial to see that

Us(x*X[O,l]) = Js(x*)X[O,s]-

Therefore,
Peut(T) = @("X[0,1))-

Hence, existence of the limit in (2.3) follows from Lemma 2.1.1.
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It is trivial to see that the operators (, defined as

G(x) = Us(m)X[o,u, s>1

also satisfy the semi-group property. Thus, existence of the limit in (2.2) follows
mutatis mutands. O

Note that we assumed continuity of the quasi-norm in the introduction.
According to the Corollary 1.2.27, this is not a restriction.

Lemma 2.1.3. If FE is a fully symmetric quasi-Banach space either on the
interval (0,1) or on the semi-axis, then, the functional ¢ defined by (2.1) is
continuous. If E = E(0,00) then the functionals @i, and @eu are also contin-
UOUS.

Proof. According to the Aoki-Rolewicz theorem 1.2.26, we may assume that our
quasi-norm satisfies inequality (1.8) with some p < 1. It follows that

Nl =yl [ < llex — vl

Note the elementary inequality
/P — pl/p| < %m B[ - (max{a, b})/P1.
Substitute a = ||z1]|%; and b = |jy1||’. It follows that
Hlz1lle = lnllel < %le =yl - (max{|le1]| g,y £})' 7.
Substitute x; = s~ 1oy (z*) and y; = s~ 1o, (y*). It follows that
[l = o)l | < Sl =) max{ o @), 5 o) 2}
Letting s — o0, it is clear that

N U 1,
(@) = ()l = lim [[|Zos(@)le —lIZos(")lE]-

Evidently,
0@l < lalls, 120u") s < vl
and )
Slos@™ =y9)lle < lla” =yl < llo —ylle.
Therefore,

lp(2) = p(y)] < %Hfﬂ =yl - (max{l|z]| g, lyllz})" "

The proof for ¢¢in and @y follows mutatis mutandi. O
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The assertion of Lemma 2.1.3 can be significantly improved.

Lemma 2.1.4. Let E be a fully symmetric quasi-Banach space either on the
interval (0,1) or on the semi-axis. If x,y € E, then

wua—¢@ns%wm—yvmwﬂ@uxwwn*f

The proof follows that of Lemma 2.1.3 mutatis mutands.

Corollary 2.1.5. Let E be a fully symmetric quasi-Banach space either on
the interval (0,1) or on the semi-axis. If v,y € E and p(x —y) = 0, then

o(x) = ¢(y).
Lemma 2.1.6. Let E be a fully symmetric quasi-Banach space.
i) If x,y € E are equimeasurable, then p(y) = ¢(x).
i) If v,y € E satisfy |y| < ||, then o(y) < p(z).
iii) o(z) < ||z||g for every x € E.
w) If x,y € E satisfy y <<z, then ¢(y) < o(x).
If, in addition, E = E(0,00), then ¢ tin and eyt also satisfy the same properties.

Proof. (i) If z and y are equimeasurable, then z* = y*. Therefore,

N o1,
o) = lim —[loy(@) g = lm ~[los(y")lls = p(y)

§—00

(ii) If |y| < |z, then y* < a*. Therefore,

.1 . 1 .
ply) = lim —los(y) e < lim —[los(2™)]e = ¢(2).

§— 00

(iii) This follows from the fact that ||os(2*)||r < s||z| .
(iv) According to Lemma 1.2.48, we have

y <<z = 05(y") << os(z")
for every s > 0. Since F is fully symmetric, it now follows that
los(w*)lle < llos(z)|e

for every s > 0. Therefore,

.1 . 1 .
ply) = lim —los(y)e < lim —[los(a™)]e = ¢(2).

§—00 §

Lemma 2.1.7. Let E be a fully symmetric quasi-Banach space.
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1. If E = E(0,1) is a space on the interval (0,1) and if x € Lo, then

p(x) =0.
2. If E = E(0,00) is a space on the semi-axis and if © € Lo, N E, then
Yrin(z) = 0.

3. If E=FE(0,00) € L1 and if v € EN Lo, then @eyi(x) = 0.
4. The functional ¢ vanishes on every separable space E = E(0,1).

Proof. The proofs are straightforward, but are included for completeness.

1. If x € Loo(0,1), then
p(z) < [|zfloop(l) = 0.

2. If z € Lo(0,00) N E(0, 00), then
efin(@) < ll2]lac® pin(X(0,1) = 0.

3. Note that E(0,00) ¢ L1(0,00) implies that ||x.s)|lz = o(s). Thus, if
2 € Loo(0,00) N E(0, 00), then

1
psin(@) < Ioloesin(X0.0) = I2]lo Jim ~Ilx(0,0ll5 = 0.

4. If FE is separable, then the bounded functions are dense in E. Therefore,
it is sufficient to prove that ¢ vanishes on such functions. The proof now
follows as in (3).

O

Lemma 2.1.8. Let E be a fully symmetric quasi-Banach space either on the
interval (0,1) or on the semi-axis. If x € E, then

p(or(z%)) = Te(x), VY7 >0. (2.4)

If E = E(0,00), then @i satisfies (2.4). If E = E(0,00) ¢ L1(0,00), then
Yeut Glso satisfies (2.4).

Proof. Applying the semigroup property of the dilation operators .-, we obtain
that

1 ) 1 .
Jim ~los(or(@) s =7 lim —|lowr(@)l|s = (o).

The proof for ¢ 1, follows mutatis mutandi. Assume now that £ = E(0, c0) ¢
L;1(0,00). It follows from the above that

Peut(0-(2")) = QD(JT(‘T*)X(O,I)) = SO(UT(JC*X(o,rl))) = T@(I*X(o,rl))-

Note that z*x(;-1,1) is a bounded function. Therefore, o(z*x(;-1,1y) = 0. It
now follows from the Corollary 2.1.5 that

O X(0,7—1)) = (T X(0,1)) = Peut ().

and the proof is complete. O
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Lemma 2.1.9. Let E be a fully symmetric quasi-Banach space. For all 0 <

T1,...,2k € B and numbers A,...,\x >0
k k
o> hiwi) = (> Nix}).
i=1 i=1

If E = E(0,00), then the same statement is valid for ¢gin. If, in addition,
E ¢ Ly, then the same assertion is valid for @eyz.

Proof. Applying the inequality (1.9) n times, we have for positive functions
Llye..,T2n
(] + ...+ 25n) << 2"%09-n(21 + ...+ Tan).

Therefore, by Lemma 2.1.6(iv),

i+ ...+ z5) <2 0g-n(x1 4+ ... +x20)").
By Lemma 2.1.8, the equality (2.4) holds. Therefore,

O(2"0g—n (1 4+ ...+ x2m)") = (a1 + ... + X2mn).

Therefore,
el + ...+ zi) <@+ ...+ x2m).

The converse inequality follows trivially from (1.5) and Lemma 2.1.6(iv).
The assertion of Lemma follows now from the continuity of the functional ¢
(see Lemma 2.1.3). O

2.2 Linearity and non-linearity of ¢ and related
functionals

The following proposition proves that the functional ¢ cannot be linear on the
positive cone of F unless it is 0. However, as will be shown in Proposition 2.2.4,
it is indeed the case that ¢ is additively homogeneous on the positive cone
generated by Qf(z) for all x € E. Note, that y and 2 in the proposition below
are arbitrary, that is ¥, 2 do not necessary belong to QE(.’E)

Proposition 2.2.1. Let E be a fully symmetric quasi-Banach space equipped
with a Fatou quasi-norm. If x > 0 € E, then, in each of the following cases,
there exists a decomposition x = y + z, such that y,z > 0 and such that the
following assertions hold.

i) If E = B(0,1), then o(z) = p(y) = p(2).

ii) If B = B(0,00) and peut(w) = 0, then o(z) = ply) = p(2).
(
(

iii) If E = E(0,00), then ¢ fin(x) = ¢rin(y) = ¢rin(2).
) If E = E(0,00), then cut(t) = @eut(y) = ©eut(2).
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Proof. We will prove only the first assertion. The proofs of the third and fourth
assertions are exactly the same. The proof of the second assertion requires
replacement of the interval [, 1] with the interval [n, m]

We may assume that z = x*. Fix n € N. If m — oo, then we obtain

on(@x(2 17) T on(@Xp,1))

7n’n

almost everywhere. By the definition of a Fatou quasi-norm, it follows that

lon(exz 1) lE —=m llon(exp,1)llE-

1 1
mn

For each n € N, one can select f(n) > n, such that

1
low(@xe 1lle = (L= Dllow(ax,z) - (25)
= f¥(np), k € N. Here, f* = fo...of (k times). Define

(oo}
v= Zxx[m’ﬁ]’

Fix some ngy and set ny

o0
z = E J)X[ 1 1 I8
nok Mok —1

It is clear that )
0o (W) E = —Onsy (W)l -

nak

On the other hand,

OnanlY 2 Onay, ($X[ #]>
n2kt1 N2k

It follows that

Pz (2.6)

1 1
lloma (¥) e 2 — Hon%(xx[ ,
N9 n2k+1 "2k

ok
By definition of the sequence ny, we have nok11 = f(n2g). Applying the in-

equality 2.5, we obtain that

1
lona (@x (e e 2 (1= ——)[|onae (@00, -1l - (2.7)
n2k+1 ”2k nak
Note the inequality
1
o 172 (X0, ) e 2 (X0, 1) (2.8)
It follows from (2.6), (2.7) and (2.8) that
1 1
—llona (¥)lE 2 (1= ——)plaxg, 1)- (2.9)
2k 2k

nak
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By Lemma 2.1.7, p(zx(_r17) = 0. It follows from Corollary 2.1.5 that
nok’

p(axp, 1) = pl(x)- (2.10)
It follows from (2.9) and (2.10) that
L o )l = (1 = ——)p(a)
N2k Tnan W IE = N2k o

Passing to the limit, we obtain ¢(y) > ¢(x). The converse inequality is obvious.
Hence, ¢(y) = p(z) = ¢(z), and this completes proof of the proposition. [

The following assertion says that the functionals ¢, @ fin, @eur take only one
value on the whole set Q' (x)

Lemma 2.2.2. Let E be a fully symmetric quasi-Banach space and let x € E.

1. For every y € Qy(z), we have

2. If, in addition, E = E(0,00), then
Prin(y) = ¢ rin()
for every y € Qx(x).
3. If E=FE(0,00) € L1(0,00), then

Peut (y) = Peut (17)

for every y € Qx(x).

Proof. We will only prove the first assertion because the second and third state-
ments are proved in exactly the same way.

Since ¢ is a continuous functional (see Lemma 2.1.3), it follows that we only
need to prove the assertion for y € Q'(z). Every y € Q'(x) can be written as

y=> N,
i=1
where \; >0, >7_ A, =1, 2; > 0 and 2} = 2. By Lemma 2.1.9, we obtain
o) = o> Ximi) = o> Xix}).
i=1 i=1

However,
S
* *
E Nizp =a".
i=1

Therefore, ¢(y) = p(x).
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The following definition is a weak form of linearity.

Definition 2.2.3. If A is a convezx set, then real function 8 defined on the cone
generated by A is called additively homogeneous if and only if

O(ayr + By2)) = ab(y1) + B0(y2), v1,92 €A, «a,B€R,.

Proposition 2.2.4. If E is a fully symmetric quasi-Banach space and if x € E,
then the following assertions hold.

i) If E = E(0,1), then ¢ is additively homogeneous on QF ().
i) If E = E(0,00), then @i is additively homogeneous on QL (x).
iii) If E = E(0,00) € L1(0,00), then ey is additively homogeneous on Qf(z).

Proof. We will only prove the first assertion. The proofs of the other two asser-
tions are exactly the same.

Since the functional ¢ is continuous (see Lemma 2.1.3), it follows that we
only need to prove that ¢ is additive homogeneous on Q% (z). We may assume
that a + 8 = 1. Fix y1, 92,93 € Q7 (z) such that

Y3 = ay1 + Bya.

These three elements can be written as

yj = Z)\mml
i=1
Here, )\ij Z 0,
D X =1, Nis = adin + Bz,

i=1

r; > 0 and x] = 27X|0,3,]- Define functions z; and u; by the formulae.

m
zjfg ATy, uj = g Aijx”.
i=1

Bi>0

It follows from Lemma 2.1.9 that ¢(y;) = ¢(z;) for j =1,2,3.

If 8; > 0, then z] —x™* is a bounded function. Hence, u; — 2; is also bounded
and, therefore, p(u; — z;) = 0 for j = 1,2,3. By Corollary 2.1.5, we obtain
©(2;) = @(u;). It follows that

o(y;) = p(u) = Y Aijep(x).
B >0

Therefore,
ap(yr) + Bely2) = ¢(ys)

and this concludes the proof. O
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Proposition 2.2.5. Let E = E(0,00) be a fully symmetric quasi-Banach space
on the semi-azis equipped with a Fatou quasi-norm. Suppose that E = E(0,00) €
Li(0,00) and x € E. If OF (z) = Qf(x), then ¢ is additively homogeneous on
QF ().

Proof. Tt follows from Proposition 2.2.4 that ¢.,; is additively homogeneous
on Qf(x). By assumption, QF(z) = Qf (). Hence, ¢y is additively homo-
geneous on Q7 (z). It follows now from Proposition 2.2.1(iv) that @cu(z) = 0.
Hence, p(2*X[0,1]) = 0. Since 2* x|y 5] is bounded, it follows that p(z*x[1,5) = 0.
According to the Corollary 2.1.5, we obtain ¢(2*x[,5) = 0 for every finite /3.

Since the functional ¢ is continuous (see Lemma 2.1.3), it follows that we
only need to prove that ¢ is additively homogeneous on QT (z).

We may assume that o+ 3 = 1. Fix 31,92, y3 € Q1 () such that

Y3 = ay1 + PBy2.

These three elements can be written as

Y; = Z)\”xz
i=1
Here, A\; > 0,
m
Z)\ij =1, Aiz = ali + B,

i=1

r; > 0 and o] = 27X|0,3,]- Define functions z; and u; by the formulae.

m
— .. * . —_— .. *
ZJ_E :)‘wl"m“]— E : Aljxi’
i=1

Bi<oo
v = Z )\”l‘: = Z )\”l‘*
Bi=o00 Bi=o0

It follows from Lemma 2.1.9 that ¢(y;) = ¢(z;) for j =1,2,3.
Clearly, z; = u; +v;. If = maxg, <o fi, then

uj < %0, = ¢(uj) < (" x0,8) = 0.

Since ¢(u;) = 0, it follows from Corollary 2.1.5 that ¢(u; + v;) = ¢(v;).
Hence,

P(y;) = 0(z)) = p(u; +v5) = p(v;) = Y Nijep(x)
Bi=o00

for j = 1,2, 3. Therefore,

ap(y1) + Be(y2) = p(y3)

and the proof is complete. O
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2.3 Further properties of the sets Qp(z)

We now summarize some properties of the sets Qp(z).
Lemma 2.3.1. The closure of a convex set is a closed conver set.

Proof. Let A be a convex set and let 21,20 € A. Let A € (0,1). Our aim is to
prove that Azq + (1 — A)ag € A.

Fix € > 0. There exist y1,y2 € A such that ||y; — zi||lg < e fori=1,2. It
follows that

Az + (1= A)z2) = (gn + (1= d2))l[2 = [AM(z1 —y1) + (1= M)(z2 —y2)|[m <
S CE)AMlzr —wlle + (1 = Nlzz — v2lle) < C(E)e.

Since € > 0 is arbitrary, the proof is complete. O

Corollary 2.3.2. The sets Qp(z), QL(z) and Qy(z) are closed convex sets.

Lemma 2.3.3. Let E be a symmetric quasi-Banach space on the interval (0,1)
and let x € E. If 0 < z € Qg(x) and |y| < z, then y € Qp(z).

Proof. Fix n € N. Define sets e;, f1; and fo; i =1 —n,...,n by the formulae

a0 < w0 < =20,

k
n

ei:{t:

fu={ts o) 2 S20), o= {02 9 < S2(0)),

Define functions z;, k =1 —n,...,n by the formula

2 = ZXfm - ZXf2Ic

It is clear that for t € e;, zx(t) = —2z(¢t) if & > i and 2;(¢t) = 2(¢) if k < 4.
Therefore, for t € e,
n i—1 n
D a(t) = 2(t)( 1= 1) =2z(t)(i — 1).
k=1—n k=1-n k=i
Thus,
| : Zn: | < ! (2.11)
o™ k:1_nzk yl <~z .

Note that zj is equimeasurable with z and, therefore, z; € Qp(z). However,
Qg (x) is a convex set. Therefore,

1 n
% Z Zr € QE(.’E)

k=1—-n
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It follows from the inequality (2.11) that

Hl Xn: | <1|| |

— 2k — — .

2n k yE_nZE
k=1-n

Thus,
) 1
dist(y, Qr(x)) < EHZHE

Since n is arbitrarily large and Qg(z) is a closed set, this suffices to complete
the proof of the lemma. O

A stronger version of Lemma 2.3.3 is given below in Lemma 2.3.8.
The following assertion seems to be known. We include details of proof for
lack of a convenient reference.

Lemma 2.3.4. Let E be a symmetric quasi-Banach space either on the interval
(0,1) or on the semi-axis and let x € E. If y € Qx(z) and z € Qx(x), then
y € Qp().

Proof. Without loss of generality, y = y*, z = z* and x = z*. Let y € Qx(2).
Hence, for every € > 0, one can find n € N, \; € R} and positive measurable
functions z; ~ z, i = 1,...,n, such that Z?:l A =1and

n
ly = Nizille <e.
=1

By assumption, z € Q' (z). Since z; are equimeasurable with z, it follows
that z; € Q' (z) for all 1 < i < n. However, the set Qz(x) is convex by Lemma
2.3.2. Therefore,

=1

Thus,
dist(y, Qs () < =

Since Q'x(z) is a closed set, it follows that y € Q% (x). O

Remark 2.3.5. The collection of sets {Qr(z), © € E} also satisfies the tran-
sitivity property expressed in Lemma 2.3.4. We do not know whether this is
always the case for the collection {QL(x), = € E}.

Proposition 2.3.6. Let E = E(0,00) be a fully symmetric quasi-Banach space
on the semi-azis and let x € E. If p(x) = 0, then, xxa € Qg(x) for every
Lebesgue measurable subset A C (0, 00).

Proof. Fixn € N. Our first claim is that we can split the semi-axis into the union
of two disjoint sets B and C such that m(B) = m(A) and m(C) = nm(R;\A).

Note that sets A and R\ A cannot simultaneously have finite measure. If
m(A) < oo, then B = (0,m(A)) and C = (m(A),0). If m(R4\A) < oo,
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then C = (0,nm(R1\A)) and B = (nm(R;\A),00). If m(Ry\A) = oo and
m(A) = oo, then B = U2 ((2n,2n 4+ 1) and C = US2,(2n — 1,2n). Clearly, in
every particular case, sets B and C' satisfy the required assumptions.

Since m(C) = nm(R\A), the set C can be written as a union of disjoint sets
C = U ,C; such that m(C;) = m(R4\A). Fix measure-preserving bijections
v:B— Aand~; : C; — Ry\A.

Define functions z;, 1 < i < n, in the following manner. If ¢ € B, then
zi(t) = x(vy(t)). If t € Cy, then x;(t) = x(v;(t)) and x;(t) = 0 for j # 0. It is
clear that functions x; are equimeasurable with x. Clearly, the functions x;x¢
are disjoint and equimeasurable. Since (z;x¢)* < «*, it follows that

1 1
(ﬁ;xi)(c) < ~on(a”). (2.12)
Note, however, that
1< 1<
ﬁZ%‘XC = EZIZ'—(.’EO’Y)XB. (2.13)
i=1 i=1

It follows from (2.13) and (2.12) that

dist(zxa, Qp(x)) = dist((z 0 7)x5, Qp(x)) < —llon(@")| e-

1
n
Since the latter expression tends to 0 as n — oo and Q’;(x) is a closed set, this
suffices to complete the proof of the proposition. O

Corollary 2.3.7. Let E = F(0,00) be a fully symmetric quasi-Banach space
on the semi-axis and let x € E. If p(x) = 0, then yxa € Qx(x) for every

y € Qp(x).

Proof. Tt follows from the assumption and Lemma 2.2.2 that ¢(y) = p(z) = 0.
Lemma 2.3.6 implies that yxa € Q' (y). Since yxa € Q% (y) and y € Q% (x), it
follows from Lemma 2.3.4 that yxa € Qx(z). O

An assertion somewhat similar to the lemma below is contained in [11,
Lemma 1.3].

Lemma 2.3.8. Let E = E(0,00) be a fully symmetric quasi-Banach space on
the semi-azis and let x € E. Suppose that p(z) = 0. Ify € Qy(z) and0 < z <y,
then, z € Q% (z).

Proof. Fix n € N. Define sets e; and f;, i =1,...,n by
i—1

n

fi = U €j.

i<(n+j)/2

e = {t: y(t) < 2(t) < %y(t)},
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Define functions yi, k = 1,...,n by the formula

Ye =Y Z Xei = YXfr-
k<(i4n)/2

By Corollary 2.3.7, y. € Q'x(x). Since the set Q% () is convex, it follows that
1< ,
o Z yr € Qp().
k=1

On the other hand, if ¢ € e;, then yi(¢t) = y(¢t) if £k < (i+n)/2 and yx(¢t) =0
otherwise. Therefore,

Doty =yt) Y, 1= y(t)[H_TnL Vt € e;,
k=1

k<(it+n)/2
and so
1 & 1 2y
— [ < —=.
|n Zyk 2(y—|—z)| =,
k=1
Thus,
Yt 2
dlst(T, Qp(x)) < ﬁ”y”E
Letting n — oo, it follows that (y + 2)/2 € Q% (z).

Repeat this process m times and obtain
272" — 1)z +y) € Qp(z).

Hence,
dist (2, Qp(x)) < 27"}y — 2|/ .

Letting m — oo, it follows that z € Q5 (x). O



CHAPTER 2. ORBITS 49

2.4 Elements of the form P(z|A).

Lemma 2.4.1. Let E = E(0,00) be a fully symmetric quasi-Banach space
on the semi-azis and let © € E. Suppose that E = E(0,00) € L1(0,00). If
P(z|A) € Qg(z) for every A € A, then @eu(x) = 0.

Proof. Suppose that z = z*. Set A = {[0,1]} and y = P(z|A) € EN L. By
assumption, y € Qx(z). From Lemma 2.2.2 and Lemma 2.1.7, it follows that
Yeut () = @eut(y) = 0. O

Lemma 2.4.2. Let E and x be as in Lemma 2.4.1. If Lo C E, then ¢(x) = 0.

