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1 Abstract
Since the dawn of space exploration in 1957, numerous structures such satellites
and rockets, have been situated in Earth’s orbit and space. Due to a lack of a
system that deals with the disposal of now defunct structures (or their collision-
resultant fragments), the amount of debris in space is estimated to have reached
the Kessler benchmark. Thus, there is a need to conceptualize systems to im-
prove the safety of all personnel and property in space. The thesis aims to eval-
uate the viability of image processing and machine learning techniques in the
field of debris identification. The kernel-based program (image processing) was
capable of detecting space debris, however the quality of the output was de-
graded due to preset baseline assumptions. Other factors that determined this
program’s inability to appropriately function in space was its dependency on
color/pixel values; variables that cannot be replicated in actual space, more so
since this code is tested upon clips from the movie "Gravity". The project then
progresses to validate the applicability of machine learning in similar scenarios.
Since the model’s training and testing phases were comprised of only 200 im-
ages (along with being synthetic), the precision of 0.6 and recall of 0.67 indicate
that the model developed for this thesis is not realistically feasible. However, the
research did indicate that machine learning with better resources could be a po-
tential solution working towards space debris detection. Subsequently, the thesis
also dives into the field of robotic design, 3D modelling a hypothetical robot,
named the WOMBAT, that would be theoretically capable of capturing/collect-
ing space debris through the equipped net/sheet. Finally, the discussion gains a
marketing perspective on introducing such a product, and the resistance it could
receive due to its potential ability to gain access to inter-country security and
surveillance data.
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4 Introduction

4.1 Thesis Premise

The premise of this thesis revolves around approaching the Kessler phenomenon
and the need to address the present space debris crisis. The ’Kessler’ syndrome,
proposed by the ex-NASA scientist and debris expert Donald J. Kessler, is a theory
that states the exponentially increasing space debris will reach a peak value, an
amount that will enable the existing quantity to continuously increase even without
further man-made launches [Matignon & de Gouyon (2019)]. When defined in
1978, Don Kessler estimated approximately 30 to 40 years for the environment in
space to achieve the Kessler syndrome and based from current NASA experts "we
are already at critical mass in the low-Earth orbit"[Ratner (2018)].

4.2 Problem Statement: Background Information

In order to better substantiate the ever-increasing danger, it is important to keep
track of the amount of debris introduced over the decades since 1957. Since the
dawn of the space age, ranging from defunct satellites to rocket remains, it is re-
corded that there are over 22000 large objects orbiting the planet. The scenario
only deteriorates when taking another 1 million random smaller objects, like dis-
carded astronaut gear etc., into the total count. To better highlight the threat, a
space environmental statistical report in 2021 compiling data since the beginning
of space exploration provided an assessment on the current of debris within Earth’s
orbit [ESA (2021)]:

• # of recorded rocket launches since the start of space exploration in 1957:
6170 (does not account for failures)

• # of recorded successful satellites propagated/placed in orbit: 12470

• # of previously stated satellites still suspended in orbit: 7840

• # of satellites within the above subset that still function: 5100

• regular # of objects/debris catalogued by Space Surveillance Networks: 30040
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• approximate # of events (such as collisions) that led to further fragmentation
since 1957: >630

• accumulate mass of space debris/fragments/objects currently in orbit: >9800
tonnes

• a statistical estimate on debris quantity with respect to their size:

– # of objects > 10 cm = 36500

– # of 1cm < objects < 10 cm = 1 million

– # of 1mm < objects < 1 cm = 130 million

The above data represents the current state of space-debris across the 14 different
orbits enveloping planet Earth. The scope of this thesis shall revolve around the
previously iterated "critical mass" in the Low Earth Orbit (LEO). LEO is among
the most highly prioritized orbit as it is the most readily accessible for satellite
placement, houses a large population of working astronauts and requires the lowest
amount of energy to gain access to (as portrayed in Figure 16). LEO is also home
to the International Space Station (ISS) and their crews who are in charge of
maintaining and servicing subsequent satellites and space stations [UWA (2022)].
Figure 1 depicts how a relatively small fragment/debris is capable of substantial
damage when travelling at hyper-velocity [ESA (2020)].

Figure 1: Earth-based Test: Hyper-Velocity Debris Damage

8
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4.2.1 GAP: Current Methods of Space Debris Disposal & Containment

Having grounded the current situation, it is vital to descry the GAP as it estab-
lishes the purpose behind this thesis project, that being the containment and dis-
posal of space debris. The current methods being implemented to ’dispose’ of space
junk are not relatively effective, one of the two methods only sustaining/speeding
up the rate at which the quantity of space debris achieves the Kessler syndrome.
The two means being as follows: (1) Point Nemo (also labelled as the ’space
cemetery’) and (2) the Graveyard Orbit [Rabie (2021)].

• Point Nemo or Space Cemetery: This is an allocated section in the pa-
cific ocean where any/all space objects, fragments, debris etc., that did not
successfully burn up during their re-entry into the Earth’s atmosphere, are
stored/dumped. Point Nemo, taking inspiration from Jules Verne’s fictional
character Captain Nemo, was designated to this particular region on the
planet, shown in Figure 2, as scientists framed it for being the furthest from
human civilization.

Figure 2: The Space Cemetery: Point Nemo

• Graveyard Orbit or Disposal Orbit: A scientist-designated orbit that lies
300 km from the Geostationary orbit or Geosynchronous Equatorial Orbit
(GEO), as shown in Figure 15. Retired or defunct satellites are propagated
into said orbit, where these structures are left wandering in the void of space.
As can be inferred, these structures are open to experiencing collisions with
other similarly situated satellites or travelling celestial bodies; perpetuating
the Kessler phenomenon.
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As can be observed, neither of the two solutions work towards addressing the
current amount of continuously increasing space debris; leaving the objects in space
more susceptible to fragmentation. The action of allowing incompletely burned
space junk re-entering the Earth’s atmosphere provides a different set of problems.
An instance of such was recorded in a news article when a "lightweight fragment
of a charred woven material" struck a woman in Turkey, Oklahoma in 1997 [Wall
et al. (2013)]. Due to fortunate circumstances, the civilian suffered no injuries
from the event; however, it indicates that falling space debris may be received
outside the jurisdiction of Point Nemo. Another recent example of accumulated
space debris posing a threat to future space endeavours was the incident recorded
on 5th March 2022. 3-tonnes of bundled space junk, travelling at the speed of 9300
kph, collided with the Moon’s surface resulting in a crater 20 meters in diameter
[Dunn (2022)]. In order to better gain perspective, scientists have stated that even
a fragment of that mass is capable of causing irreversible damage to the ISS.

Exploring a different GAP opportunity, the two current means of disposal/contain-
ment do not take into consider the potential behind taking advantage recycling
the debris suspended in space. On the lunar surface alone, there is an estimated
amount of 150-tonnes of aluminium. The value, estimated by Orbit Recycling, of
recycled aluminium is said to be worth $150, 000 per kilogram [SUT (2022)]; cap-
able of covering more than the inter-celestial transport costs. The overall worth
of designing concepts to address the space debris issue can be visualized when in-
specting the expected growth rate in this field: where the space debris monitoring
and removal market is estimated to grow from being worth USD 942.3 million

in 2022 to USD 1, 527.7 million by 2029 [B (2021)]. As such, it can stated that
the GAP behind the problem statement lies in the current inability to address or
benefit from the accumulated space junk within Earth’s orbits.

4.3 Thesis Project Scope

Establishing the base layer, this thesis works under the assumption of hypothetical
providing a concept or solution that could be implemented within the Low Earth
Orbit (LEO). Within the duration of this thesis project, the following list of objects
were selected as the points of interest to successfully achieve said proposed solution:
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• Developing Debris Identification System: The primary aim of this
thesis is to test to how viable image processing techniques are, when presen-
ted with the task to identify debris within an array of images or video. As
such, the thesis is set to work on two different phases of object in image
recognition. Firstly, in order to test the baseline, a python script that can
determine debris in a pre-loaded video through the application of filters,
kernels and contours shall be evaluated. Having established a point of com-
parison, the thesis aims to verify the potential of machine learning (ML) in
a debris identification scene. The ML algorithm was planned to work with
a comparatively larger data set than its predecessor, whilst being equipped
with the ability to distinguish between four different types of objects: As-
tronauts, Debris, Satellites, and Extras (a label encompassing other space
entities).

• Design Modelling: The secondary aim of this thesis is to construct a
hypothetical model for the WOMBAT. This shall be achieved through the
3D modelling software of Autodesk Inventor and shall be subsequently an-
imated to depict the sequence of actions/steps the robot would perform to
successfully capture and store the target.

• Investigating Political Market & Potential Disputes/Interference:
The tertiary aim of this thesis involves conducting research understanding
the potential political issues with the introduction of such a product into the
market. This involves breaking down the market reception, scrutinizing the
limitations of the space maritime law and examining different country-based
regulations that might need to be taken into consideration before such a
product release.
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5 Literature Review

This chapter of the thesis examines and scrutinizes the gathered published ma-
terials/journals pertaining to space robotics and debris identification/removal. It
is important to state that there was a distinct lack of access to work conducted
that incorporated both the previously iterated elements. As such, the following
literature is composed of journals that either intersect or run in parallel to the
scope of this project; providing data/information that could work in tandem if
the project were completely restarted with a different methodology and starting
resources/equipment.

The following literature review has been broken into two factions: potential robotic
designs/structures and the current existing means of debris identification, in order
to better collate the different works.

