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1.1 Introduction

The primary aim of this thesis is the study of various geometric and probabilistic
properties of symmetric Banach and quasi-Banach spaces.

In Chapter 1, we gather the necessary background material and technical
preliminary information.

In Chapter 2, we study the action of some important semi-groups in sym-
metric (quasi-)Banach spaces. Our aim is to determine the geometric structure
of their orbits and to give simple and constructive criteria which characterise
the orbits in terms of their extreme points.

In Chapter 3, we study various generalizations of Khinchine and Johnson-
Schechtman inequalities. These important inequalities are shown to be useful
tools for studying connections between the geometric and probabilistic struc-
tures of symmetric spaces. We prove the most general possible form of the
Johnson-Schechtman inequalities. This allows us to prove the Khinchine in-
equality in very general form. As a bonus, our proof, which is based on an
inequality of Prokhorov, is radically simpler than any currently available in the
literature.

A further important topic covered in Chapter 3 is the connection between the
Kruglov operator (see Section 1.2 below) and random permutations of matrices.
An important estimate due to Montgomery-Smith and Semenov is proved to be
valid if and only if the space satisfies the Kruglov property.

The last sections of the thesis deal with various analogs of the Banach-Saks
index. We introduce an operator estimate which is equivalent to the latter
index being non-trivial. In particular, this allows us to completely characterize
Lorentz spaces with non-trivial (modified) Banach-Saks index.

1.1.1 Orbits and their importance

The most important object in the theory of interpolation of two symmetric
(quasi-)Banach spaces is the semigroup of operators which are simultaneously
contractions in both spaces.

Historically, interpolation spaces between L1 and L∞ were studied first. Or-
bits of the interpolation semigroup in this case have been precisely characterised
via the Calderon-Mityagin theorem in terms of submajorization in the sense of
Hardy, Littlewood and Polya.

We are also interested in the other semigroups such as the positive part of
the interpolation semigroup and the bistochastic semigroup. The former con-
sists of all positive operators from the interpolation semi-group. The latter
consists of all bistochastic operators and is, therefore, a subset of the interpola-
tion semigroup associated with L1 and L∞. Arguing as in the Calderon-Mityagin
theorem, one can obtain a precise description for the orbits of these two semi-
groups.

Let E be a symmetric (quasi-)Banach function space which is an interpola-
tion space for the Banach couple (L1, L∞). This thesis will study the following
question.
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Question 1.1.1. Which conditions guarantee that the orbits of the element
x ∈ E (corresponding to the interpolation semigroup, the positive part of the
interpolation semigroup and the bistochastic semigroup, respectively) coincide
with the closed convex hull of their extreme points?

The answer to this question depends strongly on the topology in which the
closure is taken.

If E = L1(0, 1), then it has been shown by Ryff (see [49]) that the bistochastic
orbit of every element is weakly compact. It follows now from the Krein-Milman
theorem that the bistochastic orbit is the weak (and hence norm)-closed convex
hull of its extreme points. A generalisation of this result can be found in [22].
According to [22], the bistochastic orbit of every element is weakly compact in
any separable symmetric Banach space on the interval (0, 1). Thus, in any such
space, the bistochastic orbit is the weak (and hence norm)-closed convex hull of
its extreme points.

The situation is very different for non-separable spaces. First of all, orbits are
not weakly compact anymore. For example, if E = L∞, then the interpolation
orbit of a constant is a ball. Clearly, a ball in L∞ is not a weakly-compact set
because L∞ is not a reflexive space. Hence, the proofs given in [49] and [22] are
not valid for non-separable spaces.

We wish to determine whether the orbits of a given element are the closed
convex hulls of their extreme points in the natural topology of a space induced
by the (quasi-)norm. Such studies were pioneered by Braverman and Mekler
(see [11]) for symmetric Banach spaces on the interval (0, 1). They proved that,
for every fully symmetric space E on (0, 1) (i.e. exact interpolation space for
the couple (L1, L∞)) with non-trivial upper Boyd index, the interpolation orbit
of every element coincides with the norm-closed convex hull of the set of its
extreme points.

They also proved the converse assertion for Marcinkiewicz spaces. In general,
however, this converse assertion is false. As shown above, any separable space
(such as L1) would be a counter-example.

We show (Theorem 2.7.1) that, in every symmetric quasi-Banach space E
which is an (L1, L∞)−interpolation space, the interpolation orbit of an element
x ∈ E is the norm-closed convex hull of its extreme points if and only if

ϕ(x) := lim
s→∞

1
s
‖σs(x∗)‖E = 0. (1.1)

This result trivially implies the result of Braverman and Mekler mentioned
above. Here, σs denotes the dilation operator (see Subsection 1.2.8 below).

The important class of Orlicz spaces is considered in section 2.10. We demon-
strate that the condition (1.1) is always valid in these spaces. Thus, for Orlicz
spaces, the answer to Question 1.1.1 is always positive. Note, that the results of
[22] and [11] are insufficient to cover this result in such generality. Indeed, the
results of [22] are only applicable to separable Orlicz space, that is, those with
non-trivial lower Boyd index. The results from [11] are only applicable to Orlicz
spaces with non-trivial upper Boyd index. However, one can easily construct
(see Appendix B) an Orlicz space with both Boyd indices being trivial.
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As an application, we study the notion of symmetric and fully symmetric
functionals in Section 2.10. The latter are a ”commutative” counterpart of the
Dixmier traces which appear in non-commutative geometry (see e.g. [16]). Sym-
metric and fully symmetric functionals are extensively studied in [23], [30] (see
also [16] and the references therein). Note, however, that our terminology differs
from that used in the articles just cited. These classes of symmetric and fully
symmetric functionals are different in general. For example, the Marcinkiewicz
space M1,∞ admits symmetric functionals which fail to be fully symmetric (see
paper for details [29]). It follows from Theorem 2.7.1 that any symmetric func-
tional on a fully symmetric space satisfying (1.1) is automatically fully symmet-
ric. In particular, this implies that an Orlicz space does not possess any singular
symmetric functionals (see Proposition 2.10.6). This latter result strengthens
Theorem 3.1 from [23] which states that an Orlicz space does not possess any
singular fully symmetric functionals.

The main results of Chapter 2 are contained in Sections 2.7 and 2.8 which
deal with function spaces. In Section 2.9, we derive similar results for sequence
spaces. Section 2.1 treats various properties of the functional ϕ and the mod-
ifications needed in later sections. In the section 2.4, we obtain some results
about expectation operators. Section 2.5 is devoted to a theorem of Mekler (see
[39, 40]). This Theorem (see Theorem 2.5.8) is an important ingredient in the
original proof of Braverman and Mekler but is also of interest in its own right
and and can be treated as a generalization of Birkhoff theorem.

The precise description of the extreme points of the orbits is heavily used
in the chapter. This description is due to Ryff (see [48]) for the bistochastic
semi-group. Descriptions for the other 2 semi-groups are less well-known. We
present them in an Appendix for the convenience of the reader, together with
details of proof.

1.1.2 The Kruglov operator

The Khinchine inequality

const · ‖{an}‖2 ≤ ‖
∑
n

anrn‖p ≤ const · p1/2‖{an}‖2

is one of the most important inequalities in analysis. In this classical setting,
the proof of the left hand side inequality is almost trivial. In this thesis, we will
be concerned only with the generalisation of the right hand side inequality.

The proof of the Khinchine inequality heavily uses the fact that the Rademacher
functions are independent. It seems natural to extend the Khinchine inequality
so that it is valid for arbitrary sequences {an}∞n=1 of independent mean zero
functions.

Most attempts at such a generalisation have proved ineffective because their
unnatural formulation prevented any interesting applications. Rosenthal [46]
was probably the first who found a useful general inequality of Khinchine type.
The best constants for the Rosenthal inequality may be found in the paper [27].
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All these papers, however, are generalisations of the Khinchine inequality in
the classic setting of Lp−spaces. In 1989, Johnson and Schechtman introduced
a new inequality and proved it for all symmetric Banach spaces E such that
E ⊃ Lp for 1 ≤ p <∞.

Braverman (see [12]) applied some earlier ideas of Kruglov to the Johnson-
Schechtman inequalities. He was able to generalize them to a significantly wider
class of symmetric spaces under an additional assumption. More precisely, he
required that the supports supp(xn), n ∈ N, of the independent functions xn,
n ∈ N should be such that

∞∑
n=1

m(supp(xn)) ≤ 1. (1.2)

An equivalent characterisation of the spaces considered by Braverman was
discovered by Astashkin & Sukochev (see [6]). They observed that a complicated
non-linear condition used by Braverman may be reformulated in terms of the
boundedness of a linear operator introduced by Kruglov. Hence, the powerful
machinery of linear operator theory could now be applied. In this way, Astashkin
& Sukochev (see [3]) managed to prove the Johnson-Schechtman inequality for
all spaces considered by Braverman. They also showed that the rather technical
assumption (1.2) is superfluous.

The Kruglov operator K maps a symmetric quasi-Banach space E(0, 1) into
the space E((0, 1)∞) according to the formula

(Kx)(ω) =
∞∑
n=1

n∑
k=1

x(ω(k))χAn(ω(0)), ω = {ω(k)}∞k=0 ∈ (0, 1)∞.

Here, {An}∞n=1 is a fixed collection of disjoint subsets of the interval (0, 1) such
that m(An) = 1/en!.

In order to emphasize the contribution of Kruglov to probability theory, this
class of spaces considered by Astashkin & Sukochev is called the Kruglov class
or K in [6]. We usually refer to its members as spaces with the Kruglov property.

The proof of the Johnson-Schechtman inequality in [3] is quite complicated.
In this thesis, proof is considerably simplified and generalised to the quasi-
Banach setting. This is presented in Chapter 3 (see Theorems 3.1.15 and 3.2.4).

It is well-known (see [34],[12]) that the Orlicz space exp(L1) defined by the
function et−1 satisfies the Kruglov property. The latter property also holds for
the separable part (exp(L1))0.

All previously known symmetric spaces E with the Kruglov property satisfy
the inclusion E ⊃ (exp(L1))0. This, together with Theorem 7.2 of [6] suggests
that (exp(L1))0 is the minimal space with the Kruglov property.

In section 4.1, we show that this hypothesis fails. Moreover, for every
given symmetric space E ∈ K, there exists a Marcinkiewicz space satisfying
the Kruglov property such that Mψ ⊂ E and Mψ 6= E.

The situation is quite different in the subclass of Lorentz spaces. Indeed,
every Lorentz space satisfying the Kruglov property necessarily contains exp(L1)
(see Theorem 4.2.6).
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1.1.3 The operators Tn

In [35], S. Kwapien and C. Schutt considered random permutations and applied
their results to the geometry of Banach spaces. The results of [35] were further
strengthened in [54] and [41] via an operator approach. The following family of
operators was introduced there.

Given a symmetric norm ‖·‖ on L∞(0, 1), one may define a symmetric norm
on Rn by the formula

‖x‖ = ‖
n∑
k=1

xkχ((k−1)/n,k/n)‖, x = {xk}nk=1 ∈ Rn.

Let n ∈ N and let Sn be the set of all permutations of the set 1, 2, . . . , n. Let
Mn be the algebra of all n× n matrices. Consider the operator An : Mn → Rn
defined by the following formula

(Anx)(π) =
n∑
i=1

xi,π(i) π ∈ Sn. (1.3)

The uniform boundedness of the operators An, n ∈ N, is essential for appli-
cations in the geometry of symmetric Banach spaces. One of the major results
of [41] (see Corollary 8 there) says that if the sequence of operators {An}n≥1 is
uniformly bounded on the set of diagonal matrices, then it is uniformly bounded
on the set of all matrices.

For every x ∈ L1(0, 1), we define the vector Bnx ∈ Rn by the formula

(Bnx)i = n

∫ i/n

(i−1)/n

x(t)dt, i = 1, 2, · · · , n.

For every x = (x1, · · · , xn) ∈ Rn, we define the function Cnx ∈ L∞(0, 1) by the
formula

Cnx =
n∑
k=1

xkχ((k−1)/n,k/n).

We now define the operator Tn : L1(0, 1)→ L∞(0, 1) by setting

Tn = Cn!AnBn, n ∈ N.

For every n ∈ N, Tn is a positive operator. Sometimes, we also use the notation
Tn for the operator Cn!An, defined on Rn (this does not cause any ambiguity).

Example 1.1.2. Evidently,

‖Tnx‖L1 = ‖x‖L1

for every positive x ∈ L1(0, 1). It follows that the sequence of operators An :
L1 → L1, n ∈ N, is uniformly bounded.
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There is not any immediately obvious connection between the operator K
and the sequence Tn, n ≥ 1. Nevertheless, the following interesting fact follows
from comparison of results in [41] and [6]: the criterion for boundedness of
the operator K in any Lorentz space Λψ coincides with that for the uniform
boundedness of the family of operators {Tn}n≥1 in Λψ.

Theorem 1.1.3. The operator K maps the Lorentz space Λψ into itself if and
only if

sup
0<t≤1

1
ψ(t)

∞∑
k=1

ψ(
tk

k!
) <∞.

Theorem 1.1.4. The family of operators {Tn}n≥1 is uniformly bounded in the
Lorentz space Λψ if and only if

sup
0<t≤1

1
ψ(t)

∞∑
k=1

ψ(
tk

k!
) <∞.

It is now natural to ask whether the boundedness of the operator K in an
arbitrary symmetric space E is equivalent to the uniform boundedness of the
family of operators {Tn}n≥1 in E. In Chapter 3, we establish that it is indeed
the case. The proof is based on combinatorial estimates for the correspond-
ing distribution functions. The equivalence that we establish implies some new
corollaries for the operator K and operators Tn, n ≥ 1. In particular, Corollary
4.5.2 strengthens Theorem 19 from [41] by showing that the uniform bounded-
ness of the family of operators {Tn}n≥1 in the Orlicz space exp(Lp) is equivalent
to the condition p ≤ 1.

1.1.4 The Banach-Saks indices

The Banach-Saks theorem says that if a sequence in Lp is weakly null, then
there exists a subsequence which converges to 0 in the sense of Cesaro.

A sequence {xk}∞k=1 in the Banach space is called a p-Banach-Saks-sequence
if, for every subsequence {yk}∞k=1 ⊂ {xk}∞k=1, we have

‖
n∑
k=1

yk‖E = O(n1/p).

A symmetric Banach space is said to have the p-Banach-Saks property if ev-
ery weakly null sequence {xn}∞n=1 ⊂ E contains a p-Banach-Saks-subsequence.
The infimum of all such p is called the Banach-Saks index of E. It was proved
in [4] that the Banach-Saks index is non-trivial (i.e. is not equal to 1) if and
only if 0 < αE ≤ βE < 1.

In section 1.2, we introduce modified versions of the Banach-Saks index. In
our setting, we require the weakly null sequence to be independent (respectively,
independent and identically distributed; respectively, disjoint). It is not clear,
a priori, how to compute these modified indices.
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It is shown in this thesis that the modified Banach-Saks index for inde-
pendent sequences is the minimum of that for disjoint sequences and that for
independent identically distributed sequences. The former is usually easier to
compute. As for the latter, we show how to compute it in terms of the estimates
on the norms of certain sequences of operators.

This sequence of operators is a semigroup. This allows us to characterise pre-
cisely those spaces for which the modified Banach-Saks index (for independent
identically distributed functions) is trivial.

As an application, we establish a criterion for the triviality of those indices
for Lorentz spaces. Such questions were considered earlier in the literature by
Carothers & Dilworth (see [18, 17]) in the setting of Lp,q−spaces.
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1.2 Preliminaries

1.2.1 Rearrangements & their properties

Let L0 be the space of Lebesgue measurable functions either on (0, 1) or on
(0,∞) which are finite almost everywhere (with identification m−a.e.). Here
m is Lebesgue measure. Define S0 to be the subset of L0 which consists of all
functions x such that m({t : |x(t)| > s}) is finite for some s > 0.

Definition 1.2.1. Let x ∈ S0. The function dx defined by the formula

dx(s) = m({t : |x(t)| > s}), s > 0

is called the distribution function of x.

Definition 1.2.2. Two functions x and y are called equimeasurable if their
distribution functions coincide, that is dx = dy.

Equimeasurability is an binary relation. Clearly, this relation is reflexive,
symmetric and transitive. Therefore, it is an equivalence relation.

Definition 1.2.3. Let x ∈ S0. We define the right-continuous rearrange-
ment of x by the formula

x∗(t) = inf{s ≥ 0 : m({|x| > s}) ≤ t}.

Lemma 1.2.4. For every x ∈ S0, the function x∗ is equimeasurable with x.

Thus, x∗ is the unique monotone representative of the equivalence class of
functions equimeasurable with x. The term ”rearrangement” we apply to x∗ is
widely used in a literature. The following theorem (see [50]) clarifies the naming
convention.

Theorem 1.2.5. Let x ∈ S0 be a function on the interval (0, 1). Let x∗ be the
right-continuous rearrangement of x. Then there exists a measure-preserving
transformation from (0, 1) to itself such that |x| = x∗ ◦ γ.

Note that the converse assertion is false, as is shown by the following exam-
ple.

Example 1.2.6. Let

x(t) =

{
2t, 0 ≤ t < 1/2

2t− 1, 1/2 ≤ t ≤ 1

Here, we have that x∗(t) = 1−t, t > 0. However, there is no measure-preserving
transform from (0, 1) to itself such that x∗ = x ◦ γ.

In the case of the semi-axis, the preceding theorem is not valid and the
situation is more complicated. The following example is worth noting.



CHAPTER 1. INTRODUCTION & PRELIMINARIES 12

Example 1.2.7. If x(t) = 2
πarctg(t), t > 0, then, x∗(t) = 1 for all t > 0.

Therefore, x∗ ◦ γ = 1 for every measure preserving transform γ.

However, under mild additional restriction, then preceding theorem is valid
on the semi-axis.

Theorem 1.2.8. Let x ∈ S0 be a function on the semi-axis. If x ≥ x∗(∞),
then there exists a measure-preserving transformation from the semi-axis into
itself such that x = x∗ ◦ γ.

Example 1.2.9. Let x(t) = t and y(t) = 1 − t for every t ∈ (0, 1). We have
x∗ = y∗ = y and (x+ y)∗ = 1. Thus, the inequality

(x+ y)∗(t) ≤ x∗(t) + y∗(t)

fails for every t ∈ (0, 1/2).

However, the following weaker inequality is valid (see [33])

Lemma 1.2.10. Let x, y ∈ S0. For every t1, t2 > 0 we have

(x+ y)∗(t1 + t2) ≤ x∗(t1) + y∗(t2). (1.4)

The following proposition follows directly from the definition of rearrange-
ment (see [33, II.2.2]).

Proposition 1.2.11. Let x ∈ S0. For every t > 0,∫ t

0

x∗(s)ds = sup
m(A)=t

∫
A

|x(s)|ds.

In general, one cannot replace sup in the proposition above with a max
(see Example 1.2.7). However, if x ∈ S0(0, 1) or x ≥ x∗(∞), then sup may be
replaced by max in Proposition 1.2.11 (see [33, II.2.2]).

The following semi-orderings play an important role in the theory of sym-
metric spaces.

Definition 1.2.12. Let x, y ∈ S0. We say that y is submajorized by x in the
sense of Hardy-Littlewood-Polya if∫ t

0

y∗(s)ds ≤
∫ t

0

x∗(s)ds, ∀t > 0.

In this case, we write y ≺≺ x.

Definition 1.2.13. Let 0 ≤ x, y ∈ L1. We say that y is majorized by x in
the sense of Hardy-Littlewood-Polya if y ≺≺ x and ‖y‖1 = ‖x‖1. In this
case, we write y ≺ x.
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Lemma 1.2.14. Let {xk}∞k=1 ⊂ S0 and {yk}∞k=1 ⊂ S0 be sequences of mutually
disjoint functions. If yk ≺≺ xk for every k, then

y =
∑
k

yk ≺≺
∑
k

xk = x.

Proof. Fix ε > 0. There exists a set A such that m(A) = t and∫ t

0

y∗(s)ds ≤ ε+
∫
A

|y(s)|ds = ε+
∑
k

∫
A∩supp(yk)

|yk(s)|ds.

However,∫
A∩supp(yk)

|yk(s)|ds ≤
∫ m(A∩supp(yk))

0

y∗k(s)ds ≤
∫ m(A∩supp(yk))

0

x∗k(s)ds.

Again, there exist sets Bk ⊂ supp(xk) such that m(Bk) = m(A∩ supp(yk)) and∫ m(A∩supp(yk))

0

x∗k(s)ds ≤ ε · 2−kε+
∫
Bk

|xk(s)|ds.

Set B = ∪kBk. It follows that∫ t

0

y∗(s)ds ≤ 2ε+
∫
B

|x(s)|ds ≤ 2ε+
∫ t

0

x∗(s)ds.

Since ε is arbitrary, we are done.

The following properties of rearrangement are well-known and can be found
in Chapter II of [33] (see Equation (2.17), Theorem 3.1 and Section 6.1 there).

Proposition 1.2.15. If x, y ∈ S0, then

(x+ y)∗ ≺≺ x∗ + y∗ (1.5)

and
(x∗ − y∗) ≺≺ (x− y)∗. (1.6)

In fact, even stronger version of (1.5) is valid. If xk ∈ S0, k ∈ N, then

∞∑
k=1

xk ≺≺
∞∑
k=1

x∗k, (1.7)

provided that the latter series converges pointwise.
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1.2.2 Convergence almost everywhere, in measure and in
distribution

The following definitions of convergence are well-known.

Definition 1.2.16. Let xn ∈ S0 be a sequence of functions and let x ∈ S0. We
say that xn converges to x

1. almost everywhere if the set of non-convergence has measure 0, that is

m({t : xn(t) 6→ x(t)}) = 0.

2. in measure if for any fixed ε > 0,

m({t : |xn(t)− x(t)| > ε})→ 0.

3. in distribution if dxn(t) converges to dx(t) for all t > 0.

The following result gathers several well-known properties which will be
needed in sequel.

Lemma 1.2.17. Let {xn}n∈N ⊂ S0 be a sequence of functions on the interval
(0, 1) and let x ∈ S0.

1. If xn → x almost everywhere, then xn → x in measure.

2. If xn → x in measure, then xn → x in distribution.

3. Let xn = x∗n for all n ∈ N and let x = x∗. If xn → x in distribution, then
xn → x almost everywhere.

4. If xn → x in measure, then there exists a subsequence {yk}k∈N ⊂ {xn}n∈N
which converges to x almost everywhere.

1.2.3 Quasi-Banach spaces

We recall the definition of a quasi-Banach space (see [43]).

Definition 1.2.18. Let E be a linear space over R. A function ‖ · ‖ : E → R is
called quasi-norm if the following conditions are satisfied.

1. There exists a constant C(E) (which depends only on E) such that ‖x +
y‖ ≤ C(E)(‖x‖+ ‖y‖) for every x, y ∈ E.

2. For every x ∈ E and c ∈ R, we have ‖cx‖ = |c| · ‖x‖

3. For every x ∈ E, we have ‖x‖ ≥ 0. Moreover, if ‖x‖ = 0, then x = 0.

We refer to the constant C(E) as the concavity modulus of E.

Definition 1.2.19. If E is a linear space over R and if ‖ · ‖E : E → R is a
quasi-norm, then the pair (E, ‖ · ‖E) is called a quasi-normed space.
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For brevity, we will say that E is a quasi-normed space since this will not
cause any confusion in the current text.

As in the case of normed spaces, we have the following definition.

Definition 1.2.20. Let {xn}n∈N be a sequence in a quasi-normed space E. We
say that the sequence xn, n ∈ N, is a Cauchy sequence if ‖xn − xm‖E → 0
provided that m,n→∞.

The usual definition of completeness follows.

Definition 1.2.21. If E is a quasi-normed space such that every Cauchy se-
quence in E converges, then E is called quasi-Banach space.

Example 1.2.22. If E = Lp(0, 1) or E = Lp(0,∞) with 0 < p < 1, then E is
a quasi-Banach space with concavity modulus C(Lp) = 21/p−1.

In many cases, the study of quasi-Banach spaces is significantly more diffi-
cult than that of Banach spaces. The reason is that many basic principles of
functional analysis fail in quasi-Banach spaces. The most common example is
that Hahn-Banach theorem fails even for such simple quasi-normed spaces as
Lp, 0 < p < 1.

Lemma 1.2.23. The quasi-Banach space Lp, 0 < p < 1, does not admit any
continuous linear functional (see Section 1.47 of [47]). Moreover, there are no
convex open subsets in this space (except the trivial ones).

1.2.4 The Aoki-Rolewicz theorem

The very worst property of a quasi-Banach space is that the quasi-norm is not
necessarily continuous in the topology induced by the quasi-norm itself. In
order to somehow deal with such spaces, we need the Aoki-Rolewicz theorem.
For completeness, we include the details of proof and will follow that given by
Gustavsson (see [25]).

Lemma 1.2.24. Let E be a linear space and let f : E → R be such that

f(x+ y) ≤ 2 max{f(x), f(y)}, ∀x, y ∈ E.

If ij ≥ 0 are such that
∑n
j=1 2−ij ≤ 1, then

f(
n∑
j=1

xj) ≤ max
1≤j≤n

2ijf(xj).

Proof. We use induction on n. The assertion is valid for n = 1. Assume it is
valid for n < k and let us prove it for n = k. After permutation (if necessary),
one can find 1 ≤ l < k such that

l∑
j=1

2−ij ≤ 1
2
,

k∑
j=l+1

2−ij ≤ 1
2
.
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By induction,

f(
l∑

j=1

xj) ≤ max
1≤j≤l

2ij−1f(xj), f(
k∑

j=l+1

xj) ≤ max
l+1≤j≤k

2ij−1f(xj).

Hence,

f(
k∑
j=1

xj) ≤ 2 max{f(
l∑

j=1

xj), f(
k∑

j=1+1

xj)} ≤ max
1≤j≤k

2ijf(xj).

Definition 1.2.25. Two quasi-norms ‖ · ‖1,2 on E are said to be equivalent
if there exist constants c1, c2 such that

c1‖x‖1 ≤ ‖x‖2 ≤ c2‖x‖1, ∀x ∈ E.

Theorem 1.2.26. Every quasi-Banach space (E, ‖ · ‖) admits an equivalent
quasi-norm ‖ · ‖new such that

‖x+ y‖pE,new ≤ ‖x‖
p
E,new + ‖y‖pE,new, ∀x, y ∈ E (1.8)

for some p < 1.

Proof. Let p = log−1
2 (2C(E)). It is clear that

‖x+ y‖pE ≤ C(E)p(‖x‖E + ‖y‖E)p ≤ 2 max{‖x‖pE , ‖y‖
p
E}, ∀x, y ∈ E.

Define f : E → R by the formula f(x) = ‖x‖pE . Clearly, f satisfies the assump-
tion of Lemma 1.2.24.

Let x1, · · · , xn ∈ E. For every 1 ≤ j ≤ n, find ij such that

2−ij ≤
‖xj‖pE∑n
j=1 ‖xj‖

p
E

≤ 21−ij .

It follows that

‖
n∑
j=1

xj‖pE ≤ max
1≤j≤n

2ij‖xj‖pE ≤ 2
n∑
j=1

‖xj‖pE .

Define the new quasi-norm by the formula

‖x‖pE,new = inf{
∑
i

‖xi‖pE :
∑
i

xi = x}.

It follows from the above that

‖x‖E,new ≤ ‖x‖E ≤ 21/p‖x‖E,new = 2C(E)‖x‖E,new.

It is clear that the new quasi-norm satisfies the condition (1.8).
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Corollary 1.2.27. Every quasi-Banach space admits an equivalent continuous
quasi-norm.

Proof. By the Aoki-Rolewicz theorem, we may assume that the inequality (1.8)
holds for our quasi-norm. It follows that E is a metric space with a distance
given by the formula

dist(x, y) = ‖x− y‖pE .

Since distance is continuous in any metric space, we are done.

Note, that if the original quasi-norm takes the same value on equimeasurable
functions, then so does the quasi-norm given by the Aoki-Rolewicz theorem.
From now on, we assume that quasi-norm is continuous.

1.2.5 Symmetric spaces & their properties

Definition 1.2.28. Let E be a quasi-Banach space of real-valued Lebesgue mea-
surable functions either on (0, 1) or (0,∞) (with identification m−a.e.). E
is said to be ideal lattice if x ∈ E and |y| ≤ |x| implies that y ∈ E and
‖y‖E ≤ ‖x‖E .

Definition 1.2.29. The ideal lattice E ⊆ S0 is said to be a symmetric quasi-
Banach space if for every x ∈ E and every y ∈ S0 the assumption y∗ = x∗

implies that y ∈ E and ‖y‖E = ‖x‖E .

In particular, if E is a Banach space, the following assertion is valid.

Lemma 1.2.30. Let E be a symmetric Banach space either on the interval
(0, 1) or on the semi-axis.

1. If E = E(0, 1) is a symmetric Banach space on (0, 1), then

L∞ ⊆ E ⊆ L1.

These inclusions are continuous. Moreover, there exist absolute constants
c1 and c2 such that

c1‖x‖L1 ≤ ‖x‖E ≤ c2‖x‖L∞

for every x ∈ E.

2. If E = E(0,∞) is a symmetric Banach space on (0,∞), then

L1 ∩ L∞ ⊆ E ⊆ L1 + L∞.

These inclusions are continuous. Moreover, there exist absolute constants
c1 and c2 such that

c1‖x‖L1+L∞ ≤ ‖x‖E ≤ c2‖x‖L1∩L∞

for every x ∈ E.
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Definition 1.2.31. Let E be a symmetric quasi-Banach space. The space E is
said to have order-continuous quasi-norm if ‖xn‖E → 0 for every sequence
{xn}∞n=1 ⊂ E such that xn ↓ 0 almost everywhere.

The following theorem can be found in [8] (see Theorem 5.5 of Chapter II
there).

Theorem 1.2.32. If E is a symmetric Banach space, then E is separable if
and only if the norm in E is order-continuous.

Definition 1.2.33. The symmetric quasi-Banach space E is said to have the
Fatou property if, whenever {xn}∞n=1 is a bounded sequence in E such that
xn → x almost everywhere for some x ∈ S0, it follows that x ∈ E and

‖x‖E ≤ lim inf
n→∞

‖xn‖E .

The following notion is somewhat weaker.

Definition 1.2.34. Let E be a symmetric space. If unit ball of E is closed in
E with respect to almost everywhere convergence, then the quasi-norm on E is
said to be a Fatou quasi-norm.

Example 1.2.35. If the quasi-norm on E is order-continuous, then it is a
Fatou quasi-norm.

Note that if E is a symmetric Banach space, then the Banach dual of E
is not necessarily a symmetric space. In this setting, the appropriate notion is
that of Köthe duality. The necessary definition now follows.

Definition 1.2.36. The Köthe dual space E× of a symmetric Banach space E
consists of all functions x ∈ S0 for which the norm

‖x‖E× = sup
‖y‖E≤1

∫ 1

0

x(t)y(t)dt

is finite.

If E is a symmetric Banach space, then E× is also a symmetric Banach space
which is isometrically embedded into the Banach dual E∗ of the space E.

The following theorem is proved in Zaanen [58] (see Chapter 15 there).

Theorem 1.2.37. Let E be a symmetric Banach space.

1. The Köthe dual E× satisfies the Fatou property.

2. The norm on E is order-continuous if and only if its Köthe dual E×

coincides with its Banach dual E∗.

3. E is equipped with a Fatou norm if and only if it can be isometrically
embedded into its second Köthe dual E××.
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4. E satisfies the Fatou property if and only if the natural embedding of E
into E×× is a surjective isometry.

Definition 1.2.38. Let E be a symmetric quasi-Banach space. E is said to be
fully symmetric if and only if x ∈ E, y ∈ L1 +L∞, y ≺≺ x implies that y ∈ E
and ‖y‖E ≤ ‖x‖E .

The following assertion can be found in Chapter II of [33] (see Theorem 4.9
and 4.10 there).

Theorem 1.2.39. Let E be a symmetric Banach space.

1. If E is separable, then E is fully symmetric.

2. If E satisfies the Fatou property, then E is fully symmetric.

For symmetric quasi-Banach space E, define E0 to be closure of the set of
simple functions with finite support in E.

Lemma 1.2.40. If E = E(0, 1) is a symmetric quasi-Banach space on the
interval (0, 1) and if E 6= L∞(0, 1), then E0 is separable.

Proof. For every x ∈ E,

‖x‖E ≥ x∗(u)‖χ(0,u)‖E .

If x is unbounded, then ‖χ(0,u)‖E → 0 as u→ 0. The assertion follows now from
Theorem 4.8 of [33].

If E is as in the lemma above, then E0 is called the separable part of E.

1.2.6 Interpolation

Let E0 and E1 be quasi-Banach function spaces. The intersection E0 ∩ E1

equipped with the quasi-norm

‖x‖E0∩E1 = max{‖x‖E0 , ‖x‖E1}, x ∈ E0 ∩ E1

is a quasi-Banach space. The sum E0 + E1 equipped with the norm

‖x‖E0+E1 = inf{‖x0‖E0+‖x1‖E1 : x = x0+x1, xi ∈ Ei, i = 0, 1}, ∀x ∈ E0+E1

is a quasi-Banach space.

Definition 1.2.41. The quasi-Banach space F with E0 ∩ E1 ⊂ F ⊂ E0 + E1

is called an interpolation space with respect to E0 and E1 if every linear
operator T bounded in E0 and in E1 is also bounded in F.
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It follows from the closed graph theorem that there exists a constant C > 0
such that

‖T‖F→F ≤ C max{‖T‖E0→E0 , ‖T‖E1→E1}.
If C = 1, the space F is called an exact interpolation space with respect to
E0 and E1.

The following theorem due to Calderon and Mityagin can be found in Chap-
ter II of [33] (see Theorem 4.3 there).

Theorem 1.2.42. A symmetric quasi-Banach space E is an exact interpolation
space with respect to L1 and L∞ if and only if E is fully symmetric.

In fact, every interpolation space with respect to L1 and L∞ can be made
fully symmetric by equivalent renorming.

1.2.7 Symmetric sequence spaces

Symmetric sequence spaces are the natural couterpart of the symmetric function
spaces.

Let x = {xn}n∈N ∈ l∞ and let xn → 0 as n → ∞. The sequence x∗ is a
rearrangement of the sequence |x| = {xn}n∈N in decreasing order.

Definition 1.2.43. The quasi-Banach space E ⊂ c0 is called a symmetric
quasi-Banach sequence space if

1. x ∈ E and |y| ≤ |x| implies that y ∈ E and ‖y‖E ≤ ‖x‖E ,

2. for every x ∈ E and every y ∈ S0 the assumption y∗ = x∗ implies that
y ∈ E and ‖y‖E = ‖x‖E .

It is also convenient to call l∞ a Banach sequence space.

Definition 1.2.44. Let x, y ∈ c0. We say that y is submajorized by x in the
sense of Hardy-Littlewood-Polya if

n∑
k=1

y∗k ≤
n∑
k=1

x∗k, ∀n ∈ N.

In this case, we write y ≺≺ x.

Definition 1.2.45. Let 0 ≤ x, y ∈ l1. We say that y is majorized by x in the
sense of Hardy-Littlewood-Polya if y ≺≺ x and ‖y‖1 = ‖x‖1. In this case,
we write y ≺ x.

Definition 1.2.46. Let E be a symmetric quasi-Banach space. E is said to be
fully symmetric if and only if x ∈ E, y ∈ l∞, y ≺≺ x implies that y ∈ E and
‖y‖E ≤ ‖x‖E .

Theorem 1.2.47. A symmetric quasi-Banach space E is an exact interpolation
space with respect to l1 and l∞ if and only if E is fully symmetric.

In fact, every interpolation space with respect to l1 and l∞ can be made
fully symmetric by equivalent renorming.
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1.2.8 Dilation operators & Boyd indices

If τ > 0, the dilation operator στ is defined by setting

(στ (x))(s) = x(
s

τ
), s > 0

in the case of the semi-axis. In the case of the interval (0, 1), the operator στ is
defined by

(στx)(s) =

{
x(s/τ), s ≤ min{1, τ}
0, τ < s ≤ 1.

Lemma 1.2.48. If x, y ∈ L1 + L∞ and y ≺≺ x, then,

(στ (y))∗ ≤ στ (y∗) ≺≺ στ (x∗).

