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SUMMARY 

Australian electricity market has accepted deregulation since the early 1990’s. The 

aims of deregulation of electricity supply included promoting market competition and 

ensuring reliable supply of electricity at stable prices to consumers. However, it has 

been observed that spot price for electricity can be volatile and occasionally spikes to 

extremely high levels.  This thesis examines the latter phenomenon with the help of 

quantitative techniques of operations research and statistics. Closer examination 

shows that bidding behaviour of generators is affecting the price volatility in Australian 

electricity market especially in high demand periods.  In particular, our analyses 

suggest that some of the observed volatility may be due to the underlying structure of 

the currently used optimisation model’s design that does not exclude the possibility of 

generators being able to exercise market power.   We also propose a novel pricing 

mechanism designed to discourage strategic bidding. 

In the preliminary analysis we discuss the history of price volatility and possible 

exercise of market power in Australia as mentioned in the literature. According to 

Australian Energy Regulator the significant increase in the number of price spikes 

occurred in South Australia during the years 2008-11 where “disorderly bidding 

strategies” by generators were addressed as one of the underlying reasons for this 

high electricity price fluctuations.  

Exploratory analysis of data from South Australian electricity market identified and 

exhibited a number of phenomena which contribute to the high cost of electricity 

supply to consumers and volatility in spot prices. It identified certain characteristic 

bidding behaviours of generators during the periods when spot price spikes occurred.   
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For this reason, the bidding behaviour by generators was investigated in detail. Our 

analysis showed that, observed bid structures exhibit bimodal form in higher demand 

trading intervals.  

In particular, we considered the potential consequences of the fact that generators 

can influence some parameters of the dispatch linear program that is used to 

determine shadow prices of demands which, in turn, determine the spot price. 

Indirectly, this influence opens the possibility of them being able to impact the 

marginal prices of electricity in each state and hence also the spot prices.  Indeed, 

due to the non-uniqueness of solutions to linear programs, a phenomenon that we 

call “instability gap” may arise whereby some optimal shadow prices favour the 

generators and some favour consumers.   

We also considered changes to the electricity pricing mechanism aimed at creating 

disincentives to strategic bidding. We proposed a Mean-Value approach to determine 

the spot-price that is inspired by the famous concept of Aumann-Shapley Prices. We 

demonstrated that this approach has the potential for discouraging strategic bidding 

and for reducing the ultimate spot price for electricity. Furthermore, we showed how 

generators would benefit – under a mean value pricing scheme - by offering a 

uniformly distributed bid stack.  

Finally, we showed that the mean value pricing mechanism proposed above can be 

easily generalised to the whole network in NEM which consists of 5 interconnected 

regions.   
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1. CHAPTER 1. INTRODUCTION 

Electricity is a secondary form of energy which is converted from other sources of 

energy such as coal, natural gas and oil0F

1. It is produced from the flow of electrons in 

the electrical wiring, called “Conductors”, which are generally produced from copper 

and aluminium.   

Electricity has two notable characteristics. First, it is not easily storable so demand 

and supply for electricity need to be matched instantaneously. Second, as each unit 

of electricity is not distinguishable from the other, it is not possible to determine the 

generator that produced each unit. These special characteristics of this product make 

it well suited to be traded through a pool.  

The consumption of electricity includes heating, lighting, air conditioning and their 

uses in in power machines. The rate at which electricity converts to other forms of 

energy such as heat or light is measured through a unit called wattage or “watt”. One 

megawatt (𝑀𝑊) equals to one million watts (𝑊) and one gigawatt (𝐺𝑊) equals to 

one thousand megawatts (𝑀𝑊). For instance, a kettle uses 2400 watts to produce 

boiling hot water. One watt (𝑊) is equal to one joule (𝐽)  of work per second (𝑆); 𝑊 =

𝐽
𝑆⁄ .One megawatt hour (𝑀𝑊ℎ) is the energy required to power ten thousand 100 𝑊 

light globes for one hour. A 100 megawatt will thus power one million 100 𝑊 light 

globes simultaneously. 

 

                                                
1 Solar energy and wind power are other sources of renewable energy which are becoming 
increasingly more important. 
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In Australian electricity market, more than the 90% of the electricity is produced from 

the chemical energy released from burning fossil fuels such as coal, gas and oil. In 

this process, the chemical energy is used to heat water and produce steam which is 

conducted through turbines that power a generator (AEMO, 2010). 

Although the transmission of electricity occurs instantaneously, a specific sequence 

of events takes place to ensure the delivery of the required electricity. As Figure 1.1 

shows, initially a transformer increases the voltage of electricity produced at power 

plants and efficiently transforms electricity through the transmission lines. Before 

electricity reaches consumers’ end, a substation transformer converts the high 

voltage electricity to the low one and now it is ready for distribution to the power outlets 

through distribution lines.  

 

Figure 1.1. Transport of electricity (Source: AEMO, 2010) 

1.1 NATIONAL ELECTRICITY MARKET  
National Electricity Market (NEM) in Australia began to operate in December 1998. 

With the new restructuring, eastern states of Australia planned to form National 

Electricity Market (NEM). These states included New South Wales, Australian Capital 

Territory, Victoria, Queensland and South Australia. When the Basslink 

interconnector was completed, Tasmania also joined NEM on the 2 April 2006.  

Joining NEM is still not possible for the state of Western Australia and also the 

Northern Territory due to large geographic distances in these regions, rendering 

connecting with these states not economically efficient. Hence NEM works as a 

wholesale electricity market which consists of five interconnectors regions (Australia 

Bureau of Statistics: Year Book Australia, 2000). 
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It should be noted that, NEM spans distances of about 4500 kilometres which is one 

of the longest alternating current systems in the world: from Queensland to Tasmania, 

and west to Adelaide and Port Augusta. NEM’s turnover was about $12.2 billion in 

2012-13 for the total energy generated of 199TWh which was about 2.5 percent lower 

than the previous year (AER, 2013). 

NEM involves both wholesale generation that is transported via high voltage 

transmission lines to electricity distributors, and also delivery of electricity to the end 

users (i.e. businesses and households). NEM’s infrastructure is partly owned by the 

government and partly owned by the private sector. In each state, the electricity 

supply industry had to be privatised. The generators also needed to be linked to 

generating system in other states via interconnectors (Outhred, 2004). 

In principle, NEM has six participants, in terms of the role they play, in the wholesale 

electricity market. These are generators, Distribution Network Service Providers 

(DNSP), market consumers, Transmission Network Service Providers (TNSP), 

Market Network Service Providers (MNSP), and traders. It should be noted that by 

market consumers we mean both electricity retailers and end user consumers. 

Figure1.2 shows the electricity consumption by main industry sectors.  

 

Figure1.2 Electricity consumption by sector, (Source: AEMO, 2010) 

Electricity supply industry includes three divisions of generation transmission and 

distribution of electricity to end users. As electricity is not easily storable, the electricity 

supply industry needs to operate dynamically. On the other hand, it is the electricity 

supply obligation to match the electricity supply and consumption in an instantaneous 

manner to prevent outages and also to ensure that electricity supply is operating at a 

reliable and safe frequency and voltage for end users such as industries and house 

hold appliance.  

Transport and Storage 1%

Mining 9.4%

Manufacturing 9.1%

Aluminium Smelting 11%

Metals 18.3%

Agriculture 0.8%

Residental 27.7%

Commercial 22.8%
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1.1.1 Main responsibilities of NEM 

The reforms in the electricity market in Australia are believed to be successful 

especially in the state of Victoria where they saved the government from a high level 

of debt (Quiggin, 2004). One of the primary goals of the reforms was to establish a 

wholesale electricity market where generators were able to bid and sell their 

productions to end users and retailers. In this market, all the electricity sold by 

generators in NEM is cleared through a spot market settled half hourly.  

The spot market includes a pool where the bids from all generators are aggregated 

and then scheduled to meet demand. Here, by pool we mean a financial settlement 

system where sellers, generators, are paid for the portion of electricity they sell and 

buyers, retailers will pay for the amount of electricity they buy from the pool. In other 

words, by pool we do not mean a physical location but a set of procedures based on 

a sophisticated information technology system.  

The wholesale electricity market is managed by the Australian Energy Market 

Operator (AEMO, 2010) based on the provisions of National Electricity Law and 

Statutory Rules (the Rules). The market uses this system to inform generators on how 

much energy to produce at each five minutes to match the production level to 

consumer requirements. One of the intended advantages of this mechanism is that 

generators were to be encouraged to be more competitive and minimise the price 

they bid in order to win higher share from the total electricity load. This keeps an extra 

capacity ready for the emergencies (AEMO, 2010). 

It should be noted that in order to minimise the risk of significant fluctuations in the 

electricity price, hedge contracts are designed to cover majority of the transactions 

among generators, retailers and large consumers. These contracts can be both, one 

way or two way contracts to minimise the risk for both buyers and sellers in the market. 

These contracts are mentioned again in Section1.8.  

1.2 ELECTRICITY GENERATION IN NEM 

A generator converts sources of energy to electricity mainly by burning fuel to make 

steam which turn a turbine. Generators are grouped into four categories based on 

their duties in NEM (NEMMCO, 2005). 

(i) Market generators: the whole production of these generators is sold in spot 

market by NEMMCO. 
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(ii) Non market generators: they sell their production directly to a retailer or a 

customer outside the spot market.  

Figure1.3. Large generators in NEM, Source AER, 2013. 
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(iii) Scheduled generators: generators with the capacity of more than 30 

megawatts (MW). 

(iv) Non-scheduled generators: generators with the capacity of less than 30 

megawatts (MW).  

In Australia, the main fuels used in the electricity generation process are fossil fuels 

such as coal and gas. Other technologies used to produce electricity in Australia are 

relying on hydro and renewable energies such as water, sun and wind technologies. 

Figure1.3 shows the large generators in NEM and the source of energy they use 

(AER, 2013). 

1.2.1 Generation technologies in NEM 

The demand for electricity can be reasonably volatile throughout the year. Depending 

on the time of the day and the season, the demand can significantly fluctuate. As a 

result, different type of generators, based on their fuel type, would be appropriate for 

different trading interval. Table 1.1 show all type of generators, based on the fuel they 

use, with their special characteristics in NEM. 

Table 1.1. Type of generators in NEM (Source: AEMO, 2010) 

Characteristic 

Type 

Gas and 
Coal - fired 

Boilers 
Gas Turbine Water (Hydro) 

Renewable 
(Wind/Solar) 

Time to fire-up 
generator from 
cold 

8-48 hours 20 minutes 1 minute 
Dependant on 
prevailing weather 

Degree of operator 
control over 
energy source 

High  High  medium low 

Use of non-
renewable sources 

High High nil nil 

Production of 
greenhouse 
gasses 

High Medium-high nil nil 

Other 
characteristics 

Medium-low 
operating cost 

Medium-high 
operating cost 

Low fuel cost with 
plentiful water supply; 
production severely 
affected by drought 

Suitable for remote 
and stand-alone 
applications; 
Batteries may be 
used to store 
power 

In 2010, shares of electricity generation by fuel type in Australia were as shown in 

Figure1.4. In the following the use of these generators are described in more details. 
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Figure 1.4. Generation by fuel type in NEM, 2010, (Source: AEMO, 2010). 

1.2.2.1 Coal generators 

In general, the main sources of energy used in NEM are fossil fuels. Specifically, in 

New South Wales, Queensland and Victoria, coal is used to produce electricity. 

Whereas in South Australia the electricity production stations mainly use gas and wind 

power. Although coal generators have high start-up and shut down costs, they are 

very suitable for the base load as they can work continuously with relatively lower 

operating cost (AER, 2013).  

1.2.1.2 Gas generators 

For some peak periods, generators which can start up quicker are needed. Gas 

generators are suitable in these situations although they have relatively high operating 

costs. In South Australia, electricity generation is mainly relying on gas powered 

generators (AER, 2013). 

1.2.1.3 Hydroelectric generators 

These generators are becoming more popular especially with the introduction of a 

carbon pricing scheme and also the increase in rainfall in certain areas in 2012-13. 

Tasmania is the region which uses hydroelectric generators more than other regions 

in NEM. However, Queensland, Victoria and New South Wales also use this type of 

generation technology (AER, 2013). 

1.2.1.4 Renewable energy based generators  

Other energy sources for electricity production are the so-called renewable energies 

that have been developing in the Australian electricity market especially in the last 

Oil and other 0.2%

Wind 1.5%

Hydro 5%

Natural Gas 12.2%

Brown Coal 24.8%

Black Coal 56.3%
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decade. Wind generators are registered as semi-scheduled and connected to the 

network for the electricity production. Generators which use wind and solar energy to 

produce electricity can only be reliable when the weather conditions are appropriate. 

One limitation of this source of energy’s production is that it cannot increase with the 

demand as wind is intermittent. Therefore wind generators are semi-scheduled to the 

network as they cannot be scheduled in the usual way. Nevertheless, the market has 

been designed in a way that allows the wind generators to participate in the market 

as the other base-load generators (AER, 2013).  

 

Figure 1.5. Total monthly South Australian wind generation. Source: AEMO, 2012a. 

South Australia has the highest percentage contribution to peak demand in NEM. In 

South Australia this type of generation is used more frequently and in some periods it 

has accounted for up to 65 percent of the total generation in the state. The contribution 

of wind generation units has resulted in decreasing spot price in the periods of high 

wind. (AEMO, 2012a). Figure 1.5 shows total monthly South Australian wind 

generation.  
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1.2.2 Climate change policies 

One of the main objectives of climate change policies driven by the government is to 

transfer the reliance of industries, especially electricity industry, on coal fired 

generation in favour of the ones with lower carbon energy sources. At the moment 

around 35 percent of the greenhouse gas emission in Australia is related to the 

electricity industry. For this purpose, Renewable Energy Target (RET) was introduced 

by Australian government in 2001 and revised in 2007 and 2011. The main objective 

in this scheme is to achieve a share of 20 percent for renewable energy in the 

electricity production by the year 2020. The RET scheme includes large scale scheme 

such as installation of wind farms with the target of generating 41000 GWH electricity 

by 2020.  

Furthermore, RET includes small scale RET scheme such as rooftop solar PV 

installations. The use of rooftop solar generation especially in the last five years, 

created an opportunity for households to sell the electricity generated from their 

rooftop installations to the distributors or retailers. This is facilitated through a 

reduction in their electricity bill. Electricity generation from rooftops increased from 

1500 MW in 2011-12 to 2300 MW in 2012-13. The government has committed to 

review the RET scheme in 2014.  

The climate change policies have considerable effect on the electricity generation in 

Australia. The introduction of carbon pricing 1F

2 in 2012 led to some coal generators 

retiring. This resulted in 2300 MW of electricity reduction in the grid. In general, the 

black and brown coal generation were most popular until the years 2008-2009 and 

then the usage of these types of fuels has declined and shifted to other type of 

electricity generation. Table 1.2 shows generation plants shut down since 2012 (AER, 

2013).  

The carbon pricing plan also stimulated the hydro generation so that in 2012-13, 9 

percent of the total supply in NEM belonged to the hydro generation. Gas power plants 

started to develop, especially in the last decade. The investment in wind generation 

                                                

2 The Australian labor government introduced the carbon pricing plan in 1 July 2012 as part of 

its Clean Energy Future Plan. It aims to reduce carbon and other greenhouse emission to at 

least 5 percent below 2000 level by 2020 (AER, 2013). In 2014, this tax has been repealed by 

the current liberal government. 
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has also increased since the introduction of RET scheme in 2007 (AER, 2013). The 

trend in falling demand and also the overall changes in the generation shifts, resulted 

in total fall of 7 percent in emissions from the electricity generation sector in 2012-

2013 (AEMO, 2013a). 

Table 1.2. Generation plants shut down since 2012 (Source: AER, 2013). 

Business 
Power 
Station 

Technology 
Capacity 
(MW) 

Period Affected 

Queensland 

Stanwell 
Tarong (2 
units) 

Coal fired 700 
October 2012 to at least October 
2014 

RATCH 
Australia 

Collinsville Coal fired 190 From December 2012 until viable 

New South Wales 

Delta 
Electricity 

Munmorah Coal fired 600 Retired July 2012 

Victoria 

Energy Brix 
Morwell 
unit 3 

Coal fired 70 From July 2012 until viable 

Energy Brix 
Morwell 
unit 2 

Coal fired 25 
Not run since July 2012; only 
operates when unit 1 is under 
maintenance 

South Australia  

Alinta 
Energy 

Northern Coal fired 540 
April to September each year from 
2012 

Alinta 
Energy 

Playford Coal fired 200 From March 2012 until viable 

1.2.3 Ownership arrangement in electricity generation 

The ownership arrangements in electricity market, either private or government 

owned, varies in different regions. Most of the generation capacity in Victoria and 

South Australia belongs to the private sector. For Queensland and New South Wales 

and also Tasmania, government still controls most of the capacity generation in these 

states (AER, 2013). 

Figure1.6 shows the generators and entities which control the dispatch. The main 

private businesses are AGL Energy, Origin energy, EnergyAustralia (formerly 

Truenergy), International Power and InterGen. On the other hand, government owns 

Macquarie Generation, Delta generation, Stanwell, CS Energy and Snowy Hydro. The 

Hydro Tasmania is also a state owned entity. 
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Figure1.6. Market shares in electricity generation capacity by region, 2013 (AER, 2013). 

1.2.4 Regulation and deregulation 

In this section, we continue to introduce Australian electricity supply industry and 

briefly examine how it was restructured from a regulated monopoly to the deregulated 

market. As mentioned earlier, the National Electricity Market (NEM) began to operate 

as a wholesale electricity market in early 1990s. One of the main objectives of forming 

this market was to prevent generators from exercising any market power by promoting 

competition among generators. Establishing this market would also benefit the 

consumers through more choices of suppliers and higher efficiency and reliability in 

the network. In the following we highlight some main changes which happened before 

and after deregulation in the electricity supply in Australia (NEMMCO, 2005). 

1.2.4.1 Before deregulation 

The electricity supply industry was mainly managed by the state governments before 

the deregulation. They had to supply electricity to the costumers and were obliged to 

provide electricity in a safe and technical reliable manner and to ensure that the end 
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user could consume electricity at the minimum of possible price. As the electricity 

suppliers were publically owned monopolies, the authorities did not have to compete 

with the private suppliers in the states but they were trying to minimise their costs in 

order to compete with other providers of energy supply such as gas and oil.  

In order to minimise their cost, they also needed to encourage the efficient energy use 

in the production, such as reusing the heat in the production process and preventing 

it from being wasted. This would also result in reducing any damage to the 

environment.  

Power stations of various types, before and after deregulation, were also used in 

different situations. Hydroelectric power stations were used more frequently before 

the deregulation as they have low operating cost and the starting up process is 

relatively quick. Therefore, the use of these stations increased during the peak load 

periods and were mostly used in New South Wales and Victoria. Gas turbine stations 

were mainly used in the state of Queensland and South Australia in the peak load 

hours as there were no hydroelectric power station in these states and they operate 

with natural gas. Finally, coal power stations are mostly used for the base load as 

they are able to operate at a very low cost. More information about the electricity 

industry restructuring is provided in Saddler (1981), Joskow (2000), Quiggin, (2001) 

and Borenstein (2000). 

1.2.4.2 After deregulation  

Electricity market in Australia used to be regulated as a "Natural Monopoly" 2F

3 before 

the deregulation in 1990s. The presence of natural monopoly situation in the market 

gives a large supplier in an industry a cost advantage over other suppliers in the 

market. Australian electricity market was one of such examples before the 

deregulation where state government used to control the supply of electricity to the 

market. In this regulation, the state government’s main concern was to manage the 

market in favour of community and to keep the electricity industry as a reliable and a 

sustainable source of energy. As the capital cost of the electricity production was quite 

substantial, it was more economically efficient for the state governments to manage 

                                                
3 Joskow (2000) defines the natural monopoly as an industry where it is more economical in 
terms of costs to supply the output within a single firm rather than multiple firms. This tends to 
be the case in industries where economies of scale are large in relation to the size of the 
market. As the capital costs is high in these industries, it creates barriers for others to enter 
the market.  
 

http://en.wikipedia.org/wiki/Economies_of_scale
http://en.wikipedia.org/wiki/Capital_cost
http://en.wikipedia.org/wiki/Barriers_to_entry
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the market entirely (Saddler, 1981).  However, these state owned electricity markets 

resulted in significant employment and investment costs. This provided the main 

motivation for the economic reform in the electricity market.  

Generally, regulatory reforms in the electricity market were started by separating the 

three functions of generation, transmission and distribution in the market. The reform 

in the electricity market was mainly implemented in the generation sector in which, 

with the new restructuring, promoted competition in electricity. Later, more advanced 

concepts to stimulate competition among generators were introduced. In particular, 

setting electricity price through spot market was brought in (NEMMCO, 2005). 

With the aid of deregulation, the pricing mechanism was supposed to become 

transparent of the underlying costs of electricity production which intended to result in 

reducing the cost to end users. There is a broad literature available in this area 

including Steiner (2000), Saddler (1981), Joskow (2008). 

1.3 REGULATORY ARRANGEMENTS  

In this section we provide information about the influential regulatory committees and 

rules which monitor the wholesale electricity market in Australia. We also briefly 

introduce the Australian energy market operator (AEMO, 2010) which is the primal 

manager of the wholesale electricity market in Australia.  

1.3.1 National electricity law and rules 

Previously, National Electricity Code (NEC) used to prepare the rules to manage NEM 

and it was driven by the deregulation plans of the government for the electricity supply 

industry. National Electricity Code was the regulation appointed by government with 

the aid of electricity supply industry and electricity users. It aimed to monitor the 

market rules, network connections, access and pricing for the network, market 

operations and the power system’s security in NEM. NEC was related to all the 

regulations which are needed to ensure there is a fair access for all the stakeholders 

in the electricity network. It also monitored that all the technical requirements in the 

electricity supply needed to meet the required standards.   

In June 2005 NEC was replaced by the National Electricity Laws and Rules. One of 

the important actions of the National Electricity Laws and Rules was to replace 

NEMMCO by AEMO in 2009. The fundamental responsibilities of the National 

Electricity Laws and Rules is to set the actions for the market operation, network 
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connection and access, power system security and national transmission (AEMO, 

2010). 

1.3.2 Australian Energy Market Commission (AEMC) 

The primary role of Australian energy market commission is to ensure the power 

system remains secure and reliable by setting certain standards and guidelines. 

AEMC provides advice on the safety, security and reliability of the national electricity 

system monitors. It also reviews the reliability standards and mentions reliability 

settings which are needed to reach this standard for the National Electricity Market, 

every four years. The settings are included the market price cap, the cumulative price 

threshold, and the market floor price (AEMC website, Accessed 2/7/2014). 

1.3.3 Australian energy Regulator (AER) 

Established to regulate electricity and gas transmission and distribution in the future. 

Basically, since 2005 the responsibility for market regulation for NEM rests with the 

Australian Energy Market Commission (AEMC) and the Australian Energy Regulator 

(AER). AEMC manages the process of any possible changes in the existing rules and 

provides reviews on the operation of the Rules for the Ministerial Council on Energy. 

AER is responsible for the monitoring the implementation of the Rules and is also 

responsible for economic regulation of electricity transmission (AEMO, 2010).  

1.3.4 Australian Competition and Consumer Commission (ACCC) 

If any changes are to be made in NEC, ACCC needs to control them. The other 

responsibility of the ACCC is to manage the regulation regarding the transmission 

network in the Australian electricity supply (AEMO, 2010). 

1.3.5 National Electricity Market Management Company (NEMMCO) 

NEMMCOs main objectives were to control and manage NEM, monitor any changes 

to market operations and constantly, check the market efficiency. It began to operate 

in 1996 and was responsible to manage the spot market and instantaneously balance 

the demand and price through the pool. In 2009, NEMMCO was replaced by 

Australian Energy Market Operator (AEMO, 2010).   

1.3.6 Australian Energy Market Operator (AEMO) 

As mentioned above, the Australian Energy Market Operator (AEMO) was created by 

the Council of Australian Government (COAG) to manage NEM and gas markets from 

1 July 2009. The National electricity law and rules were modified to replace NEMMCO 
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with AEMO as the operator of national electricity market (AEMO, 2010). 

The main roles of AEMO are in the areas of Electricity Market (power system and 

market operator), gas market operator, national transmission planner, transmission 

services and energy market development. Members of AEMO are from both 

government, 60%, and industry, 40%. The government members are from 

Queensland, New South Wales, Victorian, South Australian and Tasmanian state 

governments, the Commonwealth and the Australian Capital Territory (AEMO, 2010). 

Primary functions of the AEMO are to operate the power system and to manage the 

market. Some of the key responsibilities of AEMO are as follows: 

(i) Manage an effective structure for the operation of NEM. 

(ii) Develop market and improve market efficiency. 

(iii) Monitor security and reliability of NEM. 

(iv) Coordinate planning of the interconnected power system. 

(v) Monitoring the demand and supply and balance the generation level to meet 

the demand. 

(vi) Encourage generators to increase the generation capacity during shortfalls.  

(vii) Cover the operating cost by the bills paid by the consumers. Ensure supply 

reserve for the unexpected circumstances. 

(viii) National transmission planning for the electricity transmission network. 

(ix) Electricity emergency management. 

(x) Provide the electricity statement of opportunity. 

(xi) Prepare the facilities to encourage the Full Retail Competition. 

AEMO manages the system from two centres located in different. Both centres have 

the same operating system and any part of NEM is manageable from either centre. 

The benefit of having these parallel systems is that in case of emergencies, such as 

natural disasters, AEMO has the opportunity to control the system from either centre. 

This increases the flexibility to respond rapidly to critical events (AEMO, 2010).  

1.4 ELECTRICITY NETWORK 

As mentioned earlier, NSW, Queensland, Victoria, South Australia and Tasmania are 

the five interconnected electrical regions in NEM. High voltage electricity is 

transmitted between these regions by the interconnectors. When the demand is so 

high in one region that the local generation cannot satisfy it, or in the situations when 
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the spot price in one region is low enough to be economical for electricity to be 

transferred to other regions, interconnectors are used to import the needed electricity. 

However, the interconnectors have some technical constraints that limit the amount 

of electricity transferred each time.  

In general, the interconnectors can be divided into two categories of regulated and 

unregulated interconnectors.  

1.4.1.1 Regulated interconnectors: 

There is a regulatory test designed by ACCC and interconnectors which pass this test 

become regulated interconnectors. The benefit here is that these interconnectors 

receive a fixed annual income which is determined by ACCC and is collected as part 

of the network charges. For instance, Murraylink is a regulated interconnector 

between Victoria and South Australia. In general, regulated interconnectors are 

transferring electricity supply between all the regions in NEM except Tasmania 

(AEMO, 2010). 

1.4.1.2 Unregulated interconnectors: 

As these interconnectors have not passed the ACCC exam, they do not receive the 

annual revenue. Instead, these interconnectors make money by buying electricity in 

a lower price region and selling it to higher price regions. At the moment, the Basslink 

is an unregulated interconnector which operates between Victoria and Tasmania. 

Figure1.7 shows the interconnectors in NEM.  

 

Figure1.7 Interconnectors in NEM, (Source: AEMO, 2010). 
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1.4.1.3 Import and export via Victoria – South Australia interconnectors 

As Figure 1.7 above shows, South Australia and Victoria are connected using two 

interconnectors, Murraylink and Heywood interconnectors with nominal rating of 200 

MW and 460 MW 3F

4 . Murraylink interconnector allows electricity to flow between South 

Australia and north-west Victoria. Heywood interconnector connects south-west of 

Victoria to South Australia (South Australian electricity report, 2014). 

Figure 1.8 shows the yearly import and export of electricity between South Australia 

and Victoria in the years 2004 to 2014. Prior to 2006-07 imports from Victoria 

dominated export. However, due to factors such as increased wind generation in 

South Australia, drought condition and expensive interstate supply this trend reversed 

from 2006-07.  

 

Figure 1.8. Victoria – South Australia electricity imports and exports via interconnectors. (Source: South 
Australian electricity report, 2014).  

1.4.2 Ancillary services 

Ancillary services are the services that keep the power system, safe, secure and 

reliable. They consist of standards for voltage, frequency, system re-start processes 

and network loading. For this purpose, Frequency Control Ancillary Services (FCAS) 

market was designed in September 2001, where providers compete and bid their 

services in the market. These services mainly control the frequency by raising or 

lowering it in the normal range of 49.9 to 50.1 Hertz. 

Network Control Ancillary services (NCAS) are also designed to control the voltage at 

                                                
4 Many factors can limit the interconnector flow to less than the nominal rating such as thermal 
limitations and voltage limitations. More information about the constraint affecting the flow 
though interconnector between South Australia and Victoria is available in (AEMO, 2013e). 
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different points of the network as well as to monitor the power flow of network 

elements to remain according to standards. In the occurrence of critical events such 

as a major supply disruption, System Restart Ancillary Services (SRAS) are required 

to restart the electrical system safely (AEMO, 2010). 

1.5 ELECTRICITY SUPPLY AND DEMAND IN NEM 

As mentioned earlier, one of the primary roles of AEMO is to manage NEM and ensure 

that electricity demand and supply are instantaneously matched at five minute 

intervals. In this section, more details of the demand and supply characteristics in 

Australia are provided and, at the end, the procedures in which supply and demand 

are balanced are discussed. 

1.5.1 Demand 

One of the main responsibilities of AEMO is to operate NEM so as to forecast the 

demand for different regions. In a typical business day in Australia the level of load 

can reach some 25,000 megawatts. Many factors affect the level of demand through 

the year including temperature, population and industrial and commercial needs in a 

region. Demand for electricity, the so-called “load” is highly correlated with the 

temperature. It is on a low level during the night, from midnight to 7 am, and gradually 

increases until it reaches to the peak generally from 7am to 9am and also from 4pm 

to 7pm (AEMO, 2010). 

The wholesale electricity market has been designed so that there is enough electricity 

generated even in the extreme conditions to ensure that the demand can be satisfied. 

The fluctuation in the electricity load varies due to a variety of reasons such as 

economic activities, type of the consumers (e.g., residential consumer, industrial 

consumer, etc.), and more importantly the temperature which results in increasing air 

conditioning usage in hot summer days or cold winter days (NEMMCO, 2005).  

Nevertheless, satisfying the demand is facilitated by the fact that most of the peak 

demand periods due to temperature extremes do not occur simultaneously in all 

regions. Therefore, the power system can manage these critical conditions by sharing 

the supply through interconnectors between the regions.  

For some states such as Victoria and South Australia extreme temperatures occur 

mostly in summer time which is manageable mainly with two specific actions. First, 

some generators have been assigned to specifically aid the network for the peak 
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periods (also called peak generators). Second, when the spot price reaches a certain 

level, part of the consumers voluntarily disconnect from the network temporarily. This 

may help prevent the spot price from increasing too much (AEMO, 2010).  

1.5.1.1 Forecasting demand 

Forecasting electricity demand is one of the most critical tasks that AEMO needs to 

do every day. AEMO uses many forecast processes to ensure that electricity supply 

and demand are balanced all the time. With the aid of forecast procedures, in case of 

any emergencies such as shortfalls, the generators will be informed quickly and will 

try to increase their capacity in order to satisfy the demand entirely. This enables 

AEMO to schedule a reliable timetable of generation and balance the demand and 

supply with the minimum possible cost.    

(i) Pre-dispatch forecasting:  

Pre-dispatch forecasting includes the estimation of the upcoming day demand and 

also the amount of available capacity of generation from generators. This will help the 

system to monitor whether the demand and supply will be satisfied in the next day. 