Proof. Due to the choice of E, we have 1 € E. However, o,(1) = 1 implies
©(1) = 0. Thus, for every z € EN Ly, we have ¢(z) = 0. However, for every
x € I, we have p(x*X[p,1]) = 0 due to Lemma 2.4.1. Hence,

0<o(@) =p(a") < CE)(P(z"Xp0,1) + (" X1,00))) =0+ 0=0.

Define w(z,y), x,y € E, by setting

¢
*(s)d
w(z,y) := limsup w.
t—oo  [Ja*(s)ds

Clearly, w(z,y) is either 0, or a finite non-zero number or oco.

Lemma 2.4.3. Let E and x be as in Lemma 2.4.1. If y € E N Ly, then
e(y) < w(z,y)e(z).

Proof. Fix € > 0. There exists T' > 0, such that for every ¢t > T,

On the other hand, for every t < T, we have

t t
/ v (s)ds < / 9llooXp0.1(5)ds.
0 0

One can unify theses inequalitites and obtain

/y*(S)dSS/((w(x,y)+€)x*+Hylloox[o,ﬂ)(S)dS-
0 0

Therefore,
y <= (w(,y) +e)z" + [[yllooxpo.1)

and
o) < (W, y) + &)™ + [yl X[o,17)-
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Note that ©(x[o,77) = 0 since E' ¢ L. Therefore, by Remark 2.1.4,

p((w(z,y) + )" + [[yllcoxion) = (W(x,y) + ) ().

Hence,
e(y) < (wlz,y) +e)p(x).

Since € > 0 is arbitrary, the assertion of the lemma follows. O

Lemma 2.4.4. Let E and x be as in Lemma 2.4.1. If y € E N Ly, then
w(y) > w(z,y)e(x). In particular, if in addition @(x) > 0, then w(z,y) < oco.

Proof. Without loss of generality, y = y* and x = z*.
Now, fix w < w(x,y). There exists a sequence t; T 0o, such that

tr tk
/ y*(s)ds > w/ x*(s)ds.
0 0

Without loss of generality, tg = 0.
Let A be the partition of (0, 00) given by A = {[t, trt1) 72,
It then follows that

t t
w/ P(z|A)*(s)ds < / y*(s)ds

0 0

for arbitrary ¢ > 0. Therefore,
wP(z|A) <<y
and
wp(P(x]A)) < ¢(y).
However, P(z|A) € Q% (x) by assumption. It follows from Lemma 2.2.2 that
wip(z) = wp(P(z]A)) < @(y).

Since w can be arbitrarily close to w(z,y), the lemma is established. O

Corollary 2.4.5. Let E and x be as in Lemma 2.4.1. If y € EN Ly, then
o(y) = w(z,y)e(x). In particular, if in addition ¢(x) > 0, then w(z,y) < co.

Lemma 2.4.6. Let E and © be as in Lemma 2.4.1. If p(z) =0, then EN Lo
s a Marcinkiewicz space My, such that

lim M
M)

Proof. Without loss of generality, x = z*. Set A = {[0,1]}. It follows from the
assumption that P(x|A) € Q' (x). Therefore, by Lemma 2.2.2, we have

p(P(x|A) = ¢(x).

=1 (2.14)
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Set

b(t) = / P(a] A)*(s)ds.

Tt follows from Corollary 2.4.5 that w(x,y) is finite and, therefore,
1 t
li?lsogp W/o y*(s)ds < o0
for every y € E N Ly, Since both ¢’ and y are bounded functions, it follows

that . Wl
1 Ylloo
limsup—/ Yy (s)ds = < 0.
-0 ¥(t) Jo 19" [l oo

Therefore, for every y € F N L., we have

¢
stipwzt)/o y*(s)ds < o0

and, therefore, y € My. Hence, E N Lo, C My. However, ¢ = 2 € EN L.
Therefore, My C EN Lo, and s0 EN Lo = My,
In order to obtain 2.14, consider the function 20% Y’ Tt follows that ¢ (204 /29") =

»(¥") by Lemma 2.1.8. Hence

w(¥', 20129 )p(Y') = (201 /2¢")
and w(¢', 201 /2¢") = 1. However,

t
2x(2s)d
(!, 20 30") = limsup 225 22D

t—oo fgm(s)ds t—oo 77[}(t)

Therefore,

lim sup ¥(2t) =1

t—oo  P(t)

and the proof is complete. O

Lemma 2.4.7. Let E be a symmetric quasi-Banach space. The set G defined
by the formula
y* (1)

P (Ct)

G={yeFE: 3C sup < oo}
t>1

s a linear space.

Proof. If y1,y2 € G, then yf(t) < C1¢'(Cat). Let y = ayr + bys.
y* (1) <lalyr(t/2) + |blys (t/2).

Hence, for t > 2 we have

y*(t) < Ci(a+ b)Y’ (Cat/2).
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If t € (1,2), then
y* (1) < Ayi(1/2) + (1= Ny3(1/2) = C5¢'(Ca) < C39'(Cat/2).
If Cy = max{Ci(a +b),Cs}, then y*(t) < Cy1p'(Cat/2) for every t > 1. O

Corollary 2.4.8. Let E and x be as in Lemma 2.4.6 and let ¢ be as given in
the statement of Lemma 2.4.6. It follows that Q'z(x) C G, where G is the linear
space defined in Lemma 2.4.7

Proof. Tt is sufficient to prove that Q'(x) C G. Since x*(t) = ¢'(¢t) for t > 1, it
follows that = € GG. So is any y equimeasurable with z. However, the set of all

convex combinations of such functions is exactly Q'(z). The assertion follows
from the fact that G is a linear space. O

Theorem 2.4.9. Let E be a fully symmetric quasi-Banach space either on the
interval (0,1) or on the semi-azis and let x € E. Suppose that P(z|A) € Q'x(z)
for every partition A € 2.

1. If E=E(0,1), then ¢(x) = 0.
2. If E=E(0,00) ¢ L1(0,00), then ¢(z) = 0.
3. If E = E(0,00) C L1(0,00), then @yin(x) = 0.
Proof. 1. Let E = E(0,1) and = = z*. Set A = {[0,1]} and y = P(z|A).
g{y)anuénption, y € Qx(z). By Lemma 2.2.2 and Lemma 2.1.7, ¢(z) =

2. Let E = E(0,00) and Lo, C E Z L;. In this case, the assertion is proved
in Lemma 2.4.2.

Let E = E(0,00) and suppose now that Lo, € E € L. Note that E N
Lo = My according to Lemma 2.4.6. It follows from (2.14) that there
exists a sequence t; T 0o, such that tg =0, t; = 1 and for every k € N

Yltern) = P(te) _ 29(5te11)
tht1 — Tk =3tk

Set A = {[ty,tr+1]} and z = P(z|A). Tt follows from the construction
given in [33] that

1
(= — y)X[%tk,tk]”JVfw > 1

for every y € G and every sufficiently large k. However,
Iy — Z)X[%tk,tk] £ — 0.
Since My = E'N L, it follows that

=

1z =Xl 2 =

for sufficiently large k. In particular, ||y—z||g > 1. Hence, distg(z,G) >
and distp(z, Q'(z)) > 1. This contradicts the assumption that P(z|.A)

1
1
€



CHAPTER 2. ORBITS 53

3. Let E = E(0,00) and suppose that £ C L;. Set A = {[0,1]} and y =
P(z|A). By assumption, y € Q% (z). By Lemma 2.2.2 and Lemma 2.1.7,

it follows that @y (z) = @rin(y) = 0.
O

Lemma 2.4.10. Let x € L1(0,a) be arbitary. If, for every fized n € N,
Zo, -+ ,Tp—1 are defined on the interval (0,a) by the formula

xxw::x«t+%%ﬁmMa%

then )
1 [ 1 «— 2
- ds — — E i == —op(z” a)-
a/o x(s)ds - i:Ox 0 ()X (0,a)

Proof. Without loss of generality, a = 1 and « = «* on the interval (0, 1).
Set

. . 1
cmat—1), i L <i< ™ g<i<n—1.
n n n
Clearly, z is equimeasurable with o, (2*)x(0,1)-
We will show that
—1 ) 1

1 n
/0 x(s)ds — -

=0

xw+%mmﬂﬂg/ 2(s)ds

0

and
n—1

Ax@@—%jz&+%ﬁmﬂ»2—b@.

n
=0
We will prove only the first inequality. The proof of the second one is identical.
Without loss of generality, ¢ € [0, 1]. Clearly,
42

1 1 n
—x(t+—) > d
Latt+ 1)z [T alods

for i =0,...,n — 2. Hence,
! 1= i w 1 n—1
/0 x(s)ds — - Z;x(t + 5) = /0 x(s)ds — Ex(t + - )—
n—2 it2 1
—E:ém@+1)—[i/ﬂ$%)<lfx@Ms
1=0 o
Therefore,
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However,
1
z+/ z(s)ds << 2z.
0
Hence,
1 1 n—1 9
ds — = | <= =z
|/0 x(s)ds niz::():m ~Z

Since z is equimeasurable with o, (x*), it follows that
1 1 n—1 9
[} s Xl <= Zonta

O

Theorem 2.4.11. Let E be a fully symmetric quasi-Banach space either on the
interval (0,1) or on the semi-axis. If x € E, then P(z|A) € Qyx(z) for every
partition A € 2, provided that one of the following conditions is satisfied.

1. E=E(0,1) and ¢(z) = 0.
2. E = E(0,00) is such that E € Ly and p(x) = 0.
3. E = E(0,00) is such that E C Ly and psin(x) = 0.

Proof. 1. Consider some partition A. By the definition of the operator P(+|.4),
we have for every t € Ay, k € N,

Pz A)(t) = @ /A 2(s)ds.

Fix n € N. By Lemma 2.4.10, there exist functions z;;, 0 <i<mn—1, on
the set Aj equimeasurable with xx 4, such that

n—1
1 2
- ds — =Sz << = VXoma, k€N
g, 7oM< Sl Womany: ke
(2.15)
Let now

k

Clearly, x; are equimeasurable with x.

Let 2, be a function on A such that

2r = on((XA,) )X (0,m(An)), kEN

and let z = >, 2.
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It follows from the (2.15) and Lemma 1.2.14 that

n—1

1 2

=0

However,
{t: 2(t) > s} =Ug{t € Ap: 2(t) > s}.

It follows that
m{t € A : zx(t) > s}) <nm({t € Ax : z(t) > s}).

Therefore,

m({t: z(t) > s}) < an({t € Ap: x(t) > s}) =nm{t: z(t) > s}),
k

and so z* < g, (z*) and

1= 2
P(a]A) — ~ Zx <= ~on(a").
=0
2. Repeat the previous argument mutatis mutands.

3. The assertion follows from Theorem 2.7.9.
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2.5 The Mekler theorem

The Mekler theorem (see Theorem 2.5.8 below) is a remarkable result which
connects arbitrary elements of the orbit Q(x) with those generated by the ex-
pectation operators.

The principle ideas of the proofs are due to Mekler, but our approach is
simpler and more general. For example, the original Mekler result was only
available for functions on the interval (0, 1), while our result is valid also on the
semi-axis.

The original proof of Mekler required very complicated machinery. We elim-
inate any need for this complexity and use a theorem due to Birkhoff instead.

We set the notion of

¢ ¢
y<1x<:>/ y*(s)ds</ x*(s)ds Vt.
0 0

Lemma 2.5.1. Let x = z* € L1(0,1) and y = y* << z. If ¢ € (0,1) is a
constant, then there exists a sequence t, — 0 such that qyxi,, 1] <TX|t,.,1]-

Proof. Fix a sequence t,, | 0. If there exists a subsequence {s;}72; C {t,}52,
such that qyx(s,,1) 4X(s,1), then the proof is finished. Otherwise, qyx (¢, 1) #4
TX(t,,1) for all sufficiently large n. Without loss of generality, qyx,.1) 9 TX (¢, 1)
for all n € N. Let B,,, n > 1, be the set of all ¢ > t,, such that

[ s> [ v

n n

Clearly, B,, is a closed set. Therefore, u,, = sup B,, € B,,. In particular,

¢ ¢
/ qy*(s)ds < / x*(s)ds Yt > uy,. (2.16)
¢ ¢

n n

Assume first that there is a subsequence of the sequence {u,}5°; which
converges to 0. Passing to this subsequence, it may be assumed that u,, converges
to 0. If there exists a subsequence {vx}32; C {un}ne; such that qyx (. 1) <
TX(v;,1), then the proof is finished. Otherwise, qyX(u,,1) 4 TX(u,,1) for all
sufficiently large n. Without loss of generality, qyx(u,,,1) 4 X (u,,1) for alln € N.
Thus, there exists w,, > u, such that

/ Vs [ ass

n Un

/ ’qy*(s)dsz/ x*(s)ds,
t Wn,

n

which contradicts (2.16).

It follows that
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Let now the sequence {u,}22; be bounded away from 0. Without loss of
generality, u, — u > 0. Therefore,

u Unp Un u
/ qy*(s)ds = lim qy*(s)ds > lim x*(s)ds:/ x*(s)ds.
0 0

The latter is impossible because y << x and 0 < ¢ < 1. O

This lemma cannot be extended to the case of the semi-axis, as the following
example shows.

Example 2.5.2. Let x = 2" = x(o1). If y = y* is such that ||y|r,nL., <1, then
y << z. If, in addition, the support of y has infinite measure, then qyxt,o0) 4
TX(t,00) for every t > 1.

However, if x is non-integrable, then an extension of Lemma 2.5.1 to the
case of the semi-axis does exist.

Lemma 2.5.3. Let v = 2* € (L1 + L)(0,00) and © ¢ L1(0,00). Let y =
y* <<z and let ¢ € (0,1) be a constant. Then there exists a sequence t, — o0
such that qyXit,.,e0) <TX[t,,00)-

Proof. Fix a sequence t,, T co. If there exists a subsequence {s}72; C {t,}02,
such that qyX(s,.,00)9TX (s4,00), then the proof is finished. Otherwise, qyx(t,,,00) 7
TX(t,,00) for all sufficiently large n. Without loss of generality, qyx (s, 00) 7
TX(t,,00) for all n € N. Let B, n > 1, be the set of all ¢ > t,, such that

[ eas= [ v

n n

Clearly, B,, is a closed set. We claim that B,, is bounded.
Indeed, if this were not the case, there would be a sequence t,, ;; — oo such
that

/ttn’k qy* (s)ds > /tt 2 (5)ds. (2.17)

n n

However,

[ " gy (s) — 27 (s))ds = / "y (s) — 2 (s))ds+

‘n

g / () — 2 ()ds — (1 - q) / " 2 (s)ds.

The first term does not depend on k. The second term is always negative since
y <= z. The third term tends to —oo since x ¢ L1(0, 00). Therefore, (2.17) is
impossible for large k.

Let now u,, = sup B,,, n € N. Evidently, u,, € B,, and

t t
/ qy*(s)ds < / x*(s)ds, Vt > up,. (2.18)
t t

n n



CHAPTER 2. ORBITS 58

Clearly, u,, T oo. If there exists a subsequence {vy}7°, C {u,}52; such
that qyX(v,,00) 9 ZX(vy,,00), then the proof is finished. Otherwise, qyx(u,,00) A
TX(u,,00) for all sufficiently large n. Without loss of generality, qyx(u, 00) 7
TX (uy,00) for all n € N. Thus, there exists w, > u, such that

/uwn qy*(s)ds > /wn x*(s)ds.

n Un

[ sz [ asas
t t

n n

which contradicts (2.18). O

It follows that

Lemma 2.5.4. If z = z* € L(0,1), then

0) — z2(™
sp (026G
1<m<n m

Proof. Assume the contrary. There exists € > 0 and sequences 1 < my < ny —
oo such that m
2(0) = 2(—=) = emy.
Nk
It follows that my < e712(0) is a bounded sequence. Since z = z* is right-
continuous, we have z(0) — z(mg/ng) — 0. Thus, emy, — 0, which is impossible.
O

Lemma 2.5.5. Let ¢ = 2* € L(0,1) and y = y* <x. If y(0) < z(0), then
there exists n € N and functions

k—1
n

)X[(kfl)/n,k)/n]

u=Y @()Xk-1)/mksms V=Y

k=1 k=1

S|

such that y < v << u < x.

Proof. Tt follows from y(0) < x(0) that

1
s_mff/o (x —y)(s)ds > 0.

t>0 t

By Lemma 2.5.4, one can select n with

m

(z+9)(0) = (z+y)(—) <em, 0<m<n

n

Fix 1 < m < n. We have

m/n _
| o = £ 36 - st -
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Therefore,

for every t > 0. O

Recall that a matrix C' = (c;;)7';_; € My (R) is called bistochastic if ¢;; > 0,
S ey =1and Y ¢ =1 for every 1 < i,j < n. The following result is
due to Birkhoff (see fQ])

Theorem 2.5.6. Let a,b € R" be positive vectors. If b < a, then there exists a
bistochastic matriz C € M, (R) such that b = Ca.

Corollary 2.5.7. Let a,b € R™ be positive vectors. If b << a, then there exists
a bistochastic matriz C € My (R) such that b < Ca.

Proof. Without loss of generality, a = a* and b = b*. We prove the assertion by
induction on n. Fix

k
.1
oo, 2o b
Set d =b-+eg-1. Clearly, b < d and d << a. Moreover, there exists k such that
k k
Sa= Y
i=1 i=1

If £k = n, then by the Birkhoff theorem, d = Ca for some bistochastic matrix

C and we are done. If k < n, set a' = (a1, -+ ,ax) and a® = (ags1," " ,an)-
Similarly, d' = (dy,--- ,dx) and d*> = (dg11,--- ,dy). By induction, there exist
bistochastic matrices C; and Cjy such that d' = Cya! and d? < Csa®. The
assertion follows for the matrix C' = C7 @ Cs. O

The theorem which follows was proved by Mekler (see [39, 40]) in the case
of the interval (0,1). Our approach considerably simplifies that of Mekler and
permits extension to functions on the semi-axis.

Theorem 2.5.8. Let x € L1(0,1) (or x € (L1 + Loo)(0,00) such that © ¢
L1(0,00)) and y << x. It follows that for every fized q € (0,1) there exists a
positive function z such that z* = x* and qy < P(z|A). Here, A is a some
partition of the interval (or that of the semi-axis).
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Proof. Without loss of generality, it may be assumed that z = z* and y = y*.
Let t,, be as in Lemma 2.5.1 (respectively, in Lemma 2.5.3). It follows that

qu(tn,,tn+1) Q ‘TX(tn,,tn+1 ) M

Define functions w, v on the interval (¢,,¢,+1) according to Lemma 2.5.5. Tt is
sufficient to prove the assertion for the functions u and v.

Therefore, we may assume without loss of generality that our interval is
(0,1) and

T = inX[(i—l)/n,i/n]v y= Zin[(i—l)/n,i/n]~
i=1 i=1

Let a = {z;}; and b = {y;}}_;. Clearly, b << a. According to Corollary
2.5.7, there ex1sts a bistochastic matrix C such that b < Ca. Set

+ Z Czk

z(t) = x;

It is clear that
m({t: z(t) =x;}) = ch = E =m({t: z(t) = z;}).

Therefore, z is equimeasurable with x. On the other hand,

i/n 1
/ Z S dS = Zczkmk = Ca) > yz = y| (i—-1)/n,i/n)-
(i—1)/n

IfA={(—-1)/n,i/n}",, then y < P(z|A). O
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2.6 Example of a fully symmetric quasi-Banach
space

We are going to discuss the properties of quasi-Banach symmetric spaces which
are interpolation spaces between L; and L. Clearly, every fully symmetric
quasi-Banach space is an interpolation space between L; and L.,. Indeed, an
inspection of Theorem 4.3 in [33] shows that the proof in the Banach setting
carries verbatim to the quasi-Banach case.

However, one can ask for an example with a quasi-norm not equivalent to a
norm. Even the existence of such spaces is a non-trivial fact. It is possible to
find such an example among the spaces L,, ;. In fact, if 0 < ¢ < 1 and p > 1, then
L, 4 is a fully symmetric quasi-Banach space. On the other hand, its quasi-norm
|| - ||p,q is not equivalent to a Banach norm.

Lemma 2.6.1. Let 0 < ¢ < 1. We have L, 4(0,1) C L1(0,1) if and only if
p=1l

Proof. Let p > 1. Clearly, x € L, 4 if and only if 27 € Ay/» C L,/ Therefore,
xz €L, C L. Now let p € (0,1). Fix a € (1,1/p). It is clear that ¢~ belongs to
L, 4 but not to L;. O

Lemma 2.6.2. Let0 < ¢ <1 andp > 1. There exists a constant C, , such that
for every u € Ayasp and every partition A we have

1
Lw) = [ P40 < Gyl (2.19)
0

ta/p”

Proof. The Lorentz space A4/, is an interpolation space [Loo, L1/4]1/p,1 by The-
orem 2.g.18 from [36]. Therefore, by Theorem 2.g.14 from [36],

_ 1
IMa,,, < CogllMIE PINE.

In particular, for every 0 < A < 1, we have

1 1 1
/ A(t)dte/? < / N (1)dt?P < C,, o( / AV a(t)dt)a/P.
0 0 0

Set
A= P(xalA)? < 1.

We have

1 1
L(xa) = /0 A(t)dt?? < Cp,q(/o AV(t)d) ! = Cygllxalla,,,,-

Since ¢ < 1, the transformation

u— P((uo ’Y)l/q|-’4)q7 u € Ayasp
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is a convex mapping. Therefore, L(-) is a convex functional.

The assertion (2.19) holds for functions u taking finitely many values by
Lemma 5.2 from [33].

For every u € A,q/», there exist a sequence {u, }22; of finitely-valued func-
tions such that u, T u. By the Levi theorem,

P((un 0 7)Y/ A)T T P((woy)!/|A).

Applying the Levi theorem again, we obtain L(u,) T L(u). The assertion follows
immediately. O

Lemma 2.6.3. If0 < ¢ <1 and p > 1, then L, 4 is fully symmetric.

Proof. For every z € L, , and every measure preserving transform -, we have
(£ 07)? € Ayasp. It follows from Lemma 2.6.2 that

1 1
/ P(zo 'y\A)th‘I/p < Cp,q/ (x*)thq/p.
0 0

Therefore,
1 1
| patonayast <c,, [y
0 0

for every x € Ly, 4.
Note that P(z* o v|A) is a step function. Hence, there exists a measure-
preserving bijection 7o such that

P(z* oy|A)* = P(x* oy]A)oyyp = P(x* oyo 70\751,4).