Proof. In the case of the semi-axis, dστy = τdy = dστ (y∗). In the case of the
interval (0, 1), dστy ≤ τdy and dστ (y∗) = min{1, τdy}. Hence, dστy ≤ dστ (y∗)

and so (στ (y))∗ ≤ στ (y∗). Finally,∫ t

0

στ (y∗)(s)ds = τ

∫ t
τ

0

y∗(s)ds ≤ τ
∫ t

τ

0

x∗(s)ds =
∫ t

0

στ (x∗)(s)ds.

The following assertion is widely used in the literature. However, no direct
reference seems to be available. We include the proof for convenience of the
reader.

Lemma 1.2.49. If 0 ≤ x, y ∈ L1 + L∞, then

x∗ + y∗ ≺≺ 2σ 1
2
((x+ y)∗). (1.9)

Proof. Fix ε > 0. It follows from Proposition 1.2.11 that, for each t > 0,∫ t

0

x∗(s)ds ≤ ε+
∫
e1

x(s)ds,
∫ t

0

y∗(s)ds ≤ ε+
∫
e2

y(s)ds

for some e1 and e2 with m(ei) = t. However,∫
e1

x(s)ds+
∫
e2

y(s)ds ≤
∫
e1∪e2

(x+ y)(s)ds ≤

≤ sup
m(e)=2t

∫
e

(x+ y)(s)ds =
∫ 2t

0

(x+ y)∗(s)ds,

again using Lemma 1.2.11. Since ε > 0 is arbitrary, it follows that∫ t

0

(x∗ + y∗)(s)ds ≤
∫ 2t

0

(x+ y)∗(s)ds.

Observing that ∫ 2t

0

u(s)ds =
∫ t

0

(2σ 1
2
u)(s)ds,

the assertion follows immediately.
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If E is a symmetric quasi-Banach space and if τ > 0, then the dilation
operator στ is a bounded operator on E (see [33], Chapter II.4, Theorem 4.4).
If, in addition, E is a Banach space, then

‖στ‖E→E ≤ max{1, τ}, τ > 0.

As is easily seen, the operators στ (τ ≥ 1) satisfy the semi-group property
στ1στ2 = στ1τ2 .

Theorem 1.2.50. Let E be a symmetric quasi-Banach space. The following
two limits exist.

αE = lim
τ→0

1
log(τ)

log(‖στ‖E→E)

and
βE = lim

τ→∞

1
log(τ)

log(‖στ‖E→E).

These two numbers αE and βE are called the Boyd indices of the symmetric
space E.

Lemma 1.2.51. For every symmetric Banach space E, 0 ≤ αE ≤ βE ≤ 1.

Thus, αE is called the lower Boyd index and βE is called the upper Boyd
index.

In a some sense, if αE = 0, then the symmetric Banach space E is close to
L∞. Similarly, if βE = 1, then the symmetric Banach E is close to L1. For any
other case, the following theorem is valid

Theorem 1.2.52. Let E be a symmetric Banach space either on the interval
(0, 1) or on the semi-axis. If 0 < αE and βE < 1, then E is an interpolation
space between Lp and Lq for some 1 < p < q <∞.

1.2.9 Convex and concave functions

Definition 1.2.53. A function f : R→ R is called convex if

f(λ1t1 + λ2t2) ≤ λ1f(t1) + λ2f(t2) ∀t1, t2 ∈ R

provided that 0 ≤ λ1, λ2 and λ1 + λ2 = 1.

Definition 1.2.54. A function f : R→ R is called concave if

f(λ1t1 + λ2t2) ≥ λ1f(t1) + λ2f(t2) ∀t1, t2 ∈ R

provided that 0 ≤ λ1, λ2 and λ1 + λ2 = 1.

The following theorem is well-known.

Theorem 1.2.55. If a function f is convex (respectively, concave), then it is
continuous. Moreover, it is right-differentiable and left-differentiable at every
point and the derivative function f ′ is increasing (respectively, decreasing).
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Definition 1.2.56. The function f : R → R is called quasi-concave if there
exists a concave function g and constant c > 0 such that c−1f ≤ g ≤ cf.

The following theorem can be found in Chapter II of [33] (see Theorem 1.1
there).

Theorem 1.2.57. The function f : R+ → R+ is quasi-concave if and only if
the following inequalities are valid

f(t1) ≤ Cf(t2), g(t1) ≤ Cg(t2), ∀0 < t1 < t2.

Here, the function g is defined by setting g(t) = t/f(t) for all t > 0.

Definition 1.2.58. The fundamental function ϕE of a symmetric space E is
defined by setting ϕ(t) = ‖χ[0,t]‖E for every t > 0.

Example 1.2.59. The fundamental function ϕE of a symmetric Banach space
E is always quasi-concave.

1.2.10 Examples of symmetric spaces

We list below some of the most important examples of symmetric space.

Definition 1.2.60. A function Φ : R → R is called an Orlicz function if it
satisfies the following conditions

1. Φ(t) is positive for every t ∈ R.

2. Φ is even function, that is Φ(−t) = Φ(t) for every t ∈ R

3. Φ is convex function

4. Φ(0) = 0

Example 1.2.61. If p > 1, then the function Φp defined by

Φp(t) = e|t|
p

− 1, t ∈ R

is an Orlicz function. If 0 < p ≤ 1, then the function Φp defined by

Φp(t) = e|t|
p

−
[1/p]∑
k=0

|t|kp

k!
, t ∈ R

is an Orlicz function.

Definition 1.2.62. The Orlicz space LΦ consists of all x ∈ S0 such that

‖x‖LΦ = inf
{
λ > 0 :

∫ 1

0

Φ
(
x(t)
λ

)
dt ≤ 1

}
<∞.
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If Φp is the Orlicz function defined in the Example 1.2.61, then the Orlicz
space LΦp is called the exponential Orlicz space and denoted by exp(Lp).

Let ψ be an increasing concave continuous function either on (0, 1) or on the
semi-axis such that ψ(+0) = 0. The following definitions can be found in [33]
(see Chapter II, Section 5 there).

Definition 1.2.63. The Lorentz space Λψ is the space of all measurable func-
tions on the interval (0, 1) such that

‖x‖Λψ =
∫ 1

0

x∗(t)dψ(t) <∞.

Definition 1.2.64. The Marcinkiewicz space Mψ is the space of all mea-
surable functions on (0, 1) such that

‖x‖Mψ
= sup

0<t≤1

1
ψ(t)

∫ t

0

x∗(s)ds <∞.

Lorentz and Marcinkiewicz spaces on the semi-axis can be defined in similar
manner. We now gather some of the most important properties of Lorentz and
Marcinkiewicz spaces (see [33]).

Theorem 1.2.65. Let ψ be an increasing concave continuous function either
on (0, 1) or on the semi-axis such that ψ(0) = 0.

1. The Lorentz space Λψ is always separable.

2. The Köthe dual of the Lorentz space Λψ is the Marcinkiewicz space Mψ.

3. The Köthe dual of the Marcinkiewicz space Mψ is the Lorentz space Λψ.

4. Both Lorentz and Marcinkiewicz spaces satisfy the Fatou property.

5. If E is a symmetric Banach space with fundamental function ϕE , then

ΛϕE ⊂ E ⊂MψE .

Here, the function ψE is defined by setting ψE(t) = t/ϕE(t) for t > 0.

We need the following description of the Boyd indices for Lorentz and Marcinkiewicz
spaces.

Lemma 1.2.66. Let Λψ be a Lorentz space on the interval (0, 1).

1.

lim inf
t→0

ψ(2t)
ψ(t)

= 1⇐⇒ αΛψ = 0.

2.

lim sup
t→0

ψ(2t)
ψ(t)

= 2⇐⇒ βΛψ = 0.
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If Λψ is a Lorentz space on the semi-axis, one should replace “t→ 0”with “either
t→ 0 or t→∞”.

Lemma 1.2.67. Let Mψ be a Marcinkiewicz space on the interval (0, 1).

1.

lim inf
t→0

ψ(2t)
ψ(t)

= 1⇐⇒ βMψ
= 1.

2.

lim sup
t→0

ψ(2t)
ψ(t)

= 2⇐⇒ αMψ
= 0.

If Mψ is a Marcinkiewicz space on the semi-axis, one should replace “t→ 0”with
“either t→ 0 or t→∞”.

One usually refers to the following class of spaces as “Lorentz spaces“. We
will not use this name in order to avoid confusion with Lorentz spaces defined
above.

Definition 1.2.68. If p, q > 0, then the space Lp,q(0, 1) is the space of all
measurable functions x on the interval (0, 1) such that

‖x‖p,q = (
∫ 1

0

(x∗(t)))qdtq/p)1/q <∞.

Lp,q(0,∞) is defined in a similar manner.

Definition 1.2.69. If p > 0, then the space Lp,∞(0, 1) is the space of all mea-
surable functions x on the interval (0, 1) such that

‖x‖p,∞ = sup
0<t<1

t1/px∗(t) <∞.

Lp,∞(0,∞) is defined in a similar manner.

It is well-known (see [8]) that, for p, q ≥ 1, the quasi-norm ‖·‖p,q is equivalent
to a symmetric norm.

For further properties of Lorentz, Marcinkiewicz and Orlicz spaces, we refer
to [33, 36] and [44].

1.2.11 Some special spaces.

Definition 1.2.70. A Poisson random variable with a parameter a > 0 is
the random variable which takes values n ∈ Z+ with probability e−a a

n

n! .

Lemma 1.2.71. If N is Poisson random variable, then

exp(−1− 2t · arcsinh(2t)) ≤ m({|N | > t}) ≤ exp(1− t

3e
arcsinh(

t

3e
)).
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Proof. Let us prove the left inequality. Assume first that t ≥ 1. There exists
n ∈ N such that t ∈ [n, n+ 1). Clearly,

m({|N | > t}) ≥ m({N = n+ 1}) =
1

e · (n+ 1)!
≥ 1
e · (n+ 1)n+1

=

= exp(−1− (n+ 1) log(n+ 1)) ≥ exp(−1− (n+ 1)arcsinh(n+ 1)).

However, n+ 1 ≤ 2n ≤ 2t and, therefore,

m({N > t}) ≥ exp(−1− 2t · arcsinh(2t)).

If t ∈ [0, 1), then

m({|N | > t}) ≥ m({|N | = 1}) =
1
e
≥ exp(−2tarcsinh(2t)).

Let us now prove the right inequality. Assume first that t ≥ 5. There exists
n ∈ N such that t ∈ [n, n+ 1) and n ≥ 3. Clearly,

m({|N | > t}) = m({N ≥ n+ 1}) =
∞∑

k=n+1

1
e · k!

=

=
1

e · (n+ 1)!
(1 +

1
n+ 2

+
1

(n+ 2)(n+ 3)
+ · · · ) ≤

≤ 1
e · (n+ 1)!

·
∞∑
k=0

1
(n+ 2)k

=
1

e(n+ 1)(n+ 1)!
≤ 1

(n+ 1)!
.

Note that by the Stirling formula,

n! ≥ (
n

e
)n.

Therefore,

m({|N | > t}) ≤ (
n+ 1
e

)−(n+1) = exp(−(n+ 1) log(
n+ 1
e

)).

However,

log(
n+ 1
e

) ≥ log(
t

e
) ≥ arcsinh(

t

3e
).

The latter inequality is valid since t ≥ 5. Hence,

m({|N | > t}) ≤ exp(− t

3e
arcsinh(

t

3e
)).

If t ∈ [0, 5), then

m({|N | > t}) ≤ 1 ≤ exp(1− t

3e
arcsinh(

t

3e
)).
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Corollary 1.2.72. If N is a Poisson random variable, then the smallest sym-
metric space containing N is Mψ where ψ(t) = t log(e/t)/ log(log(ee/t)).

Proof. It follows from Corollary 3.1.8 that the smallest symmetric space con-
taining N coincides with enveloping Marcinkiewicz space. The computation
above shows that the decreasing rearrangement of N is equivalent to ψ′ at 0.
This suffices to conclude the statement.

Definition 1.2.73. A Gaussian random variable is any random variable ξ
such that

m({t : ξ(t) < s}) =
1√
2π

∫ s

−∞
e−u

2/2du.

Lemma 1.2.74. If ξ is a Gaussian random variable, then the smallest sym-
metric space containing ξ is exp(L2).

Proof. Let ψ be a concave increasing function such that ψ′ = ξ∗. It is easy
to show that ψ(2t)/ψ(t) → 2 as t → 0. Thus, the smallest symmetric space
containing ξ coincides with enveloping Marcinkiewicz space, which is exp(L2).

1.2.12 Expectation operators

Let E be a fully symmetric quasi-Banach space either on the interval (0, 1) or
on the semi-axis. We need the notion of an averaging operator (see [11]) and
that of an expectation operator.

Let A = {Ak} be a (finite or infinite) sequence of disjoint sets of finite
measure and denote by A the collection of all such sequences. Denote by A∞
the complement of ∪kAk.

The partial averaging operator P (·|A) : L1 + L∞ → L1 + L∞ is defined by
setting

P (x|A) =
∑
k

1
m(Ak)

(
∫
Ak

x(s)ds)χAk + xχA∞ .

Note, that we do not require A∞ to have finite measure.
The averaging operator E(·|A) : L1 + L∞ → L1 + L∞ is defined by setting

E(x|A) =
∑
k

1
m(Ak)

(
∫
Ak

x(s)ds)χAk .

Note, that we do not require A∞ to have finite measure.
Every partial averaging operator is a contraction both in L1 and L∞. Hence,

P (·|A) is also contraction in E. Moreover, P (·|A) is a doubly stochastic operator
in the sense of [49]. Every averaging operator is a contraction both in L1 and
L∞. Hence, E(·|A) is also contraction in E.

Since P (·|A) ∈ Σ, it follows that P (x|A) ∈ Ω(x) (respectively, P (x|A) ∈
Ω′(x) if x ∈ L1) for every A ∈ A. Since E(·|A) ∈ Σ, it follows that E(x|A) ∈
Ω(x) for every A ∈ A. As will be seen, elements of the form P (x|A) and E(x|A)
play a central role.
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1.2.13 The orbits & their properties

Define the semigroups Σ and Σ+ by setting

Σ = {A : L1 + L∞ → L1 + L∞, ‖A‖L1→L1 , ‖A‖L∞→L∞ ≤ 1},

Σ+ = {A ≥ 0, A ∈ Σ}.
The positive operator A : L1+L∞ → L1+L∞ is called bistochastic if A1 = 1

and ∫ ∞
0

(Ax)(s)ds =
∫ ∞

0

x(s)ds, x ∈ L1 + L∞.

The semigroup of bistochastic operators is denoted by Σ′.
The orbits of the element x with respect to the semi-groups Σ, Σ+ and Σ′

will be denoted by Ω(x), Ω+(x) and Ω′(x) respectively. That is,

Ω(x) = {Ax, A ∈ Σ}, Ω+(x) = {Ax, A ∈ Σ+}, Ω′(x) = {Ax, A ∈ Σ′}.

The following assertion is known as Calderon-Mityagin theorem (see [33]).

Theorem 1.2.75. If x ∈ L1 + L∞, then

Ω(x) = {y ∈ L1 + L∞ : y ≺≺ x},

Ω+(x) = {0 ≤ y ∈ L1 + L∞ : y ≺≺ x},
Ω′(x) = {0 ≤ y ∈ L1 : y ≺ x}.

It is clear that for all equimeasurable functions x, y from L1 + L∞ we have

Ω(x) = Ω(y), Ω+(x) = Ω+(y), Ω′(x) = Ω′(y).

In particular,

Ω(x) = Ω(x∗), Ω+(x) = Ω+(x∗), Ω′(x) = Ω′(x∗).

The following question was initially investigated by Braverman & Mekler (see
[11]). They only considered symmetric Banach spaces on the interval (0, 1).

Question 1.2.76. Find conditions which guarantee that the orbit Ω(x) coin-
cides with the norm-closed convex hull of its extreme points.

In this thesis, we study this question also for the sets Ω+(x), Ω′(x) in the
more general setting of symmetric quasi-Banach spaces on the interval (0, 1) or
on the semi-axis. Necessary and sufficient conditions are given in Chapter 2.

Fo the convenience of the reader, we give here the classification of the extreme
points of the sets Ω(x), Ω+(x) and Ω′(x) (see Theorem A.0.14).

1. For every x ∈ L1(0, 1), we have

extr(Ω(x)) = {y : y∗ = x∗},

extr(Ω+(x)) = {y ≥ 0 : y∗ = x∗χ[0,β]},
extr(Ω′(x)) = {y ≥ 0 : y∗ = x∗}.
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2. For every x ∈ (L1 + L∞)(0,∞), we have

extr(Ω(x)) = {y : y∗ = x∗, |y| ≥ y∗(∞)},

extr(Ω+(x)) = {y : y∗ = x∗χ[0,β], |y| ≥ y∗(∞)}.

3. For every x ∈ L1(0,∞), we have

extr(Ω′(x)) = {y ≥ 0 : y∗ = x∗}.

We suppose that E is a fully symmetric quasi-Banach space. Note that since
E is fully symmetric, it follows that each of the orbits Ω(x), Ω+(x) and Ω′(x)
is a subset of E.

Here, we use the notation of [31] as opposed to that of [55]. More precisely,
the following notation is employed.

Q(x) = Conv(extr(Ω(x))), QE(x) = Q(x),

Q+(x) = Conv(extr(Ω+(x))), Q+
E(x) = Q+(x),

Q′(x) = Conv(extr(Ω′(x))), Q′E(x) = Q′(x).
Here, closure is taken in the natural topology in E (that is the one generated
by the quasi-norm).

In addition, if x ∈ (L1 + L∞)(0,∞) but x /∈ L1(0,∞), we set

Q′(x) = Conv({y ≥ 0 : y∗ = x∗, y ≥ y∗(∞)})

and
Q′E(x) = Q′(x).

A partial answer to Question 1.2.76 was first given by Braverman and Mekler
in [11]. They showed that if

lim
τ→∞

1
τ
‖στ‖E→E = 0, (1.10)

then Ω(x) = QE(x) for symmetric Banach spaces on the interval (0, 1). In
contrast, we will show that

QE(x) = Ω(x)⇐⇒ lim
τ→∞

1
τ
‖στ (x∗)‖E = 0. (1.11)

Note that our condition is a localised version of the global condition (1.10) and
goes much further as it permits us to characterise those elements x ∈ E for
which the equality Ω(x) = QE(x) is valid.

The implication ⇐= in the equivalence (1.11) was proved by Sukochev and
Zanin in [55]. Also, the implication ⇐= was proved in [55] for every symmetric
Banach space E on the semi-axis such that E 6⊂ L1. If E ⊂ L1 is a space on the
semi-axis, then the implication⇐= in (1.11) must be replaced with the stronger
statement

QE(x) = Ω(x)⇐= lim
τ→∞

1
τ
‖στ (x∗)χ(0,1)‖E = 0.

The implication =⇒ was not proved in [55] in full generality. A complete proof
of the implication =⇒ was given by Kalton, Sukochev and Zanin in [31] using
very different methods.
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1.2.14 Characteristic function of a random variable

In probability theory, a measurable function on the interval (0, 1) is called a
random variable. We refer the reader to [24] for the following assertions.

Definition 1.2.77. Let x be a random variable. The function ϕx : R → C
defined by the following formula

ϕx(t) =
∫ 1

0

eitx(s)ds

is called the characteristic function of a random variable x.

We need the following basic facts from probability theory.

Lemma 1.2.78. Let x1, x2 be random variables. If ϕx1 = ϕx2 , then x1 and x2

are equidistributed.

Lemma 1.2.79. If the random variables xk, 1 ≤ k ≤ n are independent, then

ϕPn
k=1 xk

=
n∏
k=1

ϕxk .

Conversely, if, for every real sequence λk, 1 ≤ k ≤ n, we have

ϕPn
k=1 λkxk

=
n∏
k=1

ϕλkxk ,

then the random variables xk, 1 ≤ k ≤ n are independent.

Lemma 1.2.80. Let x and xn, n ∈ N, be random variables. If ϕxn(t)→ ϕx(t)
for every t ∈ R, then xn → x in distribution.

1.2.15 Basic properties of the operator K

In [12], Braverman introduced a new approach to the Johnson-Schechtman in-
equality based on earlier ideas of Kruglov and depending on a certain nonlinear
construction. To simplify the approach of Braverman, Astashkin & Sukochev
introduced a linear operator, called the Kruglov operator, which we now de-
scribe.

To do so, it is necessary to change the underlying measure space from the
interval to the space Ω defined by

Ω =
∞∏
n=0

((0, 1),m).

It is a well-known fact that the measure space Ω equipped with product measure
is isomorphic to the interval (0, 1) equipped with Lebesgue measure.
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Definition 1.2.81. Let x be a random variable (measurable function) on the
interval (0, 1). Let {Bn}∞n=0 be a fixed sequence of mutually disjoint measurable

subsets of (0, 1) such that m(Bn) =
1
en!

. The Kruglov operator K : S0(0, 1)→
S0(Ω) is defined by setting

Kx(ω) =
∞∑
n=1

n∑
k=1

x(ωk)χBn(ω0), x ∈ S0(0, 1).

Here, ω = (ω0, ω1, · · · ) is an element of Ω.

Remark 1.2.82. The operator K is well-defined.

Proof. Suppose that x1, x2 are measurable functions such that x1 = x2 almost
everywhere. The set A = {ω : x1(ω) = x2(ω)} is a set of full measure in (0, 1).
If ωk ∈ A, then (Kx1)(ω) = (Kx2)(ω). However, (0, 1) × A∞ is a set of full
measure in Ω. Thus, Kx1 = Kx2 almost everywhere.

It is clear that if 0 ≤ x ∈ S0(0, 1), then 0 ≤ Kx ∈ S0(Ω), so that K is a
positive linear operator. The following assertion was proved in [6] for the case
of symmetric Banach spaces.

Lemma 1.2.83. Let E and F be symmetric quasi-Banach spaces on the interval
(0, 1). If K has the property that Kx ∈ F for each x ∈ E, then K : E → F is a
bounded operator.

Proof. Let C(E) be the concavity modulus of E. If K is not bounded, one can
select a sequence {xn}∞n=1 ⊂ E of positive elements such that ‖xn‖E = 1 and
‖Kxn‖F ≥ n3C(E)n.

We claim that the series x =
∑∞
n=1 n

−2C(E)−nxn converges in E. Indeed,
for every M > N, we have

‖
M∑

n=N+1

1
n2
C(E)−nxn‖E ≤ C(E)−N

M∑
n=N+1

1
n2
‖xn‖E ≤

1
N
C(E)−N .

For every n ∈ N, x ≥ n−2C(E)−nxn. Since the operator K is positive,
we have Kx ≥ n−2C(E)−nKxn ≥ 0. It follows that ‖Kx‖F ≥ n for every
n ∈ N.

The following lemma is similar to Lemma 1 of [12].

Lemma 1.2.84. Let E be an arbitrary symmetric quasi-Banach space on the
interval (0, 1). For every x ∈ S0 such that Kx ∈ E we also have x ∈ E.

Proof. We have
|Kx(ω)| ≥ |x(ω1)|χB1(ω0) ∼ σ1/e(x).

Therefore, σ1/ex ∈ E and so x ∈ E.
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It is now possible to define the Kruglov property for a symmetric quasi-
Banach space E.

Definition 1.2.85. A symmetric quasi-Banach space E on the interval (0, 1)
is said to have the Kruglov property (E ∈ K) if and only if x ∈ E implies
that Kx ∈ E.

The following crucial property of the operator K may be found in [6]. This
property was taken by Braverman as a definition of the Kruglov operator.

Lemma 1.2.86. For every x ∈ S0, we have ϕKx = exp(ϕx − 1).

Proof. It is clear that

ϕKx(t) =
∫

Ω

eit(Kx)(ω)
∞∏
n=0

dωn =
∞∑
n=0

1
en!

∫
(0,1)n

exp(it
n∑
k=1

x(ωk))
n∏
k=1

dωk =

=
∞∑
n=0

1
en!

n∏
k=1

∫
(0,1)

exp(itx(ωk)dωk =
∞∑
n=0

1
en!

ϕnx(t) = eϕx(t)−1.

1.2.16 Banach-Saks indices

The following theorem is due to Banach and Saks.

Theorem 1.2.87. Let H be a Hilbert space. If a sequence {xn} ⊂ H converges
weakly, then there exists a subsequence {yk}∞k=1 ⊂ {xn}∞n=1 and there exists
x ∈ E such that

1
n

n∑
k=1

yk → x.

This leads to the following definition.

Definition 1.2.88. Let E be a Banach space. If any weakly-convergent sequence
{xn}∞n=1 ⊂ E contains a subsequence {yk}∞k=1 ⊂ {xn}∞n=1 such that Cesaro
means n−1

∑n
k=1 yk are convergent in E, then E is said to have Banach-Saks

property.

Definition 1.2.89. Let E be a Banach space and let p > 1. The bounded
sequence {xn}∞n=1 ⊂ E is called a p-BS-sequence if for all subsequences
{yk}∞k=1 ⊂ {xn}∞n=1,

sup
m∈N

m−
1
p ‖

m∑
k=1

yk‖E <∞.

Definition 1.2.90. Let E be a Banach space and let p > 1. We say that E has
the p-BS-property if each weakly null sequence contains a p-BS-subsequence.



CHAPTER 1. INTRODUCTION & PRELIMINARIES 33

Consider the set

Γ(E) = {p : p ≥ 1, E ∈ BS(p)}.

Clearly, either Γ(E) = [1, γ], or Γ(E) = [1, γ) for some γ ≥ 1.
If, in the preceding definition, we replace all weakly null sequences by weakly

null sequences of independent random variables (respectively, by weakly null
sequences of pairwise disjoint elements; by weakly null sequences of independent
identically distributed random variables), we obtain the set Γi(E) (respectively,
Γd(E), Γiid(E)).

The general problem of describing and comparing the sets Γ(E), Γi(E),
Γiid(E) and Γd(E) in various classes of symmetric spaces was addressed in
[51, 21, 53, 4, 52, 5]. In particular, it follows directly from the definition that

1 ∈ Γ(E) ⊂ Γi(E) ⊂ Γiid(E) ⊆ [1, 2].

It follows from Lemma 3 of [28] that

Γi(E) ⊂ Γd(E)

for any symmetric space E.
Moreover, the sets Γ(E) and Γi(E) often coincide. For example, it follows

from Corollary 4.4 and Theorem 4.5 of [52] that

Γ(Lp) = Γi(Lp) = Γiid(Lp), ∀1 < p <∞.

If E = Λt1/2 is Lorentz space generated by the function ψ(t) = t1/2, t > 0, then
it follows from Theorem 5.9 of [52] and Proposition 4.12 of [4] that

Γ(Λt1/2) = [1, 2), Γi(Λt1/2) = [1, 2].

The following theorem (see [53, Theorem 9] for the proof) states that these
two situations are typical

Theorem 1.2.91. Let E be a symmetric Banach space on the interval (0, 1).
Assume that Γ(E) 6= {1}. One of the following possibilities occur

1. Γi(E) = Γ(E)

2. Γi(E) = [1, 2] and Γ(E) = [1, 2).

In Theorem 3.5.4, we show the connection between the class of all symmetric
spaces with Kruglov property and the estimates on Γiid. We will prove the
general theorem (see Theorem 4.6.3 below) that

Γi(E) = Γiid(E) ∩ Γd(E). (1.12)

Since every Lorentz space Λψ satisfies the condition

Γd(Λψ) = [1,∞),
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the equality (1.12) then shows that Γi(Λψ) = Γiid(Λψ) an this permits us to
describe all Lorentz spaces Λψ for which Γi(Λψ) is non-trivial.

Examples of symmetric spaces E such that Γ(E) = {1} but Γi(E) 6= {1} have
been produced in [5] under the assumption that E has the Kruglov property.
We present examples of Lorentz and Marcinkiewicz spaces E such that Γi(E) =
Γiid(E) 6= {1} and which do not possess the Kruglov property (see Example
3.6.8).



Chapter 2

Orbits

35
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The results of this chapter were mostly published in [55] and [31].

2.1 The dilation functional and its properties

The following lemma introduces dilation functionals ϕ, ϕfin and ϕcut on E,
which are a priori non-linear. The behavior of these functionals on the positive
part E+ of E provides the key to our main question on orbits.

Lemma 2.1.1. Let E be a fully symmetric quasi-Banach space either on the
interval (0, 1) or on the semi-axis. For every x ∈ E, the following limit exists
and is finite.

ϕ(x) = lim
s→∞

1
s
‖σs(x∗)‖E , x ∈ E. (2.1)

Proof. We prove that the function

s→ 1
s
‖σsx∗‖E

is decreasing. Let s2 > s1. We have s2 = s3s1 and s3 > 1. Note that according
to the semi-group property of the operators στ ,

σs2(x∗) = σs3s1(x∗) = σs3(σs1(x∗)).

Therefore,

1
s2
‖σs3(σs1(x∗))‖E ≤

||σs3‖E→E
s2

‖σs1(x∗)‖E ≤
1
s1
‖σs1(x∗)‖E ,

since
‖σs3‖E→E ≤ s3.

It follows immediately that the limit in (2.1) exists.

Lemma 2.1.2. Let E be a fully symmetric quasi-Banach space on the semi-axis.
The following limits exist and are finite.

ϕfin(x) = lim
s→∞

1
s
‖σs(x∗)χ[0,1]‖E , x ∈ E, (2.2)

ϕcut(x) = lim
s→∞

1
s
‖σs(x∗)χ[0,s]‖E , x ∈ E. (2.3)

Proof. It is trivial to see that

σs(x∗χ[0,1]) = σs(x∗)χ[0,s].

Therefore,
ϕcut(x) = ϕ(x∗χ[0,1]).

Hence, existence of the limit in (2.3) follows from Lemma 2.1.1.
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It is trivial to see that the operators ζτ defined as

ζs(x) = σs(x)χ[0,1], s ≥ 1

also satisfy the semi-group property. Thus, existence of the limit in (2.2) follows
mutatis mutandi.

Note that we assumed continuity of the quasi-norm in the introduction.
According to the Corollary 1.2.27, this is not a restriction.

Lemma 2.1.3. If E is a fully symmetric quasi-Banach space either on the
interval (0, 1) or on the semi-axis, then, the functional ϕ defined by (2.1) is
continuous. If E = E(0,∞) then the functionals ϕfin and ϕcut are also contin-
uous.

Proof. According to the Aoki-Rolewicz theorem 1.2.26, we may assume that our
quasi-norm satisfies inequality (1.8) with some p < 1. It follows that

| ‖x1‖pE − ‖y1‖pE | ≤ ‖x1 − y1‖pE .

Note the elementary inequality

|a1/p − b1/p| ≤ 1
p
|a− b| · (max{a, b})1/p−1.

Substitute a = ‖x1‖pE and b = ‖y1‖pE . It follows that

| ‖x1‖E − ‖y1‖E | ≤
1
p
‖x1 − y1‖pE · (max{‖x1‖E , ‖y1‖E})1−p.

Substitute x1 = s−1σs(x∗) and y1 = s−1σs(y∗). It follows that

| 1
s
‖σs(x∗)‖E−

1
s
‖σs(y∗)‖E | ≤

1
p
‖1
s
σs(x∗−y∗)‖pE max{1

s
‖σs(x∗)‖E ,

1
s
‖σs(y∗)‖E}1−p.

Letting s→∞, it is clear that

|ϕ(x)− ϕ(y)| = lim
s→∞

| ‖1
s
σs(x∗)‖E − ‖

1
s
σs(y∗)‖E |.

Evidently,

‖1
s
σs(x∗)‖E ≤ ‖x‖E , ‖

1
s
σs(y∗)‖E ≤ ‖y‖E

and
1
s
‖σs(x∗ − y∗)‖E ≤ ‖x∗ − y∗‖E ≤ ‖x− y‖E .

Therefore,

|ϕ(x)− ϕ(y)| ≤ 1
p
‖x− y‖pE · (max{‖x‖E , ‖y‖E})1−p.

The proof for ϕfin and ϕcut follows mutatis mutandi.
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The assertion of Lemma 2.1.3 can be significantly improved.

Lemma 2.1.4. Let E be a fully symmetric quasi-Banach space either on the
interval (0, 1) or on the semi-axis. If x, y ∈ E, then

|ϕ(x)− ϕ(y)| ≤ 1
p
ϕ(x− y)p(max{ϕ(x), ϕ(y)})1−p.

The proof follows that of Lemma 2.1.3 mutatis mutandi.

Corollary 2.1.5. Let E be a fully symmetric quasi-Banach space either on
the interval (0, 1) or on the semi-axis. If x, y ∈ E and ϕ(x − y) = 0, then
ϕ(x) = ϕ(y).

Lemma 2.1.6. Let E be a fully symmetric quasi-Banach space.

i) If x, y ∈ E are equimeasurable, then ϕ(y) = ϕ(x).

ii) If x, y ∈ E satisfy |y| ≤ |x|, then ϕ(y) ≤ ϕ(x).

iii) ϕ(x) ≤ ‖x‖E for every x ∈ E.

iv) If x, y ∈ E satisfy y ≺≺ x, then ϕ(y) ≤ ϕ(x).

If, in addition, E = E(0,∞), then ϕfin and ϕcut also satisfy the same properties.

Proof. (i) If x and y are equimeasurable, then x∗ = y∗. Therefore,

ϕ(x) = lim
s→∞

1
s
‖σs(x∗)‖E = lim

s→∞

1
s
‖σs(y∗)‖E = ϕ(y).

(ii) If |y| ≤ |x|, then y∗ ≤ x∗. Therefore,

ϕ(y) = lim
s→∞

1
s
‖σs(y∗)‖E ≤ lim

s→∞

1
s
‖σs(x∗)‖E = ϕ(x).

(iii) This follows from the fact that ‖σs(x∗)‖E ≤ s‖x‖E .
(iv) According to Lemma 1.2.48, we have

y ≺≺ x =⇒ σs(y∗) ≺≺ σs(x∗)

for every s > 0. Since E is fully symmetric, it now follows that

‖σs(y∗)‖E ≤ ‖σs(x∗)‖E

for every s > 0. Therefore,

ϕ(y) = lim
s→∞

1
s
‖σs(y∗)‖E ≤ lim

s→∞

1
s
‖σs(x∗)‖E = ϕ(x).

Lemma 2.1.7. Let E be a fully symmetric quasi-Banach space.
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1. If E = E(0, 1) is a space on the interval (0, 1) and if x ∈ L∞, then
ϕ(x) = 0.

2. If E = E(0,∞) is a space on the semi-axis and if x ∈ L∞ ∩ E, then
ϕfin(x) = 0.

3. If E = E(0,∞) 6⊆ L1 and if x ∈ E ∩ L∞, then ϕcut(x) = 0.

4. The functional ϕ vanishes on every separable space E = E(0, 1).

Proof. The proofs are straightforward, but are included for completeness.

1. If x ∈ L∞(0, 1), then
ϕ(x) ≤ ‖x‖∞ϕ(1) = 0.

2. If x ∈ L∞(0,∞) ∩ E(0,∞), then

ϕfin(x) ≤ ‖x‖∞ϕfin(χ(0,1)) = 0.

3. Note that E(0,∞) 6⊂ L1(0,∞) implies that ‖χ(0,s)‖E = o(s). Thus, if
x ∈ L∞(0,∞) ∩ E(0,∞), then

ϕfin(x) ≤ ‖x‖∞ϕfin(χ(0,1)) = ‖x‖∞ lim
s→∞

1
s
‖χ(0,s)‖E = 0.

4. If E is separable, then the bounded functions are dense in E. Therefore,
it is sufficient to prove that ϕ vanishes on such functions. The proof now
follows as in (3).

Lemma 2.1.8. Let E be a fully symmetric quasi-Banach space either on the
interval (0, 1) or on the semi-axis. If x ∈ E, then

ϕ(στ (x∗)) = τϕ(x), ∀τ > 0. (2.4)

If E = E(0,∞), then ϕfin satisfies (2.4). If E = E(0,∞) 6⊂ L1(0,∞), then
ϕcut also satisfies (2.4).

Proof. Applying the semigroup property of the dilation operators στ , we obtain
that

lim
s→∞

1
s
||σs(στ (x∗))||E = τ lim

τ→∞

1
sτ
||σsτ (x∗)||E = τϕ(x).