Basically, on a day before the supply is needed, all generators are required to submit 

their maximum available capacity to the market. This will help AEMO to determine 

and publish any potential of shortfall against demand.   

(ii) Project Assessment and System Adequacy (PASA) 

AEMO also uses more long term viewing forecast processes to ensure whether the 

available generation capacity of generators is adequate to satisfy demand in the long 

term. These processes include, seven-day forecast and also a two-year forecast 

which are called, short-term and medium-term forecasts of Projected Assessment of 

System Adequacy (PASA), respectively. These forecasts are updated on a 2-hourly 

basis from 4:00am for the short-term PASA and on 2:00pm every Tuesday for the 

medium term PASA.  

(iii) Electricity Statement of Opportunity (SOO) 

Electricity Statement of Opportunities (SOO) is a 10-year forecast published by AEMO 

each year. It considers the future generation and demand side capacity and also the 

distribution of electricity in the future. It also contains information regarding ancillary 

service needs and minimum reserve level.  
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NEM covers about 9.3 million residential and business customers. The maximum 

historical winter demand occurred in 2008 with 34,422 MW and the maximum 

historical summer demand occurred in 2009 with 35,551 MW of electricity 

consumption (AEMO, 2013c). During the years 2008-2009 the demand rose at a 

higher rate than the average as a result of very hot summer days and increase in the 

usage of air-conditioning by consumers. The usage of air conditioning in households 

increased from 58 percent in 2005 to 73 percent in 2011 (AER, 2013a). 

These significant increases in maximum demand led to the investment in energy 

network over the past decade. However, the maximum demand exhibited a flattening 

trend since 2009. For instance, January 2013 was the hottest summer month on 

record but the corresponding maximum demand was below the historical level 

(AEMO, 2013c). 

Since 2009, market demand has had a decreasing trend by an annual average of 1.1 

per cent. The reduction in electricity demand has number of causes including; 

(i) As electricity price was high for a period around the years 2008-2009, 

consumers started a decreasing trend in their usage to respond to the 

high electricity cost (AEMO, 2013b). 

(ii) Part of this reduction is related to the decrease in energy demand in the 

large industrial sectors which occurred since 2007-2008 (AEMO, 2013b). 

This decreasing trend has continued in the years 2013-14. Some 

industries as Kurri Kurri aluminium smelter have closed and also there 

has been a reduction in the level of demand in the Wonthaggi 

desalination plant in Victoria in 2013-14. 

(iii) Part of the demand reduction through the grid is related to the rise in the 

usage of solar generation by consumers. In 2013-14 the photovoltaic 

generation increase by 58 percent to 2700 GWh which was about 1.3 

percent of the total electricity consumption (AEMO, 2013c). 

However, AEMO has estimated in the National forecasting report (2013f) that the 

electricity demand will grow annually by around 1.3 percent over the next decade. 

Moderation in electricity price growth, increasing trend in the population and 

development in the liquefied natural gas in projects in Queensland are number of the 

reasons outlined for this forecasted trend (AEMO, 2013c). 



Chapter 1. Introduction  
  
 

21 
 

1.5.2 Submitting bid stacks to supply 

Generators who are willing to participate in the electricity production need to submit 

the amount of electricity and the price offers to the pool. There are three types of bids 

which they need to submit: 

(i) Daily bids: to be submitted before 12:30 PM on the day before supply is 

needed. These are an indication of the pre dispatch forecasts.  

(ii) Re-bids: Generators have the flexibility to submit these bids up to 5 minute 

before the dispatch commences. They can change them by increasing or 

decreasing the volume offered at the same prices they have offered before. In 

other words they have the flexibility to change the volume of electricity they 

offered but not the prices. 

(iii) Default bids: these bids are the base operating levels for generators and are 

used when no daily bids have been submitted (AEMO, 2010). 

1.5.3 Supply and demand balance 

AEMO manages the following procedures to ensure reliable supply to the consumers 

and also protect the power system from any potential risk (AEMO, 2010). 

1.5.3.1 Security of supply 

The main responsibility of AEMO as NEM operator is to ensure that the power system 

is secure. In other words, AEMO needs to monitor the electricity supply and prevent 

damage and overload in the power system. AEMO has the authority to direct 

generators into production to protect the security and reliability of the power system.  

1.5.3.2 Power system reliability 

Reliability standards are determined by AEMC Reliability Plan which set the expected 

amount of energy not being delivered to the consumers. Based on this, AEMO 

determines the extra amount of generation capacity needed for each trading interval. 

Currently, the reliability standard is set at maximum of 0.002 percent of unserved 

consumers per financial year. This percentage is equivalent to a maximum of a seven 

minute outage of electricity in a given year. To ensure this percentage is not breached 

in the market a number of strategies have been put in place by AEMO and AEMC 

Reliability Panel (AER, 2013a):   

(i) AEMO publishes demand forecast to inform generators to manage the extra 

capacity needed.   
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(ii) AEMO has the power to direct generators to provide additional capacity in 

order to supply the whole demand across the grid.  

(iii) AEMO can also enter into contracts with generators to make sure that the 

extra capacity is sufficient to meet the demand.  

(iv) AEMC Reliability Panel set market price cap which has increased from 

$12,900/MWh to $13,100/MWh on 1 July 2013 to promote further investment 

in generation capacity. Market price floor is also set at -$1000/MWh.  

(v) AEMC Reliability Panel also determines a price threshold to protect consumer 

from very high prices. Based on the threshold set on 1 July 2013, if the 

cumulative spot price over seven days exceeds $197,100/MWh then an 

administered price cap of $300/MWh will be substituted (AER, 2013a).   

Let us figure out how this threshold work in terms of the average of spot price at each 

trading interval. Recall that 48 trading interval exist within each day and consequently 

7 × 48 = 336 trading intervals in 7 days. Therefore the $197,100/MWh as a threshold 

for the maximum cumulative spot price is equivalent to the average of 

$197100 ÷ 336 = $586.6, 

for each trading interval in a week. In other words, even if the spot price reaches to 

$586/MWh for all of the trading intervals within a week, then the maximum threshold 

has not breached yet. This means that generators have the opportunity to offer the 

cap price of $13100/MWh for up to 15 out of 336 trading intervals 

$197,100 ÷ $13,100 = 15.04, 

in each week (and offer a very low price at the rest of trading intervals) to avoid 

breaching the maximum threshold which is set by AEMC. 

Historically the reliability standard has only been breached twice in 2009 in the states 

of Victoria and South Australia and reached to 0.004 percent and 0.0032 percent 

respectively (AER, 2013a). 

1.5.3.3 Supply reserve 

The supply reserve is the minimum reserve level which is required to ensure that the 

reliability standards across NEM are satisfied. There is a list provided in the Electricity 

Statement of Opportunities by AEMO which specifies the minimum reserve level 

required for different NEM regions. 
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1.5.3.4 Demand side participation 

Demand side participation is a deliberate action taken by customers to prevent 

significant increases in the spot price. For instance, for some peak periods, market 

customers reduce or withdraw their consumption from the market. They return to the 

normal consumption levels when the peak passes and the spot price falls under the 

desired threshold. Another strategy is called load shifting and arranges a settlement 

to shift the load partly to the off-peak periods. For example, some hot water 

arrangement can be deliberately shifted to the periods of time when the demand is 

relatively low. In general, large consumers have higher flexibility to manage their 

demand in the spot market (AEMO, 2010). 

1.5.3.5 Generation investment 

As mentioned earlier, the Australian electricity market has experienced high volatility 

in the spot price since deregulation. To overcome this problem one of the mitigating 

strategies was to invest more in the generation sector. Basically, the peak electricity 

prices and also the price signals in the derivative markets encourage new investment 

in NEM.  

Since 1999 when NEM started to operate, new investments in the generation capacity 

added about 13850 MW of registered generation capacity, until 2013. New 

investments also have been made in the out of the grid generation such as rooftop 

PV installation. Moreover, out of 2000 MW of capacity added to the generation 

capacity over the three years to 2013, 50 percent was in wing generation as a result 

of RET scheme (AER, 2013a).   

 

Figure 1.9. Major proposed generation investment by June 2012 (Source: AER, 2013a). 
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Although few new generation projects have been developed so far, AEMO has listed 

about 30,000 MW of proposed capacity in NEM where 6000 MW of new generation 

capacity is planned to be done before 2018-19. Figure 1.9 shows the cumulative 

proposed generation investment by June 2012. It includes 740 MW of solar generation 

investment in the three regions of NEM (New South Wales, Victoria and South 

Australia), 350 MW generation investment by wave technology in Victoria and 

Tasmania, and also 550 MW of Geothermal generation investment in South Australia 

(AER, 2013a).  

1.5.3.6 Load shedding 

The last action that would AEMO take to protect system security and reliability is to 

shed the load for some regions in order to balance the demand with the level of 

production. In this action, AEMO disconnects the supply of electricity to consumers of 

some specific regions in NEM to ensure that there is no risk to the security of the 

entire power system. 

1.6 SPOT MARKET  

National electricity market works through a pool where all generators submit their 

offers of volume and price for producing electricity. Generators submit these bids as 

pairs of price and quantity elements stating the amount of electricity they are willing 

to produce at the specific price to contribute the pool.  A generator can bid at 10 

different price levels and this bid stack should be submitted a day ahead. Generators 

have the opportunity to rebid and change the volume offered at each price band but 

they cannot change the prices offered.  

The prices that generators offer depend on many factors including the type of fuel 

they use. Coal generators have a very high start-up cost therefore they need to ensure 

that they run constantly to be able to afford the high start-up costs. For this purpose 

they may be even willing to offer a certain volume of electricity at negative price 

bands4F

5. Conversely, gas generators have high operating costs and are willing to be 

dispatched to only when the prices are high enough (AER, 2013a).   

 Based on generators bids, by considering the objective of minimising the cost to 

consumers and other transmission constraints in each region, the dispatch will be 

scheduled. AEMO dispatches as many generator as needed to satisfy the demand at 

                                                
5 The market price floor is -$1000/MWh. 



Chapter 1. Introduction  
  
 

25 
 

every five minute interval.  

The National Electricity Law and Rules has set a maximum and minimum prices that 

generator can offer to the market. These prices are reviewed every two years by the 

Reliability Panel5 F

6. The prices can vary between the market price floor and market 

price cap of set by AEMC6F

7 . 

(i) Market Price Cap: The maximum price that generators can offer is called 

“Market Price Cap” and is set to $13,100/MWh by the Rules. 

(ii) Market Floor Price: The minimum price that generators can offer is called 

“Market Floor Price” and is set to -$1,000/MWh by the Rules (AEMO, 2010). 

Figure 1.10 shows a generic bid stack structure by a typical South Australian 

generator in a five minute interval. Basically, the structure of bids in Australian 

electricity market has been designed in a way that allows generators to offer volume 

and price of electricity production in a stack of 10 bands. As an example, the figure 

below shows a bid offered by a generator in South Australia at a five minute interval 

of 17:30 to 17:35pm on 31st March 2008.  

 

Figure 1.10. Bid offered, March 31th 2008 at 17:30 (AEMO Website, accessed 2/8/2012). 

 

                                                

6 The Reliability Panel was established by the AEMC under the National Electricity Law and 

Rules. This panel regulates standards to ensure the power system remains secure and 

reliable. (Source, AEMC website, Accessed 2/7/2014) 

7 Australian Energy Market Commission. 
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As displayed in Figure 1.10, this bid includes a stack of 10 bands and in each of these 

bands the generator offered the price and the volume of electricity that the generator 

is willing to produce, at that price. Prices at each band can vary in the interval from $-

1000/MWh to $13,100/MWh and as shown in the figure they are sorted in an 

ascending order. The negative sign for the lowest price shows that a generator may 

even be willing to pay $1000 for generating some electricity for some specific reasons 

such as increasing the probability of winning a volume of production among other 

generators, or they may wish to avoid start up - cool down costs. 

Figure 1.10 illustrates that this generator offered to produce approximately 110 MW, 

10 MW, 25 MW and 55 MW at the prices of $0.98, $575.84, $9564.8 and $9760 per 

MWh respectively, in this five minute interval. Other six bands with zero volume of 

electricity purposely discarded by this generator at this five minute interval. 

1.6.1 Setting the spot price 

Basically generation offers are gather from all generators in the pool and AEMO 

dispatches generators to production at every five minute interval. In this manner, there 

are 288 dispatch prices every day. The dispatch price reflects the cost of last 

megawatt of electricity which is produced to satisfy the total demand. The latter is 

determined by dual variables of certain linear program called “the National Electricity 

Market dispatch engine (NEMDE)” that is solved every five minutes. Every half an 

hour period is called a “Trading Interval” in the market. There are 48 trading intervals 

and consequently 48 spot prices every day. Each of the five regions in NEM have 

their own spot price for every half an hour trading interval (AEMO, 2013d).  

1.6.1.1 Dispatch problem 

Dispatch problem is one of the main parts of the price setting mechanism in which a 

linear programming problem is solved to determine which generators require to 

produce electricity to meet the demand in a most cost efficient way. In this problem, 

the dispatch prices, for the five states, which represent the costs to supply the last 

megawatt of electricity, are determined by the optimal dual variable values (“shadow 

prices”) corresponding to the demand constraint for these states. Thus, 

mathematically, at each five minute time interval, denoted by 𝑡, AEMO solves a linear 

programming problem of the generic form: 
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min 𝑐(𝑡)𝑇𝑥 

𝐴𝑥 ≥ 𝑏(𝑡)                                                                                                           (𝐿𝑃(𝑡))                                                                                                                    

𝑥 ≥ 0. 

The input data needed to construct (𝐿𝑃(𝑡)) include generator’s bid stacks, 

transmission network capacity and cost and many other parameters. The objective is 

to minimize the cost involving energy cost, ancillary service cost, transmission 

network cost and some security penalties to avoid overflow on the lines (Conticini, 

2010).  

Figure 1.11 shows NEM electricity grid which includes 5 interconnected regions. 

In (𝐿𝑃(𝑡)), 𝑏(𝑡) includes demands in period t and there is a separate demand 

constraint for each region and the dispatch prices are the optimal dual variables 

y𝑗(𝑡),  𝑗 = 1,2, … ,5 corresponding to the five demand constraints. 

 

Figure 1.11. NEM electricity grid. 

1.6.1.2  Spot price 

Thus for each five minute interval t, an optimal solution of (𝐿𝑃(𝑡)), determines five 

dispatch prices  y𝑗(𝑡)for the five states. In this way 288 dispatch prices are determined 

every day, for each state. Next, AEMO switches to the coarser, thirty minute, trading 

intervals denoted by �̂�.  In each state, the spot price y𝑗(�̂�) for the trading interval �̂�  is 

the average of six (five minute) dispatch prices in a half an hour trading interval, 

namely 
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y𝑗(�̂�) =
1

6
[y𝑗(𝑡1) + y𝑗(𝑡2) + ⋯ + y(𝑡6)].                                                                   (1.1) 

The above is the price according to which all generators in the state j are going to be 

paid equally no matter what price they have offered in their biding stacks.  

Remark 1.1 It essential to emphasize that all generators selected to produce 

electricity in the state 𝑗 during the trading interval �̂� will be paid at the spot price y(�̂�) 

per MW for every megawatt they produce during that trading interval, irrespective of 

the prices comprising their original bid stacks.  

1.6.2 Trends in the electricity spot price 

As mentioned by AER (2012), during the years 2006-2010, most of the regions 

experienced peak electricity price. Many factors contributed to the high volatility in 

electricity price. For instance, drought was one of the reasons that limited the 

production of hydro plants due to shortage of water which resulted in problems in 

electricity production. Also as mentioned in AER (2013c) report evidence of exercising 

market power by generators has been observed, specifically by AGL in South 

Australia, which had a considerable effect on the price volatility between the years 

2008-2010.  

Since then, electricity demand has had a decreasing trend and with the aid of 

renewable energy generation in the grid, the spot price had also a decreasing trend 

until 2012. During the years 2012-13, the decreasing trend in the spot price changed 

its direction again and the market experienced high spot prices. The average spot 

prices increased to $70/MWh, $61/MWh, $74/MWh, $56/MWh, $49/MWh for the for 

the regions of Queensland, Victoria, South Australia, New South Wales and Tasmania 

in 2012-13. In general, the electricity price across NEM, by around $31/MWh (AER, 

2013a).   

One of the main reasons for the increasing spot price during 2012-13 was thought to 

be the impact of carbon pricing scheme introduced on 1 July 2012 which sets $23 per 

tonne of emission.  However, the carbon price was not the only reason contributing to 

raising the prices. As mentioned by AER (2013c), in the two states of Queensland 

(August-October 2012) and South Australia (April-May 2013) which had the largest 

increase in electricity prices, some opportunistic bidding behaviour by generators has 

been noticed.  
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Indeed, the dependence of the spot price on the generators’ bids in the pool may be 

one of the main reasons for electricity price fluctuations. Although this mechanism 

was created to balance the demand and supply with the minimum possible cost, 

research shows that there has been times of the year when some generators were 

able to exercise their market power. There is a broad literature in this area ((Brennan 

and Melanie (1998), Wolfram (1999) and etc.). This has contributed to the high 

electricity price volatility in the Australian electricity market particularly in the recent 

decade. The spot price could be highly volatile and in some trading intervals it even 

has reached to the previous maximum cap price of $10000/MWh7F

8. In Chapter 2 more 

literature in this area will be mentioned. 

1.7 FINANCIAL RISK MANAGEMENT IN NEM 

The fact that electricity price in the wholesale electricity market in Australia is 

dependent on the generators bids contributes to the price volatility in some trading 

intervals of the year. In addition, the limitation in the expansion of interconnectors in 

Australia also made the transmission of electricity a difficult task. Therefore, 

transmitting electricity can depend mostly on the local generations. Furthermore, 

other factors such as seasonal effects on rising demand is also contributing to 

fluctuation in the electricity price at specific times of the year. All these factors can 

lead to variation in the financial risk in the wholesale electricity market. This led to 

designing the appropriate financial contracts to hedge the risk of the electricity price 

volatilities for the stakeholder.  

The hedge contracts are generally set between generators and consumers. These 

contracts reduce the risk of price volatility by locking the price in the financial contracts 

and are independent of the rules in the market and do not mean to balance the supply 

and demand. In hedge contracts, a strike price is set in these contracts for the 

electricity traded on the spot market. This enables parties to exchange money based 

on the agreed strike price for the specific amount of electricity.  

Figure 1.12 shows an example of a hedge contract on the electricity in the financial 

market. This contract is between seller of the contract and the buyer, and the strike 

price is set to $40/MWh. As illustrated in the figure, when the spot price is lower than 

$40/MWh, the buyers of the contract pays the seller, the difference between the 

agreed strike price and spot price. In reverse, sellers are required to pay the difference 

                                                
8 After July 2013 the price cap increased to $13,100/MWh 
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to buyers when the spot price goes beyond the strike price. Many appropriate hedge 

contracts are designed in the financial market to deal with this volatility in the electricity 

price. For instance, in Sydney Future Exchange, future and option electricity contracts 

has been traded for the New South Wales electricity market (AEMO, 2010). 

 

Figure 1.12. An electricity hedge contract (Source: AEMO July 2010). 

1.8 THE RETAIL ELECTRICITY MARKET  

The retailers in the electricity market are the parties which buy electricity from the pool 

(wholesale electricity market) and sell to the customers 8F

9. The main role of retailer in 

the wholesale electricity market is to buy electricity from the pool and with providing 

the transportation services, sell it to the consumers. Table 1.3 shows a number of 

retailers in Australia which supply electricity to the consumers in October 2013. 

As Table 1.3 shows retails are not necessarily active in all the regions. Three privately 

owned retailers of AGL, Origin Energy and Energy Australia are the major suppliers 

in south and eastern parts of NEM. They cover about 77 percent of electricity supply 

to the consumers in their regions at 30 June 2013 (AER, 2013a). 

                                                
9 It should be mentioned that there are some consumers who directly buy electricity from the 
pool without the aid of retailers. 
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Table 1.3. Energy retailers- small customer market, October 2013 (AER, 2013a). 

Retailer Ownership QLD NSW VIC SA TAS ACT 

ActewAGL Retail 
ACT government and AGL 
Energy 

            

AGL Energy AGL Energy             

Alinta Energy Alinta Energy             

Aurora Energy Tasmanian Government             

Australian Power 
and Gas 

AGL Energy             

BlueNRG Blue Energy             

Click Energy Click energy             

Diamond Energy Diamond Energy             

Dodo Power and 
Gas 

M2 Telecommunication 
Group 

            

EnergyAustralia CLP Group             

Ergon Energy Queensland Government             

Lumo energy Infratil             

Momentum Energy 
Hydro Tasmania (Tasmanian 
government) 

            

Neighbourhood 
Energy 

Alinta Energy             

Origin Energy Origin Energy             

People Energy People Energy             

Powerdirect AGL Energy             

Powershop Meridian Energy             

Qenergy Qenergy             

Red Energy Snowy Hydro             

Sanctuary Energy 
Living Choice 
Australia/Sanctuary Life 

            

Simply Energy International Power             

1.8.1 Retail price 

In general, the energy bills that consumers pay consist of various costs such as cost 

of whole sale energy, transmission and distribution network costs and also retail cost. 

Table 1.4 shows the share of these costs in each region in a typical electricity retail 

bill for a residential consumer.  

As shown in Table 1.4, the highest portion of electricity cost is related to the 

transmission and distribution of electricity through network. Carbon costs are 

introduced in July 2012. South Australia and Tasmania had the lowest percentage in 

carbon price as they have significant renewable generation. Green costs are related 

to schemes supporting renewable generation development, low emission generation 

and also supporting energy efficiency (AER, 2013b).  
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Table 1.4. Composition of residential electricity bills in the regions of NEM (AER, 2013b). 

1.9 COMPETITION IN NEM 

In Australia, competition in the electricity industry became a hot topic since 1990’s. 

Previously, the electricity supply was owned and operated by government 

organisations. Then electricity companies began to be privatised as the economic 

reforms and globalisation started to be implemented throughout the country. These 

aimed to result in more competitive outcomes for the consumers. However, research 

shows that the reforms also provided opportunities for the generators to exercise 

market power in some peak trading intervals (Higgs, 2006). 

 

Figure 1.13. Quarterly spot electricity prices, (AER 2013a). 

 

Jurisdiction 
Network 
Costs 

Wholesale Energy 
Costs 

Retail 
Costs 

Carbon 
Costs 

Green 
Costs 

Percent of Typical Small Customer Bill 

Queensland 52 21 15 9 3 

New South Wales 51 23 10 7 8 

Victoria 36 na na 8 4 

South Australia 55 21 13 4 8 

Tasmania 57 27 9 3 4 

ACT 43 26 11 12 8 
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Figure 1.13 shows the quarterly base spot electricity price since deregulation. As 

shown in Figure1.14, electricity spot price has experienced high fluctuations since 

the deregulation in 1990s. 

The volatility in the spot price was very high in the state of South Australia during the 

years 2008-2010. AER (2013a) has directly mentioned that there exists evidence of 

exercising market power in the recent years:  

“In April 2013 the AEMC found potential for substantial market power to exist or be 

exercised in future in NEM, particularly in South Australia. It recommended the 

Standing Council on Energy and Resources (SCER) consider conferring on the AER 

powers to monitor the market for that possibility. In May 2013 the SCER agreed to 

task officials with further work around the need for changes to the National Electricity 

Law before the SCER considers its policy position”  (AER, 2013a, p33).   

It should be mentioned that, Australia is not the only country that has experienced 

exercising market power in the restructured electricity market. There is some evidence 

that such phenomena have also occurred in other countries such as USA and UK. 

This issue will be discussed further in Chapter 2.
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2. CHAPTER 2. PRICE VOLATILITY 

AND MARKET POWER IN 

ELECTRICITY MARKET 

To encourage the competitiveness among producers the reforms in the electricity 

market designed in many countries around the world such as Australia. Although, the 

primary aim of the deregulation was to encourage market competition and to eliminate 

monopolistic market power, there is evidence that market power has been exercised 

within generation business in the electricity markets. There are various published 

papers that address price volatility and possible market power abuses all around the 

world. 

Borenstein et al. (2000) addressed the potential for market power in California’s 

wholesale electricity market after deregulation. Joskow and Kahn (2002) also 

provided evidence of generators exercising market power which was a result of 

withholding capacity offered to the market in California during 2000 and 2001. 

David and Wen (2001) brought evidence of the market power in the electricity supply 

markets during the late 1990s. They highlight the fact that, despite accepting the 

deregulation in electricity markets, some generators are still able to exercise market 

power in peak period of demand. Mount (1999) also focuses on high price rises in UK 

electricity market as a result of two leading generators exercising market power in the 

1990s.   
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Brennan and Melanie (1998) examined the potential market power by strategic pricing 

behaviour by generators in Australian electricity market. They provided evidence of 

non-competitive bidding behaviour by some large generators mainly in the high 

demand periods.  Hu et al (2005) believe that large generators had the ability to push 

the price higher by withholding their generation capacity in the Australian National 

Electricity Market. There also have been other shifts in electricity prices in the 

restructured electricity markets examined by Wolak (2000) and Mount (1999).  

Most definitions of market power emphasise the fact that the exercise of market power 

needs to be profitable. However, further investigations need to be carried out to 

analyse whether this profitability occurred intentionally or by accident. In other words, 

high prices are not necessarily an indication of generators exercising market power, 

rather they can be a result of a shortage of supply in a competitive market. Therefore, 

further investigation needs to be done to examine the actual exercise of market power 

in the electricity markets.  

Besides it should be mentioned that, exercising market power may not be the only 

reason for the price volatility in the electricity markets. Recall that, electricity has a 

specific characteristics which need to be considered while assessing the 

competitiveness among generators in the market. These characteristics include, high 

volatility in the electricity demand during the day, the lack of flexibility to response to 

the sudden increase in the electricity demand, difficulty in electricity storage and the 

essential need to balance the electricity demand and supply instantaneously through 

time. These features contributed to the cost of electricity production being highly 

volatile even within a short period of time such as a day (ABARE 2002). 

As understanding of the volatility process is critically important to distributors, 

generators and market regulators allowing them to better manage their financial risk, 

in this chapter we aim to examine some mechanisms by which generators could 

exercise market power9F

10. Section 2.1 describes techniques which were used by 

economists to identify the possibility of exercising market power by generators. 

Moreover, the history of price volatility in Australia and also discussion of exercising 

of market power by generators in the literature are provided in Section 2.1 and 2.2. 

We focus on the state of South Australia which had the highest spot price fluctuations 

since the deregulation was introduced. 

                                                
10 It is important to note that it is not within the scope of this thesis to determine whether or 
not Australian generators have exercised market power but only to demonstrate that such 
possibilities exist in the market. 
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2.1 INDICES AND MODELS OF DETECTING MARKET POWER 

Market power is defined as the ability to change the price from the competitive levels. 

There have been number of measures and tools identified by economist to detect the 

exercise of market power in different industries. Apparently, some of these measures 

would be suitable for specific industries and some may not be suitable to be used in 

the electricity market (Stoft, 2002). 

Generally, the detection of market power includes two forms of “Potential” for market 

power or actual “Exercise” of market power. Monitoring the potential for exercising 

market power is as important as detecting the actual exercise of market power for 

market monitors as it is considered as a useful procedure for prevention of any 

exercise of market power (Twomey, P. et al, 2005). 

Detecting market power in electricity markets is not easy (Baker, J., 1992, Twomey, 

P. et al, 2005 and Blumsack,  2003). On the other hand, electricity market has some 

characteristics which facilitate the detection of the market power. For instance, it is 

possible to estimate the cost of production more precisely in electricity market than in 

many other industries.  

Various measures are available to detect potential for market power and actual 

exercise of market power by generators. Here we briefly provide an introduction to 

some of these measure which have been used to monitor the market power in 

industries such as electricity market.  

2.1.1 Market power indices 

Traditional industrial organisation theory defines some industrial indices which have 

been also applied in the electricity markets to measure the potential for exercising 

market power. In this section some of these measures and their application are 

outlined.  

2.1.1.1 Market share 

The motivation behind this index is that the more concentrated a market, the more 

likely is the ability of its participants to exercise market power. The market share 

concentration ratio is the percentage of market share of 𝑛 largest companies in the 

industry.  

In order to calculate this index many features need to me be measured first such as 

identifying the product in the market and the competitors in the market. Also a 

“significant market share” threshold needs to be defined in a way that any market 
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share above this threshold would be considered as a sign of potential for market 

power (Twomey, P. et al, 2005). 

Basically, market share provides information about the ratio of the capacity which is 

controlled by one or number of generators. In the electricity market with this 

specification, the exercising of market power by generators is more likely. As an 

example, Australian Energy Regulator indicates the relatively strong market positions 

held by AGL Energy in South Australia, Macquarie Generation in New South Wales, 

and the state-owned generators CS Energy and Stanwell in Queensland in the recent 

years (AER, 2013a).  

2.1.1.2 Herfindahl-Hirschman Index (HHI) 

The Herfindahl-Hirschman Index (HHI) determines the size of the firm as the sum of 

squared of percentages of market shares of all firms in the market.  

𝐻𝐻𝐼 = 𝑆1
2 + 𝑆2

2 + ⋯ + 𝑆𝑛
2, 

where 𝑆𝑖
2 is the percentage market share of company 𝑖. The benefit of using 𝐻𝐻𝐼 is 

that it also considers the size of other participants in the market. Obviously, a 

company with market share of 20%  where other competitors have small percentage 

of share has a different market power compared to the situation where that company 

is the second or third largest player in a highly concentrated market. (Calkins, 1983) 

  

Figure 2.1 HHI in NEM during 2008-09 to 2012-13 (AER, 2013a). 

When a market includes a large number of firms, 𝐻𝐻𝐼 can even approach zero but in 

a monopoly situation it reaches (100%)2 or 10,000. High value of 𝐻𝐻𝐼 shows a less 

competitive situation in the market. Figure 2.1 shows the 𝐻𝐻𝐼 in NEM regions from 

2008 to 2013. As shown in Figure 2.1 the state of SA had the highest 𝐻𝐻𝐼 during 

2008-2009. 
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2.1.1.3 Pivotal Supplier Indicator (PSI) 

Pivotal supplier index considers not only the supply but also the demand conditions 

in the market to measure the potential for market power. It measures whether a certain 

generator has a crucial (or pivotal) role in meeting demand.  

Basically the generator is called pivotal if the capacity of that generator is greater than 

the “surplus supply”10F

11. Pivotal supplier indicator is defined as a binary indicator which 

is set to one or zero where the generator (supplier) is pivotal or not pivotal at point in 

a time, respectively. It is called Pivotal supplier index which helps to determine the 

percentage of time when a supplier was pivotal. Bushnell et al (1999) found that the 

largest supplier in the region of Wisconsin/Upper Michigan was a pivotal supplier for 

55% of the hours in a year.  

AER (2013a, pp.51-57) lists the percentages of time when the largest generator in the 

market became pivotal in 2012-13 across NEM regions in Table 2.1. As shown in 

Table 2.1, state of South Australia has the highest potential to exercise market power 

during 2012-13. 

Table 2.1. Percentage of trading intervals when large generators were pivotal in 2012-13 

QLD NSW VIC SA 

17 18 20 29 

2.1.1.4 Residual Supply Index (RSI) 

The Pivotal supplier Index mentioned above, has been criticised specially on the 

implementation of this index. These criticism include the application of this index to 

address exercise of market power just for peak hours, the lack of coordination among 

generators and etc (see Vassilopolous 2003). Therefore, the Residual Supply Index 

developed to address these criticism which is similar to PSI but it is not measured by 

the binary basis rather a continuous scale. 