It follows that
1 1
| e orlayyae < ¢, [ @y
0 0

for every x € Ly 4.
The latter statement means that

1P (2" 041 A) g < Cplglllp.g-

According to Theorem 2.5.8, if y << z, then y < 2P(z|A) with z* = z*.
According to Theorem 1.2.5, one can represent z as z = z* o y with v being a
measure-preserving transformation. It follows immediately that ||y||g < const -
lz|| g- Hence, there exists an equivalent quasi-norm on E, which turns it into a
fully symmetric space. O

Now we prove that the quasi-norm in L, , (for ¢ < 1 < p) is not equivalent
to a norm. In order to prove it, we establish an inclusion of [, into L, 4. Such
results are available in e.g. [32]. We provide the proof here for the sake of
completeness.
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Lemma 2.6.4. Let Ay be an arbitrary Lorentz space on the interval (0,1) and
let {x,}22, be a normalised disjoint sequence in Ay. There exists a subsequence
{ye 3, C{zn}2, equivalent to the unit vector basis of l1.

Proof. Without loss of generality, each x, is piecewise-constant. Set A, =
m(supp(x,,)). Select B,, such that

An
/ o di(t) = %

Bn

IN

Let ny = 1 and let ny be the least possible natural number such that A,
B, .. Set yp =, .
Since || - [[a, is convex and ||y, ||la, = 1, it follows that

1D aryella, < lax.
k k

Let y; = |yk| © 7%, where vy, is a measure-preserving transform. Let v be a
measure-preserving transform such that v = v, on [A,, ., Ay, |. It follows that

IIZakykllsz/ (Z\akl-lykI)*(t)dw(t)Z/ O larl - lyeD) (v(8)) e (8).
k 0 0
However,

D lawl -yl (v(1)) = lax] - yi (), VE € [Anyyys Any]-
k

Since A < B,,, it follows that

1wl > Sl [ ot v > 5 Y o
k k g k

MNEk+4+1

O

Corollary 2.6.5. Let {x,};2, be a normalised disjoint sequence in Ly, 4 (q <
p). There exists a subsequence {yi}72 | C {2, }52, equivalent to the unit vector
basis of 1.

Proof. Let {x,}52; be such a sequence. It follows that {x2}2°; forms a dis-

joint sequence in Ayq/p. Clearly, [[zf[ls,, = 1. Let {witee, C {22152, be
a subsequence defined in Lemma 2.6.4. It is clear that {yx}32, satisfies our
requirements. U

Corollary 2.6.6. The quasi-norm in the space Ly, , (for 0 < ¢ <1 < p) is not
equivalent to any norm.

Proof. Assume the contrary. Let {z,} C L,, be any normalised disjoint se-
quence and let {y,} C {x,} be a sequence defined in Corollary 2.6.5. The
L, ;—norm on the linear span of {y,} is equivalent to I,—quasinorm, which is
impossible. O
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Example 2.6.7. If 0 < ¢ <1 < p, then space Ly 4 is a fully symmetric quasi-
Banach space on the interval (0,1) whose quasi-norm is not equivalent to any
norm.
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2.7 Sufficiency

2.7.1 The Mekler approach

The Mekler approach allows us to consider the orbits (z) and Q¥ (z) in the
case that E = F(0,1) or that E = E(0, c0), provided that E(0,0c0) ¢ L1(0, 00).

Theorem 2.7.1. Let E = E(0,1) be a fully symmetric quasi-Banach space on
the interval (0,1) and let x € E. If p(x) =0, then Q(z) = Qgr(x).

Proof. Let x = z* and let y satisfy y << x. There exists a measure-preserving
transform v : (0,1) — (0, 1) such that y = sgn(y) - y* o. Hence, we may assume
without loss of generality that y = y*.

Fix e > 0 and ¢ € (1 — &,1). According to Theorem 2.5.8, there exists a
positive function z such that z* = 2* and a partition A such that

0 < qy < P(z]A).

By Theorem 2.4.11,
P(z|A) € Qp(x).

By Lemma 2.3.3, qy € Qp(z). Therefore,
y=qy+(1—-qyec Qr(r)+eBe(0,1).
Since € is arbitrary and Qg(x) is a closed set, it follows that y € Qg(z) O

If the space E is not a subset of L1 (0, 00), we are able to prove a significantly
stronger assertion.

Theorem 2.7.2. Let E = F(0,00) be a fully symmetric quasi-Banach space on
the semi-azis such that E(0,00) ¢ L1(0,00). If ¢(x) = 0, then QF (z) = Qz(x).

Proof. Let x = 2* € E\Ly and let y = y* be such that y << z. Fix ¢ > 0 and
qg € (1 —¢,1). According to Theorem 2.5.8, there exists a positive function z
such that z* = z* and a partition A such that

0 < qy < P(z]A).

By Theorem 2.4.11,
P(z|A) € Q(x).

By Lemma 2.3.8, qy € Q'x(x). Therefore,
y=qy+(1—q)y€ Qp(z) +eBg(0,1).

Since ¢ is arbitrary and Q% (z) is a closed set, it follows that y € Q% (z).
Let © = z* € E\L; and let y satisfy y << x. For every fixed € > 0, there
exists a measure-preserving transform v : (0,00) — (0, 00) such that

| max{y,y"(00)} =y oY||z,nL. < e
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By the argument above, y* € Q/;(x). Therefore,
max{y, y"(c0)} € Qp(z) +eBr(0,1).

Since € is arbitrary and Q'z(z) is a closed set, it follows that max{y, y*(c0)} €
Q% (z). By Lemma 2.3.8, y € Q% (z).

Let x = * € EN Ly and let y be such that y << z. Since y*(co) = 0, there
exists a measure-preserving transform v : (0, 00) — (0, 00) such that y = y* o 7.
Hence, we may assume without loss of generality that y = y*.

Fix € > 0 and ¢ such that 0 < (1—¢)|ly|]|g < . There exists T' > 0 such that

[2*X(1,00) | LinLee S & Y X(T00)[[L1nLa S €

Clearly, y*x[o,7] << *"X[o,1]- According to Theorem 2.5.8, there exists a posi-
tive function z such that z* = 2* x|, 1) and a partition A such that

0 < qy™xp0,1] < P(z|A).
By Theorem 2.4.11,

P(z|A) € QSE('I*X[O,T])'
By Lemma 2.3.8, qy*x[0,1] € @ (2" X[0,77)- By Lemma 2.3.4, qy*x[0,1] € Qp(7).
Therefore,

Y =ay"Xp,1) + Y X(T00) + (1 — @)y € Qp(z) +eBp(0,1) + (1 —q)y C
C Q%(z) +eBg(0,1) + eBg(0,1) C Qx(x) + 2C(E)eBg(0,1).

Since ¢ is arbitrary and Q% (z) is a closed set, it follows that y € Q' (z). O

The corresponding result for the case of the full orbit Q(z) now follows as a
direct consequence.

Theorem 2.7.3. Let E = E(0,00) be a fully symmetric quasi-Banach space on
the semi-azis such that E(0,00) ¢ L1(0,00). If ¢(x) = 0, then Q(x) = Qp(x).

Proof. If y € Q(x), then |y| € Q(x). By Theorem 2.7.2, |y| € Q%z(x). Hence, for
every fixed € > 0,
lyl € Q'(2) +eBg(0,1)
and
y € sgu(y)Q'(z) +eBg(0,1) C Qp(x) +eBg(0,1).

Since € > 0 is arbitrary and Qp/(x) is a convex set, it follows that y € Qg(z). O

2.7.2 The Braverman approach

The Mekler approach of the preceding section cannot deal with the case of the
orbits ©'(z) either on the interval (0,1) or on the semi-axis. In the follow-
ing sections, we follow the approach of Braverman (see [11]). In addition, the
Braverman approach permits us to consider the orbits Q% (z) in the case that
E =E(0,1) or E=E(0,00) C L1(0,00).
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Preliminary results

The following proposition is the core of the Braverman approach. In the case
of the interval (0,1) it can be found in [11, Lemma 3.2]. However, our proof is
more general, simpler and shorter.

We consider functions of the form

r = inX[ai,haib Yy = Z YiX{ai—1,a:]> (220)

i€z €2
where {a;}icz is an increasing sequence (possibly finite or one-sidedly infinite).

Proposition 2.7.4. Let y = y* and © = x* be functions of the form (2.20)
either on the interval (0,1) or on the semi-axis. If y < x, then there exists a
countable collection {Ay}rexc of disjoint sets, such that

i) Fvery set Ay can be represented as
Ap =1 U Jg,

where Iy, and Jy are intervals of finite measure. The interval Iy lies to the
left of Jy, for every k € K.

it) The functions x and y are constant on the intervals I, and J.

i1i) For every k € K,
y|Ak = :C|Ak-'

w) y(t) = x(t) if t ¢ UpexAg.

Proof. There exists a subsequence {am, }icz (possibly finite or one-sidedly infi-
nite) such that
{z <y} = Uiez[am, 1, am,]-

Since y < x, we have

[ [(w-ois= [ o [ oszo

For each ¢ € Z, denote by b; the minimal ¢ > 0, such that

[@=voas= [ s

Clearly, for every i € Z,

/0 (x —y)4+(s)ds = /Om (z —y)4(s)ds > /Om (y — )4 (s)ds.

Hence, b; < apm,—1.
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For each ¢ € Z, the set
bi—1,bi] N {x >y} = Ut 17

is a finite union of disjoint intervals on which each of z and y is finite.
By the definition of b;, we have

/ami (y — x)4(s)ds = /bi (x —y)4(s)ds = :21/” ( —y)4(s)ds.

Am;—1 bi—1

Set
K={(i,j):1<j<nsiel}

If k = (i,5) € K, set I, = I and

Jk = Jz] = [ami—l + (qu - xmi)ilc{_laami—l + (ymz - xmi)ilc’{}?

J
cl = Z/ (x —y)y(s)ds, 1€Z,0<j<n,.
=1 /1L
Using the fact that x and y are constant on the interval [a,, -1, @m,], Wwe obtain

Jk = sz C [am,1—17a7ni]

and ‘
Ui, J} = [am, 1, am,]-
Since A
I) C [bi—1,b;]) € [0,b:] C [0, @, —1]
and

sz - [ami—17 ami}’

it follows that every interval Iy lies to the left of Jj.
(ii) By the definition of I, the functions = and y are constant on it. Since
J] is a subset of the interval [am,_1,am,], it follows that functions  and y are

constant on Jf
(iii) Tt is clear that

/ (x —y)+(s)ds = / (y—z)+(s)ds, kek (2.21)

Iy Jk

and

/ x(s)ds = / y(s)ds.
I, UJg I, UJg

a(t) > y(t) Vt € I, y(t) > x(t) Vt € J,

Note that

for all k € K. The assertion follows immediately.
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(iv) By the definition of the set J7,
{y >} = Uiez UL, J! C UrexAr.

Therefore, y(t) < x(t) for every t ¢ UgexAy. However,

/Ak y(s)ds = /Ak z(s)ds Vke K.

Since y < x, it follows that

/ y(s)ds = / x(s)ds.
s¢Urexc Ak s¢Urex Ak

Therefore, y(t) = x(t) for every t ¢ UgexAp. O

Corollary 2.7.5. Let E be a fully symmetric quasi-Banach space either on the
interval (0,1) or on the semi-axis. If x, y and B = {Ag}rex are as in Proposi-
tion 2.7.4, then y can be arbitrarily well approzimated by conver combinations
of functions of the form P(z|A), A € . Here, approximation is in the topology
induced by the quasi-norm of E.

Proof. Set
Ak = (Wln, = ylo)/ (@5 — =[,)
for every k € K. According to Proposition 2.7.4,

y‘Ak =< xlAk

and, therefore, it is not difficult to verify that A\ € [0, 1] for every k € K.
Further, a simple calculation shows that

y=(1—X)P(z|B) + \xx

on the set Ag, k € K.

As is well-known, every [0,1]—valued sequence can be uniformly approxi-
mated by convex combinations of {0,1}—valued sequences.

Fix € > 0. There exists p € lo(K) such that

I‘I’:ZQiXDi7 ||)\_MHOOS€
i=1
Here, n € N, 6; € R, are such that Y. ; 6, =1 and D; C K.
Set
z(t) = (1 — ) P(x|B)(t) + prz(t), Vte Ay
for every k € K and
2(t) = x(t), Vt¢ UrexAi.
It is clear that
ly — zlxa, = Ak — prl [z — P(z|B)|xa,



CHAPTER 2. ORBITS 70

for every k € K. Hence,

ly—z2=> ly—zlxa, <2:(z+ P(z|B)).
kel

Since F is fully symmetric, it follows that
ly = 2llp < 2eC(E)||z|| -
Set F; = Urep,Ar and A; = {Ar}igp, € A, 1 < i < n. It is then clear that

2= 0;((1—xp,)Px|B) + xrz) = ZepmM
=1

O

Lemma 2.7.6. Let E be a fully symmetric quasi-Banach space on the interval
(0,1). If z and y are as in Proposition 2.7.4 and ¢(x) =0, then y € Qx(x).

Proof. Fix € > 0. According to Corollary 2.7.5, there exists z € E such that
z= Z&P(ﬂfli), ly —zlle <e.
Here, n € N and 0 < 6; € R are such that Y ., §; = 1. According to Theorem
2.4.11, there exist z; € Q'(x) such that
P(z|A;) € z;+eC(E) " Bg(0,1).
It follows that
z=Y_0;P(x|A) Zazﬁac ZGBE01
i=1
By the definition of a quasi-norm,
n
> 0;Bg(0,1) C C(E)"Bg(0,1).
i=1

Since Q'(z) is convex, it follows that

Zeizi € Q' ()
i=1
Therefore,
z € Q'(z) +eBg(0,1)
and

y € z+¢eBg(0,1) C Q' (x) +eBg(0,1) +eBg(0,1) C Q'(z) + 2C(E)eBg(0,1).
Since € is arbitrarily small, it follows that

y € Qp(x)

and we are done. O
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The case that £ C [,

Theorem 2.7.7. Let E = E(0,1) be a fully symmetric quasi-Banach space on
the interval (0,1). If x € E is such that p(x) = 0, then Q' (z) = Q% (z).

Proof. Let x = x* and Oleqy € ' (x). In this case, y = y* o~ for some measure-
preserving transformation v (see [50] or [8, Theorem 7.5,p.82]). Without loss of
generality, we may assume that y = y*.

Fix € > 0. Set

sp(e) =inf{s:y(s) <y(1) +ne}, meN.

Let A, be the partition, determined by the points s, (), n € N. Set u = P(y|.A:)
and z = P(z|A,).
Clearly, the functions v and z are of the form given in (2.20) and v < z.
Therefore, one can apply Lemma 2.7.6.
We obtain
u e Q'(z) +eBg(0,1).

On the other hand,
e —zlle <llz—zlo <& lly—ulle < lly—ullo <e.
Clearly,
Q) cQx)+Q(x—2) C Q(z)+Qx—2) C Q(z)+eBg(0,1)

and
y=u+(y—u) €u+eBg(0,1).

Therefore,
y€u+eBg(0,1) C Q'(2) +eBgr(0,1) +eBg(0,1) C
C Q' (x) +eBg(0,1) +eBg(0,1) + eBp(0,1) € Q' (z) + 3C*(E)eBg(0,1).
Since € is arbitrarily small, it follows that
y € Qp()
and the proof is complete. O

Theorem 2.7.8. Let E = E(0,1) be a fully symmetric quasi-Banach space on
the interval (0,1). If z € E is such that ¢(x) = 0, then QF (z) = QF ().

Proof. Suppose that ¢(z) = 0 and let 0 < y € Q*(z). There exists so € [0,1],

such that L
S0
/ x*(s)ds:/ y*(s)ds
0 0

and this implies y < % X[, s,]-
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It is clear that
0 < p(z"X0,50]) < p(z) = 0.

It follows now from Theorem 2.7.7 that
y € Qp(r"X(0,50) C Qp ().
Hence, y € Qg(x) and this completes the proof. O
We now consider the case that E = E(0, 00).

Theorem 2.7.9. Let E = E(0,00) be a fully symmetric quasi-Banach space
on the semi-axis. Suppose that E(0,00) C L1(0,00). If x € E is such that
G rin(@) = 0, then U (z) = Qp(a).

Proof. Let x = z* and 0 < y € (). It follows from [33, Lemma I1.2.1] that
there exists a measure-preserving transformation v such that y = y*ov. Without
loss of generality, we may assume that y = y*.

Initially, we consider the case when supp(z) = (0, c0).

Fix € > 0. It is clear that there exists 7" such that

lzx(7,00) |2 < (12X T 00)[|L10Loe <€ YX(T00) | E < 1YXT 00) | 210L0 < €

Since supp(x) = (0, 00), it follows that

/OTx(s)ds < /000 x(s)ds = /000 y(s)ds.

Hence, there exists S > T such that

/OT 2(s)ds = /OS y(s)ds.

Therefore, yx(0,51 < TX[0,7]-
Consider the fully symmetric quasi-Banach space F' on the interval [0, S]
defined by the formula

F={x € E: supp(z) C[0,5]}, |z|lF=|z|g Vz € F.

It is clear that xx[o,77,¥YX[0,5] € F"
However,

1 S
EH(O’J)X[O,S]HE < §||(0sI)X[o,1]||E -0

when s — oo. Therefore, the assumption ¢ i, g () = 0 implies that ¢ (zx[0,7)) =
0. Hence, by Theorem 2.7.7,

YX0,s] € Qr(xxj0,11) € Q' (xp0,17) +€Br(0,1) C Q' (2X(0,17) + €BE(0,1).
On the other hand,

Q' (zxj0,17) C Q' (xx) + Q' (xX[1,00)) C Q' (%) + QxX(T,00)) C Q' (2) +eBg(0,1)
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and
Y = YX[0,5] + YX[S,00) € YX[0,5] T €BE(0,1).
Hence,
Y € yXp,s) + eBr(0,1) € Q' (xxj0,17) + eBr(0,1) + Bg(0,1) C
C Q' (x) +eBg(0,1) +eBg(0,1) + eBg(0,1) C Q' (z) +3C*(E)eBg(0,1).
Since € is arbitrarily small, it follows that
y € Qp().

Let us now consider the case that m(supp(z)) < co.
Fix z = 2* € L1 N Lo with m(supp(z)) = oco. It is clear that for every € > 0
we have
(y+ez) € V(z+ez).

Clearly,
0 < @fin(z +e2) < C(E)(prin(x) + epfin(2)) = 0.
Here, the last inequality follows from the assumption and Lemma 2.1.7. Thus,
Yrin(z+ez)=0.
It follows from above that

(y+ez) € Qp(r+ez) C Q(x+ez)+eBgr(0,1) C
C Q(x) +eQ'(2) +eBg(0,1) C Q' (x) +eQ(z) +eBg(0,1) C
C Q(x) +eBg(0,1) +¢||2||gBe(0,1) C Q'(z) + C(E)(1 + ||2||g)eBg(0, 1).
Since ¢ is arbitrarily small, it follows that
y € Qp()
and this suffices to complete the proof. O

Theorem 2.7.10. Let E = E(0,00) be a fully symmetric quasi-Banach space on
the semi-azis such that E(0,00) C L1(0,00). If x € E is such that @ in(z) =0,
then O (z) = QF ().

Proof. Suppose that ¢(z) = 0 and let 0 < y € Q7 (z). Hence, there exists

S0 € [0, 00], such that
S0 oo
/ x*(s)ds = / y*(s)ds.
0 0

0 < @(x"X[0,50) < p(x) =0.
It follows now from Theorem 2.7.9 that

Therefore, y < 2*X|o,s,]-
It is clear that

y € Qp(z*X[.50)) C Qp().
Hence, y € 9} (). O



CHAPTER 2. ORBITS 74

The corresponding result for the case of the full orbit Q(z) follows from
Theorem 2.7.10.

Theorem 2.7.11. Let E = E(0,00) be a fully symmetric quasi-Banach space on
the semi-azis such that E(0,00) C L1(0,00). If x € E is such that @ in(z) = 0,
then Q(z) = Qp(x).

Proof. Let x = z* and y € Q(z). It follows from [33, Lemma II.2.1] that there
exists measure-preserving transformation « such that y = sgn(y)y* oy. Without
loss of generality, we may assume that y = y*.

Fix € > 0. By Theorem 2.7.8, there exist n € N, scalars \;, 5; € [0, 1] such
that 2?21 A; = 1 and positive functions z; such that

T = X[0,3,]

and

n
Iyl = 3 Nialls <.

i=1
For every 1 < i < n there exist measure-preserving transformations ~; : (0, 00) —
(0,00) (see [50]) such that

Ty = (@([o,m]) O Y-

Set,
1 _ 2
z; =xov, ;= (TX[0,8] — TX[B:1]) © Vi

for every 1 <i¢ < n.
It is clear that

and

_ 1 1 2
7i = (ot +a?).

Therefore,

1 — LI )
||y_§;)‘ixi_§;)‘ixi||f?§€'
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2.8 Necessity

In this section, we will show that the sufficient conditions given in each of the
Theorems of preceding section are, in fact, necessary.

We start from the relatively simple proof of the necessity results in the case
of positive orbits and then proceed with the case of full orbits.

2.8.1 The case of positive orbits

Theorem 2.8.1. Let E = E(0,1) be a fully symmetric quasi-Banach space on
the interval (0,1). If x € E is such that Q' (z) = Qg (x), then o(x) = 0.

Proof. Suppose that Q% (x) = Q'(x). Set A = {[0,1]} and y = P(x|A). Clearly,
y € (z) = Qp(x). Lemma 2.2.2 implies that ¢(z) = ¢(y). Lemma 2.1.7
implies ¢(y) = 0. The assertion is proved. O

Theorem 2.8.2. Let E = E(0,1) be a fully symmetric quasi-Banach space on
the interval (0,1). Suppose that quasi-norm on E is a Fatou quasi-norm. If
x € E is such that O (z) = QL (), then (x) = 0.

Proof. By Proposition 2.2.1(iv), there exist 0 < yq, 21 € E, such that x = y1+ 21
and

e(x) = ¢(y1) = ¢(21).
By assumption, Q*(z) = Qf(x) and so y1, 21 € @} (). By Proposition 2.2.4,

e(z) = (Y1) + ¢(z1)-
Consequently, p(z) = 0. O

Theorem 2.8.3. Let E = E(0,00) be a fully symmetric quasi-Banach space
on the semi-axis. Suppose that E(0,00) C L1(0,00). If v € E is such that
V(x) = Q(x), then ppin(x) = 0.