The proof for ϕfin follows mutatis mutandi. Assume now that E = E(0,∞) 6⊂
L1(0,∞). It follows from the above that

ϕcut(στ (x∗)) = ϕ(στ (x∗)χ(0,1)) = ϕ(στ (x∗χ(0,τ−1))) = τϕ(x∗χ(0,τ−1)).

Note that x∗χ(τ−1,1) is a bounded function. Therefore, ϕ(x∗χ(τ−1,1)) = 0. It
now follows from the Corollary 2.1.5 that

ϕ(x∗χ(0,τ−1)) = ϕ(x∗χ(0,1)) = ϕcut(x).

and the proof is complete.
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Lemma 2.1.9. Let E be a fully symmetric quasi-Banach space. For all 0 ≤
x1, . . . , xk ∈ E and numbers λ1, . . . , λk ≥ 0

ϕ(
k∑
i=1

λixi) = ϕ(
k∑
i=1

λix
∗
i ).

If E = E(0,∞), then the same statement is valid for ϕfin. If, in addition,
E 6⊆ L1, then the same assertion is valid for ϕcut.

Proof. Applying the inequality (1.9) n times, we have for positive functions
x1, . . . , x2n

(x∗1 + . . .+ x∗2n) ≺≺ 2nσ2−n(x1 + . . .+ x2n).

Therefore, by Lemma 2.1.6(iv),

ϕ(x∗1 + . . .+ x∗2n) ≤ ϕ(2nσ2−n(x1 + . . .+ x2n)∗).

By Lemma 2.1.8, the equality (2.4) holds. Therefore,

ϕ(2nσ2−n(x1 + . . .+ x2n)∗) = ϕ(x1 + . . .+ x2n).

Therefore,
ϕ(x∗1 + . . .+ x∗2n) ≤ ϕ(x1 + . . .+ x2n).

The converse inequality follows trivially from (1.5) and Lemma 2.1.6(iv).
The assertion of Lemma follows now from the continuity of the functional ϕ

(see Lemma 2.1.3).

2.2 Linearity and non-linearity of ϕ and related
functionals

The following proposition proves that the functional ϕ cannot be linear on the
positive cone of E unless it is 0. However, as will be shown in Proposition 2.2.4,
it is indeed the case that ϕ is additively homogeneous on the positive cone
generated by Q+

E(x) for all x ∈ E. Note, that y and z in the proposition below
are arbitrary, that is y, z do not necessary belong to Q+

E(x).

Proposition 2.2.1. Let E be a fully symmetric quasi-Banach space equipped
with a Fatou quasi-norm. If x ≥ 0 ∈ E, then, in each of the following cases,
there exists a decomposition x = y + z, such that y, z ≥ 0 and such that the
following assertions hold.

i) If E = E(0, 1), then ϕ(x) = ϕ(y) = ϕ(z).

ii) If E = E(0,∞) and ϕcut(x) = 0, then ϕ(x) = ϕ(y) = ϕ(z).

iii) If E = E(0,∞), then ϕfin(x) = ϕfin(y) = ϕfin(z).

iv) If E = E(0,∞), then ϕcut(x) = ϕcut(y) = ϕcut(z).



CHAPTER 2. ORBITS 41

Proof. We will prove only the first assertion. The proofs of the third and fourth
assertions are exactly the same. The proof of the second assertion requires
replacement of the interval [ 1

m ,
1
n ] with the interval [n,m].

We may assume that x = x∗. Fix n ∈ N. If m→∞, then we obtain

σn(xχ[ 1
m ,

1
n ]) ↑ σn(xχ[0, 1

n ])

almost everywhere. By the definition of a Fatou quasi-norm, it follows that

‖σn(xχ[ 1
m ,

1
n ])‖E →m ‖σn(xχ[0, 1

n ])‖E .

For each n ∈ N, one can select f(n) > n, such that

‖σn(xχ[ 1
f(n) ,

1
n ])‖E ≥ (1− 1

n
)‖σn(xχ[0, 1

n ])‖E . (2.5)

Fix some n0 and set nk = fk(n0), k ∈ N. Here, fk = f ◦ . . .◦f (k times). Define

y =
∞∑
k=0

xχ[ 1
n2k+1

, 1
n2k

],

z =
∞∑
k=1

xχ[ 1
n2k

, 1
n2k−1

].

It is clear that
1
n2k
‖σn2k(y∗)‖E ≥

1
n2k
‖σn2k(y)‖E .

On the other hand,
σn2ky ≥ σn2k(xχ[ 1

n2k+1
, 1
n2k

]).

It follows that

1
n2k
‖σn2k(y∗)‖E ≥

1
n2k
‖σn2k(xχ[ 1

n2k+1
, 1
n2k

])‖E . (2.6)

By definition of the sequence nk, we have n2k+1 = f(n2k). Applying the in-
equality 2.5, we obtain that

‖σn2k(xχ[ 1
n2k+1

, 1
n2k

])‖E ≥ (1− 1
n2k

)‖σn2k(xχ[0, 1
n2k

])‖E . (2.7)

Note the inequality

1
n2k
‖σn2k(xχ[0, 1

n2k
])‖E ≥ ϕ(xχ[0, 1

n2k
]). (2.8)

It follows from (2.6), (2.7) and (2.8) that

1
n2k
‖σn2k(y∗)‖E ≥ (1− 1

n2k
)ϕ(xχ[0, 1

n2k
]). (2.9)
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By Lemma 2.1.7, ϕ(xχ[ 1
n2k

,1]) = 0. It follows from Corollary 2.1.5 that

ϕ(xχ[0, 1
n2k

]) = ϕ(x). (2.10)

It follows from (2.9) and (2.10) that

1
n2k
‖σn2k(y∗)‖E ≥ (1− 1

n2k
)ϕ(x).

Passing to the limit, we obtain ϕ(y) ≥ ϕ(x). The converse inequality is obvious.
Hence, ϕ(y) = ϕ(x) = ϕ(z), and this completes proof of the proposition.

The following assertion says that the functionals ϕ, ϕfin, ϕcut take only one
value on the whole set Q′E(x)

Lemma 2.2.2. Let E be a fully symmetric quasi-Banach space and let x ∈ E.

1. For every y ∈ Q′E(x), we have

ϕ(y) = ϕ(x).

2. If, in addition, E = E(0,∞), then

ϕfin(y) = ϕfin(x)

for every y ∈ Q′E(x).

3. If E = E(0,∞) 6⊆ L1(0,∞), then

ϕcut(y) = ϕcut(x)

for every y ∈ Q′E(x).

Proof. We will only prove the first assertion because the second and third state-
ments are proved in exactly the same way.

Since ϕ is a continuous functional (see Lemma 2.1.3), it follows that we only
need to prove the assertion for y ∈ Q′(x). Every y ∈ Q′(x) can be written as

y =
s∑
i=1

λixi,

where λi ≥ 0,
∑s
i=1 λi = 1, xi ≥ 0 and x∗i = x. By Lemma 2.1.9, we obtain

ϕ(y) = ϕ(
s∑
i=1

λixi) = ϕ(
s∑
i=1

λix
∗
i ).

However,
s∑
i=1

λix
∗
i = x∗.

Therefore, ϕ(y) = ϕ(x).
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The following definition is a weak form of linearity.

Definition 2.2.3. If A is a convex set, then real function θ defined on the cone
generated by A is called additively homogeneous if and only if

θ(αy1 + βy2)) = αθ(y1) + βθ(y2), y1, y2 ∈ A, α, β ∈ R+.

Proposition 2.2.4. If E is a fully symmetric quasi-Banach space and if x ∈ E,
then the following assertions hold.

i) If E = E(0, 1), then ϕ is additively homogeneous on Q+
E(x).

ii) If E = E(0,∞), then ϕfin is additively homogeneous on Q+
E(x).

iii) If E = E(0,∞) 6⊆ L1(0,∞), then ϕcut is additively homogeneous on Q+
E(x).

Proof. We will only prove the first assertion. The proofs of the other two asser-
tions are exactly the same.

Since the functional ϕ is continuous (see Lemma 2.1.3), it follows that we
only need to prove that ϕ is additive homogeneous on Q+(x). We may assume
that α+ β = 1. Fix y1, y2, y3 ∈ Q+(x) such that

y3 = αy1 + βy2.

These three elements can be written as

yj =
m∑
i=1

λijxi.

Here, λij ≥ 0,
m∑
i=1

λij = 1, λi3 = αλi1 + βλi2.

xi ≥ 0 and x∗i = x∗χ[0,βi]. Define functions zj and uj by the formulae.

zj =
m∑
i=1

λijx
∗
i , uj =

∑
βi>0

λijx
∗.

It follows from Lemma 2.1.9 that ϕ(yj) = ϕ(zj) for j = 1, 2, 3.
If βi > 0, then x∗i −x∗ is a bounded function. Hence, uj−zj is also bounded

and, therefore, ϕ(uj − zj) = 0 for j = 1, 2, 3. By Corollary 2.1.5, we obtain
ϕ(zj) = ϕ(uj). It follows that

ϕ(yj) = ϕ(u1) =
∑
βi>0

λijϕ(x).

Therefore,
αϕ(y1) + βϕ(y2) = ϕ(y3)

and this concludes the proof.
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Proposition 2.2.5. Let E = E(0,∞) be a fully symmetric quasi-Banach space
on the semi-axis equipped with a Fatou quasi-norm. Suppose that E = E(0,∞) 6⊆
L1(0,∞) and x ∈ E. If Ω+(x) = Q+

E(x), then ϕ is additively homogeneous on
Ω+(x).

Proof. It follows from Proposition 2.2.4 that ϕcut is additively homogeneous
on Q+

E(x). By assumption, Ω+(x) = Q+
E(x). Hence, ϕcut is additively homo-

geneous on Ω+(x). It follows now from Proposition 2.2.1(iv) that ϕcut(x) = 0.
Hence, ϕ(x∗χ[0,1]) = 0. Since x∗χ[1,β] is bounded, it follows that ϕ(x∗χ[1,β]) = 0.
According to the Corollary 2.1.5, we obtain ϕ(x∗χ[0,β]) = 0 for every finite β.

Since the functional ϕ is continuous (see Lemma 2.1.3), it follows that we
only need to prove that ϕ is additively homogeneous on Q+(x).

We may assume that α+ β = 1. Fix y1, y2, y3 ∈ Q+(x) such that

y3 = αy1 + βy2.

These three elements can be written as

yj =
m∑
i=1

λijxi.

Here, λi ≥ 0,
m∑
i=1

λij = 1, λi3 = αλi1 + βλi2.

xi ≥ 0 and x∗i = x∗χ[0,βi]. Define functions zj and uj by the formulae.

zj =
m∑
i=1

λijx
∗
i , uj =

∑
βi<∞

λijx
∗
i ,

vj =
∑
βi=∞

λijx
∗
i =

∑
βi=∞

λijx
∗.

It follows from Lemma 2.1.9 that ϕ(yj) = ϕ(zj) for j = 1, 2, 3.
Clearly, zj = uj + vj . If β = maxβi<∞ βi, then

uj ≤ x∗χ[0,β] =⇒ ϕ(uj) ≤ ϕ(x∗χ[0,β]) = 0.

Since ϕ(uj) = 0, it follows from Corollary 2.1.5 that ϕ(uj + vj) = ϕ(vj).
Hence,

ϕ(yj) = ϕ(zj) = ϕ(uj + vj) = ϕ(vj) =
∑
βi=∞

λijϕ(x)

for j = 1, 2, 3. Therefore,

αϕ(y1) + βϕ(y2) = ϕ(y3)

and the proof is complete.



CHAPTER 2. ORBITS 45

2.3 Further properties of the sets QE(x)

We now summarize some properties of the sets QE(x).

Lemma 2.3.1. The closure of a convex set is a closed convex set.

Proof. Let A be a convex set and let x1, x2 ∈ A. Let λ ∈ (0, 1). Our aim is to
prove that λx1 + (1− λ)x2 ∈ A.

Fix ε > 0. There exist y1, y2 ∈ A such that ‖yi − xi‖E ≤ ε for i = 1, 2. It
follows that

‖(λx1 + (1− λ)x2)− (λy1 + (1− λy2))‖E = ‖λ(x1 − y1) + (1− λ)(x2 − y2)‖E ≤

≤ C(E)(λ‖x1 − y1‖E + (1− λ)‖x2 − y2‖E) ≤ C(E)ε.

Since ε > 0 is arbitrary, the proof is complete.

Corollary 2.3.2. The sets QE(x), Q+
E(x) and Q′E(x) are closed convex sets.

Lemma 2.3.3. Let E be a symmetric quasi-Banach space on the interval (0, 1)
and let x ∈ E. If 0 ≤ z ∈ QE(x) and |y| ≤ z, then y ∈ QE(x).

Proof. Fix n ∈ N. Define sets ei, f1i and f2i i = 1− n, . . . , n by the formulae

ei = {t :
i− 1
n

z(t) ≤ y(t) <
i

n
z(t)},

f1i = {t : y(t) ≥ k

n
z(t)}, f2i = {t : y(t) <

k

n
z(t)}.

Define functions zk, k = 1− n, . . . , n by the formula

zk = zχf1k − zχf2k .

It is clear that for t ∈ ei, zk(t) = −z(t) if k ≥ i and zk(t) = z(t) if k < i.
Therefore, for t ∈ ei,

n∑
k=1−n

zk(t) = z(t)(
i−1∑

k=1−n

1−
n∑
k=i

1) = 2z(t)(i− 1).

Thus,

| 1
2n

n∑
k=1−n

zk − y| ≤
1
n
z. (2.11)

Note that zk is equimeasurable with z and, therefore, zk ∈ QE(x). However,
QE(x) is a convex set. Therefore,

1
2n

n∑
k=1−n

zk ∈ QE(x).



CHAPTER 2. ORBITS 46

It follows from the inequality (2.11) that

‖ 1
2n

n∑
k=1−n

zk − y‖E ≤
1
n
‖z‖E .

Thus,

dist(y,QE(x)) ≤ 1
n
‖z‖E .

Since n is arbitrarily large and QE(x) is a closed set, this suffices to complete
the proof of the lemma.

A stronger version of Lemma 2.3.3 is given below in Lemma 2.3.8.
The following assertion seems to be known. We include details of proof for

lack of a convenient reference.

Lemma 2.3.4. Let E be a symmetric quasi-Banach space either on the interval
(0, 1) or on the semi-axis and let x ∈ E. If y ∈ Q′E(z) and z ∈ Q′E(x), then
y ∈ Q′E(x).

Proof. Without loss of generality, y = y∗, z = z∗ and x = x∗. Let y ∈ Q′E(z).
Hence, for every ε > 0, one can find n ∈ N, λi ∈ R+ and positive measurable
functions zi ∼ z, i = 1, . . . , n, such that

∑n
i=1 λi = 1 and

‖y −
n∑
i=1

λizi‖E ≤ ε.

By assumption, z ∈ Q′E(x). Since zi are equimeasurable with z, it follows
that zi ∈ Q′E(x) for all 1 ≤ i ≤ n. However, the set Q′E(x) is convex by Lemma
2.3.2. Therefore,

n∑
i=1

λizi ∈ Q′E(x).

Thus,
dist(y,Q′E(x)) ≤ ε.

Since Q′E(x) is a closed set, it follows that y ∈ Q′E(x).

Remark 2.3.5. The collection of sets {QE(x), x ∈ E} also satisfies the tran-
sitivity property expressed in Lemma 2.3.4. We do not know whether this is
always the case for the collection {Q+

E(x), x ∈ E}.

Proposition 2.3.6. Let E = E(0,∞) be a fully symmetric quasi-Banach space
on the semi-axis and let x ∈ E. If ϕ(x) = 0, then, xχA ∈ Q′E(x) for every
Lebesgue measurable subset A ⊆ (0,∞).

Proof. Fix n ∈ N. Our first claim is that we can split the semi-axis into the union
of two disjoint sets B and C such that m(B) = m(A) and m(C) = nm(R+\A).

Note that sets A and R+\A cannot simultaneously have finite measure. If
m(A) < ∞, then B = (0,m(A)) and C = (m(A),∞). If m(R+\A) < ∞,
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then C = (0, nm(R+\A)) and B = (nm(R+\A),∞). If m(R+\A) = ∞ and
m(A) = ∞, then B = ∪∞n=0(2n, 2n + 1) and C = ∪∞n=1(2n − 1, 2n). Clearly, in
every particular case, sets B and C satisfy the required assumptions.

Since m(C) = nm(R+\A), the set C can be written as a union of disjoint sets
C = ∪ni=1Ci such that m(Ci) = m(R+\A). Fix measure-preserving bijections
γ : B → A and γi : Ci → R+\A.

Define functions xi, 1 ≤ i ≤ n, in the following manner. If t ∈ B, then
xi(t) = x(γ(t)). If t ∈ Ci, then xi(t) = x(γi(t)) and xj(t) = 0 for j 6= i. It is
clear that functions xi are equimeasurable with x. Clearly, the functions xiχC
are disjoint and equimeasurable. Since (xiχC)∗ ≤ x∗, it follows that

(
1
n

n∑
i=1

xiχC)∗ ≤ 1
n
σn(x∗). (2.12)

Note, however, that

1
n

n∑
i=1

xiχC =
1
n

n∑
i=1

xi − (x ◦ γ)χB . (2.13)

It follows from (2.13) and (2.12) that

dist(xχA,Q′E(x)) = dist((x ◦ γ)χB ,Q′E(x)) ≤ 1
n
‖σn(x∗)‖E .

Since the latter expression tends to 0 as n→∞ and Q′E(x) is a closed set, this
suffices to complete the proof of the proposition.

Corollary 2.3.7. Let E = E(0,∞) be a fully symmetric quasi-Banach space
on the semi-axis and let x ∈ E. If ϕ(x) = 0, then yχA ∈ Q′E(x) for every
y ∈ Q′E(x).

Proof. It follows from the assumption and Lemma 2.2.2 that ϕ(y) = ϕ(x) = 0.
Lemma 2.3.6 implies that yχA ∈ Q′E(y). Since yχA ∈ Q′E(y) and y ∈ Q′E(x), it
follows from Lemma 2.3.4 that yχA ∈ Q′E(x).

An assertion somewhat similar to the lemma below is contained in [11,
Lemma 1.3].

Lemma 2.3.8. Let E = E(0,∞) be a fully symmetric quasi-Banach space on
the semi-axis and let x ∈ E. Suppose that ϕ(x) = 0. If y ∈ Q′E(x) and 0 ≤ z ≤ y,
then, z ∈ Q′E(x).

Proof. Fix n ∈ N. Define sets ei and fi, i = 1, . . . , n by

ei = {t :
i− 1
n

y(t) ≤ z(t) < i

n
y(t)},

fi =
⋃

i≤(n+j)/2

ej .
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Define functions yk, k = 1, . . . , n by the formula

yk = y
∑

k≤(i+n)/2

χei = yχfk .

By Corollary 2.3.7, yk ∈ Q′E(x). Since the set Q′E(x) is convex, it follows that

1
n

n∑
k=1

yk ∈ Q′E(x).

On the other hand, if t ∈ ei, then yk(t) = y(t) if k ≤ (i+n)/2 and yk(t) = 0
otherwise. Therefore,

n∑
k=1

yk(t) = y(t)
∑

k≤(i+n)/2

1 = y(t)[
i+ n

2
], ∀t ∈ ei,

and so

| 1
n

n∑
k=1

yk −
1
2

(y + z)| ≤ 2y
n
.

Thus,

dist(
y + z

2
,Q′E(x)) ≤ 2

n
‖y‖E .

Letting n→∞, it follows that (y + z)/2 ∈ Q′E(x).
Repeat this process m times and obtain

2−m((2m − 1)z + y) ∈ Q′E(x).

Hence,
dist(z,Q′E(x)) ≤ 2−m‖y − z‖E .

Letting m→∞, it follows that z ∈ Q′E(x).
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2.4 Elements of the form P (x|A).

Lemma 2.4.1. Let E = E(0,∞) be a fully symmetric quasi-Banach space
on the semi-axis and let x ∈ E. Suppose that E = E(0,∞) 6⊆ L1(0,∞). If
P (x|A) ∈ Q′E(x) for every A ∈ A, then ϕcut(x) = 0.

Proof. Suppose that x = x∗. Set A = {[0, 1]} and y = P (x|A) ∈ E ∩ L∞. By
assumption, y ∈ Q′E(x). From Lemma 2.2.2 and Lemma 2.1.7, it follows that
ϕcut(x) = ϕcut(y) = 0.

Lemma 2.4.2. Let E and x be as in Lemma 2.4.1. If L∞ ⊆ E, then ϕ(x) = 0.

Proof. Due to the choice of E, we have 1 ∈ E. However, στ (1) = 1 implies
ϕ(1) = 0. Thus, for every z ∈ E ∩ L∞, we have ϕ(z) = 0. However, for every
x ∈ E, we have ϕ(x∗χ[0,1]) = 0 due to Lemma 2.4.1. Hence,

0 ≤ ϕ(x) = ϕ(x∗) ≤ C(E)(ϕ(x∗χ[0,1]) + ϕ(x∗χ[1,∞))) = 0 + 0 = 0.

Define ω(x, y), x, y ∈ E, by setting

ω(x, y) := lim sup
t→∞

∫ t
0
y∗(s)ds∫ t

0
x∗(s)ds

.

Clearly, ω(x, y) is either 0, or a finite non-zero number or ∞.

Lemma 2.4.3. Let E and x be as in Lemma 2.4.1. If y ∈ E ∩ L∞, then
ϕ(y) ≤ ω(x, y)ϕ(x).

Proof. Fix ε > 0. There exists T > 0, such that for every t > T,∫ t

0

y∗(s) ≤ (ω(x, y) + ε)
∫ t

0

x∗(s)ds.

On the other hand, for every t < T, we have∫ t

0

y∗(s)ds ≤
∫ t

0

‖y‖∞χ[0,T ](s)ds.

One can unify theses inequalitites and obtain∫ t

0

y∗(s)ds ≤
∫ t

0

((ω(x, y) + ε)x∗ + ‖y‖∞χ[0,T ])(s)ds.

Therefore,
y ≺≺ (ω(x, y) + ε)x∗ + ‖y‖∞χ[0,T ]

and
ϕ(y) ≤ ϕ((ω(x, y) + ε)x∗ + ‖y‖∞χ[0,T ]).
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Note that ϕ(χ[0,T ]) = 0 since E 6⊂ L1. Therefore, by Remark 2.1.4,

ϕ((ω(x, y) + ε)x∗ + ‖y‖∞χ[0,T ]) = (ω(x, y) + ε)ϕ(x).

Hence,
ϕ(y) ≤ (ω(x, y) + ε)ϕ(x).

Since ε > 0 is arbitrary, the assertion of the lemma follows.

Lemma 2.4.4. Let E and x be as in Lemma 2.4.1. If y ∈ E ∩ L∞, then
ϕ(y) ≥ ω(x, y)ϕ(x). In particular, if in addition ϕ(x) > 0, then ω(x, y) <∞.

Proof. Without loss of generality, y = y∗ and x = x∗.
Now, fix ω < ω(x, y). There exists a sequence tk ↑ ∞, such that∫ tk

0

y∗(s)ds ≥ ω
∫ tk

0

x∗(s)ds.

Without loss of generality, t0 = 0.
Let A be the partition of (0,∞) given by A = {[tk, tk+1)}∞k=1.
It then follows that

ω

∫ t

0

P (x|A)∗(s)ds ≤
∫ t

0

y∗(s)ds

for arbitrary t > 0. Therefore,

ωP (x|A) ≺≺ y

and
ωϕ(P (x|A)) ≤ ϕ(y).

However, P (x|A) ∈ Q′E(x) by assumption. It follows from Lemma 2.2.2 that

ωϕ(x) = ωϕ(P (x|A)) ≤ ϕ(y).

Since ω can be arbitrarily close to ω(x, y), the lemma is established.

Corollary 2.4.5. Let E and x be as in Lemma 2.4.1. If y ∈ E ∩ L∞, then
ϕ(y) = ω(x, y)ϕ(x). In particular, if in addition ϕ(x) > 0, then ω(x, y) <∞.

Lemma 2.4.6. Let E and x be as in Lemma 2.4.1. If ϕ(x) = 0, then E ∩ L∞
is a Marcinkiewicz space Mψ such that

lim
t→∞

ψ(2t)
ψ(t)

= 1. (2.14)

Proof. Without loss of generality, x = x∗. Set A = {[0, 1]}. It follows from the
assumption that P (x|A) ∈ Q′E(x). Therefore, by Lemma 2.2.2, we have

ϕ(P (x|A)) = ϕ(x).
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Set

ψ(t) =
∫ t

0

P (x|A)∗(s)ds.

It follows from Corollary 2.4.5 that ω(x, y) is finite and, therefore,

lim sup
t→∞

1
ψ(t)

∫ t

0

y∗(s)ds <∞

for every y ∈ E ∩ L∞. Since both ψ′ and y are bounded functions, it follows
that

lim sup
t→0

1
ψ(t)

∫ t

0

y∗(s)ds =
‖y‖∞
‖ψ′‖∞

<∞.

Therefore, for every y ∈ E ∩ L∞, we have

sup
t

1
ψ(t)

∫ t

0

y∗(s)ds <∞

and, therefore, y ∈ Mψ. Hence, E ∩ L∞ ⊂ Mψ. However, ψ′ = x ∈ E ∩ L∞.
Therefore, Mψ ⊂ E ∩ L∞, and so E ∩ L∞ = Mψ.

In order to obtain 2.14, consider the function 2σ 1
2
ψ′. It follows that ϕ(2σ1/2ψ

′) =
ϕ(ψ′) by Lemma 2.1.8. Hence

ω(ψ′, 2σ1/2ψ
′)ϕ(ψ′) = ϕ(2σ1/2ψ

′)

and ω(ψ′, 2σ1/2ψ
′) = 1. However,

ω(ψ′, 2σ1/2ψ
′) = lim sup

t→∞

∫ t
0

2x(2s)ds∫ t
0
x(s)ds

= lim sup
t→∞

ψ(2t)
ψ(t)

.

Therefore,

lim sup
t→∞

ψ(2t)
ψ(t)

= 1

and the proof is complete.

Lemma 2.4.7. Let E be a symmetric quasi-Banach space. The set G defined
by the formula

G = {y ∈ E : ∃C sup
t≥1

y∗(t)
ψ′(Ct)

<∞}

is a linear space.

Proof. If y1, y2 ∈ G, then y∗i (t) ≤ C1ψ
′(C2t). Let y = ay1 + by2.

y∗(t) ≤ |a|y∗1(t/2) + |b|y∗2(t/2).

Hence, for t ≥ 2 we have

y∗(t) ≤ C1(a+ b)ψ′(C2t/2).
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If t ∈ (1, 2), then

y∗(t) ≤ λy∗1(1/2) + (1− λ)y∗2(1/2) = C3ψ
′(C2) ≤ C3ψ

′(C2t/2).

If C4 = max{C1(a+ b), C3}, then y∗(t) ≤ C4ψ
′(C2t/2) for every t ≥ 1.

Corollary 2.4.8. Let E and x be as in Lemma 2.4.6 and let ψ be as given in
the statement of Lemma 2.4.6. It follows that Q′E(x) ⊂ G, where G is the linear
space defined in Lemma 2.4.7

Proof. It is sufficient to prove that Q′(x) ⊂ G. Since x∗(t) = ψ′(t) for t ≥ 1, it
follows that x ∈ G. So is any y equimeasurable with x. However, the set of all
convex combinations of such functions is exactly Q′(x). The assertion follows
from the fact that G is a linear space.

Theorem 2.4.9. Let E be a fully symmetric quasi-Banach space either on the
interval (0, 1) or on the semi-axis and let x ∈ E. Suppose that P (x|A) ∈ Q′E(x)
for every partition A ∈ A.

1. If E = E(0, 1), then ϕ(x) = 0.

2. If E = E(0,∞) 6⊂ L1(0,∞), then ϕ(x) = 0.

3. If E = E(0,∞) ⊂ L1(0,∞), then ϕfin(x) = 0.

Proof. 1. Let E = E(0, 1) and x = x∗. Set A = {[0, 1]} and y = P (x|A).
By assumption, y ∈ Q′E(x). By Lemma 2.2.2 and Lemma 2.1.7, ϕ(x) =
ϕ(y) = 0.

2. Let E = E(0,∞) and L∞ ⊆ E 6⊆ L1. In this case, the assertion is proved
in Lemma 2.4.2.
Let E = E(0,∞) and suppose now that L∞ 6⊆ E 6⊆ L1. Note that E ∩
L∞ = Mψ according to Lemma 2.4.6. It follows from (2.14) that there
exists a sequence tk ↑ ∞, such that t0 = 0, t1 = 1 and for every k ∈ N

ψ(tk+1)− ψ(tk)
tk+1 − tk

≥ 2
3
ψ( 1

2 tk+1)
tk+1

.

Set A = {[tk, tk+1]} and z = P (x|A). It follows from the construction
given in [33] that

‖(z − y)χ[ 1
2 tk,tk]‖Mψ

≥ 1
4

for every y ∈ G and every sufficiently large k. However,

‖(y − z)χ[ 1
2 tk,tk]‖L∞ → 0.

Since Mψ = E ∩ L∞, it follows that

‖(z − y)χ[ 1
2 tk,tk]||E ≥

1
4

for sufficiently large k. In particular, ||y−z||E ≥ 1
4 . Hence, distE(z,G) ≥ 1

4
and distE(z,Q′(x)) ≥ 1

4 . This contradicts the assumption that P (x|A) ∈
Q′E(x).
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3. Let E = E(0,∞) and suppose that E ⊆ L1. Set A = {[0, 1]} and y =
P (x|A). By assumption, y ∈ Q′E(x). By Lemma 2.2.2 and Lemma 2.1.7,
it follows that ϕfin(x) = ϕfin(y) = 0.

Lemma 2.4.10. Let x ∈ L1(0, a) be arbitary. If, for every fixed n ∈ N,
x0, · · · , xn−1 are defined on the interval (0, a) by the formula

xi(t) = x((t+
ia

n
)moda),

then
1
a

∫ a

0

x(s)ds− 1
n

n−1∑
i=0

xi ≺≺
2
n
σn(x∗)χ(0,a).

Proof. Without loss of generality, a = 1 and x = x∗ on the interval (0, 1).
Set

z = x(t− i

n
), if

i

n
≤ t ≤ i+ 1

n
, 0 ≤ i ≤ n− 1.

Clearly, z is equimeasurable with σn(x∗)χ(0,1).
We will show that∫ 1

0

x(s)ds− 1
n

n−1∑
i=0

x((t+
i

n
)(mod1)) ≤

∫ 1
n

0

x(s)ds

and ∫ 1

0

x(s)ds− 1
n

n−1∑
i=0

x((t+
i

n
)(mod1)) ≥ − 1

n
z(t).

We will prove only the first inequality. The proof of the second one is identical.
Without loss of generality, t ∈ [0, 1

n ]. Clearly,

1
n
x(t+

i

n
) ≥

∫ i+2
n

i+1
n

x(s)ds

for i = 0, . . . , n− 2. Hence,∫ 1

0

x(s)ds− 1
n

n−1∑
i=0

x(t+
i

n
) =

∫ 1
n

0

x(s)ds− 1
n
x(t+

n− 1
n

)−

−
n−2∑
i=0

(
1
n
x(t+

i

n
)−

∫ i+2
n

i+1
n

x(s)ds) ≤
∫ 1

n

0

x(s)ds.

Therefore,

|
∫ 1

0

x(s)ds− 1
n

n−1∑
i=0

xi(t)| ≤
1
n

(z(t) +
∫ 1

0

z(s)ds) t ∈ [0, 1].
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However,

z +
∫ 1

0

z(s)ds ≺≺ 2z.

Hence,

|
∫ 1

0

x(s)ds− 1
n

n−1∑
i=0

xi| ≺≺
2
n
z.

Since z is equimeasurable with σn(x∗), it follows that

|
∫ 1

0

x(s)ds− 1
n

n−1∑
i=0

xi| ≺≺
2
n
σn(x∗)χ(0,1).

Theorem 2.4.11. Let E be a fully symmetric quasi-Banach space either on the
interval (0, 1) or on the semi-axis. If x ∈ E, then P (x|A) ∈ Q′E(x) for every
partition A ∈ A, provided that one of the following conditions is satisfied.

1. E = E(0, 1) and ϕ(x) = 0.

2. E = E(0,∞) is such that E 6⊆ L1 and ϕ(x) = 0.

3. E = E(0,∞) is such that E ⊆ L1 and ϕfin(x) = 0.

Proof. 1. Consider some partitionA. By the definition of the operator P (·|A),
we have for every t ∈ Ak, k ∈ N,

P (x|A)(t) =
1

m(Ak)

∫
Ak

x(s)ds.

Fix n ∈ N. By Lemma 2.4.10, there exist functions xik, 0 ≤ i ≤ n− 1, on
the set Ak equimeasurable with xχAk such that

1
m(Ak)

∫
Ak

x(s)ds− 1
n

n−1∑
i=0

xik ≺≺
2
n
σn((xχAk)∗)χ(0,m(Ak)), k ∈ N.

(2.15)

Let now

xi =
∑
k

xikχAk + xχ(0,∞)\∪kAk , 0 ≤ i ≤ n− 1.

Clearly, xi are equimeasurable with x.

Let zk be a function on Ak such that

z∗k = σn((xχAk)∗)χ(0,m(Ak)), k ∈ N

and let z =
∑
k zk.
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It follows from the (2.15) and Lemma 1.2.14 that

P (x|A)− 1
n

n−1∑
i=0

xi ≺≺
2
n
z.

However,
{t : z(t) > s} = ∪k{t ∈ Ak : zk(t) > s}.

It follows that

m({t ∈ Ak : zk(t) > s}) ≤ nm({t ∈ Ak : x(t) > s}).

Therefore,

m({t : z(t) > s}) ≤ n
∑
k

m({t ∈ Ak : x(t) > s}) = nm({t : x(t) > s}),

and so z∗ ≤ σn(x∗) and

P (x|A)− 1
n

n−1∑
i=0

xi ≺≺
2
n
σn(x∗).

2. Repeat the previous argument mutatis mutandi.

3. The assertion follows from Theorem 2.7.9.
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2.5 The Mekler theorem

The Mekler theorem (see Theorem 2.5.8 below) is a remarkable result which
connects arbitrary elements of the orbit Ω(x) with those generated by the ex-
pectation operators.

The principle ideas of the proofs are due to Mekler, but our approach is
simpler and more general. For example, the original Mekler result was only
available for functions on the interval (0, 1), while our result is valid also on the
semi-axis.

The original proof of Mekler required very complicated machinery. We elim-
inate any need for this complexity and use a theorem due to Birkhoff instead.

We set the notion of

y / x⇐⇒
∫ t

0

y∗(s)ds <
∫ t

0

x∗(s)ds ∀t.

Lemma 2.5.1. Let x = x∗ ∈ L1(0, 1) and y = y∗ ≺≺ x. If q ∈ (0, 1) is a
constant, then there exists a sequence tn → 0 such that qyχ[tn,1] / xχ[tn,1].

Proof. Fix a sequence tn ↓ 0. If there exists a subsequence {sk}∞k=1 ⊂ {tn}∞n=1

such that qyχ(sk,1) / xχ(sk,1), then the proof is finished. Otherwise, qyχ(tn,1) 6
xχ(tn,1) for all sufficiently large n. Without loss of generality, qyχ(tn,1) 6 xχ(tn,1)

for all n ∈ N. Let Bn, n ≥ 1, be the set of all t ≥ tn such that∫ t

tn

qy∗(s)ds ≥
∫ t

tn

x∗(s)ds.

Clearly, Bn is a closed set. Therefore, un = supBn ∈ Bn. In particular,∫ t

tn

qy∗(s)ds <
∫ t

tn

x∗(s)ds ∀t > un. (2.16)

Assume first that there is a subsequence of the sequence {un}∞n=1 which
converges to 0. Passing to this subsequence, it may be assumed that un converges
to 0. If there exists a subsequence {vk}∞k=1 ⊂ {un}∞n=1 such that qyχ(vk,1) /
xχ(vk,1), then the proof is finished. Otherwise, qyχ(un,1) 6 xχ(un,1) for all
sufficiently large n. Without loss of generality, qyχ(un,1) 6 xχ(un,1) for all n ∈ N.
Thus, there exists wn > un such that∫ wn

un

qy∗(s)ds ≥
∫ wn

un

x∗(s)ds.