5.1 Investigating Potential Robotic Designs & Structures

From the available literature, an ’out of the box’ concept to address the thesis’s
hypothetical robot could be garnered through considering Parness et al. (2017)’s
introduction of a four-limbed robot. The LEMUR 3, an amalgamation of biology
and an acronym standing for ’Limbed Excursion Mechanical Utility Robots’, is
considered the "most versatile platform" within the LEMUR series; boasting a 7
degrees of freedom (DOF) per limb approach. Pal et al. (2020)’s breakdown behind
the performance of robotic manipulator (with 6 degrees of freedom) in space only
accentuates the LEMUR 3’s ability to perform with 7 DOF.

Pal et al. (2020)’s work more so works towards identifying the most optimal
control system behind the said robotic manipulation, where they compare 4 dif-
ferent types: Proportional-Integral-Derivation (PID), Linear-Quadratic-Regulator
(LQR), Fuzzy Logic Controller (FLC) and Sliding Mode Control (SMC). The four
systems were compared based on response/time-based variables such as delay time,
settling time, and peak overshoot for step input. From the perspective of time,
Pal et al. (2020) recorded better results from the FLC controller; however, from
a dynamics standpoint, a PID controller proved to the better overall controller
as it was more capable of dealing with non-linearity in the simulations. The PID
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controller is comparatively more simple and robust in nature. The benefits from
Pal et al. (2020)’s work is determining how viable a 6 DOF control system is, were
the scope of the project expanded in the future. However, given that all experi-
mental data was simulated, there will be extraneous factors when working towards
developing a physical prototype that is expected to perform more than just simple
movements.

To reiterate: Pal et al. (2020)’s experiments provide more of an understanding
behind the applicability of Parness et al. (2017)’s LEMUR 3. The LEMUR 3 was
designed with the following objectives: (1) "[crawl] across the exterior of the Inter-
national Space Station" and (2) "[climb] vertical cliffs and [traverse] cave ceilings
on the Moon and Mars". As as can be observed, the LEMUR 3 was built for a
different purpose rather than space debris identification, capture and/or removal.
However, the design could be modified to consider more of an observation role
from the aforementioned ISS’s exterior; as even having locational and potentially
traversal knowledge would greatly benefit other space debris management endeav-
ours. One such endeavour could include working with Srikrishnan et al. (2015)’s
Single semi-Autonomous Satellite Tracking ROBOT or SASTROBOT.

Exploring a different avenue of reducing space debris, the team at the Institute of
Aeronautical Engineering have a conceptualized a means to taking advantage of
the numerous dead satellites in LEO [Srikrishnan et al. (2015)]. The SASTRO-
BOT is designed to seek out defunct satellites and attach a deorbiting rocket
onto the structure. The selected targets for said attachment is depending upon
the Area Mass Ratio (AMR) of the satellite and all control is directly placed to
an assigned ground station; who is responsible for safely bringing back the dead
satellite through a stable de-orbit. Given that Srikrishnan et al. (2015)’s mission
aims to carry 20 deorbiting rockets and ’capture’ 18 defunct satellite per run, the
overall number of launches and mission cost would be within manageable limits.
Before re-launching the SASTROBOT for subsequent runs, it could be equipped
further "mission-based segments" to make some defunct satellites more retriev-
able. However, a key factor that draws a line between Srikrishnan et al. (2015) vs
this project is its scope. Srikrishnan et al. (2015) is a mission on a grander scale
to larger, full-sized defunct satellites whereas this thesis or WOMBAT is aimed at
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addressing the smaller fragments or remains distributed in space, due to collisions
from such said defunct sources. As such, before specifically looking at features
that we would like to equip the WOMBAT with, a better understanding of the
space communities’ active concepts of debris removal was needed and was achieved
through Singh et al. (2020)’s astute breakdown. This type of emphasis relate back
to the compaction of the thesis’s WOMBAT.

Amongst the plethora of active removal concepts, Singh et al. (2020) starts out
with evaluating the Drag Augmentation System, highlighted as one of the more
capable concepts. This method aims to increase the drag of the object (i.e., debris)
by "enhancing the area towards a mass ratio of the objects"; theoretically aiming
to throw some debris through a small density. This concept was further broken
down into three methods: foam-based, fiber-based and inflated. Following a sim-
ilar format, these methods aim to launch chaser satellites that cover the targeted
debris/objects with foam/fiber/inflated ball respectively. Other methods (such as
the slingshot method, laser satellite method, ion beam shepherd method) discussed
in Singh et al. (2020)’s work display over-arching themes involving displacing the
debris such that its movement allow the debris to either be shifted towards the
graveyard orbit or into the Earth’s atmosphere. Whilst this research provided
means on displaying debris, it continues to dependent upon the two current means
of space debris management: the graveyard orbit and/or Point Nemo. Singh et al.
(2020) does not scrutinize the potential applicability for more ’traditional’ capture
methods such as robotic grippers, nets or harpoons and in order to do this, we look
at an outlier case - Lv et al. (2022) and their application of all three previously
mentioned capture types simultaneously.

Lv et al. (2022)’s paper conceptually researches a platform that integrates three
means of capture, namely, a robotic gripper, a harpoon, and a tethered net, and ex-
amines the complementary advantages of applying them simultaneously. Initially,
the capture is achieved through locking onto the debris through the harpoon. The
tethered net is then overcast to stabilize the tumbling speed of the debris; having
collided with the harpoon. The tether is then reeled in towards the system and
during this action, the robotic arm then collects and internally stores the debris.
This journal provides an exemplary hypothetical working of such an concurrent
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task. Each of these manual capture methods were thus taken into consideration for
the WOMBAT’s theoretical design. However, given that Lv et al. (2022)’s work
is also hypothetical in nature, whilst the method is effective in theory, the project
does not consider the required resources, costs, control systems etc., that would
need to be accounted for; factors that could potentially drive away investors from
supporting a potentially expensive outcome.

Having looked into the various variables behind the construction of a space robot,
the following section of the literature review targets the different methods used or
conceptualized to locate/identify space debris.

5.2 Investigating Potential Means of Space Debris Identi-
fication

An aspect when working towards a hypothetical space debris robot, apart from
investigating for its physical structure or features, is the debris detection/identific-
ation; the core component of this thesis. Given that the scope of the initial thesis
proposal included the possibility of developing a machine learning algorithm, we
shift to a similarly intended work by Perez et al. (2021). Given that the scope of
their work, Perez et al. (2021) work with two different types of images for their
system: (1) synthetic images and (2) representative images generated by pre-built
test facility. The algorithm was constructed to achieve the following character-
istics: (1) distinguish between satellites and non-satellites, (2) assess the stability
of the satellite by estimating its tumbling rate, solar panel orientation, change in
pose, etc., and (3) determine the material composition of the satellite. Having es-
tablished the requirements, the explored artificial learning was categorized to two
varieties: classic machine learning algorithms and deep learning/neural networks.
Upon tackling the task, the Perez et al. (2021) team achieved relative success to
support their ’proof of concept’. However, results were not achieved without draw-
back for each system as the Machine Learning based methods were observed to
be position-sensitive; depending on the pixel values. Perez et al. (2021)’s Deep
Learning, or Convolutional Neural Networks, did not exhibit this ability due to
their greater visual processing capabilities; enabling this system to more distinctly
identify visual features within the images. As such, this journal paved a road to-
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wards supporting this thesis’s initial scope. However, in order to further expand
our options, the research dove towards scrutinizing Mehrholz et al. (2002)’s work
and their application of radar beams.

The following journal was more an inspection behind radar beams and could not
be considered within the thesis due to the lack of proper resources. This was
accentuated by the journal speaking of implementing the FGAN Tracking and
Imaging Radar (TIRA): "a 34m parabolic antenna, a narrow-band mono-pulse L-
band tracking radar, and a high resolution Ku-band imaging radar". If this facility
could work in tandem with previously reviewed work of Srikrishnan et al. (2015),
the project overall would gain data and the ability to do the following:

• search and track space objects

• characterise the current space-debris environment

• validate space-debris systems/models

• keep track of space fragments or debris re-entering the atmosphere

• space objects imaging (further showing potential in work with research by
Perez et al. (2021))

As such, despite the work presented by Mehrholz et al. (2002) being outside the
scope of the project, this investigation opens other avenues of research that could
potentially be complemented with such information. On a similar note, the West-
ern Australian team of Tingay et al. (2013) showcase the application of the Murch-
ison Widefield Array (MWA), a new low-frequency interferometric radio telescope,
for space debris endeavours.

The paper explores the application and effectiveness of MWA for general Space
Situational Awareness (SSA). For their setup, the MWA acts as the "receiving
element in a bi-static radar configuration" whereas the FM broadcast stations
play the role of transmitters. The waves transmitted propagated into space reflect
off debris situated in LEO, which are then collected at the receiver, the MWA.
With this data processed, the MWA is then capable of the following: (1) detecting
multiple fragents of space debris (detecting an average of 10 pieces at any given
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time), (2) "image their positions on the sky as a function of time", and (3) calculate
orbit parameters through the available tracking data. A factor, amongst others,
that weakened the overall reliability of the results is that the project conducted its
studies under one assumption that the sky does not change over the course of the
observation. The assumption loses validity due to the model working with space
debris’ rapidly changing angular motion relative to the backdrop of images being
either the sky or other celestial bodies. Tingay et al. (2013)’s paper is expected
show better and reliable outputs were all the weaknesses addressed and similar
to Mehrholz et al. (2002), shows better applicability when working with other
aforementioned projects such as Perez et al. (2021), Srikrishnan et al. (2015), Lv
et al. (2022), etc.

