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SUMMARY 

South Australian Water (SAW) provided a well-established environment and workflow to model the 

movement of Cryptosporidium from agricultural sources in the Mount Lofty Ranges (MLR) to 

primary water storages.  This environment included a methodology for maintaining project data in 

Excel spreadsheets.  The modelling system was ArcMap and its Raster Calculator was used to 

implement the model.  SAW users expressed frustration with the Raster Calculator approach and 

its lack of record-keeping facilities.   

This project sought to address these, and other, issues through the development of a decision 

support infrastructure.  Superficially it comprises a simple interface for data maintenance and 

reporting.  Underlying this is a suite of support functions that enable model definitions in a 

spreadsheet and facilitate the record-keeping necessary for long-term sensitivity studies.  The 

development environment for the project was Python and the script was written in such a way that 

it could readily accommodate different pollutants and new model definitions. 

The new model added to the capabilities of the previous one by: 

 accommodating the absence of pathogens 

 focusing on just that part of the catchment, i.e., a watershed, that supplied water to the 

monitoring stations 

 introducing a flow parameter that was dependent on the watershed definitions 

 providing for interactions between variables in addition to simply adding their effects. 

 

The project has developed the position that flowing water is required to deliver pathogens and 

nutrients to the SAW monitoring stations.  As defined in previous SAW work, the main drivers for 

flowing water were slope and rainfall. 

 

Previously the risk evaluated at a cell was determined solely by the values of the contributing 

variables at that cell.  Now, a new spatial characteristic, flow, has been introduced.  Its value at a 

cell is influenced by what is occurring upstream of that cell.  This variable has been employed in 

two ways, either to add to the risk like other terms, or to interact with the source and transport 

terms to influence their contributions. 

 

The model has been modified considerably during this project.  The generation of negative risk 

values has been an ongoing concern.  This has been addressed by reducing the impact of the 

sources of negative risk – buffers and fencing.  Also, the growth of the land use file from 10,000 

rows to over 44,000 rows changed the disposition of risk significantly.  In the light of changes to the 

model, and weight and risk estimates, it is recommended that the system now go back to SAW for 

a comprehensive review by the catchment management scientists.  
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1. INTRODUCTION 

1.1  Background 

About 60% of Adelaide’s water supply is collected from the Mount Lofty Ranges (MLR) (EPA 

2004).  The remainder of the water is pumped from the Murray River into the MLR and is therefore 

subjected to the same factors affecting the quality of the water (EPA 2007, p. 3).  At the time of 

writing, the demand on Murray River water was set to be reduced by substituting the output from a 

desalination plant south of Adelaide at Port Stanvac. 

Around 90% of the MLR is privately owned, subject to human activity (EPA 2019).  This dual use 

has created problems for water quality since the 1880s when settlement and agriculture were 

prioritised over the need for safe drinking water (SA Water 2019a).  There are now over 50,000 

people living in the MLR (EPA 2007, p. 3).  Land use includes light industry, grazing, forestry, 

orchards, market gardening and urban (including unsewered) development (EPA 2007, pp. 5-6).  

The regulations of the 1924 Waterworks Act were amended in 1974 to create the Mount Lofty 

Ranges Watershed which encompassed existing and potential water supply catchments within the 

MLR.  This Act provided the legal framework for the State government to establish controls on land 

development and management to protect water supplies (EPA 2007, p. 3). 

A number of agencies have been given responsibilities in the management of the quality of water 

from the MLR, ranging from local councils, through to state and federal government departments.  

At a local level, for example, the Adelaide Hills Council (AHC) has developed a water management 

plan (AHC 2017).  This plan reported on the state of the AHC district, e.g., with commentary on the 

poor health of riparian vegetation (John & Flehr 2011, p. 100).  It also offers guidance on 

developments that are appropriate (or not) in the watershed primary production zone (AHC 2013). 

Some agencies that operate at a State level include: 

 South Australia’s Environment Protection Authority (EPA), which was created in the 

Environmental Protection Act 1993 (Government of South Australia 2019a) with 

responsibilities for overseeing the development of policy and its implementation. 