It follows that ∫ wn

tn

qy∗(s)ds ≥
∫ vn

wn

x∗(s)ds,

which contradicts (2.16).
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Let now the sequence {un}∞n=1 be bounded away from 0. Without loss of
generality, un → u > 0. Therefore,∫ u

0

qy∗(s)ds = lim
n→∞

∫ un

tn

qy∗(s)ds ≥ lim
n→∞

∫ un

tn

x∗(s)ds =
∫ u

0

x∗(s)ds.

The latter is impossible because y ≺≺ x and 0 < q < 1.

This lemma cannot be extended to the case of the semi-axis, as the following
example shows.

Example 2.5.2. Let x = x∗ = χ[0,1]. If y = y∗ is such that ‖y‖L1∩L∞ ≤ 1, then
y ≺≺ x. If, in addition, the support of y has infinite measure, then qyχ(t,∞) 6
xχ(t,∞) for every t > 1.

However, if x is non-integrable, then an extension of Lemma 2.5.1 to the
case of the semi-axis does exist.

Lemma 2.5.3. Let x = x∗ ∈ (L1 + L∞)(0,∞) and x /∈ L1(0,∞). Let y =
y∗ ≺≺ x and let q ∈ (0, 1) be a constant. Then there exists a sequence tn →∞
such that qyχ[tn,∞) / xχ[tn,∞).

Proof. Fix a sequence tn ↑ ∞. If there exists a subsequence {sk}∞k=1 ⊂ {tn}∞n=1

such that qyχ(sk,∞)/xχ(sk,∞), then the proof is finished. Otherwise, qyχ(tn,∞) 6
xχ(tn,∞) for all sufficiently large n. Without loss of generality, qyχ(tn,∞) 6
xχ(tn,∞) for all n ∈ N. Let Bn, n ≥ 1, be the set of all t ≥ tn such that∫ t

tn

qy∗(s)ds ≥
∫ t

tn

x∗(s)ds.

Clearly, Bn is a closed set. We claim that Bn is bounded.
Indeed, if this were not the case, there would be a sequence tn,k →∞ such

that ∫ tn,k

tn

qy∗(s)ds ≥
∫ tn,k

tn

x∗(s)ds. (2.17)

However, ∫ tn,k

tn

(qy∗(s)− x∗(s))ds = −
∫ tn

0

(qy∗(s)− x∗(s))ds+

+q
∫ tn,k

0

(y∗(s)− x∗(s))ds− (1− q)
∫ tn,k

0

x∗(s)ds.

The first term does not depend on k. The second term is always negative since
y ≺≺ x. The third term tends to −∞ since x /∈ L1(0,∞). Therefore, (2.17) is
impossible for large k.

Let now un = supBn, n ∈ N. Evidently, un ∈ Bn and∫ t

tn

qy∗(s)ds <
∫ t

tn

x∗(s)ds, ∀t > un. (2.18)
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Clearly, un ↑ ∞. If there exists a subsequence {vk}∞k=1 ⊂ {un}∞n=1 such
that qyχ(vk,∞) / xχ(vk,∞), then the proof is finished. Otherwise, qyχ(un,∞) 6
xχ(un,∞) for all sufficiently large n. Without loss of generality, qyχ(un,∞) 6
xχ(un,∞) for all n ∈ N. Thus, there exists wn > un such that∫ wn

un

qy∗(s)ds ≥
∫ wn

un

x∗(s)ds.

It follows that ∫ wn

tn

qy∗(s)ds ≥
∫ wn

tn

x∗(s)ds,

which contradicts (2.18).

Lemma 2.5.4. If z = z∗ ∈ L∞(0, 1), then

sup
1≤m≤n

z(0)− z(mn )
m

→ 0.

Proof. Assume the contrary. There exists ε > 0 and sequences 1 ≤ mk ≤ nk →
∞ such that

z(0)− z(mk

nk
) ≥ εmk.

It follows that mk ≤ ε−1z(0) is a bounded sequence. Since z = z∗ is right-
continuous, we have z(0)−z(mk/nk)→ 0. Thus, εmk → 0, which is impossible.

Lemma 2.5.5. Let x = x∗ ∈ L∞(0, 1) and y = y∗ / x. If y(0) < x(0), then
there exists n ∈ N and functions

u =
n∑
k=1

x(
k

n
)χ[(k−1)/n,k/n], v =

n∑
k=1

y(
k − 1
n

)χ[(k−1)/n,k)/n]

such that y ≤ v ≺≺ u ≤ x.

Proof. It follows from y(0) < x(0) that

ε = inf
t>0

1
t

∫ t

0

(x− y)(s)ds > 0.

By Lemma 2.5.4, one can select n with

(x+ y)(0)− (x+ y)(
m

n
) ≤ εm, 0 ≤ m ≤ n.

Fix 1 ≤ m ≤ n. We have∫ m/n

0

(u− v)(s)ds =
1
n

m∑
k=1

(x(
k

n
)− y(

k − 1
n

)) =



CHAPTER 2. ORBITS 59

=
1
n

m∑
k=1

(x(
k − 1
n

)− y(
k

n
))− 1

n
((x+ y)(0)− (x+ y)(

m

n
)) ≥

≥
∫ m/n

0

(x− y)(s)ds− 1
n

((x+ y)(0)− (x+ y)(
m

n
)) ≥

≥ εm
n
− 1
n

((x+ y)(0)− (x+ y)(
m

n
)) ≥ 0.

Therefore, ∫ t

0

(u− v)(s)ds ≥ 0

for every t > 0.

Recall that a matrix C = (cij)ni,j=1 ∈Mn(R) is called bistochastic if cij ≥ 0,∑n
i=1 cij = 1 and

∑n
j=1 cij = 1 for every 1 ≤ i, j ≤ n. The following result is

due to Birkhoff (see [9]).

Theorem 2.5.6. Let a, b ∈ Rn be positive vectors. If b ≺ a, then there exists a
bistochastic matrix C ∈Mn(R) such that b = Ca.

Corollary 2.5.7. Let a, b ∈ Rn be positive vectors. If b ≺≺ a, then there exists
a bistochastic matrix C ∈Mn(R) such that b ≤ Ca.

Proof. Without loss of generality, a = a∗ and b = b∗. We prove the assertion by
induction on n. Fix

ε0 = min
1≤k≤n

1
k

k∑
i=1

(ai − bi).

Set d = b+ ε0 ·1. Clearly, b ≤ d and d ≺≺ a. Moreover, there exists k such that

k∑
i=1

di =
k∑
i=1

ai.

If k = n, then by the Birkhoff theorem, d = Ca for some bistochastic matrix
C and we are done. If k < n, set a1 = (a1, · · · , ak) and a2 = (ak+1, · · · , an).
Similarly, d1 = (d1, · · · , dk) and d2 = (dk+1, · · · , dn). By induction, there exist
bistochastic matrices C1 and C2 such that d1 = C1a

1 and d2 ≤ C2a
2. The

assertion follows for the matrix C = C1 ⊕ C2.

The theorem which follows was proved by Mekler (see [39, 40]) in the case
of the interval (0, 1). Our approach considerably simplifies that of Mekler and
permits extension to functions on the semi-axis.

Theorem 2.5.8. Let x ∈ L1(0, 1) (or x ∈ (L1 + L∞)(0,∞) such that x /∈
L1(0,∞)) and y ≺≺ x. It follows that for every fixed q ∈ (0, 1) there exists a
positive function z such that z∗ = x∗ and qy ≤ P (z|A). Here, A is a some
partition of the interval (or that of the semi-axis).
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Proof. Without loss of generality, it may be assumed that x = x∗ and y = y∗.
Let tn be as in Lemma 2.5.1 (respectively, in Lemma 2.5.3). It follows that

qyχ(tn,tn+1) / xχ(tn,tn+1).

Define functions u, v on the interval (tn, tn+1) according to Lemma 2.5.5. It is
sufficient to prove the assertion for the functions u and v.

Therefore, we may assume without loss of generality that our interval is
(0, 1) and

x =
n∑
i=1

xiχ[(i−1)/n,i/n], y =
n∑
i=1

yiχ[(i−1)/n,i/n].

Let a = {xi}ni=1 and b = {yi}ni=1. Clearly, b ≺≺ a. According to Corollary
2.5.7, there exists a bistochastic matrix C such that b ≤ Ca. Set

z(t) = xj ∀t ∈ [
i− 1
n

+
1
n

j−1∑
k=1

cik,
i− 1
n

+
1
n

j∑
k=1

cik].

It is clear that

m({t : z(t) = xj}) =
1
n

n∑
i=1

cij =
1
n

= m({t : x(t) = xj}).

Therefore, z is equimeasurable with x. On the other hand,∫ i/n

(i−1)/n

z(s)ds =
1
n

n∑
k=1

cikxk =
1
n

(Ca)i ≥
1
n
yi = y|((i−1)/n,i/n).

If A = {(i− 1)/n, i/n}ni=1, then y ≤ P (z|A).
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2.6 Example of a fully symmetric quasi-Banach
space

We are going to discuss the properties of quasi-Banach symmetric spaces which
are interpolation spaces between L1 and L∞. Clearly, every fully symmetric
quasi-Banach space is an interpolation space between L1 and L∞. Indeed, an
inspection of Theorem 4.3 in [33] shows that the proof in the Banach setting
carries verbatim to the quasi-Banach case.

However, one can ask for an example with a quasi-norm not equivalent to a
norm. Even the existence of such spaces is a non-trivial fact. It is possible to
find such an example among the spaces Lp,q. In fact, if 0 < q < 1 and p > 1, then
Lp,q is a fully symmetric quasi-Banach space. On the other hand, its quasi-norm
‖ · ‖p,q is not equivalent to a Banach norm.

Lemma 2.6.1. Let 0 < q < 1. We have Lp,q(0, 1) ⊂ L1(0, 1) if and only if
p ≥ 1.

Proof. Let p ≥ 1. Clearly, x ∈ Lp,q if and only if xq ∈ Λtq/p ⊂ Lp/q. Therefore,
x ∈ Lp ⊂ L1. Now let p ∈ (0, 1). Fix α ∈ (1, 1/p). It is clear that t−α belongs to
Lp,q but not to L1.

Lemma 2.6.2. Let 0 < q < 1 and p > 1. There exists a constant Cp,q such that
for every u ∈ Λtq/p and every partition A we have

L(u) =
∫ 1

0

P (u1/q|A)qdtq/p ≤ Cp,q‖u‖Λ
tq/p

. (2.19)

Proof. The Lorentz space Λtq/p is an interpolation space [L∞, L1/q]1/p,1 by The-
orem 2.g.18 from [36]. Therefore, by Theorem 2.g.14 from [36],

‖λ‖Λ
tq/p
≤ Cp,q‖λ‖1−1/p

∞ ‖λ‖1/p1/q .

In particular, for every 0 ≤ λ ≤ 1, we have∫ 1

0

λ(t)dtq/p ≤
∫ 1

0

λ∗(t)dtq/p ≤ Cp,q(
∫ 1

0

λ1/q(t)dt)q/p.

Set
λ = P (χA|A)q ≤ 1.

We have

L(χA) =
∫ 1

0

λ(t)dtq/p ≤ Cp,q(
∫ 1

0

λ1/q(t)dt)q/p = Cp,q‖χA‖Λ
tq/p

.

Since q < 1, the transformation

u→ P ((u ◦ γ)1/q|A)q, u ∈ Λtq/p
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is a convex mapping. Therefore, L(·) is a convex functional.
The assertion (2.19) holds for functions u taking finitely many values by

Lemma 5.2 from [33].
For every u ∈ Λtq/p , there exist a sequence {un}∞n=1 of finitely-valued func-

tions such that un ↑ u. By the Levi theorem,

P ((un ◦ γ)1/q|A)q ↑ P ((u ◦ γ)1/q|A)q.

Applying the Levi theorem again, we obtain L(un) ↑ L(u). The assertion follows
immediately.

Lemma 2.6.3. If 0 < q < 1 and p > 1, then Lp,q is fully symmetric.

Proof. For every x ∈ Lp,q and every measure preserving transform γ, we have
(x ◦ γ)q ∈ Λtq/p . It follows from Lemma 2.6.2 that∫ 1

0

P (x ◦ γ|A)qdtq/p ≤ Cp,q
∫ 1

0

(x∗)qdtq/p.

Therefore, ∫ 1

0

P (x∗ ◦ γ|A)qdtq/p ≤ Cp,q
∫ 1

0

(x∗)qdtq/p

for every x ∈ Lp,q.
Note that P (x∗ ◦ γ|A) is a step function. Hence, there exists a measure-

preserving bijection γ0 such that

P (x∗ ◦ γ|A)∗ = P (x∗ ◦ γ|A) ◦ γ0 = P (x∗ ◦ γ ◦ γ0|γ−1
0 A).

It follows that ∫ 1

0

(P (x∗ ◦ γ|A)∗)qdtq/p ≤ Cp,q
∫ 1

0

(x∗)qdtq/p

for every x ∈ Lp,q.
The latter statement means that

‖P (x∗ ◦ γ|A)‖p,q ≤ C1/q
p,q ‖x‖p,q.

According to Theorem 2.5.8, if y ≺≺ x, then y ≤ 2P (z|A) with z∗ = x∗.
According to Theorem 1.2.5, one can represent z as z = x∗ ◦ γ with γ being a
measure-preserving transformation. It follows immediately that ‖y‖E ≤ const ·
‖x‖E . Hence, there exists an equivalent quasi-norm on E, which turns it into a
fully symmetric space.

Now we prove that the quasi-norm in Lp,q (for q < 1 < p) is not equivalent
to a norm. In order to prove it, we establish an inclusion of lq into Lp,q. Such
results are available in e.g. [32]. We provide the proof here for the sake of
completeness.
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Lemma 2.6.4. Let Λψ be an arbitrary Lorentz space on the interval (0, 1) and
let {xn}∞n=1 be a normalised disjoint sequence in Λψ. There exists a subsequence
{yk}∞k=1 ⊂ {xn}∞n=1 equivalent to the unit vector basis of l1.

Proof. Without loss of generality, each xn is piecewise-constant. Set An =
m(supp(xn)). Select Bn such that∫ An

Bn

x∗ndψ(t) =
1
2
.

Let n1 = 1 and let nk be the least possible natural number such that Ank ≤
Bnk−1 . Set yk = xnk .

Since ‖ · ‖Λψ is convex and ‖yn‖Λψ = 1, it follows that

‖
∑
k

akyk‖Λψ ≤
∑
k

|ak|.

Let y∗k = |yk| ◦ γk, where γk is a measure-preserving transform. Let γ be a
measure-preserving transform such that γ = γk on [Ank+1 , Ank ]. It follows that

‖
∑
k

akyk‖Λψ =
∫ 1

0

(
∑
k

|ak| · |yk|)∗(t)dψ(t) ≥
∫ 1

0

(
∑
k

|ak| · |yk|)(γ(t))dψ(t).

However, ∑
k

|ak| · |yk|(γ(t)) ≥ |ak| · y∗k(t), ∀t ∈ [Ank+1 , Ank ].

Since Ank+1 ≤ Bnk , it follows that

‖
∑
k

akyk‖Λψ ≥
∑
k

|ak|
∫ Ank

Bnk

x∗nk(t)dψ(t) ≥ 1
2

∑
k

|ak|.

Corollary 2.6.5. Let {xn}∞n=1 be a normalised disjoint sequence in Lp,q (q <
p). There exists a subsequence {yk}∞k=1 ⊂ {xn}∞n=1 equivalent to the unit vector
basis of lq.

Proof. Let {xn}∞n=1 be such a sequence. It follows that {xqn}∞n=1 forms a dis-
joint sequence in Λtq/p . Clearly, ‖xqn‖Λtq/p = 1. Let {yqk}∞k=1 ⊂ {xqn}∞n=1 be
a subsequence defined in Lemma 2.6.4. It is clear that {yk}∞k=1 satisfies our
requirements.

Corollary 2.6.6. The quasi-norm in the space Lp,q (for 0 < q < 1 < p) is not
equivalent to any norm.

Proof. Assume the contrary. Let {xn} ⊂ Lp,q be any normalised disjoint se-
quence and let {yn} ⊂ {xn} be a sequence defined in Corollary 2.6.5. The
Lp,q−norm on the linear span of {yn} is equivalent to lq−quasinorm, which is
impossible.
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Example 2.6.7. If 0 < q < 1 < p, then space Lp,q is a fully symmetric quasi-
Banach space on the interval (0, 1) whose quasi-norm is not equivalent to any
norm.
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2.7 Sufficiency

2.7.1 The Mekler approach

The Mekler approach allows us to consider the orbits Ω(x) and Ω+(x) in the
case that E = E(0, 1) or that E = E(0,∞), provided that E(0,∞) 6⊂ L1(0,∞).

Theorem 2.7.1. Let E = E(0, 1) be a fully symmetric quasi-Banach space on
the interval (0, 1) and let x ∈ E. If ϕ(x) = 0, then Ω(x) = QE(x).

Proof. Let x = x∗ and let y satisfy y ≺≺ x. There exists a measure-preserving
transform γ : (0, 1)→ (0, 1) such that y = sgn(y) ·y∗ ◦γ. Hence, we may assume
without loss of generality that y = y∗.

Fix ε > 0 and q ∈ (1 − ε, 1). According to Theorem 2.5.8, there exists a
positive function z such that z∗ = x∗ and a partition A such that

0 ≤ qy ≤ P (z|A).

By Theorem 2.4.11,
P (z|A) ∈ QE(x).

By Lemma 2.3.3, qy ∈ QE(x). Therefore,

y = qy + (1− q)y ∈ QE(x) + εBE(0, 1).

Since ε is arbitrary and QE(x) is a closed set, it follows that y ∈ QE(x)

If the space E is not a subset of L1(0,∞), we are able to prove a significantly
stronger assertion.

Theorem 2.7.2. Let E = E(0,∞) be a fully symmetric quasi-Banach space on
the semi-axis such that E(0,∞) 6⊂ L1(0,∞). If ϕ(x) = 0, then Ω+(x) = Q′E(x).

Proof. Let x = x∗ ∈ E\L1 and let y = y∗ be such that y ≺≺ x. Fix ε > 0 and
q ∈ (1 − ε, 1). According to Theorem 2.5.8, there exists a positive function z
such that z∗ = x∗ and a partition A such that

0 ≤ qy ≤ P (z|A).

By Theorem 2.4.11,
P (z|A) ∈ Q′E(x).

By Lemma 2.3.8, qy ∈ Q′E(x). Therefore,

y = qy + (1− q)y ∈ Q′E(x) + εBE(0, 1).

Since ε is arbitrary and Q′E(x) is a closed set, it follows that y ∈ Q′E(x).
Let x = x∗ ∈ E\L1 and let y satisfy y ≺≺ x. For every fixed ε > 0, there

exists a measure-preserving transform γ : (0,∞)→ (0,∞) such that

‖ max{y, y∗(∞)} − y∗ ◦ γ‖L1∩L∞ ≤ ε.
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By the argument above, y∗ ∈ Q′E(x). Therefore,

max{y, y∗(∞)} ∈ Q′E(x) + εBE(0, 1).

Since ε is arbitrary and Q′E(x) is a closed set, it follows that max{y, y∗(∞)} ∈
Q′E(x). By Lemma 2.3.8, y ∈ Q′E(x).

Let x = x∗ ∈ E ∩L1 and let y be such that y ≺≺ x. Since y∗(∞) = 0, there
exists a measure-preserving transform γ : (0,∞)→ (0,∞) such that y = y∗ ◦ γ.
Hence, we may assume without loss of generality that y = y∗.

Fix ε > 0 and q such that 0 < (1−q)‖y‖E ≤ ε. There exists T > 0 such that

‖x∗χ(T,∞)‖L1∩L∞ ≤ ε, ‖y∗χ(T,∞)‖L1∩L∞ ≤ ε.

Clearly, y∗χ[0,T ] ≺≺ x∗χ[0,T ]. According to Theorem 2.5.8, there exists a posi-
tive function z such that z∗ = x∗χ[0,T ] and a partition A such that

0 ≤ qy∗χ[0,T ] ≤ P (z|A).

By Theorem 2.4.11,
P (z|A) ∈ Q′E(x∗χ[0,T ]).

By Lemma 2.3.8, qy∗χ[0,T ] ∈ Q′E(x∗χ[0,T ]). By Lemma 2.3.4, qy∗χ[0,T ] ∈ Q′E(x).
Therefore,

y = qy∗χ[0,T ] + y∗χ(T,∞) + (1− q)y ∈ Q′E(x) + εBE(0, 1) + (1− q)y ⊂

⊂ Q′E(x) + εBE(0, 1) + εBE(0, 1) ⊂ Q′E(x) + 2C(E)εBE(0, 1).

Since ε is arbitrary and Q′E(x) is a closed set, it follows that y ∈ Q′E(x).

The corresponding result for the case of the full orbit Ω(x) now follows as a
direct consequence.

Theorem 2.7.3. Let E = E(0,∞) be a fully symmetric quasi-Banach space on
the semi-axis such that E(0,∞) 6⊂ L1(0,∞). If ϕ(x) = 0, then Ω(x) = QE(x).

Proof. If y ∈ Ω(x), then |y| ∈ Ω(x). By Theorem 2.7.2, |y| ∈ Q′E(x). Hence, for
every fixed ε > 0,

|y| ∈ Q′(x) + εBE(0, 1)

and
y ∈ sgn(y)Q′(x) + εBE(0, 1) ⊂ QE(x) + εBE(0, 1).

Since ε > 0 is arbitrary andQE(x) is a convex set, it follows that y ∈ QE(x).

2.7.2 The Braverman approach

The Mekler approach of the preceding section cannot deal with the case of the
orbits Ω′(x) either on the interval (0, 1) or on the semi-axis. In the follow-
ing sections, we follow the approach of Braverman (see [11]). In addition, the
Braverman approach permits us to consider the orbits Ω+(x) in the case that
E = E(0, 1) or E = E(0,∞) ⊂ L1(0,∞).
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Preliminary results

The following proposition is the core of the Braverman approach. In the case
of the interval (0, 1) it can be found in [11, Lemma 3.2]. However, our proof is
more general, simpler and shorter.

We consider functions of the form

x =
∑
i∈Z

xiχ[ai−1,ai], y =
∑
i∈Z

yiχ[ai−1,ai], (2.20)

where {ai}i∈Z is an increasing sequence (possibly finite or one-sidedly infinite).

Proposition 2.7.4. Let y = y∗ and x = x∗ be functions of the form (2.20)
either on the interval (0, 1) or on the semi-axis. If y ≺ x, then there exists a
countable collection {∆k}k∈K of disjoint sets, such that

i) Every set ∆k can be represented as

∆k = Ik ∪ Jk,

where Ik and Jk are intervals of finite measure. The interval Ik lies to the
left of Jk for every k ∈ K.

ii) The functions x and y are constant on the intervals Ik and Jk.

iii) For every k ∈ K,
y|∆k

≺ x|∆k
.

iv) y(t) = x(t) if t /∈ ∪k∈K∆k.

Proof. There exists a subsequence {ami}i∈I (possibly finite or one-sidedly infi-
nite) such that

{x < y} = ∪i∈I [ami−1, ami ].

Since y ≺ x, we have∫ t

0

(x− y)+(s)ds−
∫ t

0

(y − x)+(s)ds =
∫ t

0

x(s)ds−
∫ t

0

y(s)ds ≥ 0.

For each i ∈ I, denote by bi the minimal t > 0, such that∫ t

0

(x− y)+(s)ds =
∫ ami

0

(y − x)+(s)ds.

Clearly, for every i ∈ I,∫ ami−1

0

(x− y)+(s)ds =
∫ ami

0

(x− y)+(s)ds ≥
∫ ami

0

(y − x)+(s)ds.

Hence, bi ≤ ami−1.
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For each i ∈ I, the set

[bi−1, bi] ∩ {x > y} = ∪nij=1I
j
i .

is a finite union of disjoint intervals on which each of x and y is finite.
By the definition of bi, we have∫ ami

ami−1

(y − x)+(s)ds =
∫ bi

bi−1

(x− y)+(s)ds =
ni∑
j=1

∫
Iji

(x− y)+(s)ds.

Set
K = {(i, j) : 1 ≤ j ≤ ni, i ∈ I}.

If k = (i, j) ∈ K, set Ik = Iji and

Jk = Jji = [ami−1 + (ymi − xmi)−1cj−1
i , ami−1 + (ymi − xmi)−1cji ],

where

cji =
j∑
l=1

∫
Ili

(x− y)+(s)ds, i ∈ I, 0 ≤ j ≤ ni.

Using the fact that x and y are constant on the interval [ami−1, ami ], we obtain

Jk = Jji ⊂ [ami−1, ami ]

and
∪nij=1J

j
i = [ami−1, ami ].

Since
Iji ⊂ [bi−1, bi] ⊂ [0, bi] ⊂ [0, ami−1]

and
Jji ⊂ [ami−1, ami ],

it follows that every interval Ik lies to the left of Jk.
(ii) By the definition of Iji , the functions x and y are constant on it. Since

Jji is a subset of the interval [ami−1, ami ], it follows that functions x and y are
constant on Jji .

(iii) It is clear that∫
Ik

(x− y)+(s)ds =
∫
Jk

(y − x)+(s)ds, k ∈ K (2.21)

and ∫
Ik∪Jk

x(s)ds =
∫
Ik∪Jk

y(s)ds.

Note that
x(t) ≥ y(t) ∀t ∈ Ik, y(t) ≥ x(t) ∀t ∈ Jk

for all k ∈ K. The assertion follows immediately.
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(iv) By the definition of the set Jji ,

{y > x} = ∪i∈I ∪nij=1 J
j
i ⊆ ∪k∈K∆k.

Therefore, y(t) ≤ x(t) for every t /∈ ∪k∈K∆k. However,∫
∆k

y(s)ds =
∫

∆k

x(s)ds ∀k ∈ K.

Since y ≺ x, it follows that∫
s/∈∪k∈K∆k

y(s)ds =
∫
s/∈∪k∈K∆k

x(s)ds.

Therefore, y(t) = x(t) for every t /∈ ∪k∈K∆k.

Corollary 2.7.5. Let E be a fully symmetric quasi-Banach space either on the
interval (0, 1) or on the semi-axis. If x, y and B = {∆k}k∈K are as in Proposi-
tion 2.7.4, then y can be arbitrarily well approximated by convex combinations
of functions of the form P (x|A), A ∈ A. Here, approximation is in the topology
induced by the quasi-norm of E.

Proof. Set
λk = (y|Ik − y|Jk)/(x|Ik − x|Jk)

for every k ∈ K. According to Proposition 2.7.4,

y|∆k
≺ x|∆k

and, therefore, it is not difficult to verify that λk ∈ [0, 1] for every k ∈ K.
Further, a simple calculation shows that

y = (1− λk)P (x|B) + λkx

on the set ∆k, k ∈ K.
As is well-known, every [0, 1]−valued sequence can be uniformly approxi-

mated by convex combinations of {0, 1}−valued sequences.
Fix ε > 0. There exists µ ∈ l∞(K) such that

µ =
n∑
i=1

θiχDi , ‖λ− µ‖∞ ≤ ε.

Here, n ∈ N, θi ∈ R+ are such that
∑n
i=1 θi = 1 and Di ⊆ K.

Set
z(t) = (1− µk)P (x|B)(t) + µkx(t), ∀t ∈ ∆k

for every k ∈ K and
z(t) = x(t), ∀t /∈ ∪k∈K∆k.

It is clear that
|y − z|χ∆k

= |λk − µk| |x− P (x|B)|χ∆k
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for every k ∈ K. Hence,

|y − z| =
∑
k∈K

|y − z|χ∆k
≤ 2ε(x+ P (x|B)).

Since E is fully symmetric, it follows that

‖y − z‖E ≤ 2εC(E)‖x‖E .

Set Fi = ∪k∈Di∆k and Ai = {∆k}k/∈Di ∈ A, 1 ≤ i ≤ n. It is then clear that

z =
n∑
i=1

θi((1− χFi)P (x|B) + χFix) =
n∑
i=1

θiP (x|Ai).

Lemma 2.7.6. Let E be a fully symmetric quasi-Banach space on the interval
(0, 1). If x and y are as in Proposition 2.7.4 and ϕ(x) = 0, then y ∈ Q′E(x).

Proof. Fix ε > 0. According to Corollary 2.7.5, there exists z ∈ E such that

z =
n∑
i=1

θiP (x|Ai), ‖y − z‖E ≤ ε.

Here, n ∈ N and 0 ≤ θi ∈ R are such that
∑n
i=1 θi = 1. According to Theorem

2.4.11, there exist zi ∈ Q′(x) such that

P (x|Ai) ∈ zi + εC(E)−nBE(0, 1).

It follows that

z =
n∑
i=1

θiP (x|Ai) ∈
n∑
i=1

θizi + εC(E)−n
n∑
i=1

θiBE(0, 1).

By the definition of a quasi-norm,
n∑
i=1

θiBE(0, 1) ⊂ C(E)nBE(0, 1).

Since Q′(x) is convex, it follows that
n∑
i=1

θizi ∈ Q′(x).

Therefore,
z ∈ Q′(x) + εBE(0, 1)

and

y ∈ z + εBE(0, 1) ⊂ Q′(x) + εBE(0, 1) + εBE(0, 1) ⊂ Q′(x) + 2C(E)εBE(0, 1).

Since ε is arbitrarily small, it follows that

y ∈ Q′E(x)

and we are done.
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The case that E ⊆ L1

Theorem 2.7.7. Let E = E(0, 1) be a fully symmetric quasi-Banach space on
the interval (0, 1). If x ∈ E is such that ϕ(x) = 0, then Ω′(x) = Q′E(x).

Proof. Let x = x∗ and 0leqy ∈ Ω′(x). In this case, y = y∗ ◦ γ for some measure-
preserving transformation γ (see [50] or [8, Theorem 7.5,p.82]). Without loss of
generality, we may assume that y = y∗.

Fix ε > 0. Set

sn(ε) = inf{s : y(s) ≤ y(1) + nε}, n ∈ N.

Let Aε be the partition, determined by the points sn(ε), n ∈ N. Set u = P (y|Aε)
and z = P (x|Aε).

Clearly, the functions u and z are of the form given in (2.20) and u ≺ z.
Therefore, one can apply Lemma 2.7.6.

We obtain
u ∈ Q′(z) + εBE(0, 1).

On the other hand,

‖x− z‖E ≤ ‖x− z‖∞ ≤ ε, ‖y − u‖E ≤ ‖y − u‖∞ ≤ ε.

Clearly,

Q′(z) ⊂ Q′(x) +Q′(x− z) ⊂ Q′(x) + Ω(x− z) ⊂ Q′(x) + εBE(0, 1)

and
y = u+ (y − u) ∈ u+ εBE(0, 1).

Therefore,

y ∈ u+ εBE(0, 1) ⊂ Q′(z) + εBE(0, 1) + εBE(0, 1) ⊂

⊂ Q′(x) + εBE(0, 1) + εBE(0, 1) + εBE(0, 1) ⊂ Q′(x) + 3C2(E)εBE(0, 1).

Since ε is arbitrarily small, it follows that

y ∈ Q′E(x)

and the proof is complete.

Theorem 2.7.8. Let E = E(0, 1) be a fully symmetric quasi-Banach space on
the interval (0, 1). If x ∈ E is such that ϕ(x) = 0, then Ω+(x) = Q+

E(x).

Proof. Suppose that ϕ(x) = 0 and let 0 ≤ y ∈ Ω+(x). There exists s0 ∈ [0, 1],
such that ∫ s0

0

x∗(s)ds =
∫ 1

0

y∗(s)ds

and this implies y ≺ x∗χ[0,s0].
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It is clear that
0 ≤ ϕ(x∗χ[0,s0]) ≤ ϕ(x) = 0.

It follows now from Theorem 2.7.7 that

y ∈ Q′E(x∗χ[0,s0]) ⊂ Q+
E(x).

Hence, y ∈ Q+
E(x) and this completes the proof.

We now consider the case that E = E(0,∞).

Theorem 2.7.9. Let E = E(0,∞) be a fully symmetric quasi-Banach space
on the semi-axis. Suppose that E(0,∞) ⊂ L1(0,∞). If x ∈ E is such that
ϕfin(x) = 0, then Ω′(x) = Q′E(x).

Proof. Let x = x∗ and 0 ≤ y ∈ Ω′(x). It follows from [33, Lemma II.2.1] that
there exists a measure-preserving transformation γ such that y = y∗◦γ. Without
loss of generality, we may assume that y = y∗.

Initially, we consider the case when supp(x) = (0,∞).
Fix ε > 0. It is clear that there exists T such that

‖xχ[T,∞)‖E ≤ ‖xχT,∞)‖L1∩L∞ ≤ ε, ‖yχ[T,∞)‖E ≤ ‖yχT,∞)‖L1∩L∞ ≤ ε.

Since supp(x) = (0,∞), it follows that∫ T

0

x(s)ds <
∫ ∞

0

x(s)ds =
∫ ∞

0

y(s)ds.

Hence, there exists S ≥ T such that∫ T

0

x(s)ds =
∫ S

0

y(s)ds.

Therefore, yχ[0,S] ≺ xχ[0,T ].
Consider the fully symmetric quasi-Banach space F on the interval [0, S]

defined by the formula

F = {x ∈ E : supp(x) ⊂ [0, S]}, ‖x‖F = ‖x‖E ∀x ∈ F.

It is clear that xχ[0,T ], yχ[0,S] ∈ F.
However,

1
s
‖(σsx)χ[0,S]‖E ≤

S

s
‖(σsx)χ[0,1]‖E → 0

when s→∞. Therefore, the assumption ϕfin,E(x) = 0 implies that ϕF (xχ[0,T ]) =
0. Hence, by Theorem 2.7.7,

yχ[0,S] ∈ Q′F (xχ[0,T ]) ⊂ Q′(xχ[0,T ]) + εBF (0, 1) ⊂ Q′(xχ[0,T ]) + εBE(0, 1).

On the other hand,

Q′(xχ[0,T ]) ⊂ Q′(xχ) +Q′(xχ[T,∞)) ⊂ Q′(x) + Ω(xχ[T,∞)) ⊂ Q′(x) + εBE(0, 1)
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and
y = yχ[0,S] + yχ[S,∞) ∈ yχ[0,S] + εBE(0, 1).

Hence,

y ∈ yχ[0,S] + εBE(0, 1) ⊂ Q′(xχ[0,T ]) + εBE(0, 1) + εBE(0, 1) ⊂

⊂ Q′(x) + εBE(0, 1) + εBE(0, 1) + εBE(0, 1) ⊂ Q′(x) + 3C2(E)εBE(0, 1).

Since ε is arbitrarily small, it follows that

y ∈ Q′E(x).

Let us now consider the case that m(supp(x)) <∞.
Fix z = z∗ ∈ L1 ∩L∞ with m(supp(z)) =∞. It is clear that for every ε > 0

we have
(y + εz) ∈ Ω′(x+ εz).

Clearly,
0 ≤ ϕfin(x+ εz) ≤ C(E)(ϕfin(x) + εϕfin(z)) = 0.

Here, the last inequality follows from the assumption and Lemma 2.1.7. Thus,
ϕfin(x+ εz) = 0.

It follows from above that

(y + εz) ∈ Q′E(x+ εz) ⊂ Q′(x+ εz) + εBE(0, 1) ⊂

⊂ Q′(x) + εQ′(z) + εBE(0, 1) ⊂ Q′(x) + εΩ(z) + εBE(0, 1) ⊂
⊂ Q′(x) + εBE(0, 1) + ε‖z‖EBE(0, 1) ⊂ Q′(x) + C(E)(1 + ‖z‖E)εBE(0, 1).

Since ε is arbitrarily small, it follows that

y ∈ Q′E(x)

and this suffices to complete the proof.

Theorem 2.7.10. Let E = E(0,∞) be a fully symmetric quasi-Banach space on
the semi-axis such that E(0,∞) ⊆ L1(0,∞). If x ∈ E is such that ϕfin(x) = 0,
then Ω+(x) = Q+

E(x).