Proof. Let x = z* and suppose that Qx(z) = Q' (z). Set A = {[0,1]} and
y = P(z|A). Clearly, y € @' (z) = Q(x). Lemma 2.2.2 implies that ¢, (x) =
@ fin(y). Lemma 2.1.7 implies ¢, (y) = 0. The assertion is proved. O

Theorem 2.8.4. Let E = E(0,00) be a fully symmetric quasi-Banach space on
the semi-azis. Suppose that E(0,00) C L1(0,00) and that the quasi-norm on E
is a Fatou quasi-norm. If x € E is such that O (z) = QL (), then ppin(z) = 0.

Proof. By Proposition 2.2.1(iv), there exist 0 < y1, 21 € E, such that x = y1+21
and

Prin(®) = @fin(y1) = @in(21)-
By assumption, Q*(z) = Qf(x) and so y1, 21 € @} (). By Proposition 2.2.4,
@rin(T) = Prin(y1) + @fin(21).

Consequently, ¢ fin () = 0. O
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Theorem 2.8.5. Let E = E(0,00) be a fully symmetric quasi-Banach space on
the semi-azis. Suppose that E(0,00) ¢ L1(0,00) and that the quasi-norm on E
is a Fatou quasi-norm. If x € E is such that QT (z) = Qf(z), then ¢(z) = 0.

Proof. By Proposition 2.2.1(iv), there exist 0 < yq, 21 € E, such that x = y1+21
and

Peut ({IJ) = Pcut (yl) = Pcut (21)
By assumption, Q*(z) = Qf,(z) and so y1, 21 € QF (). By Proposition 2.2.4,

Peut (JC) = @cut(yl) + Wcut(zl)~

Consequently, @e,:(z) = 0. By Proposition 2.2.1(ii), there exist 0 < ys, 20 € F,
such that x = yo + z2 and

() = (y2) = p(22).

Again, by the assumption, we have ys, 20 € Q},(x) and therefore, by Proposition
2.2.5, we have

o(r) = ¢(y2) + ¢(22)-
Consequently, ¢(z) = 0. O

Theorem 2.8.6. Let E = E(0,00) be a fully symmetric quasi-Banach space
on the semi-axis. Suppose that E(0,00) ¢ L1(0,00). If € EN Ly is such that
OV (z) C Q(x), then o(x) = 0.

Proof. The assertion follows from Theorem 2.4.9. O

2.8.2 The case of full orbits

The arguments in this subsection considerably simplify those given by Kalton,
Sukochev and Zanin in [31].

Throughout, we assume that x = z*. Let X (t) = fot x(s)ds. By assumption,
X is a concave increasing function.

Let {an}tnez, {an(0)}nez be such that X(a,) = (3/2)" and X(a,(0)) =
(3/2)™6. We define

A = {ma, : ma, < apy1, n € Z}.
If {kn }nez is an arbitrary sequence such that &, > 1, then we define
Br.o = {knasn : knasgn(0) < asznt1(0), n € Z}.

It will be convenient to introduce the following notation. If A is a discrete
subset of the semi-axis, then the elements of A U {0} partition the semi-axis.
This partition consists of a (finite or infinite) sequence of sets of finite measure.
We identify this partition with the set A. Elements of A will be called nodes
of the partition A. The corresponding averaging operator will be denoted by
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Lemma 2.8.7. IfC;, 1 < i <k, are discrete sets, then

k
E(z| U, C) ==Y E(xlC;).

i=1

Proof. 1t is sufficient to verify

t k t
T k )(s)ds riC;)s)as
/OE( | Uk, Ci)(s)d gz_;/{) E(z|C;)(s)d

only at the nodes of E(z| U¥_, C;), that is at the nodes of E(z|C;) for every i.
However, if ¢t € C; for some ¢, then

' k )s)jas = ' i ) S S
/0 (x| UL, C)(s)d / B(2]C)(s)d

and we are done. O

Clearly,
Bin1 U B 3o U By (3/2)2 = Am.

Therefore, by Lemma 2.8.7, we have
E(.I’|Am) << E(I|Bm71) + E(1'|Bm,3/2) + E(33|Bm7(3/2)2) (222)

In what follows, we will only work with a fixed value of 6. It will therefore
be convenient, for simplicity of notation, to drop the explicit dependence on 6
and write By, a,, rather that By g, a,(9).

We will need the following lemma.

Lemma 2.8.8. If k > k' (that is Kk, > K], for every n), then

t

/ E(z|B,;)(s)ds < 3/2/ E(z|B,)(s)ds. (2.23)
0 0

Proof. Since E(z|B,) is piecewise-constant, it is sufficient to prove the assertion
for the nodes of E(f|B,). If knas, < agpi1, then k) a3, < azyi1 and

[ pesaeas < [T =270 <
0 0

Kl asn Kl asn
< 3/2/ x(s)ds = 3/2/ E(f|B.)(s)ds.
0 0
Since k], < Ky, it follows that the assertion is proved for s = k,agy. O

Remark 2.8.9. The inequality (2.23) holds if K, < &, only for such n that
Kn@3n < A3n41 OT Ky,Q3n < G3p41-
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We use the following remarkable characterization of the set Q(z) given in
[30].

Theorem 2.8.10. Let x be a measurable function either on the interval (0,1)
or on the semi-axis. The following assertions are valid.

1. [30, Lemma 4.4]. If y € Q(x), then there exists p € N such that

b b
/ y*(s)ds < / z*(s)ds, V0 <pa<b. (2.24)
P a

a

2. [30, Theorem 6.3]. If y is a measurable function satisfying (2.24), then,
for every e > 0, there exist z such that |y| < z and z € (1 +¢)Q(x).

For each sequence x and A > 0, we define the sequence x* by

W — Kn, Kn > A
" 00, B < A

Proposition 2.8.11. If y satisfies (2.24), then

/ E(x|Byioop)(s)ds < 30/ |E(z|B) — y*|*(s)ds. (2.25)
0 0

Proof. Tt is sufficient to prove (2.25) only at t = kpas,, where 100pag, <
Kna3n < aznt1. These are the only nodes of FE(z|B100s).
Clearly,

Rn@3n

([W%wwwm—w%@wzé“%Euwa@w—/“ g (s)ds >

A3n paszn

>(1- ﬁ)nnaSnE(ﬂB,ﬂ)(ﬁnagn -0)— / o x(s)ds >

n a3n
p RnQ3n asnt1
>(1— —)——————— (X (kpaszn) — X(Kma3m —/ z(s)ds,
(= ) (X () = X masm) = [ a9
where m is the largest integer number such that m < n and ka3, < agm+1-
It then follows that
X (Knazn) — X (Kmasm) > X(azn) — X (azn_2) = 5/9(3/2)*"6.
By definition,

a3n+1 1 n
/ x(s)ds = 5(3/2)3 6.

a3n

Hence,
/RWGSn |E($|BH) o y*|*(8)d8 Z (1 — L) . §(3/2)3n0 - 1(3/2)3n9 =
0 10079 2
1 [asn+1 1 [rnasn
- %/0 z(s)ds > %/o E(x|Byroor ) (s)ds.
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Corollary 2.8.12. Let E be a fully symmetric quasi-Banach space either on
the interval (0,1) or on the semi-axis and let x = z* € E. If Q(x) = Qp(x),
then

E(x|B,) — 0 (2.26)

as A approaches oo.

Proof. Tt follows from the assumption that
P(z|By) € Q(x) = Qp(z).
Hence, for every € > 0, there exists y € Q(z) such that
1P (z]Br) —ylle <e.

By Theorem 2.8.10, there exists p € N such that (2.24) is valid. By Proposition
2.8.11,
P(m|BK100}7) <= 30(P((E|B,€) — y).

It follows from Lemma 2.8.8 that for every A > 100p
|P(@|By) | < 45e.
Since ¢ is arbitrarily small, this completes the proof. O

Proposition 2.8.13. Let E be a fully symmetric quasi-Banach space either
on the interval (0,1) or on the semi-axis equipped with a Fatou quasi-norm. If

x € E is such that Q(x) = Qg(z), then E(z|B,,) — 0.

Proof. Assume the contrary. If there exists a sequence mgs — oo such that
E(z|B,,,) — 0, then, by Lemma 2.8.8 we have E(z|B,,) — 0. Therefore, there
exists an € such that |[E(z|By,)||g > € for all m. Set

e m 0<|n|<r
00 r < |n|.

Clearly, E(z|Bgm.r) — E(x|By,) almost everywhere. Since E(x|Bym.r) T, it
follows from the definition of Fatou quasi-norm that

lim || E(x|Bgm.r)

e = [E(@|Bn)lle-

Hence, for each m, there exists r,, such that |E(z|Bgm.m)||g > €.
Now define
kp = inf k"™ = inf m, neN.
m21 rm>|n|

Clearly, &, T 0o as |n| 1 co. By the Corollary 2.8.12, there exists A such that

2
IE@IBllE < =
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Now the set {n : k, < A} is finite. Fix an integer m large enough so that
masy, > asn+1 whenever k, < A. This means that ﬁf‘l < KkWTmoexcept at points
where both are bigger than as,t1/asy,. According to the Remark 2.8.9, it follows
that

3
E(z|Bim.rm ) << §E(a:|l3,€x).

This implies ||E(z[Bim.rm)||E < €, giving a contradiction. O

Lemma 2.8.14. Let x € L1 + Lo be a function on the semi-axis. If x ¢ Ly,
then, for everyt > 0,
2 3 m2t
X(t) < §X(m2t) +3 E(z|An)(s)ds. (2.27)
0
Proof. Let t € [an, ant1]. If apt1 > may,, then
m2t man 2
E(z|Ay)(s)ds > / Bl Ay (1)t = X (ma) > 2 X (1),
0 0
If ap+1 < ma,, and a,49 > may41, then
m?t Man+1
E(z|Ap)(s)ds > / E(z|Ap)(s)ds = X (mant1) > X(%).
0 0

If apyo < maps1 and any1 < may,, then
3
X(m2) > X(ans2) = 5 X(anan) >

and the inequality follows. O

Corollary 2.8.15. Let x € L1 + Lo, be a function on the semi-axis. If x ¢ Lq,
then for every t >0

9 t
X(m~2¢) < (g)lX(t)—i—g / E(2|An)(s)ds, m,l €N, (2.28)
0
Proof. Denote, for brevity,

Z(t) :/0 E(x|Ay)(s)ds, t>0.

We will use induction on [ to prove that

2 2
X(t) < (g)lX(mzlt) + 2(1 - (g)l)Z(m”t), leN. (2.29)
Indeed, (2.29) is valid for [ = 1. Assume that (2.29) is valid for [ = k. Let us

prove (2.29) for [ = k 4+ 1. We obtain

X() < (Xm0 + 501 - (9)Z(m) <
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< QIR + 3262 0) 4 30 )z <
< G0 + (G) 7+ 51— ()22 0) =

_ (%)l+1X(m2(l+1)t) + g(l _ (g)l+1)Z(m2(l+l)t)).

The assertion follows immediately from (2.29). O
The situation in the case that x € Ly is slightly more complicated.

Lemma 2.8.16. Ifx € L1(0,1) or z € L1(0,00), then there exists constant C
such that for every t > 0

2 2
2 3 m-t 3 m-t
Zxm2) + 2 [ B(alAn)(s)ds + 2C / o (s)ds.  (2.30)
3 2 J, 27/ ’
Proof. Consider first the case of the semi-axis. Fix ng such that X(ap,) <

4/9X (00). Then the argument in Lemma 2.8.14 applies mutatis mutandi for
0 <t<ap,. For every t > a,,, we have

X(t) < X (o)

. 2
_ t,1
~ min{ay,, 1} win{m=t, 1}

and the inequality follows in this case.
The same argument applies in the case of the interval (0,1) by replacing
X (00) by X(1). O

Corollary 2.8.17. If x and C are as in Lemma 2.8.16, then for every t > 0,

2 9 [t 9
X(m2) < (2)'X (1) + 5/ B(al Ay)(s)ds + 3 Cminm?, 1}, m,1 €N,
0
(2.31)
Proof. If
t
Z(t) = / E(x|Ap)(s)ds + C min{m?t, 1},

0

then the proof of Corollary 2.8.15 applies mutatis mutandi. O

Theorem 2.8.18. Let E be a fully symmetric quasi-Banach space either on the
interval (0,1) or on the semi-azis and let x € E. Suppose that the quasi-norm
on E is a Fatou quasi-norm. If Q(x) = Qg(x), then p(x) = 0 provided that one
of the following conditions is satisfied

1. E=E(0,1) is a space on the interval (0,1).

2. E = E(0,00) is a space on the semi-axis and E(0,00) ¢ L1(0,00).
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Proof. 1t follows from Proposition 2.8.13 that E(z|B,,s) — 0 for every 6. It
follows from the inequality (2.22) that E(z|A,,) — 0.
Fix [ € N. If © ¢ Ly, then by Corollary 2.8.15,

2 9
Wammx << (g)lﬂ? + 5E(.T|A7n), m €N

and, therefore,

2,1 9
sm2a L <~ (f)lgasx + - E(z|A;), m,seN.

sm?2l g 3 2

Let m, s — oo. It follows that

p(z) < Co(3) p(x) +0.

Let | — oo. Tt follows that p(x) = 0.
Fix l € N. If x € L1 and C are as in Lemma 2.8.16, then it follows from
Corollary 2.8.17 that

2 9 9
<= () + §E($|Am) + §CX(O,1)a m e N

—0
m?2l 3

and, therefore,

2,1 9 9 ., _
A Tsma T << (g)l;osz + §E(I|Am) + 505 'osxo1), m,s €N

Let m,s — oo. It follows that

Let | — oo. It now follows that ¢(z) = 0. O

Theorem 2.8.19. Let E = E(0,00) be a fully symmetric quasi-Banach space on
the semi-azis equipped with a Fatou quasi-norm such that E(0,00) C L1(0,00).
If © € E is such that Q(z) = Qp(x), then 7~ o (z*)x[0,1] — 0.

Proof. Set F' = E + L. Clearly,
Qz) = Qp(z) C Qr(x) C Q(z).

Hence, Qr(z) = Q(x). Applying Theorem 2.8.18, we obtain ¢r(x) = 0, which
proves the assertion. O
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2.9 The sequence space case

In this section, we will follow Kalton, Sukochev and Zanin [31].

Suppose now that F is a symmetric quasi-Banach sequence space. We as-
sociate it with a symmetric quasi-Banach function space on the semi-axis as
follows.

Consider the partition of the semi-axis A = {[k—1, k] }xen. It is clear that the
operator P(:|A) maps (L1 + Loo)(0, 00) into the set of step functions. Elements
of the latter can be readily identified with bounded sequences.

More precisely, for any bounded sequence £ we set

o0

xe = Z EkX (k—1,k]

k=1
and identify £ and z¢.

Definition 2.9.1. Let E be a symmetric quasi-Banach sequence space. We
define the function space Fg on the semi-azis as the set of all x € L (0,00)

such that P(z*|A) € E, and set
2]l ms = llzllco + [1P(2*|A) ] 5.

It is easy to see that Fg is a linear space and that || - ||, is a quasi-norm
on Fg. Further, equipped with the quasi-norm || - || g, the space Fg is a quasi-
Banach symmetric space on the semi-axis. It is not difficult to see that the
space E is fully symmetric if and only if Fg is fully symmetric.

If FE is a fully symmetric sequence space and if £ € E, then the sets (¢),
Q(&), Qr(&) are defined in the same way as in the function space setting,.

The set Q(§) admits a characterization fully analogous to that in the the
function space setting given in Theorem 2.8.10

Theorem 2.9.2. Let £ be a bounded sequence. The following assertions are
valid.

1. [30, Lemma 4.4]. If n € Q(&), then there exists p € N such that

n

Z < Z &, YnymeN:pm+1<n. (2.32)
k=pm-+1 k=m-+1

2. [30, Theorem 5.4]. If n is a sequence satisfying (2.32), then, for every
e > 0, there exist ¢ such that |n] < ¢ and ¢ € (1+¢)Q(¢).

Lemma 2.9.3. Let £ = &* ¢ 1y be a sequence and let y = y* € Loo(0,00). If
y=19y" << x¢ and 0 < ¢ < 1, then there exist sequences n — oo and g — 0
such that

TEX[0,n0] T WYX (nye00) <= (14 €x)e.
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Proof. By Lemma 2.5.3, there exists a sequence t; — oo such that

QYX (t1,,00) == TEX (ty,,00) -

Set ny = [tx]. Clearly,

t Uu ni+v
/(‘rEX(O,nk)+qunk,oo)*(S)d5: sup / xs(S)dSJr/ qy(s)ds.
0 utv=t,u<ng J0O nk
Evidently,
nk+v tr+v
[ as)ds < yomymingo. 13+ [ aels)ds.
ng 123
Therefore,

t

t
/ (TeX(0me) + W Xomo0) (8)ds < y(ni) min{t, 1} + / re(s)ds
0 0

and the assertion follows. O

Lemma 2.9.4. If E # |, 1 is a fully symmetric quasi-Banach sequence space
and if £ € E\ly is such that Q(§) = Qr(§), then Q(ze) = Qry (x¢).

Proof. Fix y € Q(x¢). Since E # lo, it follows that 27 (c0) = 0. Thus, y*(c0) =
0. It follows that |y| = y* oy, where 7 is a measure-preserving transformation.
Hence, we assume that y = y*.

Fix e > 0 and 0 < ¢ < 1. By Lemma 2.9.3, there exists n such that y(n) < ¢
and

TeX[0,n] T QYX (n,00) <= (14 €)ze. (2.33)

Since qyxjo,n] <= TeX[o,n), there exist functions z;, 1 < i < m, on the
interval [0,n] such that 27 = x¢x[,n) and

1 & _
Ha sz = @Yl om) < ”X[O,n]”F;g'
=1

Define z; to be qy on (n,00) for 1 <i < m. It follows that

1 & 1 &
IIEZ@- ~ayllre < > 2=yl om - Xl e < e
i=1 i=1

Set A,, = {[k,k + 1]}x>n and z; = P(x;]A,). It is clear that

1 & 1 &
E;%—E;Zi:(I(y_P(y‘An))

and
o0

ly — Pyl An) e, <Y ylk) —y(k+1) =y(n).

k=n
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Hence,
1 m 1 m
1= 3w = =3 alles < ly = PolAD lnr. < y(n) <.
i=1 i=1

Clearly, z; is equimeasurable with z¢X[0,n) + ¢P(¥|An)X (n,00) = 2y for some
n € E. It follows from (2.33) that n << (1 4 ¢)§. By assumption, n € (1 +
€)Qg(&). Therefore, z; € (1 +¢€)Qpy(xe), 1 <i < m.

Since Qp, (x¢) is a convex set, it follows that

1 m
- > 2 € Qry(we) C Qry(we) +€Bryp (0, 1),
=1
Hence,

m

1 & 1
€ — i B 0,1) c — i B 0,1 B 0,1) C
qy m;x +e FE( ) m;Z te FE( )+5 FE( )
C Qpy(x¢) +€Bpy(0,1) + eBp,(0,1) + eBp, (0,1).
Since ¢ is arbitrarily small and Qp, (z¢) is a closed set, the assertion of the

lemma follows. ]

Theorem 2.9.5. Let E be a fully symmetric quasi-Banach sequence space and
let £ € E. If Q&) = Qgr(§), then Q(x¢) = Oy (ze).

Proof. It € € 1, then @, (x¢) = 0. It follows from Theorem 2.7.11 that

Qze) = Qrinpo. (Te) C Qry(w¢)

and we are done. Assume now that £ ¢ ;. If F # [y, [, then the assertion is
proved in Lemma 2.9.4. If E = I, then ¢(z¢) = 0 and our assertion follows
from Theorem 2.7.2. O

Lemma 2.9.6. Let E # |l be a fully symmetric quasi-Banach sequence space.

If Qze) = Qpy (x¢), then Q(E) = Qp(§).

Proof. Let £ € E and let Q(z¢) = Qp,(x¢). Assume for simplicity that ||£||g =
1. Let n € Q(€). Since E # I, it follows that £*(c0) = 0 and n*(o0) = 0. Thus,
we may assume without loss of generality, that £ = £* and n = n*.

Evidently, z,, € Q(z¢). Fix € > 0. There exists z € Q(z¢) such that ||z —
Ty Fp < €. Since x,, decreases, it follows that

125 = 2pllrs < llz = 2yllpp <e

Define the sequence ¢ by the formula z¢ = P(z*|A). Since z € Q(x¢), it
follows from Theorem 2.8.10 that there exists p € N such that

b b
/ z*(s)ds < / zg(s)ds, Vpa <b.
P a

a
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If m,n € N, then

> g;;:/ z*(s)dsg/ wi(s)ds= Y &, Vpm+1<n,
k=pm+1 pm m k=m+1

Therefore, by Theorem 2.9.2, there exists ¢’ such that |¢] < ¢’ and
¢ € (1+)Q(8).

By Lemma 2.3.3,

Ce(1+¢6)Qr(&) C Qr(§) +eBr(0,1) C Q(§) +eBe(0,1) + eBg(0, 1).

On the other hand,

¢ = nlls < e — 2allig = 1P = ab)lms < [12° = 2glley < 2,
and, therefore,
ne(+eBgr(0,1) C Q&) +eBg(0,1) +eBg(0,1) + eBg(0,1).

Since ¢ is arbitrarily small and Qg(€) is closed, this suffices to prove the lemma.
O

Theorem 2.9.7. Let E be a fully symmetric quasi-Banach sequence space. Sup-
pose that E #1y. If £ € E and if (§) =0, then Q(&) = Qg ().

Proof. If E = I, the assertion is well-known. Let F # [,,. Let £ € E be such
that ¢g(&) = 0. Clearly, this implies ¢, (z¢) = 0. It follows from Theorem
2.7.3 that Q(x¢) = Qp, (z¢). By Lemma 2.9.6, Q(§) = Qg(f). O

The following result is a corollary of the preceding results.

Theorem 2.9.8. Let E be a fully symmetric quasi-Banach sequence space
equipped with a Fatou quasi-norm and let £ € E. The following conditions are
equivalent.

1. Q&) = QE(8).
2. QF(&) = Qx(9).
3. p(€) =0.
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2.10 Applications & examples

2.10.1 Orlicz spaces are always ”good”

The following proposition shows that Orlicz spaces always satisfy the condition
(1.1).

Lemma 2.10.1. Let ® be an Orlicz function and Lg be the corresponding Orlicz
space on the semi-axis. Suppose that ®'(0) = 0. If x € Lo, then

n/ooo @(@)ds — 0.

n
The same assertion is valid for Orlicz spaces on the interval (0,1).