 In 2004, the Natural Resources Management Act, which established eight regional Natural 

Resources Management (NRM) boards (Government of South Australia 2019b).  As with all 

the NRM boards, the one for Adelaide and Mount Lofty Ranges endeavours to work with all 

levels of government, industry, primary producers and the community to develop a ten-year 

strategic outlook for the management of natural resources, including water.  It offers 

specific advice, e.g., on development and management requirements for farm dams 

(Natural Resources AMLR 2019a). 
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 The State’s Department of Health and Ageing, which has published a series of annual 

reports in relation to the Safe Drinking Water Act (Department for Health and Ageing 2016). 

At the national level, the Commonwealth Environmental Water Office (Australian Government 

2019) manages the disposition of environmental water in the Murray-Darling Basin according to 

policy and advice available in the Water Act 2007, including the Murray-Darling Basin Agreement 

(Federal Register of Legislation 2019).  Water from the basin is pumped into MLR storages from 

Mannum and Murray Bridge (SA Water 2019b).  The National Health and Medical Research 

Council (NH&MRC) operates as a statutory agency reporting to the Minister for Health and Ageing 

(NH&MRC 2019).  It supports the development of guidelines for drinking water (NH&MRC 2011) 

and the augmentation of drinking water by recycling (NH&MRC 2009).  The Drinking Water 

Guidelines are discussed further below (Section 1.3 ). 

In 2000, the EPA (EPA 2000, p. 25) reported on the state of the health of the MLR catchments.  It 

nominated a number of issues that affected water quality: 

 toxic algal blooms in dams and reservoirs 

 stock deaths resulting from consumption of water contaminated by toxic algae 

 pathogen (e.g., Cryptosporidium and Giardia), pesticide and sediment contamination of 

rivers and streams 

 localised heavy metal contamination. 

The report identified a number of causes of the contamination, including: 

 poor management of septic tank systems 

 erosion resulting from stock access to watercourses, overgrazing and cropping on steep 

slopes 

 a large number of farm dams that impede the flow of water in many major watercourses 

 inappropriate planning consents. 

These matters raised significant management concerns.  The report posed the question, “Who 

manages streams in the Mount Lofty Ranges?” and noted that the following entities were involved: 

 seven local government councils (Barossa, Playford, Tea Tree Gully, Onkaparinga, Mount 

Barker, Adelaide Hills and Alexandrina)  

 five catchment water management boards (Torrens, Patawalonga, Onkaparinga, River 

Murray, and Northern Adelaide and Barossa)  

 approximately 67 Landcare groups  

 four soil boards (Central Hills, Northern Hills, Southern Hills and Murray Plains)  

 thousands of landholders  

 Mount Lofty Ranges Catchment Program Board  
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 State Government departments and agencies (Department for Environment and Heritage 

(EPA); SA Water; PIRSA; Planning SA; Transport SA; Department for Water Resources.) 

The South Australian Water Corporation (SAW) was established in place of the Engineering and 

Water Supply Department in 1994.  SAW traces its origins back to 1856 when it was known as the 

Waterworks & Drainage Commission.  It had responsibilities then “to solve the water supply and 

sewerage problems of the city”.  It still has these responsibilities although its reach is far greater, 

across the State of South Australia (SA Water 2019a) and the regulatory and management 

regimes are clearly far more complex. 

1.2  The nature of water contamination in the MLR  

Water contamination can be caused by pathogens, nutrients, pesticides, sediments and other 

compounds.  In this project, most of the development relates to pathogens with some application to 

nutrients.  The presence in surface run-off of pesticides and fungicides has also been a concern, 

e.g., in MLR apple and cherry orchards in the period 2007 – 2009 (Oliver, DP et al. 2012b; Oliver, 

DP et al. 2012a; Oliver, DP et al. 2012c), but has not been studied here. 