Proof. Suppose that ϕ(x) = 0 and let 0 ≤ y ∈ Ω+(x). Hence, there exists
s0 ∈ [0,∞], such that ∫ s0

0

x∗(s)ds =
∫ ∞

0

y∗(s)ds.

Therefore, y ≺ x∗χ[0,s0].
It is clear that

0 ≤ ϕ(x∗χ[0,s0]) ≤ ϕ(x) = 0.

It follows now from Theorem 2.7.9 that

y ∈ Q′E(x∗χ[0,s0]) ⊂ Q+
E(x).

Hence, y ∈ Q+
E(x).
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The corresponding result for the case of the full orbit Ω(x) follows from
Theorem 2.7.10.

Theorem 2.7.11. Let E = E(0,∞) be a fully symmetric quasi-Banach space on
the semi-axis such that E(0,∞) ⊆ L1(0,∞). If x ∈ E is such that ϕfin(x) = 0,
then Ω(x) = QE(x).

Proof. Let x = x∗ and y ∈ Ω(x). It follows from [33, Lemma II.2.1] that there
exists measure-preserving transformation γ such that y = sgn(y)y∗ ◦γ. Without
loss of generality, we may assume that y = y∗.

Fix ε > 0. By Theorem 2.7.8, there exist n ∈ N, scalars λi, βi ∈ [0, 1] such
that

∑n
i=1 λi = 1 and positive functions xi such that

x∗i = xχ[0,βi]

and

‖ |y| −
n∑
i=1

λixi‖E ≤ ε.

For every 1 ≤ i ≤ n there exist measure-preserving transformations γi : (0,∞)→
(0,∞) (see [50]) such that

xi = (xχ[0,βi]) ◦ γi.

Set
x1
i = x ◦ γi, x2

i = (xχ[0,βi] − xχ[βi,1]) ◦ γi
for every 1 ≤ i ≤ n.

It is clear that

(x1
i )
∗ = x, (x2

i )
∗ = x ∀1 ≤ i ≤ n

and
xi =

1
2

(x1
i + x2

i ).

Therefore,

‖y − 1
2

n∑
i=1

λix
1
i −

1
2

n∑
i=1

λix
2
i ‖E ≤ ε.
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2.8 Necessity

In this section, we will show that the sufficient conditions given in each of the
Theorems of preceding section are, in fact, necessary.

We start from the relatively simple proof of the necessity results in the case
of positive orbits and then proceed with the case of full orbits.

2.8.1 The case of positive orbits

Theorem 2.8.1. Let E = E(0, 1) be a fully symmetric quasi-Banach space on
the interval (0, 1). If x ∈ E is such that Ω′(x) = Q′E(x), then ϕ(x) = 0.

Proof. Suppose that Q′E(x) = Ω′(x). Set A = {[0, 1]} and y = P (x|A). Clearly,
y ∈ Ω′(x) = Q′E(x). Lemma 2.2.2 implies that ϕ(x) = ϕ(y). Lemma 2.1.7
implies ϕ(y) = 0. The assertion is proved.

Theorem 2.8.2. Let E = E(0, 1) be a fully symmetric quasi-Banach space on
the interval (0, 1). Suppose that quasi-norm on E is a Fatou quasi-norm. If
x ∈ E is such that Ω+(x) = Q+

E(x), then ϕ(x) = 0.

Proof. By Proposition 2.2.1(iv), there exist 0 ≤ y1, z1 ∈ E, such that x = y1+z1

and
ϕ(x) = ϕ(y1) = ϕ(z1).

By assumption, Ω+(x) = Q+
E(x) and so y1, z1 ∈ Q+

E(x). By Proposition 2.2.4,

ϕ(x) = ϕ(y1) + ϕ(z1).

Consequently, ϕ(x) = 0.

Theorem 2.8.3. Let E = E(0,∞) be a fully symmetric quasi-Banach space
on the semi-axis. Suppose that E(0,∞) ⊂ L1(0,∞). If x ∈ E is such that
Ω′(x) = Q′E(x), then ϕfin(x) = 0.

Proof. Let x = x∗ and suppose that Q′E(x) = Ω′(x). Set A = {[0, 1]} and
y = P (x|A). Clearly, y ∈ Ω′(x) = Q′E(x). Lemma 2.2.2 implies that ϕfin(x) =
ϕfin(y). Lemma 2.1.7 implies ϕfin(y) = 0. The assertion is proved.

Theorem 2.8.4. Let E = E(0,∞) be a fully symmetric quasi-Banach space on
the semi-axis. Suppose that E(0,∞) ⊂ L1(0,∞) and that the quasi-norm on E
is a Fatou quasi-norm. If x ∈ E is such that Ω+(x) = Q+

E(x), then ϕfin(x) = 0.

Proof. By Proposition 2.2.1(iv), there exist 0 ≤ y1, z1 ∈ E, such that x = y1+z1

and
ϕfin(x) = ϕfin(y1) = ϕfin(z1).

By assumption, Ω+(x) = Q+
E(x) and so y1, z1 ∈ Q+

E(x). By Proposition 2.2.4,

ϕfin(x) = ϕfin(y1) + ϕfin(z1).

Consequently, ϕfin(x) = 0.
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Theorem 2.8.5. Let E = E(0,∞) be a fully symmetric quasi-Banach space on
the semi-axis. Suppose that E(0,∞) 6⊂ L1(0,∞) and that the quasi-norm on E
is a Fatou quasi-norm. If x ∈ E is such that Ω+(x) = Q+

E(x), then ϕ(x) = 0.

Proof. By Proposition 2.2.1(iv), there exist 0 ≤ y1, z1 ∈ E, such that x = y1+z1

and
ϕcut(x) = ϕcut(y1) = ϕcut(z1).

By assumption, Ω+(x) = Q+
E(x) and so y1, z1 ∈ Q+

E(x). By Proposition 2.2.4,

ϕcut(x) = ϕcut(y1) + ϕcut(z1).

Consequently, ϕcut(x) = 0. By Proposition 2.2.1(ii), there exist 0 ≤ y2, z2 ∈ E,
such that x = y2 + z2 and

ϕ(x) = ϕ(y2) = ϕ(z2).

Again, by the assumption, we have y2, z2 ∈ Q+
E(x) and therefore, by Proposition

2.2.5, we have
ϕ(x) = ϕ(y2) + ϕ(z2).

Consequently, ϕ(x) = 0.

Theorem 2.8.6. Let E = E(0,∞) be a fully symmetric quasi-Banach space
on the semi-axis. Suppose that E(0,∞) 6⊂ L1(0,∞). If x ∈ E ∩ L1 is such that
Ω′(x) ⊂ Q′E(x), then ϕ(x) = 0.

Proof. The assertion follows from Theorem 2.4.9.

2.8.2 The case of full orbits

The arguments in this subsection considerably simplify those given by Kalton,
Sukochev and Zanin in [31].

Throughout, we assume that x = x∗. Let X(t) =
∫ t

0
x(s)ds. By assumption,

X is a concave increasing function.
Let {an}n∈Z, {an(θ)}n∈Z be such that X(an) = (3/2)n and X(an(θ)) =

(3/2)nθ. We define

Am = {man : man ≤ an+1, n ∈ Z}.

If {κn}n∈Z is an arbitrary sequence such that κn > 1, then we define

Bκ,θ = {κna3n : κna3n(θ) ≤ a3n+1(θ), n ∈ Z}.

It will be convenient to introduce the following notation. If A is a discrete
subset of the semi-axis, then the elements of A ∪ {0} partition the semi-axis.
This partition consists of a (finite or infinite) sequence of sets of finite measure.
We identify this partition with the set A. Elements of A will be called nodes
of the partition A. The corresponding averaging operator will be denoted by
E(·|A).
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Lemma 2.8.7. If Ci, 1 ≤ i ≤ k, are discrete sets, then

E(x| ∪ki=1 Ci) ≺≺
k∑
i=1

E(x|Ci).

Proof. It is sufficient to verify∫ t

0

E(x| ∪ki=1 Ci)(s)ds ≤
k∑
i=1

∫ t

0

E(x|Ci)(s)ds

only at the nodes of E(x| ∪ki=1 Ci), that is at the nodes of E(x|Ci) for every i.
However, if t ∈ Ci for some i, then∫ t

0

E(x| ∪ki=1 Ci)(s)ds =
∫ t

0

E(x|Ci)(s)ds

and we are done.

Clearly,
Bm,1 ∪ Bm,3/2 ∪ Bm,(3/2)2 = Am.

Therefore, by Lemma 2.8.7, we have

E(x|Am) ≺≺ E(x|Bm,1) + E(x|Bm,3/2) + E(x|Bm,(3/2)2). (2.22)

In what follows, we will only work with a fixed value of θ. It will therefore
be convenient, for simplicity of notation, to drop the explicit dependence on θ
and write Bκ, an rather that Bκ,θ, an(θ).

We will need the following lemma.

Lemma 2.8.8. If κ ≥ κ′ (that is κn ≥ κ′n for every n), then∫ t

0

E(x|Bκ)(s)ds ≤ 3/2
∫ t

0

E(x|Bκ′)(s)ds. (2.23)

Proof. Since E(x|Bκ) is piecewise-constant, it is sufficient to prove the assertion
for the nodes of E(f |Bκ). If κna3n ≤ a3n+1, then κ′na3n ≤ a3n+1 and∫ κna3n

0

E(x|Bκ)(s)ds ≤
∫ a3n+1

0

f(t)dt = 3/2(3/2)3nθ ≤

≤ 3/2
∫ κ′na3n

0

x(s)ds = 3/2
∫ κ′na3n

0

E(f |Bκ′)(s)ds.

Since κ′n ≤ κn, it follows that the assertion is proved for s = κna3n.

Remark 2.8.9. The inequality (2.23) holds if κn ≤ κ′n only for such n that
κna3n ≤ a3n+1 or κ′na3n ≤ a3n+1.
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We use the following remarkable characterization of the set Q(x) given in
[30].

Theorem 2.8.10. Let x be a measurable function either on the interval (0, 1)
or on the semi-axis. The following assertions are valid.

1. [30, Lemma 4.4]. If y ∈ Q(x), then there exists p ∈ N such that∫ b

pa

y∗(s)ds ≤
∫ b

a

x∗(s)ds, ∀0 ≤ pa ≤ b. (2.24)

2. [30, Theorem 6.3]. If y is a measurable function satisfying (2.24), then,
for every ε > 0, there exist z such that |y| ≤ z and z ∈ (1 + ε)Q(x).

For each sequence κ and λ > 0, we define the sequence κλ by

κλn =

{
κn, κn ≥ λ
∞, κn < λ.

Proposition 2.8.11. If y satisfies (2.24), then∫ t

0

E(x|Bκ100p)(s)ds ≤ 30
∫ t

0

|E(x|Bκ)− y∗|∗(s)ds. (2.25)

Proof. It is sufficient to prove (2.25) only at t = κna3n, where 100pa3n ≤
κna3n ≤ a3n+1. These are the only nodes of E(x|Bκ100p).

Clearly,∫ κna3n

0

|E(x|Bκ)− y∗|∗(s)ds ≥
∫ κna3n

pa3n

E(x|Bκ)(s)ds−
∫ κna3n

pa3n

y∗(s)ds ≥

≥ (1− p

κn
)κna3nE(x|Bκ)(κna3n − 0)−

∫ κna3n

a3n

x(s)ds ≥

≥ (1− p

κn
)

κna3n

κna3n − κma3m
(X(κna3n)−X(κma3m))−

∫ a3n+1

a3n

x(s)ds,

where m is the largest integer number such that m < n and κma3m ≤ a3m+1.
It then follows that

X(κna3n)−X(κma3m) ≥ X(a3n)−X(a3n−2) = 5/9(3/2)3nθ.

By definition, ∫ a3n+1

a3n

x(s)ds =
1
2

(3/2)3nθ.

Hence,∫ κna3n

0

|E(x|Bκ)− y∗|∗(s)ds ≥ (1− 1
100

) · 5
9

(3/2)3nθ − 1
2

(3/2)3nθ =

=
1
30

∫ a3n+1

0

x(s)ds ≥ 1
30

∫ κna3n

0

E(x|Bκ100p)(s)ds.
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Corollary 2.8.12. Let E be a fully symmetric quasi-Banach space either on
the interval (0, 1) or on the semi-axis and let x = x∗ ∈ E. If Ω(x) = QE(x),
then

E(x|Bκλ)→ 0 (2.26)

as λ approaches ∞.

Proof. It follows from the assumption that

P (x|Bκ) ∈ Ω(x) = QE(x).

Hence, for every ε > 0, there exists y ∈ Q(x) such that

‖P (x|Bκ)− y‖E ≤ ε.

By Theorem 2.8.10, there exists p ∈ N such that (2.24) is valid. By Proposition
2.8.11,

P (x|Bκ100p) ≺≺ 30(P (x|Bκ)− y).

It follows from Lemma 2.8.8 that for every λ > 100p

‖P (x|Bκλ)‖E ≤ 45ε.

Since ε is arbitrarily small, this completes the proof.

Proposition 2.8.13. Let E be a fully symmetric quasi-Banach space either
on the interval (0, 1) or on the semi-axis equipped with a Fatou quasi-norm. If
x ∈ E is such that Ω(x) = QE(x), then E(x|Bm)→ 0.

Proof. Assume the contrary. If there exists a sequence ms → ∞ such that
E(x|Bms) → 0, then, by Lemma 2.8.8 we have E(x|Bm) → 0. Therefore, there
exists an ε such that ‖E(x|Bm)‖E > ε for all m. Set

κm,rn =

{
m 0 ≤ |n| < r

∞ r ≤ |n|.

Clearly, E(x|Bκm,r ) → E(x|Bm) almost everywhere. Since E(x|Bκm,r ) ↑r, it
follows from the definition of Fatou quasi-norm that

lim
r→∞

‖E(x|Bκm,r )‖E = ‖E(x|Bm)‖E .

Hence, for each m, there exists rm such that ‖E(x|Bκm,rm )‖E > ε.
Now define

κn = inf
m≥1

κm,rmn = inf
rm>|n|

m, n ∈ N.

Clearly, κn ↑ ∞ as |n| ↑ ∞. By the Corollary 2.8.12, there exists λ such that

‖E(x|Bκλ)‖E <
2
3
ε.
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Now the set {n : κn < λ} is finite. Fix an integer m large enough so that
ma3n > a3n+1 whenever κn < λ. This means that κλn ≤ κm,rmn except at points
where both are bigger than a3n+1/a3n. According to the Remark 2.8.9, it follows
that

E(x|Bκm,rm ) ≺≺ 3
2
E(x|Bκλ).

This implies ‖E(x|Bκm,rm )‖E < ε, giving a contradiction.

Lemma 2.8.14. Let x ∈ L1 + L∞ be a function on the semi-axis. If x /∈ L1,
then, for every t > 0,

X(t) ≤ 2
3
X(m2t) +

3
2

∫ m2t

0

E(x|Am)(s)ds. (2.27)

Proof. Let t ∈ [an, an+1]. If an+1 > man, then∫ m2t

0

E(x|Am)(s)ds ≥
∫ man

0

E(x|Am)(t)dt = X(man) ≥ 2
3
X(t).

If an+1 ≤ man and an+2 > man+1, then∫ m2t

0

E(x|Am)(s)ds ≥
∫ man+1

0

E(x|Am)(s)ds = X(man+1) ≥ X(t).

If an+2 ≤ man+1 and an+1 ≤ man, then

X(m2t) ≥ X(an+2) =
3
2
X(an+1) ≥ 3

2
X(t)

and the inequality follows.

Corollary 2.8.15. Let x ∈ L1 +L∞ be a function on the semi-axis. If x /∈ L1,
then for every t > 0

X(m−2lt) ≤ (
2
3

)lX(t) +
9
2

∫ t

0

E(x|Am)(s)ds, m, l ∈ N. (2.28)

Proof. Denote, for brevity,

Z(t) =
∫ t

0

E(x|Am)(s)ds, t > 0.

We will use induction on l to prove that

X(t) ≤ (
2
3

)lX(m2lt) +
9
2

(1− (
2
3

)l)Z(m2lt), l ∈ N. (2.29)

Indeed, (2.29) is valid for l = 1. Assume that (2.29) is valid for l = k. Let us
prove (2.29) for l = k + 1. We obtain

X(t) ≤ (
2
3

)lX(m2lt) +
9
2

(1− (
2
3

)l)Z(m2lt) ≤
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≤ (
2
3

)l(
2
3
X(m2(l+1)t) +

3
2
Z(m2(l+1)t)) +

9
2

(1− (
2
3

)l)Z(m2lt) ≤

≤ (
2
3

)l+1X(m2(l+1)t) + ((
2
3

)l−1 +
9
2

(1− (
2
3

)l))Z(m2(l+1)t)) =

= (
2
3

)l+1X(m2(l+1)t) +
9
2

(1− (
2
3

)l+1)Z(m2(l+1)t)).

The assertion follows immediately from (2.29).

The situation in the case that x ∈ L1 is slightly more complicated.

Lemma 2.8.16. If x ∈ L1(0, 1) or x ∈ L1(0,∞), then there exists constant C
such that for every t > 0

X(t) ≤ 2
3
X(m2t) +

3
2

∫ m2t

0

E(x|Am)(s)ds+
3
2
C

∫ m2t

0

χ[0,1](s)ds. (2.30)

Proof. Consider first the case of the semi-axis. Fix n0 such that X(an0) ≤
4/9X(∞). Then the argument in Lemma 2.8.14 applies mutatis mutandi for
0 ≤ t ≤ an0 . For every t ≥ an0 , we have

X(t) ≤ X(∞)
min{an0 , 1}

min{m2t, 1}

and the inequality follows in this case.
The same argument applies in the case of the interval (0, 1) by replacing

X(∞) by X(1).

Corollary 2.8.17. If x and C are as in Lemma 2.8.16, then for every t > 0,

X(m−2lt) ≤ (
2
3

)lX(t) +
9
2

∫ t

0

E(x|Am)(s)ds+
9
2
C min{m2t, 1}, m, l ∈ N.

(2.31)

Proof. If

Z(t) =
∫ t

0

E(x|Am)(s)ds+ C min{m2t, 1},

then the proof of Corollary 2.8.15 applies mutatis mutandi.

Theorem 2.8.18. Let E be a fully symmetric quasi-Banach space either on the
interval (0, 1) or on the semi-axis and let x ∈ E. Suppose that the quasi-norm
on E is a Fatou quasi-norm. If Ω(x) = QE(x), then ϕ(x) = 0 provided that one
of the following conditions is satisfied

1. E = E(0, 1) is a space on the interval (0, 1).

2. E = E(0,∞) is a space on the semi-axis and E(0,∞) 6⊂ L1(0,∞).



CHAPTER 2. ORBITS 82

Proof. It follows from Proposition 2.8.13 that E(x|Bm,θ) → 0 for every θ. It
follows from the inequality (2.22) that E(x|Am)→ 0.

Fix l ∈ N. If x /∈ L1, then by Corollary 2.8.15,

1
m2l

σm2lx ≺≺ (
2
3

)lx+
9
2
E(x|Am), m ∈ N

and, therefore,

1
sm2l

σsm2lx ≺≺ (
2
3

)l
1
s
σsx+

9
2
E(x|Am), m, s ∈ N.

Let m, s→∞. It follows that

ϕ(x) ≤ C0(
2
3

)lϕ(x) + 0.

Let l→∞. It follows that ϕ(x) = 0.
Fix l ∈ N. If x ∈ L1 and C are as in Lemma 2.8.16, then it follows from

Corollary 2.8.17 that

1
m2l

σm2lx ≺≺ (
2
3

)lx+
9
2
E(x|Am) +

9
2
Cχ(0,1), m ∈ N

and, therefore,

1
sm2l

σsm2lx ≺≺ (
2
3

)l
1
s
σsx+

9
2
E(x|Am) +

9
2
Cs−1σsχ(0,1), m, s ∈ N.

Let m, s→∞. It follows that

ϕ(x) ≤ C0(
2
3

)lϕ(x) + 0 + 0.

Let l→∞. It now follows that ϕ(x) = 0.

Theorem 2.8.19. Let E = E(0,∞) be a fully symmetric quasi-Banach space on
the semi-axis equipped with a Fatou quasi-norm such that E(0,∞) ⊂ L1(0,∞).
If x ∈ E is such that Ω(x) = QE(x), then τ−1στ (x∗)χ[0,1] → 0.

Proof. Set F = E + L∞. Clearly,

Ω(x) = QE(x) ⊂ QF (x) ⊂ Ω(x).

Hence, QF (x) = Ω(x). Applying Theorem 2.8.18, we obtain ϕF (x) = 0, which
proves the assertion.
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2.9 The sequence space case

In this section, we will follow Kalton, Sukochev and Zanin [31].
Suppose now that E is a symmetric quasi-Banach sequence space. We as-

sociate it with a symmetric quasi-Banach function space on the semi-axis as
follows.

Consider the partition of the semi-axis A = {[k−1, k]}k∈N. It is clear that the
operator P (·|A) maps (L1 +L∞)(0,∞) into the set of step functions. Elements
of the latter can be readily identified with bounded sequences.

More precisely, for any bounded sequence ξ we set

xξ =
∞∑
k=1

ξkχ(k−1,k]

and identify ξ and xξ.

Definition 2.9.1. Let E be a symmetric quasi-Banach sequence space. We
define the function space FE on the semi-axis as the set of all x ∈ L∞(0,∞)
such that P (x∗|A) ∈ E, and set

‖x‖FE = ‖x‖∞ + ‖P (x∗|A)‖E .

It is easy to see that FE is a linear space and that ‖ · ‖FE is a quasi-norm
on FE . Further, equipped with the quasi-norm ‖ · ‖FE , the space FE is a quasi-
Banach symmetric space on the semi-axis. It is not difficult to see that the
space E is fully symmetric if and only if FE is fully symmetric.

If E is a fully symmetric sequence space and if ξ ∈ E, then the sets Ω(ξ),
Q(ξ), QE(ξ) are defined in the same way as in the function space setting.

The set Q(ξ) admits a characterization fully analogous to that in the the
function space setting given in Theorem 2.8.10

Theorem 2.9.2. Let ξ be a bounded sequence. The following assertions are
valid.

1. [30, Lemma 4.4]. If η ∈ Q(ξ), then there exists p ∈ N such that

n∑
k=pm+1

η∗k ≤
n∑

k=m+1

ξ∗k, ∀n,m ∈ N : pm+ 1 ≤ n. (2.32)

2. [30, Theorem 5.4]. If η is a sequence satisfying (2.32), then, for every
ε > 0, there exist ζ such that |η| ≤ ζ and ζ ∈ (1 + ε)Q(ξ).

Lemma 2.9.3. Let ξ = ξ∗ /∈ l1 be a sequence and let y = y∗ ∈ L∞(0,∞). If
y = y∗ ≺≺ xξ and 0 < q < 1, then there exist sequences nk → ∞ and εk → 0
such that

xξχ[0,nk] + qyχ(nk,∞) ≺≺ (1 + εk)xξ.
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Proof. By Lemma 2.5.3, there exists a sequence tk →∞ such that

qyχ(tk,∞) ≺≺ xξχ(tk,∞).

Set nk = [tk]. Clearly,∫ t

0

(xξχ(0,nk) + qyχnk,∞)∗(s)ds = sup
u+v=t,u≤nk

∫ u

0

xξ(s)ds+
∫ nk+v

nk

qy(s)ds.

Evidently, ∫ nk+v

nk

qy(s)ds ≤ y(nk) min{v, 1}+
∫ tk+v

tk

xξ(s)ds.

Therefore,∫ t

0

(xξχ(0,nk) + qyχnk,∞)∗(s)ds ≤ y(nk) min{t, 1}+
∫ t

0

xξ(s)ds

and the assertion follows.

Lemma 2.9.4. If E 6= l∞, l1 is a fully symmetric quasi-Banach sequence space
and if ξ ∈ E\l1 is such that Ω(ξ) = QE(ξ), then Ω(xξ) = QFE (xξ).

Proof. Fix y ∈ Ω(xξ). Since E 6= l∞, it follows that x∗ξ(∞) = 0. Thus, y∗(∞) =
0. It follows that |y| = y∗ ◦ γ, where γ is a measure-preserving transformation.
Hence, we assume that y = y∗.

Fix ε > 0 and 0 < q < 1. By Lemma 2.9.3, there exists n such that y(n) < ε
and

xξχ[0,n] + qyχ(n,∞) ≺≺ (1 + ε)xξ. (2.33)

Since qyχ[0,n] ≺≺ xξχ[0,n], there exist functions xi, 1 ≤ i ≤ m, on the
interval [0, n] such that x∗i = xξχ[0,n] and

‖ 1
m

m∑
i=1

xi − qy‖L∞(0,n) ≤ ‖χ[0,n]‖−1
FE
ε.

Define xi to be qy on (n,∞) for 1 ≤ i ≤ m. It follows that

‖ 1
m

m∑
i=1

xi − qy‖FE ≤ ‖
1
m

m∑
i=1

xi − qy‖L∞(0,n) · ‖χ[0,n]‖FE ≤ ε.

Set An = {[k, k + 1]}k≥n and zi = P (xi|An). It is clear that

1
m

m∑
i=1

xi −
1
m

n∑
i=1

zi = q(y − P (y|An))

and

‖y − P (y|An)‖L1∩L∞ ≤
∞∑
k=n

y(k)− y(k + 1) = y(n).
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Hence,

‖ 1
m

m∑
i=1

xi −
1
m

m∑
i=1

zi‖FE ≤ ‖y − P (y|An)‖L1∩L∞ ≤ y(n) ≤ ε.

Clearly, zi is equimeasurable with xξχ[0,n] + qP (y|An)χ(n,∞) = xη for some
η ∈ E. It follows from (2.33) that η ≺≺ (1 + ε)ξ. By assumption, η ∈ (1 +
ε)QE(ξ). Therefore, zi ∈ (1 + ε)QFE (xξ), 1 ≤ i ≤ m.

Since QFE (xξ) is a convex set, it follows that

1
m

m∑
i=1

zi ∈ QFE (xξ) ⊂ QFE (xξ) + εBFE (0, 1).

Hence,

qy ∈ 1
m

m∑
i=1

xi + εBFE (0, 1) ⊂ 1
m

m∑
i=1

zi + εBFE (0, 1) + εBFE (0, 1) ⊂

⊂ QFE (xξ) + εBFE (0, 1) + εBFE (0, 1) + εBFE (0, 1).

Since ε is arbitrarily small and QFE (xξ) is a closed set, the assertion of the
lemma follows.

Theorem 2.9.5. Let E be a fully symmetric quasi-Banach sequence space and
let ξ ∈ E. If Ω(ξ) = QE(ξ), then Ω(xξ) = QFE (xξ).

Proof. If ξ ∈ l1, then ϕfin(xξ) = 0. It follows from Theorem 2.7.11 that

Ω(xξ) = QL1∩L∞(xξ) ⊂ QFE (xξ)

and we are done. Assume now that ξ /∈ l1. If E 6= l1, l∞, then the assertion is
proved in Lemma 2.9.4. If E = l∞, then ϕ(xξ) = 0 and our assertion follows
from Theorem 2.7.2.

Lemma 2.9.6. Let E 6= l∞ be a fully symmetric quasi-Banach sequence space.
If Ω(xξ) = QFE (xξ), then Ω(ξ) = QE(ξ).

Proof. Let ξ ∈ E and let Ω(xξ) = QFE (xξ). Assume for simplicity that ‖ξ‖E =
1. Let η ∈ Ω(ξ). Since E 6= l∞, it follows that ξ∗(∞) = 0 and η∗(∞) = 0. Thus,
we may assume without loss of generality, that ξ = ξ∗ and η = η∗.

Evidently, xη ∈ Ω(xξ). Fix ε > 0. There exists z ∈ Q(xξ) such that ‖z −
xη‖FE ≤ ε. Since xη decreases, it follows that

‖z∗ − xη‖FE ≤ ‖z − xη‖FE ≤ ε.

Define the sequence ζ by the formula xζ = P (z∗|A). Since z ∈ Q(xξ), it
follows from Theorem 2.8.10 that there exists p ∈ N such that∫ b

pa

z∗(s)ds ≤
∫ b

a

x∗ξ(s)ds, ∀pa < b.
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If m,n ∈ N, then

n∑
k=pm+1

ζ∗k =
∫ n

pm

z∗(s)ds ≤
∫ n

m

x∗ξ(s)ds =
n∑

k=m+1

ξ∗k, ∀pm+ 1 ≤ n.

Therefore, by Theorem 2.9.2, there exists ζ ′ such that |ζ| ≤ ζ ′ and

ζ ′ ∈ (1 + ε)Q(ξ).

By Lemma 2.3.3,

ζ ∈ (1 + ε)QE(ξ) ⊂ QE(ξ) + εBE(0, 1) ⊂ Q(ξ) + εBE(0, 1) + εBE(0, 1).

On the other hand,

‖ζ − η‖E ≤ ‖xζ − xη‖FE = ‖P (z∗ − xη|A)‖FE ≤ ‖z∗ − xη‖FE ≤ ε,

and, therefore,

η ∈ ζ + εBE(0, 1) ⊂ Q(ξ) + εBE(0, 1) + εBE(0, 1) + εBE(0, 1).

Since ε is arbitrarily small and QE(ξ) is closed, this suffices to prove the lemma.

Theorem 2.9.7. Let E be a fully symmetric quasi-Banach sequence space. Sup-
pose that E 6= l1. If ξ ∈ E and if ϕ(ξ) = 0, then Ω(ξ) = QE(ξ).

Proof. If E = l∞, the assertion is well-known. Let E 6= l∞. Let ξ ∈ E be such
that ϕE(ξ) = 0. Clearly, this implies ϕFE (xξ) = 0. It follows from Theorem
2.7.3 that Ω(xξ) = QFE (xξ). By Lemma 2.9.6, Ω(ξ) = QE(ξ).

The following result is a corollary of the preceding results.

Theorem 2.9.8. Let E be a fully symmetric quasi-Banach sequence space
equipped with a Fatou quasi-norm and let ξ ∈ E. The following conditions are
equivalent.

1. Ω(ξ) = QE(ξ).

2. Ω+(ξ) = Q′E(ξ).

3. ϕ(ξ) = 0.
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2.10 Applications & examples

2.10.1 Orlicz spaces are always ”good”

The following proposition shows that Orlicz spaces always satisfy the condition
(1.1).

Lemma 2.10.1. Let Φ be an Orlicz function and LΦ be the corresponding Orlicz
space on the semi-axis. Suppose that Φ′(0) = 0. If x ∈ LΦ, then

n

∫ ∞
0

Φ(
x(s)
n

)ds→ 0.

The same assertion is valid for Orlicz spaces on the interval (0, 1).

Proof. Without loss of generality, it may be assumed that ‖x‖LΦ = 1, that is∫∞
0

Φ(x(s))ds = 1. It follows from the condition Φ′(0) = 0 that nΦ(x/n) → 0
almost everywhere. It is clear that nΦ(x/n) ≤ Φ(x). The assertion of the lemma
follows now from the Lebesgue dominated convergence principle.

Proposition 2.10.2. Let Φ be an Orlicz function and LΦ be the corresponding
Orlicz space on the semi-axis. If x ∈ LΦ, then ϕ(x) = 0 for every x ∈ LΦ. The
same assertion is valid for Orlicz spaces on the interval (0, 1).

Proof. Assume the contrary. Suppose first that Φ′(0) = 0. It follows that LΦ 6⊂
L1(0,∞). Let

‖σnx‖LΦ ≥ nα

for some 0 ≤ x ∈ LΦ, some α > 0 and every n ≥ 1. By the definition of the
norm ‖ · ‖LΦ , we have ∫ ∞

0

Φ(
1
nα

σnx(s))ds ≥ 1.

Hence,

n

∫ ∞
0

Φ(
1
n
y(s))ds ≥ 1

with y = α−1x ∈ LΦ. A contradiction.
Suppose first that Φ′(0) = 0. It follows that LΦ 6⊂ L1(0,∞). Let

‖(σnx∗)χ(0,1)‖LΦ ≥ nα

for some 0 ≤ x ∈ LΦ, some α > 0 and every n ≥ 1. By the definition of the
norm ‖ · ‖LΦ , we have ∫ 1

0

Φ(
1
nα

(σnx∗)(s))ds ≥ 1.

Hence,

n

∫ 1/n

0

Φ(
1
n
y(s))ds ≥ 1
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with y = α−1x∗ ∈ LΦ. Define Orlicz function Φ0 by setting Φ0(z) = Φ(z) −
Φ′(+0)|z| for every z ∈ R. It follows that

n

∫ ∞
0

Φ0(
1
n
y(s))ds→ 0.

Therefore,

n

∫ 1/n

0

Φ(
1
n
y(s))ds ≤ Φ′(+0)

∫ 1/n

0

y(s)ds+ n

∫ ∞
0

Φ0(
1
n
y(s))ds→ 0.

A contradiction.

Corollary 2.10.3. If LΦ is an Orlicz space and if x ∈ LΦ, then Ω(x) = QLΦ(x).

It follows from Theorem 15.3 of [38] that every separable symmetric Banach
space satisfies the condition Ω(x) = QE(x). In [11], Braverman & Mekler showed
that Ω(x) = QE(x) provided that βE < 1. For the subclass of Orlicz spaces,
Corollary 2.10.3 substantially improves each of these results. Indeed, it is quite
easy to construct (see Appendix B) a non-separable Orlicz space LΦ such that
βLΦ = 1.

2.10.2 Symmetric functionals

Let E be a fully symmetric quasi-Banach space.

Definition 2.10.4. A positive functional ω ∈ E∗ is said to be symmetric if
ω(y) = ω(x) for all 0 ≤ x, y ∈ E such that y∗ = x∗.

Definition 2.10.5. A positive functional ω ∈ E∗ is said to be fully symmetric
if ω(y) ≤ ω(x) for all 0 ≤ x, y ∈ E such that y ≺≺ x.

We refer to [23, 16] and references therein for the exposition of the theory of
singular fully symmetric functionals and their applications. Recently, symmetric
functionals which fail to be fully symmetric were constructed in [30] on some
Marcinkiewicz spaces. However, for Orlicz spaces situation is different. The
following proposition shows that a symmetric functional on an Orlicz space is
necessary fully symmetric.

Proposition 2.10.6. Any symmetric functional on the Orlicz space LΦ is fully
symmetric.

Proof. Let ω ∈ E∗ be symmetric. It is clear, that ω(x∗χ[0,β]) ≤ ω(x) for
x ≥ 0. Therefore, ω(y) ≤ ω(x) for y ∈ Q+(x). Since ω is continuous, we have
ω(y) ≤ ω(x) for y ∈ Q+

LΦ
(x). By Theorem 2.7.8 and Proposition 2.10.2, we have

Q+
LΦ

(x) = Ω+(x), and so ω is a fully symmetric functional on LΦ.

Corollary 2.10.7. There are no non-zero symmetric functionals on the Orlicz
space LΦ.
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Proof. Indeed, there are no non-zero fully symmetric singular functionals on LΦ

(see [23, Theorem 3.1]).

It was shown (in an unpublished paper of Kalton & Sukochev) that a similar
assertion is valid for every fully symmetric space E. That is, space E admits
non-zero symmetric functionals if and only if E admits non-zero fully symmetric
functionals.

2.10.3 Marcinkiewicz spaces with trivial functional ϕ

Lemma 2.10.8. Let Mψ be a Marcinkiewicz space either on the interval (0, 1)
or on the semi-axis. Then ϕ(x) = 0 for every x ∈Mψ if and only if βMψ

< 1.

Proof. Note that ϕ(x) ≤ ‖x‖Mψ
ϕ(ψ′) for x ∈Mψ. Clearly, for the Marcinkiewicz

space on the interval (0, 1), the condition ϕ(ψ′) = 0 holds if and only if

lim inf
t→0

ψ(2t)
ψ(t)

> 1.

If Mψ is a space on the semi-axis, then one should replace→ 0 with→ 0,∞.
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The result of sections 3.5, 3.6 and 3.7 were published in [56]. The results of
sections 3.1, 3.2, 3.3 and 3.4 were submitted for publication (see [57]).

3.1 The Johnson-Schechtman inequality for pos-
itive functions

In this section, we extend the results of Astashkin & Sukochev (see [6]) con-
cerning the Johnson-Schechtman inequality for positive functions to the quasi-
normed setting. Our proofs are significantly shorter and easier to understand
than those of Astashkin & Sukochev, which do not extend to the case of quasi-
Banach symmetric spaces.