5.3 Section Overview

Formally concluding this chapter of the thesis, the multiple avenues of research and
investigation initially displayed the lack of pre-existing data and resources that
the WOMBAT could be built upon. Amongst the plethora of journals scrutinized,
some concepts such as using image processing and machine learning were supported
in the field of debris identification, despite the thesis’s scope being smaller in scale.
On a similar note, it was better recognized that hypothetically 3D designing the
WOMBAT’s structure with more ’manual’ means of capture and navigation posed
as being more ’realistic’; if the project was ever to be realised.
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6 Methodology

This chapter of the thesis breaks down the three different engineering goals that
were conducted over the duration of this project: (1) kernel-based image pro-
cessing, (2) machine learning algorithm, and (3) 3D modelling a hypothetical ro-
bot. All code implemented for tasks (1)(2) shall be appropriately credited and
provided within the appendices of this report. Comparatively, goal (3) is more
briefly expressed due to the nature of the task and a definitive steps to expand
upon; however, has a more prominent role in the ’Discussion’ section of the report.

6.1 Equipment Configurations

The section aims to briefly provide an overview regarding the access to hardware
and software that enabled progress with the scope of the thesis.

6.1.1 Hardware

All three engineering tasks (1), (2), and (3) were completed on a personal laptop:
Acer Predator Helios 300 equipped with an Intel(R) Core(TM) i7-8750H processor
with 16.0 GB RAM. The device is comparatively more capable than standard
personal devices, but it did require certain accommodations during the machine
learning phase of the thesis.

6.1.2 Software

All coding constructed and implemented for aims (1) and (2) were completed
through Python programming. Aim (1) was facilitated through the web-based
interactive interface - Jupyter Lab. On a similar note, Aim (2) was completed
through accessing Jupyter notebooks; where Jupyter notebooks are simply a smal-
ler subset of the greater Lab interface. Aim (3) was undertaken through working
with the 3D modelling capabilities of Autodesk Inventor.
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6.2 Primary Goal: Part 1 - Kernel-based Image Processing

Prior to analysing the code implemented in this section, it is vital to acknowledge
the assistance from the sources behind each of the resources used. Firstly, the
code support, inspiration and assistance is credited to Simran Suresh and her
publicly available github repository [Suresh (2022)]. Other resources utilised within
the execution of the code are snippets from the movie "Gravity" starring Sandra
Bullock and George Clooney. These movie clips were used as the material upon
the program overlays and detects said debris.

NOTE: The code shall be broken down into two individual sections in order to
better track its gradual functionality. A similar format shall be followed when
providing said code within this report’s appendices.

6.2.1 Listing 1: Initializations, Capturing the video and Setting up the
kernels

Listing 1 begins with the importing of the two vital libraries required for this
program: cv2 and numpy. cv2, an opencv-python importing module, was imported
as it allows the program to gain access to a multitude of image processing functions
and packages; this library shall be accessed through the assigned key word cv2 in
later steps. numpy, an array-based package, was imported into the code as it
provides functions that work in tandem with multiple mathematical expressions,
specifically looking at matrices; as the process of image processing works with
identity matrices, convolution, etc. These shall be addressed through the keyword
of cv2.

Following this, it is necessary to state an assumption that the overall system works
upon: ’all regions in the video/film excluding debris is considered black’. As such,
the two array variables establish the lower and upper boundaries through the
respective Hue Saturation Value (HSV) configurations for the colours of black ([0,
0, 0]) and white ([0, 0, 255]); the reason behind the application of HSV colour
coding shall be provided in later steps. Having set these boundaries, the cv2

library is accessed and applied to capture the .mp4 snippet of "Gravity" in the
variable cam. Following this, for later purposes of ’outlining’, two kernels (opening
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and closing) are set up in the following form: np.ones((5, 5)) and np.ones((20, 20))

respectively generating identity matrices [rows, columns] of [5 x 5] and [20 x 20]
with the value of 1 in each cell.

6.2.2 Listing 2: Resizing, Color conversion, Mask generation and ma-
nipulation, Contouring, and Displaying final output

Listing 2 begins with setting up the while loop in which the rest of the remain-
ing code is executed. Within this loop, the first line of instruction stores two
different variables from reading the video’s frames. The variable img stores an
image array vector corresponding to the default frames per second, where if the
frame is available, returns a ’true’ value that is stored within arg; this boolean
value shall later work in tandem with a while loop. Following this, the captured
frames are resized to the dimensions of 1366 x 768, a default resolution used for
standard computer and laptop screens - a setting that saves memory, reduces the
file size all whilst retaining the quality of the image. Promptly following this,
the program is instructed to convert the captured frames from a Blue-Green-Red
(BGR) to High-Saturation-Value, matching its type to previously mentioned up-
per and lower boundaries. Other factors that require this conversion include that
the BGR represents color intensity/luminescence, making it difficult to separate
colours within it. On the contrary, HSV separates the colour information from
image luminescence.

The following three lines of code generate and morph the necessary mask that
enables the program to perform ’accurate’ edge detection in later phases; the pre-
viously constructed filtering kernels are implemented in tandem with the morpho-
logical functions to perform the required dilation and erosion. Having ’morphed’
the image, the contours and hierarchy are returned as values from the applica-
tion of the findContours function. The detection of colours are stored in form
of vector points and returned as the data pertaining to ’contours’ for the variable
conts. The variable h, representing hierarchy, is returned output vector that stores
essential information related to the typology of the image. With the necessary in-
formation available, this listing of the code concludes with drawing the contours
onto the video frames with set line colour (white) and labelling font of hershey.
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Following this, for the ’length’ of the determined contours, bounding rectangles
were constructed and overlapped over the discerned ’debris’ or objects. The pre-
viously set text font was utilised as a trait for the numbering of detected objects
within the video. Thus, having built the necessary overlays for various frames of
the video within the while loop, the final output is portrayed in a new window.
The user was also provided the ability to collapse the output window at any given
time with the keyword ′q′; breaking free of the infinite while loop.

6.3 Concluding Comments

This covers the entirety of the code implemented to achieve the kernel-based image
processing program for debris detection. All obtained results shall be scrutinized
within the Results and Discussion sections of this report. Having completed,
the project makes strides to test the viability and accuracy of machine learning in
such a scenario.

6.4 Primary Goal: Part 2 - Machine Learning Algorithm

On a similar note to the previous section, prior to analysing the code implemented
in this section, it is vital to acknowledge the assistance from the utilised resource.
The code support, inspiration and assistance is credited to Nicholas Renotte and
his publicly available github repository [Renotte (2020)].

NOTE: There are two phases/sets of code encompassing the machine learning
algorithm: (1) Image Collection and (2) Training and Detection. These phases
shall be further broken down into multiple listings to better align this information
with the structure of this report.

6.4.1 Virtual Environment

The project initiates with the creation of a separate virtual environment, named
tfod, in order to have complete control over every aspect of the algorithm. This
step was taken as a virtual environment allows the user to keep track of every
package subsequently installed while controlling their respective version and/or
updates. This was achieved through the running the following command in the
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anaconda environment: python − m venv tfod. The only drawback with this
initial setup is ensuring that there is excessive use of third-party modules that
would a pip install.

6.4.2 Listing 3: Initializations and Image Collection

As previously established, since a separate virtual environment was constructed for
this machine learning algorithm, the code in listing 3 starts with the installation
of the necessary packages and files from the opencv, or open computer vision,
library/dependency. Following a similar note as the kernel-based program, the
code subsequently imports the cv2 package along with uuid and os. The uuid

package enables a robust way to generate unique identifiers within the python
environment, whereas the os package offers the ability to establish interaction
between the operating system and the algorithm/user.

The next step of the program involves creating an array with the different type
of objects that you required the algorithm to later detect. As such, following the
scope of this thesis results in the following four labels/’objects’ as being the focus of
interest: (1) debris, (2) astronaut, (3) satellite and (4) extras (this category refers
to any other lower priority space entities such as asteroids etc). It is important to
take note of these label ’names’ when navigating through the labelling section in the
next listing as it was observed that the algorithm was case sensitive in this regard.
Having identified the desired categories, the code constructs the following path into
the virtual environment folder through the os.path, join() function: Tensorflow >
workspace > images > collectedimages. The following if statement acts as a
double-check ensuring that the previous images path has been constructed; if the
condition is met, it re-executes and constructs the path. This listing concludes with
a for loop that adjoins four folders (subsequently named based on the labels) onto
the same path.

This phase of the code was concluded through surfing the internet to collect high-
quality synthetic images (due to a lack of access to real images of debris etc.) that
fall under the four categories and are respectively stored in their generated folders.
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6.4.3 Listing 4: Image Labelling

Listing 4 starts with the need to pip install specific upgrades for pyqt5lxml,
based on the requirement for using Tzutalin (2016)’s labelling tool. Another
folder, named "labelimg", was then added into the path or directory of the ori-
ginal "TensorFlow" environment folder. Once verifying that the previously stated
file path was successfully integrated, all folders, files and packages from Tzutalin
(2016)’s repository were cloned into this "labelimg" folder through the !gitclone

"URL" command. These files were then subsequently installed and the labelling
tool/software, ’python labelimg.py’ was executed.

Figure 3: Tzutalin’s Labelling Software/Tool

Figure 3 displays how the labelling tool actives allows the user to manually draw
contours/boxes over multiple objects in one image and label into one of the four
categories. This process was repeated for over 50 images for each type of to-be-
detected objects (totalling at 4 ∗ 50 = 200 labelled images). These labelled images
were then readily accessible for the next major phase of the machine learning
algorithm.
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6.4.4 Listing 5: Part 1 - Setting Up the Training and Detection Al-
gorithm

Given that the training and testing phase of the project was initiated in a dif-
ferent notebook, listing 5 starts with the importing of the os package. The fol-
lowing three lines of instruction address an external pre-trained model named
’ssd_mobilenet_v2_fpnlite_320x320_coco17_tpu-8’ that refers to one of many
models available from the tensorflow 2 detection model zoo Tensorflow (2017).
With an average speed of 22 ms and mean average precision of 22.2 mAP, this
model was selected in particular for the following list of factors:

• Limitation: Was most stable compared to other models when implemented
on personal hardware.