Proof. Without loss of generality, it may be assumed that ||x| ., = 1, that is
Jo° ®(x(s))ds = 1. It follows from the condition ®'(0) = 0 that n®(z/n) — 0
almost everywhere. It is clear that n®(xz/n) < ®(x). The assertion of the lemma
follows now from the Lebesgue dominated convergence principle. O

Proposition 2.10.2. Let ® be an Orlicz function and Lg be the corresponding
Orlicz space on the semi-axis. If x € Lg, then p(x) =0 for every € Lg. The
same assertion is valid for Orlicz spaces on the interval (0,1).

Proof. Assume the contrary. Suppose first that ®'(0) = 0. It follows that Lg ¢
L;1(0,0). Let
lon®||Ls = no

for some 0 < x € Lg, some a > 0 and every n > 1. By the definition of the
norm || - ||, we have

/OO @(ianx(s))ds > 1.
0 no

Hence,

n/ooo @(ly(s))ds >1

n

with y = a~'z € Lg. A contradiction.
Suppose first that ®'(0) = 0. It follows that Le ¢ L1(0,00). Let

[(nz™)x(0,1)||lLe > ne

for some 0 < x € Lg, some a > 0 and every n > 1. By the definition of the
norm || - ||,, we have

/O B(-L (o) (s))ds > 1.

no

Hence,
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with y = a~12* € Lg. Define Orlicz function @y by setting ®g(2) = ®(2) —
®’(4-0)|z| for every z € R. It follows that

n/OOO @0(%y(s))ds — 0.

Therefore,

1/n 1 , 1/n o 1
n/o D y(s))ds < (+o)/0 y(s)ds+n/0 Do (y(s))ds — 0.

A contradiction. O
Corollary 2.10.3. If Ly is an Orlicz space and if x € Ly, then Q(z) = Qr, ().

It follows from Theorem 15.3 of [38] that every separable symmetric Banach
space satisfies the condition Q(z) = Qg(x). In [11], Braverman & Mekler showed
that Q(z) = Qg(x) provided that Sr < 1. For the subclass of Orlicz spaces,
Corollary 2.10.3 substantially improves each of these results. Indeed, it is quite
easy to construct (see Appendix B) a non-separable Orlicz space Lg such that
Bre = 1.

2.10.2 Symmetric functionals

Let F be a fully symmetric quasi-Banach space.

Definition 2.10.4. A positive functional w € E* is said to be symmetric if
w(y) = w(z) for all0 < z,y € E such that y* = x*.

Definition 2.10.5. A positive functionalw € E* is said to be fully symmetric
if w(y) <w(z) for all0 < x,y € E such that y << .

We refer to [23, 16] and references therein for the exposition of the theory of
singular fully symmetric functionals and their applications. Recently, symmetric
functionals which fail to be fully symmetric were constructed in [30] on some
Marcinkiewicz spaces. However, for Orlicz spaces situation is different. The
following proposition shows that a symmetric functional on an Orlicz space is
necessary fully symmetric.

Proposition 2.10.6. Any symmetric functional on the Orlicz space Lo is fully
symmetric.

Proof. Let w € E* be symmetric. It is clear, that w(z*x[o,5) < w(x) for
x > 0. Therefore, w(y) < w(z) for y € QT (). Since w is continuous, we have
wy) <w(z) fory € qu) (). By Theorem 2.7.8 and Proposition 2.10.2, we have
Qf (x) = QT (x), and so w is a fully symmetric functional on Lg. O

Corollary 2.10.7. There are no non-zero symmetric functionals on the Orlicz
space Lg.
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Proof. Indeed, there are no non-zero fully symmetric singular functionals on Lg
(see [23, Theorem 3.1]). O

It was shown (in an unpublished paper of Kalton & Sukochev) that a similar
assertion is valid for every fully symmetric space E. That is, space E admits
non-zero symmetric functionals if and only if £ admits non-zero fully symmetric
functionals.

2.10.3 Marcinkiewicz spaces with trivial functional ¢

Lemma 2.10.8. Let My be a Marcinkiewicz space either on the interval (0, 1)
or on the semi-axis. Then p(x) =0 for every x € My if and only if Bar, < 1.

Proof. Note that p(z) < [|z||ar, ¢ (") for & € My. Clearly, for the Marcinkiewicz
space on the interval (0, 1), the condition ¢(¢') = 0 holds if and only if

L Y(2t)
REATG

If M, is a space on the semi-axis, then one should replace — 0 with — 0,00. O

> 1.
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The result of sections 3.5, 3.6 and 3.7 were published in [56]. The results of
sections 3.1, 3.2, 3.3 and 3.4 were submitted for publication (see [57]).

3.1 The Johnson-Schechtman inequality for pos-
itive functions

In this section, we extend the results of Astashkin & Sukochev (see [6]) con-
cerning the Johnson-Schechtman inequality for positive functions to the quasi-
normed setting. Our proofs are significantly shorter and easier to understand
than those of Astashkin & Sukochev, which do not extend to the case of quasi-
Banach symmetric spaces.

We begin by recalling the definition of the Kruglov operator for the conve-
nience of the reader. The measure space @ = [[)~(0,1) equipped with the
product measure is isomorphic to the interval (0,1) equipped with a Lebesgue
measure. Let x be a random variable (measurable function) on the interval
(0,1). Let {B,}5% be a fixed sequence of mutually disjoint measurable subsets

1
of (0,1) such that m(B,) = et The Kruglov operator K : Sp(0,1) — Sp(9) is
defined by setting .

n

Kz(w)=> Y a(wr)xs. (@), € Sp(0,1).
n=1k=1

Here, w = (wp, w1, -+ ) is an element of .

Let z,, 1 < k < n, be a (finite) sequence of random variables. In what
follows, we will denote by Ty, 1 < k < n, the sequence of their disjoint copies.
If Y7, m(supp(z,)) < 1, then it will be assumed that supp(zx) C (0,1),
1<k<n.

We will use the following approximation to Kx, where x is an arbitrary
measurable function on the interval (0, 1).

Define the operator H,, : Sp(0,1) — Sp(2) by the formula

(How)(w) =Y ora(ws), =€ So(0,1). (3.1)
k=1
Here, w = (wp, w1, -+ ) is an element of Q.

Lemma 3.1.1. The sequence of functions {H,x}32 ; converges to Kz in dis-
tribution.

Proof. 1t is clear that
PH,z = @Zl/nm‘

However,
101 /n® 1 1
Goyaa®) = [ 0 = (L= 1) 4 (1),
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Therefore,

r = 1 n
o, = (1+ @T) — exp(pe — 1) = Y-

Convergence in distributions now follows from Lemma 1.2.80. O

Theorem 3.1.2. Let E and F be symmetric quasi-Banach spaces. Assume
that, for any sequence of independent functions xp, 1 < k < n, such that
> or_y m(supp(xy)) < 1 we have

1> e <C- 1Y @le. (3.2)
k=1 k=1

If F has the Fatou property, then K maps E into F and | K| g—r < C.

Proof. Let x € E. Define x, € E(Q) by setting xx(w) = (01/p2)(wi) for every
w € Q. It is easily seen that we may take

k-1
Ty(t) = 01/p2(t — ——modl), 1<k <n.
n

It is clear that N .
anNZxk, :cNZa_ck.
k=1 k=1

It follows from the inequality (3.2) that |[H,z|r < C|z||g. It follows from
Lemma 3.1.1 that the sequence H,z, n € N, converges to Kz in distribution
and hence (H,z)* — Kz almost everywhere. Since F has the Fatou property,
it follows that Kz € F and |Kz|r < C||z| 5. O

The crucial property of the Kruglov operator, which is stated in the proposi-
tion below, strengthens the property used by Astashkin and Sukochev (see [6]).
Essentially, the proposition says that the operator K maps disjoint functions
into independent ones.

Proposition 3.1.3. If the functions xi, 1 < k < n, are disjoint, then the
functions Kxy, 1 < k < n, are independent.

Proof. Let A\, € R, 1 < k < n. Since the functions zj are disjoint, it follows
that

n

exp(itz Apxp) — 1= Z(exp(it)\kxk) -1).
k=1 k=1
This implies immediately the following relations for the characteristic functions.

n

@22:1 ApTr 1= Z(@Akxk, - 1)
k=1

Since g, = exp(p, — 1), it follows that

n n
Pyn_ MKz, = exp( (‘pAka - 1)) = H eXp(‘lOAkxk - 1) = H P Kz
k=1 k=1

n
k=1

The assertion now follows from Lemma 1.2.79 O
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Lemma 3.1.4. For every positive x € Sp, we have o1 /92* < (Kz)*.

\

Proof. Let B C Up>1 B, be such that m(B) = 1/2. It is clear that (Kz)(w) >
x(w1)xp(wo) for every w € Q. However, the mapping w — z(w1)xp(wo) is
equimeasurable with oy 2. The assertion follows immediately. O

<

Proposition 3.1.5. Let E, F be symmetric quasi-Banach spaces. If zp, 1
k < n, are independent and if > ._, m(supp(zy)) < 1, then

1Y il < 2C(P)E|p—rl > 22
k=1 k=1

Proof. Clearly, |z|, 1 < k < n, are independent.
n n n n
I Sl <D lals D@l =) |l
k=1 k=1 k=1 k=1

If one proves the assertion for ||, then the assertion for z;, follows immediately.
Without loss of generality, it may be assumed that 0 <z, 1 <k < n.

It follows from Proposition 3.1.3 that K(}_,_, Zx) is equimeasurable with
the mapping

w — Z(ka)*(wk).

k=1
Therefore,
1Y " (Kae)* (@) lr@) = KO 2)llr@) < I1Klle—rl > 2ille.

It follows from Lemma 3.1.4 that

n

> (o1j0m}) (wi) <> (Kak)* (wr)

k=1 k=1
and, therefore,

n n

1> (o1 pi) @)l rey < 1Kl 5—rll ) Telle. (3.3)

k=1 k=1

The function ZZ:1 T is equimeasurable with the function y; + yo defined
by

n

yi(w) = Z(Ul/ng)((wk — %)modl), w € Q.
k=1

Since
ly1 + vallr)y < CE)(lyillr) + llv2llF));
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then . .
1> @rlle < 20(F)| Y (01250 @)l po)- (3.4)
k=1 k=1
The assertion follows now from (3.3) and (3.4). O

Remark 3.1.6. By the definition of operator K, the function K1 has a Poisson
distribution with parameter 1. Let ¢ be a piecewise-constant concave function
such that " = (K1)*. It is clear that K : Loc — My and ||K||p . —~n, = 1.

Lemma 3.1.7. Let

5k = ; e .lnl
It follows that for every k € N,
4kspy1 > sp.
Proof. Clearly,
Aksi 2 %3’”1 = U“;;DQ o (k1+ 0l k: - e.lk!'
On the other hand,
kE+1 1 1 1 1 1 1
FoeR ekl 1oL et e e )

Tt is clear that k! - (k+ 1)™ < (k + n)!. Therefore,

oo

1 1 1 1
1 L) > .
e-k‘!( +k:—|-1+(k:—i-1)2+ )_;&n!

Corollary 3.1.8. If % is as in the Remark 3.1.6, then

A0
o<t<i—1/e P(t)

1
> —.
4
Proof. Let si be as in Lemma 3.1.7. Since v’ is a Poisson random variable, it
follows that

w/(t) =k, Vte (skr1,8:), keN.

Therefore,

k+1
Y(spy1) = Z ) =s,, keN.
n=k+1 ’
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If0<t<1-1/e, then t € [sgt1,sk] for some k > 1. Clearly, ¢'(t) = k on
this interval. Since v is concave, it follows that the function t/t¢(t) increases.

Therefore,
twl(t) kt > k8k+1 _k8k+1 =

1
Yty ) T Ylskr) sk 4
The last inequality is valid by Lemma 3.1.7. O

Corollary 3.1.9. If F be an arbitrary symmetric quasi-Banach space and if
x € F, then
zllr < 8C(F)zllmy, - 1 K| Lo —F-

Proof. 1t is clear that

1 /t 1 t
x =sup —— z*(s)ds > sup —/x*sdsz
Ielaz, >0 Y(t) Jo (s) o<t<1/2 V() Jo (=)

o) i) 2
SN s N Ty ST 1)
1 x*(t)

i

) (1)
> . .
= 0<it1/2 P(t) gcrnse () = Aol e W(2)

Here, the last inequality follows from Corollary 3.1.8. Therefore,

>

>

a*(t) < 4@, 9’ (t)

for every t € (0,1/2). In particular,
< ogx” < 4| ar, 000
Therefore,
IzllF < llo2a™||F < 4zl lo2t |7 < 8C(F) ||| ar, [ K 1|7

The assertion follows now from the obvious equality

K| L —r = [ K1 £

O

Lemma 3.1.10. Let 2,y € L1(0,1), 1 < k < n, be positive and independent.

If yr. <z, for each k, then
n n
PTEDIL
k=1 k=1
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Proof. Define functions z,y € L1((0,1)™) by setting

‘T((“J) = sz(wk)a y(w) = Zyk(wk)v W= ((‘Ul’ T 7wn) € (Oa 1)n
k=1

k=1

By assumption, for every 1 < k < n, there exists a bistochastic operator
Ay, such that Apzy = y. The operator A = ®}_; A, is a bounded operator on
L1((0,1)™) (see Appendix C). Since each of the operators Ay is bistochastic, so
is the operator A. Evidently,

yzzl®"'®yk®"’®1:ZA11®"'®Akxk®"'®Anl:Ax<x~
k=1 k=1

Since > _, x) (respectively, > ,_, yx) is equimeasurable with z (respectively,
y), the assertion of the lemma follows. O

The above proof does not work if we replace < with << . However, we are
able to derive the following corollary.

Lemma 3.1.11. Let xg,yr € L1(0,1), 1 < k < n, be positive and independent.
If yi. << xy, for each k, then

n n
Z Y << Z Xk-
k=1 k=1

Proof. For 1 < k < n, select s, € (0,1) such that yp < }Xx(0,s,)- Define
functions x,y, z € L1((0,1)™) by setting

NIE

(T X(0,5)) (W)

z(w) =Y aiwr), yw) = wklwn), =)=
k=1

k=1

E
I

1

for every w = (w1, -+ ,wy) € (0,1)™. It follows from Lemma 3.1.10 that y < z <
x. Since >} _, x), (respectively, >7'_, yx) is equimeasurable with x (respectively,
y), this suffices to conclude the lemma. O

Proposition 3.1.12. If z;, 1 < k < n, are bounded and independent, then

n n
1D @kl <21 #xllnnr..-
k=1 k=1

Proof. Without loss of generality, z > 0 for 1 < k < n. Suppose that
n
1Y Zlloo =1, [kl = o
k=1

If o = Y 0o > 1, then 2 < axjoa-1a, for 1 < k < n. It follows from

Lemma 3.1.10 that . .
Z Tp < Q Z X[0,a=1ag] (wk)
k=1 k=1



CHAPTER 3. KHINCHINE-TYPE INEQUALITIES 97

Therefore, by Proposition 3.1.5,
n n n
1S 2ellar, < all S Xoa-ta @0, < 200 S o Tarlle = 20
k=1 k=1 k=1

If @ =Y, ;0o <1, then 2 < X[o,a,] for 1 < k < n. It follows from Lemma

3.1.10 that . .
DT =Y X (@n)-
k=1 k=1

Therefore, by Proposition 3.1.5,

1> " wkllar, < 1D X @e)llar, <200 Xpanlloo = 2-
k=1 k=1 k=1

O

Proposition 3.1.13. Let F be a symmetric quasi-Banach space. If xp, 1 <
k < n, are bounded and independent, then

1Y anllr S 16CE)NK | L—rll > Zellzini..-
k=1 k=1

Here, Ty, are disjoint copies of xy,.

Proof. The assertion follows directly from Proposition 3.1.12 and Corollary 3.1.9
applied to the function z = Y, _, x5 € My. O

Lemma 3.1.14. Let E, F be symmetric quasi-Banach spaces. If K : E — F,
then K : Lo — F and
K|l Lo—rF < I K|z

Proof. Since ||z||g < ||z]|co for every & € Lo, it follows that

[ K]l [ Kx]|r K|l

K|l z—F = sup = 1Kz~

vet [2le " aer. l2le T eere [l

O

According to Lemma 3.1.14, one can replace || K||r. —Fr with | K| g—F in
Proposition 3.1.13.

Theorem 3.1.15. Let E, F be symmetric quasi-Banach spaces. If x, 1 < k <
n, are independent and if X =Y ;_, T, then

n

1Y akllr < 32C°(F) K| p—r(1X X012 + 11X X100 I11)- (3.5)
k=1
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Proof. Define the function g and the constant ¢ by the formulae
g(s) =m({t: |X(@)]>s}) = m({t: |z(t)] > s}),
k=1

c=X*(1)=inf{s: g(s) < 1}.

If g is discontinuous at ¢, then some of the sets |73]|~1{c} have positive measure.
For those k, select sets Ay, C |xx|~*{c} such that > ;_, m(A4;) =1 — g(c+0).
Such a selection is possible since g(c) > 1.

Define functions

Tk = ThX{|ap|>c}UAr, T2k = Tk — T1k, 1<k <n.

The functions z1x, 1 < k < n are independent. So are the functions xoy,
1<k<n.
It is clear that

n n
Zﬁflk ~ X"X[0,1]» Z@k ~ X" X(1,00)-
k=1 k=1

Therefore, applying Propositions 3.1.5 and 3.1.13, we obtain

IIZkaF<C’ HZ”CW”F‘LHZJC%”F

< 16C* (K| p—r(1 D #lle + 1) Z2ellrinra.) =
k=1 P

=16C*(F)|| K |p—r (|1 X *X0,1ll2 + | X*X(1,00) /I L1nL)-
If
XX (1,00) o0 < XX (1,00)|I1
then .
1Y " aillr < 16C2(F) K| —r(1X* X0, 2 + 1 X" X(1,00)[11)
k=1

and we are done.
Otherwise, note that

[X*X(1,00) loo = X™(1) < [ X X0, -
Hence,

1Y aellr < 32C°(F) 1K | g—r | X X0, 2
k=1

and this suffices to complete the proof. O
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3.2 The Johnson-Schechtman inequality for sym-
metrically distributed & mean zero func-
tions

Recall that the random variable z is said to be symmetrically distributed if
and x~ have the same distribution.

If we assume that the independent random variables xp, 1 < k < n, in
the statement of Theorem 3.1.15 are, in addition, symmetrically distributed (or
are mean zero), then the Johnson-Schechtman inequality given in (3.5) can be
significantly improved. In this section we extend estimates due to Astashkin &
Sukochev (see [3]) to the quasi-Banach setting. Our proofs significantly simplify
those of [3].

The following remarkable inequality was proved by Prokhorov. We include
the following simple proof from [27].

Lemma 3.2.1. If i, 1 < k < n, is a sequence of uniformly bounded indepen-
dent symmetrically distributed random variables, then

- l . tH 22—1 ijoo
m E ty) < —_——— h(——=——-=)). .
({ — o= }) - eXp( 2” Zzzl jk”ooarcsm ( 2” ZZ:1 fk”% )) (3 6)

Proof. Recall the inequality e* — u — 1 < |u|sinh(|ul). For every symmetrically
distributed random variable x and every A > 0, we have

[ o1 [ (@) xae) - o <
(0,1) (0,1)

o yysinh(e(@)l) _ | Ml
<1+ [ ORI < 1 o B e

Recall that 1+ u < exp(u) for every u > 0. It follows that

/( exp /\Zm W) Hdwk < exp Z e ng h(A[[zglo0))-

il

Therefore,

= || Zk 1 k||2
exp(A Y xp) < eXp(i WD) Zrlso))-
/(0,1) ,; 1> k1 Zrlloo Z

It is clear that

n

m Y T e M exp(A Tr).
DEEDE /() PAY )

k=1
Setting |5 ”
1 . — jk’ oot
A= farcsmh(k;f
1221 Zwlloo 21 3 @nll3

the assertion follows. O
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Proposition 3.2.2. If zi, 1 < k < n, are bounded, symmetrically distributed
and independent, then

n n
1D~ wkllary, < Cavsll D Zallzanin.-
=1 k=1

Proof. Define the set of operators

=

A, :LoNLy — Md)(ﬂ), Anx(w) = Cﬂ(k +WQk_1)T(w2k), w € €.
k=0

It is clear that
‘IAn||L2ﬁLOO—»Mw S n.

On the other hand, for any fixed x set

2
€ n

0(z) = ] +sup X0 2
n ||xX[O,n]HOO
Here, 0/0 is set to be 0. Clearly, «(x) is always finite. It follows from the
Prokhorov inequality that

t . t

m({|Anz| > ta(z)}) <2- exp(—ﬁ:amcsmh(i))7 n € N.
By Lemma 1.2.71,
) .t
m({4¢" > t}) > exp(—1 — iarcmnh(?)).
Therefore,
m({|Anz| > ta(z)}) < 2e-m({4y’ > t}), neN.

Now it is clear that
lAnz|lar, @) < 8e-a(z).
Therefore, the norms || A,z a, (), n € N, are uniformly bounded. It follows

from the uniform boundedness principle that the norms || A, L,nL. —nr, (o) are
uniformly bounded.

Corollary 3.2.3. Let E, F be symmetric quasi-Banach spaces. If xi, 1 < k <
n, are bounded, symmetrically distributed and independent, then

n n
1> @rllr < Cars CUNE | L—rll D Tellzanr..
k=1 k=1

Proof. The assertion follows directly from Proposition 3.2.2 and Corollary 3.1.9
applied to the function x = >, _, & € My. O
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According to Lemma 3.1.14, one can replace | K||r. —F with ||[K|g—r in
Proposition 3.2.3.

Theorem 3.2.4. Let E, F' be symmetric quasi-Banach spaces. If v, 1 < k < n,
are independent and symmetrically distributed and if X = ZZ=1 Ty, then

1Y " 2illr < CapsC2(F)IK | a—r (X X002 + 1X X (1,00)[12)- (3.7)
k=1

Proof. Let the function g and the constant ¢ be defined as in the proof of
Theorem 3.1.15. Select sets Ay as in the proof of Theorem 3.1.15 such that in
addition xg|a,, 1 < k < n, are symmetrically distributed. The proof follows
mutatis mutands. O

From now on, we restrict ourselves to the case F' C L;. Theorem 3.2.4 can
be extended to the case when the random variables xx, 1 < k < n, are not
symmetrically distributed but just mean zero.

We need the following assertion proved by Braverman (see [12]) in the Ba-
nach setting. The proof in the quasi-Banach setting is identical.