We begin by recalling the definition of the Kruglov operator for the conve-
nience of the reader. The measure space Ω =

∏∞
n=0(0, 1) equipped with the

product measure is isomorphic to the interval (0, 1) equipped with a Lebesgue
measure. Let x be a random variable (measurable function) on the interval
(0, 1). Let {Bn}∞n=0 be a fixed sequence of mutually disjoint measurable subsets

of (0, 1) such that m(Bn) =
1
en!

. The Kruglov operator K : S0(0, 1)→ S0(Ω) is
defined by setting

Kx(ω) =
∞∑
n=1

n∑
k=1

x(ωk)χBn(ω0), x ∈ S0(0, 1).

Here, ω = (ω0, ω1, · · · ) is an element of Ω.
Let xn, 1 ≤ k ≤ n, be a (finite) sequence of random variables. In what

follows, we will denote by x̄k, 1 ≤ k ≤ n, the sequence of their disjoint copies.
If
∑n
k=1m(supp(xn)) ≤ 1, then it will be assumed that supp(xk) ⊂ (0, 1),

1 ≤ k ≤ n.
We will use the following approximation to Kx, where x is an arbitrary

measurable function on the interval (0, 1).
Define the operator Hn : S0(0, 1)→ S0(Ω) by the formula

(Hnx)(ω) =
n∑
k=1

σ 1
n
x(ωk), x ∈ S0(0, 1). (3.1)

Here, ω = (ω0, ω1, · · · ) is an element of Ω.

Lemma 3.1.1. The sequence of functions {Hnx}∞n=1 converges to Kx in dis-
tribution.

Proof. It is clear that
ϕHnx = ϕnσ1/nx

.

However,

ϕσ1/nx(t) =
∫
eitσ1/nxdm = (1− 1

n
) +

1
n
ϕx(t).
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Therefore,

ϕHnx = (1 +
ϕx − 1
n

)n → exp(ϕx − 1) = ϕKx.

Convergence in distributions now follows from Lemma 1.2.80.

Theorem 3.1.2. Let E and F be symmetric quasi-Banach spaces. Assume
that, for any sequence of independent functions xk, 1 ≤ k ≤ n, such that∑n
k=1m(supp(xk)) ≤ 1 we have

‖
n∑
k=1

xk‖F ≤ C · ‖
n∑
k=1

x̄k‖E . (3.2)

If F has the Fatou property, then K maps E into F and ‖K‖E→F ≤ C.
Proof. Let x ∈ E. Define xk ∈ E(Ω) by setting xk(ω) = (σ1/nx)(ωk) for every
ω ∈ Ω. It is easily seen that we may take

x̄k(t) = σ1/nx(t− k − 1
n

mod1), 1 ≤ k ≤ n.

It is clear that

Hnx ∼
n∑
k=1

xk, x ∼
n∑
k=1

x̄k.

It follows from the inequality (3.2) that ‖Hnx‖F ≤ C‖x‖E . It follows from
Lemma 3.1.1 that the sequence Hnx, n ∈ N, converges to Kx in distribution
and hence (Hnx)∗ → Kx almost everywhere. Since F has the Fatou property,
it follows that Kx ∈ F and ‖Kx‖F ≤ C‖x‖E .

The crucial property of the Kruglov operator, which is stated in the proposi-
tion below, strengthens the property used by Astashkin and Sukochev (see [6]).
Essentially, the proposition says that the operator K maps disjoint functions
into independent ones.

Proposition 3.1.3. If the functions xk, 1 ≤ k ≤ n, are disjoint, then the
functions Kxk, 1 ≤ k ≤ n, are independent.

Proof. Let λk ∈ R, 1 ≤ k ≤ n. Since the functions xk are disjoint, it follows
that

exp(it
n∑
k=1

λkxk)− 1 =
n∑
k=1

(exp(itλkxk)− 1).

This implies immediately the following relations for the characteristic functions.

ϕPn
k=1 λkxk

− 1 =
n∑
k=1

(ϕλkxk − 1).

Since ϕKx = exp(ϕx − 1), it follows that

ϕPn
k=1 λkKxk

= exp(
n∑
k=1

(ϕλkxk − 1)) =
n∏
k=1

exp(ϕλkxk − 1) =
n∏
k=1

ϕλkKxk .

The assertion now follows from Lemma 1.2.79
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Lemma 3.1.4. For every positive x ∈ S0, we have σ1/2x
∗ ≤ (Kx)∗.

Proof. Let B ⊂ ∪n≥1Bn be such that m(B) = 1/2. It is clear that (Kx)(ω) ≥
x(ω1)χB(ω0) for every ω ∈ Ω. However, the mapping ω → x(ω1)χB(ω0) is
equimeasurable with σ1/2x

∗. The assertion follows immediately.

Proposition 3.1.5. Let E,F be symmetric quasi-Banach spaces. If xk, 1 ≤
k ≤ n, are independent and if

∑n
k=1m(supp(xk)) ≤ 1, then

‖
n∑
k=1

xk‖F ≤ 2C(F )‖K‖E→F ‖
n∑
k=1

x̄k‖E .

Proof. Clearly, |xk|, 1 ≤ k ≤ n, are independent.

|
n∑
k=1

xk| ≤
n∑
k=1

|xk|, |
n∑
k=1

x̄k| =
n∑
k=1

|x̄k|.

If one proves the assertion for |xk|, then the assertion for xk follows immediately.
Without loss of generality, it may be assumed that 0 ≤ xk, 1 ≤ k ≤ n.

It follows from Proposition 3.1.3 that K(
∑n
k=1 x̄k) is equimeasurable with

the mapping

ω →
n∑
k=1

(Kxk)∗(ωk).

Therefore,

‖
n∑
k=1

(Kxk)∗(ωk)‖F (Ω) = ‖K(
n∑
k=1

x̄k)‖F (Ω) ≤ ‖K‖E→F ‖
n∑
k=1

x̄k‖E .

It follows from Lemma 3.1.4 that
n∑
k=1

(σ1/2x
∗
k)(ωk) ≤

n∑
k=1

(Kxk)∗(ωk)

and, therefore,

‖
n∑
k=1

(σ1/2x
∗
k)(ωk)‖F (Ω) ≤ ‖K‖E→F ‖

n∑
k=1

x̄k‖E . (3.3)

The function
∑n
k=1 xk is equimeasurable with the function y1 + y2 defined

by

yi(ω) =
n∑
k=1

(σ1/2x
∗
k)((ωk −

i

2
)mod1), ω ∈ Ω.

Since
‖y1 + y2‖F (Ω) ≤ C(F )(‖y1‖F (Ω) + ‖y2‖F (Ω)),
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then

‖
n∑
k=1

xk‖F ≤ 2C(F )‖
n∑
k=1

(σ1/2x
∗
k)(ωk)‖F (Ω). (3.4)

The assertion follows now from (3.3) and (3.4).

Remark 3.1.6. By the definition of operator K, the function K1 has a Poisson
distribution with parameter 1. Let ψ be a piecewise-constant concave function
such that ψ′ = (K1)∗. It is clear that K : L∞ →Mψ and ‖K‖L∞→Mψ

= 1.

Lemma 3.1.7. Let

sk =
∞∑
n=k

1
e · n!

.

It follows that for every k ∈ N,

4ksk+1 ≥ sk.

Proof. Clearly,

4ksk+1 ≥
(k + 1)2

k
sk+1 ≥

(k + 1)2

k
· 1
e · (k + 1)!

=
k + 1
k
· 1
e · k!

.

On the other hand,

k + 1
k
· 1
e · k!

=
1

e · k!
· 1

1− 1
k+1

=
1

e · k!
(1 +

1
k + 1

+
1

(k + 1)2
+ · · · ).

It is clear that k! · (k + 1)n ≤ (k + n)!. Therefore,

1
e · k!

(1 +
1

k + 1
+

1
(k + 1)2

+ · · · ) ≥
∞∑
n=k

1
e · n!

.

Corollary 3.1.8. If ψ is as in the Remark 3.1.6, then

inf
0<t<1−1/e

tψ′(t)
ψ(t)

≥ 1
4
.

Proof. Let sk be as in Lemma 3.1.7. Since ψ′ is a Poisson random variable, it
follows that

ψ′(t) = k, ∀t ∈ (sk+1, sk), k ∈ N.

Therefore,

ψ(sk+1) =
∞∑

n=k+1

k + 1
e · (k + 1)!

= sk, k ∈ N.
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If 0 < t < 1 − 1/e, then t ∈ [sk+1, sk] for some k ≥ 1. Clearly, ψ′(t) = k on
this interval. Since ψ is concave, it follows that the function t/ψ(t) increases.
Therefore,

tψ′(t)
ψ(t)

=
kt

ψ(t)
≥ ksk+1

ψ(sk+1)
=
ksk+1

sk
≥ 1

4
.

The last inequality is valid by Lemma 3.1.7.

Corollary 3.1.9. If F be an arbitrary symmetric quasi-Banach space and if
x ∈ F, then

‖x‖F ≤ 8C(F )‖x‖Mψ
· ‖K‖L∞→F .

Proof. It is clear that

‖x‖Mψ
= sup

t>0

1
ψ(t)

∫ t

0

x∗(s)ds ≥ sup
0<t<1/2

1
ψ(t)

∫ t

0

x∗(s)ds ≥

≥ sup
0<t<1/2

tx∗(t)
ψ(t)

= sup
0<t<1/2

tψ′(t)
ψ(t)

· x
∗(t)
ψ′(t)

≥

≥ inf
0<t<1/2

tψ′(t)
ψ(t)

· sup
0<t<1/2

x∗(t)
ψ′(t)

≥ 1
4

sup
0<t<1/2

x∗(t)
ψ′(t)

.

Here, the last inequality follows from Corollary 3.1.8. Therefore,

x∗(t) ≤ 4‖x‖Mψ
ψ′(t)

for every t ∈ (0, 1/2). In particular,

x∗ ≤ σ2x
∗ ≤ 4‖x‖Mψ

σ2ψ
′.

Therefore,

‖x‖F ≤ ‖σ2x
∗‖F ≤ 4‖x‖Mψ

‖σ2ψ
′‖F ≤ 8C(F )‖x‖Mψ

‖K1‖F .

The assertion follows now from the obvious equality

‖K‖L∞→F = ‖K1‖F .

Lemma 3.1.10. Let xk, yk ∈ L1(0, 1), 1 ≤ k ≤ n, be positive and independent.
If yk ≺ xk for each k, then

n∑
k=1

yk ≺
n∑
k=1

xk.
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Proof. Define functions x, y ∈ L1((0, 1)n) by setting

x(ω) =
n∑
k=1

xk(ωk), y(ω) =
n∑
k=1

yk(ωk), ω = (ω1, · · · , ωn) ∈ (0, 1)n.

By assumption, for every 1 ≤ k ≤ n, there exists a bistochastic operator
Ak such that Akxk = yk. The operator A = ⊗nk=1Ak is a bounded operator on
L1((0, 1)n) (see Appendix C). Since each of the operators Ak is bistochastic, so
is the operator A. Evidently,

y =
n∑
k=1

1⊗ · · · ⊗ yk ⊗ · · · ⊗ 1 =
n∑
k=1

A11⊗ · · · ⊗Akxk ⊗ · · · ⊗An1 = Ax ≺ x.

Since
∑n
k=1 xk (respectively,

∑n
k=1 yk) is equimeasurable with x (respectively,

y), the assertion of the lemma follows.

The above proof does not work if we replace ≺ with ≺≺ . However, we are
able to derive the following corollary.

Lemma 3.1.11. Let xk, yk ∈ L1(0, 1), 1 ≤ k ≤ n, be positive and independent.
If yk ≺≺ xk for each k, then

n∑
k=1

yk ≺≺
n∑
k=1

xk.

Proof. For 1 ≤ k ≤ n, select sk ∈ (0, 1) such that yk ≺ x∗kχ(0,sk). Define
functions x, y, z ∈ L1((0, 1)n) by setting

x(ω) =
n∑
k=1

x∗k(ωk), y(ω) =
n∑
k=1

yk(ωk), z(ω) =
n∑
k=1

(x∗kχ(0,sk))(ωk)

for every ω = (ω1, · · · , ωn) ∈ (0, 1)n. It follows from Lemma 3.1.10 that y ≺ z ≤
x. Since

∑n
k=1 xk (respectively,

∑n
k=1 yk) is equimeasurable with x (respectively,

y), this suffices to conclude the lemma.

Proposition 3.1.12. If xk, 1 ≤ k ≤ n, are bounded and independent, then

‖
n∑
k=1

xk‖Mψ
≤ 2‖

n∑
k=1

x̄k‖L1∩L∞ .

Proof. Without loss of generality, xk ≥ 0 for 1 ≤ k ≤ n. Suppose that

‖
n∑
k=1

x̄k‖∞ = 1, ‖xk‖1 = αk.

If α =
∑n
k=1 αk > 1, then xk ≺ αχ[0,α−1αk] for 1 ≤ k ≤ n. It follows from

Lemma 3.1.10 that
n∑
k=1

xk ≺ α
n∑
k=1

χ[0,α−1αk](ωk).
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Therefore, by Proposition 3.1.5,

‖
n∑
k=1

xk‖Mψ
≤ α‖

n∑
k=1

χ[0,α−1αk](ωk)‖Mψ
≤ 2α‖

n∑
k=1

χ[0,α−1αk]‖∞ = 2α.

If α =
∑n
k=1 αk < 1, then xk ≺ χ[0,αk] for 1 ≤ k ≤ n. It follows from Lemma

3.1.10 that
n∑
k=1

xk ≺
n∑
k=1

χ[0,αk](ωk).

Therefore, by Proposition 3.1.5,

‖
n∑
k=1

xk‖Mψ
≤ ‖

n∑
k=1

χ[0,αk](ωk)‖Mψ
≤ 2‖

n∑
k=1

χ[0,αk]‖∞ = 2.

Proposition 3.1.13. Let F be a symmetric quasi-Banach space. If xk, 1 ≤
k ≤ n, are bounded and independent, then

‖
n∑
k=1

xk‖F ≤ 16C(F )‖K‖L∞→F ‖
n∑
k=1

x̄k‖L1∩L∞ .

Here, x̄k are disjoint copies of xk.

Proof. The assertion follows directly from Proposition 3.1.12 and Corollary 3.1.9
applied to the function x =

∑n
k=1 xk ∈Mψ.

Lemma 3.1.14. Let E,F be symmetric quasi-Banach spaces. If K : E → F,
then K : L∞ → F and

‖K‖L∞→F ≤ ‖K‖E→F .

Proof. Since ‖x‖E ≤ ‖x‖∞ for every x ∈ L∞, it follows that

‖K‖E→F = sup
x∈E

‖Kx‖F
‖x‖E

≥ sup
x∈L∞

‖Kx‖F
‖x‖E

≥ sup
x∈L∞

‖Kx‖F
‖x‖∞

= ‖K‖L∞→F .

According to Lemma 3.1.14, one can replace ‖K‖L∞→F with ‖K‖E→F in
Proposition 3.1.13.

Theorem 3.1.15. Let E,F be symmetric quasi-Banach spaces. If xk, 1 ≤ k ≤
n, are independent and if X =

∑n
k=1 x̄k, then

‖
n∑
k=1

xk‖F ≤ 32C2(F )‖K‖E→F (‖X∗χ[0,1]‖E + ‖X∗χ(1,∞)‖1). (3.5)
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Proof. Define the function g and the constant c by the formulae

g(s) = m({t : |X(t)| > s}) =
n∑
k=1

m({t : |xk(t)| ≥ s}),

c = X∗(1) = inf{s : g(s) < 1}.

If g is discontinuous at c, then some of the sets |xk|−1{c} have positive measure.
For those k, select sets Ak ⊂ |xk|−1{c} such that

∑n
k=1m(Ak) = 1 − g(c + 0).

Such a selection is possible since g(c) ≥ 1.
Define functions

x1k = xkχ{|xk|>c}∪Ak , x2k = xk − x1k, 1 ≤ k ≤ n.

The functions x1k, 1 ≤ k ≤ n are independent. So are the functions x2k,
1 ≤ k ≤ n.

It is clear that
n∑
k=1

x̄1k ∼ X∗χ[0,1],

n∑
k=1

x̄2k ∼ X∗χ(1,∞).

Therefore, applying Propositions 3.1.5 and 3.1.13, we obtain

‖
n∑
k=1

xk‖F ≤ C(F )(‖
n∑
k=1

x1k‖F + ‖
n∑
k=1

x2k‖F ) ≤

≤ 16C2(F )‖K‖E→F (‖
n∑
k=1

x̄1k‖E + ‖
n∑
k=1

x̄2k‖L1∩L∞) =

= 16C2(F )‖K‖E→F (‖X∗χ[0,1]‖E + ‖X∗χ(1,∞)‖L1∩L∞).

If
‖X∗χ(1,∞)‖∞ ≤ ‖X∗χ(1,∞)‖1,

then

‖
n∑
k=1

xk‖F ≤ 16C2(F )‖K‖E→F (‖X∗χ[0,1]‖E + ‖X∗χ(1,∞)‖1)

and we are done.
Otherwise, note that

‖X∗χ(1,∞)‖∞ = X∗(1) ≤ ‖X∗χ[0,1]‖E .

Hence,

‖
n∑
k=1

xk‖F ≤ 32C2(F )‖K‖E→F ‖X∗χ[0,1]‖E

and this suffices to complete the proof.
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3.2 The Johnson-Schechtman inequality for sym-
metrically distributed & mean zero func-
tions

Recall that the random variable x is said to be symmetrically distributed if x+

and x− have the same distribution.
If we assume that the independent random variables xk, 1 ≤ k ≤ n, in

the statement of Theorem 3.1.15 are, in addition, symmetrically distributed (or
are mean zero), then the Johnson-Schechtman inequality given in (3.5) can be
significantly improved. In this section we extend estimates due to Astashkin &
Sukochev (see [3]) to the quasi-Banach setting. Our proofs significantly simplify
those of [3].

The following remarkable inequality was proved by Prokhorov. We include
the following simple proof from [27].

Lemma 3.2.1. If xk, 1 ≤ k ≤ n, is a sequence of uniformly bounded indepen-
dent symmetrically distributed random variables, then

m({
n∑
k=1

xk > t}) ≤ exp(− t

2‖
∑n
k=1 x̄k‖∞

arcsinh(
t‖
∑n
k=1 x̄k‖∞

2‖
∑n
k=1 x̄k‖22

)). (3.6)

Proof. Recall the inequality eu − u− 1 ≤ |u|sinh(|u|). For every symmetrically
distributed random variable x and every λ > 0, we have∫

(0,1)

eλx(ω)dω = 1 +
∫

(0,1)

(eλx(ω) − λx(ω)− 1)dω ≤

≤ 1 +
∫

(0,1)

(λ2x2(ω))
sinh(|λx(ω)|)
|λx(ω)|

≤ 1 +
λ‖x‖22
‖x‖∞

sinh(λ‖x‖∞).

Recall that 1 + u ≤ exp(u) for every u > 0. It follows that∫
(0,1)n

exp(λ
n∑
k=1

xk(ωk))
n∏
k=1

dωk ≤ exp(
n∑
k=1

λ‖xk‖22
‖xk‖∞

sinh(λ‖xk‖∞)).

Therefore,∫
(0,1)

exp(λ
n∑
k=1

xk) ≤ exp(
λ‖
∑n
k=1 x̄k‖22

‖
∑n
k=1 x̄k‖∞

sinh(λ‖
n∑
k=1

x̄k‖∞)).

It is clear that

m({
n∑
k=1

xk > t}) ≤ e−λt
∫

(0,1)

exp(λ
n∑
k=1

xk).

Setting

λ =
1

‖
∑n
k=1 x̄k‖∞

arcsinh(
‖
∑n
k=1 x̄k‖∞t

2‖
∑n
k=1 x̄k‖22

),

the assertion follows.
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Proposition 3.2.2. If xk, 1 ≤ k ≤ n, are bounded, symmetrically distributed
and independent, then

‖
n∑
k=1

xk‖Mψ
≤ Cabs‖

n∑
k=1

x̄k‖L2∩L∞ .

Proof. Define the set of operators

An : L2 ∩ L∞ →Mψ(Ω), Anx(ω) =
n−1∑
k=0

x(k + ω2k−1)r(ω2k), ω ∈ Ω.

It is clear that
‖An‖L2∩L∞→Mψ

≤ n.

On the other hand, for any fixed x set

α(x) = ‖x‖∞ + sup
n

‖xχ[0,n]‖22
‖xχ[0,n]‖∞

.

Here, 0/0 is set to be 0. Clearly, α(x) is always finite. It follows from the
Prokhorov inequality that

m({|Anx| > tα(x)}) ≤ 2 · exp(− t
2

arcsinh(
t

2
)), n ∈ N.

By Lemma 1.2.71,

m({4ψ′ > t}) ≥ exp(−1− t

2
arcsinh(

t

2
)).

Therefore,

m({|Anx| > tα(x)}) ≤ 2e ·m({4ψ′ > t}), n ∈ N.

Now it is clear that
‖Anx‖Mψ(Ω) ≤ 8e · α(x).

Therefore, the norms ‖Anx‖Mψ(Ω), n ∈ N, are uniformly bounded. It follows
from the uniform boundedness principle that the norms ‖An‖L2∩L∞→Mψ(Ω) are
uniformly bounded.

Corollary 3.2.3. Let E,F be symmetric quasi-Banach spaces. If xk, 1 ≤ k ≤
n, are bounded, symmetrically distributed and independent, then

‖
n∑
k=1

xk‖F ≤ CabsC(F )‖K‖L∞→F ‖
n∑
k=1

x̄k‖L2∩L∞ .

Proof. The assertion follows directly from Proposition 3.2.2 and Corollary 3.1.9
applied to the function x =

∑n
k=1 xk ∈Mψ.
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According to Lemma 3.1.14, one can replace ‖K‖L∞→F with ‖K‖E→F in
Proposition 3.2.3.

Theorem 3.2.4. Let E,F be symmetric quasi-Banach spaces. If xk, 1 ≤ k ≤ n,
are independent and symmetrically distributed and if X =

∑n
k=1 x̄k, then

‖
n∑
k=1

xk‖F ≤ CabsC2(F )‖K‖E→F (‖X∗χ[0,1]‖E + ‖X∗χ(1,∞)‖2). (3.7)

Proof. Let the function g and the constant c be defined as in the proof of
Theorem 3.1.15. Select sets Ak as in the proof of Theorem 3.1.15 such that in
addition xk|Ak , 1 ≤ k ≤ n, are symmetrically distributed. The proof follows
mutatis mutandi.

From now on, we restrict ourselves to the case F ⊂ L1. Theorem 3.2.4 can
be extended to the case when the random variables xk, 1 ≤ k ≤ n, are not
symmetrically distributed but just mean zero.

We need the following assertion proved by Braverman (see [12]) in the Ba-
nach setting. The proof in the quasi-Banach setting is identical.

Lemma 3.2.5. If symmetric quasi-Banach space E is such that E ⊂ L1, then
there exists a constant C0(E) such that

‖x‖E ≤ C0(E)‖x(ω1)− x(ω2)‖E

for every mean zero random variable x.

Theorem 3.2.6. Let E,F be symmetric quasi-Banach spaces and let F ⊂ L1.
If xk, 1 ≤ k ≤ n, are independent and mean zero and if X =

∑n
k=1 x̄k, then

‖
n∑
k=1

xk‖F ≤ CabsC0(F )C2(F )C(E)(‖X∗χ[0,1]‖E + ‖X‖L1+L2). (3.8)

Proof. Define functions z1, z2 ∈ E(ω) and functions yk ∈ E(Ω), 1 ≤ k ≤ n by
setting

z1(ω) =
n∑
k=1

x(ω2k−1), z2(ω) =
n∑
k=1

xk(ω2k−1)− xk(ω2k), ω ∈ Ω,

yk(ω) = xk(ω2k−1)− xk(ω2k), ω ∈ Ω.

By Lemma 3.2.5,

‖
n∑
k=1

xk‖F = ‖z1‖F (Ω) ≤ C0(F )‖z2‖F (Ω) = C0(F )‖
n∑
k=1

yk‖F (Ω).

Evidently, yk, 1 ≤ k ≤ n, are independent and symmetrically distributed.
Therefore, by Theorem 3.2.4,

‖
n∑
k=1

yk‖F (Ω) ≤ CabsC2(F )‖K‖E→F (‖Y ∗χ(0,1))‖E + ‖Y ∗χ(1,∞)‖2.
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Here, Y =
∑n
k=1 ȳk is the sum of disjoint copies of yk.

It follows from the inequality (1.4) that Y ∗ ≤ 2σ2X
∗. Thus,

‖Y ∗χ(1,∞)‖2 ≤ 4‖X∗χ(1/2,∞)‖2 ≤ 100‖X‖L1+L2 .

Similarly,

‖Y ∗χ(0,1)‖E ≤ 2‖(σ2X
∗)χ[0,1]‖E ≤ 4C(E)‖X∗χ(0,1)‖E .

3.3 The reverse Johnson-Schechtman inequality

The reverse Johnson-Schechtman inequality was first proved in [28]. We re-
produce it here for several reasons. First, it is not said in [28] that the reverse
inequality is valid in the quasi-Banach setting. Second, we need precise values of
various constants in the subsequent section devoted to the Khinchine inequality.
Finally, our proof is somewhat different from that of [28].

Proposition 3.3.1. Let E be a symmetric quasi-Banach space on the interval
(0, 1). Let xk ∈ E, 1 ≤ k ≤ n, be positive and independent random variables. If∑n
k=1m(supp(xk)) ≤ 1, then

‖
n∑
k=1

x̄k‖E ≤ 2C(E)‖
n∑
k=1

xk‖E .

Proof. The following elementary inequalities are valid for every t ∈ [0, 1].

e−t ≥ 1− t, 1− e−t ≥ 1
2
t.

It follows that

m({t : max
1≤k≤n

xk(t) > s}) = 1−
n∏
k=1

(1−m({t : xk(t) > s})) ≥

≥ 1− exp(−
n∑
k=1

m({t : xk(t) > s})) ≥ 1
2

n∑
k=1

m({t : xk(t) > s}).

Therefore,

n∑
k=1

m({t : xk(t) > s}) ≤ 2m({t : max
1≤k≤n

xk(t) > s}) ≤ 2m({t :
n∑
k=1

xk(t) > s}).

Hence,

(
n∑
k=1

x̄k)∗ ≤ σ2(
n∑
k=1

xk)∗.

The assertion follows immediately.
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3.4 The Khinchine inequality

In this section, we provide the most natural extension of the classical Khinchine
inequality (see Theorem 3.4.6).

Lemma 3.4.1. Let E be a symmetric quasi-Banach space on the interval (0, 1).
If p = 1/2 · log−1

2 (2C(E)), then E ⊂ Lp and

‖x‖p ≤ 8C3(E)‖x‖E .

Proof. Define the increasing function ψ by the formula ψ(u) = ‖χ[0,u]‖E , 0 <
u < 1. It follows from the definition of a quasi-norm that

ψ(2u) ≤ 2C(E)ψ(u), u > 0.

In particular,
ψ(2−n) ≥ (2C(E))−n, n ≥ 0.

If u ∈ (0, 1) is arbitrary, then u ∈ [2−n−1, 2−n]. Hence,

ψ(u) ≥ ψ(2−n−1) ≥ 2−(n+1) log2(2C(E)) ≥ 1
2C(E)

ulog2(2C(E)).

If x ∈ E, then

‖x‖E ≥ ‖x∗(t)χ[0,t]‖E ≥ x∗(t)
1

2C(E)
tlog2(2C(E)).

Hence,
x∗(t) ≤ 2‖x‖EC(E)t− log2(2C(E)), t > 0.

The assertion follows immediately.

Lemma 3.4.2. If x, y ∈ L1(0, 1) are positive and y ≺ x, then ‖y‖p ≥ ‖x‖p
provided that 0 < p < 1.

Proof. Fix ε > 0. According to Theorem 2.7.7, there exists z ∈ Q′(x) such that
‖y − z‖1 ≤ ε. In particular,

z =
n∑
k=1

λkxk, xk ≥ 0, x∗k = x,

where
n∑
k=1

λk = 1, λk ≥ 0.

Therefore,

‖z‖p = ‖
n∑
k=1

λkxk‖p ≥
n∑
k=1

λk‖xk‖p = ‖x‖p.

Since ε > 0 is arbitrarily small and the quasi-norm in Lp is continuous with
respect to L1−convergence, this suffices to complete the proof of the lemma.



CHAPTER 3. KHINCHINE-TYPE INEQUALITIES 104

Lemma 3.4.3. Let 0 < p < 1 and let yk, 1 ≤ k ≤ n, be independent, positive
and bounded random variables. It follows that

‖
n∑
k=1

ȳk‖1 ≤ 21/p max{ sup
1≤k≤n

‖yk‖∞, ‖
n∑
k=1

yk‖p}. (3.9)

Proof. Without loss of generality,

sup
1≤k≤n

‖yk‖∞ = 1, ‖yk‖1 = αk, 1 ≤ k ≤ n.

Let α =
∑n
k=1 αk. If α ≤ 1, then the assertion is evident. If α ≥ 1, then

yk ≺ αχ[0,α−1αk], 1 ≤ k ≤ n.

It follows from Lemma 3.1.10 that
n∑
k=1

yk ≺ α
n∑
k=1

χ[0,α−1αk](ωk).

According to Lemma 3.4.2,

‖
n∑
k=1

yk‖p ≥ α‖
n∑
k=1

χ[0,α−1αk](ωk)‖p.

It follows now from Lemma 3.3.1 that

2C(Lp)‖
n∑
k=1

yk‖p ≥ α‖
n∑
k=1

χ[0,α−1αk]‖p = α.

Since the concavity modulus of Lp for 0 < p < 1 can be estimated as

C(Lp) ≤ 21/p−1,

we are done.

Lemma 3.4.4. Let E be a symmetric quasi-Banach space. If xk ∈ E, 1 ≤ k ≤
n, are bounded independent random variables, then

‖
n∑
k=1

x̄k‖2 ≤ 32C5(E) max{ sup
1≤k≤n

‖xk‖∞, ‖(
n∑
k=1

x2
k)1/2)‖E}. (3.10)

Proof. Let p = 1/2 log−1
2 (2C(E)). It clearly follows from Lemma 3.4.1 that

8C3(E)‖(
n∑
k=1

x2
k)1/2)‖E ≥ ‖(

n∑
k=1

x2
k)1/2‖p = ‖

n∑
k=1

x2
k‖

1/2
p/2.

Clearly,

‖
n∑
k=1

x̄k‖2 = ‖
n∑
k=1

x̄2
k‖

1/2
1 , ‖xk‖∞ = ‖x2

k‖1/2∞ .

Set yk = x2
k, 1 ≤ k ≤ n. The assertion follows immediately from Lemma 3.4.3.
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Lemma 3.4.5. Let E be a symmetric quasi-Banach space. If xk ∈ E, 1 ≤ k ≤
n, are independent random variables and if X =

∑n
k=1 x̄k, then

2C(E)‖(
n∑
k=1

x2
k)1/2‖E ≥ X∗(1).

Proof. Without loss of generality,

n∑
k=1

m(supp(xk)) = 1.

It follows that
n∑
k=1

x2
k ≥ (X∗(1))2

n∑
k=1

χsupp(xk).

The support of the latter function has measure

1−
n∏
k=1

(1−m(supp(xk))) ≥ 1/2.

Therefore,

‖(
n∑
k=1

x2
k)1/2‖E ≥ X∗(1)‖χ[0,1/2]‖E .

The assertion follows immediately.

Theorem 3.4.6. Let E and F be symmetric quasi-Banach spaces on the interval
(0, 1). If xk ∈ E, 1 ≤ k ≤ n, are independent symmetrically distributed random
variables, then

‖
n∑
k=1

xk‖F ≤ CabsC6(E)C2(F )‖K‖E→F ‖(
n∑
k=1

x2
k)1/2‖E . (3.11)

Proof. Recall the assertion of Theorem 3.2.4: if xk, 1 ≤ k ≤ n, are independent
and symmetrically distributed, then

‖
n∑
k=1

xk‖F ≤ CabsC2(F )‖K‖E→F (‖X∗χ[0,1]‖E + ‖X∗χ(1,∞)‖2).

Here, X =
∑n
k=1 x̄k is a sum of disjoint copies of xk.

Define the function g and the constant c by the formulae

g(s) = m({t : |X(t)| > s}) =
n∑
k=1

m({t : |xk(t)| ≥ s}),

c = X∗(1) = inf{s : g(s) < 1}.
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If g is discontinuous at c, then some of the sets |xk|−1{c} have positive measure.
For those k, select sets Ak ⊂ |xk|−1{c} such that

∑n
k=1m(Ak) = 1−g(c+0) and

xk|Ak is symmetrically distributed. Such a selection is possible since g(c) ≥ 1.
Define functions

x1k = xkχ{|xk|>c}∪Ak , x2k = xk − x1k, 1 ≤ k ≤ n.

The functions x1k, 1 ≤ k ≤ n are independent. So are the functions x2k,
1 ≤ k ≤ n. It is clear that

n∑
k=1

x̄1k ∼ X∗χ[0,1],

n∑
k=1

x̄2k ∼ X∗χ(1,∞).

Apply Lemma 3.4.4 to the functions x2k. It follows that

‖X∗χ(1,∞)‖2 ≤ 32C5(E) max{X∗(1), ‖(
n∑
k=1

x2
2k)1/2‖E}.

By Lemma 3.4.5,

‖X∗χ(1,∞)‖2 ≤ 64C6(E)‖(
n∑
k=1

x2
k)1/2‖E . (3.12)

On the other hand,

‖X∗χ[0,1]‖E = ‖
n∑
k=1

x̄1k‖E = ‖
n∑
k=1

x̄2
1k‖

1/2

E1/2

and

‖(
n∑
k=1

x2
k)1/2‖E ≥ ‖(

n∑
k=1

x2
1k)1/2‖E = ‖

n∑
k=1

x2
1k‖

1/2

E1/2 .

Apply Lemma 3.3.1 to the space E1/2 and functions x2
1k. It follows that

‖X∗χ[0,1]‖E ≤ (2C(E1/2))1/2‖(
n∑
k=1

x2
k)1/2‖E . (3.13)

Since C(E1/2) ≤ 4C2(E), the assertion follows from (3.13) and (3.12).

Note that setting xk = akrk and E = F = Lp in Theorem 3.4.6, we obtain
the classical Khinchine inequality.
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3.5 The operators An, n ≥ 0

For every n ≥ 1, we consider the operator An : E(0, 1)→ E(Ω) given by

(Anx)(ω) =
n∑
k=1

x(ω2k−1)r(ω2k), ω ∈ Ω.

where r is a centered Bernoulli random variable. We set A0 = 0.
Norm-estimates for these operators can yield a Khinchine-type inequality

(see Theorem 3.5.3 below).
The following theorem is the main result of the present section.

Theorem 3.5.1. If E is a fully symmetric quasi-Banach space on the interval
(0, 1), then one of the following assertions is valid.

1. ‖An‖E→E = n for every n ∈ N.

2. There exists a constant 1
2 ≤ q < 1, such that ‖An‖E→E ≤ const · nq for

all n ∈ N.

Proof. Observing that Amnx and Am(Anx) are identically distributed, we have

‖Amnx‖E = ‖Am(Anx)‖E , x ∈ E(0, 1).

Hence,
‖Amn‖E→E ≤ ‖Am‖E→E · ‖An‖E→E . (3.14)

Thus, we have the following alternative:

1. ‖An‖E→E = n for every natural n.

2. There exists n0 ≥ 2, such that ‖An0‖E→E < n0.

To finish the proof of Theorem 3.5.1, we need only to consider the second
case. Suppose there exists a constant 1

2 ≤ q < 1, such that ‖An0‖E→E ≤ nq0.
By (3.14) we have

‖Anm0 ‖E→E ≤ ‖An0‖mE→E ≤ n
qm
0 , ∀m ∈ N.