• Versatility: obtained results or outputs can be replicated on less capable
device such as Raspberry Pi or mobile phones. This provides more flexibility
if the project were to reach an official robotic design phase.

• Automated Processing: This pre-trained model performs the necessary
pre- and post- processing required by models when compressing and de-
compressing input images/videos from their original resolution to 320x320.

• Image Augmentation: The model automatically performs additional man-
euvres such as darkening the image, altering the orientation, etc., and thus
accounts for more possibilities than just initially provided list of images; with
the intent to improve model performance.

As such, for the reasons above, the algorithm was given access to the URL that
enabled to interact with the required github repository. Following this, variables
to store the necessary TensorFlow records (data records that are required for the
test/train phase) and the label map (a text file that maps the labels to their
respective IDs/identifiers).

The next series of instructions stored within the paths dictionary utilises the os

package to create the necessary file paths within the constructed virtual environ-
ment. Amongst the list of paths built, any data acquired from the model zoo (the
SSD_mobilenet model) is allocated to the path constructed for Pretrained Model Path.
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Other file paths of interest include the ′Checkpoint Path′ and the ′Protoc Path′

- each of which shall be explored at later stages of the code.

The files dictionary performs a set of instructions to configure the required setting-
s/paths for each of three depicted variables: Pipeline Config, TF Record Script

and Label Map. The role of Pipeline Config and the pipeline file shall be dis-
cussed in later sections of the code. Following this, all constructed file paths are
described above are officially added into the directory within the for loop.

6.4.5 Listing 6: Part 2 - Setting Up the Training and Detection Al-
gorithm (Continued)

Listing 6 begins with the installation and importing of the wget library that
provides the feature to pull down the required pre-trained model from the Tensor-
Flow 2 detection model zoo. The next two lines of instruction verify for an existing
path and clone an essential object detection repository from the TensorFlow model
garden into this directory.

The next subsection of code refers back to the previously stated ProtocPath as it
installs all required protocol buffers for the algorithm. These protocol buffers are
necessary as they enable the compiler to interact with corresponding model data;
alongside integrating these buffers, the code installs the official object detection
API. However, before progressing with future steps, it is important to ensure all
necessary files have been installed/imported for the algorithm. As a means to
double-check the work, a verification script is run to perform a background check
where it revealed the required lines of instructions (the "Missing packages and
libraries" subsection) necessary; leading to their inclusion. Lastly, to conclude this
listing/section of code, the SSD_mobnet pre-trained model is downloaded into its
designated file path.

6.4.6 Listing 7: Part 3 - Setting Up the Training and Detection Al-
gorithm (Continued)

Listing 7 starts the subsection of code with the construction of the label map. The
labels from the ’Image Collection’ phase of the projects are replicated (as these
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labels are case-sensitive) and assigned in a map with designated IDs; this label
map is later utilised by the pipeline file during the testing phase of the algorithm.
In order to gain access to an open source data analysis and manipulation tool,
the files and packages from library pandas were installed. From Renotte (2020)’s
repository, the script that is capable of generating TF records or data sets is cloned
into its respective file path. This script is then subsequently implemented to build
the two ’train’ and ’test’ data sets (or TensorFlow ’Records’). The ’train’ data set
is constructed based on a 100 labelled images comprised of the four object types
(25 labelled images for each category). On the other hand, the ’test’ record works
with other 100 un-labelled images as it is the data set that verify the algorithm’s
ability to detect said objects.

6.4.7 Listing 8: Part 4 - Setting Up the Training and Detection Al-
gorithm (Continued)

This subsection starts with the copying the previously developed configuration
files into the training file path, followed by which, a series of instructions import
the necessary files and packages from the libraries pertaining to transfer learning
and pipeline files.

Transfer learning refers to the concept where the pre-trained model uses past
data and information on the current training and testing data sets to improve the
performance of the model. Given that our machine learning algorithm revolves
around utilising the SSD_mobnet model, the remaining lines of instructions in
listing 8 configure pipeline file with necessary settings. The algorithm’s pipeline
configuration file controls the architecture and defines what the overall model
looks like. This model definition enables this algorithms to utilise the previously
constructed label map and two of the SSD_mobnet’s features: (1) Automated
Processing and (2) Image Augmentation. Thus, with all the steps achieved upto
this listing, the following sections of the program can implement the training,
evaluation and testing phases of this machine learning algorithm.
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6.4.8 Listing 9: Part 5 - Running the Training Phase, Evaluation Phase
and Setting up Checkpoints

Listing 9 initiates with running the training script to build the machine learning
algorithm’s data set based on the previously iterated 100 labelled images. The
printed command line is executed within the Anaconda terminal for 6000 steps.
Previously, when the number of training images fed to the algorithm were 50, the
training phase had been executed for 20000 steps for reasonable results during
the testing phase. However, when the number of images was incremented to 100,
running the training phase for 6000 steps yielded equivalent results; and as such
is presented in the code.

Following this, in order to measure the effectiveness of this ML algorithm, an
evaluation command is inputted into the Anaconda terminal. This data provided
a visual depiction of the algorithm’s capabilities and shall be scrutinized within
the ’Discussion’ section of the report.

Prior to running the testing phase of the algorithm, it was necessary to import
and re-import (for safety measure) certain files and packages that would assist
the construction of checkpoints. The remaining lines of instructions in this listing,
working in tandem with the architecture defined by the pipeline config file, allowing
the algorithm to work in checkpoints. Checkpoints allow the algorithm to continue
training from their previous endpoint. The run/iteration where the training was
conducted for 20000 steps, was initially broken down into multiple checkpoints:
(1) 2000 steps, (2) 4000 steps, (3) 10000 steps and then led up to (4) 20000 steps.
This allows the user to potentially evaluate the viability of the ML algorithm under
different number of steps if required.

6.4.9 Listing 10: Part 6 - Running the Testing Phase

Listing 10 sets up the required packages and libraries prior to running the following
lines of code. The ImagePath variable is then executed through the os.path.join()
to collect the image to be tested through the third input parameters to verify
whether algorithm identifies its contents. Following the remainder of the instruc-
tions, as per the guidelines of Renotte (2020), perform the steps required to cal-
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culate the detections. Upon determining the objects detection, the code applies
boxes around the target whilst providing information on the derived confidence
metric simultaneously. The confidence metric refers to the numerically represent-
ing how accurately the algorithm believes it has recognized the object; presented
in percentages. The closure of the listing apply these visual contours and metric
data to display to the user through the plt.imshow() and plt.show() commands.

6.4.10 Concluding Comments

This concludes the primary software goals that were expected to be completed as
part of the scope of this thesis project. For access to all code discussed in the
above section, please refer to the listings provided within the report’s appendices.
The effectiveness and viability of these developed software shall be evaluated in
the upcoming sections of the thesis.

6.5 Secondary Goal: 3D Modelling

Compared to other goals of this thesis, this secondary aim does not comprise of
numerous engineering tasks or steps to discuss. The methodology behind the con-
struction of this thesis’s robot WOMBAT shall be broken down into sections: (1)
Design Phase and (2) Engineering Phase. The design phase shall discuss the de-
cisions that were considered behind the hypothetical functioning of the WOMBAT.
On the other hand, the engineering phase shall provide a succinct overview of the
tools utilised to construct the 3D model.

6.5.1 WOMBAT: Design Phase

Given that this thesis project is based in Australian, this thesis’s supervisor, Mr.
Pepe’ Joseph Velasquez, provided the concept/idea of modelling the robot fol-
lowing a possible bio-mimicry of the mammal, wombat. This was used as the
concept/structural baseline when working towards designing the robotic model.

The objective or priority target of this thesis was to design a robot capable of
collecting and either recycling/disposing of space debris < 10 cm in dimension.
Using this as a design parameter, the decision to make the size of the WOMBAT
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be equivalent to that of a standard mini-van (where the typical dimensions are:
lenght x breadth x height = 2.4 m x 1.72 m x 1.94 m). These dimenions were
proportionally reflected (in mm) when 3D modelling the WOMBAT in Autodesk
Inventor. Having approximated the general size of the robot, it was necessary to
contemplate potentially desirable features.

The interior of the robot’s structure was designed to house 20 to 30 kg of space
debris at max capacity. If design and resources enable to do so, the robot would
be designed with the ability to store its contents in a cube-shaped compartment.
The decision was made in tandem with equipping the WOMBAT with a square-
shaped cavity to potential dispose debris by dropping and letting the space junk
burn up in the Earth’s atmosphere. The square-shaped cavity is to mimic the
wombat, being the only mammal on the planet to excretes in cubes. However, if
resources and propulsion allow the WOMBAT to instead recycle the space debris,
with plans to regularly travel back and forth with the International Space Station
(ISS) are being taken into consideration. Due to the limitation on time frame,
this project was unable to conduct research into the specific resources required
to realistically build this robot and/or design the type of equipped propulsion
methods; potentially being an extended project for a future researcher. Given
that the objective of this robot was firstly seize any space debris, the type of
desired capturing mechanism was evaluated.

From the various literature considered for this aspect of thesis project, the po-
tential options for capture mechanisms were narrowed to three ’manual’ modes of
retrieval: (1) Robotic Claw Capture, (2) Net Capture, and (3) Harpoon Capture.
In order to further assist the decision making, each of these captures’ advantages
and disadvantages shall now be evaluated.

• Robotic Claw Capture

– Advantages:

∗ The design allows more flexibility due to being able to incorporate
limbs with 6 degrees of freedom (DOF) into its movment patterns.

∗ Managed by a control system, providing overall stability during the
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capture process.

∗ Low levels of risk of causing fragmentation of debris upon contact.

∗ Greater versatility in regards to greater sizes of debris capable of
being captured.

– Disadvantages:

∗ More resources and expenditure required for this type of capture
(Comparatively the most expensive option amongst the three types).