The Residual Supply Index (RSI) measures the extent to which one or more generator 

can be “Pivotal” in the market. A generator 𝑔 is called pivotal in a trading interval if 

demand in that trading interval exceeds the capacity of all other generators in the 

market. Note that this notion of “pivotal” need not be the same as that described in 

section 2.1.1.3. It measures the supply capacity remaining in the market after 

subtracting company 𝑔’s capacity of supply.  

                                                
11 The surplus supply is the difference between total supply and demand. 
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𝑅𝑆𝐼𝑔 =
𝑇𝑜𝑡𝑎𝑙 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 − 𝐶𝑜𝑚𝑝𝑎𝑛𝑦 𝑔′𝑠 𝑅𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦

𝑇𝑜𝑡𝑎𝑙 𝐷𝑒𝑚𝑎𝑛𝑑
, 

where, total capacity includes both regional supply and also supply imports. Relevant 

capacity for a company 𝑔 shows the company’s capacity minus all the contract 

obligations of that company. Value of 𝑅𝑆𝐼𝑔 shows how company 𝑔 has influence on 

the market to meet the demand. An 𝑅𝑆𝐼𝑔 value less than a 100 percent shows that 

the company is a pivotal player in the market. Sheffrin (2002) believes that RSI must 

be more that 110 percent for 95 percent of the hours in a year. 

 

Figure 2.2. RSI-1 index at times of peak demand, AER (2013a). 

AER provides evidence of potential market power by largest generator in the state of 

SA during 2008 using RSI-1. This index measures the ratio of demand that can be 

met by all but the largest generator in a region.  If RSI-1 is less than 100 percent then 

the largest generator becomes pivotal and indicates a less competitive market.  

Figure 2.2 shows the RSI-1 index at times of peak demand since 2008 in NEM. As 

shown in Figure 2.2 SA had the highest potential to exercise the market power by the 

largest generator. In South Australia, AGL is the largest generator and offers around 

34 percent of the total capacity in the state11F

12. 

According to AER (2013a), since 2012 some of thermal generators as Alinta has 

decided to withdraw capacity from market. As it is reflected in Figure 2.2, this 

                                                
12 International Power with 21 percent of the total capacity, Alinta with 12 percent and Origin 

Energy with 12 percent are other large firms is South Australia. 
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increased the pivotality of AGL, as the largest generators in South Australia, to meet 

demand during peak trading intervals.  

2.1.1.5 Residual demand analysis 

To find the residual demand curve corresponding to a company 𝑔 , one should 

subtract all of supply offers by the other participants in the market from the demand 

curve. The elasticity12F

13 of this curve is an indicator of company 𝑔’s incentive to exercise 

the market power. In a competitive market, a company has no power to raise the price 

by capacity withholding and has a very high elastic residual demand curve. High 

elasticity shows that, this company has the power to not to be disadvantaged by 

charging high prices (Baker & Bresnahan, 1992). As an example, Wolak (2003) shows 

the incentive for five large electricity supplier to exercise the market power in 

California 1998-2000. 

2.1.2 Behavioural indices  

The other indicators to measure the competitiveness in the market are behavioural 

indicators. These indicators examine the relationship between generators bidding 

behaviour and the spot price outcomes. The following are some of the main 

behavioural indices defined by economists.  

2.1.2.1 Bid-Cost margins 

Comparing company’s bid prices and marginal cost would also be an indication of 

exercising market power. In a competitive market, it is expected that generators bid 

at a level close to their marginal cost. If a company frequently bids at much higher 

prices than the marginal cost, then this may be an indication of exercising market 

power by that company. The following indices, Lerner Index and Price-Cost Margin 

Index, measure whether the market power exists. In this sense: 

𝐿𝐼 = (𝑃 − 𝑀𝐶)/𝑃, 

𝑃𝐶𝑀𝐼 = (𝑃 − 𝑀𝐶)/𝑀𝐶, 

where 𝑃 and 𝑀𝐶 show the price and marginal cost respectively. In a perfectly 

competitive market, the value of these indices would be zero. However, estimating 

the marginal cost of a company is not always an easy task which is one of the main 

difficulties in determining the accurate value of these indices. There is some evidence 

                                                
13 Elasticity is a measure used in economics to show the sensitivity of the change in quantity 
demanded of a good or service to a change in its price, ceteris paribus ( More information 
available at Samuelson, 2001). 

http://en.wikipedia.org/wiki/Ceteris_paribus
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of companies exercising market power in California 2000-2001, as well as in England 

and Wales in 1990-1991 (Twomey, P. et al, 2005). 

2.1.2.2 Withholding analysis 

Withholding analysis is the basic measure to detect any withholding capacity in the 

electricity market. Two types of withholding are examined in this measure: economic 

withholding and physical withholding. Economic withholding refers to the situation 

where output is bid by generators at over the competitive bid price. In physical 

withholding the output is not bid to the market at all. Both of these capacity 

withholdings would reduce the supply in the market (Twomey, P. et al, 2005). Table 

2.2 shows the average capacity withheld by large generators in NEM during 2008-

2010 and 2011-2013 periods when the spot price rose above $300 per MWh13F

14.  

Table 2.2. Average capacity not dispatched when spot price exceeds $300/𝑀𝑊ℎ, AER (2013a). 

Generator 

Capacity Not Dispatched (MWh) 

July 2008-December 2010 January 2011- June 2013 

CS Energy (QLD) 543 826 

Macquarie Generation 
(NSW) 

243 41 

International Power (VIC) 260 177 

AGL Energy (SA) 328 250 

Figure 2.3 also shows the relationship between capacity withholding and price rise 

during 2008-2013 in South Australia. As shown in the Figure 2.3 AGL which is the 

largest generator in SA and offers around 34% of the total capacity, tends to withhold 

part of its capacity when the price is relatively low.  

For example, as shown by the dark green line, the spot price was in the range of $0-

$25 in years 2008-09. AGL offered only some 30% of its total capacity to the market. 

The fact that for three, out of five, of these curves the slope is negative for higher 

values of spot price should be noted, as it raises questions as to why capacity was 

withheld at times of increasing spot price. 

                                                
14 This price is sufficient to cover the marginal cost of majority of plants in NEM (AER 
2013a). 
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Figure 2.3. Average annual capacity utilisation, AGL Energy, South Australia, AER (2013a). 

2.1.3 Other indices 

2.1.3.1 Simulation models  

In this form of market power analysis, some aspects of market are simulated with 

sophisticated modelling techniques to make a benchmark for the comparison of the 

market outcomes if the generators behaved differently. The two popular models in 

this area are as follows. 

(i) Competitive benchmark analysis 

In this form of analysis a hypothetical competitive market is simulated. This provides 

a benchmark to compare the actual price with a hypothetical price if all generators 

behaved differently. For this purpose, the generation technologies data are collected 

to estimate the supply curve which ultimately will result in estimating the marginal cost 

of production. However achieving this goal is not an easy task and determining a 

proper comparative benchmark has been always a controversial task (Twomey, P. et 

al, 2005). 

(ii) Oligopoly simulation models 

Oligopoly simulation models provide a game theoretic framework to estimate the 

market price within a specified market design and structure. These models are more 

powerful than any other indices as they consider many factors to examine the exercise 

of market power. These factors include, demand elasticity, supply curve, 

concentration, forward contracting and transmission constraints. One of the most 

powerful models in this area is Cournot competition model which identifies the market 

equilibrium based on the generators level of output (Twomey, P. et al, 2005). 
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2.1.3.2 Net revenue benchmark analysis 

Net revenue benchmark is another measure to analyse the existence of market 

power. Although high net revenue is not necessarily an indication of market power, 

many researchers consider abnormal profits as a useful measure for monitoring 

market power in electricity markets (Twomey, P. et al, 2005).  

2.2 PRICE VOLATILITY IN THE AUSTRALIAN ELECTRICITY 
MARKET 

The current Australian Electricity Market was designed to operate in a competitive 

national market using private industry. However, evidence shows that the volatility in 

the electricity spot price has been one of the electricity market features since the 

deregulation (Quiggin 2001). The main reasons which can lead to price volatility 

recorded in the literature are:  

(i) When a generation station falls over and its capacity will be removed from the 

pool.  

(ii) Extreme temperature conditions which directly affects the demand. For 

instance, in the cold winter days or hot summer days the consumption of air-

conditioning rises and increases the load significantly. In this situation 

generally generators bid at higher price levels as they claim they need to 

generate more to meet the demand. 

(iii) Any fault in the network may increase the prices as sections of the grid may 

be unable to work properly (IEA, 2001). 

Basically, considerable fluctuations in the electricity price in the Australian electricity 

market occurred during the years 2008-2010 when the electricity price reached to the 

maximum of $10,000/MWh for a number of trading intervals. During 2009-10, there 

were 95 trading intervals which had a corresponding spot price greater than 

$5000/MWh in the market. Thereafter, as a result of some changes in the market 

conditions, the number of extreme electricity spot price declined. The reduction in 

energy use by consumers was one of the main reasons as it caused surplus in the 

installed capacity in the most of the regions.   

Although the number of price spikes has decreased since 2010, there has been more 

trading intervals with the corresponding spot price greater than $200/MWh. In 2012-

13, there were 704 such trading intervals compared to only 99 in the year 2011-12. 

This has happened mainly in the states of Queensland and South Australia. Moreover, 

during summer 2013, Queensland experienced 116 instances of prices above 

$300/MWh and 16 spot prices above $1000/MWh. One of the main reasons was the 
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12 percent lower capacity offered by the generators during summer time comparing 

to the same quarter in 2012 (AER, 2013a). 

Disorderly bidding by generators was thought to be one of the underlying reasons 

including the price spikes. Such disorderly bidding is not limited to the central 

Queensland. Other regions in NEM have experienced these forms of behaviour by 

generators. “Disorderly Bidding” has been defined by AER (2013b) as a bidding 

strategy which is in contrary to the underlying cost structure and/or technical 

limitations of generation plant.  

“ In particular, generators tried to maintain output levels and receive high spot prices 

by rebidding capacity from high to low (or negative) prices.” (AER, 2013b, p.40).  

Table 2.3 shows the average of spot prices since the deregulation in the 4 regions of 

NEM. As highlighted with the arrows in Table 2.3, the average of spot price seem to 

experience significant increase in specific years. For instance, the average of spot 

price increase from around $30/MWh to more than $50/Mwh from the year 2005-06 

to 2006-07 in all of the 4 regions. This significant increase in the average of spot price 

also occurred from 2011-12 and lasted to 2013-14 in these regions of NEM. 

Table 2.3. Average of spot prices per year, (AEMO accessed 23.09.2014). 

Year NSW QLD SA VIC 

1999-2000 28.27 44.11 59.27 26.35 

2000-2001 37.69 41.33 56.39 44.57 

2001-2002 34.76 35.34 31.61 30.97 

2002-2003 32.91 37.79 30.11 27.56 

2003-2004 32.37 28.18 34.86 25.38 

2004-2005 39.33 28.96 36.07 27.62 

2005-2006 37.24 28.12 37.76 32.47 

2006-2007 58.72 52.14 51.61 54.8 

2007-2008 41.66 52.34 73.5 46.79 

2008-2009 38.85 34 50.98 41.82 

2009-2010 44.19 33.3 55.31 36.28 

2010-2011 36.74 30.97 32.58 27.09 

2011-2012 29.67 29.07 30.28 27.28 

2012-2013 55.1 67.02 69.75 57.44 

2013-2014 52.26 58.42 61.71 51.49 

2014-2015 39.88 31.63 46.42 37.39 
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The rise in the average of spot price is even more substantial in South Australia. As 

shown in Table 2.3, the increase in the average of spot price in South Australia started 

from 2005-06 where it increased from about $37/MWh to about $51/MWh in 2006-07. 

This increasing trend continued to the year 2009-10. Between these years the 

average of spot price per year even reached to a considerable high price of $73/MWh 

in 2007-08.  

Furthermore, similar increasing trend occurred during the years 2011-12 to 2013-14 

in South Australia. As mentioned by AER (2013b, P38), the significant increase in the 

average of spot prices was often unrelated to the demand. In South Australia, even 

minor increases in the demand led to spikes in the electricity price as a result of 

significant decrease in the capacity offered by generators. Section 2.2.1 provides 

more detail about the history of price volatility in South Australia. 

2.2.1 Spot price volatility in South Australia 

Since the deregulation in 1990’s, exercising market power has been reported in some 

periods of time in various regions of NEM. As mentioned above, one of the states 

which had experienced high electricity price volatility particularly in the higher demand 

periods is South Australia. For this reason, in this thesis, our focus is mainly on the 

variation in the spot prices and its underlying causes, in South Australia. 

 

Figure 2.4. Electricity demand and spot price at January 2010. 

During the years 2008-2010, South Australia has also experienced price spikes in 

high demand periods similar to the other regions of NEM. The supply-demand 

condition is often claimed to be the tightest in South Australia since the blackout in 

summer 2009. Figure 2.4 shows the spot price and demand at half hour intervals for 

all 1488 trading intervals within the month of January 2010 in the state of South 

Australia. 
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As Figure 2.4 illustrates, spot prices which are shown by the red curve exhibit higher 

fluctuations than demand which is depicted by the blue curve. As seen in the figure, 

most of the time spot price varies over a range of $100 per MWh but it also 

approaches the very high price of $10,000 in some trading intervals. For instance, the 

spot price for the interval of January 8th at 4:00pm reached to almost $10,00014F

15 for 

the state of SA. This happened even though the demand did not have an exceptionally 

high increase during that period. 

Furthermore, South Australia experienced high price volatility especially in April-June 

2013. The lack of generation capacity was the main reason resulting in these 

fluctuations. The reduction in the generation capacity offered was mainly done by 

three major generators, “Alinta”, “International Power” and “AGL Energy”. Alinta 

offlined both Northern power station units and International Power reduced the 

capacity offered by Pelican Point power station to the half of the maximum available. 

AGL energy offered around 225MW less capacity at Torrens Island and also offered 

higher prices for the remaining capacity (AER, 2013a). 

In general, the generators in South Australia offered 700MW lower capacity during 

April-June 2013 compared to the same period in 2012. This led to 212 spot prices 

above $200/MWh, which included 19 spot prices above $1500/MWh. It should be 

mentioned that, during the corresponding period in 2012, there were no trading 

intervals with spot prices above $200/MWh. The average of spot price in April-June 

2013 was about $106/MWh which was almost twice that of other regions in NEM. 

While high spot price in South Australia during April-June 2013 led to import electricity 

from Victoria, the lack of available capacity was the key factor which led to the tight 

condition to meet the demand (AER, 2013a).  

Table 2.4 provides more information about the history of price volatility in South 

Australia. As Table 2.4 illustrates besides the significant increase in the electricity 

prices, disorderly bidding by generators led to negative prices in some trading 

intervals15F

16. Table 2.4 also illustrates that during the years 2008-2010 there were 59, 

77 and 44 trading intervals, respectively, which had the corresponding spot price 

reaching to above $1000/MWh16F

17. Also the average of spot price reached its peak 

during these years. It should be mentioned that, during 2007 to 2011, the increase in 

                                                
15 It should be mentioned that, $10,000 was the market price cap before 30 June 2010 and 
that it was increased to $12,500 per MWh thereafter. 
16 More information is available in AER (2013b), State of the energy market 2012, pp.16-17 
and 46-47. 
17 In Chapter 3 the categories of spot price will be introduced. Based on the categories of spot 
prices we call these trading intervals as “High” spot price periods. 
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the average annual spot price in South Australia was more than 50% higher compared 

to the other regions of NEM (AEMO, 2010). 

Table 2.4. History of price spikes in South Australia. 

Year 2006 2007 2008 2009 2010 2011 2012 2013 

Number of trading 
interval with the 
corresponding spot 
price greater than 
$1000/MWh 

33 21 59 77 44 22 13 75 

Price 

Min -160.37 -888.78 -1000.00 -663.17 -996.70 -996.70 -995.70 -289.43 

Max 7758.08 7813.10 9999.72 9999.92 9999.92 12199.53 4140.15 10627.00 

Mean 38.68 57.50 66.38 60.47 40.28 37.41 44.21 71.68 

Variance 17046.96 15033.01 272637.96 253996.36 114977.87 76116.29 5393.01 27712.24 

𝐶𝑣 3.38 2.13 7.87 8.33 8.42 7.38 1.66 2.32 

Demand 

Min 767.54 784.15 847.36 834.21 814.70 853.99 868.62 728.59 

Max 2873.03 2854.13 3079.82 3331.12 3120.89 3385.42 2939.39 2991.27 

Mean 1494.98 1524.12 1527.40 1538.42 1547.25 1494.64 1477.40 1426.57 

Variance 85509.34 102893.12 101064.42 125910.03 106537.83 86109.79 83056.06 91027.32 

𝐶𝑣 0.20 0.21 0.21 0.23 0.21 0.20 0.20 0.21 

Additionally, the variance of spot price demonstrates the high fluctuation in the 

electricity price that the market experienced in these years. To measure the dispersion 

of demand-price distribution in these years “Coefficient of Variation”,𝐶𝑣 of the spot 

price, is reported in the seventh row of Table 2.4. 

𝐶𝑣 =
𝜎

𝜇
 

Comparing these measures in the spot price rows and the corresponding ones in the 

demand rows in Table 2.4 indicates that the variation in the spot price was significantly 

higher than the variation in the demand, specifically, during the years 2008-2010. We 

provide more information to support the latter in Chapter 3.  

This highlights the fact that the increase in electricity demand did not seem to be the 

main underlying reason for the significant rise in the spot price during these years. 

Instead, it seems that the price spikes in the electricity price during this period are 

more related to the exercise of market power by generators than the shortage in the 

generation capacity. 

Energy Users Association of Australia has published a report in November 2012 which 

directly addressed some concerns about possible exercise of market power by 

generators during the years 2008-2011.  
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The high spot prices mainly happened during January-February when the 

temperatures peaked. During that period, evidence of generators exercising market 

power has been observed in the high demand periods where generators tried to 

influence the spot price output by either strategic form of bidding behaviour or 

withholding the generation capacity in high demand periods in recent years 

(Mountain, 2012). 

In a competitive market, if the prices are higher than the production costs, generators 

should have enough incentive to increase their capacity to benefit the market 

situation. However, there are indications that in some trading intervals in high demand 

periods, generators tried to either withhold their generation capacity available to the 

market or offer it in very high price bands. In 2008, a generation capacity of around 

667 MW at Torrens Island Power Station was not available to the market in some 

trading intervals. Same behaviour was seen by other generators in 2009-11 which 

made the spot price reach the market price cap of $10,000/MWh at the time (CME, 

2012). 

It should be mentioned that, withholding capacity was not the only reason to shift the 

prices to the peak levels. It has been observed that, there has been sufficient 

generation capacity even during high demand periods. Further, in Chapter 3 we 

examine forms of strategic bidding by generators and the corresponding risk imposed 

on the end users by high spot prices. 

2.2.1.1 Impact of exercise of market power on consumers  

Generally, the degree of impact of spot price spikes on consumers depends on the 

types of consumers in the market. For non-household consumers, these effects are 

depending on other hedge contracts in the financial market and for household 

consumers they depend on the standing contracts 17F

18 with AGL which are determined 

by the Electricity Supply Commission of South Australia. Nonetheless, indirectly, 

increases in spot prices will, ultimately, be passed on to consumers. 

The price of hedge contracts in the financial market is also showing the same trend 

as spot price over the period of 2007-11 in South Australia. Overall, higher spot prices 

have resulted in higher future contracts prices and in this way generators have 

                                                
18 The standing contract is the retail electricity contract that AGL SA must offer to all South Australian 

small customers which is set by Electricity Supply Commission of South Australia. (ESCOSA,  
http://www.escosa.sa.gov.au/projects/177/1-july-2012-electricity-standing-contract-price-
adjustment.aspx Accessed 23.08.2014). 

 

http://www.escosa.sa.gov.au/projects/177/1-july-2012-electricity-standing-contract-price-adjustment.aspx
http://www.escosa.sa.gov.au/projects/177/1-july-2012-electricity-standing-contract-price-adjustment.aspx
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benefited over the period of 2008-11 even when the spot prices reached the market 

price cap of $10,000/MWh (AER, 2013a). 

For household consumers in South Australia, the Essential Services Commission of 

South Australia calculates the market price cap that AGL can charge residential or 

small consumers. However, AEMC report has shown that this price is higher in South 

Australia comparing to other regions of NEM (AEMC, 2011). 

Overall, the significant increase in the number of price spikes in South Australia during 

the year 2008-11 did not happen in other regions of NEM. This raises the questions: 

(i) Does the very high Market Price Cap in NEM, recently increased to 

$13,100/MWh, provides an incentive for generators to exercise market 

power?  

(ii) Is the flexibility of generators to shift the volume of generation offered to 

different price bands as quickly as in five minute intervals, providing them 

an opportunity to exercise the market power?  

(iii) Does the market needs any change in the system design in Market Price 

Cap or mandatory minimum volume to be offered at each price bands to 

address the market power concerns? 

2.3 STRUCTURAL VOLATILITY 

As discussed above, volatility in the spot price for electricity is very high. Furthermore, 

there are many factors that may be contributing to this high volatility. These range 

from stochasticity of demands and weather conditions, through supply of renewable 

energy (e.g., wind, solar), to financial management strategies such as hedging.  

However, in this thesis we examine in some detail the impact of generators’ bidding 

strategies on the volatility of spot prices, in the context of the mechanism by which 

these prices are derived (see Section 1.6).  We refer to this form of volatility as 

“structural volatility” because it stems from the design of NEM and its regulations.   

We feel that structural volatility deserves close scrutiny because the latter design is, 

in principle, controllable and hence may be altered if changes were deemed to be 

desirable. By contrast, volatility due to natural phenomena such as heat waves, or 

cold spells cannot be significantly altered. Of course, the latter can still be understood 

and its impact mitigated typically with the help of accurate forecasts, but this is not an 

objective of the present study.             
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2.4 ALLEVIATING MARKET POWER 

Some economists believe that as a result of special characteristics of electricity 

markets, these markets are susceptible to the exercise of market power (Baker, J., 

1992, Twomey, P. et al, 2005 and Blumsack., 2003). First, as electricity is not easily 

storable, the production is needed to match the demand instantaneously and this 

makes the electricity supply to be relatively inelastic. Second, most of the electricity 

consumers are not exposed to real time prices. Therefore, only the demand from very 

large consumers is elastic to the real time prices. The inelasticity of electricity supply 

and demand provides an opportunity for generators to exercise their market power 

specifically in the high demand periods.  

To alleviate the market power by generators, economists suggest a number of 

solutions. These solutions include, “Structural solutions”, “Regulatory solutions” and 

“Market rules solutions”.  Structural solutions include encouraging the dominant 

generators to divest their assets. At the same time, new competitors need to be 

encouraged to enter the market by reducing or removing barriers to entry. 

Regulatory solutions include imposing constraints to control the price such as market 

price cap. Another regulatory solution would be setting the rule by which the dominant 

generators are required to provide a certain amount of capacity to the network in the 

long term.  

Market rules solutions are the regulations which might be considered harsher such as 

setting caps on unit specific bidding or asking for a specific information from 

generators which would be very difficult to acquire (Twomey, P. et al, 2005). 
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3. CHAPTER 3. STATISTICAL 

APPROACH 

As mentioned in Chapter 1, the wholesale electricity market is managed through a 

spot market which consists of a pool where electricity supply and demand are 

matched instantaneously. In this market, generators’ offers for electricity production 

are designed to be submitted to the pool in a stack of 10 bands at every five minute 

interval. This bid stack includes the volume and price of electricity they are willing to 

generate and it needs to satisfy certain regulatory restrictions for floor and cap price 

at each band. As mentioned by AEMO (2010a), the price offered at each band should 

not be less than $-1000 and not more than $13,100 per MWh, respectively18F

19. 

Combination of all these offers by generators determine, albeit indirectly, the marginal 

price of generation and consequently the electricity spot price at each half an hour 

interval. Recall that, AEMO collects all the bids offered by generators, then solves an 

LP problem (Chapter 1, Section 1.6), which determines the generators who are 

required to produce at each five minute interval, considering two main objectives of 

meeting prevailing demand and minimising cost of production. The result of this 

dispatch process is called a “Dispatch Price”. Thereafter, the spot price is determined 

as the average of six dispatch prices in every half an hour trading interval (see 

equation (1.1.)). This is the price that generators receive for the amount of electricity 

they contributed and also the price that, ultimately, consumers need to cover. 

 

                                                
19 Recall that this upper bound was increased from $10,000/MWh in 2010. 
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In subsequent sections we investigate the effects of the different bidding behaviours 

on both generators and end users as the two main constituencies in this market. We 

aim to highlight the fact that the bid stacks offered by generators may increase the 

income to generators and eventually impose the risk of higher cost to the end users 

in the Australian electricity market 19F

20.  

In Section 3.1 we differentiate the trading intervals using a spot price frame with two 

different colours: high and low. Then we discuss the correlation of demands and spot 

prices during selected periods of time in South Australia. 

Section 3.2 is dedicated to introducing forms of strategic bidding behaviour by 

generators. Further in Sections 3.3 - 3.4 we investigate how generators form specific 

groups/clusters in which they follow the same pattern in changing the bid stack offered 

to the pool, especially in the higher spot price trading intervals. In Section 3.5 we 

examine the strength of the competition among generators and investigate whether 

the electricity auction is running strong or weak in different trading intervals. Results 

show that in the high spot price trading intervals the competition among generators 

was weak and hence such auction underperformed.  

In Section 3.6 we show that the competition among generators can be considered as 

a lottery model. Then the choice of offering price and volume of electricity production 

would be a tool for designing this lottery at each trading interval.  

In Section 3.7 we examine the bid to cover ratio in the Australian electricity market. 

We compute this ratio by the value of money claimed from the electricity pool by 

generators divided by the value paid to the generators by AEMO.  

Section 3.8 discusses the risk of loss to end users as an outcome of the lottery 

designed by generators using risk measures such as Value at Risk and Conditional 

Value at risk of loss. 

3.1 CORRELATION OF ELECTRICITY DEMAND AND PRICE 

This section discusses the correlation of demands and spot prices during selected 

periods of time in South Australia. For simplicity, a spot price frame has been 

designed using two different colours. Colours “Green” and “Red” are dedicated to the 

trading intervals  of “low” and “high” spot price periods and they are recognized using 

                                                
20 Results of this chapter are published in a paper entitled ‘Australian Electricity Market and 
Price Volatility’ that appeared in the Annals of Operations Research (see Boland, J., et al 
(2011)). 
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the two chosen ranges of $-1,000/MWh to $1,000/MWh and $1000 to $13,100. From 

now on, we call these categories as Low, “L”, and High, “H”, spot price periods 

respectively. Table 3.1 shows these categories of trading intervals by range of spot 

price and the corresponding colour20F

21.  

Table 3.1. Trading interval categories based on the level of sot price. 

Low Spot Price Trading Interval $-1000/MWh < Spot Price < $1000/MWh 

High Spot Price Trading Interval $1000/MWh < Spot Price < $12500/MWh 

Based on the this trading interval categories, each point in Figure 3.1 shows the 

correlation of demand and price in the two mentioned categories of spot price periods. 

It should be mentioned that each point in this figure, corresponds to the correlation of 

electricity price and demand in a day, using 48 trading interval data points available 

in that certain day. 

The colours are assigned based on the category of highest spot price occurring in that 

specific day. For instance, as there exist at least one trading interval in the day of Jan 

8th when the spot price exceeded $1000 per MWh we show the whole day of Jan 8th 

by a red colour. By assigning a red or green colour we do not necessarily mean that 

the spot prices corresponding to all trading intervals of the day are in the categories 

of H and L (Table 3.1). These colours show that within the days with say red colour, 

there exists at least one trading interval in which spot price was in the interval (1000, 

13100). 

   

 

Figure 3.1. Correlation of electricity demand and spot price at each day. 

 

                                                
21 In this research project this category of trading interval is used to recognize the range of 
spot price in the different trading intervals. 
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From Figure 3.1 we observe that demand and electricity spot price seem to be highly 

correlated in the days with no spot price spikes. However, correlation of electricity 

demand and price falls significantly on days where we happen to have spike(s) in the 

day (e.g. see the red diamonds in Figure 3.1). 

This highlights the fact that this significant rise in spot prices may be due to other 

important underlying reasons than merely demand fluctuation. In other words, the 

demand does not seem to be the main underlying cause of the sharp increases in the 

electricity price in these periods of time.  Apparently, there exist other factors that 

affect these price spikes in relatively high demand periods. However, what we plan to 

highlight most is the behaviour of generators in different periods of time which we 

believe may increase consumers’ risk of loss.  

3.2 STRATEGIC BIDDING STRUCTURE IN THE AUSTRALIAN 
ELECTRICITY MARKET 

In this section we examine a form of characteristic bidding structure by generators. 

Our study of generators’ bid stacks within the two categories of trading intervals of L 

and H, indicates that there exist characteristic behaviours among generators in some 

specific trading intervals. Below we illustrate some of these characteristic bidding 

behaviours of generators in the two category of trading intervals mentioned in Table 

3.1.   

For simplicity, we chose one generator as a representative practitioner of this sort of 

behaviour among many generators in South Australia. Figures 3.2 - 3.4 show bidding 

strategy of a gas turbine generator in South Australia in low and high spot price trading 

intervals during the summer of 2010. 

Figure 3.2 displays a bidding strategy of this generator in a low spot price period. As 

shown, a preferred choice of production for this generator is to offer the price and 

volume only in the very high price, $9760 per MW, band. This strategy by the 

generator may be based on the high cost of production in this trading interval or it may 

also show that this generator has low interest to participate in the competition against 

other generators in such a low demand period. As expected, competition among all 

generators during this trading interval resulted in a low spot price of about $100 per 

MW.  
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Figure 3.2. Volume and electricity price offered by a generator in a low spot price period. 

Figure 3.3 shows the bid offered by this generator in a trading interval in which the 

overall outcome of competition also resulted in low spot price. At this point, this 

generator seems to be somewhat more interested in competing with others and tries 

to offer a small part of total capacity in two lower price bands. This could increase the 

chance of winning a small part of the volume of production in this trading interval 

which results in a moderately higher income as a result of a higher spot price of about 

$340 per MWh. 

 

Figure 3.3. Volume and electricity price offered by a generator in a low spot price period. 

As we approach the very high spot price periods, illustrated in Figure 3.4, the interest 

of generators in participating in the electricity production seems to increase. This can 

be observed by considering three aspects of behaviour by the generator. Figure 3.4 

illustrates that, this generator assigns significant ratio of total capacity of its 

production, to a very low price, $-976 per MW, band and keeps a small fraction of 

total capacity at a very high price, $9760, band. 
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Figure 3.4. Volume and electricity price offered by a generator in a high spot price period. 

This bimodal distribution in the volume of production in 10 bands may reflect the fact 

that, during some specific trading intervals (e.g. when demand is likely to be high 

because of hot conditions), this generator may be anticipating almost a guaranteed 

high spot price that will result, almost certainly, if sufficient number of other generators 

submit similarly structured bids. 