The map Pn,m : L1(Ω)→ L1(Ω) defined by the formula

(Pn,mx)(ω) =
∫
x(ω)

∏
n<k≤m

dω2k

is a contraction in L1(Ω) and in L∞(Ω).
For every n ≤ m, we have Anx = Pn,m(Amx) ≺≺ Amx. Since the space E

is fully symmetric, the sequence of norms ‖Anx‖E increases. Therefore,

‖Anx‖E ≤ ‖Anm0 x‖E , ∀n ≤ nm0 .
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Hence,
‖An‖E→E ≤ ‖Anm0 ‖E→E , ∀n ≤ nm0 .

For every n ∈ N fix m ∈ N such that nm−1
0 ≤ n ≤ nm0 . It follows that

‖An‖E→E ≤ ‖Anm0 ‖E→E ≤ n
qm
0 ≤ nq0nq.

This proves the theorem.

Recall that the Lorentz sequence space l1/q,1, 0 < q ≤ 1, is the space of all
sequences {ak}∞k=1 such that

‖{ak}∞k=1‖1/q,1 =
∞∑
k=1

a∗k(kq − (k − 1)q).

The proof of the following lemma is identical to that of [33, Lemma II.5.2].

Lemma 3.5.2. If a convex functional Φ is bounded on the indicator sequences
of all finite sets, then it is bounded on all sequences with finite support.

Theorem 3.5.3. Let E be a symmetric Banach space on the interval (0, 1)
such that ‖An‖E→E ≤ cnq, n ∈ N, with some 0 < q < 1. If xk ∈ E, k ∈ N are
independent, symmetrically distributed and equimeasurable with x, then

‖
∞∑
k=1

akxk‖E ≤ c‖{ak}∞k=1‖1/q,1 · ‖x‖E . (3.15)

Proof. Let A ⊂ N be a finite set and let {ak}∞k=1 = χA. If |A| = n, then
∞∑
k=1

akxk =
∑
k∈A

xk ∼
n∑
k=1

x(ω2k−1)r(ω2k) = (Anx)(ω).

Therefore,

‖
n∑
k=1

akxk‖E = ‖Anx‖E ≤ cnq · ‖x‖E = c‖{ak}∞k=1‖1/q,1 · ‖x‖E .

Consider the convex functional

Φ : {ak}∞k=1 −→ ‖
∞∑
k=1

akxk‖E .

It follows from Lemma 3.5.2 that (3.15) holds for every finitely supported se-
quence.

Let now {ak}∞k=1 ∈ l1/q,1 be an arbitrary sequence. It follows from above
that

‖
m∑

k=n+1

akxk‖E ≤ ‖{ak}mk=n+1‖1/q,1 · ‖x‖E .

Therefore, the sequence of functions
∑n
k=1 akxk, n ∈ N, is a Cauchy sequence

in E. Its limit is
∑∞
k=1 akxk. The assertion follows immediately.
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We complete this section with an estimate of ‖An‖E→E , n ≥ 1 in general
symmetric spaces with the Kruglov property.

Theorem 3.5.4. Let E = E(0, 1) be a quasi-Banach symmetric space on the
interval (0, 1). Suppose that E satisfies the Kruglov property and that βE < 1.
Then there exists q < 1 such that ‖An‖E→E ≤ const ·nq for all sufficiently large
n ≥ 1.

Proof. Set xk = x(ω2k−1)r(ω2k) andX =
∑n
k=1 x̄k. Clearly, X∗χ[0,1] is equimea-

surable with σn(x∗)χ[0,1] while X∗χ(1,∞) is equimeasurable with σn(x∗χ(1/n,1)).
By Theorem 3.2.4,

‖Anx‖E ≤ const(‖σn(x∗)χ[0,1]‖E + n1/2‖x∗χ(1/n,1)‖2).

Note that

‖σn(x∗)χ[0,1]‖E ≤ ‖σn‖E→E‖x‖E ≤ c(ε)nβE+ε‖x‖E .

On the other hand,

x∗(
1
n

)χ[0,1] ≤ σn(x∗)χ[0,1].

Therefore,

x∗(
1
n

) = ‖x∗( 1
n

)χ[0,1]‖E ≤ ‖σn(x∗)‖E ≤ ‖σn‖E→E‖x‖E .

For every t ∈ [0, 1], fix n ∈ N such that nt ≤ 1 ≤ (n+ 1)t. It follows that

x∗(t) ≤ c(ε)(n+ 1)βE+ε‖x‖E ≤ c(ε)2βE+εt−(βE+ε)‖x‖E .

If βE < 1/2, then x ∈ L2(0, 1). If βE ≥ 1/2, then

‖x∗χ[1/n,1]‖2 ≤ c(ε)2βE+ε‖x‖E(2(βE + ε)− 1)−1/2n(βE+ε)−1/2.

Thus,
‖Anx‖E ≤ const · nmax{βE+ε,1/2}‖x‖E .

This proves the theorem.

Remark 3.5.5. The assumption βE < 1 in Theorem 3.5.4 is necessary (see [4,
Theorem 4.2]). For example, the space E = L1 satisfies the Kruglov property
and βE = 1. However, ‖An‖E→E = n, n ∈ N. On the other hand, the condition
that E satisfies the Kruglov property is not optimal (see Example 3.6.8).

3.6 The operators An, n ≥ 1 in Lorentz spaces.

We need the following technical facts. Some of these facts are elementary but
we present a proof for convenience of the reader.
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Lemma 3.6.1. If random variable ξ takes values 0, 1, · · · , n, then

‖ξ‖Λψ ≤ nψ(
1
n
‖ξ‖1).

Proof. Indeed,

ξ∗(s) = k ⇐⇒ s ∈ (m({ξ ≥ k + 1}),m({ξ ≥ k})).

Therefore,

‖ξ‖Λψ = nψ(m({ξ = n})) +
n−1∑
k=1

k(ψ(m({ξ ≥ k}))− ψ(m({ξ ≥ k + 1}))) =

=
n∑
k=1

ψ(m({ξ ≥ k})) ≤ nψ(
1
n

n∑
k=1

m({ξ ≥ k})).

However,

‖ξ‖1 = nm({ξ = n}) +
n−1∑
k=1

k(m({ξ ≥ k})−m({ξ ≥ k + 1})) =
n∑
k=1

m({ξ ≥ k}).

Hence,

‖x‖Λψ ≤ nψ(
1
n
‖ξ‖1).

Lemma 3.6.2. If ψ is strictly monotone, then

‖Anχ[0,u]‖Λψ < n‖χ[0,u]‖Λψ

for every 0 < u < 1.

Proof. Set

x(ω) =
n∑
k=1

χ[0,u](ω2k−1), ω ∈ Ω.

Clearly, ‖x‖1 = nu and |Anχ[0,u]| ≤ x. Therefore,

‖x‖1 = ‖Anχ[0,u]‖1 + ‖x− |Anχ[0,u]|‖1.

Since |Anχ[0,u]| 6= x, it follows that

‖Anχ[0,u]‖1 < ‖x‖1 = nu.

Note that random variable ξ = |Anχ[0,u]| satisfies the conditions of Lemma
3.6.1. Therefore,

‖Anχ[0,u]‖Λψ ≤ nψ(
1
n
‖Anχ[0,u]‖1) < nψ(u), n ∈ N

since ψ is strictly monotone.
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Lemma 3.6.3. The following upper limits are equal.

lim sup
u→0

1
nψ(u)

‖Anχ[0,u]‖Λψ = lim sup
u→0

1
nψ(u)

n∑
s=1

ψ(21−s
(
n

s

)
us).

Proof. For every s ≥ 1, using a well-known formula for conditional probabilities,
we have

m(|
n∑
k=1

χ[0,u](ω2k−1)r(ω2k)| ≥ s) =
n∑
k=1

(
n

s

)
uk(1− u)n−km(|r1 + · · ·+ rk| ≥ s).

Actually, the summation above is taken from k = s to n, since

m(|r1 + · · ·+ rk| ≥ s) = 0, ∀k < s.

If now u→ 0, then, for every s ≥ 1 and k > s, we have(
n

k

)
uk(1− u)n−k = o(us).

Therefore,

m(|
n∑
k=1

χ[0,u](ω2k−1)r(ω2k)| ≥ s) = 21−s
(
n

s

)
us(1 + o(1)). (3.16)

Let ξ = |Anχ[0,u]|. It is clear that

‖ξ‖Λψ = nψ(m({ξ = n})) +
n−1∑
k=1

k(ψ(m({ξ ≥ k}))− ψ(m({ξ ≥ k + 1}))) =

=
n∑
k=1

ψ(m({ξ ≥ k})).

Therefore,

‖Anχ[0,u]‖Λψ =
n∑
k=1

ψ(21−s
(
n

s

)
us(1 + o(1))).

Since ψ is concave, it follows that

lim
u→0

ψ(u(1 + o(1)))
ψ(u)

= 1. (3.17)

Hence,

‖Anχ[0,u]‖Λψ = (1 + o(1))
n∑
k=1

ψ(21−s
(
n

s

)
us)

and

lim sup
u→0

1
nψ(u)

‖Anχ[0,u]‖Λψ = lim sup
u→0

1
nψ(u)

n∑
s=1

ψ(21−s
(
n

s

)
us), n ∈ N.
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We need to consider the following properties of the function ψ.

aψ := lim sup
u→0

ψ(ku)
ψ(u)

< k. (3.18)

cψ := lim sup
u→0

ψ(ul)
ψ(u)

< 1. (3.19)

lim sup
u→0

1
ψ(u)

n∑
s=1

ψ(21−s
(
n

s

)
us) < n. (3.20)

Proposition 3.6.4. Suppose, there exist k ≥ 2 such that (3.18) holds and l ≥ 2
such that (3.19) holds. Then, (3.20) holds for all sufficiently large n ∈ N.

Proof. Consider the sum
n∑
s=1

ψ(
(
n

s

)
21−sus).

For any sufficiently large n, we write

n∑
s=1

=
1+[nk ]∑
s=1

+
n∑

s=2+[nk ]

.

Consequently, the upper limit in (3.20) can be estimated as

lim sup
u→0

1
ψ(u)

n∑
s=1

ψ(
(
n

s

)
21−sus) ≤ lim sup

u→0

1
ψ(u)

1+[nk ]∑
s=1

ψ(
(
n

s

)
21−sus)+

+ lim sup
u→0

1
ψ(u)

n∑
s=2+[nk ]

ψ(
(
n

s

)
21−sus)

(3.21)

Consider the first upper limit in (3.21). Since ψ is concave, we have

1+[nk ]∑
s=1

ψ(
(
n

s

)
21−sus) ≤ (1 + [

n

k
])ψ(

1
1 + [nk ]

1+[nk ]∑
s=1

(
n

s

)
21−sus) =

= (1 + [
n

k
])ψ(

nu(1 + o(1))
1

1 + [
n

k
]) ≤ (1 + [

n

k
])ψ(ku(1 + o(1))).

Therefore,

lim sup
u→0

1
ψ(u)

1+[nk ]∑
s=1

ψ(
(
n

s

)
21−sus) ≤ (1+[

n

k
]) lim sup

u→0

ψ(ku(1 + o(1)))
ψ(u)

≤ (1+
n

k
)aψ.

Consider the second upper limit in (3.21). It is clear that for all 1
kn ≤ s ≤ n(

n

s

)
· 21−s ≤ 2n
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and (
n

s

)
21−sus ≤ 2nu

1
kn = (2ku)

1
kn.

Thus, the second upper limit in (3.21) can be estimated as

lim sup
u→0

1
ψ(u)

n∑
s=2+[nk ]

ψ(
(
n

s

)
21−sus) ≤ n(1− 1

k
) lim sup

u→0

ψ((2ku)
n
k )

ψ(u)
.

Substituting the variable w = 2ku on the right hand side, we have

n(1− 1
k

) lim sup
w→0

ψ(w
n
k )

ψ(2−kw)
.

By the concavity of ψ, we have ψ(2−kw) ≥ 2−kψ(w). Therefore, the second
upper limit in (3.21) is bounded from above by

n(1− 1
k

)2k lim sup
w→0

ψ(w
n
k )

ψ(w)
.

Now, we observe that

lim sup
w→0

ψ(wm)
ψ(w)

≤ c
log(m)
log(l) −1

ψ . (3.22)

Indeed, let lr ≤ m ≤ lr+1,

ψ(wm)
ψ(w)

≤ ψ(wl
r

)
ψ(w)

=
ψ(wl

r

)
ψ(wlr−1)

· · · ψ(wl)
ψ(w)

and

lim sup
w→0

ψ(wm)
ψ(w)

≤ crψ ≤ c
log(m)
log(l) −1

ψ .

If n tends to infinity, then, thanks to the assumption cψ < 1, we have

n(1− 1
k

)2k lim sup
w→0

ψ(w
n
k )

ψ(w)
= o(n).

Therefore, the upper limit in (3.20) (see also (3.21)) is bounded from above
by

aψ
k
n+ o(n).

Thus, the upper limit in (3.20) is strictly less than n for every sufficiently large
n.

Lemma 3.6.5. Suppose, that (3.20) holds for some n. Then, there exist k ≥ 2
such that (3.18) holds and l ≥ 2 such that (3.19) holds.
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Proof. Clearly,

lim sup
u→0

ψ(nu)
nψ(u)

= lim sup
u→0

ψ(21−1
(
n
1

)
u1)

nψ(u)
≤ lim sup

u→0

1
nψ(u)

n∑
s=1

ψ(21−s
(
n

s

)
us) < 1.

Thus, (3.18) holds for k = n.
Since

(
n
s

)
21−sus ≥ un+1 for every s = 1, 2, · · · , n and every sufficiently small

u, we have

1 > lim sup
u→0

1
nψ(u)

n∑
s=1

ψ(
(
n

s

)
21−sus) ≥ lim sup

u→0

nψ(un+1)
nψ(u)

.

Thus, (3.19) holds for l = n+ 1.

The following theorem is the main result in this section.

Theorem 3.6.6. Let ψ be increasing concave function. The following condi-
tions are equivalent.

1. ‖An‖Λψ→Λψ ≤ const · nq for some 0 < q < 1 and for all n ∈ N.

2. Estimates (3.18) and (3.19) hold for some k ≥ 2 and l ≥ 2.

Proof. [Sufficiency] Without loss of generality, ψ is a strictly monotone function.
It follows from Lemma 3.6.2, Lemma 3.6.3 and Proposition 3.6.4 that there exists
n ∈ N such that

sup
0<u≤1

1
nψ(u)

‖Anχ[0,u]‖Λψ < 1.

Hence, there exists n ∈ N and c < n such that

‖AnχA‖Λψ ≤ c‖χA‖Λψ

for every measurable set A ⊂ [0, 1].
It follows from [33, Lemma II.5.2] that

‖Anx‖Λψ ≤ c‖x‖Λψ

for every x ∈ Λψ.
The assertion follows from Theorem 3.5.1.
[Necessity] Fix n such that ‖An‖Λψ→Λψ = c < n. In particular, ‖Anχ[0,u]‖Λψ ≤

cψ(u) for every u ∈ (0, 1]. It follows now from Lemma 3.6.3 that

lim sup
u→0

1
nψ(u)

n∑
s=1

ψ(21−s
(
n

s

)
us) < 1.

The assertion follows now from Lemma 3.6.5.

Remark 3.6.7. The condition (3.18) is equivalent to the assumption βΛψ < 1.
The condition (3.19) follows from (but is not equivalent to) the condition αΛψ >
0.
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Example 3.6.8. Define the concave increasing function ψ by the formula ψ(t) =
log−1/2(e2/t), t ∈ [0, 1]. It follows that

‖An‖Λψ→Λψ ≤ const · nq, 0 < q < 1,∀n ∈ N.

However, Λψ does not have the Kruglov property.

Proof. For every k, l > 1 we have

lim
u→0

ψ(ku)
ψ(u)

= lim
u→0

(
log(u)
log(ku)

)
1
2 = 1 < k

and

lim
u→0

ψ(ul)
ψ(u)

= lim
u→0

(
log(u)
log(ul)

)
1
2 =

1
l

1
2
< 1.

It follows from Theorem 3.6.6 that

‖An‖Λψ→Λψ ≤ const · nq, 0 < q < 1,∀n ∈ N.

It is clear that

Λlog−1/2(1/t) ⊂Mt log1/2(1/t) ⊂Mt log(e/t) = exp(L1).

However, Theorem 4.2.6 says that Λψ must contain exp(L1) if Λψ ∈ K. This
implies that Λψ /∈ K.

3.7 The operators An, n ≥ 1 in the Orlicz spaces
exp(Lp)

Theorem 3.7.1. The following norm estimates of the operators An, n ∈ N, are
valid in the spaces exp(Lp).

1. For every 0 ≤ p ≤ 2, we have ‖An‖exp(Lp)→exp(Lp) ≤ const ·n1/2, n ∈ N.

2. For every 2 ≤ p ≤ ∞, we have ‖An‖exp(Lp)→exp(Lp) ≤ const·n1−1/p, n ∈
N.

Proof. By Lemma 1.2.74, exp(L2) = Mψ, where ψ′ ⊗ r is Gaussian. The only
extreme points of the unit ball in Mψ are the functions equimeasurable with ψ′.
Therefore,

‖Anξ‖Mψ
= ‖Anψ′‖Mψ

= ‖An‖Mψ→Mψ
, ∀n ∈ N.

However, Anξ is equimeasurable with n1/2ξ. Hence,

‖An‖exp(L2)→exp(L2) ≤ const · n1/2. (3.23)
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If 0 < p ≤ 1, then the space exp(Lp) satisfies the Kruglov property. It
follows from Theorem 3.2.4 that

‖Anx‖exp(Lp) ≤ const(‖σn(x∗)‖exp(Lp) + n1/2‖x‖2).

Therefore,

‖An‖exp(Lp)→exp(Lp) ≤ const · n1/2, 0 < p ≤ 1, n ∈ N. (3.24)

If 1 < p < 2, then

[exp(L1), exp(L2)]θ,∞ = exp(Lp)

with 1
p = 1 − θ/2 (see, for example [14]). Here, the notion [·, ·]θ,∞ denotes the

real interpolation method. If 2 < p <∞, then

[exp(L2), L∞]θ,∞ = exp(Lp)

with 1
p = (1− θ)/2 (see, for example [14]).

In both cases the assertion follows immediately by interpolation from (3.23)
and (3.24).
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The results of this section were mostly published in [7] (see also [56]).

4.1 No minimal space in the class K
We need the following lemma proved in [6].

Lemma 4.1.1. Let K be the Kruglov operator and let ψn be a piecewise-linear
concave function such that ψ′n = (Kn1)∗. Then

1. Mψn ⊂Mψn+1 .

2. Mψn+1 6= Mψn .

It follows from Lemma 4.1.1 that

L∞ = Mψ0 ⊂Mψ1 ⊂ · · · ⊂ (exp(L1))0.

In a certain sense the spaces Mψn , n ≥ 1 can be treated as “approximations”
of the space (exp(L1))0. By [6, Theorem 7.2], we have Mψn ⊂ E for every
symmetric space E ∈ K and every n = 1, 2, . . . This suggests a rather natural
hypothesis that the space (exp(L1))0 is the minimal symmetric space among the
class of all symmetric spaces with the Kruglov property. However, the latter
class has no minimal element (see Theorem 4.1.8).

Lemma 4.1.2. For every x ∈ L1[0, 1]

lim
n→∞

m(suppKnx) = 0.

Proof. Without loss of generality, we may assume that x > 0. Set

an := m({t : (Knx)(t) = 0}), n ∈ N.

It follows from the definition of the operator K that

an+1 =
1
e

+
1
e

∞∑
k=1

akn
k!

= ean−1, ∀n ∈ N.

Evidently, the sequence {an} increases and an ∈ [0, 1]. Hence, {an} converges
to the fixed point of the mapping

t −→ et−1, t > 0.

However, the only fixed point of the above mapping is 1. Therefore,

lim
n→∞

an = 1,

which proves the lemma.
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Construction 4.1.3. Let ψn, n ∈ N, be as in Lemma 4.1.1. For every fixed
ε > 0, define the concave function ψε by the formula

ψε =
∞∑
n=0

εnψn. (4.1)

Lemma 4.1.4. The function ψε defined in (4.1) is concave and piecewise-linear.
Moreover,

ψ′ε =
∞∑
n=0

εnψ′n. (4.2)

Proof. Since ψ′n = (Kn1)∗, it follows that supp(ψ′n) = [0, an] with an → 0.
Therefore, for any fixed value of t, the series in (4.2) is nothing more than a
finite sum. In particular, it converges almost everywhere. By the Levi theorem,∫ t

0

∞∑
n=0

εnψ′n(s)ds =
∞∑
n=0

εn
∫ t

0

ψ′n(s)ds = ψε.

This implies the assertion of (4.2).
On any fixed interval [δ, 1] the function ψ′ε is piecewise-constant because of

(4.2). Thus, ψ′ε is piecewise-constant and ψε is piecewise-linear.

Lemma 4.1.5. Let E be a fully symmetric quasi-Banach space. If K : E → E,
then Mψε ⊂ E for every sufficiently small ε.

Proof. Indeed, if K : E → E, then

‖ψ′n‖E = ‖Kn1‖E ≤ ‖K‖nE→E‖1‖E = ‖K‖nE→E .

Therefore, if ε · ‖K‖E→E < 1, then the series (4.2) converges in E.
Hence, ψ′ε ∈ E and Mψε ⊂ E.

Lemma 4.1.6. For every ε < 1, the operator K maps Mψε to Mψε .

Proof. Let us prove that the operator K is bounded in Mψε . The extreme points
of the unit ball in this space are equimeasurable with ψ′ε [48]. Therefore, it is
sufficient to show that Kψ′ε ∈Mψε . Since K is bounded in L1, it follows that

Kψ′ε =
∞∑
n=0

εnKψ′n ≺
∞∑
n=0

εnψ′n+1 ≤
1
ε

∞∑
n=0

εnψ′n =
1
ε
ψ′ε.

Here, the first inequality follows from Kψ′n ∼ ψ′n+1 and (1.7). Thus, Kψ′ε ∈
Mψε .

Lemma 4.1.7. Functions ψε, ε > 0, are not equivalent. More precisely,

lim
t→0

ψε(t)
ψδ(t)

= 0 (4.3)

if 0 < ε < δ < 1.
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Proof. Arguing as in the proof of Theorem 7.2 in [6], one can obtain

lim
t→0

ψm(t)
ψm+1(t)

= 0

for every m = 1, 2, . . . . It follows that

lim
t→0

1
ψε(t)

(
∞∑
n=m

εnψn) = 1.

Hence,

lim sup
t→0

ψε(t)
ψδ(t)

= lim sup
t→0

∑∞
n=m ε

nψn∑∞
n=m δ

nψn
.

However, for n ≥ m, we have εn ≤ δn(ε/δ)m. Therefore,

lim sup
t→0

ψε(t)
ψδ(t)

≤ (ε/δ)m.

Since m is arbitrary, it follows that

lim sup
t→0

ψε(t)
ψδ(t)

= 0.

The assertion follows immediately.

Theorem 4.1.8. The class K of symmetric quasi-Banach spaces does not con-
tain a minimal element. That is, there is no symmetric space F such that
K : E → E implies F ⊂ E.

Proof. Assume the contrary. It follows from Lemma 4.1.5 that

Mψε ⊂ F

for 0 < ε < ε0.
However, the space Mψε ∈ K by Lemma 4.1.6. By assumption,

Mψε ⊃ F.

Therefore, all the spaces Mψε for 0 < ε < ε0 coincide with F.
On the other hand, these spaces cannot coincide because of Lemma 4.1.7.

4.2 Lorentz spaces from the class K
Despite Theorem 4.1.8, one can restrict the question of minimality to Lorentz
spaces only. We will prove that all Lorentz spaces with the Kruglov property
are “on one side”of the space exp(L1).

Let us prove the following preliminary results.
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Lemma 4.2.1. Let an, n ∈ N be decreasing positive sequence and let bn, cn,
n ∈ N be such that

∑n
k=1 bk ≤

∑n
k=1 ck for every n ∈ N. It follows that

n∑
k=1

akbk ≤
n∑
k=1

akck

for every n ∈ N.

Proof. Set Bn =
∑n
k=1 bn and Cn =

∑n
k=1 cn. Also, B0 = C0 = 0. It follows

that
n∑
k=1

akbk = anBn +
n∑
k=1

(ak−1 − ak)Bk−1 ≤

≤ anCn +
n∑
k=1

(ak−1 − ak)Ck−1 =
n∑
k=1

akck.

We need the following number-theoretic estimate.

Lemma 4.2.2. For every n ∈ N we have

n∑
k=1

τ(k) ≥ log(n!). (4.4)

Proof. It is clear that

n∑
k=1

τ(k) =
n∑
k=1

[
n

k
] = n

n∑
k=1

1
k
−

n∑
k=1

{n
k
}.

If k ≥ 3n/4, then 1 ≤ n/k ≤ 4/3 and {n/k} ≤ 1/3. Therefore,

n∑
k=1

{n
k
} ≤ 1

3
· (n

4
+ 1) +

3n
4

=
5n
6

+
1
3
.

Note that
n∑
k=1

1
k
≥ log(n).

Therefore,
n∑
k=1

τ(k) ≥ n log(n)− 5
6
n− 1

3
.

On the other hand, by Stirling formula,

log(n!) ≤ n log(n)− n+
1
2

log(2πn) +
1

12n
.
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Therefore, for every n ≥ 2,

n∑
k=1

τ(k)− log(n!) ≥ 1
6

(n− 3 log(n)− 8).

It is clear that the latter expression is positive for n ≥ 17. If n ≤ 16, the assertion
can be verified directly.

Lemma 4.2.3. Let ϕ be an increasing function on the interval (0, 1). If

∞∑
j=1

ϕ(
tj

j!
) ≤M · ϕ(t) (4.5)

for every t ∈ (0, 1), then for every l ∈ N

2M
l∑

n=1

ϕ(e−n) ≥
l∑

n=1

log(n)ϕ(e−2n). (4.6)

Proof. Note, that e−2ij ≤ e−ij/j! if j ≤ i. Substitute t = e−i in the inequality
(4.5). We obtain that

i∑
j=1

ϕ(e−2ij) ≤
i∑

j=1

ϕ(
e−ij

j!
) ≤Mϕ(e−i).

Therefore,

M

l∑
i=1

ϕ(e−i) ≥
∑

1≤j≤i≤l

ϕ(e−2ij) ≥ 1
2

l∑
n=1

τ(n)ϕ(e−2n).

Here, τ(n) is the number of divisors of n. It follows from Lemma 4.2.1 and (4.4)
that

l∑
n=1

τ(n)ϕ(e−2n) ≥
l∑

n=1

log(n)ϕ(e−2n).

The assertion follows immediately.

Lemma 4.2.4. Let ϕ be an increasing function on the interval (0, 1) such that
(4.6) is valid. It follows that

∞∑
n=0

ϕ(e−n) ≤ 20 exp(5M)ϕ(1). (4.7)

Proof. It is clear that

l∑
n=1

ϕ(e−n) = ϕ(e−1) +
[l/2]∑
n=1

ϕ(e−2n) +
[(l−1)/2]∑
n=1

ϕ(e−2n) ≤ 2
l∑

n=0

ϕ(e−2n).
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It follows now from (4.6) that

4M
l∑

n=0

ϕ(e−2n) ≥ 2M
l∑

n=1

ϕ(e−n) ≥
l∑

n=1

log(n)ϕ(e−2n).

Fix minimal n0 > exp(5M) so that log(k) ≥ 5M for k ≥ n0. Therefore,

4M
l∑

n=0

ϕ(e−2n) ≥ 5M
l∑

n=n0

ϕ(e−2k)

and

4
n0−1∑
n=0

ϕ(e−2n) ≥
l∑

n=n0

ϕ(e−2n).

Since l is arbitrary, it follows that

∞∑
n=0

ϕ(e−2n) ≤ 5
n0−1∑
n=0

ϕ(e−2n) ≤ 5n0ϕ(1)

and so
∞∑
n=0

ϕ(e−n) ≤ 2
∞∑
n=0

ϕ(e−2n) ≤ 10n0ϕ(1).

The assertion follows immediately.

Lemma 4.2.5. In every Lorentz space Λϕ,

‖ log(1/t)‖Λϕ ≤
∞∑
n=0

ϕ(e−n).

Proof. The inequality is a consequence of the following estimates:

‖ log(1/t)‖Λϕ =
∫ 1

0

log(1/t) dϕ(t) =
∞∑
n=0

∫ e−n−1

e−n
log(1/t) dϕ(t) ≤

≤
∞∑
n=0

(n+ 1)(ϕ(e−n)− ϕ(e−n−1)) =
∞∑
n=0

ϕ(e−n) <∞.

Theorem 4.2.6. Let ϕ be an increasing concave function on the interval [0, 1]
such that ϕ(0) = 0. If Λϕ ∈ K, then Λϕ ⊃ expL1.

Proof. According to Theorem 1.1.3, the condition (4.5) is satisfied if Λϕ ∈ K.
Lemma 4.2.3 and Lemma 4.2.4 imply that the condition (4.7) is also satisfied.
According to Lemma 4.2.5, log(1/t) ∈ Λϕ. Since Lorentz spaces are fully sym-
metric, it follows that the Marcinkiewicz space Mψ with ψ(t) = t log(e/t) is a
subset of Λϕ. However, Mψ coincides with exp(L1).
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4.3 Uniform boundedness of the sequence {Tn}n∈N
implies boundedness of the Kruglov opera-
tor

For every m ∈ N, let Hm be the operator defined in (3.1). For any fixed n ∈ N
and a = (a1, · · · , an) ∈ Rn+, we set

Hma = Hm(
n∑
k=1

akχ((k−1)/n,k/n)).

For any fixed n ∈ N and a ∈ Rn+, we define the sequence σma ∈ Rmn+ by the
formula

σma = (a1, a1, . . . , a1︸ ︷︷ ︸
m

, a2, a2, . . . , a2︸ ︷︷ ︸
m

, . . . , an, an, . . . , an︸ ︷︷ ︸
m

).

It is clear that Cmn(σma) = Cna.

Definition 4.3.1. Let Ch(n) be the number of permutations π of the set {1, 2, . . . , n},
such that π(i) 6= i for every i = 1, 2, . . . , n.

It is well-known (see [26, c. 20]) that

Ch(n) = n!(1− 1
1!

+
1
2!
− 1

3!
+ · · ·+ (−1)n

n!
).

Therefore, Ch(n) is a closest natural number to e−1n! and

1
3
n! ≤ Ch(n) ≤ n!, ∀n ∈ N. (4.8)

We are going to estimate the rearrangement of Hma by that of Tnm(σma).
Sometimes it is useful to require numbers ak, 1 ≤ k ≤ n to be independent

over Z. That is, we require any Z−linear combination of ai to be non-zero if
coefficients are not all equal to 0. In this case,

n∑
i=1

kiai 6=
n∑
i=1

k′iai if (k1, k2, . . . , kn) 6= (k′1, k
′
2, . . . , k

′
n).

The function Hma only take values of the form
∑n
i=1 kiai, where ki ∈ Z,

ki ≥ 0 for every i = 1, 2, . . . , n and
∑n
i=1 ki ≤ m.

Lemma 4.3.2. If numbers ai, 1 ≤ i ≤ n, are independent over Z, then

m({ω : (Hma)(ω) =
n∑
i=1

kiai}) ≤ Cm−q,k1,··· ,kn
m

(
1
mn

)q
.

Here, q =
∑n
i=1 ki.
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Proof. It is clear that the function Hma equals
∑n
i=1 kiai if and only if exactly

ki (respectively, m− q) of the independent copies of the function

σ 1
m

n∑
k=1

akχ((k−1)/n,k/n)

take the value ai (respectively, 0). Note, that

m({ωs : (σ1/m(
n∑
k=1

akχ((k−1)/n,k/n)))(ωs) = ai}) =
1
mn

and

m({ωs : (σ1/m(
n∑
k=1

akχ((k−1)/n,k/n)))(ωs) = 0}) = 1− 1
m
.

Therefore, we obtain

m({ω : (Hma)(ω) =
n∑
i=1

kiai}) = Cm−q,k1,··· ,kn
m (1− 1

m
)m−q(

1
mn

)k1+···+kn ≤

≤ Cm−q,k1,··· ,kn
m (

1
mn

)q.

On the other hand, the function Tnm(σma) only takes values of the form∑n
i=1 kiai, where ki ∈ Z, ki ≥ 0 for every i = 1, 2, . . . , n and

∑n
i=1 ki ≤ mn.

Lemma 4.3.3. If the numbers ai, 1 ≤ i ≤ n, are independent over Z, then

m({t : (Tmn(σma))(t) =
n∑
i=1

kiai}) ≥
1
3
Cm−q,k1,··· ,kn
m

(
1
mn

)q
.

Here, q =
∑n
i=1 ki.

Proof. It follows from (1.3) and (4.8) that

m({t : (Tmn(σma))(t) =
n∑
i=1

kiai}) = Ck1
m C

k2
m . . . Cknm Ch(mn− q) 1

(mn)!
≥

≥ (m!)n(mn− q)!
3(m− k1)! · · · (m− kn)!k1! · · · kn!(mn)!

.

Since
(m− k1)! · · · (m− kn)! ≤ (m!)n−1(m− q)!

and
(mn− q)!

(mn)!
≥ 1

(mn)q
,
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we have

m({t : (Tmn(σma))(t) =
n∑
i=1

kiai}) ≥
m!(mn− q)!

3k1! · · · kn!(m− q)!(mn)!
≥

≥ 1
3
Cm−q,k1,··· ,kn
m

(
1
mn

)q
.

Lemma 4.3.4. For any n,m ∈ N and any a ∈ Rn, we have

(Hma)∗ ≤ σ3(Tmn(σma))∗.

Proof. Without loss of generality, the numbers ak, 1 ≤ k ≤ n, are independent
over Z.

It follows from Lemma 4.3.2 and Lemma 4.3.3 that

m({t : Hma(t) =
n∑
i=1

kiai}) ≤ 3m({t : (Tmn(σma))(t) =
n∑
i=1

kiai}).

Thus, for τ > 0, we have

m({t : Hma(t) > τ}) ≤ 3m({t : (Tmn(σma))(t) > τ}).

The required estimate follows immediately.

Lemma 4.3.5. Let E be a symmetric quasi-Banach space. If K : E → E, then
K : (E)0 → (E)0.

Proof. Let ψn be piecewise-linear concave functions such that ψ′n = (Kn1)∗.
Since K : E → E, it follows that ψ2 ∈ E and

Mψ1 ⊂ (Mψ2)0 ⊂ (E)0.

Thus, K : L∞ → (E)0.
Let x ∈ (E)0. Since E is separable, there exists a sequence xn ∈ L∞ such

that ‖xn − x‖E → 0. Since K : E → E, it follows that ‖Kxn − Kx‖E → 0.
However, Kxn ∈ (E)0 and, therefore, Kx ∈ (E)0.

Theorem 4.3.6. Let E be a symmetric quasi-Banach with Fatou property. If
the operators Tn : E → E are uniformly bounded, then K maps E into E.
Moreover,

‖K‖E→E ≤ 3 sup
k∈N
‖Tk‖E→E .

Proof. Let a ∈ Rn. It follows that Cna ∈ L∞ and, therefore, Cna ∈ E. It follows
from Lemma 4.3.4 that

‖Hm(Cna)‖E ≤ 3 sup
k∈N
‖Tn‖E→E‖Cna‖E . (4.9)
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SinceHm(Cna) converges toK(Cna) in distribution, it follows that (Hm(Cna))∗ →
(K(Cna))∗ almost everywhere. It follows from (4.9) and the fact that E has the
Fatou property that

‖K(Cna)‖E ≤ 3 sup
k∈N
‖Tk‖E→E‖Cna‖E . (4.10)

Let now x = x∗ ∈ E be arbitrary. For every n ∈ N, define the function
xn ∈ E by the formula

xn =
2n∑
k=1

x(k2−n)χ((k−1)2−n,k2−n).

It is clear that xn ↑ x almost everywhere. Therefore, xn converges to x in
distribution. Hence, ϕxn converges to ϕx. Thus,

ϕKxn = exp(ϕxn − 1)→ exp(ϕx − 1) = ϕKx.

It follows Kxn converges to Kx in distribution and, therefore, (Kxn)∗ converges
to (Kx)∗ almost everywhere. Since inequality (4.10) is valid for xn, it follows
that

‖Kx‖E ≤ 3 sup
k∈N
‖Tk‖E→E‖x‖E .