∗ More potential sources of error or malfunctions with this type of
product.

∗ More energy intensive for the WOMBAT to sustain.

∗ Equipped better to deal space debris with bigger dimensions; does
not appeal to the robot’s need of retrieving junk < 10 cm.

• Net Capture

– Advantages:

∗ The size of net determines the type of debris capable of being re-
trieved; depicting high levels of versatility.

∗ Does not requires resources invested into designing control system-
s/programming.

∗ Amongst the three, theorized to be the least reliant on the travelling
speed of the target debris.

∗ Low levels of risk of causing fragmentation of debris upon contact.

– Disadvantages:

∗ The net might need to modified towards a mesh or sheet design to
reduce the risk of debris escaping the material.

∗ Net has to be created from a highly durable material in order to
intercept debris speeds; potentially increasing overall expense.
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∗ Information regarding the target has to be determined prior to
applying this technique as the dimensions of the net/sheet define
the target.

• Harpoon Capture

– Advantages:

∗ The nature of the capture prevents the debris from escaping during
the retrieval process.

∗ Comparatively less intensive as it expends the bigger proportion of
its energy during the harpoon launch.

∗ Does not require the same level of resources as the robotic claw
capture.

– Disadvantages:

∗ Low levels of risk of causing fragmentation of debris upon contact.

∗ Very reliant on calculations and timing to intercept space debris
travelling at considerable speeds.

∗ Cannot be utilised for space debris very small in constitution; acting
as a factor derailing it from the WOMBAT’s design.

This concludes the general analytical breakdown behind the design decisions made
for the WOMBAT and all selected characteristics shall be examined in the "Res-
ults" and "Discussion" sections of the report. The following section shall succinctly
describe the steps behind 3D modelling the robot.

6.5.2 WOMBAT: Engineering Phase

All modelling completed within this phase of the project was conducted with the
same hardware implemented for the project’s primary software goals. The 3D
model was designed with the assistance of the computer-aided design application
Autodesk Inventor, and the same software was utilised to create the working an-
imation of the WOMBAT.
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6.6 Section Overview

With this, the chapter of the thesis scrutinizing the methodology behind the thesis
has concluded. The recorded results/outputs obtained from the kernel-based image
processing program and the machine learning algorithm shall be examined in the
following sections of the report. On a similar note, all decisions made towards
the WOMBAT’s design and the final design outline shall be disclosed in the same
manner.
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7 Results

This chapter of the thesis provides a brief underline of the various results obtained
from applying the steps discussed in this report’s methodology. Following a similar
trend, all recorded results in this thesis shall be divided under three subsections:
(1) Kernel-based Image Processing, (2) Machine Learning algorithm, and (3) 3D
Modelling & Animation.

NOTE: This section will be brief in nature as all results’ evaluation shall be
situated under the "Discussion" section and role of this section is portray the
outcomes to the reader.

7.1 Kernel-based Image Processing

As the scenario presents the threat of space debris that this thesis project is written
to convey, two separate clips from the movie "Gravity" were utilised to test the
program’s active debris detection. Due to the inability to integrate moving images
or videos into this thesis report, a working frame from each output shall be provided
below to depict the code in action.

(a) Scene 1 - Captured Action Frame (b) Scene 2 - Captured Action Frame

Figure 4: Kernel-based Image Processing Outputs
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As can be inferred from Figures 4a and 4b, the program counts and places con-
tours/bounding boxes around every object that its algorithm deems falls under
space debris. These results shall evaluated in the later section of the report.

7.2 Machine Learning Algorithm

Having trained the program, the following series of images were applied to test its
object recognition capabilities. As had been previously iterated as a limitation to
the overall applicability of the machine learning algorithm, this case works with
training and testing synthetic images, i.e., images that do not represent the real
scenario.

(a) Astronaut Recognition - Image 1 (b) Astronaut Recognition - Image 2

Figure 5: Machine Learning vs Astronaut Detection + Confidence Metrics

(a) Extras Recognition Example (b) Satellite Recognition Example

Figure 6: Machine Learning vs [Extras, Satellite] + Confidence Metrics
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Figure 7: Identifying two different objects: Example 1 - Astronaut + Satellite

Figure 8: Identifying two different objects: Example 2 - Astronaut + Debris

Figures 5a, 5b, 6a, 6b, 7, and 8 indicate that the machine learning algorithm was
capable of identifying specific regions of each image with a fairly high confidence
metric. However, further analysis highlighted the weaknesses in its learning and
these shall be examined in discussion.
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7.3 3D Modelling & Animation

This subsection of results shall provide illustrations and images of the 3D model
designed for the thesis’ WOMBAT. The following series of images shall provide
depictions of the following data/information: (1) WOMBAT Schematics, (2) 3D
WOMBAT model, and (3) Capture Frame of WOMBAT in action. For similar
reasons as the kernel-based processor, the lack of integrating videos into reports
resulted in attaching a frozen frame of the robot in action.

Figure 9: WOMBAT: Schematic Model

(a) WOMBAT: Full 3D Model (b) WOMBAT: Cross-sectional View

Figure 10: WOMBAT: Full + Cross-sectional View
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Figure 11: Animation Frame: WOMBAT in Action

7.4 Section Overview

This concludes the results obtained from the various goals achieved over the course
of this thesis project. These results shall now be scrutinized in order to evaluate the
overall viability of the kernel-based processor and the machine learning algorithm,
alongside investigating the hypothetical features integrated into the WOMBAT’s
model and their subsequent drawbacks/weaknesses.
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8 Discussion

Following the structural format that has been implemented in multiple areas within
this report, this section shall subsequently broken down as such: (1) Kernel-based
Image Processing program, (2) Machine Learning algorithm, and (3) 3D Modelling
Animation. However, in addition to these sections, the report shall also dive into
a 4th section revolving addressing the security and political issues with potentially
introducing such a product into the current market.

8.1 Kernel-based Image Processing Program

Figures 4a and 4b represent the overall effectiveness when implementing the pro-
gram for movie-based scenarios. As can be observed, the program successfully ap-
plies bounding boxes (contours) based on its internal calculations, whilst providing
a general quantity of debris ’detected’. However, the program’s inconsistencies are
also visible within the same figures as it ’identifies’ regions of the astronaut or the
man-made structures as ’debris’. This relates back to the fundamental weakness
within the development of the code as the detection is reliant on color/pixel re-
cognition as the program works on the following baseline assumption: "all regions
but debris is black in space". Whilst the accuracy of the system was improved
through integration of kernels and masks, this initial condition adds a source of
error that carries across the program.

The drawback with this method of object detection is that the program is very
dependent on the color values (pixels) of images or videos being used as inputs.
When navigating through the expanse of space, the WOMBAT is susceptible to
experience varying levels of lighting; contributing to the number of inconsistencies
that the algorithm has to manage. The secondary drawback of this algorithm is
that it is not testing against files that are purely black + white, thus, not providing
a fair representation of its ability to work efficiently in space. As such, the thesis’s
scope was configured to integrate and verify the viability of the next engineering
task - the machine learning algorithm.
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8.2 Machine Learning Algorithm

It is important to state that the number of images used for the training and
testing phases changed over the duration of the thesis, where the ML algorithm
underwent two different complete iterations of learning. The first learning set
involves using only a total of 50 images (25 for training + 25 for testing) which
required the algorithm to learn for 20000 steps to achieve satisfactory results. All
results discussed in this thesis, including the outputs displayed in figures 5a, 5b, 6a,
6b, 7, and 8, were the results of the second iteration of learning. In this run, a total
of 200 images were collected and fed into the algorithm (100 for training + 100
for testing). This showed an instantaneous improvement in performance as high
confidence metrics were observed at 6000 steps. However, in order to appropriately
assess the activity of the machine learning algorithm, it is important to interpret
and extract its results in three data types: (1) Loss Curves, (2) Precision (mAP)
and (3) Recall.

8.2.1 Recorded Loss Curves

Loss curves or functions is a means to "[evaluate] how well your machine learning
algorithm models your featured data set" [Gupta (2022)]. There are a numerical
measurement or representation of the model’s ability to predict the required out-
come, i.e, in this case, evaluate how good the model is at predicting whether it
can identify the four designed objects: astronauts, debris, satellites and extras.
Amongst the different types of loss curves that can be generated, this thesis is
going to evaluate the model based on the following list of 4:

• Classification Loss: These loss curves have further subsets among which
the most common type was selected for this thesis: Binary Cross-Entropy
Loss. This loss curve measures the performance of the model whose predicted
outcome lies between the probability of 0 to 1.

• Localization Loss: This type of loss curve represents the smooth absolute
error or L1 loss between the ground truth values and predicted bounding
box corrections.

• Regularization Loss: The act or process of regularization refers to the
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background modifications that the algorithm performs to alter the weight of
certain values to favor a more simple prediction. This is typically performed
to prevent events such over-fitting to occur in neural networks.

• Total Loss: This curve simply represents the quality of the model’s predic-
tion over its course/learning.

Having provided a general overview regarding the four types of loss curves that
are going to analysed, the following Figure 12 provides the data representing this
thesis’s machine learning algorithm:

(a) Classification Loss Curve (b) Localization Loss Curve

(c) Regularization Loss Curve (d) Total Loss Curve

Figure 12: The 4 types of Loss Curves

From Figures 12a, 12b, 12c, and 12d, it can be observed that machine learn-
ing algorithm faces a equivalent unknown discrepancy between steps 2000 - 3000.
However, given that the ideal loss curve for a machine learning model is expected
to approach the value of 0 as it trains/tests, the overall results indicate that the
constructed thesis model is fairly precise with its predictions.
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8.2.2 Recorded Precision - Mean Average Precision (mAP)

The following graph represents the proportion of positive identifications that were
actually correctly identified over time. The precision (mAP) calculated is defined
by the following equation/expression: TP

TP+FP
, where TP and FP respectively refer

to recorded True Positives and False Positives.