This raises the following interesting question. Why does this generator feel confident 

enough to offer the kind of bid that is shown in Figure 3.4 despite the fact that it could 

be easily undercut by other generators offering enough electricity at prices lower than 

$9,760 per MWh? Is it because, for whatever reason, the generator feels that 

sufficiently many competitors will submit similar bimodal bids structured so that the 

sum total of the low price bars will not be sufficient to cover the demand? If so, all 

these generators could be rather safely betting on the spot price being set, at least, 

at their high price bars.  

However, this form of shifting volume to other price bands by this generator is just one 

form of the bidding behaviour by generators in the high spot price periods. In the 

following sections, we investigate whether groups of generators behave in similar 

patterns of strategic bidding as we approach high spot price periods. 

3.3 DISTANCE MEASURES 

In this section we aim to investigate the fluctuations in the volume offered in various 

price bands. Mathematically, a typical bidding strategy, 𝒗𝑔, of the generator g is a set 

of pairs 𝒗𝑔 = {(𝑣𝑖
𝑔

, 𝑐𝑖
𝑔

)|𝑖 = 1,2, … ,10}, where 𝑣𝑖
𝑔
 is the MW volume of production at 

price $𝑐𝑖
𝑔
 in the 𝑖𝑡ℎ band, for 𝑖 = 1,2, … ,10. 
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In accordance with regulation 𝑐𝑖
𝑔

∈ [−1000,13100] and 𝑣𝑖
𝑔

∈ [0, �̅�𝑔] for 𝑖 = 1,2, … ,10, 

where �̅�𝑔 is the maximum capacity the generator 𝑔 can produce. In practice, it has 

been observed that, for a generator 𝑔, 𝑐𝑖
𝑔
’s are the same for all trading intervals.  

Hence we simplify the notation for a bidding strategy to 𝒗𝑔 = {𝑣𝑖
𝑔

|𝑖 = 1,2, … ,10}, as 

𝑐𝑖
𝑔
’s  are assumed to be known.  

Based on the bid stack offered by generator 𝑔 at each band, the proportion of volume 

that is offered at the price band 𝑖 by generator 𝑔 is  

𝑞𝑖
𝑔 =

𝑣𝑖
𝑔

∑ 𝑣
𝑖
𝑔10

𝑖=1

;     𝑓𝑜𝑟  𝑖 = 1,2, … ,10.                                                                                            (3.1)                                                                   

In other words, 𝑞𝑖
𝑔 shows the proportion of MW of electricity at the band price 𝑖 of 

their bid stack. 

Table 3.2. Bid stack offered by generator 𝐺18 on January 8th at 15:30. 

Band 1 2 3 4 5 6 7 8 9 10 

 𝑣𝑖
𝑔

 40 0 0 0 0 0 0 0 0 15 

Table 3.2 shows the bid stack offered by generator 𝐺18 on January 8th at 15:30. Then 

the distribution of proportions of the volume offered at each price band is as shown in 

Table 3.3. 

Table 3.3. Distribution of proportion of volume offered by 𝐺18 on January 8th at 15:30 . 

Band 1 2 3 4 5 6 7 8 9 10 

𝑞𝑖
𝑔 0.73 0 0 0 0 0 0 0 0 0.27 

As Table 3.3 shows the proportion of MW of electricity that generator 𝐺18 offers at 

the price band 1 in this trading interval, is approximately 73%. In other words, for this 

trading interval, generator 𝐺18 is interested to offer 73% of the total capacity at the 

price band 1. Generator 𝐺18 is not interested to offer any portion of volume at the 

price bands 2 to 9 but he offers the remaining 27% of the total capacity at the band 

price 10.  

It should be noted that, the behaviour of generators in offering bid stacks change 

through time and so does the distribution of portions of volume offered at each price 

band. Hence, we use distance measure techniques to compare observed behaviour 

of a generator with a hypothetical situation where the generator offers equal portions 

of volume at each price band uniformly. We call this hypothetical generator an 

‘indifferent’ generator.  
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Table 3.4. Distribution of proportion of volume offered by an indifferent generator. 

Band 1 2 3 4 5 6 7 8 9 10 

�́�𝑖
𝑔

 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

Table 3.4 shows the distribution of proportions of a MW of electricity expected to be 

offered at each price band by an indifferent generator. In this situation the distribution 

of proportions of volume offered at each price band is uniform.  

Considering Table 3.4, we examine how generators’ interest in offering production at 

different price bands may change in different trading intervals. For this 

purpose 𝐷(𝑞𝑔, �́�𝑔), measures the distance between the distributions of proportions, 

𝑞𝑔 and �́�𝑔,  at each trading interval. Here �́�𝑔 refers to the uniform distribution.  

The distance, 𝐷(𝑞𝑔, �́�𝑔), between the two distributions, at each trading interval is 

calculated by21F

22 

𝐷(𝑞𝑔, �́�𝑔) = 2 ∑
(𝑞𝑖

𝑔 − �́�𝑖
𝑔)2

𝑞𝑖
𝑔 + �́�𝑖

𝑔

10

𝑖=1

 .                                                                                                 (3.2) 

For the example shown in Table 3.3 above, the distance between the distribution of 

proportions shown in Table 3.3 and the uniform distribution, shown in Table 3.4 is 

𝐷(𝑞𝑔, �́�𝑔) = 2.71. 

 

Figure 3.5. Distance values,𝐷(𝑞, �́�), for generator 𝐺18 in January 8th 2010. 

Similarly, Figure 3.5 below shows these distance values for the 40 trading intervals 

on January 8th 2010 in the case of generator 𝐺18.  It can be seen that, this generator 

changes the bid stack offered to the pool during the peak hours of the day between 

                                                
22 Here we have chosen the widely used probabilistic symmetric 𝜒2 distance.  
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2:00PM to 7:00PM. As a result of the change in the bidding behaviour by this 

generator, the distance between the distribution of proportions of volume offered at 

each price band by the generator and the indifferent generator has also changed 

during these hours.  

As shown in Figure 3.5, this generator’s offered bid stack seems to be closer to the 

bidding stack offered by the indifferent generator in the peak hours in the afternoon. 

This is because 𝐺18 went from an essentially unimodal to a bimodal bid distribution 

during the peak hours. 

 

Figure 3.6. Distance values, 𝐷(𝑞, �́�),  in January 8th 2010 for first class of generators. 

Similarly, Figures 3.6 - 3.8 show the distance measure 𝐷(𝑞, �́�) is calculated for all the 

other generators who have participated in the electricity market pool in South Australia 

for the whole day of January 8th 2010. Based on the change in bidding behaviour, 

Figures 3.6 - 3.8 show these generators can be grouped into three classes. As shown 

in Figures 3.6 - 3.8, the generators in each class tend to change their bid stacks with 

similar pattern in terms of increasing or decreasing distance from the uniform 

distribution. 

Figure 3.6 shows the first class who are, similar to generator 𝐺18 in Figure 3.5, 

namely, they tend to offer their bid stacks more uniformly distributed as we approach 

the high spot price period.  
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Figure 3.7. Distance values, 𝐷(𝑞, �́�),  in January 8th 2010 for second class of generators. 

Figure 3.7 shows the second class of generators whose behaviour exhibits no change 

in terms of our distance measure during peak hours. Finally, third class consists of 

generators who tend to increase the distance of their bid stack from the uniform 

distribution as we approach the high spot price period, see Figure 3.8.  

 

Figure 3.8. Distance values, 𝐷(𝑞, �́�), January 8th 2010 for the third class of generators. 

As Figures 3.6 - 3.8 show, the change in bidding behaviour by generators does not 

seem to occur randomly. Rather, generators seem to gather in three specific classes 

in which they follow similar patterns in changing their bidding behaviour. 

3.4 CLUSTERING ANALYSIS 

Based on the changes in bidding strategy by generators in South Australia, in this 

section we aim to investigate the following questions.  

(i) Do the shifts in volume offered by generators in higher spot price periods 

follow special pattern?  
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(ii) Are there groups/clusters of generators who tend to follow the same pattern in 

the high spot price trading intervals? 

For this purpose, we investigate the “change” in generators bidding behaviour when 

we approach the higher spot price periods. We begin by setting a starting point, 𝑡𝑜 at 

a low spot price period such as 10:00AM in a day. Then for each trading interval, the 

bid stack of changes in the volume offered by a generator is calculated. 

Recall that, a typical bidding strategy by generator 𝑔 simplified to 𝒗𝑔 =

{𝑣𝑖
𝑔

|𝑖 = 1,2, … ,10}. We define the change in bid stack offered by generator 𝑔 in the 

trading interval 𝑡, by 

 ∆ 𝑣𝑔(𝑡) = {∆𝑣𝑖
𝑔

(𝑡)|𝑖 = 1,2, … ,10}, where ∆𝑣𝑖
𝑔

(𝑡) = 𝑣𝑔
𝑖(𝑡) − 𝑣𝑔

𝑖(𝑡𝑜). 

As an example, suppose we aim to find the bid stack of changes in the volume offered 

for generator 𝑔 on 8/1/2010 at 4:30PM. Assume that we set the starting point, 𝑡𝑜 , at 

10:00AM. Suppose that generator 𝑔 has offered the following bid stacks at 10:00AM 

and 4:30PM as shown in Table 3.5. 

Table 3.5. Bid stack offered by generator𝑔 on 8 /1/2010 at 10:00AM and 4:30PM. 

Band (𝑖) 1 2 3 4 5 6 7 8 9 10 

𝑣𝑔
𝑖(𝑡𝑜) 80 0 0 40 0 0 0 0 0 10 

𝑣𝑔
𝑖(𝑡) 50 0 0 0 0 0 0 0 0 80 

Then, the change in bidding behaviour by generator 𝑔 between 10:00AM and 4:30PM 

is as shown in Table 3.6. As Table 3.6 shows this generator tends to shift the 

generation capacity offered in this day to the right where the higher price bands exist. 

In other words, generator 𝐺 was interested to decrease the capacity offered at the 

bands one and two, by 30MW and 40MW respectively, and increase the generation 

capacity offered at the last price band by 70MW. 

Table 3.6. The change in the bid stack offered by generator𝑔. 

Band (𝑖) 1 2 3 4 5 6 7 8 9 10 

∆ 𝑣𝑔
𝑖(𝑡) -30 0 0 -40 0 0 0 0 0 70 

Similarly, Table 3.7 shows the corresponding changes in bid stacks offered by all 

other generators in South Australia in a high spot price period on 8/1/2010 4:30PM.  
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Table 3.7. Changes in the bid stacks offered by generators. 8/1/2010 4:30PM. 

Generator No. Difference of volume offered at each band 

1 171 0 0 0 0 0 0 0 0 -171 

2 0 0 0 0 0 0 0 0 0 0 

3 0 0 0 0 0 0 0 0 0 0 

4 0 0 0 0 0 0 0 0 0 0 

5 50 0 0 0 40 0 0 0 0 -42 

6 50 0 0 0 40 0 0 0 0 -42 

7 50 0 0 0 40 0 0 0 0 -42 

8 0 0 0 0 0 0 0 0 0 0 

9 0 0 0 0 0 0 0 0 0 0 

10 38 0 0 0 0 0 0 0 0 0 

11 38 0 0 0 0 0 0 0 0 0 

12 0 78 0 0 0 0 0 -78 0 0 

13 80 0 0 0 50 0 0 0 0 -31 

14 85 -60 -32 0 0 0 0 8 0 -1 

15 92 -60 -32 0 0 0 0 0 0 0 

16 0 0 -7 10 0 0 0 0 7 0 

17 0 0 0 0 0 0 0 0 0 0 

18 40 0 0 0 0 0 0 0 0 -40 

19 0 0 0 0 0 0 0 0 0 0 

20 20 0 0 0 0 0 0 0 0 0 

21 0 0 0 0 0 0 0 0 0 0 

22 0 0 0 0 0 0 0 0 0 0 

23 20 0 0 0 0 0 0 0 0 0 

24 120 0 0 0 0 0 0 0 0 0 

25 0 0 0 0 0 0 0 0 0 0 

26 60 0 0 60 0 0 0 0 0 -59 

27 0 0 0 -50 -20 0 0 0 0 70 

28 -30 0 0 -40 0 0 0 0 0 70 

29 0 0 0 0 0 0 0 0 0 0 

30 0 0 0 0 0 0 0 0 0 0 

31 0 0 0 0 0 0 0 0 0 0 

32 0 0 0 -95 0 0 0 -45 0 140 

33 10 0 0 -100 -40 0 0 0 0 130 

34 10 0 0 -100 -40 0 0 0 0 130 

Sum 904 -42 -71 -315 70 0 0 -115 7 112 

As Table 3.7 illustrates, generators are grouped into three different forms of behaviour 

in bidding based on the shifts of volume offered in their bid stacks comparing the high 

and low spot price periods. These shifts are categorised as follows. 

(i) Generators who behave as indifferent generators and do not shift any volume 

of electricity offered during peak and off peak periods, shown as rows with no 

colour (populated by zero entries). 

(ii) Generators who shift a ratio of total volume of electricity offered to more 

expensive bands during peak periods and we call this behaviour as “shift to 

the right” shown as orange rows (featuring positive values in the rightmost 

price bands). 

(iii) Generators who shift a ratio of total volume of electricity offered to the less 

expensive bands during peak periods and we call this behaviour as “shift to 



Chapter 3. Statistical Approach  
  
 

63 
 

the left” shown as blue rows (featuring positive values in the leftmost price 

bands). Note that, for some generators such as 𝐺10 and 𝐺11 instead of shifting 

the volume offered to other price bands, they simply increase the volume 

offered at the first price band. 

The last row of Table 3.7 shows the summation of the changes in the volume offered 

at each band by all 34 generators in South Australia. Overall, the distribution of total 

generation capacity offered at each band seem to have a form of bimodal distribution. 

In other words, a significant portion of the total generation capacity offered by all 

generators in South Australia is shifted to the first band with a very low price and a 

small portion is shifted to the last band with the very high price of $10,000/MWh in 

this specific trading interval. However, ultimately these shits in the volumes offered at 

different price bands resulted in a very high spot price of $9,999/MWh in that trading 

interval.  

3.4.1 Ward’s minimum variance method 

The above classification of generators into three distinct group is based only on visual 

examination of data in Table 3.7. Hence a natural question is whether a similar 

classification could be obtained by standard, statistical, clustering procedure. 

Next, we apply the Ward’s minimum variance method (Ward, 1963) to analyse the 

groups of generators who shift the volume offered in different trading intervals. In this 

method, Ward applies the ‘squared Euclidean distance’  

𝑑𝑖𝑗 = 𝑑({𝑋𝑖}, {𝑋𝑗}) = ‖𝑋𝑖 − 𝑋𝑗‖
2

                                                                                   (3.3) 

as the objective function which needs to be minimised. To add the pairs of vectors to 

the clusters, at each step the pair of vectors that results in minimum increase in total 

within-cluster variance will be added to the cluster.  

Using the same trading intervals as before using R software we analyse the groups 

of generators who tend to change their behaviour with in similar pattern. Figure 3.9 is 

the output of R software given the bid stack of changes in volumes offered at each 

price band by generators on January 8th 2010 at 16:30. As Figure 3.9 shows, there 

are three main groups of generators whose behaviours follow similar pattern. 
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Figure 3.9. Ward’s clusters for the change in bidding behaviour in a high spot price trading interval. 

Table 3.8. The change in bidding behaviour on a high spot price trading interval. 

Generator No. Difference of volume offered at each band 

1 171 0 0 0 0 0 0 0 0 -171 

2 0 0 0 0 0 0 0 0 0 0 

3 0 0 0 0 0 0 0 0 0 0 

4 0 0 0 0 0 0 0 0 0 0 

5 50 0 0 0 40 0 0 0 0 -42 

6 50 0 0 0 40 0 0 0 0 -42 

7 50 0 0 0 40 0 0 0 0 -42 

8 0 0 0 0 0 0 0 0 0 0 

9 0 0 0 0 0 0 0 0 0 0 

10 38 0 0 0 0 0 0 0 0 0 

11 38 0 0 0 0 0 0 0 0 0 

12 0 78 0 0 0 0 0 -78 0 0 

13 80 0 0 0 50 0 0 0 0 -31 

14 85 -60 -32 0 0 0 0 8 0 -1 

15 92 -60 -32 0 0 0 0 0 0 0 

16 0 0 -7 10 0 0 0 0 7 0 

17 0 0 0 0 0 0 0 0 0 0 

18 40 0 0 0 0 0 0 0 0 -40 

19 0 0 0 0 0 0 0 0 0 0 

20 20 0 0 0 0 0 0 0 0 0 

21 0 0 0 0 0 0 0 0 0 0 

22 0 0 0 0 0 0 0 0 0 0 

23 20 0 0 0 0 0 0 0 0 0 

24 120 0 0 0 0 0 0 0 0 0 

25 0 0 0 0 0 0 0 0 0 0 

26 60 0 0 60 0 0 0 0 0 -59 

27 0 0 0 -50 -20 0 0 0 0 70 

28 -30 0 0 -40 0 0 0 0 0 70 

29 0 0 0 0 0 0 0 0 0 0 

30 0 0 0 0 0 0 0 0 0 0 

31 0 0 0 0 0 0 0 0 0 0 

32 0 0 0 -95 0 0 0 -45 0 140 

33 10 0 0 -100 -40 0 0 0 0 130 

34 10 0 0 -100 -40 0 0 0 0 130 

As Table 3.8 shows, generally, the orange cluster generators tend to shift their volume 

of electricity offered to the less expensive price bands in the peak periods. Generators 

in the cluster with no color, seem to almost have little change in their strategy in 
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offering volume in different trading intervals. Finally, the blue cluster identifies 

generators who tend to shift their volume of electricity offered to the more expensive 

price bands in the peak periods. 

It is interesting to check whether similar changes in generators bidding behaviour also 

arise during periods where the spot price has not peaked. This does not seem to be 

the case. Below we illustrate this claim with data from two low price trading intervals.  

Table 3.9 and Figure 3.10 show the results of clustering analysis of the change in 

bidding behaviour in two low spot price periods, from 10 AM to 8 PM, with only two 

main clusters identified. 

Table 3.9. The change in bidding behaviour on a high spot price trading interval.  

Generator No. Difference of volume offered at each band 

1 0 0 0 0 0 0 0 0 0 0 

2 0 0 0 0 0 0 0 0 0 0 

3 0 0 0 0 0 0 0 0 0 0 

4 0 0 0 0 0 0 0 0 0 0 

5 0 0 0 0 0 0 0 0 0 0 

6 0 0 0 0 0 0 0 0 0 0 

7 0 0 0 0 0 0 0 0 0 0 

8 0 0 0 0 0 0 0 0 0 0 

9 0 0 0 0 0 0 0 0 0 0 

10 38 0 0 0 0 0 0 0 0 0 

11 38 0 0 0 0 0 0 0 0 0 

12 0 -50 0 0 0 0 0 50 0 0 

13 0 0 0 0 0 0 0 0 0 0 

14 0 0 0 0 0 0 0 0 0 0 

15 0 0 0 0 0 0 0 0 0 0 

16 0 0 -5 -6 0 0 0 0 12 0 

17 0 0 0 0 0 0 0 0 0 0 

18 0 0 0 0 0 0 0 0 0 -0 

19 0 0 0 0 0 0 0 0 0 0 

20 20 0 0 0 0 0 0 0 0 0 

21 -22 0 0 0 0 0 0 0 0 0 

22 0 0 0 0 0 0 0 0 0 0 

23 20 0 0 0 0 0 0 0 0 0 

24 0 0 0 0 0 0 0 0 0 0 

25 0 0 0 0 0 0 0 0 0 0 

26 0 0 0 0 0 0 0 0 0 0 

27 0 0 0 0 0 0 0 0 0 0 

28 -30 0 50 -40 0 20 0 0 0 0 

29 0 0 0 0 0 0 0 0 0 0 

30 0 0 0 0 0 0 0 0 0 0 

31 0 0 0 0 0 0 0 0 0 0 

32 0 0 0 0 0 0 0 0 0 0 

33 0 0 0 0 0 0 0 0 0 0 

34 0 0 0 0 0 0 0 0 0 0 

Results show that, in a lower spot price period generators within the same cluster do 

not necessarily obey the same pattern. For instance, generators 𝐺11 and 𝐺12 are 
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classified into the same main cluster, but 𝐺12’s bid stack includes a significant shift to 

the right. Similarly, generators 𝐺12 and 𝐺28 belong to same sub-cluster despite 

exhibiting some differences. 

  

Figure 3.10. Ward’s clusters for the change in bidding behaviour. A low spot price trading interval. 

The behaviour of generators in this trading interval seem to have more irregular 

patterns comparing to the high spot price periods. This raises a question as to whether 

generators seem to learn from their experiences that specific forms of bidding 

behaviour would ultimately result in higher spot price for a trading interval. 

3.5 BIMODAL BIDDING BEHAVIOUR BY GENERATORS 

In Section 3.4, we observed that for some generators their stacks tended to exhibit 

“bimodal distribution patterns” during the high spot price periods. In this section we 

shall demonstrate this more formally with the help of the bimodality coefficient (Pfister, 

et al., 2013). 

Toward this goal we create a pseudo probability distribution on a “random” variable 

𝐶𝑔 that is the cost per MWh of electricity offered in any given bid stack. We shall 

assume that 𝐶𝑔 can only take values 𝑐1
𝑔

, 𝑐2
𝑔

, … , 𝑐10
𝑔

 corresponding to the price of the 

ten bands in any bid stack. Furthermore, we assume that for generator 𝑔 

Pr(𝐶𝑔 = 𝑐𝑖
𝑔

) = 𝑞𝑖
𝑔

=
𝑣𝑖

𝑔

∑ 𝑣
𝑖
𝑔10

𝑖=1

;     𝑖 = 1,2, … ,10.                                                           (3.4)         

That is, the expected price per MWh corresponding to a particular bid stack of 

generator 𝑔 is given by 

𝜇𝑔 = 𝐸(𝐶𝑔) = ∑ 𝑐𝑖
𝑔

𝑞𝑖
𝑔

10

𝑖=1

.                                                                                                  (3.5) 
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The index 𝜇𝑔 captures the central tendency of the price band distribution 

corresponding to any given bid stack. For instance, suppose generator 𝐺18 has 

offered the following price, 𝑐𝑖
𝑔
, and volume, 𝑣𝑖

𝑔
, in a bid stack at a high spot price 

period (see Table 3.10).  

Table 3.10. Price and volume offered by generator 𝐺18 at a high spot price period. 

Band 1 2 3 4 5 6 7 8 9 10 

𝑐𝑖
𝑔

 -916.1 0 274.46 279.96 536.47 1374.7 4580.13 7786.48 8061.31 9160.63 

𝑣𝑖
𝑔

 40 0 0 0 0 0 0 0 0 15 

Using (3.4) the distribution of proportions of volumes offered by 𝐺18 in this trading 

interval is given in Table 3.11. 

Table 3.11. Proportions of volume offered by generator 𝐺18 at a high spot price period. 

Band 1 2 3 4 5 6 7 8 9 10 

𝑞𝑖
𝑔 0.73 0 0 0 0 0 0 0 0 0.27 

Table 3.11 shows generator 𝑔’s interest at each price band in terms of proportions of 

volume offered at that band.  In particular, Table 3.11 shows that generator 𝐺18 offers 

around 73% of total capacity at the first band with the cost of 𝑐1
𝑔

= $ − 916.1/MWh. 

This generator is not interested to offer any volume at bands two to nine and he offers 

the remaining 27% of the total capacity at the final band with the cost of 𝑐10
𝑔

=

$9160.63/MWh. Based on Table 3.10 and Table 3.11 above, the average of electricity 

price that generator 𝐺18 asked at this trading intervals is 

𝜇𝑔 = ∑ 𝑐𝑖
𝑔

𝑞𝑖
𝑔10

𝑖=1 = $1804.6/𝑀𝑊ℎ. 

 

Figure 3.11. Average asked price by generators at low and high spot price period. 
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Figure 3.11 shows the average of price that 34 generators asked on 8th January 2010. 

The green line shows these values at 4:30 am and the red lines corresponding to the 

high trading interval at 16:30, which correspond to low and high spot price trading 

intervals respectively. 

As shown in Figure 3.11, majority of generators tend to ask for lower prices as we 

approach the high demand periods. This is due to generators’ shift of volume offered 

to the lower price bands in the higher demand trading intervals. There are few 

generators, such as G27, G28, G32, G33 and G34, who behave in an opposite 

direction and ask for higher average price per MWh. The standard deviation of the 

price asked by each generator, 𝜎(𝑐𝑔), is shown in Figure 3.12. 

 

Figure 3.12. Standard deviation of asked price by generator. A low and high spot price period. 

It should be noted that, the lower values of 𝜇(𝑐𝑔) and 𝜎(𝑐𝑔) are mainly due to the 

strategic bidding behaviour by most of generators in the higher demand periods. By 

this form of bidding behaviour, majority of generators tend to offer higher portion of 

their total capacity in the low band price as we approach high spot price period (see 

Table 3.7).  

Figure 3.13 shows skewness of the distribution, 𝛾𝑔, of volume offered at price bands 

for all generators in SA at a low and high spot price period. As Figure 3.13 illustrates, 

this value has increased significantly for the majority of generators as we approach 

the high spot price period. For instance, 𝐺7’s bid stack distribution was negatively 

skewed in a low spot price trading interval, 𝛾𝑔 = −0.97. However, as we approach 

high spot price period, this generator changed the portion of volume offered at each 

price band significantly and as a result the distribution of volumes became positively 
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skewed with 𝛾𝑔 = 1.63. This indicates that, 𝐺7 has shifted a high portion of the total 

capacity offered to the very low band prices. 

 

Figure 3.13. Skewness of distribution of volume offered at different price bands at low and high spot price 
period. 

In general, the distribution of volume in the majority of generators’ bid stack tend to 

approach bimodal distribution in the higher spot price periods. To show this, the 

bimodality coefficient (𝐵𝐶) 

𝐵𝐶 =
𝛾2 + 1

𝑘 +
3(𝑛 − 1)2

(𝑛 − 2)(𝑛 − 3)

                                                                                                              (3.6) 

is calculated in a low and high spot price period for all 34 generators who participated 

in the market on 8th January 2010. Here 𝛾2 is the sample skewness and 𝑘 is the 

sample excess kurtosis. Values of 𝐵𝐶 greater than 5/9 may indicate a bimodal or 

multimodal distribution.   

The bimodality coefficient values for each of the 34 generators in low and high spot 

price period are illustrated in Figure 3.14. As that shows, generators tend to offer a 

more bimodal form of distribution of bid stacks offered in the higher spot price periods. 

For instance, the bimodality coefficient corresponding to 𝐺27’s bid stack has 

increased from 0.15 in a low spot price period to about 0.68 in a high spot price period.  
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Figure 3.14. Bimodality coefficient at low and high spot price periods. 

3.6 LOTTERY MODEL 

In this section we consider generators’ bidding strategy from another perspective. In 

particular, we consider whether it might be possible to view generators’ bid offers as 

a betting strategy in a lottery constructed on the basis of historical data 22F

23.  The lottery 

approach considered in this section, could be seen as a benchmark to test the extent 

to which generators are concerned about the risk of failing to win sufficient generation 

volume.   

Suppose the market is a genuinely competitive market, where the spot price is 

essentially independent of any single generator’s own bids. In such a case, any 

generator could consider their bid stack as a betting strategy in a lottery. The 

probabilities of the spot price falling in any range in such a lottery could then be 

estimated from historical data. 

Consequently, in this section, we formally construct a lottery model – based on actual 

summer 2010, South Australia data – that will enable us to calculate a set of natural 

measures of risk. For the remainder of this section we shall use the following 

simplifying assumption. 

A1. For generators, in any given trading intervals, the product of the volume of 

production won and the spot price constitutes their utility which they wish to maximise. 

                                                
23 Recall that the notation used for a bidding strategy of a single generator was 

 𝒗𝒈 = {𝑣𝑖
𝑔

|𝑖 = 1,2, … , 𝑀}. 
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A2. For consumers, in any given trading interval, the aggregate of the above products, 

across all generators actually producing electricity constitutes their cost which they 

wish to minimise. 

Clearly, we recognise that the actual income and profit to generators is affected by 

many other factors (e.g., cost of production, fees, hedging contracts, etc.). Similarly, 

cost to consumers incorporates another set of factors (e.g., physical cost of 

maintaining the grid, and administrative cost of AEMO, changing prices of fuels, etc.). 

Nonetheless, it is indisputable that the products of volumes and spot prices mentioned 

in A1-A2 constitute a key component of both the income to generators and the cost 

to consumers. As such, we use them as convenient surrogates of utility and cost, 

respectively.   

In what follows, we view generators’ bid offer as betting strategies in a lottery model 

constructed on the basis of historical data. For instance, Table 3.12 shows price and 

volume offered by a gas turbine generator at 15:30 pm of 8th January 2010. It is 

possible to consider this bidding offer as a betting strategy in a lottery designed in the 

following way. 

Table 3.12. Bid offered by a generator at 15:30pm of Jan 8th 2010. 

Band 1 2 3 4 5 6 7 8 9 10 

Price -976 0.98 96.62 141.52 292.8 575.84 976 9174.4 9564.8 9760 

Volume 0 165 0 0 0 0 0 0 0 55 

Recall that generators put 10 prices in a stack of 10 bands and assign a volume to 

each price. In this section we call these 10 intervals as “Price Interval”. Based on 

historical spot price data, there is a positive probability that the final spot price, 

denoted by 𝑆, for this trading interval would lie somewhere between the boundaries 

of each band. In other words, each price interval has a probability of containing the 

final spot price for this trading interval. That is, these probabilities are defined as 

follows: 

𝑝𝑖 = 𝑃𝑟(𝑐𝑖 < 𝑆 ≤  𝑐𝑖+1);     𝑓𝑜𝑟  𝑖 = 1,2, … ,9.                                                                       (3.7) 

For the final band, 𝑖 = 10 this probability is defined using just lower price boundary. 

𝑝10 = 𝑃𝑟(𝑐10 ≤ 𝑆).                                                                                                                       (3.8)                   

 



Chapter 3. Statistical Approach  
  
 

72 
 

Consequently, an approximation to the expected income can be derived out of this 

bid structure, or lottery, designed by the generator after selecting these price intervals 

and estimating the corresponding probabilities.  

Of course, a generator’s income depends on which price interval contains the spot 

price. For instance, if under the bid in Table 3.12, the spot price falls within the price 

interval of band 1 and 2, then this generator will not be dispatched to production as it 

has not assigned any volume to band 1. Suppose, however, that the spot price would 

take the value of $300 per MWh, so it will lie within the interval of bands 5 and 6. 

Therefore, this generator has already won all volume that it bid from the first band to 

band 5. In other words, the cumulative volume of bands 1 to 5 is the volume that this 

generator has won.  

Overall, the income random variable denoted by 𝐼 takes the value  𝐼𝑖  

𝐼𝑖 = 𝑐𝑖 × 𝑉𝑖 ,                                                                                                                        (3.9)  

when the spot price falls in the 𝑖𝑡ℎ price interval23F

24. In the above, 𝑐𝑖 and 𝑉𝑖 are the price 

and comulative volume of bands 1,2, … , 𝑖 respectively. 

Note that 

𝑉𝑖 = ∑ 𝑣𝑗
𝑖
𝑗=1         𝑓𝑜𝑟 𝑖 = 1,2, … , 10.                                                                           (3.10)  

As a result, the expected income from this lottery would be equal to, 

𝜇 = 𝐸(𝐼) = ∑ 𝐼𝑖𝑝𝑖
10
𝑖=1 .                                                                                                      (3.11)  

The standard deviation of the generator’s income is now given by,  

𝜎(𝐼) = √∑ 𝑝𝑖(𝐼𝑖 − 𝜇)210
𝑖=1                                                                                               (3.12)  

The usual coefficient of variation is now defined as 𝐶𝑣 = 𝐶𝑣(𝐼) =
𝜎(𝐼)

|𝜇(𝐼)|
.  