Lemma 3.2.5. If symmetric quasi-Banach space E is such that E C Ly, then
there exists a constant Co(E) such that

2]z < Co(E)||lz(wr) — z(w2)| e
for every mean zero random variable x.

Theorem 3.2.6. Let E, F' be symmetric quasi-Banach spaces and let F' C L.
If x,, 1 < k < n, are independent and mean zero and if X =Y, _, T, then

1Y~ @il < CavsCo(E)YC*(F)C(E)IX Xio,1)]l 5 + 1 X |2y +L2)- (3.8)
k=1

Proof. Define functions 21,z € E(w) and functions y, € E(Q2), 1 < k <n by
setting

aw) =Y wwar-1), 22w =Y wrlww-1) - wr(wa), weQ,

k

n n

1 k=1

yr(w) = xp(wop—1) — T (wor), w €.
By Lemma 3.2.5,

1Y elle = lz1llr@) < ColF)ll22llr@) = Co(F)I D ukllr©)-
k=1 k=1

Evidently, yx, 1 < k < n, are independent and symmetrically distributed.
Therefore, by Theorem 3.2.4,

1D yelr@) < CapsC*(ENE | m—r (1Y X002 + 1Y *X (1,00 l2-
k=1
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Here, Y = >")_, Uk is the sum of disjoint copies of yj.
It follows from the inequality (1.4) that Y* < 209 X*. Thus,

1Y "X (1,00) 12 < 4| X X (1/2,00)|l2 < 100]| X || L, 4 Lo-
Similarly,
1Y *x0,)lle < 2|[(62X")x0,1)l2 < 4C(E)[| X X(0,1)l -
O

3.3 The reverse Johnson-Schechtman inequality

The reverse Johnson-Schechtman inequality was first proved in [28]. We re-
produce it here for several reasons. First, it is not said in [28] that the reverse
inequality is valid in the quasi-Banach setting. Second, we need precise values of
various constants in the subsequent section devoted to the Khinchine inequality.
Finally, our proof is somewhat different from that of [28].

Proposition 3.3.1. Let E be a symmetric quasi-Banach space on the interval
(0,1). Let x, € E, 1 < k <mn, be positive and independent random variables. If

> hym(supp(xr)) < 1, then

| ZxkllE <20(E)| ZwkIIE

Proof. The following elementary inequalities are valid for every ¢ € [0, 1].

et>1—t, 1—et> 2t

DO =

It follows that

n

m({t: max zx(t) >s}) =1— [J(0—m{t:z(t) > s}) >

1<k<n
k=1

>1—exp(— Zm{t xi(t) > s})) Zm{t xR (t) > s}).
k=1

Therefore,

1<k<n

> m({t:ax(t) > s}) < 2m({t: max i(t) > s}) < 2m({t: Y ax(t) > s}).
k=1

Hence,

The assertion follows immediately. O
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3.4 The Khinchine inequality

In this section, we provide the most natural extension of the classical Khinchine
inequality (see Theorem 3.4.6).

Lemma 3.4.1. Let E be a symmetric quasi-Banach space on the interval (0,1).
If p=1/2-logy ' (2C(E)), then E C L, and

lzll, < 8C*(E)|xl|&-

Proof. Define the increasing function t by the formula ¥(u) = |[x[0,4)llz, 0 <
u < 1. It follows from the definition of a quasi-norm that

P (2u) < 2C(E)Y(u), u>0.

In particular,
(27" = (2C(E))™", n=0.
If u € (0,1) is arbitrary, then u € [27"~1,27"]. Hence,
1
20(E

w(u) > ,¢(2—n—1) > 2—(n+1) log, (2C(E)) > ulogz(QC(E)).

If x € E, then

* * 1 lo 2C(FE
lzllz > " (#)xp.glle > = (t)mt 82(20(0))

Hence,
z*(t) < 2||z|| gC(E)t~1082CE) - ¢ >,

The assertion follows immediately. O

Lemma 3.4.2. If z,y € L1(0,1) are positive and y < z, then |lyll, > =],
provided that 0 < p < 1.

Proof. Fix & > 0. According to Theorem 2.7.7, there exists z € Q'(x) such that
lly — z||1 < e. In particular,

n

z= E AT, Tk >0, zp =2
k=1

where .
Z Me =1, A\ >0.
k=1

Therefore,

n n
lzllp = 11D Azl = >~ Acllarlly = llzll,.
k=1 k=1

Since € > 0 is arbitrarily small and the quasi-norm in L, is continuous with
respect to L1 —convergence, this suffices to complete the proof of the lemma. [
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Lemma 3.4.3. Let 0 < p < 1 and let yx, 1 < k < n, be independent, positive
and bounded random variables. It follows that

n

n
1> 7kl < 247 max{ sup |lyxlloc, | D yelln}- (3.9)
k=1 1<k<n =1

Proof. Without loss of generality,

sup |[yklle =1, [kl =ax, 1<k <n.
1<k<n

Let a = 22:1 ag. If a <1, then the assertion is evident. If o > 1, then
Yk < AX[0,a=1ag]s 1<k<n.
It follows from Lemma 3.1.10 that

n n
D Uk <) Xpa-ta (@k):
k=1 k=1

According to Lemma 3.4.2,

n n
1Y " wklle = all > X001 @) llp-
k=1 k=1

It follows now from Lemma 3.3.1 that
2C(Ly) 1Y " wklly > all Y Xpa—tanlp = o
k=1 k=1

Since the concavity modulus of L, for 0 < p < 1 can be estimated as
C(Ly) < 2Y/P 1,
we are done. O

Lemma 3.4.4. Let E be a symmetric quasi-Banach space. If v, € B, 1 <k <
n, are bounded independent random variables, then

1> zxllz < 32C°(B) max{ sup [ax]loo, I 23)"?) 5} (3.10)
1 1<k<n P

Proof. Let p =1/2log; ' (2C(E)). It clearly follows from Lemma 3.4.1 that
1/2
sC BN ) )e 2 102D 2l = 1Y #2l, )5
k=1 k=1 k=1
Clearly,

n n
_ _ 1/2
1Y " zalle = 122017 llawllse = 231112
k=1 k=1

Set yr = xi, 1 < k < n. The assertion follows immediately from Lemma 3.4.3.
O
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Lemma 3.4.5. Let FE be a symmetric quasi-Banach space. If x, € E, 1 <k <
n, are independent random variables and if X =Y _, Ty, then

B2 ?le = X*(1).

k=1

Proof. Without loss of generality,

n
Zm supp(xg)) = 1.
k=1

It follows that N N
Z z > (X*(1))? Z Xsupp(zy)-
k=1 k=1

The support of the latter function has measure

n

1— ] = m(supp(zx))) > 1/2.

k=1
Therefore,
1 22) Il = X* (W) Ixp0,1/2 |-
k=1
The assertion follows immediately. O

Theorem 3.4.6. Let E and F' be symmetric quasi-Banach spaces on the interval
(0,1). If o, € E, 1 < k <mn, are independent symmetrically distributed random
variables, then

1Dzl < Cans CO(B)YC(P) K |5 r (Y 27) 2| (3.11)
=1 k=1

Proof. Recall the assertion of Theorem 3.2.4: if i, 1 < k < n, are independent
and symmetrically distributed, then

1Y " akllr < CapsCX(F)IK | a—r(IX X0, 2 + 1XX(1,00) [12)-
k=1

Here, X = Y, _, & is a sum of disjoint copies of zy.
Define the function g and the constant ¢ by the formulae

g(s)=m({t: [X ()] >s}) =D m({t: |an(t) = s}),
k=1

c=X"(1) =inf{s: g(s) < 1}.
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If g is discontinuous at ¢, then some of the sets |73]|~!{c} have positive measure.

For those k, select sets Ay, C |xx| " {c} such that >, _, m(Ag) = 1—g(c+0) and

x|, is symmetrically distributed. Such a selection is possible since g(c) > 1.
Define functions

Tk = ThX{|zp|>c}UAr, L2k = Tk — T1k, 1<k <.

The functions z1x, 1 < k < n are independent. So are the functions xoy,
1 <k <n. It is clear that

n n
Zflk ~ X" X011, Zﬂfzk ~ X" X(1,00)-
k=1 k=1

Apply Lemma 3.4.4 to the functions xok. It follows that
1X*X (1,00 |2 < 32C°(B) max{X*(1), |} «3,) /|| £}
k=1
By Lemma 3.4.5,

XX (1,00 ll2 < 64C (BN 27)' 2| k- (3.12)
k=1

On the other hand,

n n

_ - 1/2

1X* X0l = 1D Zaels = 173 @l s
k=1 k=1

and
n

n n
1/2
2 2 1e = 10 a3 2 le = 1Y adillfs-
k=1 k=1

k=1

Apply Lemma 3.3.1 to the space E'/? and functions x2, . It follows that

IX*xp.1lle < RCEVA) IS 22) 5. (3.13)
k=1
Since C(FE'/?) < 4C?%(E), the assertion follows from (3.13) and (3.12). O

Note that setting x; = ayry and E = F' = L, in Theorem 3.4.6, we obtain
the classical Khinchine inequality.
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3.5 The operators A,, n >0

For every n > 1, we consider the operator A, : E(0,1) — E(f2) given by

n

(Apz)(w) = Zﬂ?(w%—1)r(mk), w e .

k=1

where r is a centered Bernoulli random variable. We set Ay = 0.
Norm-estimates for these operators can yield a Khinchine-type inequality
(see Theorem 3.5.3 below).
The following theorem is the main result of the present section.

Theorem 3.5.1. If E is a fully symmetric quasi-Banach space on the interval
(0,1), then one of the following assertions is valid.

1. |AnllE—E = n for every n € N.

2. There exists a constant % < q < 1, such that ||A,||E—g < const - n? for
all n € N.

Proof. Observing that A,,,z and A,,(A4,z) are identically distributed, we have
lAmntllz = [Am(Anz)l5, @ € E(O,1).

Hence,
|AmnllE—E < [[AmllE—E - [|AnllE—E- (3.14)

Thus, we have the following alternative:
1. |AnllE—E = n for every natural n.
2. There exists ng > 2, such that || A, ||E—E < no.

To finish the proof of Theorem 3.5.1, we need only to consider the second
case. Suppose there exists a constant 3 < ¢ < 1, such that [|Ay,||p—p < ng.
By (3.14) we have

[Ang l2—E < [|AnI5— 5 < ng™, Ym €N.
The map P, , : L1(2) — L1(€) defined by the formula
(Pom) () = / (@) [[ dws
n<k<m

is a contraction in L1 () and in Ly (£2).
For every n < m, we have A,z = P, ,,(Anz) << A,z Since the space E
is fully symmetric, the sequence of norms || A, z| g increases. Therefore,

[Anz||le < ||An6”x||E7 Yn < ng'.
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Hence,
lAnlle—E < |AnplE—E, YN <ng".
For every n € N fix m € N such that ngl_l <n < ng'. It follows that

[AnllE—5 < |AnpllE—5 < ng™ < ngn.

This proves the theorem. O

Recall that the Lorentz sequence space 1,41, 0 < ¢ < 1, is the space of all
sequences {ax}72, such that

Haw}oZullijgn =Y ak(k? — (k= 1)9).
k=1

The proof of the following lemma is identical to that of [33, Lemma I1.5.2].

Lemma 3.5.2. If a convex functional ® is bounded on the indicator sequences
of all finite sets, then it is bounded on all sequences with finite support.

Theorem 3.5.3. Let E be a symmetric Banach space on the interval (0,1)
such that ||An||E—g < cn?, n € N, with some 0 < g < 1. Ifz, € E, k € N are
independent, symmetrically distributed and equimeasurable with x, then

o0
1Y akerlle < el{a}iilhygn - llzle. (3.15)
k=1

Proof. Let A C N be a finite set and let {a,}72; = xa. If |A| = n, then

n

Zak:nk = Z Ty ~ Zx(wgk,l)r(wgk) = (4,7)(w).
k=1

keA k=1

Therefore,

n
1Y arzwlle = | Anzlle < en? - [lz]l 2 = cl{ax}3i /g1 - 2] 5-
k=1

Consider the convex functional
o0
O {ar}pes — D anzlle-
k=1

It follows from Lemma 3.5.2 that (3.15) holds for every finitely supported se-
quence.

Let now {ar}32, € li/q,1 be an arbitrary sequence. It follows from above
that

m

1Y arwlle < Handipiillijgn - 2] e
k=n+1

Therefore, the sequence of functions Y ;_; ayxk, n € N, is a Cauchy sequence
in E. Its limit is Y, ; ar@x. The assertion follows immediately. O
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We complete this section with an estimate of ||A,||p—g, n > 1 in general
symmetric spaces with the Kruglov property.

Theorem 3.5.4. Let E = E(0,1) be a quasi-Banach symmetric space on the
interval (0,1). Suppose that E satisfies the Kruglov property and that fg < 1.
Then there exists ¢ < 1 such that ||A,||E—g < const-n? for all sufficiently large
n>1.

Proof. Set xy, = x(wap—_1)r(war) and X = ZZ:1 7y,. Clearly, X™*x(o,1] is equimea-
surable with o, (2*)x[0,1) While X*X (1,0 is equimeasurable with o, ("X (1/n,1))-
By Theorem 3.2.4,

[Anz]lz < const(llon (™) xpoullE + 022X /m,1)ll2)-

Note that

lon (@) xplle < lonlle—ellzle < c(e)n" |z 5.

On the other hand,

* 1 *
x (E)X[OJ] < on(x™)X[0,1)-
Therefore,
z*() = llz"(C)xpulle < llon(@)le < llonlle-elzle.

For every t € [0,1], fix n € N such that nt <1 < (n+ 1)t. It follows that
a*(t) < e(e)(n+ )75+ al| g < e(e)272 et g .
If Bg < 1/2, then z € Ly(0,1). If fg > 1/2, then
2" X /mall2 < e(€)2°2 ||| p(2(Br + ) — 1)/ 2nPete =1/,

Thus,
|Anz| g < const - et/ 2H g .

This proves the theorem. O

Remark 3.5.5. The assumption B < 1 in Theorem 3.5.4 is necessary (see [4,
Theorem 4.2]). For example, the space E = Ly satisfies the Kruglov property
and Bg = 1. However, ||A,||e—g =n, n € N. On the other hand, the condition
that E satisfies the Kruglov property is not optimal (see Ezample 3.6.8).

3.6 The operators A,, n > 1 in Lorentz spaces.

We need the following technical facts. Some of these facts are elementary but
we present a proof for convenience of the reader.
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Lemma 3.6.1. If random variable £ takes values 0,1,--- n, then

lella, < moC el
Proof. Indeed,
£(s) = k<= 5 € (m({€ > h+ 1}),m({€ > k).

Therefore,
[€lla, = ne(m({§ = n})) + i: k(p(m({€ = k})) —v(m({€ = k+1}))) =
k=1
= 3" wlm{E > k) < (> m({e > k).
k=1 k=1
However,
[€llx = nm({& =n}) + i km({€ > k}) —m{§ = k+1}) =Y m({£ > k}).
k=1 k=1
Hence,

1
1zlla, < np(lIEl)-

Lemma 3.6.2. If ¢ is strictly monotone, then
[Anx0,ullay, < nllXp0ullA,
for every 0 < u < 1.

Proof. Set
z(w) = ZX[OM (wog—1), weQ.
k=1

Clearly, ||z||1 = nu and |A,X[0,u]| < 2. Therefore,
2/l = | Anx(o,ull1 + 2 = [AnX(0ulll1-
Since |AnX[0,4)| 7# T, it follows that
[Anx(o,ulls < llzlly = nu.

Note that random variable § = | A, x|o,]| satisfies the conditions of Lemma
3.6.1. Therefore,

1
lAnX0,ullla, < nd(lAnxioull) <mp(u), neN

since 9 is strictly monotone. O
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Lemma 3.6.3. The following upper limits are equal.

1
lim sup W ||AnX[0,u] HAw hm Sup Z 7/} < ) )

u—0

Proof. For every s > 1, using a well-known formula for conditional probabilities,
we have

|ZXOu]W2k1 (war)| > 5) = Z() 1 —w)"""m(|r1+--- 41| > 5).
k=1

Actually, the summation above is taken from k = s to n, since
m(lri+---+rK| >s)=0, Vk<s.

If now u — 0, then, for every s > 1 and k > s, we have

<Z> wF (1 — u)"* = o(u?).

Therefore,

m(| ZX[O,u] (wak—1)r(wap)| > s) =27° (Z) u’(1+ o(1)). (3.16)

k=1
Let £ = |Anx[0,u|- It is clear that

€]

n—1
Ay = n(m{€ =n}) + Y k@(m{E > k}) —p(m({E > k+1}) =
k=1

Therefore,
- —S n S
Anxoala, = 3 v (a1 -+ o).
k=1

Since 1 is concave, it follows that

g Y +o1) _
o ¥(u) =1 (3.17)
Hence,
4ol = (@ o1 o vt ()
k=1
and

1 1 < n
li A li — ol=s s N.
imsup )H nX[0,u)llA, = imsup s > a( < )u ), ne€



CHAPTER 3. KHINCHINE-TYPE INEQUALITIES 112

We need to consider the following properties of the function ).

ay = liri:shlp z/qu((kuu)) < k. (3.18)
Cyp 1= lirfjgp 15;}((15)) < 1. (3.19)
lirqf:sgpw(lu);w@l_s (Z) u®) < n. (3.20)

Proposition 3.6.4. Suppose, there exist k > 2 such that (3.18) holds and 1 > 2
such that (3.19) holds. Then, (3.20) holds for all sufficiently large n € N.

Proof. Consider the sum
3w (”) 91=5y%).
s=1 s

For any sufficiently large n, we write

Consequently, the upper limit in (3.20) can be estimated as

n (3
s s 37w < oL 3 (M)
: | R o (3.21)
+11rfjgpws_§;[z]w((s>2 u®)
Consider the first upper limit in (3.21). Since ¢ is concave, we have
1+([%] n n 1 1+[%] n
> w((s)?Su&)g(lﬂkwgﬂz] > (7)2u
= (1 (A ) < 1 (Pt + (1)),
Therefore,
_ 1y ny o p(ku(l +o(1)) n
11135813@ ; zp((s>2 w®) < (1+[E])1ufjng < (147 )ay.

Consider the second upper limit in (3.21). It is clear that for all n < s <n

<n> . 21—5 S on
S
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and
<ﬂ) 21—sus < 2nu%n — (2ku)%n
s
Thus, the second upper limit in (3.21) can be estimated as

lim sup 1 Z w((n) 21755 < (1 — %) lim sup i

u—0 1/1(16) 8:2+[%] S u—0 1/’(“) .

Substituting the variable w = 2¥u on the right hand side, we have

1, Y(wk)

n(l — E)hgl_s)gp D)
By the concavity of v, we have ¥(27Fw) > 27 (w). Therefore, the second
upper limit in (3.21) is bounded from above by

Lok P(wk)
i T

Now, we observe that

sy P G
P ) <97 (322

Indeed, let I” < m < "+,

w(wm)gww"d p(w)  Pwh)

Yw) = Pw) ) P(w)

and o™ oatm)
w og(m) 4
lim sup <l < o'
w—0 w(U}) v ¥
If n tends to infinity, then, thanks to the assumption ¢, < 1, we have

Lok P(wh)
"R )

Therefore, the upper limit in (3.20) (see also (3.21)) is bounded from above
by

= o(n).

%n +o(n).

Thus, the upper limit in (3.20) is strictly less than n for every sufficiently large
n. O

Lemma 3.6.5. Suppose, that (3.20) holds for some n. Then, there exist k > 2
such that (3.18) holds and I > 2 such that (3.19) holds.
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Proof. Clearly,

1-1(n\,,1 n
lim sup Pnu) = lim sup M < limsup % 21/1(21_8 (n) u®) < 1.

u—0 nP(u) u—o ny(u) u—0 np(u) = s

Thus, (3.18) holds for k = n.
Since (2)21_%5 > u"t! for every s = 1,2,--- ,n and every sufficiently small
u, we have

R n) nap(u™t1)
1> limsup —— 21750%) > lim sup ——=.
P ) ;w(s R S
Thus, (3.19) holds for I = n + 1. O
The following theorem is the main result in this section.

Theorem 3.6.6. Let i) be increasing concave function. The following condi-
tions are equivalent.

1. [|An]
2. Estimates (3.18) and (3.19) hold for some k > 2 and | > 2.

Ay—A, < const-n? for some 0 < g <1 and for alln € N.

Proof. [Sufficiency] Without loss of generality, ¢ is a strictly monotone function.
It follows from Lemma 3.6.2, Lemma 3.6.3 and Proposition 3.6.4 that there exists
n € N such that

su A .
0<uf<)1 m/)(u) nX[0,u] [| Ay

Hence, there exists n € N and ¢ < n such that
[Anxalla, <cllxalla,

for every measurable set A C [0, 1].
It follows from [33, Lemma I1.5.2] that

[Anzlla, <cllzla,

for every x € Ay.

The assertion follows from Theorem 3.5.1.

[Necessity] Fix n such that || A, ||a,—a, = ¢ < n.Inparticular, || A, Xx[0,ulla, <
cp(u) for every u € (0,1]. It follows now from Lemma 3.6.3 that

u—0

1 " n
li —_ o1l—s s 1.
1msupmp(u);¢( (s)u)<
The assertion follows now from Lemma 3.6.5. O

Remark 3.6.7. The condition (3.18) is equivalent to the assumption By, < 1.
The condition (3.19) follows from (but is not equivalent to) the condition ap, >
0.
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Example 3.6.8. Define the concave increasing function 1 by the formula ¥ (t) =
log~Y/2(e2/t), t € [0,1]. It follows that

”ATLHAw—'Aw <const-n?, 0<¢g<1,VneN.
However, Ay does not have the Kruglov property.

Proof. For every k,l > 1 we have

Pk | loglu) ) _
b vlu) ilg%)(log(ku)) =l<k
e Yy | dog(u) ) 1
u) .. oglu % _
usb Y(u) }ng%)(log(ul)) Iz <L

It follows from Theorem 3.6.6 that

|Anlla,—a, <const-n?, 0<qg<1,VneN.
It is clear that

Aog-1/2(171) © Myrogrrz(1ye) © Mitog(e/ty = exp(La).

However, Theorem 4.2.6 says that A, must contain exp(Lq) if Ay € K. This
implies that Ay ¢ K. O

3.7 The operators A,, n > 1 in the Orlicz spaces
exp(Ly)

Theorem 3.7.1. The following norm estimates of the operators A,, n € N, are
valid in the spaces exp(Lyp).