Figure 13: Precision Curve over 6000 steps (mAP)

The graph indicates that as the model trained/tested for over 6000 steps, it only
reached a precision value of approximately 0.6, indicating that the model is correct
at predicting the target or object 60% of the time (at maximum). Thus portraying
that the model does not reach high levels of accuracy as the general standard of
"great model performance" is recorded to be at an average of 70% precision.

8.2.3 Recorded Recall

Recall data refers to the proportion of actual or true positives being identified
correctly by the model. Recall is calculated with the equation: TP

TP+FN
where TP

and FN respectively refer to True Positives and False Negatives, and is expressed
within the following graph/curve:
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Figure 14: Recall Curve

Figure 14 indicates that the constructed model has a recall of 0.67, stating that it
identifies one of the 4 designated targets correctly 67% of the time. Given that an
ideal system is designed to approach a recall value of 1, it can be stated that this
model is not the most optimal/efficient at object detection.

8.2.4 Comments

This section aims to address the overall viability of the constructed machine learn-
ing algorithm. As can be inferred from the previous subsections, despite indicating
favourable trends with the loss curves, the system’s ability at prediction and de-
tection is comparatively lower than an average standard algorithm. This can be
accounted to the number of images used to train and test the algorithm, as a total
of 200 images is considered a small data set in the machine learning community.
This limitation to the project was due to the need to narrow high quality syn-
thetic images available on the internet. Having access to only fake or synthetic
images further brings down the viability of the algorithm as it indicates this cannot
be utilised in realistic scenarios.

However, the project supports the research conducted and indicates there is po-
tential for machine learning in the field of debris detection and/or identification,
provided appropriate baseline resources and materials.
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8.3 3D Modelling & Animation

This section of Discussion shall be comparatively brief due to most the WOM-
BAT’s hypothetical dimensions being provided within the "Results" section of this
thesis report. Among the three types of manual capture scrutinized previously, it
was decided that the WOMBAT would hypothetically equipped with a net/sheet
mode of capture. This selection was inline with its previously discussed advant-
ages/disadvantages, specifically being more prominent in capturing space debris
< 10cm.

As shown in Figure 11, the model was equipped with an extension that protrudes
past the jaws of the robot. The tip of this extension is then expected to launch
the net over the body of the targeted debris to successfully capture it. The debris
is then pulled into its storage compartment where the two sliding legs/gates of
WOMBAT shall prevent it from escaping. The decision to either recycle or dispose
of said debris relies on the design’s ability to interact with the ISS on a constant
basis.

An investigation of this complexity no doubt has multiple degrees of challenges;
with respect to the 3D design of the actual robot, it is hoped that further discov-
ery and propulsion methods will be explored in the future. The model remains
hypothetical and if the project were to be continued, more research into profession-
ally designing the WOMBAT would be conducted; this shall be further discussed
within this thesis’ "Future Work".

8.4 Market & Political Disputes

This phase of the thesis aims to evaluate the various interferences or disputes that
could deter the introduction of the WOMBAT or similar robots into the market.
Whilst the market shows an astounding demand for this type of product, valuing
this field at USD 1, 527.7million by 2029 [B (2021)], it is important to discuss how
these types of projects interact with the current space treatises governing space
activity. Within the list of space treatises imposed, the following four display
potential interference [Nations (1966)]:

• “The exploration and use of outer space shall be carried out for the benefit
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and in the interests of all countries and shall be the province of all mankind”.

• “States shall be responsible for national space activities whether carried out
by governmental or non-governmental entities”.

• “States shall be liable for damage caused by their space objects”.

• “States shall avoid harmful contamination of space and celestial bodies”.

Despite the dawn of the space exploration vowing to benefit "all mankind", modern
society has made space activity a race between individual countries’ technologies.
Currently different countries are working towards being capable of continuously
releasing satellites and rockets into space; further building upon space debris and
the Kessler syndrome. Another set of information that could interfere with the
functioning of robots like the WOMBAT includes being aware of the number of
satellites/devices situated in space. In the previously stated moon incident [Dunn
(2022)], the property liability behind the colliding space debris was suspected
to belong to China; however, no government has stepped forward to lay claim
on the event. Multiple governments had and have also installed security and
surveillance satellites in space and robots like WOMBAT interacting with such gear
may result in a breach of personal information and security. This also indicates
that there may be debris or fragments in space from satellites that were not publicly
registered/recorded to have been placed in orbit (for potential spy purposes). As
such, it is important to note that a plethora of factors such as the above may come
into play prior to officially developing such a product.

8.5 Section Overview

This formally concludes the thorough evaluation of the various aims or goals that
were set to be achieved as part of this thesis’ scope. A further breakdown of the
potential in this project for future developments and other avenues of interests that
would like to explored shall be mentioned within this report’s "Future Work".
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9 Conclusions

Having addressed every aim and their respective section within this thesis, a suc-
cinct summary of the work conducted shall now be provided. The thesis’ initial
evaluation of a kernel-based image processing program indicated the weaknesses
in its designs: its inability to function in realistic scenarios due to its pixel/color
dependency and lack of greater mathematical calculations that could have enabled
it to accurately ’bound’ space debris.

As such, the thesis shifted to its target to verifying the viability of its machine
learning algorithm. Despite fairly accurate loss curves, a max precision of 0.6 and
recall of 0.67 hinder its applicability. Another factor that held back the system
was the lack of access to real space entity images; burdening the system with its
synthetic image dependency.

The secondary goal provided a brief hypothetical representation of the thesis’s
desired robot, the WOMBAT with net capture, to achieve debris collection. How-
ever, further research would be required to finish designing its structure, means of
navigation, etc. It was also noted how simply designing and building robot would
not be sufficient to introduce it into the market and it would require means to
navigate between the current space treaties and/or security concerns.

In a summary, the thesis achieved the various desired goals stated in the initial
scope, in the software field. With access to appropriate resources and contacts,
the software would be further improved and the hardware/model could be more
detailed and professionally designed. This project hopes to generate a sense of
urgency towards addressing this thesis’ problem statement as the impending threat
of space debris exponentially increases over time and human-space advancements.
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10 Future Work

This section aims to focus on the next steps or future work that this project would
go through, if it were to be continued. Firstly, it would be necessary to contact and
gain information and potential real images from existing space organisations. This
would allow both the kernel-based program and the machine learning algorithm
to function utilising real data rather than synthetic work. The project could then
explore other means/sensors for space debris detection such as radar, lidar, etc.,
and revolve around testing these systems’ viability towards debris detection and
collection.

Secondly, further details regarding the WOMBAT would be mapped. In-depth
research into the type of materials needed to build the external and internal struc-
ture such that it can adapt to the changing conditions of space. Other aspects of
the design, such as the type of propulsion necessary, are to be integrated into the
design for robot to navigate within the Low Earth Orbit. It would also be benefi-
cial to design means to transfer the WOMBAT’s payload either into a collapsing
orbit or through back and forth delivery between the robot and the International
Space Station. With adequate resources and backing, the new WOMBAT model
could contemplate cascading multiple capture mechanisms that complement each
other, taking inspiration from Lv et al. (2022)’s literature.
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12 Appendices

12.1 Appendix A: Graveyard Orbit

Figure 15: The Graveyard Orbit

12.2 Appendix B: Earth’s Orbits and Satellites

Figure 16: Earth’s Orbits and Satellites
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12.3 Appendix C: Code Listings

#Import a l l the r equ i r ed l i b r a r i e s that enable func t i on
import numpy as np
import cv2 as cv
#Set t i ng the lower and upper boundar ies based on known co l o r p i x e l va lue s .
#Since the program works under the assumption that " a l l r e g i on s but deb r i s
#i s b lack in space " , the boundar ies range from black to white .
LowerBounds = np . array ( [ 0 , 0 , 0 ] )
UpperBounds = np . array ( [ 0 , 0 , 2 55 ] )
#Captures the provided .mp4 f i l e f o r l a t e r use
cam = cv2 . VideoCapture ( " debrisV3 .mp4" )
#Sets up two ( open and c l o s e ) f i l t e r i n g k e rn e l s
kernelOpen = np . ones ( ( 5 , 5) )
ke rne lC lo s e = np . ones ( (20 , 20) )

Listing 1: Kernel-based Image Processing: Initializations, capturing the video
and setting up the kernels

whi le (True ) :
#Captures the return boolean value and image frame
arg , img=cam . read ( )
#Res i z ing the captured frame/ video to 1366 x768
img=cv2 . r e s i z e ( img , (1366 , 768 ) )
#conver t s c o l o r type from BGR to HSV
imgverHSV= cv2 . cvtColor ( img , cv2 .COLOR_BGR2HSV)
# Generates the mask based on the p r ev i ou s l y s e t boundar ies
mask=cv2 . inRange ( imgverHSV , lowerBound , upperBound )
#Morpho log i ca l ly manipulat ing the mask
maskOpen=cv2 . morphologyEx (mask , cv2 .MORPH_OPEN, kernelOpen )
maskClose=cv2 . morphologyEx (maskOpen , cv2 .MORPH_CLOSE, ke rne lC lo s e )
#Determines the l o c a t i o n s upon which contours w i l l be l a t e r p laced upon
conts , h=cv2 . f indContours ( maskClose . copy ( ) , cv2 .RETR_EXTERNAL, cv2 .CHAIN_APPROX_NONE)
#Draw white contours around ’ found ’ r e g i on s
font = cv2 .FONT_HERSHEY_SIMPLEX
cv2 . drawContours ( img , conts , −1 ,(255 ,0 ,0) ,3 )
#Draws the bounding r e c t ang l e s and r e s p e c t i v e text
f o r i in range ( l en ( conts ) ) :

x , y ,w, h=cv2 . boundingRect ( conts [ i ] )
cv2 . r e c t ang l e ( img , ( x , y ) , ( x+w, y+h) , (0 , 0 , 255 ) , 2)
cv2 . putText ( img , s t r ( i +1) , ( x , y+h) , font , 1 , ( 0 , 255 , 255 ) )