A numerical example is provided in Table 3.13 which shows the bid offered by 

generator 𝐺1 on Jan 8th, 2010 at 15:30 pm and the expected income out of this bid. 

The risk to the income for this trading interval is then examined with the standard 

deviation as defined above. 

                                                
24 This is a conservative estimation of the generator’s income in this case because lower 
bound of the interval (𝑐𝑖 , 𝑐𝑖+1] was used instead of its mid-point. 
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It is important to note that – under the assumptions of the competitive market and the 

lottery model – this generator would believe that the probability mass distribution 

represented by the 𝑝𝑖 row of Table 3.13 would apply in every trading interval of 

interest. Consequently, only the generator’s bid stacks influence the lottery values. 

Table 3.13. Expected income based on the bid stack offered by generator 𝐺1 on 8th Jan. 2010 at 15:30. 

Band 1 2 3 4 5 6 7 8 9 10 

𝒄𝒊 -976 0.98 96.62 141.52 292.8 575.84 976 9174.4 9564.8 9760 

𝒑𝒊 0.0013 0.9698 0.0081 0.0087 0.0020 0 0.0081 0 0 0.0020 

𝒗𝒊 0 165 0 0 0 0 0 0 0 55 

𝑽𝒊 0 165 165 165 165 165 165 165 165 220 

𝑰𝒊 0 161.7 15942.3 23350.8 48312 95013.6 161040 1513776 1578192 2147200 

          

 

Figure 3.15. Average of income at Jan 8th 2010. 

In view of this we considered the bid stacks this generator actually used in 48 trading 

intervals on January 8, 2010. For each of these trading intervals an analogue of Table 

3.13 was computed and values of the mean, standard deviation and coefficient of 

variation were evaluated. In Figures 3.15-3.17 these three indices of the lottery 

performance were plotted for the 48 trading intervals on that day.    Figure 3.15 shows 

that initially the expected income of generator 𝐺1 stays remarkably stable (at 

approximately $4300 per TI) but as we approach the high spot price trading intervals 

within that day, the expected income of this generator increases by more than 40%. 

Similarly, we observe from Figure 3.16 that the standard deviation of the income of 

this generator is correspondingly stable (at approximately $96,000 per TI) during low 

spot price periods but as we approach the high spot price trading intervals within that 

day, the standard deviation increases but by only a little more than 1%. 
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Figure 3.16.  Standard deviation of income at Jan 8th 2010. 

Hence, the generator’s change of the bidding strategy during the high spot price 

periods seems to be beneficial (under the lottery model) in terms of the benefit versus 

risk trade-off. In particular, if we think of the coefficient of variation as capturing some 

of that trade-off, then we observe from Figure 3.17 that 𝐶𝑣 drops quite significantly 

during the high spot price periods from approximately 22.3 to 15.6, or about 30%. 

 

Figure 3.17. Coefficient of variation. 

To an extent that Figure 3.17 highlights the amount of volatility, or risk, the generator 

is facing relative to the amount of return from his bids. Arguably, lower values of 

coefficient of variation correspond to better risk-return trade-offs for the generator. 

These figures show that, statistically speaking, the generator’s bidding strategy – 

during the high spot price periods - can be considered to be a well-designed lottery 

for such a generator. It seems to enable the generator to earn a large income with low 

risk. Of course, ultimately, the consumers pay for the generators’ successes in playing 

such a lottery. 
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It is important to note that during the 48 trading intervals summarised in Figures 3.15-

3.17, the generator exhibited an interesting transition in his bidding pattern. In 

particular, in the first 22 and last 12 trading intervals of January 8th, his bids had the 

structure corresponding to Figure 3.2 and – in reality – resulted in this generator failing 

to win any share of electricity generation.  During only three trading intervals, from 

3:30-4:30 pm, his bid structure corresponded to Figure 3.4 and resulted in this 

generator supplying nearly all of his capacity at the very high spot price of 

$9,999.71/MWH.  In the remaining 11 trading intervals, his bid structures seemed to 

be in transition between the two extremes portrayed in Figures 3.2 and 3.4 and 

resulted in the generator winning some fractional parts of his capacity of 220 MW.  

This raises the natural question:   What is a rational basis for such a changing bidding 

pattern? 

Hence, we explore the possibility of answering the above question – within the 

framework of the lottery model – by exploiting Markowitz-type (Markowitz 1987) 

mean-variance optimization approach.  In that approach, we postulate that the 

generator considers dividing his total capacity of 220 MW into a “portfolio” 𝑣1, 𝑣2, … 𝑣10 

of volumes of production offered in the 10 price bands.   Hence, 𝜇(𝐼) and 𝜎(𝐼) now 

become functions 𝜇(𝑣1, 𝑣2, … 𝑣10) and 𝜎(𝑣1, 𝑣2, … 𝑣10)  of these decision variables and 

the optimization problem takes the form 

min 𝜎2(𝑣1, 𝑣2, … 𝑣10) 

𝜇(𝑣1, 𝑣2, … 𝑣10) ≥ 𝑚 

0 ≤ 𝑣𝑖 ≤ 220 ;                          𝑖 = 1,2, … 10, 

 

where 𝑚 is the acceptable lower bound on the expected income during a trading 

interval and forms a parameter that can be experimented with.  Interestingly, perhaps, 

it turns out that low values of 𝑚 yield optimal 𝑣1, 𝑣2, … 𝑣10 values that roughly 

correspond to the bid structure represented by Figure 3.2 (observed during low spot 

price periods).  Furthermore, as 𝑚 increases the optimal 𝑣1, 𝑣2, … 𝑣10 values begin to 

exhibit a shift toward the bimodal bid structures resembling that represented by Figure 

3.4 (observed during high spot price periods).   

However, perhaps, surprisingly the highest realistic value of 𝑚 results in a drastically 

different optimal 𝑣1, 𝑣2, … 𝑣10 values, that concentrate all (or nearly all) capacity at the 

most likely, second, spot price band.  These results can be observed from Table 3.14. 
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From the above it may appear, at first sight, that the bimodal bid structure observed 

during high spot price periods (see Figure 2.6) is a rational strategy resembling the 

third data row of Table 3.14. The latter simply minimizes the variance subject to the 

requirement that the mean is at least $6,500 in the trading interval.    

 Table 3.14. Optimal bids corresponding to a range of 𝑚 values. 

𝒎 𝒗𝟏 𝒗𝟐 𝒗𝟑 𝒗𝟒 𝒗𝟓 𝒗𝟔  𝒗𝟕  𝒗𝟖  𝒗𝟗  𝒗𝟏𝟎  𝑪𝒗 𝝈 

6840.00 0 220 0 0 0 0 0 0 0 0 14.35 98183.01 

6800.00 0 216 0 0 0 0 0 0 0 4 14.43 98122.78 

6500.00 0 190 0 0 0 0 0 0 0 30 15.03 97701.70 

6000.00 0 146 0 0 0 0 0 15 15 45 16.19 97121.70 

6500.00 0 190 0 0 0 0 0 0 0 30 15.03 97701.70 

5000.00 0 59 0 0 0 0 0 11 11 139 19.29 96427.41 

4500.00 0 15 0 0 0 0 0 0 22 183 21.40 96316.47 

4399.91 0 6 0 0 0 0 0 0 0 214 21.89 96313.29 

However, if the generator really believed that the lottery model were relevant to him, 

he would have assumed that the probability mass distribution displayed in Table 3.15 

applies to spot prices at all trading intervals. 

Table 3.15. Probability mass distribution of spot prices under the lottery model. 

Band 1 2 3 4 5 6 7 8 9 10 

𝑐𝑖 -976.00 0.98 96.62 141.52 292.80 575.84 976.00 9174.40 9564.80 9760.00 

𝑃𝑖 0.00 0.97 0.01 0.01 0.00 0.00 0.01 0.00 0.00 0.00 

This reasoning leads to two, unexplained, questions: 

(i) Why the generator did not use a bid structure corresponding to the first data 

row of Table 3.14 (which yields a better mean and a better coefficient of 

variation, in addition to being simpler)? 

(ii) Why did the generator switch from one bid structure to another during the 

course of the day according to the pattern discussed earlier in this section? 

The two, natural, explanations are that he either had information that is not captured 

by the lottery model and, therefore, did not believe that this model applies, or that he 

simply acted in a naïve way as a result of not knowing how to obtain best profit. 

3.7 AUCTION & BID TO COVER RATIO 

The bid to cover ratio is a measure used in auctions to express the public demand for 

a particular security such as shares and bonds. It compares the number of bids 

received in a Treasury security auction to the number of bids accepted. It also can be 

computed as the value of bids received divided by the value of bids accepted. As an 
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example assume that the value of bids offered by the public for a security is $20 billion 

and the treasury offers $10 billion. This result in a bid to cover ratio of 2.  

Bid to cover ratio is well-known as an indicator of the public interest in bidding and 

also a barometer of success of an auction. A higher ratio, above 2.0, would be an 

indication of a strong or "bought" auction. On the other hand, a low ratio is an 

indication of a weak auction where the bid-ask spread24F

25 is quite wide (Fabozzi & 

Leibowits, 2007). 

In this section we examine the bid to cover ratio in the Australian electricity market. 

We compute this ratio by the value of money claimed from the electricity pool 25F

26 by 

generators divided by the value paid to the generators by AEMO. Below we apply this 

ratio to the Australian electricity market using an example. 

First, to explain the methodology, consider a small electricity market where just two 

generators bid to the pool. Suppose the bid stacks offered by these generators, G1 

and G2 are as shown in Table 3.16 and Table 3.17 respectively.  

Table 3.16. Bid stack offered by G1.  

Band 1 2 3 4 5 6 7 8 9 10 

Price -1000.8 28.79 33.8 38.8 45.81 55.81 75.83 100.85 2490.9 10007.77 

Volume 30 0 0 0 0 0 0 20 70 10 

Table 3.17. Bid stack offered by G2. 

Band 1 2 3 4 5 6 7 8 9 10 

Price -40 1 20 400 800 1000 1200 2000 5000 10000 

Volume 90 0 0 0 100 0 0 0 20 30 

 

For computing the bid to cover ratio first we need to calculate the value of money 

which has been claimed from the pool for cost of production. For this purpose,  

𝑀𝐵 = ∑ 𝑣𝑖𝑐𝑖

10

𝑖=1

= 752858 . 

Next suppose the demand for this trading interval is 𝑑 = 130, then the corresponding 

spot price for this trading interval is the price of the band at which the demand is 

                                                
25 The bid–ask spread for a security is the difference between the prices quoted for an 
immediate sale (bid) and an immediate purchase (ask). It represents the difference between 
the highest price that a buyer is willing to pay (bid) for a security and the lowest price that a 
seller is willing to accept for it. A transaction occurs either when a buyer accepts the ask price 
or a seller takes the bid price. 
26 In this we regard generators’ bid stacks as claims. 
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satisfied and is equal to 𝑆 = 100.85/𝑀𝑊ℎ. Therefore, 𝑀𝑃, the value of money that 

these generators will receive is as follows 

𝑀𝑃 = 𝑆 ∗ 𝑑 = $100.85 ∗ 130 = $13110.5 .  

Hence, the bid to cover ratio, 𝑅, for this trading interval is 

𝑅 =
𝑀𝐵

𝑀𝑃
= 57.4 .                                                                                                                           (3.15) 

As this ratio is much higher than 2, it shows that the assumed auction with two 

generators was quite competitive and the interest of generators in bidding in this 

market was high.  

In the following, we demonstrate the bid to cover ratio in a more realistic situation, 

with respect to AEMO. Five trading intervals, both in low and high spot price periods, 

have been chosen in the state of South Australia. As shown in Table 3.18 the bid to 

cover ratio for the low spot price trading interval, 4:30 AM, is equal to 559.5 which 

shows a highly competitive auction in this period. However, as we approach to the 

high spot price trading intervals such as 3:30PM and 4:00PM, the bid to cover ratio 

decreases significantly to below one.  

Table 3.18. Bid to cover ratio on January 8th 2010 in South Australia.  

Trading Interval 4:30 AM 10:00 AM 3:00 PM 3:30 PM 4:00 PM 

Volume Offered 4403 4117 4897 4898 4898 

Demand 1231.22 2151.89 2735.65 2736.7 2793.25 

Volume / Demand 3.58 1.91 1.79 1.79 1.75 

Spot Price 14.2 32.04 340.77 9999.71 9999.71 

$ Paid by AEMO 17,483 68,947 932,227 27,366,206 27,931,690 

Bid-Cover Ratio 559.5 120.9 4.9 0.37 0.36 

The ratio below one indicates that, generators are paid much higher than they have 

bid to the market. This arises as all of the generators are paid equally based on the 

very high spot price, $9999.71, for this trading interval. For some generators, this price 

is even higher than the maximum price that they have offered in their bid stack. 

Luckily, similar to all other generators, they will also benefit from the high spot price 

in this trading interval. 
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As the bid to cover ratios illustrate in Table 3.18, it seems that in the high spot price 

trading intervals the competition among generators was not quite competitive and as 

a result the auction is considered to be relatively weak. The ratio of total volume of 

electricity offered by generators over the total demand in the fourth row of Table 3.18 

is also an indication of lower generation capacity offered by generators in the high 

spot price periods.  

3.8 RISK TO CONSUMERS 

In view of the preceding discussion it is now natural to consider how different bidding 

strategies of generators affect the risk of loss to consumers. Consistently with the 

assumptions A1-A2, we shall now consider the income for generators as a loss to 

consumers. With this approach and using risk measures such as Value-at-Risk (VaR) 

and conditional Value-at-Risk (CVaR) (Rockafellar and Urysaev 2000) we can 

investigate the risk faced by consumers as a result of generators’ bidding strategies 

in different trading intervals. 

Table 3.19 shows income for generators, loss to end-users, in a month of January 

2009. As in previous sections, all 1488 trading intervals in this specific month have 

been divided into three categories based on spot price values. It should be mentioned 

that January was chosen for investigation as there were a number of spikes in spot 

price of the electricity market in that period of time.  

Table 3.19. Income for generators, loss for consumers, at January 2009. 

Trading Interval  
Number of 
TI 

Ratio of TI 
Sum of Income in the 
Category 

Ratio of Income in 
the Category 

Low spot price 1449 0.97 926,144,523 0.38 

High spot price 39 0.03 1,495,246,025 0.62 

Total 1488 1 2,421,390,548 1 

Table 3.19 also shows the contribution to the income for generators corresponding to 

low and high spot price trading intervals. The labelled column “Ratio” is the ratio of 

the income of generators in each category to the whole income. We see that about 

62% of the total income of generators is a result of about 3% of the 1488 trading 

intervals in January 2009. These are the intervals corresponding to the high spot price 

category. This can be seen even more clearly from the pie charts in Figure 3.18.   
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Figure 3.18 Income for generators in high and low spot price trading intervals, January 2009. 

Since, the electricity cost during the high spot price periods is – in one form or another 

– passed on to the consumers, it is natural to consider the question: what is the risk 

of loss that has been imposed on consumers as result of the underlying bidding 

behaviour of generators? 

Before we examine the risk of loss to consumers, we briefly introduce two risk 

measures, namely, “Value at Risk” and “Conditional Value at Risk”, also called 

“Expected shortfall” (Hull 2008). 

Value at risk is a tool for measuring risk that has been used by financial institutions 

since the late 1990’s. It was initiated by J. P. Morgan in order to summarize the total 

risk of a portfolio in a single index. Basically, what VaR provides is a threshold for the 

loss in the portfolio in a specific time interval such that the probability that the loss 

exceeds this value in that time horizon will be given by a prescribed probability value, 

usually denoted by 𝛼. Thus, VaR of loss can be calculated from the probability 

distribution of the loss in the interval 𝑡.  

In our case, Figure 3.19 shows the estimated probability density function of loss to 

consumers in a a single trading interval. Intrinsically, what Figure 3.19 displays is how 

expensive electricity supply can become to consumers in just a single half hour period. 

This was done on the basis of real South Australian spot price and demand data 

collected over the 1,488 trading intervals in January 2009. The resulting, normalised, 

histogram is approximated by the continuous curve displayed in that figure.  Note, that 

negative values on the horizontal axis can arise (with very small probability) as a 

consequence of the initial bands in some generators’ bid stacks being negative.  The 

maximum cost of nearly $33.5 million observed in just a single trading interval lies so 

far to the right of the origin that its inclusion would distort the display. 
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Figure 3.19. Probability density of loss in a trading interval. 

However, we note that consumers may pay more than $33m in a trading interval albeit 

with a very low probability. Nevertheless, consumers could be legitimately concerned 

about their expected loss if, even with a low probability, that loss exceeds the VaR 

threshold in a trading interval. In order to answer this concern we employed the risk 

measure tool, sometimes called “Expected shortfall”.  What expected shortfall or 

CVaR determines is the average amount of loss over the mentioned time horizon, 

assuming that loss will exceed VaR (See Appendix 3.1). It has been argued that CVaR 

is a better measure of risk than VaR. Indeed, CVaR is what is known as a coherent 

measure of risk (Rockafellar and Uryasev 2000). 

 

Figure 3.20. VaR and CVaR of loss in a trading interval. 
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Figure 3.20 compares the risk imposed on consumers in a trading interval based on 

two risk measures of VaR and CVaR. Naturally, at every value of  𝛼 plotted on the 

horizontal axis VaR is less than or equal to CVaR, with the gap between the two 

indices diminishing as 𝛼 tends to 0. As Figure 3.20 shows there is a low probability, 

2.7%, that end-users lose more than $1.23m in a trading interval but if they do, then 

the expectation of that loss will be approximately $18.9m.  If one regards 𝛼 = 2.7% as 

not an insignificant level of risk, then the width of this gap is a cause for concern. 

Undoubtedly, that width is the direct consequence of the infrequent trading intervals 

where spot prices attain extremely high levels. The high spot price levels are clearly 

a consequence of the collective bid strategies by the generators, irrespective of 

whether the latter were intended to influence the spot price or not.  
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4. CHAPTER 4. PARAMETRIC 

OPTIMISATION PROBLEMS AND 

MARKET POWER 

In Chapters 1-3 we introduced the dispatch problem and the spot price calculation 

mechanism used by AEMO to pay generators for producing electricity. We saw that 

dual variables (shadow/marginal prices) of the linear program 𝐿𝑃(𝑡) directly 

contributed to the spot price applied during every trading interval via the formula 

y𝑗(�̂�) =
1

6
[𝑦𝑗(𝑡1) + 𝑦𝑗(𝑡2) + ⋯ + 𝑦𝑗(𝑡6)];         𝑗 = 1,2, … ,5,                                         (4.1) 

where 𝑦𝑗(𝑡𝑖) is the optimal value of the corresponding dual variable of  𝐿𝑃(𝑡𝑖);  𝑖 =

1,2, … ,6.  

In this chapter we consider the potential consequences of the fact that generators can 

influence some parameters of the linear programs 𝐿𝑃(𝑡𝑖). Indirectly, this opens the 

possibility of them being able to influence the marginal prices of electricity in each 

state and hence also the spot prices. We shall argue that this influence can potentially 

lead to at least two undesirable consequences: 

C1: Spot price volatility 

C2: Opportunity for generators to exercise market power. 
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4.1 DISPATCH PROBLEM IN GENERIC FORM 

In this section, we express the dispatch problem in generic, mathematical, form. We 

explain why dependence of 𝐿𝑃(𝑡𝑖) on parameters submitted by generators may cause 

instability in dispatch (and hence also) spot prices. Basically, from standard theory of 

linear programming (e.g. Luenberger, 1984) we know that 𝐿𝑃(𝑡𝑖) and its dual can be 

written in the form 

𝐿𝑃(𝑡𝑖) 

min 𝑐(𝑣, 𝑡𝑖)𝑇𝑥 

𝐴(𝑣)𝑥 ≥ 𝑏(𝑣, 𝑡𝑖)                                                                                                                                                                                             

𝑥 ≥ 0, 

and 

𝐷𝐿𝑃(𝑡𝑖) 

max  𝑏(𝑣, 𝑡𝑖)𝑇𝑦 

𝑦𝑇𝐴(𝑣) ≤ 𝑐(𝑣, 𝑡𝑖)𝑇                                                                                                                                                                                         

𝑦 ≥ 0, 

where we now emphasize the dependence of the constraint matrix, cost function and 

right hand side bounds on a vector parameters  𝑣. Of course, 𝑡𝑖 still refers to the five 

minute time interval comprising a given 30 minute trading interval. In our context we 

restrict 𝑣 to only those parameters which can be influenced by stakeholders: 

generators, in our case. For instance 𝑣𝑏
𝑔
 the amount of electricity that generators 𝑔 is 

willing to produce in price band 𝑏 at time 𝑡𝑖 is such a parameter. Its value comes from 

the bid stack submitted by generator 𝑔. 

Let 𝑋(𝑣) denote the feasible region of 𝐿𝑃(𝑡𝑖) and 𝑌(𝑣) the feasible region of 𝐷𝐿𝑃(𝑡𝑖). 

It is well known (e.g. Luenberger, 1984) that strong duality theorem implies that the 

set of all optimal pairs of solutions to 𝐿𝑃(𝑡𝑖) and 𝐷𝐿𝑃(𝑡𝑖) is the set 

Ω(𝑣): = {(𝑥, 𝑦) ∈ 𝑋(𝑣) × 𝑌(𝑣) | 𝑐(𝑣, 𝑡𝑖)𝑇𝑥 = 𝑏(𝑣, 𝑡𝑖)𝑇𝑦}. 

Remark 4.1 The cases when Ω(𝑣) is empty or 𝐿𝑃(𝑡𝑖) is unbounded are impossible  in 

realistic situations. However, the cases where Ω(𝑣) is a singleton or an infinite set 

may both arise. 
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It will be seen that there is an important distinction between the situation where Ω(𝑣) 

contains multiple optimal solutions and the situation when (𝑧0, 𝑦0) is the unique pair 

of optimal solutions for 𝐿𝑃(𝑡𝑖) and 𝐷𝐿𝑃(𝑡𝑖), respectively. 

In particular, consider a function 𝑢(𝑣, 𝑥, 𝑦) that captures the benefit to certain 

stakeholders of an optimal solution pair 𝑢(𝑥, 𝑦) ∈ Ω(𝑣). For instance, if we think of 

generators in state 𝑗 as our stakeholders the simple projection function 

𝑢(𝑣, 𝑥, 𝑦) = 𝑦𝑗, 

where 𝑦𝑗 is the dispatch price in state 𝑗 at time 𝑡𝑖, demonstrates an example of such 

a benefit function, as large value of 𝑦𝑗 benefit these generators. 

Let us define an “instability gap” of dispatch prices, for fixed parameter values 𝑣, as 

𝐼(𝑣): = max
Ω(𝑣)

𝑢(𝑣, 𝑥, 𝑦) − min
Ω(𝑣)

𝑢(𝑣, 𝑥, 𝑦).                                                                   (4.2) 

Clearly, if  Ω(𝑣) = {(𝑥, 𝑦)} that is 𝐿𝑃(𝑡𝑖) and 𝐷𝐿𝑃(𝑡𝑖) have unique optimal solutions, 

then 𝐼(𝑣) = 0. However, the latter situation is not generic in applications of linear 

programming. Multiple optimal solutions frequently arise. In these cases 𝐼(𝑣) > 0 is a 

possibility.  

Furthermore, irrespective of whether Ω(𝑣) is a singleton the fact that stakeholders can 

influence 𝑣 means that, in principle, 𝑣 can be seen as a vector of variables rather than 

parameters. 

Hence if we let  𝑉 denote the set of all possible values of 𝑣, then we see that the 

benefit function 𝑢(𝑣, 𝑥, 𝑦) could have a much bigger range than 𝐼(𝑣) when considered 

over the entire domain  

Ω: = {(𝑣, 𝑥, 𝑦)|(𝑥, 𝑦) ∈ Ω(𝑣), 𝑣 ∈ 𝑉}. 

Indeed, it is natural to now define the “overall instability gap” as 

𝐼: = max
Ω

𝑢(𝑣, 𝑥, 𝑦) − min
Ω

𝑢(𝑣, 𝑥, 𝑦).                                                                          (4.3) 
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Proposition 4.1: 

For a linear program 𝐿𝑃(𝑡𝑖) whose parameters 𝑣 are supplied by stakeholders the 

instability gaps satisfy: 

(i) 𝐼(𝑣) ≥ 0, with a strict inequality possible. 

(ii) 𝐼 ≥ 𝐼(𝑣), for every 𝑣 ∈ 𝑉, with a strict inequality possible, even if 𝐼(𝑣) = 0 

for each 𝑣. 

Proof: 

The inequality 𝐼(𝑣) ≥ 0 is obvious from definition and the fact that 𝐼(𝑣) > 0 is possible 

when Ω(𝑣) contains multiple optimal solutions also follows naturally. In Section 4.3 

we supply examples of that fact.  

For the second part note that  

max
Ω

𝑢(𝑣, 𝑥, 𝑦) = max
𝑣

max
Ω(𝑣)

 𝑢(𝑣, 𝑥, 𝑦) 

and 

min
Ω

𝑢(𝑣, 𝑥, 𝑦) = min
𝑣

min
Ω(𝑣)

 𝑢(𝑣, 𝑥, 𝑦). 

Hence, for each 𝑣 ∈ 𝑉 

𝐼(𝑣) = max
Ω(𝑣)

 𝑢(𝑣, 𝑥, 𝑦) − min
Ω(𝑣)

 𝑢(𝑣, 𝑥, 𝑦) ≤ max
𝑣

max
Ω(𝑣)

 𝑢(𝑣, 𝑥, 𝑦) − min
𝑣

min
Ω(𝑣)

 𝑢(𝑣, 𝑥, 𝑦) = 𝐼. 

Of course, strict inequality is possible in the above because  

max
𝑣

max
Ω(𝑣)

 𝑢(𝑣, 𝑥, 𝑦) > max
Ω(𝑣)

 𝑢(𝑣, 𝑥, 𝑦),  

is certainly possible, and similarly for the minima.  

Note that even if 𝐼(𝑣) = 0 for every 𝑣 ∈ 𝑉, the instability gap 𝐼 can still be positive. 

This is because the situation  

𝐼 = max
Ω

 𝑢(𝑣, 𝑥, 𝑦) − min
Ω

 𝑢(𝑣, 𝑥, 𝑦) = 𝑢(𝑣∗, 𝑥∗, 𝑦∗) − 𝑢(𝑣°, 𝑥∗, 𝑦∗) > 0,  

can certainly arise.  
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Remark 4.2 Arguably, both of the strict inequalities  

𝐼 > 𝐼(𝑣) > 0,                                                                                                          (4.4) 

offer an opportunity for stakeholders controlling 𝑣 to exercise market power, albeit in 

somewhat different ways. In the case of electricity generation this will be 

demonstrated in the remainder of this chapter. 

4.2 SIMPLIFIED DISPATCH PROBLEM 

It should be mentioned that, constraints of 𝐿𝑃(𝑡𝑖)  include many considerations such 

as network structure, ancillary services, etc. and the exact coefficients and 

dimensions of matrix 𝐴 are not publically available. For this purpose, we use a 

simplified version of the dispatch problem, which we shall denote by 𝑆𝐿𝑃(𝑡𝑖), where 

we only consider the demand constraints and the bid stacks offered by generators. In 

this way, 𝑆𝐿𝑃(𝑡𝑖) can be written in the form 

𝑆𝐿𝑃(𝑡𝑖) 

min ∑ 𝑐𝑏
𝑔

(𝑣, 𝑡𝑖)𝑥𝑏
𝑔

𝑔,𝑏

 

∑ 𝑥𝑏
𝑔

𝑔,𝑏 = 𝑑𝑗 (𝑡𝑖);                                        𝑗 ∈ {1,2, … ,5}                                                                              

 0 ≤ 𝑥𝑏
𝑔

≤ 𝑣𝑏
𝑔(𝑡𝑖);                                 𝑔 ∈ 𝐺 𝑎𝑛𝑑 𝑏 ∈ 𝐵. 

Recall that, if the optimal solution is non-unique and considering the projection 

function of 𝑢(𝑣, 𝑥, 𝑦) = 𝑦𝑗, there exists a gap between shadow prices of demand in 

different optimal solutions.  

4.3 COMBINED MODEL 

In this section, we investigate the possibility of non-uniqueness of the optimal solution 

in a combined model. For simplicity, we consider the primal dispatch problem of 

𝑆𝐿𝑃(𝑡𝑖) for a single state 𝑗 . Suppressing the given argument 𝑣 and 𝑡𝑖  for every five 

minute time interval, the dispatch problem becomes 
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𝑆𝐿𝑃 

Min ∑ 𝑐𝑏
𝑔

𝑥𝑏
𝑔

𝑔,𝑏

 

∑ 𝑥𝑏
𝑔

𝑔,𝑏 ≥ 𝑑                                                                                                                                             

−𝑥𝑏
𝑔

≥ −𝑣𝑏
𝑔

;                                     𝑔 ∈ 𝐺 𝑎𝑛𝑑 𝑏 ∈ 𝐵   

𝑥𝑏
𝑔

≥ 0.                

The dual variable corresponding to the demand constraint shows the dispatch price 

for the five minute time interval. We denote this dual variable by 𝑦′ in the dual linear 

problem below. 

𝐷𝑆𝐿𝑃 

Max [𝑦′𝑑 − ∑ 𝑦𝑏
𝑔

𝑣𝑏
𝑔

]

𝑔,𝑏

 

𝑦′−𝑦𝑏
𝑔
  ≤ 𝑐𝑏

𝑔
;                                   𝑔 ∈ 𝐺 𝑎𝑛𝑑 𝑏 ∈ 𝐵                                   

𝑦′, 𝑦𝑏
𝑔

≥ 0;                                       𝑔 ∈ 𝐺 𝑎𝑛𝑑 𝑏 ∈ 𝐵, 

where, 𝑦′ and 𝑦𝑏
𝑔

𝑠 are the corresponding dual variables of the demand constraint and 

the bid stack constraints, respectively.  

Based on the strong duality theorem (e.g. Luenberger, 1984, P89), if the primal linear 

programming problem has an optimal solution, then so does the dual problem and 

also the objective function values are equal. Here we consider a combined model  

(𝑃𝐷𝐿𝑃) below which consists of all of the primal and dual’s constraints and additional 

constraint which forces the equality of objective functions of primal and dual problem. 

𝑃𝐷𝐿𝑃 

∑ 𝑥𝑏
𝑔

𝑔,𝑏

≥ 𝑑 

−𝑥𝑏
𝑔

≥ −𝑣𝑏
𝑔

;                                               𝑔 ∈ 𝐺 𝑎𝑛𝑑 𝑏 ∈ 𝐵 

𝑦′−𝑦𝑏
𝑔
  ≤ 𝑐𝑏

𝑔
;                                             𝑔 ∈ 𝐺 𝑎𝑛𝑑 𝑏 ∈ 𝐵                                                                                                                         

∑ 𝑐𝑏
𝑔

𝑥𝑏
𝑔

𝑔,𝑏  = 𝑦′𝑑 − ∑ 𝑦𝑏
𝑔

𝑣𝑏
𝑔

𝑔,𝑏  

𝑥𝑏
𝑔

, 𝑦′, 𝑦𝑏
𝑔

≥ 0.  
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Basically, we use the combined 𝑃𝐷𝐿𝑃 model above to find the possible set of optimal 

solutions for the primal and dual linear programming problems indirectly. Any feasible 

solution {𝑥𝑏
𝑔

, 𝑦′, 𝑦𝑏
𝑔

}, which satisfies all of the constraints of 𝑃𝐷𝐿𝑃 , will supply an 

optimal solution for the original primal and dual linear programming problems, in the 

corresponding variables. Each optimal solution includes the shadow price which is 

the optimal dual variable corresponding to the demand constraint in the primal 𝐿𝑃 

problem. This variable is the basis for all the financial transactions between AEMO 

and the stakeholders via equation (4.1).  