1. For every 0 < p < 2, we have || An|lexp(z,)—exp(L,) < const-n'/2, neN.

2. For every 2 < p < 00, we have || Ay |lexp(L,)—exp(L,) < const-n'~1/P ne
N.

Proof. By Lemma 1.2.74, exp(Ly) = My, where ¢’ @ r is Gaussian. The only
extreme points of the unit ball in My, are the functions equimeasurable with .
Therefore,

[ Anélln, = [1An' |1, = [ Anllne,—n1,, YnEN.
However, A,¢ is equimeasurable with n'/2¢. Hence,

| Anllexp(La)—exp(Ls) < const - nl/2. (3.23)
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If 0 < p < 1, then the space exp(L,) satisfies the Kruglov property. It
follows from Theorem 3.2.4 that

[Analexp(r,) < const([lon(@)|lexp(r,) + 12 2]2)-
Therefore,
[ Anllexp(L,)—exp(r,) < const-n*/2, 0<p<1, nel. (3.24)
If 1 <p<2, then
[exp(L1),exp(L2)]g,00 = exp(Lp)

with % =1-0/2 (see, for example [14]). Here, the notion [, ]g,cc denotes the
real interpolation method. If 2 < p < oo, then

[eXP(L2)7 LOO]O’OO = eXp(Lp)

with % = (1 —0)/2 (see, for example [14]).
In both cases the assertion follows immediately by interpolation from (3.23)
and (3.24). O
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The results of this section were mostly published in [7] (see also [56]).

4.1 No minimal space in the class K

We need the following lemma proved in [6].

Lemma 4.1.1. Let K be the Kruglov operator and let 1,, be a piecewise-linear
concave function such that ¢!, = (K™1)*. Then

1. Mwn C Mwn_H.
2. My, # My, .

It follows from Lemma 4.1.1 that
Loo = M1/10 C M¢1 c---C (exp(Ll))O.

In a certain sense the spaces My, , n > 1 can be treated as “approximations”
of the space (exp(L1))o. By [6, Theorem 7.2], we have My, C E for every
symmetric space F € K and every n = 1,2,... This suggests a rather natural
hypothesis that the space (exp(L1))o is the minimal symmetric space among the
class of all symmetric spaces with the Kruglov property. However, the latter
class has no minimal element (see Theorem 4.1.8).

Lemma 4.1.2. For every x € L]0, 1]
nlirgo m(supp K"z) = 0.
Proof. Without loss of generality, we may assume that x > 0. Set
an :=m{{t: (K"z)(t)=0}), neN.

It follows from the definition of the operator K that

|
Q|

+

Gpg1 = E k—T =e 1 ¥YneN.
k=1 """

Evidently, the sequence {a,} increases and a,, € [0, 1]. Hence, {a,} converges
to the fixed point of the mapping

However, the only fixed point of the above mapping is 1. Therefore,

lim a, =1,
n—oo

which proves the lemma. O
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Construction 4.1.3. Let ¥,, n € N, be as in Lemma 4.1.1. For every fixed
€ > 0, define the concave function 1. by the formula

e = "y (4.1)
n=0

Lemma 4.1.4. The function . defined in (4.1) is concave and piecewise-linear.
Moreover,

YL= " (4.2)
n=0

Proof. Since v, = (K™1)*, it follows that supp(¢,) = [0,a,] with a, — 0.
Therefore, for any fixed value of ¢, the series in (4.2) is nothing more than a
finite sum. In particular, it converges almost everywhere. By the Levi theorem,

/0 nz:%s”w;(s)ds = ;6”/0 P (s)ds = ..

This implies the assertion of (4.2).
On any fixed interval [0, 1] the function ¢, is piecewise-constant because of
(4.2). Thus, . is piecewise-constant and ). is piecewise-linear. O

Lemma 4.1.5. Let E be a fully symmetric quasi-Banach space. If K : E — E,
then My_ C E for every sufficiently small €.

Proof. Indeed, if K : E — E, then
[nlle = 1K1 < K5 plltle = 1KE o

Therefore, if € - || K||g— g < 1, then the series (4.2) converges in E.
Hence, ¥, € E and M, C E. O

Lemma 4.1.6. For every € < 1, the operator K maps My,_ to My_.

Proof. Let us prove that the operator K is bounded in M,_. The extreme points
of the unit ball in this space are equimeasurable with . [48]. Therefore, it is
sufficient to show that K. € My, . Since K is bounded in L4, it follows that

! - n / . n, /! 1 - n, ./ 1 !
K%:g 5K¢n<g 6¢n+1§g2 €¢n=g¢8.
n=0 n=0 n=0

Here, the first inequality follows from K4y, ~ 1, and (1.7). Thus, K¢, €
My, O

e

Lemma 4.1.7. Functions ¥, € > 0, are not equivalent. More precisely,

lim Ye(t)
t—0 1/}5 (t)

=0 (4.3)

f0<e<d<l.
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Proof. Arguing as in the proof of Theorem 7.2 in [6], one can obtain

m 71/),”(15) =0

t—0 merl (t)

for every m = 1,2,.... It follows that

1 oo
lim ey) = 1.
Hence,
<(t e E”
lim sup ¥(?) = lim sup Z"*m G

t—0 1% (t) t—0 Zio:m 5”7% ’

However, for n > m, we have e™ < §™(g/§)™. Therefore,

o sup e m
e = &

Since m is arbitrary, it follows that

. V()
limsu =
0" Ba(t)
The assertion follows immediately. O

Theorem 4.1.8. The class K of symmetric quasi-Banach spaces does not con-
tain a minimal element. That is, there is no symmetric space F such that
K : E — E implies FF C E.

Proof. Assume the contrary. It follows from Lemma 4.1.5 that
Mws CcCF

for 0 < e < eg.
However, the space My_ € K by Lemma 4.1.6. By assumption,

M,/,E O F.

Therefore, all the spaces M,,_ for 0 < € < gg coincide with F.
On the other hand, these spaces cannot coincide because of Lemma 4.1.7. [

4.2 Lorentz spaces from the class K

Despite Theorem 4.1.8, one can restrict the question of minimality to Lorentz
spaces only. We will prove that all Lorentz spaces with the Kruglov property
are “on one side”of the space exp(Ly).

Let us prove the following preliminary results.
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Lemma 4.2.1. Let a,, n € N be decreasing positive sequence and let by, c,,
n € N be such that Y ,_, by <Y p_y cx for every n € N. It follows that

n n
Z apby, < Z%Ck
k=1 k=1
for every n € N.
Proof. Set B, = > _, by, and C, = >, _, ¢, Also, By = Cy = 0. It follows

that

n

Zakbk—anB —|—Z Qj— 1—a;€)Bk 1 <

k=1 k=1

n
E ag—1 — ag)Cl— 1—5 axC.
=1 k=1

U
We need the following number-theoretic estimate.
Lemma 4.2.2. For every n € N we have
Zr(k) > log(n!). (4.4)

k=1
Proof. 1t is clear that

n

S e = 3 —an—Z{ )

k=1 k=1

If k > 3n/4, then 1 <n/k <4/3 and {n/k} < 1/3. Therefore,

3

n 1 n 3n 5 1
-1 < = 1 = — 4+ -
{k} -3 (4 1+ 4 6 + 3
k=1
Note that
"1
p > IOg(”)
k=1
Therefore,
~ 5 1
ZT(k) >nlog(n) — —n— =.
= 6 3

On the other hand, by Stirling formula,

1
log(n!) < nlog(n) —n+ = log(27m) + Ton”
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Therefore, for every n > 2,

n

> 7(k) —log(n!) >

k=1

(n — 3log(n) — 8).

S| =

It is clear that the latter expression is positive for n > 17. If n < 16, the assertion
can be verified directly. O

Lemma 4.2.3. Let ¢ be an increasing function on the interval (0,1). If
Y oe() < M-p(h) (4.5)

for every t € (0,1), then for every | € N

l
2MZ¢ ) > Z e, (4.6)

Proof. Note, that e=2¥ < e~ /4! if j <. Substitute t = e~% in the inequality
(4.5). We obtain that

i=1 1<5<i<l n=1

Here, 7(n) is the number of divisors of n. It follows from Lemma 4.2.1 and (4.4)

that l
Z 7(n)p(e ") > Z log(n)p(e™2")
n=1

The assertion follows immediately. O

Lemma 4.2.4. Let ¢ be an increasing function on the interval (0,1) such that
(4.6) is valid. It follows that

Z(p ) < 20exp(5M)p(1). (4.7)

Proof. 1t is clear that

[L/2] [(lfl)/2]

l l
D plem) = +Z<p Y (e <2) e

n=1 n=1 n=0
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It follows now from (4.6) that

l l
4M Z oe™) > 2M Z ole” Z log(n)p(e ™).
n=0 n=1

Fix minimal ng > exp(5M) so that log(kz) > 5M for k > ng. Therefore,

n=no
and
np—1 l
130 ez Y et
n=no

Since [ is arbitrary, it follows that

e’} no—1

D (e <5 Y ple ™) < Bngp(1)

n=0 n=0
and so - -

D ple™) <23 ple™) < 10ngp(1).

n=0 n=0
The assertion follows immediately. O

Lemma 4.2.5. In every Lorentz space A,

[og(1/)]la,, Z@ )

Proof. The inequality is a consequence of the following estimates:

IHog(1/0)a, = [ tos(1/0)do(0 Z / s/ el <

<3+ 1)(p(e™) — gl Zso ) < oo,
n=0
O

Theorem 4.2.6. Let ¢ be an increasing concave function on the interval [0, 1]
such that ©(0) = 0. If A, € K, then A, D exp L.

Proof. According to Theorem 1.1.3, the condition (4.5) is satisfied if A, € K.
Lemma 4.2.3 and Lemma 4.2.4 imply that the condition (4.7) is also satisfied.
According to Lemma 4.2.5, log(1/t) € A,. Since Lorentz spaces are fully sym-
metric, it follows that the Marcinkiewicz space M, with (t) = tlog(e/t) is a
subset of A,. However, My, coincides with exp(L1). O
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4.3 Uniform boundedness of the sequence {7}, },en
implies boundedness of the Kruglov opera-
tor

For every m € N, let H,, be the operator defined in (3.1). For any fixed n € N
and a = (a1, -+ ,a,) € R%, we set

Hpa = Hm(z AR X ((k=1)/n,k/n))-
k=1

For any fixed n € N and a € R}, we define the sequence o,,a € R’ by the
formula

Om@ = (A1,01,...,01,02,02,...,42, ., GnyQpy .-y Gn).

m m m
It is clear that Cyup(oma) = Cha.

Definition 4.3.1. Let Ch(n) be the number of permutations 7 of the set {1,2,...,n},
such that 7(i) # 1 for everyi=1,2,..., n.

It is well-known (see [26, c. 20]) that

Therefore, Ch(n) is a closest natural number to e~ 1n! and
1 | |
3™ < Ch(n) <nl, VneN. (4.8)
We are going to estimate the rearrangement of H,,a by that of T),,,(cma).
Sometimes it is useful to require numbers ax, 1 < k < n to be independent

over Z. That is, we require any Z—linear combination of a; to be non-zero if
coefficients are not all equal to 0. In this case,

> kiai # > Kjai i (k1 k. k) # (KK, K.
i=1 i=1
The function H,,a only take values of the form Z?:l k;a;, where k; € Z,

ki >0 for every i=1,2,...,nand Y . k; <m.

Lemma 4.3.2. If numbers a;, 1 < i < n, are independent over Z, then

mn

m({w: (Hna)w) = Z Fia}) < Ok o (1)

Here, q=>"" | k;.
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Proof. 1t is clear that the function H,,a equals Y ., k;a; if and only if exactly
k; (respectively, m — q) of the independent copies of the function

U% Z Ak X ((k—1)/n,k/n)
k=1

take the value a; (respectively, 0). Note, that

m{ws : (017m () arX(r=1)/m/m)) (ws) = ai}) = %
k=1
and .
m{ws 2 (01/m () X (k1) /me/m))(ws) = 0}) = 1 = %

k=1

Therefore, we obtain

i o Lo, 1
ml{w s (Hna)(w) =D _kiai}) = CRabun (1 — —ymod(oyhtoth <
=1

1
< Qm—aki,kn (mn)q_
O

On the other hand, the function T,,,(0,a) only takes values of the form
i kia;, where k; € Z, k; > 0 for every i =1,2,...,nand Y, k; < mn.

Lemma 4.3.3. If the numbers a;, 1 < i < n, are independent over Z, then

({8 (Tan(oma))(1) = 3 ki) > SOpthe b (1) .
=1

mn

Here, g =" k;.
Proof. Tt follows from (1.3) and (4.8) that

m{t: (Tn(oma))(t) = z": kia;}) = Ckr otz CkeCh(mn — q) (mln)! >
N ()" (mn — g)!
T 3(m — k)l (mo— k)l Ry (mn)!
Since
(m =k (m—k,)! < (m)" 1 (m — q)!
and

(mn — q)! 1
(mn)! = (mmn)a’
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we have

L (o)) = 3 ki) 2 g P >

q
> Lem—amkk (L)
-3 mn

Lemma 4.3.4. For any n,m € N and any a € R", we have
(Hpma)® < o3(Timn(oma))™.

Proof. Without loss of generality, the numbers ax, 1 < k < n, are independent
over Z.
It follows from Lemma 4.3.2 and Lemma 4.3.3 that

m({t: Hpa(t) =Y kia;}) <3m({t: (Tn(oma))(t) = > kia}).
i=1 =1

Thus, for 7 > 0, we have
m({t: Hpa(t) > 7}) <3m{t: Tmnloma))(t) > 7}).
The required estimate follows immediately. O

Lemma 4.3.5. Let E be a symmetric quasi-Banach space. If K : E — E| then
K (E)O — (E)O

Proof. Let v, be piecewise-linear concave functions such that v, = (K"1)*.
Since K : E — FE, it follows that ¢s € E and

My, C (My,)o C (Eo-

’:[‘hllS7 K : Loo — (E)(].

Let z € (E)g. Since E is separable, there exists a sequence x,, € Lo, such
that ||z, — z||[g — 0. Since K : E — E, it follows that ||[Kz, — Kz||g — 0.
However, Kz, € (E)o and, therefore, Kz € (E)o. O

Theorem 4.3.6. Let E be a symmetric quasi-Banach with Fatou property. If
the operators T,, : E — FE are uniformly bounded, then K maps E into E.
Moreover,
|Klp—E < 3sup [Tkl p—k-
keN

Proof. Let a € R™. It follows that C,a € Lo and, therefore, C,a € E. It follows
from Lemma 4.3.4 that

[Hm(Cra)lle < 3sup 1Tl 2~ £l Cnalle- (4.9)
€



CHAPTER 4. COMPLEMENTARY RESULTS 127

Since H,, (Cpa) converges to K (Cpa) in distribution, it follows that (H,,(Cpa))* —
(K(Cpra))* almost everywhere. It follows from (4.9) and the fact that E has the
Fatou property that

1K (Cra)lle < 3sup [T/l e~ el Cralle- (4.10)
S

Let now x = x* € E be arbitrary. For every n € N, define the function
xn € E by the formula

on

Ty = Z T(R27")X((k—1)2- 7 k2—n)-
k=1

It is clear that z,, T x almost everywhere. Therefore, x, converges to x in
distribution. Hence, ¢, converges to .. Thus,

YKz, = exp(pz, —1) = exp(pe — 1) = YKa-

It follows K x,, converges to Kz in distribution and, therefore, (K, )* converges
to (Kxz)* almost everywhere. Since inequality (4.10) is valid for z,, it follows
that
|Kalls < 35up [Tkl oo 2]l -
keN

O

Theorem 4.3.7. Let E be a separable symmetric Banach space. If the operators
T, : E — E are uniformly bounded, then K maps E into E. Moreover,

1K ||p—p < 3sup || Tl 5—p-
n
Proof. If E is separable, then the natural inclusion £ — E** is an isometry.

Repeating the previous argument, we obtain K : E** — E**. The assertion
follows now from Lemma 4.3.5. ]

4.4 Boundedness of the Kruglov operator im-
plies uniform boundedness of the sequence

{Tn}nEN

Lemma 4.4.1. Ifn,k e N, 1 <k <n, then
(n—k)! 3

ISV
nl(k —1)! — nk
Proof. Assume that n > 4. Since j(n — j) > n for 2 < j < n — 2, we have

n*(n

—k)!iki1 n n o\’
ik = 1)! Hﬂn—j)S(n—l) =

If n < 3, the assertion is evident. O
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Let A= {1,2,--- ,n} and let 24 be the collection of all subsets of the set A.
Denote
S(U) = Z a;
jEU

for every U € 24. Note that if numbers ay, 1 < k < n, are independent over Z,
then S(U1) 75 S(Ug) if U1 75 U2.
For every U € 24 denote

Ay ={Ve24 |V|=2U|, VDU SV\U)<SWU)}

and
By={ve2d |V|=2Ul-1, VU SV\U)<SU)}.
It clearly follows that

o __(n=|U])
A= o = G2 -

and similarly

_ —|U|)!
Byl <clVIml = (n | . 412
Bol = Gl = [Tt — 20+ 1 )
On the other hand,
{Ve2t: |V]iseven} = UAU
U
and
{(Ve2: |V]isodd} = JBy.
U
Therefore,
24 = | J(Au UBy). (4.13)
U
It follows from the definition of Ay and By that for every V € Ay U By
S(U) < S(V)<25). (4.14)

Lemma 4.4.2. Let n € N and a = (a1, -+ ,a,) € R} be such that the co-
ordinates ar, 1 < k < n, are independent over Z. It follows that, for every
T >0,
1
m({t: Tha(t)>7} <6 > —T

SWU)>t/2

Proof. Tt is clear that

m{t: Tha(t) >71}) = Z m({t: Tha(t) =S(V)}).

ve24 S(V)>r
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It follows from the equation (4.13) that
D <2 D)
Vve24a U VeAy VeBu
IfVeAy or Ve By and S(V) > 7, then S(U) > 7/2. Therefore,
m({t: Tha(t)>7hH) < > (Y, m({t: Tha(t) =S(V)})+

S(u)>7/2 VEAy

+ Z m({t: T,a(t)=S(V)})).

VeAu
If V e Ay, then

Ch(n —|V n —2|UJ)!
m({t: Tpa(t)=S(V)}) = ( ' VD < ( '| ) )
n! n!
If V € By, then
- -2 1)!
m({t: Taa(t) = vy = LoV (= 201+ DY
n! n!
It follows from (4.11) and Lemma 4.4.1 that
, B (n—2U))! (n— Ul _ 3
Z m({t: Tha(t) =S(V)}) < - |Au| < W < ol
VeAy
It follows from (4.12) and Lemma 4.4.1 that
: _ (n—2/U]+ 1)! (n —|U])! 3
Z m({t ) Tna(t) - S(V)}) < T ’ |BU| < W < W
VeBy
The assertion follows immediately. O
Lemma 4.4.3. Letn € N and a = (a1,--- ,an) € R™ be such that the coordi-

nates ag, 1 < k < n, are distinct and strictly positive. It follows that for every
m > 2n? and for all T >0

1 1
m{w : Hpa(w) > 71}) > 3 Z T
SU)>t

Proof. Let U € 24. Let W C {1,2,--- ,m} be such that |W| = |U| and let 6 be
a bijection 6 : W — U. Let Fy w9 be the set of all w such that

(01/m(Cra)) (W) = agjy, jEW

and
(01/m(Cna))(@P) =0, j&W.
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Let w € Fy, wy 0, NVFu, w0, 1§ & Wi or j & Wa, then (a4, (Cra))(w)) =
0. It follows that W1 = Wy N Wy = Wa. Therefore, ag, ;) = ag,(;) for every
j € Wi = Wa. Therefore, 6; = 0, and U; = U,. Hence, the sets Fyw,o are
disjoint.

Let Fiy be the union of all sets Fyyy g. It is clear that the sets Fy; are disjoint.

Let w € Fy. Hence, w € Fyw,p and

Hpa(w) = Z agjy = SU).
JEW
Therefore,
{w: Hpa(w) >7} D U Fy. (4.15)
S(U)>t

We proceed with the estimate of m(Fy) from below. It is clear that

m(Fuwe) = ()l -

m—|U|
m> '

There exist exactly Y1 relevant sets W. For fixed U and W, there exist exactly
|U|! relevant bijections 6. Therefore,

1 1 1
— ol —— . (1 — =yl —_
m(Fy) = C)” |U|'m\U| (1 m) o

It is clear that

- m! (m —|UDWIim —|U))! U]
VU |im IV = T > = 0T :(l_ﬁ)m'

If now m > 2n2, then m > 2|U|? and

b

ClUNum = > (1 -
m | ‘ m — ( 2|U|

i s L
=9

Since m > 2, it follows that (1 — 1/m)™~IYl > (1 — 1/m)™ > 1/4. Hence,

Since the sets Fyy are disjoint, the assertion follows immediately from (4.15).
O

Lemma 4.4.4. Letn € N and a = (a1,--- ,a,) € R.. For every m > 2n?, the
following inequality is valid:

(Tha)* < 2045(Hpa)™.
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Proof. Without loss of generality, the coordinates ag, 1 < k < n, are indepen-
dent over Z. It follows from Lemma 4.4.2 and Lemma 4.4.3 that

m({t: Toa(t)>7}) <6 > n U <48m({w: Hpa(w)>7/2}).
S(U)>7/2

The assertion follows immediately. O

Remark 4.4.5. The estimate
m({t: Tha(t) >7}) <Cm({w: Hpalw)>7}) 7>0

fails for any constant C. Indeed, if a1 = as = ... =a, =1, then
1
m({t: Tha(t) =n}) = L

while
1

nn’

m({w: Hpa(w) =n}) =

Theorem 4.4.6. Let E be a fully symmetric quasi-Banach space. If K : E —
E, then the operators Ty, n € N, are uniformly bounded in E. Moreover,

ITwllE—E < 96| K||p—Eg, n€N.

Proof. Tt follows from Lemma 4.4.4 that for arbitrary n € N, a € R™, 7 > 0 and
every m > 2n?, we have

(Tha)* < 2048(Hpa)*.

By Lemma 3.1.1, H,,,a converges to K (Cy,a) in distribution. Therefore, (H,,(Cra))*
converges to (K (Cra))* almost everywhere.
It follows that
(Tha)* < 2048(K(Cra))”.