#Opens a window rep lay ing the video with the over layed text and contours
cv2 . imshow( "camera" , img )
#Sets up a key to dest roy any open windows upon command
i f cv2 . waitKey (10) & 0xFF == ord ( ’ q ’ ) :

break
cv2 . destroyAllWindows ( )

Listing 2: Kernel-based Image Processing: Resizing, color conversion, mask
generation and manipulation, contouring and displaying final output
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#I n s t a l l the nece s sa ry opencv packages and f i l e s
! pip i n s t a l l opencv−python

# Import e s s e n t i a l packages f o r the a lgor i thm
import cv2
import uuid
import os

#An array o f to−be− i d e n t i f i e d / s e t l a b e l s
l a b e l s = [ ’ d eb r i s ’ , ’ a s t ronaut ’ , ’ s a t e l l i t e ’ , ’ e x t r a s ’ ]

#Generates a path with in the v i r t u a l environment f o l d e r
IMAGES_PATH = os . path . j o i n ( ’ Tensorf low ’ , ’ workspace ’ , ’ images ’ , ’ c o l l e c t ed image s ’ )

#Checks i f image path ex c i s t s , i f not re−execute command
i f not os . path . e x i s t s (IMAGES_PATH) :

! mkdir {IMAGES_PATH}
#Adds four l abe l −based f o l d e r to the image path
f o r l a b e l in l a b e l s :

path = os . path . j o i n (IMAGES_PATH, l a b e l )
i f not os . path . e x i s t s ( path ) :

! mkdir {path}

Listing 3: Machine Learning Algorithm: Initializations and Image Collection

#I n s t a l l i n g nece s sa ry updates f o r l a t e r s t ep s
! pip i n s t a l l −−upgrade pyqt5 lxml

#Constructs a new f i l e path with in Tensorf low
LABELIMG_PATH = os . path . j o i n ( ’ Tensorf low ’ , ’ l abe l img ’ )

#Checks f o r new path and c l one s the r equ i r ed r epo s i t o r y
i f not os . path . e x i s t s (LABELIMG_PATH) :

! mkdir {LABELIMG_PATH}
! g i t c l one https : // github . com/ t z u t a l i n / labe l Img {LABELIMG_PATH}

#I n s t a l l the nece s sa ry f i l e s r equ i r ed f o r l a b e l l i n g t o o l from github
! cd {LABELIMG_PATH} && pyrcc5 −o l i b s / r e s ou r c e s . py r e s ou r c e s . qrc

#Within t h i s path , opens the l a b e l l i n g t o o l
! cd {LABELIMG_PATH} && python labe l Img . py

Listing 4: Machine Learning Algorithm: Image Labelling
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#import os
import os

#Sets up the pre−t r a in ed model
CUSTOM_MODEL_NAME = ’my_ssd_mobnet ’
PRETRAINED_MODEL_NAME = ’ ssd_mobilenet_v2_fpnlite_320x320_coco17_tpu−8 ’
PRETRAINED_MODEL_URL = ’ http :// download . t en so r f l ow . org /models / ob jec t_detec t i on / t f 2

↪→ /20200711/ ssd_mobilenet_v2_fpnlite_320x320_coco17_tpu −8. ta r . gz ’
TF_RECORD_SCRIPT_NAME = ’ genera te_t f r e co rd . py ’
LABEL_MAP_NAME = ’ label_map . pbtxt ’

#Creates the nece s sa ry paths f o r t r a i n i n g and t e s t i n g
paths = {
’WORKSPACE_PATH’ : os . path . j o i n ( ’ Tensorf low ’ , ’ workspace ’ ) ,
’SCRIPTS_PATH ’ : os . path . j o i n ( ’ Tensorf low ’ , ’ s c r i p t s ’ ) ,
’APIMODEL_PATH’ : os . path . j o i n ( ’ Tensorf low ’ , ’ models ’ ) ,
’ANNOTATION_PATH’ : os . path . j o i n ( ’ Tensorf low ’ , ’ workspace ’ , ’ annotat ions ’ ) ,
’IMAGE_PATH’ : os . path . j o i n ( ’ Tensorf low ’ , ’ workspace ’ , ’ images ’ ) ,
’MODEL_PATH’ : os . path . j o i n ( ’ Tensorf low ’ , ’ workspace ’ , ’ models ’ ) ,
’PRETRAINED_MODEL_PATH’ : os . path . j o i n ( ’ Tensorf low ’ , ’ workspace ’ , ’ pre−t ra ined−

↪→ models ’ ) ,
’CHECKPOINT_PATH’ : os . path . j o i n ( ’ Tensorf low ’ , ’ workspace ’ , ’ models ’ ,

↪→ CUSTOM_MODEL_NAME) ,
’OUTPUT_PATH’ : os . path . j o i n ( ’ Tensorf low ’ , ’ workspace ’ , ’ models ’ ,CUSTOM_MODEL_NAME,

↪→ ’ export ’ ) ,
’TFJS_PATH’ : os . path . j o i n ( ’ Tensorf low ’ , ’ workspace ’ , ’ models ’ ,CUSTOM_MODEL_NAME, ’

↪→ t f j s e x p o r t ’ ) ,
’TFLITE_PATH’ : os . path . j o i n ( ’ Tensorf low ’ , ’ workspace ’ , ’ models ’ ,CUSTOM_MODEL_NAME, ’

↪→ t f l i t e e x p o r t ’ ) ,
’PROTOC_PATH’ : os . path . j o i n ( ’ Tensorf low ’ , ’ protoc ’ )
}

#Conf igur ing f i l e d i c t i o n a r i e s
f i l e s = {

’PIPELINE_CONFIG ’ : os . path . j o i n ( ’ Tensorf low ’ , ’ workspace ’ , ’ models ’ ,
↪→ CUSTOM_MODEL_NAME, ’ p i p e l i n e . c on f i g ’ ) ,

’TF_RECORD_SCRIPT’ : os . path . j o i n ( paths [ ’SCRIPTS_PATH ’ ] , TF_RECORD_SCRIPT_NAME)
↪→ ,

’LABELMAP’ : os . path . j o i n ( paths [ ’ANNOTATION_PATH’ ] , LABEL_MAP_NAME)
}

#Adds a l l f i l e paths in to the v i r t u a l environment ’ s f o l d e r path
f o r path in paths . va lue s ( ) :

i f not os . path . e x i s t s ( path ) :
! mkdir {path}

Listing 5: Machine Learning Algorithm: Training & Detection Phase - Part 1
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#i n s t a l l import wget
! pip i n s t a l l wget
import wget

#c l one s the r equ i r ed ob j e c t d e t e c t i on r epo s i t o r y
i f not os . path . e x i s t s ( os . path . j o i n ( paths [ ’APIMODEL_PATH’ ] , ’ r e s ea r ch ’ , ’

↪→ ob jec t_detec t i on ’ ) ) :
! g i t c l one https : // github . com/ ten so r f l ow /models { paths [ ’APIMODEL_PATH’ ] }

#Accesses and i n s t a l l the nece s sa ry p ro to ca l b u f f e r s and ob j e c t d e t e c t i on API
u r l=" https : // github . com/ p r o t o c o l b u f f e r s / protobuf / r e l e a s e s /download/v3 . 1 5 . 6 / protoc

↪→ −3.15.6−win64 . z ip "
wget . download ( u r l )
! move protoc −3.15.6−win64 . z ip {paths [ ’PROTOC_PATH’ ] }
! cd {paths [ ’PROTOC_PATH’ ] } && tar −xf protoc −3.15.6−win64 . z ip
os . env i ron [ ’PATH’ ] += os . pathsep + os . path . abspath ( os . path . j o i n ( paths [ ’PROTOC_PATH

↪→ ’ ] , ’ bin ’ ) )
! cd Tensorf low/models / r e s ea r ch && protoc ob jec t_detec t i on / protos /∗ . proto −−

↪→ python_out=. && copy ob jec t_detec t i on \\ packages \\ t f 2 \\ setup . py setup . py &&
↪→ python setup . py bu i ld && python setup . py i n s t a l l

! cd Tensorf low/models / r e s ea r ch / s l im && pip i n s t a l l −e .