Remark 4.3 Relating the combined model to Proposition 4.1 we consider the 

projection function of 𝑢(𝑣, 𝑥, 𝑦) = 𝑦′ as the objective function, where 𝑦′ shows the dual 

variable corresponding to the demand constraint. In this way, in case of non-

uniqueness of the optimal solution, we discover the range for 𝑦′ by minimising and 

maximising objective function of 𝑢(𝑥, 𝑦, 𝑣) = 𝑦′, respectively.  

To simplify we assume that dispatch price remains the same for all of the six periods 

used to calculate the spot price. In this way, we refer to the first dispatch price as the 

ultimate spot price for the corresponding trading interval. In the real case examples, 

the values for the dispatch price for every five minute interval is not publically 

available. Therefore we used the available spot price for each of the half an hour 

trading interval instead. 

As mentioned above, ultimately, we are interested in the minimum and maximum 

value for spot price, 𝑦′. Therefore, in the following, the combined 𝑃𝐷𝐿𝑃 model is run 

twice with the two different objective functions of minimising 𝑦1, 𝑃𝐷𝐿𝑃𝑙  and 

maximising 𝑦1 , 𝑃𝐷𝐿𝑃𝑢. 

  

 

𝑃𝐷𝐿𝑃𝑙 

𝑀𝑖𝑛 𝑦′ 

∑ 𝑥𝑏
𝑔

𝑔,𝑏

≥ 𝑑 

−𝑥𝑏
𝑔

≥ −𝑣𝑏
𝑔

;              𝑔 ∈ 𝐺 𝑎𝑛𝑑 𝑏 ∈ 𝐵 

𝑦′−𝑦𝑏
𝑔
  ≤ 𝑐𝑏

𝑔
;            𝑔 ∈ 𝐺 𝑎𝑛𝑑 𝑏 ∈ 𝐵                                                 

∑ 𝑐𝑏
𝑔

𝑥𝑏
𝑔

𝑔,𝑏  = 𝑦′𝑑 − ∑ 𝑦𝑏
𝑔

𝑣𝑏
𝑔

𝑔,𝑏  

𝑥𝑏
𝑔

, 𝑦′, 𝑦𝑏
𝑔

≥ 0.  

𝑃𝐷𝐿𝑃𝑢 

𝑀𝑎𝑥 𝑦′ 

∑ 𝑥𝑏
𝑔

𝑔,𝑏

≥ 𝑑 

−𝑥𝑏
𝑔

≥ −𝑣𝑏
𝑔

;              𝑔 ∈ 𝐺 𝑎𝑛𝑑 𝑏 ∈ 𝐵 

𝑦′−𝑦𝑏
𝑔
  ≤ 𝑐𝑏

𝑔
;            𝑔 ∈ 𝐺 𝑎𝑛𝑑 𝑏 ∈ 𝐵                                                 

∑ 𝑐𝑏
𝑔

𝑥𝑏
𝑔

𝑔,𝑏  = 𝑦′𝑑 − ∑ 𝑦𝑏
𝑔

𝑣𝑏
𝑔

𝑔,𝑏  

𝑥𝑏
𝑔

, 𝑦′, 𝑦𝑏
𝑔

≥ 0.  
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In this way, if the optimal solution is non-unique in the original 𝐿𝑃 problem, we will find 

the lower, 𝑦′𝑙
, and upper, 𝑦′𝑢

, boundaries of optimal shadow prices. For a fixed 

demand parameter 𝑑, the difference between maximum and minimum shadow prices, 

instability gap is 

𝐼(𝑣) = 𝑦′𝑢
− 𝑦′𝑙

, 

where the dependence on 𝑑 is suppressed while this parameter is fixed. Sections 

4.4.1 and 4.4.2 show examples under two different scenarios of a small electricity 

market with three generators and the South Australian electricity market with 34 

generators, respectively. In each section, results are compared in low and high 

demand trading intervals.  

4.3.1 Three generators examples 

Consider, a small electricity market in which just three generators offer to produce 

electricity and instead of 10 bands, they only offer the volume and price of electricity 

in three bands, that is, 𝑔 ∈ {1,2,3} 𝑎𝑛𝑑 𝑏 ∈ {1,2,3} as in the following table. Also 

assume that, all generators have the same total capacity of 20 MW.  

As Table 4.1 shows, generator G1 allocates its total capacity of 20 MW into the three 

band bid stack and offers 10 MW at the price of $-5 per MWh, 10 MW at the price of 

$0 and 0 MW at the price of $15 per MWh in the bands one, two and three, 

respectively. Recall that, the negative sign for the price ($-5) indicates that this 

generator may even be willing to pay the market to produce some electricity. 

Table 4.1. Three generators bid stack. 

Generators Capacity 
volume offered at each band Prices offered at each band 

1 2 3 1 2 3 

G1 20 10 10 0 -5 0 15 

G2 20 7 3 10 0 10 20 

G3 20 5 10 5 -2 6 14 

Similarly, the last two rows of Table 4.1 give the volume and price bid stacks of 

generators G2 and G3. By considering just these three generators in the market, the 

primal 𝐿𝑃 and the corresponding dual problem are as follows.  
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𝐿𝑃 

𝑀𝑖𝑛 (𝑐1
1𝑥1

1 + 𝑐2
1𝑥2

1 + 𝑐3
1𝑥3

1 + 𝑐1
2𝑥1

2 + 𝑐2
2𝑥2

2 + 𝑐3
2𝑥3

2 + 𝑐1
3𝑥1

3 + 𝑐2
3𝑥2

3 + 𝑐3
3𝑥3

3) 

𝑥1
1 + 𝑥2

1 + 𝑥3
1 + 𝑥1

2 + 𝑥2
2 + 𝑥3

2 + 𝑥1
3 + 𝑥2

3 + 𝑥3
3 ≥ 𝑑 

𝑥1
1 ≤ 𝑣1

1 

𝑥2
1 ≤ 𝑣2

1 

𝑥3
1 ≤ 𝑣3

1 

𝑥1
2 ≤ 𝑣1

2 

𝑥2
2 ≤ 𝑣2

2 

𝑥3
2 ≤ 𝑣3

2 

𝑥1
3 ≤ 𝑣1

3 

𝑥2
3 ≤ 𝑣2

3 

𝑥3
3 ≤ 𝑣3

3 

𝑥1
1, 𝑥2

1, 𝑥3
1, 𝑥1

2, 𝑥2
2, 𝑥3

2, 𝑥1
3, 𝑥2

3, 𝑥3
3 ≥ 0. 

 

 

𝐷𝐿𝑃 

𝑀𝑎𝑥 (𝑦′𝑑 − 𝑦1
1𝑣1

1 − 𝑦2
1𝑣2

1 − 𝑦3
1𝑣3

1 − 𝑦1
2𝑣1

2 − 𝑦2
2𝑣2

2 − 𝑦3
2𝑣3

2 − 𝑦1
3𝑣1

3 − 𝑦2
3𝑣2

3

− 𝑦3
3𝑣3

3) 

𝑦′ − 𝑦1
1 ≤ 𝑐1

1 

𝑦′ − 𝑦2
1 ≤ 𝑐2

1 

𝑦′ − 𝑦3
1 ≤ 𝑐3

1 

𝑦′ − 𝑦1
2 ≤ 𝑐1

2 

𝑦′ − 𝑦2
2 ≤ 𝑐2

2 

𝑦′ − 𝑦3
2 ≤ 𝑐3

2 

𝑦′ − 𝑦1
3 ≤ 𝑐1

3 

𝑦′ − 𝑦2
3 ≤ 𝑐2

3 

𝑦′ − 𝑦3
3 ≤ 𝑐3

3 

𝑦′, 𝑦1
1, 𝑦2

1, 𝑦3
1, 𝑦1

2, 𝑦2
2, 𝑦3

2, 𝑦1
3, 𝑦2

3, 𝑦3
3 ≥ 0. 
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Hence the combined 𝑃𝐷𝐿𝑃𝑙 and 𝑃𝐷𝐿𝑃𝑢 models are as follows. 

𝑃𝐷𝐿𝑃𝑙 

𝑀𝑖𝑛 𝑦′                                                                                                

∑ 𝑥𝑏
𝑔

𝑔,𝑏 ≥ 𝑑                                                                                        

𝑥𝑏
𝑔

≤ 𝑣𝑏
𝑔

;                             𝑔 ∈ {1,2,3} & 𝑏 ∈ {1,2,3}                                  

𝑦′ − 𝑦𝑏
𝑔
 ≤ 𝑐𝑏

𝑔
;                       𝑔 ∈ {1,2,3} & 𝑏 ∈ {1,2,3}     

∑ 𝑐𝑏
𝑔

𝑥𝑏
𝑔

𝑔,𝑏  = 𝑦′𝑑 − ∑ 𝑦𝑏
𝑔

𝑣𝑏
𝑔

𝑔,𝑏               

𝑥𝑏
𝑔

, 𝑦′, 𝑦𝑏
𝑔

≥ 0. 

 

𝑃𝐷𝐿𝑃𝑢 

𝑀𝑎𝑥 𝑦′                                                                                                

∑ 𝑥𝑏
𝑔

𝑔,𝑏 ≥ 𝑑                                                                                        

𝑥𝑏
𝑔

≤ 𝑣𝑏
𝑔

;                             𝑔 ∈ {1,2,3} & 𝑏 ∈ {1,2,3}                                  

𝑦′ − 𝑦𝑏
𝑔
 ≤ 𝑐𝑏

𝑔
;                       𝑔 ∈ {1,2,3} & 𝑏 ∈ {1,2,3}     

∑ 𝑐𝑏
𝑔

𝑥𝑏
𝑔

𝑔,𝑏  = 𝑦′𝑑 − ∑ 𝑦𝑏
𝑔

𝑣𝑏
𝑔

𝑔,𝑏               

𝑥𝑏
𝑔

, 𝑦′, 𝑦𝑏
𝑔

≥ 0. 

Now for a single trading interval we illustrate the solutions of the models above 

assuming the demand is equal to 42 MW. As shown in Table 4.2 and Table 4.3, by 

solving the models 𝑃𝐷𝐿𝑃𝑙  and 𝑃𝐷𝐿𝑃𝑢 , we obtain different values for the optimal 𝑦′, 

namely 𝑦′𝑢
 and 𝑦′𝑙

.  
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Table 4.2. Generators bid stacks and shadow prices (𝑃𝐷𝐿𝑃𝑙). 

Generators Capacity 
𝑣𝑏

𝑔
 𝑥𝑏

𝑔∗
 

𝑦′𝑙
 Demand 

1 2 3 1 2 3 

𝐺1 20 10 10 0 10 10 0 

6 42 𝐺2 20 7 3 10 7 0 0 

𝐺3 20 5 10 5 5 10 0 

Columns 6-8 of Table 4.2 show the optimal dispatch variables, 𝑥𝑏
𝑔∗

, indicating the 

volumes of electricity ordered from each generator in each price band. For instance, 

after the bids are submitted and the regulator solves 𝑃𝐷𝐿𝑃𝑙  , then the regulator will 

buy the whole volume offered by generator 𝐺1 in the bands one, two and three, 𝑥1
1∗

=

10𝑀𝑊, 𝑥2
1∗

= 10𝑀𝑊 and 𝑥3
1∗

= 0𝑀𝑊. From generator 𝐺2, the regulator only buys the 

whole volume of electricity offered in the first band and buys nothing from bands two 

and three, 𝑥1
2∗

= 7𝑀𝑊, 𝑥2
2∗

= 0𝑀𝑊 and 𝑥3
2∗

= 0𝑀𝑊, and finally the regulator will buy 

just the volumes of electricity offered in the fisrt and second band by generator 𝐺3, 

𝑥1
3∗

= 5𝑀𝑊, 𝑥2
3∗

= 10𝑀𝑊 and 𝑥3
3∗

= 0𝑀𝑊. 

Table 4.3. Generators bid stacks and shadow prices (𝑃𝐷𝐿𝑃𝑢). 

Generators Capacity 
𝑣𝑏

𝑔
 𝑥𝑏

𝑔∗
 

𝑦′𝑢
 Demand 

1 2 3 1 2 3 

𝐺1 20 10 10 0 10 10 0 

10 42 𝐺2 20 7 3 10 7 0 0 

𝐺3 20 5 10 5 5 10 0 

Similarly, after the bids are submitted and the regulator solves (𝑃𝐷𝐿𝑃𝑢), the optimal 

dispatch variables, 𝑥𝑏
𝑔∗

, are 𝑥1
1∗

= 10𝑀𝑊, 𝑥2
1∗

= 10𝑀𝑊 and 𝑥3
1∗

= 0𝑀𝑊. 𝑥1
2∗

= 7𝑀𝑊, 

𝑥2
2∗

= 0𝑀𝑊 and 𝑥3
2∗

= 0𝑀𝑊, 𝑥1
3∗

= 5𝑀𝑊, 𝑥2
3∗

= 10𝑀𝑊 and 𝑥∗ = 0𝑀𝑊 (See Table 

4.2). Results from Table 4.2 and Table 4.3 show that the instability gap exists and is 

equal to,  

𝐼 = 𝑦′𝑢
− 𝑦′𝑙

= 10 − 6 = 4. 

Remark 4.4 At first sight it may appear surprising that the values of  𝑥𝑏
𝑔∗

 are the same 

in Table 4.2 and 4.3. However, we note that the corresponding optimal solutions differ 

in the 𝑦𝑏
𝑔∗

 variable and also in 𝑦′∗
. 

4.3.2 South Australian size examples 

In this section we investigate whether the instability gap can also arise in more realistic 

size situations. For this purpose, we consider the state of South Australia which at 

certain times, in 2010 had 34 generators participating in the pool. Using 𝑃𝐷𝐿𝑃𝑙 and 
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𝑃𝐷𝐿𝑃𝑢  models and the bidding strategies of these generators during a high spot price 

trading interval, we determine the instability gap which is shown in Table 4.4.  

As Table 4.4 demonstrates, the optimal value of 𝑦′, or the shadow price, possesses 

a wide instability gap and the width of this gap is increasing as the demand increases.. 

Table 4.4. Instability gap in shadow prices. 

Min Shadow Price Max Shadow Price Instability Gap Demand 

0 19.7 19.7 2877 

108 287.63 179.63 3360 

551.25 1454 902.75 3665 

1454 3740 2286 3739 

3740 9000.1 
5260.1 

3754 

Note that in practice, the generated electricity must be higher that the forecasted 

demand for each trading interval. This is due to electrical resistance and the heating 

of conductors in the network. Therefore, more electricity must be generated to allow 

for this loss during transportation. AEMO considers a loss factor to ensure the delivery 

of adequate supply to meet prevailing demand and maintain the power system in 

balance. For more details see (AEMO, 2012b and AEMO, 2015). 

4.4 DEPARTURES FROM BEHAVIOURAL ASSUMPTIONS 

The results above show that not only the value for the shadow price is non-unique, 

but also that it could lie in a wide interval. Therefore a question arises as to why would 

consumers pay a considerably higher price, particularly in the high demand periods, 

if optimal solutions to 𝐿𝑃(𝑡) exist with lower shadow prices?  

Clearly, the current market is based on a behavioural assumption concerning the 

generators’ bidding strategies. Namely, that their desire to compete against one 

another would, somehow, lead to the optimal solution of 𝐿𝑃 with the lowest value, 

namely,  𝑦′ = 𝑦′𝑙
. However, there is no formal mechanism in the market design to 

prevent an optimal solution with the highest possible value, namely, 𝑦′ = 𝑦′𝑢
. 

Hence it is worthwhile to consider what alternative behavioural assumptions about the 

generators may lead to, in terms of shadow price, and whether some of the observed 

bidding behaviour is in concordance with one, or more, of these alternative 

assumptions. 
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Recall that, the price that AEMO is going to pay to all generators is the same and is 

equal to the spot price. Therefore, the bidding behaviour among generators is 

complex and related not only to winning as much volume of electricity as possible but, 

perhaps, also to influencing the spot price. 

In view of the above, the volumes offered at different price bands can be regarded not 

as parameters but as variables with the potential to steer the spot price in a favourable 

direction. Consequently, in the remainder of this section we introduce two nonlinear 

programs which treat volumes in bid stack as decision variables under two extreme 

behavioural assumptions: antagonism and altruism. 

Remark 4.5 We alert the reader that the “trivial” solutions under these assumptions 

are obvious but totally unrealistic. On one hand, under the antagonistic assumption, 

all generators might demand $10,000/𝑀𝑊ℎ for every unit of electricity. However, that 

would trigger a reaction from AEMO and accusations of blatant non-competitive 

behaviour. On the other hand, offering to produce all electricity at zero or 

unrealistically low price would lead to bankruptcies.  

Interestingly, however, the nonlinear programs we formulated also contain many local 

minima and maxima and the form of the bid stacks corresponding to the latter, at 

times, resembles what is actually observed in the market. This raises the question of 

whether the generators are, implicitly, acting as such local maximisers. 

4.4.1 Extreme antagonistic and altruistic scenarios 

Here we consider the extreme antagonistic scenarios described below. 

Arguably, generators could be viewed as an “aggregated agent” interested in 

maximising the spot price. To the “aggregated generator”, 𝐿𝑃(𝑡) may be viewed 

merely as a reactive pricing mechanism that AEMO’s regulations are committed to 

follow, no matter what bids they supply. Thus, the “aggregated generator” could, 

theoretically, view their problem as the combined non-linear optimisation 

model 𝑁𝑃𝐷𝑢, stated below. Under this behavioural assumption, the aggregated 

generator solves 𝑁𝑃𝐷𝑢 to obtain an optimal solution (𝑥𝑏
𝑔∗

, 𝑦′∗
, 𝑦𝑏

𝑔∗
, 𝑣𝑏

𝑔∗
) which 

maximises the shadow price and consequently their profit. Then each individual 

generator 𝑔 uses the 𝑣𝑏
𝑔∗

, 𝑏 ∈ 𝐵 values to supply their bid stack to AEMO. 
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𝑁𝑃𝐷𝑢 

𝑀𝑎𝑥 𝑦′                                                                                                

∑ 𝑥𝑏
𝑔

𝑔,𝑏 ≥ 𝑑;                                                                                        

𝑥𝑏
𝑔

≤ 𝑣𝑏
𝑔

;                                             𝑔 ∈ 𝐺 𝑎𝑛𝑑 𝑏 ∈ 𝐵                                  

𝑦′ − 𝑦𝑏
𝑔
 ≤ 𝑐𝑏

𝑔
;                                         𝑔 ∈ 𝐺 𝑎𝑛𝑑 𝑏 ∈ 𝐵     

∑ 𝑐𝑏
𝑔

𝑥𝑏
𝑔

𝑔,𝑏  = 𝑦′𝑑 − ∑ 𝑦𝑏
𝑔

𝑣𝑏
𝑔

𝑔,𝑏 ;                                                                       (∗)  

∑ 𝑣𝑏
𝑔

𝑏 = 𝐶𝑎𝑝𝑔;                                      𝑔 ∈ 𝐺                                                    (∗∗) 

𝑥𝑏
𝑔

, 𝑦′, 𝑦𝑏
𝑔

, 𝑣𝑏
𝑔

≥ 0. 

In 𝑁𝑃𝐷𝑢 model, 𝑣𝑏
𝑔

′𝑠 become decision variables from the aggregated generators’ 

perspective. This means that the constraint (∗) in  𝑁𝑃𝐷𝑢 is now nonlinear in the 

decision variables 𝑦𝑏
𝑔
 and 𝑣𝑏

𝑔
. Moreover, the constraint (∗∗) is included in the (𝑁𝑃𝐷𝑢) 

model to make sure the summation of volumes offered at each band by a particular 

generator, ∑ 𝑣𝑏
𝑔

𝑏 , is exactly equal to that generator’s maximum available  capacity.                                      

𝑁𝑃𝐷𝑙 

𝑀𝑖𝑛 𝑦′                                                                                                

∑ 𝑥𝑏
𝑔

𝑔,𝑏 ≥ 𝑑;                                                                                        

𝑥𝑏
𝑔

≤ 𝑣𝑏
𝑔

;                                             𝑔 ∈ 𝐺 𝑎𝑛𝑑 𝑏 ∈ 𝐵                                  

𝑦′ − 𝑦𝑏
𝑔
 ≤ 𝑐𝑏

𝑔
;                                         𝑔 ∈ 𝐺 𝑎𝑛𝑑 𝑏 ∈ 𝐵     

∑ 𝑐𝑏
𝑔

𝑥𝑏
𝑔

𝑔,𝑏  = 𝑦′𝑑 − ∑ 𝑦𝑏
𝑔

𝑣𝑏
𝑔

𝑔,𝑏 ;          

∑ 𝑣𝑏
𝑔

𝑏 = 𝐶𝑎𝑝𝑔;                                      𝑔 ∈ 𝐺  

𝑥𝑏
𝑔

, 𝑦′, 𝑦𝑏
𝑔

, 𝑣𝑏
𝑔

≥ 0.                                                                     

Similarly, AEMO could be viewed as an “agent” interested in minimising the spot price 

on behalf of the consumers. Therefore, AEMO would prefer generators to offer their 

bid stacks in a way that minimises the cost to consumers. Hence, from AEMO’s 
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perspective, the optimal bid stacks that minimise the cost to consumers are the results 

of the non-linear programming problem, 𝑁𝑃𝐷𝑙. 

Results in Section 4.4.2 and Section 4.4.3 show that difference in the allocation of bid 

stacks would result in considerable instability gap in the shadow price. 

4.4.2 Illustrative examples 

Similarly to Section 4.3.1 assume, a small market consisting of three generators who 

offer their available capacity and band prices as in Table 4.5. Both 𝑁𝑃𝐷𝑙 and 𝑁𝑃𝐷𝑢 

models are solved in a low and a high demand period. We note that the solutions 

obtained may be only local (rather than global) optima. 

Table 4.5. Three generators bid stack. 

Generators Capacity 

Prices offered at each band 

1 2 3 

G1 20 -5 0 15 

G2 20 0 10 20 

G3 20 -2 6 14 

4.4.2.1 Low demand period 

Assume the price bands offered by the generators are fixed as in Table 4.5 above 

and all generators have the maximum available capacity of 20 MW. If in a particular 

trading interval, the demand is 22 MW then AEMO would prefer the bid stacks to look 

as in columns 3-5 in Table 4.6 to minimise the cost for consumers. 

Table 4.6. Optimal volume to be offered and bought in the minimisation and maximisation problems in a 
low demand period. 

Generators Capacity 

𝑁𝑃𝐷𝑙 𝑁𝑃𝐷𝑢 

Demand 𝑣𝑏
𝑔∗

 𝑥𝑏
𝑔∗

 𝑣𝑏
𝑔∗

 𝑥𝑏
𝑔∗

 

1 2 3 1 2 3 1 2 3 1 2 3 

G1 20 1.19 0.81 18.00 1.19 0.81 0.00 2.00 0.00 18.00 2.00 0.00 0.00 

22 
G2 20 0.00 20.00 0.00 0.00 0.00 0.00 0.00 20.00 0.00 0.00 0.00 0.00 

G3 20 0.00 20.00 0.00 0.00 20.00 0.00 0.17 19.83 0.00 0.17 19.83 0.00 

𝑦′ 6 10 

Assuming the price bands are as in Table 4.5 above, generator G1 needs to offer 

𝑣1
1∗

= 1.19 MW at the price of 𝑐1
1 = $ − 5 , 𝑣2

1∗
= 0.81 MW at the price 𝑐2

1 = $0  and 

𝑣3
1∗

= 18 MW at the price 𝑐3
1 = $15. Similarly, the optimum bid stack offered by 

generator G2 to minimise AEMO’s cost would be 𝑣1
2∗

= 0 MW at the price 𝑐1
2 = $0 , 

𝑣2
2∗

= 20 MW at the price 𝑐2
2 = $10  and 𝑣3

2∗
= 0 MW at the price 𝑐3

2 = $20. Similarly, 

generator G3 needs to offer 𝑣1
3∗

= 0 MW at the price 𝑐1
3 = $ − 2 , 𝑣2

3∗
= 20 MW at the 

price 𝑐2
3 = $6  and 𝑣3

3∗
= 0 MW at the price 𝑐3

3 = $14 to minimise AEMO’s cost. 
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Then, as shown in columns 6-8 of Table 4.6, AEMO would gather all these bid stacks 

offered and will buy all volume offered by generator G1 in the first two bands so 𝑥1
1∗

=

1.19 , 𝑥2
1∗

= 0.81 MW and 𝑥3
1∗

= 0. AEMO buys nothing from generator G2 so,  𝑥1
2∗

=

0 MW, 𝑥2
2∗

= 0 MW and 𝑥3
2∗

= 0 MW. AEMO also buys 20 MW from the second band 

of bid stack offered by generator G3, namely, 𝑥1
3∗

= 0 MW , 𝑥2
3∗

= 20 MW and 𝑥3
3∗

= 0 

MW.  

Next the 𝑁𝑃𝐷𝑢 solutions are obtained. Similarly to the above, the corresponding 𝑣𝑏
𝑔∗

 

and 𝑥𝑏
𝑔∗

 variables for the maximising problem are as shown in columns 9-14 in Table 

4.6. Note that the allocation of optimum bid stacks in Table 4.6 accompany the 

shadow prices of 𝑦′𝑙
= 6 and 𝑦′𝑢

= 10 for the minimising and maximising problems 

respectively, which indicates that the instability gap exists and is equal to 

𝐼𝐺 = 𝑦′𝑢
− 𝑦′𝑙

≥ 10 − 6 = 4 > 0. 

Note that the first inequality in the above is due to the fact that the solution algorithm 

used is not guaranteed to find global optima. However, these inequalities demonstrate 

that a sizable instability gap exists. 

Comparing the results from the 𝑁𝑃𝐷𝑙 nd 𝑁𝑃𝐷𝑢 problems in Table 4.6 above reveals 

two notable differences; 

(i) The values of 𝑣𝑏
𝑔∗

 show some shifts in the portion of volume offered at each 

band. For instance, to maximise the profit, generators G1 and G3 need to 

change the allocation of their total capacity (20 𝑀𝑊) and shift more volume to 

be offered in the less expensive bands.  

(ii) These shifts increased the value of shadow price, since the instability gap of 

four occurs, which will result in a higher profit for generators.  

It should be noted that, results in Table 4.6 may correspond to only local minima and 

maxima. Indeed, the multiplicity of local optima can lead to solutions that show little 

or no difference in either the shadow price variables  𝑦′ or in the 𝑣𝑏
𝑔∗

 values. However, 

the results above indicate that shifts in the bid stacks variables 𝑣𝑏
𝑔
 can result in 

significant shifts in the shadow price variable 𝑦′. 

4.4.2.2 High demand period 

Consider the demand increased to 𝑑 = 42 (out of total capacity of 40). Then Table 4.7 

shows the optimum bid stacks to be offered in order to optimise AEMO and the 
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aggregated generator’s utility function, respectively. Results demonstrate that even 

very small shifts in the volumes offered by the generators in various bands may result 

in significant change in the shadow price variable 𝑦′. 

Table 4.7. Optimal volume to be offered and bought in the minimisation and maximisation problems in a 
high demand period. 

Generators Capacity 

𝑁𝑃𝐷𝑙 𝑁𝑃𝐷𝑢 Deman
d 𝑣𝑏

𝑔∗
 𝑥𝑏

𝑔∗
 𝑣𝑏

𝑔∗
 𝑥𝑏

𝑔∗
 

1 2 3 1 2 3 1 2 3 1 2 3  

G1 20 20.00 0.00 0.00 20.00 0.00 0.00 17.14 2.86 0.00 17.14 2.86 0.00 

42 G2 20 1.00 1.00 18.00 1.00 1.00 0.00 0.01 1.99 18.00 0.01 1.99 0.00 

G3 20 15.49 0.00 4.51 15.49 0.00 4.51 17.78 0.00 2.22 17.78 0.00 2.22 

𝑦′ 14 20  

 
Similarly to the low demand period we observe that:  
 

(i) The instability gap shows that the optimum shadow price in 𝑁𝑃𝐷𝑢 is 

greater than that in 𝑁𝑃𝐷𝑙. Furthermore,  

 

𝐼𝐺 = 𝑦′𝑢
− 𝑦′𝑙

≥ 20 − 14 = 6. 

(ii) The behaviour of generators in offering the optimum bidding behaviour is 

different in the 𝑁𝑃𝐷𝑙  and 𝑁𝑃𝐷𝑢 models. Generators G1 and G2 need to 

shift small portions of their total capacity to the more expensive band to 

gain more profit in the 𝑁𝑃𝐷𝑢 model. Generator G3 three behaves in an 

opposite direction and shifts more volume to the less expensive bands 

(See Table 4.8).  

Table 4.8. Comparison of optimal bids in min/max problems. 

Generators Capacity 

𝑁𝑃𝐷𝑙 𝑁𝑃𝐷𝑢 

𝑣𝑏
𝑔∗

 𝑣𝑏
𝑔∗

 

1 2 3 1 2 3 

G1 20 16.14 3.86 0 2.03 16.78 1.19 

G2 20 16 0 4 0 0 20 

G3 20 0 0 20 11.13 0.64 8.23 

4.4.3 South Australian size examples 

For this section, we used the data related to the particular day, the 8th of January 

2010, in South Australia. On that day, there were 34 generators who participated in 

the pool in South Australia. This means that now the number of variables in both 𝑁𝑃𝐷𝑙 

and 𝑁𝑃𝐷𝑢 models is 1021. As a result, finding even a local optimum for these models 

is a time consuming task. Both 𝑁𝑃𝐷𝑙 and 𝑁𝑃𝐷𝑢 models were coded and run using 

MATLAB but the running times were prohibitive.  
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In order to improve the process speed we tried to transfer the nonlinearity of the 

constraints to the objective function and hence used the penalty method. That is, we 

included a variable 𝑤 in the model where, ∑ 𝑦𝑏
𝑔

𝑣𝑏
𝑔

𝑔,𝑏 = 𝑤. Then the minimisation 𝑁𝑃𝐷𝑙  

model, changes to the 𝑁𝑃𝐷𝑙̅̅ ̅̅ ̅̅ ̅ model, where 𝑀 is the penalty cost introduced in the 

objective function and assumed to have a suitably large value. 