This implies that
[Thalle < 96| K (Cra)l|e-

Since F is fully symmetric, we have
[Tnzl| 5 = | Tn(Bnz)lle < 96| K(CnBnx)llp < 96| K gkl 2

O

4.5 The Kruglov property and random permu-
tations

We are going to infer some corollaries from Theorems 4.4.6 and 4.3.6.
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Corollary 4.5.1. Let E be a fully symmetric quasi-Banach space. For every
n €N and every x = (;;)1<i, j<n, we have

2
n . 1 n .
[Anzlle < C(| ZIkX((k—1)/n,k/n)||E + n Z y,)-
k=1 k=n-+1

Here, (x,’;)z; is the decreasing rearrangement of the sequence (|z;|);';—; and
C > 0 does not depend either on n or x.

Corollary 4.5.2. The operators T,,, n > 1, are uniformly bounded on the Orlicz
space exp(Ly) if and only if p < 1.

Indeed, the Orlicz space exp(L,) has the Kruglov property if and only if
p <1 (see [12, 2.4, p. 42]). The assertion follows immediately from Theorems
4.4.6 and 4.3.6.

Theorem 4.1.8 in conjunction with Theorems 4.4.6 and 4.3.6 implies the
following corollary.

Corollary 4.5.3. If the symmetric quasi-Banach space E has the Fatou prop-
erty and if sup,, |Tn||g < oo, then there exists a symmetric space F C E, such
that sup,, |Tnl|lFr < oo.

If £ is a symmetric space and p > 1, then E(p) denotes the space of all
measurable functions x on the interval [0,1] such that |z|P € E. We equip E(p)
with the norm )

lallzw) = 1 2P 11"
It is well-known that E(p) C E and [|z||g < |[2| g for all z € E(p) (see [36,
1.d)).

Let E and F' be symmetric spaces such that £ C F and K : E — E. This
does not necessary imply that K : F — F (see [6, Corollaries 5.6 and 5.7]).
However,

Corollary 4.5.4. Let E be a symmetric Banach space such that either E is
separable or E = E**. If the Kruglov operator K is bounded in E(p), then it is
bounded in E.

Proof. Assume that the operator K is bounded in E(p). According to Theorem
4.4.6, the operators T,,, n € N, are uniformly bounded in E(p).
Let a € R} and let

1T0(Cra)l| 2@y < CllCral g,

so that " "
(Tn(Cra))Pllg” < Cl[(Cra)?| g

If x = (Cra)P, then
I(Twa/P)P |l < O |2l
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It follows from the definition of the operator T, n > 1 that
(T,z'/PYP > T,z

Hence, ||T,,z||g < CP||z||g, n» € N. Thus, the operators T},, n > 1 are uniformly
bounded in E. According to Theorem 4.3.6, the Kruglov operator K is bounded
in E. O
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4.6 Applications to Banach-Saks index sets

Let E be a Banach space and let p > 1. The bounded sequence {z,,}32,; C E is
called a p-BS-sequence if for all subsequences {yx}52, C {x,}52,,

. m
sup m” 7 || g Yl < oo.
meN —1

Define the set I';(E) (respectively, I';;q(E); respectively, I'q(E)) as the set
of those p such that every independent (respectively, independent and identi-
cally distributed; respectively, disjoint) weakly null sequence contains a p-BS-
subsequence.

The first main result of this section characterizing a subclass of the class of
all symmetric spaces E such that I';;q(E) = T';(E) is given in Theorem 4.6.3
below. We first need a modification of the subsequence splitting result from [52,
Theorem 3.2].

Lemma 4.6.1. Let E be a symmetric separable Banach space on the interval
(0,1). Suppose that E is separable. If the sequence {x,} C E converges to 0 in
measure, then there exists a subsequence {zp,} C {x,} such that z, = v, + wy,
where the functions vy, n € N, are mutually disjoint and ||w,|g — 0.

Proof. Since x,, — 0 by measure, it follows that m({t : |z, ()| < €}) — 1.
Passing to a subsequence, if needed, we obtain m({t : |z,(t)] < 1/n) > 1-1/n.
Since F is separable, it follows that there exists a sequence ,, > 0 such that

1z X 0,6l < 1/n.
Set

Un,1 = TnX1/n<|zn|<z*(en)r Wnl = TnX|z,|<1/n + InX|z,|>z*(en):

Clearly, wy,1 — 0 in norm and m(supp(vy,,1)) — 0 and v, 1 € Loo(0, 1). Without
loss of generality, ,, = v,,1, n € N.

Passing to a subsequence, if needed, we obtain m(supp(z,41)) < Sm(supp(zy,)).
Passing to a further subsequence, if needed, we obtain

1
||x71||00 ' ||Xsupp(:z:n+1)||E < —.

3

Therefore,

”anUk>nSupp(xk)”E < ”xn”OO”XUk>nsupp(xk)”E < ||wn||00||Xsupp(xn+1)”E < E

Clearly, the sequence v, = Ty, — TpXUj,supp(zr)> ? € N, is disjoint and the
assertion of the lemma follows. O

Theorem 4.6.2. Let E be a symmelric Banach space on the interval (0,1).
Suppose that E is separable and satisfies Fatou property. Let {xzy}n>1 C E be a
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sequence of independent random variables. If x,, — 0 weakly, then there exists
a subsequence {yn}n>1 C {ZTn}n>1, such that

Yn = Up + Up +wp,n > 1,
where
1. {up}tn>1 is a sequence of independent identically distributed functions.
2. {vn}n>1 is a sequence of functions with pairwise disjoint support.
3. {wp}n>1 s a sequence of functions such that ||wy,||g — 0.
4. up — 0 and v, — 0 weakly.

Proof. Since sequence {z,} converges weakly, it is bounded. Clearly,

|znllz > |77 x0,5 12 > 25, (8)Ix(0,9 /|2, s € [0,1].

By the Helly Selection theorem, there exists a sequence {x,, 1} C {x,} such that

(z;}1)* — (z¥)* and (x,, ;)* — (27)* uniformly on the interval [1/2, 1]. Without
+

loss of generality, [(#1)* ~() .12,y < Land (1) (@) o) <
1. Repeating the argument, we get a subsequence {z, 2} C {z, 1} such that
(z;tl)* — (z7)* and (x,, ;)* — (2~)* uniformly on the interval [1/3, 1]. Without
loss of generality, [[(z5)* ()" l| 1. 15,0y < 1/2 and || (52) "~ (@) o (ysn) <
1/2.

Repeat this process, consider diagonal subsequence x, ,, n € N. It is clear
that

(e (@) (@) - @012 1) <m0, — =) = —
and
(e (5,0 = @) 012 1) <m0, —=) = — .

Hence, (z,;,)* — (27)* and (2, ,,)* — (7)* in measure. Since F has the Fatou
property and (x} )", (z,,,,)* € E, n € N, it follows that (z*)*, (z7)* € E.

There exist an isomorphism v : @ — (0,1) and measure-preserving trans-
forms v, : (0,1) — (0,1), n € N, such that

(@m0 MW) = ((#,)" + (=(@0))) 0 Wm)(wn), w e .
Here, +% denotes the disjoint sum. Set
7= (@) )

and
(un ) (w) = (z 0 7n)(wn)-

It follows immediately that u,, n € N, are independent and identically dis-
tributed and that z, , —u, — 0 in measure.
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Apply Lemma 4.6.1 to the sequence {z,, , — uy}. Passing to a subsequence
if needed, we obtain x,, ,, = uy, + v, + wy,, where u,, are identically distributed,
vy, are disjoint and ||wy, |z — 0.

Since E** = E, we can apply Proposition 2.1 from [22]. It follows that the
sequence {u,} is weakly compact. Without loss of generality, u, — u weakly.
Hence, v, = (Tp,n — Upn) — w,, — —u weakly.

If E = Ly, then v,, — 0 weakly, which proves theorem for this case.

Suppose now that F # Lq. It follows that E* # L., and

| / on(5)se0(u)(3)ds| = | / on(5) (580 (0) Xoupp(on ) (8)ds| <

< anHE . ||Xsupp(vn)HE>< — 0.

However, v, — —u weakly. Therefore,

| /0 o (5)sen () (3)ds| — /O u(s))ds.

Hence, u = 0. Thus, u,, — 0 and v,, — 0 weakly. O

Theorem 4.6.3. Let E be a symmetric Banach space on the interval (0,1).
Suppose that E is separable and satisfies the Fatou property. Then

Ti(E) =Tus(E)NT4(E).
Proof. 1t is clear that
Fl(E) C F”d(E)
It follows from Lemma 3.3.1 that
Ti(E) C Ty(E).
Therefore,
PZ(E) C F”d(E) N Fd(E)

Let us prove the reverse inclusion. Let g be such that 1/q € T';;4(E) and
1/q € T4(E). Let z,, be a sequence weakly convergent to 0. Let w,,, v,, w, be as
in Theorem 4.6.2. Passing to a subsequence if needed, we obtain ||w,| g < 277,
n € N. Without loss of generality, w,, = 0 and x, = u, + v,, n € N.

Since 1/q € T'y;4(E), it follows that

n
ug||p < const - n'/9, neN.
1 usll
k=1

Since 1/q € T4(E), it follows that

n
I Z”kHE < const-n'/?, neN.
k=1
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It is now clear that

n

zr|le < const - nl/q, n € N.
1Y
k=1

Hence, g € T';(E) and we are done. O

Lemma 4.6.4. Let E be a fully symmetric Banach space on the interval (0,1).
Then Tj;q(E) = {1} if and only if ||An||E—E = n for every n € N.

Proof. Let 1 < q € T';;4(E). Define the sequence z € E(Q2), k € N, by the
formula z(w) = x(wag—_1)r(wak). It converges weakly to 0 (see Lemma 3.4. in
[53]). Hence,

1D arlls < Clan'/e.
k=1

It follows that n=/?||A, x|z < C(x). By the uniform boundedness principle,
|4l p—p < Onl/a.

Let us prove the converse assertion. Let ||A,||p—r < Cn'/4 n e N. Suppose
that {zx} C E is a sequence of independent identically distributed functions
which converges weakly to 0. Without loss of generality,

rp(w) = x(wog—1), w €N

Since i — 0 weakly, it follows that

/x(w)dw = /xk(w)dw — 0.

Hence, x is mean zero and, therefore, x, kK € N, are mean zero.
By Lemma 3.2.5,

n n
1D wrlle < const - || > (w(war—1) — #(war)) | 2 =
k=1 k=1

= const|| A, (x(w1) — z(ws)) ||z < const - n/9||z(wy) — z(ws)| £

Hence,
n

1" aklle < const - nt/9|z]|
k=1

and we are done. O

Remark 4.6.5. Let E be a symmetric Banach space on the interval (0,1).
Suppose that E has Fatou property and is separable. If E satisfies an upper
2-estimate, then I';;q(E) = T;(E).

Indeed, in this case 2 € T'y4(E).
Our second main result in this section completely characterizes the subclass
of all Lorentz spaces whose Banach-Saks index set I';(A) is non-trivial.
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Corollary 4.6.6. TI';(Ay) # {1} if and only if the function v satisfies the
conditions (3.18) and (3.19) for some k,1 > 2.

Proof. We have
Fa(Ay) = [1,00)
(see e.g. the proof of [4, Corollary 4.8]). Therefore,
Li(Ay) = Diia(Ay).
The assertion follows now from Lemma 4.6.4 and Theorem 3.6.6. 0

We complete this section with the description of I';(exp(Ly)o), 0 < p < oo.
Theorem 4.6.7. For every 0 < p < 2,

Tiia(exp(Ly)o) = Ti(exp(Ly)o) = [1,2].

For every 2 < p < o0,
p
Liia(exp(Lyp)o) = Ti(exp(Lp)o) = [1, ﬁ]'
Proof. Note that exp(Ly) coincides with the Marcinkiewicz space M, ,41/5 (1 ¢)-
We have
La((My)o) = [1,00)

(see e.g. [4, p.897]). It follows from Lemma 4.6.4 and Theorem 3.7.1 that
Liia(exp(Lyp)o) = [1,2]

for 0 < p<2and

p
Tiia(exp(Lp)o) = [1, ;fl]

for 2 < p < co. The assertion follows from Theorem 4.6.3. O

Remark 4.6.8. The preceding theorem shows that the set T';(exp(Ly)o) is non-
trivial for all 0 < p < oo, whereas exp(L,)o has the Kruglov property if and only
if 0 < p < 1. Therefore, the Kruglov property is not necessary for the condition

Ii(E) # {1}
Example 4.6.9. If E =L, , for1 <q<p <2, then I';(E) # L['a(E).
Proof. For every normalized sequence {v,},>1 C Lj, of functions with dis-

joint support, there exists a subsequence spanning the space I, (see Lemma
2.6.5). Hence, I'q(L, ) C T'(;) = [1,q]. Therefore, by Theorem 4.6.3, we have

Li(Lp.q) € [1,4].

Next, it is proved in [18, Corollary 3.7] (see also [13, Corollary 5.2]) that
if p < 2 then for every sequence of identically distributed independent random
variables we have

n 1
1> al,, = o(n?).
k=1

Hence, [1,p] C Tiia(Lp,q)- .



Appendix A

Classification of extreme
points

The following theorem is due to Ryff (see [48]).
Theorem A.0.10. If 0 < x € L1(0,1), then y € extr(¥(z)) if and only if
Yyt =ax*.

In this appendix, we prove similar results for the sets Q(z) and Q1 (z) and

extend them to the semi-axis.

Lemma A.0.11. Let x = x3, € So and let 0 <y, << g, k € N, be mutually

disjoint functions. If
oo

Z Yk € extr(Q(Z zr)),

k=1 k=1
then yy, € extr(Q(z)), k € N. The same assertion is valid for the sets Qt and
.

Proof. Assume the contrary. Let y,, = %(ym + Yo ) With Y15, Y2, << z, and
supp(y1n ), supp(y2n) C supp(y,). It follows from Lemma 1.2.14 that

o0 o0
Yin+ D Uk << Y Tk, Yo+ Y Uk << D Tk
k=1 k=1

k#n k#n
The assertion follows immediately. O

Lemma A.0.12. Letx = z* € L1(0,1) (respectively, © = * € (L1+Lo)(0,00) ).
Assume that y = y* is not a step function and that the inequality

/Ot y(s)ds < /Ot x(s)ds

holds for allt € (0,1) (respectively, for allt > 0). It follows that y ¢ extr(Q(z)),
y & extr(Q/(z)) and y ¢ extr(QF(z)).

139
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Proof. There exists a point tg € (0,1) (respectively, to > 0) such that y| +,+¢)
takes infinitely many values for arbitrary € > 0. In particular, y(to) > 0. Select

ty > tog such that
t4 tO
/ y(s)ds < / x(s)ds.
0 0

Fix t1,t3 € (to,t4) such that y(to) > y(t1) > y(ts) > y(ts). Set ta = (t1 + t3)/2
and

Yy =Y + 5(X(t1,tz) - X(tz,t3))7 0= mln{y(to) - y(tl)v y(t3) - y(t4)}

It is clear that y1 = y on the complement of the interval (¢g,t4) and y(t4) <
Y+, y— < y(to) on the interval (¢, ts4). Therefore,

/Ot yi(s)ds = /Oty(s)ds < /Otx(s)ds, t ¢ (to,ts)

and

[ < [“atepis < [Matoyie< [t ven)

Therefore, y = (y+ +y—)/2 with y4,y_ << z. O

Lemma A.0.13. Letx = z* € L1(0,1) (respectively, x = z* € (L1+Lo)(0,00) ).
Assume that y = y* is a step function and that the inequality

/Oty(s)ds < /Ot:v(s)ds

holds for allt € (0,1) (respectively, for allt > 0). It follows that y ¢ extr(2(z))
and y ¢ extr(Y(x)). If y € extr(QT (x)), then y = 0.

Proof. Suppose that y has at least three maximal intervals of constancy. Let
(a,b) be the maximal interval of constancy for y such that ¢ > 0 and b < 1
(respectively, b < 00). Set

Y+ = ¥ £ 6(X(ar(a+0)/2) = X((a+b)/2.))-

Clearly, y; <= =z for sufficiently small 6 and y = (y4+ + y—)/2. Therefore,

y ¢ extr(Q(z)).
The case that y has one or two maximal intervals of constancy can be treated
similarly. O

Theorem A.0.14. Let x € L1(0,1) (orx € (L1 + Loo)(0,00)) and let y << x.

1. Ifx € L1(0,1) orx € L1(0,00), then y € extr(Q (x)) if and only if y* = x*
and y > 0.

2. Ifx € L1(0,1) orx € (L1 + Loo)(0,00), then y € extr(Q2(z)) if and only if
y* =" and [y| > y*(c0).
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3. If v € L1(0,1) or x € (L1 + Lo )(0,00), then y € extr(QT (x)) if and only
if y* = 2"X(0,0) and [y| = y*(c0).

Proof. Let y be an extreme point of the set Q(x). Without loss of generality,
xz =z and y = y*. Define the set

A={t: /Ot y*(s)ds < /Ot x*(s)ds}.

It is clear that A is an open set. If A # (), then A = U;>11; — a union of disjoint
intervals.

In the second case, y|;, << z|;,- By the Lemma A.0.11, we have y|;, €
extr(Q(x|z,)), which contradicts Lemma A.0.12 or Lemma A.0.13. Thus, A =0
and y = x.

The same construction works in case of '(x).

Consider now the case of QT (x). It follows from the Lemma A.0.12 that
y =0 on A. Since y = y*, it follows that A = (3, 00) and y = xx(0,3)- O
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A pathological Orlicz space

Example B.0.15. There exists a non-separable Orlicz space Lg such that
O, = 1.

Proof. Let ag = 1 and a, 41 = e%*. Set ®(t) = t* on (0, 1),
D(t) = e + ®(ag,) — ™", Vit € [agn, azny1],

(I)(t) == q)(QQn—l) + el (t - a2n—1)7 vt € [a2n—17 a2n]

for all t € N. Clearly, ®'(t) = e’ on a2y, asni1] and ®’(t) = €27=1 on [agy,_1, azn].
Hence, ®'(t) < e* and ®(t) <e' —1 for all t > 0.
If ar, > 0, then (see [36, 2.b.5]) there exists ¢ > 0 such that

P(\t) -
su 00
VROV
In particular, ®(¢) < const - ¢t9 for ¢ > 1. However,
D(agpt1) > et —e®2n = e%2741(1 4+ 0(1)), VneN.

Therefore, ar, = 0 and Ly is non-separable.
If B, <1, then (see [36, 2.b.5]) there exists p > 1 such that

P(\t)
Al,]ta2f1 D(N)tp

> 0.

For every n € N, set t,, = n and \,, = a2, /n. Hence, A\, t, = as, and
D(Aptn) = Plagn-1) + €™ (ag, — agn—1) = a2, (1 +0(1)) + a%n(l +0(1)).

Since asy_1 = %o(agn), it follows that
a 1 1 2
(An) = P(azn—1) + ™71 (—a2n — azn-1) = azn (1 +0(1)) + —azn (1 +o(1)).
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Therefore,
D(A\ptn) a2, )
D\t =1+ 0(”)% = (1 +o(1))n'? =o(1)

and we conclude that fr, = 1.
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An operator tensor product

If z1,--- , 2, € L1(0,1), we denote by 2; ® --- ® 2, € L1((0,1)") the function
w= (w1, ,wn) = 2z1(w1) - 2n(wn).

The following assertion is well-known. We provide a proof due to the lack
of a convenient reference.

Lemma C.0.16. Let Ay : L1(0,1) — L1(0,1), 1 < k < n, be bounded operators.
There ezists a bounded linear operator A1 ® -+ ® A, : L1((0,1)™) — L1((0,1)™)
such that

(Al ®®An)(z1 ®®Zn) :Alzl ®®Anzna 21,7 ,%n € L1(071)

Proof. For simplicity of notation, we will assume that n = 2.
If 21, 2o are simple functions (finite linear combinations of indicator func-
tions), define
(Al X A2)(zl X ZQ) = (Alzl) (24 (A2ZQ).

The operator A; ® As is extended to the linear hull £ of such functions by
linearity. We now show that A; ® Ay is well-defined on L.

Indeed, let
n m
Z 21k & Zok = Z 23k & Z4k-
k=1 k=1

One can represent z;;, = Zl a;jrXx B, with B, 1 < j <[ being disjoint sets.

=1
Therefore,

l n

n
§ 21k @ Zak = E E A15,k02j5kXB;, @ XB;, =
k=1

J1,j2=1k=1
l m m
= E E 035,k04j2k X B;, O XBy, = E 23k @ Z4k-
J1,j2=1k=1 k=1
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It follows that

n l n
(A1 @ A)(Y 2k ®208) = Y D a1jk025,k(A1xs,,) ® (A2xB,,) =
k=1 J1,J2=1k=1
l m m
= > D agiraiuk(Aixs,) ® (Aaxs,,) = (A1 © 42) () 23k © 2r)
J1,J2=1k=1 k=1

and this implies that A; ® Ay is well-defined on L.
If 2=} _, akXB, @ X0, with the sets B, 1 <k <nand Cy, 1 <k <mn,
being disjoint, then

(A1 ® A)zlly <) lak| - [|A1xs, 11 - [A2xce, h <
k=1

n
< N Aullz,— o 142l Ly —ry D lak|m(Be)m(Cr) = || A1llL, - L, | A2l £y L. |12]l1-
k=1

Therefore, A} ® Az is a bounded operator on a dense subset of Li((0,1)?). The
assertion follows immediately. O

Lemma C.0.17. Let Ay : L1(0,1) — L1(0,1), 1 < k < n, be bounded operators.
1. If Ay, -+, Ay, are positive, then so is A1 ® -+ @ Ay.
2. If Ay, - -+, A, preserve integral, then so does A1 @ -+ ® A,.
3. IfA1=1,1<k<n, then (41 ®---® A,)1 =1.
4. If Aq,---, A, are bistochastic, the so is A1 ® -+ @ Ay,.

Proof. The fourth assertion is an immediate corollary of the first, second and
third assertions.

L. Let 2 =>"0" | 21, ® - - @ 2, with 2, 1 <7 < n, 1 <k < m, being simple
functions. One can write z = Z;zl Uk Q- Q Upg With upg, 1 < i < n,
1 < k <1, being positive simple functions. It follows that Az > 0. Since
functions of the above form are dense in L;((0,1)"), the assertion follows.

2. Let z = Z;nzl 21k Q- Q 2k With 2z, 1 <4 < n, 1 < k < m, being simple
functions. It is clear that

/ (A1®-~-®An)(z):/ z.
0,1)™ (0,1)

Since functions of the above form are dense in L;((0,1)™), the assertion
follows.

3. Clear.
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E(|A), averaging operator, 28
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Lg, Orlicz space, 24
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My, Marcinkiewicz space, 25
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