#Run the v e r i f i c a t i o n s c r i p t
VERIFICATION_SCRIPT = os . path . j o i n ( paths [ ’APIMODEL_PATH’ ] , ’ r e s ea r ch ’ , ’

↪→ ob jec t_detec t i on ’ , ’ b u i l d e r s ’ , ’ model_builder_tf2_test . py ’ )
# Ver i fy I n s t a l l a t i o n
! python {VERIFICATION_SCRIPT}

# Miss ing packages and l i b r a r i e s
! pip i n s t a l l t en so r f l ow −−upgrade
! pip u n i n s t a l l protobuf matp lo t l i b −y
! pip i n s t a l l protobuf matp lo t l i b==3.2
pip i n s t a l l protobuf ==3.20.∗
pip i n s t a l l s c ipy
pip i n s t a l l P i l l ow
pip i n s t a l l pyyaml
import ob j ec t_detec t i on

# Downloads the SSD_Mobnet pre−t r a in ed model
wget . download (PRETRAINED_MODEL_URL)
! move {PRETRAINED_MODEL_NAME+’ . ta r . gz ’ } {paths [ ’PRETRAINED_MODEL_PATH’ ] }
! cd {paths [ ’PRETRAINED_MODEL_PATH’ ] } && tar −zxvf {PRETRAINED_MODEL_NAME+’ . ta r . gz ’

↪→ }
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#Construct and c o r r e l a t e the l a b e l s and IDs to the map
l a b e l s = [ { ’name ’ : ’ Debris ’ , ’ id ’ : 1 } , { ’name ’ : ’ s a t e l l i t e ’ , ’ id ’ : 2 } , { ’name ’ : ’

↪→ ast ronaut ’ , ’ id ’ : 3 } , { ’name ’ : ’ e x t r a s ’ , ’ id ’ : 4 } ]
with open ( f i l e s [ ’LABELMAP’ ] , ’w ’ ) as f :

f o r l a b e l in l a b e l s :
f . wr i t e ( ’ item { \n ’ )
f . wr i t e ( ’ \tname :\ ’ {}\ ’ \ n ’ . format ( l a b e l [ ’name ’ ] ) )
f . wr i t e ( ’ \ t i d :{}\n ’ . format ( l a b e l [ ’ id ’ ] ) )
f . wr i t e ( ’ }\n ’ )

#i n s t a l l pandas
pip i n s t a l l pandas

#c lone the TF record gene ra t i on f i l e from github
i f not os . path . e x i s t s ( f i l e s [ ’TF_RECORD_SCRIPT’ ] ) :

! g i t c l one https : // github . com/nicknochnack /GenerateTFRecord {paths [ ’
↪→ SCRIPTS_PATH ’ ] }

#Generate the t r a i n and t e s t TF reco rd s f o r machine l e a rn i ng
! python { f i l e s [ ’TF_RECORD_SCRIPT’ ] } −x {os . path . j o i n ( paths [ ’IMAGE_PATH’ ] , ’ t r a i n ’ )

↪→ } − l { f i l e s [ ’LABELMAP’ ] } −o { os . path . j o i n ( paths [ ’ANNOTATION_PATH’ ] , ’ t r a i n .
↪→ r ecord ’ ) }

! python { f i l e s [ ’TF_RECORD_SCRIPT’ ] } −x {os . path . j o i n ( paths [ ’IMAGE_PATH’ ] , ’ t e s t ’ ) }
↪→ − l { f i l e s [ ’LABELMAP’ ] } −o { os . path . j o i n ( paths [ ’ANNOTATION_PATH’ ] , ’ t e s t .
↪→ r ecord ’ ) }
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#Copies the c on f i gu r a t i on f i l e s i n to the t r a i n i n g f o l d e r
! copy { os . path . j o i n ( paths [ ’PRETRAINED_MODEL_PATH’ ] , PRETRAINED_MODEL_NAME, ’

↪→ p i p e l i n e . c on f i g ’ ) } { os . path . j o i n ( paths [ ’CHECKPOINT_PATH’ ] ) }

#import nece s sa ry f i l e s and packages
import t en so r f l ow as t f
from objec t_detec t i on . u t i l s import c on f i g_u t i l
from objec t_detec t i on . protos import pipel ine_pb2
from goog le . protobuf import text_format

#Conf igur ing and Se t t i ng up P ip e l i n e Arch t i t e c tu r e
c on f i g = con f i g_ut i l . ge t_conf ig s_from_pipe l ine_f i l e ( f i l e s [ ’PIPELINE_CONFIG ’ ] )
p i p e l i n e_con f i g = pipel ine_pb2 . Tra inEva lP ipe l ineConf ig ( )
with t f . i o . g f i l e . GFile ( f i l e s [ ’PIPELINE_CONFIG ’ ] , " r " ) as f :

proto_str = f . read ( )
text_format . Merge ( proto_str , p i p e l i n e_con f i g )

p i p e l i n e_con f i g . model . s sd . num_classes = len ( l a b e l s )
p i p e l i n e_con f i g . t r a in_con f i g . batch_size = 4
p ip e l i n e_con f i g . t r a in_con f i g . f ine_tune_checkpoint = os . path . j o i n ( paths [ ’

↪→ PRETRAINED_MODEL_PATH’ ] , PRETRAINED_MODEL_NAME, ’ checkpo int ’ , ’ ckpt−0 ’ )
p i p e l i n e_con f i g . t r a in_con f i g . f ine_tune_checkpoint_type = " de t e c t i on "
p ip e l i n e_con f i g . tra in_input_reader . label_map_path= f i l e s [ ’LABELMAP’ ]
p i p e l i n e_con f i g . tra in_input_reader . t f_record_input_reader . input_path [ : ] = [ os . path

↪→ . j o i n ( paths [ ’ANNOTATION_PATH’ ] , ’ t r a i n . r ecord ’ ) ]
p i p e l i n e_con f i g . eval_input_reader [ 0 ] . label_map_path = f i l e s [ ’LABELMAP’ ]
p i p e l i n e_con f i g . eval_input_reader [ 0 ] . t f_record_input_reader . input_path [ : ] = [ os .

↪→ path . j o i n ( paths [ ’ANNOTATION_PATH’ ] , ’ t e s t . r ecord ’ ) ]
con f ig_text = text_format . MessageToString ( p ip e l i n e_con f i g )
with t f . i o . g f i l e . GFile ( f i l e s [ ’PIPELINE_CONFIG ’ ] , "wb" ) as f :

f . wr i t e ( con f ig_text )
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#Run the t r a i n i n g phase
TRAINING_SCRIPT = os . path . j o i n ( paths [ ’APIMODEL_PATH’ ] , ’ r e s ea r ch ’ , ’

↪→ ob jec t_detec t i on ’ , ’model_main_tf2 . py ’ )
command = "python {} −−model_dir={} −−pipe l ine_conf ig_path={} −−num_train_steps

↪→ =6000" . format (TRAINING_SCRIPT, paths [ ’CHECKPOINT_PATH’ ] , f i l e s [ ’
↪→ PIPELINE_CONFIG ’ ] )

p r i n t (command)

# Run the eva lua t i on s c r i p t
command = "python {} −−model_dir={} −−pipe l ine_conf ig_path={} −−checkpoint_dir={}"

↪→ . format (TRAINING_SCRIPT, paths [ ’CHECKPOINT_PATH’ ] , f i l e s [ ’PIPELINE_CONFIG ’ ] ,
↪→ paths [ ’CHECKPOINT_PATH’ ] )

p r i n t (command)

# Import and re−import c e r t a i n f i l e s and packages
import os
import t en so r f l ow as t f
from objec t_detec t i on . u t i l s import label_map_util
from objec t_detec t i on . u t i l s import v i s u a l i z a t i o n_u t i l s as v i z_u t i l s
from objec t_detec t i on . bu i l d e r s import model_builder
from objec t_detec t i on . u t i l s import c on f i g_ut i l

# Load p i p e l i n e c on f i g and bu i ld a de t e c t i on model
c o n f i g s = con f i g_ut i l . ge t_conf ig s_from_pipe l ine_f i l e ( f i l e s [ ’PIPELINE_CONFIG ’ ] )
detection_model = model_builder . bu i ld ( model_config=con f i g s [ ’ model ’ ] , i s_t r a i n i ng=

↪→ False )

# Restore checkpo int
ckpt = t f . compat . v2 . t r a i n . Checkpoint ( model=detection_model )
ckpt . r e s t o r e ( os . path . j o i n ( paths [ ’CHECKPOINT_PATH’ ] , ’ ckpt−9 ’ ) ) . expec t_par t i a l ( )

@tf . f unc t i on
de f detect_fn ( image ) :

image , shapes = detection_model . p r ep roc e s s ( image )
p r ed i c t i on_d i c t = detection_model . p r ed i c t ( image , shapes )
d e t e c t i on s = detection_model . po s tp roc e s s ( pred i c t i on_dic t , shapes )
re turn d e t e c t i o n s
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#Run the t e s t i n g phase
import cv2
import numpy as np
from matp lo t l i b import pyplot as p l t
%matp lo t l i b i n l i n e
category_index = label_map_util . create_category_index_from_labelmap ( f i l e s [ ’

↪→ LABELMAP’ ] )
IMAGE_PATH = os . path . j o i n ( paths [ ’IMAGE_PATH’ ] , ’ t e s t ’ , ’ depositphotos_565812646−

↪→ stock−video−render−animation−a s t e r o i d s −f i e l d −deep . jpg ’ )

img = cv2 . imread (IMAGE_PATH)
image_np = np . array ( img )

input_tensor = t f . convert_to_tensor (np . expand_dims ( image_np , 0) , dtype=t f . f l o a t 3 2 )
d e t e c t i on s = detect_fn ( input_tensor )

num_detections = in t ( d e t e c t i on s . pop ( ’ num_detections ’ ) )
d e t e c t i on s = {key : va lue [ 0 , : num_detections ] . numpy( )

f o r key , va lue in d e t e c t i on s . i tems ( ) }
d e t e c t i on s [ ’ num_detections ’ ] = num_detections

# de t e c t i on_c l a s s e s should be i n t s .
d e t e c t i on s [ ’ d e t e c t i on_c l a s s e s ’ ] = de t e c t i on s [ ’ d e t e c t i on_c l a s s e s ’ ] . astype (np . in t64 )

l abe l_ id_o f f s e t = 1
image_np_with_detections = image_np . copy ( )

v i z_u t i l s . visualize_boxes_and_labels_on_image_array (
image_np_with_detections ,
d e t e c t i on s [ ’ detect ion_boxes ’ ] ,
d e t e c t i on s [ ’ d e t e c t i on_c l a s s e s ’ ]+ labe l_ id_of f s e t ,
d e t e c t i on s [ ’ d e t e c t i on_sco re s ’ ] ,
category_index ,
use_normal ized_coordinates=True ,
max_boxes_to_draw=5,
min_score_thresh =.8 ,
agnostic_mode=False )

p l t . imshow( cv2 . cvtColor ( image_np_with_detections , cv2 .COLOR_BGR2RGB) )
p l t . show ( )
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