𝑁𝑃𝐷𝑙̅̅ ̅̅ ̅̅ ̅ 

𝑀𝑖𝑛 {𝑦′ + 𝑀 (𝑤 − ∑ 𝑦𝑏
𝑔

𝑣𝑏
𝑔

𝑔,𝑏

)

2

} 

∑ 𝑥𝑏
𝑔

𝑔,𝑏 ≥ 𝑑;                                                         

𝑥𝑏
𝑔

≤ 𝑣𝑏
𝑔

;                                                 𝑔 ∈ 𝐺 𝑎𝑛𝑑 𝑏 ∈ 𝐵 

𝑦′ − 𝑦𝑏
𝑔
 ≤ 𝑐𝑏

𝑔
;                                  𝑔 ∈ 𝐺 𝑎𝑛𝑑 𝑏 ∈ 𝐵         

− ∑ 𝑐𝑏
𝑔

𝑥𝑏
𝑔

𝑔,𝑏 + 𝑦′𝑑 = 𝑤;                                                                                          (∗) 

∑ 𝑣𝑏
𝑔

𝑏

= 𝐶𝑎𝑝𝑔;                                    𝑔 ∈ 𝐺  

𝑥𝑏
𝑔

, 𝑦′, 𝑦𝑏
𝑔

, 𝑣𝑏
𝑔

≥ 0. 

In the 𝑁𝑃𝐷𝑙̅̅ ̅̅ ̅̅ ̅ model, the nonlinearity only exists in the objective function, as deviations 

from satisfying the only non-linear constraint in 𝑁𝑃𝐷𝑙 model are now penalized in the 

objective function. Similarly the 𝑁𝑃𝐷𝑢 model would convert to the 𝑁𝑃𝐷𝑢̅̅ ̅̅ ̅̅ ̅̅   model below, 

where 𝑀 is the penalty cost, as before. 

𝑁𝑃𝐷𝑢̅̅ ̅̅ ̅̅ ̅̅  

𝑀𝑎𝑥 {𝑦′ − 𝑀 (𝑤 − ∑ 𝑦𝑏
𝑔

𝑣𝑏
𝑔

𝑔,𝑏

)

2

} 

∑ 𝑥𝑏
𝑔

𝑔,𝑏 ≥ 𝑑;                                                         

𝑥𝑏
𝑔

≤ 𝑣𝑏
𝑔

;                                                 𝑔 ∈ 𝐺 𝑎𝑛𝑑 𝑏 ∈ 𝐵 

𝑦′ − 𝑦𝑏
𝑔
 ≤ 𝑐𝑏

𝑔
;                                  𝑔 ∈ 𝐺 𝑎𝑛𝑑 𝑏 ∈ 𝐵         

− ∑ 𝑐𝑏
𝑔

𝑥𝑏
𝑔

𝑔,𝑏 + 𝑦′𝑑 = 𝑤;                                                                                          (∗) 

∑ 𝑣𝑏
𝑔

𝑏

= 𝐶𝑎𝑝𝑔;                                    𝑔 ∈ 𝐺  

𝑥𝑏
𝑔

, 𝑦′, 𝑦𝑏
𝑔

, 𝑣𝑏
𝑔

≥ 0. 
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These models were coded and run using MATLAB software and this time it took less 

than an hour to find a local optimum solution. Thus the speed of the process was 

significantly enhanced.  

Remark 4.6 As we run both 𝑁𝑃𝐷𝑙̅̅ ̅̅ ̅̅ ̅ and 𝑁𝑃𝐷𝑢̅̅ ̅̅ ̅̅ ̅̅  models, we realize that many local 

optima exist for these problems. Therefore, in this section, we do not necessarily 

intend to find the global minimum or maximum 𝑦′ in the  𝑁𝑃𝐷𝑙̅̅ ̅̅ ̅̅ ̅̅  and 𝑁𝑃𝐷𝑢̅̅ ̅̅ ̅̅ ̅̅  models. 

Rather, we try to investigate which forms of bid stacks would benefit generators or 

consumers in different circumstances such as during low or high spot price trading 

intervals. 

Table 4.9. Prices offered by the 34 generators in South Australia on January 8th 2010. 

Generator 
Price offered at each band 

1 2 3 4 5 6 7 8 9 10 

G1 -976 1 97 142 293 576 976 9174 9565 9760 

G2 -958 0 97 240 288 431 8623 9533 9580 9581 

G3 -958 0 97 240 288 431 8623 9533 9580 9581 

G4 -962 -605 -505 -405 -305 -205 -105 -55 0 9619 

G5 -1006 0 70 100 301 503 1510 5031 8855 10062 

G6 -1006 0 70 100 301 504 1510 5031 8855 10062 

G7 -1006 0 70 100 301 503 1510 5031 8855 10062 

G8 -975 -89 -39 0 39 73 98 976 8784 9750 

G9 -949 -99 -75 -25 0 80 99 199 497 8948 

G10 -1011 0 30 50 70 149 300 2000 9100 9980 

G11 -1011 0 30 50 70 149 300 2000 9100 9980 

G12 -989 -311 -5 0 5 25 100 299 976 9891 

G13 -969 0 67 96 290 485 1454 4844 8526 9689 

G14 -965 0 11 24 35 48 75 108 258 3740 

G15 -965 0 11 24 35 48 75 108 258 3740 

G16 -1000 0 20 30 56 75 101 301 9500 9980 

G17 -967 0 18 27 37 65 99 146 265 9402 

G18 -916 0 274 280 536 1375 4580 7786 8061 9161 

G19 -1000 -5 13 20 30 36 299 1500 4999 9998 

G20 -1000 0 55 75 150 200 300 1000 9000 9960 

G21 -1000 0 55 75 150 200 300 1000 9000 9960 

G22 -1000 0 55 75 150 200 300 1000 9000 9960 

G23 -1000 0 55 75 150 200 300 1000 9000 9960 

G24 -1000 0 55 75 150 200 300 1000 9000 9960 

G25 -40 1 2 4 8 16 32 64 128 256 

G26 -942 0 282 288 551 1413 4707 8002 8285 9415 

G27 -1001 29 34 39 46 56 76 101 401 10008 

G28 -1001 29 34 39 46 56 76 101 401 10008 

G29 -1001 29 34 39 46 56 76 101 401 10008 

G30 -1001 29 34 39 46 56 76 101 401 10008 

G31 -1001 29 34 39 46 56 76 101 401 10008 

G32 -1001 29 34 39 46 56 76 101 401 10008 

G33 -1001 29 34 39 46 56 76 101 401 10008 

G34 -1001 29 34 39 46 56 76 101 401 10008 
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Hereafter using 𝑁𝑃𝐷𝑙̅̅ ̅̅ ̅̅ ̅ and 𝑁𝑃𝐷𝑢̅̅ ̅̅ ̅̅ ̅̅  models we intend to answer the following questions. 

(i) Assuming the price of the bands are fixed all the time 26F

27, as in Table 4.9 

below, what would be the optimum bidding stacks offered by the 34 

generators to minimise the cost to consumers at this trading interval? 

(ii) How would this behaviour change if they intend to maximise the shadow 

price for this trading interval?  

(iii) How would bid stacks change if demand is related to a low or high spot 

price trading interval? 

To answer questions (i) and (ii) above we need to determine the perspective from 

which we look at the 𝑁𝑃𝐷 problem. In other words by solving the 𝑁𝑃𝐷𝑙̅̅ ̅̅ ̅̅ ̅ problem we 

are intrinsically, trying to find the optimum bid stacks associated with each generator 

that results in the best outcome for consumers and, albeit indirectly, the minimum 

shadow price. On the other hand, if we deal with the 𝑁𝑃𝐷 problem from generators’ 

point of view, we basically need to solve 𝑁𝑃𝐷𝑢̅̅ ̅̅ ̅̅ ̅̅  and find the optimum bid stacks that 

result in the “highest” shadow price, for that trading interval, in favour of generators.  

Recall that, because of penalties resulting from repeated occurrence of maximum 

allowed price, in practice, generators could be searching for a local maximum. See 

Section 1.5.3 for more discussion. 

4.4.3.1 Consumers’ point of view 

As we mentioned earlier, to achieve the best outcome in favour of consumers we 

need to solve 𝑁𝑃𝐷𝑙̅̅ ̅̅ ̅̅ ̅ to find the optimum bid stacks associated with each generator 

which result in the minimum 𝑦′. In the following the 𝑁𝑃𝐷𝑙̅̅ ̅̅ ̅̅ ̅ model is solved using 

MATLAB for January 8th 2010 in both low and high spot price trading interval. 

(i) Consider a low spot price trading interval where demand is 𝑑 = 1295𝑀𝑊. 

Then by solving 𝑁𝑃𝐷𝑙̅̅ ̅̅ ̅̅ ̅ the optimum bid stacks associated with each generators 

are as shown in Table 4.10. These bid stacks offered by generators resulted 

in the minimum 𝑦′ = $19.69/𝑀𝑊ℎ .  

In order to reach a better understanding of how, in general, generators shape 

their bid stack, we show the aggregated bid stacks in Table 4.11. In that table, 

the optimum volume offered by all generators is displayed at each price band, 

to achieve a local minimum shadow price in favour of consumers. In other 

                                                
27 Recall from discussion in Section 3.3 that, in practice, it was observed that generators do 
not change prices of the ten bands and merely adjust the volumes offered in each band. 
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words, if we consider AEMO as a representative for consumers then, 

considering the low demand value for this trading interval, AEMO prefers the 

aggregated bid stack to look as shown in Table 4.11. 

Table 4.10. Volumes to be offered by the 34 generators in South Australia on January 8th 2010, low spot 
price trading interval. 

Generator 

Volume at each band 

1 2 3 4 5 6 7 8 9 10 

G1 0.00 0.00 0.00 0.02 0.00 0.01 0.00 0.03 0.01 219.93 

G2 0.00 29.98 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

G3 0.00 19.96 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 

G4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 57.00 0.00 

G5 0.00 104.80 0.02 0.02 0.02 0.04 0.04 0.04 0.01 0.01 

G6 0.00 104.86 0.03 0.03 0.00 0.00 0.03 0.01 0.02 0.02 

G7 0.00 104.67 0.03 0.02 0.15 0.02 0.03 0.05 0.01 0.01 

G8 0.00 0.00 0.00 94.92 0.02 0.01 0.01 0.01 0.02 0.02 

G9 0.00 0.00 0.00 0.00 70.99 0.00 0.01 0.00 0.00 0.00 

G10 0.00 0.17 0.01 0.00 0.01 0.01 0.00 0.09 87.66 0.05 

G11 0.00 0.06 0.01 0.01 0.00 0.00 0.00 0.19 87.70 0.02 

G12 0.00 0.00 0.00 143.71 0.01 2.94 1.56 2.21 7.89 0.68 

G13 0.00 0.00 0.00 26.84 145.49 31.59 0.00 0.05 0.01 0.00 

G14 0.00 105.12 0.01 0.01 0.01 0.02 0.01 50.11 0.01 124.71 

G15 0.00 106.57 0.03 0.03 0.03 0.00 0.00 0.00 0.01 173.32 

G16 0.00 0.00 0.00 68.02 0.00 0.00 0.00 0.00 161.96 0.00 

G17 0.00 109.40 0.00 0.01 0.01 0.02 8.61 0.07 0.01 133.86 

G18 0.00 54.95 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.01 

G19 0.00 60.32 0.00 116.78 5.40 148.89 0.01 0.06 45.11 133.41 

G20 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00 44.91 0.04 

G21 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 46.94 0.02 

G22 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 44.93 0.03 

G23 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00 44.93 0.03 

G24 0.00 0.01 0.00 0.00 0.01 0.01 0.01 0.01 242.73 5.22 

G25 0.00 0.02 0.02 0.00 21.60 12.64 16.41 14.68 15.50 18.13 

G26 0.00 92.36 0.01 37.53 0.07 0.01 0.02 0.00 0.00 0.01 

G27 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 130.00 

G28 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 17.83 112.17 

G29 0.00 9.15 0.01 18.98 84.52 14.80 2.54 0.00 0.00 0.00 

G30 0.00 0.00 0.00 91.73 38.27 0.00 0.00 0.00 0.00 0.00 

G31 0.00 39.52 0.00 0.00 170.47 0.00 0.00 0.00 0.00 0.00 

G32 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 210.00 

G33 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 210.00 

G34 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 210.00 

As Table 4.11 shows, in order to achieve a local minimum value for 𝑦′ in this 

trading interval, for consumers sake, AEMO would hope that the aggregated 

bid stack offered by all generators were relatively evenly distributed. This form 

of bidding strategy by generators in this low demand period would result in a 

low spot price which benefits consumers. 
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Table 4.11. Aggregated volumes to be offered by the 34 generators in South Australia on January 8 th 
2010, low spot price trading interval. 

Volume 𝑣1 𝑣2 𝑣3 𝑣4 𝑣5 𝑣6 𝑣7 𝑣8 𝑣9 𝑣10 

Sum 0.00 942.01 0.2 598.7 537.1 211.0 29.3 67.66 905.20 1681.72 

𝑦′ $19.69/MWh 

 Next, we consider a number of alternate scenarios. For simplicity, we provide only 

the aggregated bid stacks in the other trading intervals. The details of volumes offered 

by each generator corresponding to each aggregated bid stack are shown in Appendix 

4.1. 

(ii) Now suppose that, demand increases to 𝑑 = 2793𝑀𝑊 . Consequently, to 

minimise the cost for consumers, the aggregated generator needs to offer 

higher proportion of the total capacity in lower prices.  

Table 4.12. Aggregated volumes to be offered by the 34 generators in South Australia on January 8 th 
2010, high spot price trading interval. 

Volume 𝑣1 𝑣2 𝑣3 𝑣4 𝑣5 𝑣6 𝑣7 𝑣8 𝑣9 𝑣10 

Sum 79.50 3094.2 352 519.70 244.80 145.6 122.6 4.91 63.88 345.6 

𝑦′ $0.01/MWh 

For instance, in a lower demand period, generators needed to offer about 

942𝑀𝑊 in the second band in order to reach the minimum shadow price. 

However, the total offer at the second band price now needs to increase to 

3094𝑀𝑊 so that we could achieve a low shadow price of $0.01/𝑀𝑊ℎ in favour 

of consumers (See Table 4.12). 

4.4.3.2 Generators’ point of view 

Now consider the 𝑁𝑃𝐷 problem from generators’ point of view. For generators, 

logically, the best outcome from the 𝑁𝑃𝐷 problem would be the maximum shadow 

price. Therefore they would search for the optimum bid stacks offered that will, at least 

locally, maximise their own profit at each trading interval. Below we consider three 

different scenarios for generators. 

(i) Suppose that demand corresponds to a low spot price period and is equal to 

𝑑 = 1295𝑀𝑊. Then by solving 𝑁𝑃𝐷𝑢̅̅ ̅̅ ̅̅ ̅̅  the optimum bid stacks that the 

aggregated generator needs to offer is as shown in Table 4.13. These bid 

stacks offered by generators resulted in the locally maximum shadow price of  

𝑦′ = $3740/𝑀𝑊ℎ. As Table 4.13 shows, in this low demand period, to reach 

that high shadow price, generators simply need to offer substantial portion of 

production at the higher price bands.  
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Table 4.13. Aggregated volumes to be offered by the 34 generators in South Australia on January 8th 
2010, low spot price trading interval. 

Volume 𝑣1 𝑣2 𝑣3 𝑣4 𝑣5 𝑣6 𝑣7 𝑣8 𝑣9 𝑣10 

Sum 123.4 232.4 95.5 0 92 240.3 125.8 182.6 587.7 3012.5 

𝑦′ $3740/MWh 

As demand increases, generators find more opportunities to offer strategically 

to maximise their own profit. In the following we provide two forms of bidding 

behaviour which both result in a very high shadow price in this trading interval. 

(ii) Considering the demand increased to 𝑑 = 2793𝑀𝑊, Table 4.14 shows that 

generators are able to maximise their profit, by maximising shadow price, if 

they again offer a large portion in the high price bands. As shown in Table 

4.14, these generators need to offer 2497 MW in the highest price band, band 

10, to be able to achieve a high spot price for this trading interval. This form of 

bidding behaviour results in the shadow price of  𝑦′ = $9581/𝑀𝑊ℎ. 

Table 4.14. Aggregated volumes to be offered by the 34 generators in South Australia on January 8 th 
2010, high spot price trading interval. 

Volume 𝑣1 𝑣2 𝑣3 𝑣4 𝑣5 𝑣6 𝑣7 𝑣8 𝑣9 𝑣10 

Sum 99 662 71 0 69 171 105 159 570 2497 

𝑦′ $9581/MWh 

However, in high demand periods, a more subtle “bimodal” bidding behaviour 

has been observed in practice (see also Section 3.2). Interestingly, that 

behaviour also corresponds to some local maxima of 𝑁𝑃𝐷𝑢̅̅ ̅̅ ̅̅ ̅̅  .  

Table 4.15. Aggregated volumes to be offered by the 34 generators in South Australia on January 8th 
2010, high spot price trading interval. 

Volume 𝑣1 𝑣2 𝑣3 𝑣4 𝑣5 𝑣6 𝑣7 𝑣8 𝑣9 𝑣10 

Sum 54 2457 60 607 98 20 53 64 175 1369 

𝑦′ $9000/MWh 

For instance, when demand was increased to 𝑑 = 3510𝑀𝑊 , MATLAB solver 

generated a solution that yielded a shadow price 𝑦′ = $9000/𝑀𝑊ℎ and the 

aggregated bidding behaviour given in Table 4.15. Note the high volumes 

offered both in the low price band 2 and in the high price band 10.  
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5. CHAPTER 5. DISINCENTIVES TO 

STRATEGIC BIDDING 

In the preceding chapters we have demonstrated that AEMO’s current method of 

arriving at electricity spot price does not contain a mechanism to prevent generators 

from strategic bidding that may result in spot price spikes. Indeed, bimodal bid stack 

structures have been observed during times when spot price attained (or approached) 

the highest permissible level (see Section 3.2). 

If public consensus were reached that such extreme oscillations in spot price are 

undesirable, then AEMO may wish to consider changes to its pricing mechanism 

aimed at creating disincentives to strategic bidding.   Furthermore, it may be desirable 

to consider structurally “minimal changes” in the sense that the bulk of the existing 

mechanism remains in place.  Arguably, these might be considered least disruptive 

to the ongoing operations.     

Consequently, in this last technical chapter of the thesis we propose a new approach 

to create disincentives to strategic bidding. This mean-value approach is inspired by 

the famous concept of Aumann-Shapley Prices (e.g., see Tauman 1982) to determine 

the spot price. We shall demonstrate that this approach has the potential for 

discouraging strategic bidding and for reducing the ultimate spot price for electricity. 
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5.1 BACKGROUND 

Since the Aumann-Shapley pricing schemes have their roots in research in 

Economics and Game Theory, for the sake of completeness, we briefly review some 

relevant literature addressing the potential problems with achieving truly competitive 

behaviour in the electricity market. 

Since 1980’s traditional state monopoly paradigm of power industry has changed in 

order to increase competition. However there is still doubt about the degree of genuine 

competitiveness in electricity markets. Some researchers believe that deregulation in 

electricity markets changed these markets to some kind of oligopoly markets 

(Borenstein and Bushnell 2000). 

Literature discusses some possible reasons behind this. The latter included factors 

such as limited number of producers, barriers to entry as a consequence of large 

investment size, transmission constraints that make it hard for consumers to reach 

many generators and finally transmission losses that discourage end-users from 

purchasing their electricity from suppliers far away (David and Wen 2001). 

The above factors create a situation where a small number of generators serve a 

specific geographic area. These generators may also be able to maximize their own 

profit by some specific behaviour in bidding which we call “Strategic Bidding”. 

Essentially, the performance of market is measured by the economic notion called 

“Social Welfare”. Social welfare is a combination of the cost of a commodity and the 

benefit of that commodity to the society. Real markets always operate at a lower than 

maximum levels of social welfare. The difference in social welfare between a perfect 

market and a real market is a measure of the inefficiency in the real market (David 

and Wen 2000). 

In a perfect electricity market, any power supplier would be a price taker. 

Microeconomic theory stipulates that the optimal bidding strategy for a supplier is to 

simply bid the marginal cost. When a generator bids other than marginal cost (in an 

effort to exploit imperfections in the market to increase profit) this behaviour is called 

strategic bidding (David and Wen 2000). 

If for a number of generators their profit grows as a result of their strategic bidding or 

by any means other than lowering their costs, then they are exercising market power. 

In David and Wen (2001) the authors claim that there are essentially only three ways 

by which generators could possibly exercise market power.  
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The first way for increasing profit for generators is the estimation of marginal cost of 

production, where generators can increase their profit by offering a price just a little 

bit less than the marginal cost of production.  Second way is through estimation of the 

bidding behaviour of other generators in the market. Most of the methods until 2000 

for estimating bidding strategies of other parties include techniques such as statistics, 

probability analysis and fuzzy sets. The third way is by using Game Theory to analyse 

the behaviour of generators (Exelby 1993, Ferrero et al 1997, Green et al 1992, Von  

Neumann and  Morgenstern 1944, Jones 1980).  

5.2 AUMANN-SHAPLEY INSPIRED PRICING MECHANISM 

In the economics literature there is a well developed theory of pricing mechanisms of 

commodities that stems from the seminal work of Aumann and Shapley (1974). Billera 

et al. (1978) were the first to introduce the AS prices as an application of the theory 

of values of nonatomic games developed by Aumann and Shapley (1974). They 

proposed equitable telephone billing rates that share the cost of service. 

That theory has evolved to supply pricing mechanisms that satisfy desirable 

properties.  Indeed, in many situations, a closed form formula is available that supplies 

the unique price mechanism with prescribed properties. We refer the reader to a 

comprehensive survey of this field by Tauman (1988). Somewhat loosely, we shall 

call these pricing mechanisms, Aumann-Shapley prices.      

In the case of a single commodity, assume that 𝐹(𝛼)  is a differentiable cost function, 

where  𝛼 ≠ 0 is a specific production level of that commodity. Let 𝐴𝐶(𝐹, 𝛼) = 𝐹(𝛼)
𝛼⁄  

be the average cost pricing rule for the single product case and consider four 

properties of 𝐴𝐶(𝐹, 𝛼) 

(i)  Cost sharing: 𝛼𝐴𝐶(𝐹, 𝛼) = 𝐹(𝛼) for each 𝛼 > 0. 

(ii)  Additivity: 𝐴𝐶(𝐹 + 𝐺, 𝛼) = 𝐴𝐶(𝐹, 𝛼) + 𝐴𝐶(𝐺, 𝛼).  

(iii) Rescaling: If 𝐺(𝑥) = 𝐹(𝜔𝑥), then 𝐴𝐶(𝐺, 𝛼) = 𝜔𝐴𝐶(𝐹, 𝜔𝛼). 

(iv) Continuity: 𝐴𝐶(. , 𝛼) is continuous with respect to the 𝐶1 norm. (i.e., if 𝐹𝑛 →

𝐹 in the 𝐶1 norm on [0, 𝛼] then 𝐴𝐶(𝐹𝑛, 𝛼) → 𝐴𝐶(𝐹, 𝛼) as 𝑛 → ∞. 

Based on Mirman and Tauman’s theorem (1982), the Aumann-Shapley price 

mechanism that satisfies all these properties is given by the formula 

𝑃(𝐹, 𝛼) = ∫
𝜕𝐹

𝜕𝑥
(𝑡𝛼)𝑑𝑡,

1

0

                                                                                                                (𝐴𝑆)  
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where 𝐹(𝑥) is the cost of producing 𝑥 units of the commodity and 
𝜕𝐹

𝜕𝑥
  is the marginal 

cost of producing one additional unit.   

We observe certain, important, similarities and differences between an Aumann-

Shapley pricing mechanism and AEMO’s pricing of electricity in Australian electricity 

market. In particular, recall the simplified dispatch linear programming problem 𝐿𝑃(𝑑), 

for a single state, where 𝑑 is the demand for electricity.  

 𝐿𝑃(𝑑) 

Min ∑ 𝑐𝑏
𝑔

𝑥𝑏
𝑔

𝑔,𝑏

 

∑ 𝑥𝑏
𝑔

𝑔,𝑏 ≥ 𝑑                                                                                                                                             

−𝑥𝑏
𝑔

≥ −𝑣𝑏
𝑔

;                                     𝑔 ∈ 𝐺 𝑎𝑛𝑑 𝑏 ∈ 𝐵   

𝑥𝑏
𝑔

≥ 0.                

This program uses generators’ bids and determines the shadow price 𝑦′(𝑑) for 

different values of 𝑑. Note that  𝑦′(𝑑) can be regarded as the marginal cost of 

supplying 𝑑 𝑀𝑊 of electricity in the time interval in question.   

However, it should be noted that when generators submit their bid stacks into 𝐿𝑃(𝑑), 

they do not know the value of the demand d which is a realisation of the demand 

random variable 𝐷.  Hence, it is not automatically clear why they should be paid the 

shadow price of  𝑦′(𝑑) for all the electricity they generate during that period.  To some 

extent the current AEMO pricing mechanism acknowledges this by calculating the 

spot price for a half an hour long period as the average of six consecutive shadow 

prices (see Section 1.6.1.2).  On the other hand, the latter seems like an ad hoc 

resolution to the problem that researchers working on the Aumann-Shapley price 

mechanisms had investigated since 1980’s.          

Consequently, in this section we propose an alternative pricing mechanism that is 

similar to Aumann-Shapley pricing.  The main difference arises from the fact that – in 

order to keep the overall structure as similar as possible to the current AEMO 

operations – we still wish to treat the shadow price 𝑦′(𝑑) as the marginal cost of 

production when the demand is 𝑑 even though the latter need not be differentiable 

with respect to 𝑑 (because of possible jumps of optimal bases when 𝑑 changes).  
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Despite the above difference, numerically, it is still possible to calculate 𝑦′(𝜇𝑑) for 

values of the parameter 𝜇 ranging from 0 to 1 and to numerically approximate 

𝐴𝑃1(𝑑) = ∫ 𝑦′(𝜇𝑑)𝑑𝜇,
1

0

                                                                                                                 (𝐴𝑃1) 

where 𝐴𝑃1(𝑑) denotes average (or mean value) marginal price per unit of electricity 

generated.    

The next issue concerns the value of the demand 𝑑 that should be used in the 

equation (𝐴𝑃1). As indicated above, in a given time period on a given day of the week 

(in a particular season of the year) the demand 𝐷 is a random variable whose 

distribution and realistic minimal and maximal values  𝑑𝑙 and 𝑑𝑢 can be accurately 

estimated. Hence we shall argue that a natural choice for the average marginal price 

is either (𝐴𝑃1), or 

𝐴𝑃2(𝑑) =
1

𝜇𝑢 − 𝜇𝑙
∫ 𝑦′(𝜇𝑑)𝑑𝜇,

𝜇𝑢

𝜇𝑙

                                                                                               (𝐴𝑃2) 

where 𝜇𝑢 and 𝜇𝑙 are chosen so that 𝑑𝑢 = 𝜇𝑢𝑑 and 𝑑𝑙 = 𝜇𝑙𝑑, respectively. While (𝐴𝑃1) 

is closer to Aumann-Shapley mechanism in the sense that it considers marginal costs 

for all possible outputs, in the case of electricity production outputs below 𝑑𝑙 are so 

unlikely that it seems unreasonable to consider them and hence (𝐴𝑃2) may be 

preferable. Illustrations below demonstrate that in likely applications 𝐴𝑃2(𝑑) > 𝐴𝑃1(𝑑), 

making (𝐴𝑃2) preferable for generators. However, both mechanisms tend to yield 

much lower prices than the currently used 𝑦′(𝑑), during periods of high demand.   

 

Figure 5.1. Electricity demand in January 8th 2010. 
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In the following we determine the electricity price using two approaches of 𝐴𝑃1 and 

(𝐴𝑃2). Figure 5.1 shows the variation in the electricity demand on the 8th January 

2010. As shown in Figure 5.1 the minimum and maximum demand for electricity occur 

at the 4:30 AM where 𝑑𝑙 = 1259.48𝑀𝑊, and at 5:00 PM where 𝑑𝑢 = 2818.68𝑀𝑊, 

respectively. 

5.2.1 Average price based on (𝑨𝑷𝟏):  

Here, we apply (𝐴𝑃1) to find the electricity price in two selected low and high demand 

trading intervals of 10:00 AM and 4:30 PM in January 8th 2010. All itegrals in the 

remainder of this chapter are evaluated numerically. 

(i) Consider the selected trading interval of 10:00 AM in January 8th 2010. We 

let 𝜇 vary in the interval of 0 ≤ 𝜇 ≤ 1, and using generators bid stacks offered 

in 𝐿𝑃(𝑑) model we determine 𝑦′(𝜇𝑑) in this trading interval. Figure 5.2 shows 

the shadow prices 𝑦′(𝜇𝑑) for different values of 𝜇. As shown in the Figure, the 

actual demand for the trading interval 10:00 AM, 𝑑 = 2151.89, corresponds to 

𝜇 = 1  where the shadow price is 𝑦′(𝑑) = $38.80/MWh.  

 

Figure 5.2. Shadow prices corresponding to different values of μ. Low demand trading interval. 

           Then 𝐴𝑃1(𝑑) price for electricity in this trading interval is determined by,   

               𝐴𝑃1(𝑑) = ∫ 𝑦′(𝜇𝑑)𝑑𝜇,
1

0

≈ $3.75/𝑀𝑊ℎ, 

which is significantly lower than $38.80/MWh mentioned above. It will be seen 

that this difference is narrowed when 𝐴𝑃2(𝑑) is used instead of 𝐴𝑃1(𝑑). 
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(ii) Similarly, we apply (𝐴𝑃1) approach to find the electricity price in a high demand 

trading interval of 4:30 PM, where 𝑑 = 2793.33𝑀𝑊28. Figure 5.3 shows the 

shadow prices 𝑦′(𝜇𝑑) for different values of 𝜇.  

As shown in the Figure 5.3, 𝑦′(𝜇𝑑) = 0 corresponding to the 𝜇 < 0.93, that is 

𝑑 < 2605𝑀𝑊. As described in Sections 3.2 and 3.5 the distribution of volumes 

offered is positively skewed. Therefore, the majority of total electricity 

production offered by generators are in very low price bands. This results in 

an even lower price average (𝐴𝑃1), for electricity in this trading interval, 

namely 

𝐴𝑃1(𝑑) = ∫ 𝑦′(𝜇𝑑)𝑑𝜇,
1

0

≈ $1.77/𝑀𝑊ℎ. 

 

Figure 5.3.  Shadow prices corresponding to different values of μ. High demand trading interval. 

Note that the shadow price determined by 𝐿𝑃(𝑑) model with the demand value 𝑑 =

2793 for this trading interval was again $38.80/MWh. 

5.2.2 Average price based on (𝑨𝑷𝟐). 

Next, we consider the situation where capture demands that can change from the 

minimum to the maximum possible demand in the summer 2010 at the corresponding 

trading interval. As before, we calculate the (𝐴𝑃2) price for two selected low and high 

demand trading intervals of 10:00 AM and 4:30 PM on January 8th 2010 . 

 

                                                
28 It should be mentioned that, an extra 10% of MW s added to the demand in this high 
demand trading interval to overcome the possible loss in network (see (AEMO, 2012b) and 
(AEMO, 2013a) for more information). 
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Here we let 𝜇 vary within the interval of 𝜇𝑙 ≤ 𝜇 ≤ 𝜇𝑢 where 𝜇𝑙 =
𝑑𝑙

𝑑
  and 𝜇𝑢 =

𝑑𝑢

𝑑
, and 

determine the values of 𝑦′(𝜇𝑑) for 𝜇𝜖[𝜇𝑙 , 𝜇𝑢]. 

(i) Figure 5.4 shows 𝑦′(𝜇𝑑) for the corresponding 𝜇 values for the trading interval 

of 10:00 AM on January 8th 2010. Here we selected data set of all 10𝐴𝑀 

trading intervals within summer 2010. The minimum and maximum demand 

level corresponding to the trading intervals within this data set are 𝑑𝑙 = 1091.2 

and 𝑑𝑢 = 2861.16   respectively. Therefore,  𝜇 varies in the interval of 

0.56 ≤ 𝜇 ≤ 1.3. 