Theorem 4.3.7. Let E be a separable symmetric Banach space. If the operators
Tn : E → E are uniformly bounded, then K maps E into E. Moreover,

‖K‖E→E ≤ 3 sup
n
‖Tn‖E→E .

Proof. If E is separable, then the natural inclusion E → E×× is an isometry.
Repeating the previous argument, we obtain K : E×× → E××. The assertion
follows now from Lemma 4.3.5.

4.4 Boundedness of the Kruglov operator im-
plies uniform boundedness of the sequence
{Tn}n∈N

Lemma 4.4.1. If n, k ∈ N, 1 ≤ k ≤ n, then

(n− k)!
n!(k − 1)!

≤ 3
nk
.

Proof. Assume that n ≥ 4. Since j(n− j) ≥ n for 2 ≤ j ≤ n− 2, we have

nk(n− k)!
n!(k − 1)!

=
k−1∏
j=1

n

j(n− j)
≤
(

n

n− 1

)2

< 3.

If n ≤ 3, the assertion is evident.
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Let A = {1, 2, · · · , n} and let 2A be the collection of all subsets of the set A.
Denote

S(U) :=
∑
j∈U

aj

for every U ∈ 2A. Note that if numbers ak, 1 ≤ k ≤ n, are independent over Z,
then S(U1) 6= S(U2) if U1 6= U2.

For every U ∈ 2A denote

AU = {V ∈ 2A, |V | = 2|U |, V ⊃ U, S(V \U) ≤ S(U)}

and
BU = {V ∈ 2A, |V | = 2|U | − 1, V ⊃ U, S(V \U) ≤ S(U)}.

It clearly follows that

|AU | ≤ C |U |n−|U | =
(n− |U |)!

|U |!(n− 2|U |)!
(4.11)

and similarly

|BU | ≤ C |U |−1
n−|U | =

(n− |U |)!
(|U | − 1)!(n− 2|U |+ 1)!

. (4.12)

On the other hand,

{V ∈ 2A : |V | is even} =
⋃
U

AU

and
{V ∈ 2A : |V | is odd} =

⋃
U

BU .

Therefore,
2A =

⋃
U

(AU ∪ BU ). (4.13)

It follows from the definition of AU and BU that for every V ∈ AU ∪ BU

S(U) ≤ S(V ) ≤ 2S(U). (4.14)

Lemma 4.4.2. Let n ∈ N and a = (a1, · · · , an) ∈ Rn+ be such that the co-
ordinates ak, 1 ≤ k ≤ n, are independent over Z. It follows that, for every
τ > 0,

m({t : Tna(t) > τ}) ≤ 6
∑

S(U)>τ/2

1
n|U |

.

Proof. It is clear that

m({t : Tna(t) > τ}) =
∑

V ∈2A,S(V )>τ

m({t : Tna(t) = S(V )}).
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It follows from the equation (4.13) that∑
V ∈2A

≤
∑
U

(
∑
V ∈AU

+
∑
V ∈BU

).

If V ∈ AU or V ∈ BU and S(V ) > τ, then S(U) > τ/2. Therefore,

m({t : Tna(t) > τ}) ≤
∑

S(u)>τ/2

(
∑
V ∈AU

m({t : Tna(t) = S(V )})+

+
∑
V ∈AU

m({t : Tna(t) = S(V )})).

If V ∈ AU , then

m({t : Tna(t) = S(V )}) =
Ch(n− |V |)

n!
≤ (n− 2|U |)!

n!
.

If V ∈ BU , then

m({t : Tna(t) = S(V )}) =
Ch(n− |V |)

n!
≤ (n− 2|U |+ 1)!

n!
.

It follows from (4.11) and Lemma 4.4.1 that∑
V ∈AU

m({t : Tna(t) = S(V )}) ≤ (n− 2|U |)!
n!

· |AU | ≤
(n− |U |)!
|U |!n!

≤ 3
n|U |

.

It follows from (4.12) and Lemma 4.4.1 that∑
V ∈BU

m({t : Tna(t) = S(V )}) ≤ (n− 2|U |+ 1)!
n!

· |BU | ≤
(n− |U |)!

(|U | − 1)!n!
≤ 3
n|U |

.

The assertion follows immediately.

Lemma 4.4.3. Let n ∈ N and a = (a1, · · · , an) ∈ Rn be such that the coordi-
nates ak, 1 ≤ k ≤ n, are distinct and strictly positive. It follows that for every
m ≥ 2n2 and for all τ > 0

m({ω : Hma(ω) > τ}) ≥ 1
8

∑
S(U)>τ

1
n|U |

.

Proof. Let U ∈ 2A. Let W ⊂ {1, 2, · · · ,m} be such that |W | = |U | and let θ be
a bijection θ : W → U. Let FU,W,θ be the set of all ω such that

(σ1/m(Cna))(ω(j)) = aθ(j), j ∈W

and
(σ1/m(Cna))(ω(j)) = 0, j /∈W.
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Let ω ∈ FU1,W1,θ1∩FU2,W2,θ2 . If j /∈W1 or j /∈W2, then (σ1/m(Cna))(ω(j)) =
0. It follows that W1 = W1 ∩ W2 = W2. Therefore, aθ1(j) = aθ2(j) for every
j ∈ W1 = W2. Therefore, θ1 = θ2 and U1 = U2. Hence, the sets FU,W,θ are
disjoint.

Let FU be the union of all sets FU,W,θ. It is clear that the sets FU are disjoint.
Let ω ∈ FU . Hence, ω ∈ FU,W,θ and

Hma(ω) =
∑
j∈W

aθ(j) = S(U).

Therefore,
{ω : Hma(ω) > τ} ⊃

⋃
S(U)>τ

FU . (4.15)

We proceed with the estimate of m(FU ) from below. It is clear that

m(FU,W,θ) = (
1
mn

)|U |(1− 1
m

)m−|U |.

There exist exactly C |U |m relevant sets W. For fixed U and W, there exist exactly
|U |! relevant bijections θ. Therefore,

m(FU ) = C |U |m |U |!
1

m|U |
· (1− 1

m
)m−|U | · 1

n|U |
.

It is clear that

C |U |m |U |!m−|U | =
m!

m|U |(m− |U |)!
≥ (m− |U |)|U |(m− |U |)!

m|U |(m− |U |)!
= (1− |U |

m
)|U |.

If now m ≥ 2n2, then m ≥ 2|U |2 and

C |U |m |U |!m−|U | ≥ (1− 1
2|U |

)|U | ≥ 1
2
.

Since m ≥ 2, it follows that (1− 1/m)m−|U | ≥ (1− 1/m)m ≥ 1/4. Hence,

m(FU ) ≥ 1
8
· 1
n|U |

.

Since the sets FU are disjoint, the assertion follows immediately from (4.15).

Lemma 4.4.4. Let n ∈ N and a = (a1, · · · , an) ∈ Rn+. For every m ≥ 2n2, the
following inequality is valid:

(Tna)∗ ≤ 2σ48(Hma)∗.
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Proof. Without loss of generality, the coordinates ak, 1 ≤ k ≤ n, are indepen-
dent over Z. It follows from Lemma 4.4.2 and Lemma 4.4.3 that

m({t : Tna(t) > τ}) ≤ 6
∑

S(U)>τ/2

n−|U | ≤ 48m({ω : Hma(ω) > τ/2}).

The assertion follows immediately.

Remark 4.4.5. The estimate

m({t : Tna(t) > τ}) ≤ Cm({ω : Hna(ω) > τ}) τ > 0

fails for any constant C. Indeed, if a1 = a2 = . . . = an = 1, then

m({t : Tna(t) = n}) =
1
n!
,

while
m({ω : Hna(ω) = n}) =

1
nn
.

Theorem 4.4.6. Let E be a fully symmetric quasi-Banach space. If K : E →
E, then the operators Tn, n ∈ N, are uniformly bounded in E. Moreover,

‖Tn‖E→E ≤ 96‖K‖E→E , n ∈ N.

Proof. It follows from Lemma 4.4.4 that for arbitrary n ∈ N, a ∈ Rn, τ > 0 and
every m ≥ 2n2, we have

(Tna)∗ ≤ 2σ48(Hma)∗.

By Lemma 3.1.1, Hma converges toK(Cna) in distribution. Therefore, (Hm(Cna))∗

converges to (K(Cna))∗ almost everywhere.
It follows that

(Tna)∗ ≤ 2σ48(K(Cna))∗.

This implies that
‖Tna‖E ≤ 96‖K(Cna)‖E .

Since E is fully symmetric, we have

‖Tnx‖E = ‖Tn(Bnx)‖E ≤ 96‖K(CnBnx)‖E ≤ 96‖K‖E→E‖x‖E .

4.5 The Kruglov property and random permu-
tations

We are going to infer some corollaries from Theorems 4.4.6 and 4.3.6.
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Corollary 4.5.1. Let E be a fully symmetric quasi-Banach space. For every
n ∈ N and every x = (xi,j)1≤i,j≤n, we have

‖Anx‖E ≤ C(‖
n∑
k=1

x∗kχ((k−1)/n,k/n)‖E +
1
n

n2∑
k=n+1

x∗k).

Here, (x∗k)n
2

k=1 is the decreasing rearrangement of the sequence (|xi,j |)ni,j=1 and
C > 0 does not depend either on n or x.

Corollary 4.5.2. The operators Tn, n ≥ 1, are uniformly bounded on the Orlicz
space exp(Lp) if and only if p ≤ 1.

Indeed, the Orlicz space exp(Lp) has the Kruglov property if and only if
p ≤ 1 (see [12, 2.4, p. 42]). The assertion follows immediately from Theorems
4.4.6 and 4.3.6.

Theorem 4.1.8 in conjunction with Theorems 4.4.6 and 4.3.6 implies the
following corollary.

Corollary 4.5.3. If the symmetric quasi-Banach space E has the Fatou prop-
erty and if supn ‖Tn‖E < ∞, then there exists a symmetric space F ( E, such
that supn ‖Tn‖F <∞.

If E is a symmetric space and p ≥ 1, then E(p) denotes the space of all
measurable functions x on the interval [0, 1] such that |x|p ∈ E. We equip E(p)
with the norm

‖x‖E(p) = ‖ |x|p ‖1/pE .

It is well-known that E(p) ⊂ E and ‖x‖E ≤ ‖x‖E(p) for all x ∈ E(p) (see [36,
1.d]).

Let E and F be symmetric spaces such that E ⊂ F and K : E → E. This
does not necessary imply that K : F → F (see [6, Corollaries 5.6 and 5.7]).
However,

Corollary 4.5.4. Let E be a symmetric Banach space such that either E is
separable or E = E××. If the Kruglov operator K is bounded in E(p), then it is
bounded in E.

Proof. Assume that the operator K is bounded in E(p). According to Theorem
4.4.6, the operators Tn, n ∈ N, are uniformly bounded in E(p).

Let a ∈ Rn+ and let

‖Tn(Cna)‖E(p) ≤ C‖Cna‖E(p),

so that
‖(Tn(Cna))p‖1/pE ≤ C‖(Cna)p‖1/pE .

If x = (Cna)p, then
‖(Tnx1/p)p‖E ≤ Cp‖x‖E .
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It follows from the definition of the operator Tn, n ≥ 1 that

(Tnx1/p)p ≥ Tnx.

Hence, ‖Tnx‖E ≤ Cp‖x‖E , n ∈ N. Thus, the operators Tn, n ≥ 1 are uniformly
bounded in E. According to Theorem 4.3.6, the Kruglov operator K is bounded
in E.
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4.6 Applications to Banach-Saks index sets

Let E be a Banach space and let p > 1. The bounded sequence {xn}∞n=1 ⊂ E is
called a p-BS-sequence if for all subsequences {yk}∞k=1 ⊂ {xn}∞n=1,

sup
m∈N

m−
1
p ‖

m∑
k=1

yk‖E <∞.

Define the set Γi(E) (respectively, Γiid(E); respectively, Γd(E)) as the set
of those p such that every independent (respectively, independent and identi-
cally distributed; respectively, disjoint) weakly null sequence contains a p-BS-
subsequence.

The first main result of this section characterizing a subclass of the class of
all symmetric spaces E such that Γiid(E) = Γi(E) is given in Theorem 4.6.3
below. We first need a modification of the subsequence splitting result from [52,
Theorem 3.2].

Lemma 4.6.1. Let E be a symmetric separable Banach space on the interval
(0, 1). Suppose that E is separable. If the sequence {xn} ⊂ E converges to 0 in
measure, then there exists a subsequence {zn} ⊂ {xn} such that zn = vn + wn,
where the functions vn, n ∈ N, are mutually disjoint and ‖wn‖E → 0.

Proof. Since xn → 0 by measure, it follows that m({t : |xn(t)| ≤ ε}) → 1.
Passing to a subsequence, if needed, we obtain m({t : |xn(t)| ≤ 1/n) ≥ 1− 1/n.

Since E is separable, it follows that there exists a sequence εn > 0 such that
‖x∗nχ[0,εn]‖E ≤ 1/n.

Set

vn,1 = xnχ1/n<|xn|<x∗(εn), wn1 = xnχ|xn|<1/n + xnχ|xn|>x∗(εn).

Clearly, wn1 → 0 in norm and m(supp(vn,1))→ 0 and vn,1 ∈ L∞(0, 1). Without
loss of generality, xn = vn,1, n ∈ N.

Passing to a subsequence, if needed, we obtainm(supp(xn+1)) ≤ 1
2m(supp(xn)).

Passing to a further subsequence, if needed, we obtain

‖xn‖∞ · ‖χsupp(xn+1)‖E ≤
1
n
.

Therefore,

‖xnχ∪k>nsupp(xk)‖E ≤ ‖xn‖∞‖χ∪k>nsupp(xk)‖E ≤ ‖xn‖∞‖χsupp(xn+1)‖E ≤
2
n
.

Clearly, the sequence vn = xn − xnχ∪k>nsupp(xk), n ∈ N, is disjoint and the
assertion of the lemma follows.

Theorem 4.6.2. Let E be a symmetric Banach space on the interval (0, 1).
Suppose that E is separable and satisfies Fatou property. Let {xn}n≥1 ⊂ E be a
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sequence of independent random variables. If xn → 0 weakly, then there exists
a subsequence {yn}n≥1 ⊂ {xn}n≥1, such that

yn = un + vn + wn, n ≥ 1,

where

1. {un}n≥1 is a sequence of independent identically distributed functions.

2. {vn}n≥1 is a sequence of functions with pairwise disjoint support.

3. {wn}n≥1 is a sequence of functions such that ‖wn‖E → 0.

4. un → 0 and vn → 0 weakly.

Proof. Since sequence {xn} converges weakly, it is bounded. Clearly,

‖xn‖E ≥ ‖x∗nχ[0,s]‖E ≥ x∗n(s)‖χ[0,s]‖E , s ∈ [0, 1].

By the Helly Selection theorem, there exists a sequence {xn,1} ⊂ {xn} such that
(x+
n,1)∗ → (x+)∗ and (x−n,1)∗ → (x−)∗ uniformly on the interval [1/2, 1]. Without

loss of generality, ‖(x+
n,1)∗−(x+)∗‖L∞(1/2,1) ≤ 1 and ‖(x−n,1)∗−(x−)∗‖L∞(1/2,1) ≤

1. Repeating the argument, we get a subsequence {xn,2} ⊂ {xn,1} such that
(x+
n,1)∗ → (x+)∗ and (x−n,1)∗ → (x−)∗ uniformly on the interval [1/3, 1]. Without

loss of generality, ‖(x+
n,2)∗−(x+)∗‖L∞(1/3,1) ≤ 1/2 and ‖(x−n,2)∗−(x−)∗‖L∞(1/3,1) ≤

1/2.
Repeat this process, consider diagonal subsequence xn,n, n ∈ N. It is clear

that
m({t : |(x+

n,n)∗(t)− (x+)∗(t)| ≥ 1
n
}) ≤ m([0,

1
n+ 1

]) =
1

n+ 1
and

m({t : |(x−n,n)∗(t)− (x−)∗(t)| ≥ 1
n
}) ≤ m([0,

1
n+ 1

]) =
1

n+ 1
.

Hence, (x+
n,n)∗ → (x+)∗ and (x−n,n)∗ → (x−)∗ in measure. Since E has the Fatou

property and (x+
n,n)∗, (x−n,n)∗ ∈ E, n ∈ N, it follows that (x+)∗, (x−)∗ ∈ E.

There exist an isomorphism γ : Ω → (0, 1) and measure-preserving trans-
forms γn : (0, 1)→ (0, 1), n ∈ N, such that

(xn,n ◦ γ)(ω) = (((x+
n,n)∗ +d (−(x−n,n)∗)) ◦ γn)(ωn), ω ∈ Ω.

Here, +d denotes the disjoint sum. Set

x = (x+)∗ +d (x−)∗

and
(un ◦ γ)(ω) = (x ◦ γn)(ωn).

It follows immediately that un, n ∈ N, are independent and identically dis-
tributed and that xn,n − un → 0 in measure.
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Apply Lemma 4.6.1 to the sequence {xn,n − un}. Passing to a subsequence
if needed, we obtain xn,n = un + vn +wn, where un are identically distributed,
vn are disjoint and ‖wn‖E → 0.

Since E×× = E, we can apply Proposition 2.1 from [22]. It follows that the
sequence {un} is weakly compact. Without loss of generality, un → u weakly.
Hence, vn = (xn,n − un)− wn → −u weakly.

If E = L1, then vn → 0 weakly, which proves theorem for this case.
Suppose now that E 6= L1. It follows that E× 6= L∞ and

|
∫ 1

0

vn(s)sgn(u)(s)ds| = |
∫ 1

0

vn(s)(sgn(u)χsupp(vn))(s)ds| ≤

≤ ‖vn‖E · ‖χsupp(vn)‖E× → 0.

However, vn → −u weakly. Therefore,

|
∫ 1

0

vn(s)sgn(u)(s)ds| →
∫ 1

0

|u(s)|ds.

Hence, u = 0. Thus, un → 0 and vn → 0 weakly.

Theorem 4.6.3. Let E be a symmetric Banach space on the interval (0, 1).
Suppose that E is separable and satisfies the Fatou property. Then

Γi(E) = Γiid(E) ∩ Γd(E).

Proof. It is clear that
Γi(E) ⊂ Γiid(E).

It follows from Lemma 3.3.1 that

Γi(E) ⊂ Γd(E).

Therefore,
Γi(E) ⊂ Γiid(E) ∩ Γd(E).

Let us prove the reverse inclusion. Let q be such that 1/q ∈ Γiid(E) and
1/q ∈ Γd(E). Let xn be a sequence weakly convergent to 0. Let un, vn, wn be as
in Theorem 4.6.2. Passing to a subsequence if needed, we obtain ‖wn‖E ≤ 2−n,
n ∈ N. Without loss of generality, wn = 0 and xn = un + vn, n ∈ N.

Since 1/q ∈ Γiid(E), it follows that

‖
n∑
k=1

uk‖E ≤ const · n1/q, n ∈ N.

Since 1/q ∈ Γd(E), it follows that

‖
n∑
k=1

vk‖E ≤ const · n1/q, n ∈ N.
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It is now clear that

‖
n∑
k=1

xk‖E ≤ const · n1/q, n ∈ N.

Hence, q ∈ Γi(E) and we are done.

Lemma 4.6.4. Let E be a fully symmetric Banach space on the interval (0, 1).
Then Γiid(E) = {1} if and only if ‖An‖E→E = n for every n ∈ N.

Proof. Let 1 < q ∈ Γiid(E). Define the sequence xk ∈ E(Ω), k ∈ N, by the
formula xk(ω) = x(ω2k−1)r(ω2k). It converges weakly to 0 (see Lemma 3.4. in
[53]). Hence,

‖
n∑
k=1

xk‖E ≤ C(x)n1/q.

It follows that n−1/q‖Anx‖E ≤ C(x). By the uniform boundedness principle,
‖An‖E→E ≤ Cn1/q.

Let us prove the converse assertion. Let ‖An‖E→E ≤ Cn1/q, n ∈ N. Suppose
that {xk} ⊂ E is a sequence of independent identically distributed functions
which converges weakly to 0. Without loss of generality,

xk(ω) = x(ω2k−1), ω ∈ Ω.

Since xk → 0 weakly, it follows that∫
x(ω)dω =

∫
xk(ω)dω → 0.

Hence, x is mean zero and, therefore, xk, k ∈ N, are mean zero.
By Lemma 3.2.5,

‖
n∑
k=1

xk‖E ≤ const · ‖
n∑
k=1

(x(ω2k−1)− x(ω2k))‖E =

= const‖An(x(ω1)− x(ω2))‖E ≤ const · n1/q‖x(ω1)− x(ω2)‖E .

Hence,

‖
n∑
k=1

xk‖E ≤ const · n1/q‖x‖E

and we are done.

Remark 4.6.5. Let E be a symmetric Banach space on the interval (0, 1).
Suppose that E has Fatou property and is separable. If E satisfies an upper
2-estimate, then Γiid(E) = Γi(E).

Indeed, in this case 2 ∈ Γd(E).
Our second main result in this section completely characterizes the subclass

of all Lorentz spaces whose Banach-Saks index set Γi(Λψ) is non-trivial.
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Corollary 4.6.6. Γi(Λψ) 6= {1} if and only if the function ψ satisfies the
conditions (3.18) and (3.19) for some k, l ≥ 2.

Proof. We have
Γd(Λψ) = [1,∞)

(see e.g. the proof of [4, Corollary 4.8]). Therefore,

Γi(Λψ) = Γiid(Λψ).

The assertion follows now from Lemma 4.6.4 and Theorem 3.6.6.

We complete this section with the description of Γi(exp(Lp)0), 0 < p <∞.

Theorem 4.6.7. For every 0 < p ≤ 2,

Γiid(exp(Lp)0) = Γi(exp(Lp)0) = [1, 2].

For every 2 ≤ p <∞,

Γiid(exp(Lp)0) = Γi(exp(Lp)0) = [1,
p

p− 1
].

Proof. Note that exp(Lp) coincides with the Marcinkiewicz space Mt log1/p(1/t).
We have

Γd((Mψ)0) = [1,∞)

(see e.g. [4, p.897]). It follows from Lemma 4.6.4 and Theorem 3.7.1 that

Γiid(exp(Lp)0) = [1, 2]

for 0 < p ≤ 2 and
Γiid(exp(Lp)0) = [1,

p

p− 1
]

for 2 < p <∞. The assertion follows from Theorem 4.6.3.

Remark 4.6.8. The preceding theorem shows that the set Γi(exp(Lp)0) is non-
trivial for all 0 < p <∞, whereas exp(Lp)0 has the Kruglov property if and only
if 0 < p ≤ 1. Therefore, the Kruglov property is not necessary for the condition
Γi(E) 6= {1}.

Example 4.6.9. If E = Lp,q for 1 < q < p < 2, then Γi(E) 6= Γiid(E).

Proof. For every normalized sequence {vn}n≥1 ⊂ Lp,q of functions with dis-
joint support, there exists a subsequence spanning the space lq (see Lemma
2.6.5). Hence, Γd(Lp,q) ⊂ Γ(lq) = [1, q]. Therefore, by Theorem 4.6.3, we have
Γi(Lp,q) ⊆ [1, q].

Next, it is proved in [18, Corollary 3.7] (see also [13, Corollary 5.2]) that
if p < 2 then for every sequence of identically distributed independent random
variables we have

‖
n∑
k=1

xk‖Lp,q = o(n
1
p ).

Hence, [1, p] ⊆ Γiid(Lp,q).



Appendix A

Classification of extreme
points

The following theorem is due to Ryff (see [48]).

Theorem A.0.10. If 0 ≤ x ∈ L1(0, 1), then y ∈ extr(Ω′(x)) if and only if
y∗ = x∗.

In this appendix, we prove similar results for the sets Ω(x) and Ω+(x) and
extend them to the semi-axis.

Lemma A.0.11. Let xk = x∗k ∈ S0 and let 0 ≤ yk ≺≺ xk, k ∈ N, be mutually
disjoint functions. If

∞∑
k=1

yk ∈ extr(Ω(
∞∑
k=1

xk)),

then yk ∈ extr(Ω(xk)), k ∈ N. The same assertion is valid for the sets Ω+ and
Ω′.

Proof. Assume the contrary. Let yn = 1
2 (y1n + y2n) with y1n, y2n ≺≺ xn and

supp(y1n), supp(y2n) ⊂ supp(yn). It follows from Lemma 1.2.14 that

y1n +
∑
k 6=n

yk ≺≺
∞∑
k=1

xk, y2n +
∑
k 6=n

yk ≺≺
∞∑
k=1

xk.

The assertion follows immediately.

Lemma A.0.12. Let x = x∗ ∈ L1(0, 1) (respectively, x = x∗ ∈ (L1+L∞)(0,∞)).
Assume that y = y∗ is not a step function and that the inequality∫ t

0

y(s)ds <
∫ t

0

x(s)ds

holds for all t ∈ (0, 1) (respectively, for all t > 0). It follows that y /∈ extr(Ω(x)),
y /∈ extr(Ω′(x)) and y /∈ extr(Ω+(x)).

139
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Proof. There exists a point t0 ∈ (0, 1) (respectively, t0 > 0) such that y|(t0,t0+ε)

takes infinitely many values for arbitrary ε > 0. In particular, y(t0) > 0. Select
t4 > t0 such that ∫ t4

0

y(s)ds ≤
∫ t0

0

x(s)ds.

Fix t1, t3 ∈ (t0, t4) such that y(t0) > y(t1) > y(t3) > y(t4). Set t2 = (t1 + t3)/2
and

y± = y ± δ(χ(t1,t2) − χ(t2,t3)), δ = min{y(t0)− y(t1), y(t3)− y(t4)}.

It is clear that y± = y on the complement of the interval (t0, t4) and y(t4) ≤
y+, y− ≤ y(t0) on the interval (t0, t4). Therefore,∫ t

0

y∗±(s)ds =
∫ t

0

y(s)ds ≤
∫ t

0

x(s)ds, t /∈ (t0, t4)

and ∫ t

0

y∗±(s)ds ≤
∫ t4

0

y(s)ds ≤
∫ t0

0

x(s)ds ≤
∫ t

0

x(s)ds, t ∈ (t0, t4).

Therefore, y = (y+ + y−)/2 with y+, y− ≺≺ x.

Lemma A.0.13. Let x = x∗ ∈ L1(0, 1) (respectively, x = x∗ ∈ (L1+L∞)(0,∞)).
Assume that y = y∗ is a step function and that the inequality∫ t

0

y(s)ds <
∫ t

0

x(s)ds

holds for all t ∈ (0, 1) (respectively, for all t > 0). It follows that y /∈ extr(Ω(x))
and y /∈ extr(Ω′(x)). If y ∈ extr(Ω+(x)), then y = 0.

Proof. Suppose that y has at least three maximal intervals of constancy. Let
(a, b) be the maximal interval of constancy for y such that a > 0 and b < 1
(respectively, b <∞). Set

y± = y ± δ(χ(a,(a+b)/2) − χ((a+b)/2,b)).

Clearly, y± ≺≺ x for sufficiently small δ and y = (y+ + y−)/2. Therefore,
y /∈ extr(Ω(x)).

The case that y has one or two maximal intervals of constancy can be treated
similarly.

Theorem A.0.14. Let x ∈ L1(0, 1) (or x ∈ (L1 +L∞)(0,∞)) and let y ≺≺ x.

1. If x ∈ L1(0, 1) or x ∈ L1(0,∞), then y ∈ extr(Ω′(x)) if and only if y∗ = x∗

and y ≥ 0.

2. If x ∈ L1(0, 1) or x ∈ (L1 +L∞)(0,∞), then y ∈ extr(Ω(x)) if and only if
y∗ = x∗ and |y| ≥ y∗(∞).
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3. If x ∈ L1(0, 1) or x ∈ (L1 + L∞)(0,∞), then y ∈ extr(Ω+(x)) if and only
if y∗ = x∗χ(0,β) and |y| ≥ y∗(∞).

Proof. Let y be an extreme point of the set Ω(x). Without loss of generality,
x = x∗ and y = y∗. Define the set

A = {t :
∫ t

0

y∗(s)ds <
∫ t

0

x∗(s)ds}.

It is clear that A is an open set. If A 6= ∅, then A = ∪i≥1Ii — a union of disjoint
intervals.

In the second case, y|Ii ≺≺ x|Ii . By the Lemma A.0.11, we have y|Ii ∈
extr(Ω(x|Ii)), which contradicts Lemma A.0.12 or Lemma A.0.13. Thus, A = ∅
and y = x.

The same construction works in case of Ω′(x).
Consider now the case of Ω+(x). It follows from the Lemma A.0.12 that

y = 0 on A. Since y = y∗, it follows that A = (β,∞) and y = xχ(0,β).



Appendix B

A pathological Orlicz space

Example B.0.15. There exists a non-separable Orlicz space LΦ such that
βLΦ = 1.

Proof. Let a0 = 1 and an+1 = ean . Set Φ(t) = t2 on (0, 1),

Φ(t) = et + Φ(a2n)− ea2n , ∀t ∈ [a2n, a2n+1],

Φ(t) = Φ(a2n−1) + ea2n−1(t− a2n−1), ∀t ∈ [a2n−1, a2n]

for all t ∈ N. Clearly, Φ′(t) = et on [a2n, a2n+1] and Φ′(t) = ea2n−1 on [a2n−1, a2n].
Hence, Φ′(t) ≤ et and Φ(t) ≤ et − 1 for all t > 0.

If αLΦ > 0, then (see [36, 2.b.5]) there exists q > 0 such that

sup
λ,t≥1

Φ(λt)
Φ(λ)tq

<∞.

In particular, Φ(t) ≤ const · tq for t ≥ 1. However,

Φ(a2n+1) ≥ ea2n+1 − ea2n = ea2n+1(1 + o(1)), ∀n ∈ N.

Therefore, αLΦ = 0 and LΦ is non-separable.
If βLΦ < 1, then (see [36, 2.b.5]) there exists p > 1 such that

inf
λ,t≥1

Φ(λt)
Φ(λ)tp

> 0.

For every n ∈ N, set tn = n and λn = a2n/n. Hence, λntn = a2n and

Φ(λntn) = Φ(a2n−1) + ea2n−1(a2n − a2n−1) = a2n(1 + o(1)) + a2
2n(1 + o(1)).

Since a2n−1 = 1
no(a2n), it follows that

Φ(λn) = Φ(a2n−1) + ea2n−1(
1
n
a2n − a2n−1) = a2n(1 + o(1)) +

1
n
a2

2n(1 + o(1)).
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Therefore,

Φ(λntn)
Φ(λn)tpn

= (1 + o(1))
a2

2n
1
na

2
2n · np

= (1 + o(1))n1−p = o(1)

and we conclude that βLΦ = 1.



Appendix C

An operator tensor product

If z1, · · · , zk ∈ L1(0, 1), we denote by z1 ⊗ · · · ⊗ zn ∈ L1((0, 1)n) the function

ω = (ω1, · · · , ωn)→ z1(ω1) · · · zn(ωn).

The following assertion is well-known. We provide a proof due to the lack
of a convenient reference.

Lemma C.0.16. Let Ak : L1(0, 1)→ L1(0, 1), 1 ≤ k ≤ n, be bounded operators.
There exists a bounded linear operator A1⊗ · · ·⊗An : L1((0, 1)n)→ L1((0, 1)n)
such that

(A1 ⊗ · · · ⊗An)(z1 ⊗ · · · ⊗ zn) = A1z1 ⊗ · · · ⊗Anzn, z1, · · · , zn ∈ L1(0, 1).

Proof. For simplicity of notation, we will assume that n = 2.
If z1, z2 are simple functions (finite linear combinations of indicator func-

tions), define
(A1 ⊗A2)(z1 ⊗ z2) = (A1z1)⊗ (A2z2).

The operator A1 ⊗ A2 is extended to the linear hull L of such functions by
linearity. We now show that A1 ⊗A2 is well-defined on L.

Indeed, let
n∑
k=1

z1k ⊗ z2k =
m∑
k=1

z3k ⊗ z4k.

One can represent zik =
∑l
j=1 aijkχBj with Bj , 1 ≤ j ≤ l being disjoint sets.

Therefore,

n∑
k=1

z1k ⊗ z2k =
l∑

j1,j2=1

n∑
k=1

a1j1ka2j2kχBj1 ⊗ χBj2 =

=
l∑

j1,j2=1

m∑
k=1

a3j1ka4j2kχBj1 ⊗ χBj2 =
m∑
k=1

z3k ⊗ z4k.
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It follows that

(A1 ⊗A2)(
n∑
k=1

z1k ⊗ z2k) =
l∑

j1,j2=1

n∑
k=1

a1j1ka2j2k(A1χBj1 )⊗ (A2χBj2 ) =

=
l∑

j1,j2=1

m∑
k=1

a3j1ka4j2k(A1χBj1 )⊗ (A2χBj2 ) = (A1 ⊗A2)(
m∑
k=1

z3k ⊗ z4k)

and this implies that A1 ⊗A2 is well-defined on L.
If z =

∑n
k=1 akχBk ⊗ χCk with the sets Bk, 1 ≤ k ≤ n and Ck, 1 ≤ k ≤ n,

being disjoint, then

‖(A1 ⊗A2)z‖1 ≤
n∑
k=1

|ak| · ‖A1χBk‖1 · ‖A2χCk‖1 ≤

≤ ‖A1‖L1→L1‖A2‖L1→L1

n∑
k=1

|ak|m(Bk)m(Ck) = ‖A1‖L1→L1‖A2‖L1→L1‖z‖1.

Therefore, A1 ⊗A2 is a bounded operator on a dense subset of L1((0, 1)2). The
assertion follows immediately.

Lemma C.0.17. Let Ak : L1(0, 1)→ L1(0, 1), 1 ≤ k ≤ n, be bounded operators.

1. If A1, · · · , An are positive, then so is A1 ⊗ · · · ⊗An.

2. If A1, · · · , An preserve integral, then so does A1 ⊗ · · · ⊗An.

3. If Ak1 = 1, 1 ≤ k ≤ n, then (A1 ⊗ · · · ⊗An)1 = 1.

4. If A1, · · · , An are bistochastic, the so is A1 ⊗ · · · ⊗An.

Proof. The fourth assertion is an immediate corollary of the first, second and
third assertions.

1. Let z =
∑m
k=1 z1k⊗· · ·⊗znk with zik, 1 ≤ i ≤ n, 1 ≤ k ≤ m, being simple

functions. One can write z =
∑l
k=1 u1k ⊗ · · · ⊗ unk with uik, 1 ≤ i ≤ n,

1 ≤ k ≤ l, being positive simple functions. It follows that Az ≥ 0. Since
functions of the above form are dense in L1((0, 1)n), the assertion follows.

2. Let z =
∑m
k=1 z1k⊗· · ·⊗znk with zik, 1 ≤ i ≤ n, 1 ≤ k ≤ m, being simple

functions. It is clear that∫
(0,1)n

(A1 ⊗ · · · ⊗An)(z) =
∫

(0,1)

z.

Since functions of the above form are dense in L1((0, 1)n), the assertion
follows.

3. Clear.
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An, operators, 107
A⊗B, tensor product of operators, 144
C(E), concavity modulus, 15
dx, distribution function, 11
E(·|A), averaging operator, 28
Hn, operator, 91
K, Kruglov operator, 32
K, Kruglov property, 33
L0, 11
Lp,q, 26
Lp,∞, 26
LΦ, Orlicz space, 24
Mn(R), matrix algebra, 60
Mψ, Marcinkiewicz space, 25
P (·|A), partial averaging operator, 28
Q(x), Q+(x), Q′(x), 30
QE(x), Q+

E(x), Q′E(x), 30
S0, 11
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x̄k, sequence of disjoint copies, 91
x⊗ y, tensor product of functions, 143
x∗, rearrangement, 11
αE , lower Boyd index, 23
βE , upper Boyd index, 23
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Λψ, Lorentz space, 25
Φ, Orlicz function, 24
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ϕ, ϕfin, ϕcut, nonlinear functionals, 37
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Ω, 31
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≺, majorization, 12,21
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Banach-Saks index, 33
Birkhoff theorem, 60
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bistochastic operator, 28
convergence almost everywhere, 15
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Fatou property, 19
Fatou quasi-norm, 19
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Gaussian random variable, 28
ideal lattice, 18
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Mekler theorem, 60
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