 

Figure 5.4. Shadow prices corresponding to different values of μ. Low demand trading interval. 
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≈ $19.47/𝑀𝑊ℎ. 

 

(ii) Similarly to the above, to find the electricity price for a high demand period at 

4:30 PM where 𝑑 = 2793.33. The minimum and maximum demand level 

corresponding to the trading intervals within this data set are 𝑑𝑙 = 1150 and 

𝑑𝑢 = 3150 respectively. Based on 𝐴𝑃2 approach, we let the 𝜇 vary in the 
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Figure 5.5. Shadow prices corresponding to different values of μ. High demand trading interval. 

Then 𝐴𝑃2(𝑑) price for electricity in this trading interval is determined by,   

                𝐴𝑃2(𝑑) =
1

𝜇𝑢 − 𝜇𝑙
∫ 𝑦′(𝜇𝑑)𝑑𝜇

𝜇𝑢

𝜇𝑙

≈ $15.70/𝑀𝑊ℎ. 

Note that the lower average price of $15.70/𝑀𝑊ℎ is caused by the fact that 

comparing to the lower demand trading interval above, a higher proportion of 

the generators’ bids had the bimodal structure (see Section 3.2). That 

structure ensures that when 𝜇 ≤ 0.91 the low (essentially zero) marginal price 

of electricity is sufficient to meet the demand. As Figure 5.5 confirms, the area 

under the graph of 𝑦′(𝜇𝑑) is small. Nonetheless, this phenomenon is positive 

in the sense that the use of 𝐴𝑃2(𝑑) would tend to discourage generators from 

submitting such bimodal bids. 

Next, we show how generators would benefit by offering a uniformly distributed bid 

stack. Assume that in the above trading interval, a high demand trading interval, all 

generators offer 10% of their total capacity equally at each band. This means that, 

Generator 𝐺 with the capacity of 220 𝑀𝑊 should offer the bid stack shown in Table 

5.1 to the market. 

Table 5.1. Uniformly distributed volume bid stack offered by generator g. 

Band 1 2 3 4 5 6 7 8 9 10 

Volume 22 22 22 22 22 22 22 22 22 22 
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Then, similarly to the above, 𝑦′(𝜇𝑑) for the corresponding 𝜇 values are as shown in 

Figure 5.6. 

 

Figure 5.6. Shadow prices corresponding to different values of μ. Uniform bidding strategy. 

In this way, 𝐴𝑃2(𝑑) price for electricity in this trading interval is determined by,   

𝐴𝑃2(𝑑) =
1

𝜇𝑢 − 𝜇𝑙
∫ 𝑦′(𝜇𝑑)𝑑𝜇

𝜇𝑢

𝜇𝑙

≈ $59.91/𝑀𝑊ℎ. 

Note that the average price of $59.91/𝑀𝑊ℎ is significantly higher than $15.70 above, 

which was a result of bimodal bidding behaviour. In other words, the uniform bidding 

strategy will result in moderate increase/decrease in 𝑦′(𝜇𝑑), for the corresponding 𝜇 

values, which could benefit all the stakeholders in the market. 

5.2.3 Average price based on observed distribution of demand. 

We observe that formulae 𝐴𝑃1(𝑑) and 𝐴𝑃2(𝑑) represent mean values of 𝑦′(𝜇𝑑) with 

respect to the Lebesgue measure (uniform distribution) on the 𝜇-intervals [0,1] and 

[𝜇𝑙 , 𝜇𝑢], respectively. 

However, in view of the availability of extensive data on historical demands, it is 

possible to accurately estimate the empirical distribution function 𝐹𝐷(𝑑) ≔ 𝑃(𝐷 ≤ 𝑑) 

in a period of interest. The latter is in one-to-one correspondence with 𝐹𝑀(𝜇) ≔ 𝑃(𝑀 ≤

𝜇), where 𝑀 is the random variable taking values in [𝜇𝑙 , 𝜇𝑢], corresponding to the 

demands in the interval [𝑑𝑙 , 𝑑𝑢], as described earlier.  
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Hence it is reasonable to propose a third version of the mean-value Aumann-Shapley 

like pricing formula  

𝐴𝑃3(𝑑) = ∫ 𝑦′(𝜇𝑑)𝑑𝐹𝑀(𝜇),
𝜇𝑢

𝜇𝑙

                                                                                                     (𝐴𝑃3) 

where, 𝑑𝐹𝑀(𝜇) is the measure induced by the empirical distribution of 𝑀. 

In practice, [𝜇𝑙 , 𝜇𝑢] can be subdivided into 𝑛 small sub-intervals 𝐽𝑘 with mid-points 

𝜇𝑘 , 𝑘 = 1,2, … , 𝑛.  

Then, if we set for each 𝑘, 𝑝(𝜇𝑘) ≈ 𝐹𝑀 (𝜇𝑘 +
𝜀

2
) − 𝐹𝑀 (𝜇𝑘 −

𝜀

2
), where 𝜀 is the width of 

the interval 𝐽𝑘, we see that approximately  

𝐴𝑃3(𝑑) ≈ ∑ 𝑦′(𝜇𝑘𝑑)𝑝(𝜇𝑘)

𝜇𝑘

.                                                                                                       (𝐴𝑃3)̂ 

We calculate the (𝐴𝑃3) price for two selected low and high demand trading intervals 

of 10:00 AM and 4:30 PM on January 8th 2010. For each trading interval, we let 𝜇 vary 

within the interval of 𝜇𝑙 ≤ 𝜇 ≤ 𝜇𝑢 where 𝜇𝑙 =
𝑑𝑙

𝑑
  and 𝜇𝑢 =

𝑑𝑢

𝑑
, and determine the values 

of 𝑦′(𝜇𝑑) for 𝜇𝜖[𝜇𝑙 , 𝜇𝑢]. 

(i) Recall that Figure 5.4 shows 𝑦′(𝜇𝑑) for the corresponding 𝜇 values for the 

trading interval of 10:00 AM on January 8th 2010. Note that, the actual 

demand for the trading interval 10: 00 𝐴𝑀, 𝑑 = 2151.89. Here we selected data 

set of all 10𝐴𝑀 trading intervals within summer 2010. The minimum and 

maximum demand level corresponding to the trading intervals within this data 

set are 𝑑𝑙 = 1091.2 and 𝑑𝑢 = 2861.16   respectively. Therefore,  𝜇 varies in 

the interval of  0.56 ≤ 𝜇 ≤ 1.3. 

Then we determine the probability density function corresponding to each 𝜇 

level (see Figure 5.7).  
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Figure 5.7. Probability density function corresponding to different values of μ. Low demand trading 
interval. 

Using the approximate probability density function, the electricity price for this 

trading interval can be approximated by  

                𝐴𝑃3(𝑑) = ∫ 𝑦′(𝜇𝑑)𝑑𝐹(𝜇)
𝜇𝑢

𝜇𝑙

≈ ∑ 𝑦′(𝜇𝑘𝑑)𝑝(𝜇𝑘)

𝜇𝑘

= $10.59/𝑀𝑊ℎ. 

 
(ii) Here we find the electricity price for a high demand period at 4:30 PM, 

where 𝑑 = 2793.33, based on 𝐴𝑃3 approach. Similarly to above, we selected 

a data set of all 4: 30 𝑃𝑀 trading intervals within summer 2010.  

We let the 𝜇 vary in the interval of 𝜇𝑙 ≤ 𝜇 ≤ 𝜇𝑢, where 𝜇𝑙 =
𝑑𝑙

𝑑
= 0.4  and 𝜇𝑢 =

𝑑𝑢

𝑑
= 1.13, and find the 𝑦′(𝜇𝑑) (Figure 5.5 shows 𝑦′(𝜇𝑑) for the corresponding 

𝜇 values). 

Then we determine the approximate probability density function 

corresponding to each 𝜇 level (see Figure 5.8). Using Probability density 

function, the electricity price for this trading interval can be approximated by  

               𝐴𝑃3(𝑑) = ∫ 𝑦′(𝜇𝑑)𝑑𝐹(𝜇)
𝜇𝑢

𝜇𝑙

≈ ∑ 𝑦′(𝜇𝑘𝑑)𝑝(𝜇𝑘)

𝜇𝑘

= $9.35/𝑀𝑊ℎ. 
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Figure 5.8. Probability density function corresponding to different values of μ. High demand trading 
interval. 

5.3 EXTENSION TO MULTI-REGIONAL MEAN VALUE 
PRICING 

In previous sections of this chapter, the shadow price variable 𝑦′(𝑑) was treated as 

the marginal price of one 𝑀𝑊ℎ of electricity at an optimal solution of 𝐿𝑃(𝑑), with a 

single demand constraint in a single region model.  However, AEMO’s dispatch linear 

program contains five demand constraints, one for each of the five geographic 

regions. In this section, we point out that the mean value pricing mechanism proposed 

above can be easily generalised to the whole network in NEM which consists of 5 

interconnected regions.   However, because the details of the coupling of the five 

regions is not accessible to us, we cannot easily construct numerical examples that 

might capture, in a realistic way, the combined effect of the coupling and the mean 

value pricing approach.   If there were interest, in exploring the benefits of this 

approach – and access to the detailed AEMO model were provided – it would be 

relatively straightforward to continue to explore this approach.    

Mathematically, the main difference between the multi-regional situation and Section 

5.2 is that instead of dealing with 𝑑 as the demand corresponding to one single state, 

we have a vector 𝒅, where 𝒅 = (𝑑1, 𝑑2, … , 𝑑5) represents the corresponding demand 

values for the 5 regions in NEM. In this way, 𝐿𝑃(𝒅) is  

𝑍(𝑑1,𝑑2, … , 𝑑5) ≔ min  𝐶𝑇(𝒙)                                                                                                         (1) 

𝑠. 𝑡.   (𝒙, 𝒖, 𝝎) ∈ 𝓕,  
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which includes regional demand constraints 

 ∆𝑗(𝒙, 𝒖, 𝝎) ≥ 𝑑𝑗 ,                          𝑓𝑜𝑟 𝑗 = 1,2, … ,5.                                                                        (2)  

In the above, decision variable vectors 𝒖 and 𝝎 have entries that represent amounts 

of electricity exported from region 𝑗 and, respectively, imported into region 𝑗, for each 

𝑗.   

In the multi-regional case we may still regard the shadow price 𝑦𝑗
′(𝒅) of the 

constraint (2), for 𝑗 = 1,2, … ,5, as 𝑦𝑗
′(𝒅) =

𝜕

𝜕𝑑𝑗
[𝑍(𝒅)]. Hence it is possible to generalise 

the Aumann-Shapley like pricing schemes (𝐴𝑃1) − (𝐴𝑃3) and (𝐴𝑃3)̂ in the natural 

fashion.  

In particular, in a typical period, we will have the demand 𝐷𝑗 in region 𝑗 lying in an 

interval [𝑑𝑙
𝑗
, 𝑑𝑢

𝑗
] and the corresponding scaling random variable 𝑀𝑗 taking values in 

the interval [𝜇𝑙
𝑗
, 𝜇𝑢

𝑗
], where 𝜇𝑙

𝑗
=

𝑑𝑙
𝑗

𝑑𝑗
  and  𝜇𝑢

𝑗
=

𝑑𝑢
𝑗

𝑑𝑗
  for 𝑗 = 1,2, … ,5. Then clearly, 𝐴𝑃2(𝑑) 

can be naturally generalized. 

For instance, for 𝑗 = 1 we shall have 

𝐴𝑃2
1(𝒅) =

1

𝜇𝑢
1 − 𝜇𝑙

1
∫ 𝑦′1(𝜇1𝑑1, 𝑑2, 𝑑3, 𝑑4, 𝑑5)𝑑𝜇1,

𝜇𝑢
1

𝜇𝑙
1

 

and similarly for 𝑗 = 2,3, … ,5. 

It is reasonable to expect that, similarly, to the single region situation the mean-value 

multi-region pricing schemes will penalize bimodal bidding strategies of generators 

and thereby result in reduced spot price volatility. An interesting area for future 

investigations is whether more uniform bid stacks of generators (e.g., resembling 

those proposed in Conticini et al (2010)) would result in overall increase or decrease 

in the cost of electricity.    
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6. CHAPTER 6. CONCLUSION AND 

FUTURE WORK 

Australian electricity market has accepted deregulation since the early 1990’s. The 

aims of deregulation of electricity supply included promoting market competition and 

ensuring reliable supply of electricity at stable prices to consumers. However, it has 

been observed that spot price for electricity can be volatile and occasionally spikes to 

extremely high levels.  This thesis examines the latter phenomenon with the help of 

quantitative techniques of operations research and statistics.  

Closer examination shows that bidding behaviour of generators is affecting the price 

volatility in Australian electricity market especially in high demand periods. In 

particular, our analyses suggest that some of the observed volatility may be due to 

the underlying structure of the optimisation model’s design that does not exclude the 

possibility of generators being able to exercise market power. We also propose a 

novel pricing mechanism designed to discourage strategic bidding. 

In the preliminary analysis, history of price volatility and possible exercise of market 

power in Australia mentioned by literature were discussed. According to Australian 

Energy Regulator the significant increase in the number of price spikes occurred in 

South Australia during the years 2008-11 where “disorderly bidding strategies” by 

generators were addressed as one of the underlying reasons for this high electricity 

price fluctuations.  
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Exploratory analysis of data from South Australian electricity market identified and 

exhibited a number of phenomena which, arguably, contribute to the high cost of 

electricity supply to consumers and volatility in spot prices. It identified certain 

characteristic bidding behaviours of generators during the periods when spot price 

spikes occurred.   

For this reason, the bidding behaviour by generators was investigated in more detail 

in Chapter 3. We began the discussion by exhibiting distinct bidding patterns by some 

generators which occurred in trading intervals corresponding to low and high 

electricity spot prices. Our analysis showed that, observed bid structures exhibit 

bimodal form in higher demand trading intervals. Moreover, clusters of generators 

seem to behave in same patterns in offering their bidding stacks to the market in the 

higher demand periods. 

Consequently, characteristic bidding behaviour by generators seems to be one of the 

underlying reasons for the price spikes in Australian electricity market. This is 

highlighted by the fact that, a significant spot price increase in electricity market is not 

necessarily a result of demand increase as the correlation between electricity demand 

and spot prices on days when spot price spikes are observed were considerably low. 

Moreover, to examine the effects of strategic bidding in generators’ income, we 

considered the competition among generators as a lottery model. In this way, the 

choice of offering price and volume of electricity production would be a tool for 

designing this lottery at each trading interval. The lottery approach is seen as a 

benchmark to test the extent to which generators are concerned about the risk of 

failing to win sufficient generation volume. Results showed that, the generator’s 

bidding strategy during the high spot price periods seems to be beneficial (under the 

lottery model) in terms of the benefit versus risk trade-off. 

It is now natural to consider how different bidding strategies of generators affect the 

risk of loss to consumers. In other words, the high income to generators can be 

considered as a loss to consumers.  We used risk measures such as Value-at-Risk 

(VaR) and Conditional Value-at-Risk to investigate the risk faced by consumers as a 

result of generators’ bidding strategies in different trading intervals (see Section 3.8).  

Since disorderly bidding by generators was highlighted to be one of the underlying 

reasons including the price spikes, in the remainder of this thesis, we investigated 

how the dependence of the spot price on the generators’ bids in the pool may 

contribute to electricity price fluctuations.  
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In particular, we considered the potential consequences of the fact that generators 

can influence some parameters of the dispatch linear program (𝐿𝑃) that is used to 

determine shadow prices of demands which, in turn, determine the spot price. 

Indirectly, this influence opens the possibility of them being able to impact the 

marginal prices of electricity in each state and hence also the spot prices.  Indeed, 

due to the non-uniqueness of solutions to linear programs, a phenomenon that we 

call “instability gap” may arise whereby some optimal shadow prices favour the 

generators and some favour consumers.   

Numerical results in Chapter 4 showed that, in low demand period consumers are 

more likely to benefit from the designed market structure of setting the ultimate price. 

However, as demand increases, generators seem to find opportunities to benefit from 

higher spot price by bidding strategically in the market. In other words, the system 

works more in favour of generators than consumers in higher demand periods where 

generators can even reach the highest permitted price per MWh, in some trading 

intervals. 

We do not attribute the above, undesirable, phenomena to any intentional actions of 

any stakeholders in the Australian electricity market. However, we believe that these 

findings demonstrate the need to re-examine the design of the market with the dual 

goal of reducing the volatility in the spot prices and the overall cost to consumers. 

Therefore, AEMO may wish to consider changes to its pricing mechanism aimed at 

creating disincentives to strategic bidding. For this purpose, in Chapter 5 we proposed 

a Mean-Value approach to determine the spot-price that is inspired by the famous 

concept of Aumann-Shapley Prices. We demonstrated that this approach has the 

potential for discouraging strategic bidding and for reducing the ultimate spot price for 

electricity. 

We treated the shadow price as the marginal cost of production when and we 

considered three approaches that use the Aumann-Shapley like mechanisms as the 

basis for pricing electricity.  The three approaches differ on the basis of the way that 

possible values of the demand random variable are treated in order to calculate the 

price at which generators are paid for the electricity they produce.  

In the first of these, all possible demands between zero and the actually observed 

demand are considered as equally likely.  In the second approach all possible 

demands between realistic lower and upper bounds (in a given trading interval) are 

considered as equally likely. In the third approach, all possible demands between 
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realistic lower and upper bounds (in a given trading interval) are considered with 

respect to an empirical probability distribution calculated for that period.  In all three 

cases, the mean value of marginal shadow price is taken as the “proper price” to be 

paid for all the electricity produced by the generators during that period.  

Numerically, it was shown that all three mean value price mechanisms tended to yield 

much lower prices than the currently used shadow price, during periods of high 

demand. This is caused by the fact that comparing to the lower demand trading 

intervals, a higher proportion of the generators’ bids had the bimodal structure. That 

structure ensures that the low marginal price of electricity is sufficient to meet the 

demand. This resulted in a very low mean value price of electricity for higher demand 

periods. Nonetheless, this phenomenon is positive in the sense that it would tend to 

discourage generators from submitting such bimodal bids. 

Furthermore, we showed how generators would benefit – under a mean value pricing 

scheme - by offering a uniformly distributed bid stack. Results showed that, the 

uniform bidding strategy will result in moderate increase/decrease in shadow price 

which could benefit all the stakeholders in the market.  

Finally, we showed that the mean value pricing mechanism proposed above can be 

easily generalised to the whole network in NEM which consists of 5 interconnected 

regions. It is reasonable to expect that, similarly, to the single region situation the 

mean-value multi-region pricing schemes will penalize bimodal bidding strategies of 

generators and thereby result in reduced spot price volatility.    

Naturally, there are many issues arising from this thesis that could be investigated in 

greater depth.  Some of the most obvious ones include: 

1. Subject to the availability of the detailed mathematical formulation, and source 

code, of AEMO’s dispatch linear program; the analysis of Chapter 4 relating 

to the instability gap of shadow prices should be repeated with real constraints 

for the entire 5-region network; 

2. Inclusion of a “consumer oriented generator” into the market should be 

investigated.  This new generator would play a role analogous to a central 

bank which steps in to protect a country’s currency. In the electricity market, 

perhaps, this could take form of AEMO incorporating all the electricity 

produced by solar panels into the dispatch model and – at strategic times – 

releasing it at a price below that at which home owners were paid. 
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Investigating alternatives to the current structure of using shadow prices from six 𝐿𝑃-

based dispatch models as a basis for determining the spot price.  For instance, further 

regulations on the permitted bid stacks, or new pricing mechanisms such as those 

considered in Chapter 5 could be investigated.  More radically, a completely new 

quantitative mechanisms such as auctions could be considered. 
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APPENDIX 

Appendix 3.1. Value at Risk (VaR) and ‘Conditional Value at Risk’ (CVaR) 

In financial risk management, value at risk (𝑉𝑎𝑅) is a statistical technique used to 

measure the risk of loss on a specific portfolio of financial assets. It assist managers 

to control the level of risk which the firm undertakes.  

For this purpose, value at risk (𝑉𝑎𝑅) is used to calculate the maximum loss expected 

on an investment, over a given time period and given a specified degree of 

confidence. In other words, the "𝑉𝑎𝑅 question" has three elements: a level of 

confidence (1 − 𝛼)%, a time period and an estimate of investment loss (Rockafellar, 

2006).  

 

Figure 3.21. Probability density function of loss to consumers. 

 

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

P
ro

b
ab

ili
ty

 

Loss

CVaR

VaR

Maximum 
Loss

Probability:
1-α

https://en.wikipedia.org/wiki/Financial_risk_management
https://en.wikipedia.org/wiki/Market_risk
https://en.wikipedia.org/wiki/Portfolio_(finance)


Appendix  
  
 

126 
 

Similarly to Section 3.8, Figure 3.21 shows the probability density function of loss to 

consumers in a trading interval in January 2009. Given a confidence level 𝛼 ∈ (0,1), 

the VaR of the portfolio at the confidence level 𝛼 is given by the smallest number 𝑙 

such that the probability that the loss 𝐿 exceeds 𝑙 is at most (1 − 𝛼).  

Mathematically, if 𝐿 is the loss of a portfolio, then 𝑉𝑎𝑅𝛼(𝐿) is  

𝑉𝑎𝑅𝛼(𝐿) = inf{𝑙 ∈ ℝ ∶ 𝑃(𝐿 > 𝑙) ≤ 1 − 𝛼}. 

A more recent approach for optimization of Conditional Value-at-Risk (𝐶𝑉𝑎𝑅) was 

suggested and tested with several applications. For continuous distributions, CVaR is 

defined as the expected loss exceeding Value-at Risk (VaR) (Rockafellar, 2002).  

𝐶𝑉𝑎𝑅𝛼 = E(𝐿|𝐿 > 𝑉𝑎𝑅𝛼(𝐿)). 

Fundamental properties of conditional value-at-risk (𝐶𝑉𝑎𝑅), as a measure of risk with 

significant advantages over value-at-risk (𝑉𝑎𝑅), are derived for loss distributions in 

finance that can involve discreteness. Such distributions are of particular importance 

in applications because of the prevalence of models based on scenarios and finite 

sampling. 𝐶𝑉𝑎𝑅 is able to quantify dangers beyond 𝑉𝑎𝑅 and moreover it is coherent. 

(Krokhmal, P., et al, 2002). 
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Appendix 4.1. 

Table 4.12. Aggregated volumes to be offered by the 34 generators in South Australia on January 8 th 
2010, high spot price trading interval. 

 v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 

G1 0.00 36.79 31.53 31.40 34.08 0.00 29.63 0.00 0.00 56.57 

G2 0.00 30.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

G3 0.00 20.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

G4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 57.00 0.00 

G5 0.00 105.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

G6 0.00 105.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

G7 0.00 105.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

G8 0.00 0.00 0.00 95.00 0.00 0.00 0.00 0.00 0.00 0.00 

G9 0.00 0.00 0.00 0.00 71.00 0.00 0.00 0.00 0.00 0.00 

G10 0.00 80.21 0.43 1.86 2.19 3.25 0.00 0.00 0.00 0.05 

G11 0.00 81.43 3.19 0.34 2.79 0.09 0.00 0.00 0.00 0.15 

G12 0.00 0.00 0.00 159.00 0.00 0.00 0.00 0.00 0.00 0.00 

G13 0.00 204.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

G14 0.00 280.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

G15 0.00 280.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

G16 0.00 230.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

G17 0.00 252.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

G18 0.00 55.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

G19 0.00 510.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

G20 0.00 38.55 0.10 2.64 2.14 1.29 0.15 0.13 0.00 0.00 

G21 0.00 41.64 0.01 3.65 0.00 1.15 0.08 0.47 0.00 0.00 

G22 0.00 40.17 0.00 0.47 1.63 1.99 0.48 0.26 0.00 0.00 

G23 0.00 39.94 0.20 1.99 1.77 1.09 0.00 0.00 0.00 0.00 

G24 0.00 165.61 10.12 9.89 9.15 9.94 10.19 3.96 0.00 29.14 

G25 79.50 2.50 0.00 0.00 0.00 8.27 1.76 0.08 6.88 0.01 

G26 0.00 130.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

G27 0.00 36.50 43.88 14.74 2.64 32.24 0.00 0.00 0.00 0.00 

G28 0.00 38.61 50.57 26.39 7.98 0.02 6.43 0.00 0.00 0.00 

G29 0.00 14.43 19.70 0.01 0.00 27.40 66.95 0.00 0.00 1.51 

G30 0.00 35.56 42.88 12.20 0.56 31.94 6.86 0.00 0.00 0.00 

G31 0.00 33.67 36.04 39.23 36.92 0.00 0.03 0.00 0.00 64.10 

G32 0.00 33.46 35.65 39.44 37.25 0.00 0.00 0.00 0.00 64.19 

G33 0.00 34.71 38.12 39.90 33.67 0.00 0.00 0.00 0.00 63.59 

G34 0.00 34.50 39.58 41.54 1.04 27.02 0.00 0.00 0.00 66.33 
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Table 4.13. Aggregated volumes to be offered by the 34 generators in South Australia on January 8 th 
2010, low spot price trading interval. 

 v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 

G1 0 0 0 0 0 0 0 0 0 221 

G2 0 30 0 0 0 0 0 0 0 0 

G3 0 0 0 0 0 0 0 0 0 21 

G4 0 83 0 0 0 0 0 0 0 0 

G5 0 0 0 0 0 80 0 0 0 0 

G6 0 0 0 0 0 80 0 0 0 0 

G7 0 0 0 0 0 80 0 0 0 0 

G8 0 120 0 0 0 0 0 0 0 0 

G9 0 0 96 0 0 0 0 0 0 0 

G10 0 0 0 0 0 0 0 0 52 0 

G11 0 0 0 0 0 0 0 0 52 0 

G12 0 0 0 0 0 0 0 183 0 0 

G13 0 0 0 0 0 0 126 0 0 0 

G14 0 0 0 0 0 0 0 0 0 295 

G15 0 0 0 0 0 0 0 0 0 295 

G16 0 0 0 0 0 0 0 0 221 0 

G17 0 0 0 0 0 0 0 0 0 253 

G18 0 0 0 0 0 0 0 0 0 57 

G19 0 0 0 0 0 0 0 0 0 510 

G20 0 0 0 0 0 0 0 0 27 0 

G21 0 0 0 0 0 0 0 0 49 0 

G22 0 0 0 0 0 0 0 0 27 0 

G23 0 0 0 0 0 0 0 0 27 0 

G24 0 0 0 0 0 0 0 0 130 0 

G25 123 0 0 0 0 0 0 0 0 0 

G26 0 0 0 0 92 0 0 0 0 0 

G27 0 0 0 0 0 0 0 0 0 130 

G28 0 0 0 0 0 0 0 0 0 130 

G29 0 0 0 0 0 0 0 0 0 130 

G30 0 0 0 0 0 0 0 0 0 130 

G31 0 0 0 0 0 0 0 0 0 210 

G32 0 0 0 0 0 0 0 0 0 210 

G33 0 0 0 0 0 0 0 0 0 210 

G34 0 0 0 0 0 0 0 0 0 210 
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Table 4.14. Aggregated volumes to be offered by the 34 generators in South Australia on January 8 th 
2010, high spot price trading interval. 

 v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 

G1 0 0 0 0 0 0 0 0 0 220 

G2 0 0 0 0 0 0 0 0 0 30 

G3 0 0 0 0 0 0 0 0 0 20 

G4 0 57 0 0 0 0 0 0 0 0 

G5 0 0 0 0 0 57 0 0 0 0 

G6 0 0 0 0 0 57 0 0 0 0 

G7 0 0 0 0 0 57 0 0 0 0 

G8 0 95 0 0 0 0 0 0 0 0 

G9 0 0 71 0 0 0 0 0 0 0 

G10 0 0 0 0 0 0 0 0 50 0 

G11 0 0 0 0 0 0 0 0 50 0 

G12 0 0 0 0 0 0 0 159 0 0 

G13 0 0 0 0 0 0 105 0 0 0 

G14 0 0 0 0 0 0 0 0 0 280 

G15 0 0 0 0 0 0 0 0 0 280 

G16 0 0 0 0 0 0 0 0 220 0 

G17 0 0 0 0 0 0 0 0 0 252 

G18 0 0 0 0 0 0 0 0 0 55 

G19 0 510 0 0 0 0 0 0 0 0 

G20 0 0 0 0 0 0 0 0 25 0 

G21 0 0 0 0 0 0 0 0 47 0 

G22 0 0 0 0 0 0 0 0 25 0 

G23 0 0 0 0 0 0 0 0 25 0 

G24 0 0 0 0 0 0 0 0 128 0 

G25 99 0 0 0 0 0 0 0 0 0 

G26 0 0 0 0 69 0 0 0 0 0 

G27 0 0 0 0 0 0 0 0 0 130 

G28 0 0 0 0 0 0 0 0 0 130 

G29 0 0 0 0 0 0 0 0 0 130 

G30 0 0 0 0 0 0 0 0 0 130 

G31 0 0 0 0 0 0 0 0 0 210 

G32 0 0 0 0 0 0 0 0 0 210 

G33 0 0 0 0 0 0 0 0 0 210 

G34 0 0 0 0 0 0 0 0 0 210 
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Table 4.15. Aggregated volumes to be offered by the 34 generators in South Australia on January 8th 
2010, high spot price trading interval. 

 v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 

G1 0 12 0 0 0 0 0 0 0 207 

G2 0 12 0 0 0 0 0 0 0 0 

G3 0 20 0 0 0 0 0 0 0 0 

G4 0 0 0 0 0 0 0 10 14 33 

G5 0 105 0 0 0 0 0 0 0 0 

G6 0 105 0 0 0 0 0 0 0 0 

G7 0 105 0 0 0 0 0 0 0 0 

G8 0 0 57 19 0 19 1 0 0 0 

G9 0 0 0 0 71 0 0 0 0 0 

G10 0 88 0 0 0 0 0 0 0 0 

G11 0 88 0 0 0 0 0 0 0 0 

G12 0 0 0 159 0 0 0 0 0 0 

G13 0 204 0 0 0 0 0 0 0 0 

G14 0 280 0 0 0 0 0 0 0 0 

G15 0 280 0 0 0 0 0 0 0 0 

G16 0 230 0 0 0 0 0 0 0 0 

G17 0 144 0 0 0 0 0 0 0 108 

G18 0 55 0 0 0 0 0 0 0 0 

G19 0 262 0 14 26 0 49 52 45 61 

G20 0 45 0 0 0 0 0 0 0 0 

G21 0 47 0 0 0 0 0 0 0 0 

G22 0 45 0 0 0 0 0 0 0 0 

G23 0 45 0 0 0 0 0 0 0 0 

G24 0 142 0 0 0 0 0 0 106 0 

G25 54 12 0 0 0 0 0 0 0 32 

G26 0 130 0 0 0 0 0 0 0 0 

G27 0 0 0 0 0 0 0 0 0 129 

G28 0 0 0 0 0 0 0 0 0 129 

G29 0 0 0 112 0 0 1 0 3 14 

G30 0 0 0 112 0 0 1 0 2 14 

G31 0 0 0 190 0 0 1 0 4 14 

G32 0 0 0 0 0 0 0 0 0 209 

G33 0 0 0 0 0 0 0 0 0 209 

G34 0 0 0 0 0 0 0 0 0 209 
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