1.2.1 Pathogens 

Adelaide Hills Council’s Water Management Plan describes the use of Community Wastewater 

Management Systems (CWMS) to collect wastewater from customer’s septic tanks.  The plan 

notes that not all parts of the district are serviced by CWMS.  Some customer equipment is faulty, 

some pollutants are deliberately washed down drains and others drain off roads and other hard 

surfaces (AHC 2017, pp. 9-12). 

 

Agricultural practices also contribute to the contamination problem due to pathogen distribution 

from animal waste into surface water.  The review by Ferguson et al. (2003) of pathogens in 

surface water noted that there are over 100 enteric viruses of concern including coxsackie, 

rotaviruses and Norwalk-like viruses.  Bacterial pathogens may be endemic (Aeromonas, 

Legionella, Mycobacterium and Vibrio) or sourced from sheep and cattle (Campylobacter, 

Salmonella and Escherichia coli).  Common protozoa include Giardia and Cryptosporidium.  The 

latter is considered a better model for understanding the transport and fate of water-borne protozoa 

because of the persistence of their oocysts compared to those of Giardia.  Movement of oocysts 

through soils is also possible (Darnault et al. 2017) but is not considered here. 

 

In order to model and manage the behaviour of Cryptosporidium in the MLR catchments, 

reasonable measures of its numbers and disposition must be obtained.  Roser and Ashbolt (2007) 

studied six catchments (and two aquifers) across southern Australia to understand what biological, 

physical and chemical markers could be used to determine water quality.  Cryptosporidium was 

one of the microorganisms studied.  The South Australian sites were in the MLR – Sixth Creek, 

Aldgate Creek and Myponga River.  They were chosen for their “part impacted” (i.e., some dual 
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use), urbanised and intensive agriculture characteristics respectively.  Flow weighted (event) 

means (per 10L) for Cryptosporidium ranged from 31 (Myponga River) to 290 (Aldgate Creek). 

 

Peak flow measurements have been obtained for Clarendon Weir (Swaffer et al. 2014) in the mid-

MLR and for nine sites in the northern MLR measuring flows into the Little Para and Millbrook 

Reservoirs (Swaffer et al. 2018).  Peak flows were measured as the systems are ephemeral, with 

little or no flow for much of the year.  Data collected included Cryptosporidium species, infectivity 

rates and land use types.  The Cryptosporidium spp. of most concern for human infection (C. 

parvum, C. cuniculus) were attributed to livestock, rabbits, dogs and foxes.  Zahedi et al. (2018) 

made similar observations across 11 catchments in Queensland, New South Wales and Western 

Australia, although they particularly noted the addition of C. hominis in cattle.  In all, they recorded 

13 species of Cryptosporidium that are of concern for human health.  Average numbers (per 10L) 

seen during run-off events ranged from 12 to 187 in the Millbrook precinct although maximum 

values could be as high as 2,176 (Swaffer et al. 2018). 

 

Bukhari and Smith (1997) cited in Swaffer et al. (2014) estimated the infectivity rate of oocysts in a 

fresh excretion of experimentally infected lambs of about 50%.  However, downstream measured 

oocyst infectivity rate was determined to be 3.1%, suggesting that a 1 log reduction in infectivity 

could occur naturally within the catchments themselves.  Also, the annual peak in human infection 

was not related to the peak in animal oocyst release (in calves), suggesting other, human-to-

human factors may be operating downstream from the reservoirs (Swaffer et al. 2014). 

 

King and Monis (2007) reviewed the environmental factors that could affect the survival of 

Cryptosporidium oocysts: 

 temperature 

 ammonia 

 desiccation 

 soil matrix and vegetation 

 solar (UV) radiation 

 predation by other organisms such as rotifers, ciliates, amoebae etc. 

 settling into the sediment of lakes and reservoirs 

 
Modification of existing practices can also influence the ability of oocysts to survive to the water 

treatment plant (WTP).  For example, if the inflow to a reservoir is colder and therefore denser than 

the reservoir water, the incoming water can flow along the bottom of the reservoir to the dam wall.  

A change in the water off-take level could reduce the level of organisms and other organic matter 

reaching the WTP (Hobson et al. 2010).  A number of strategies was evaluated in the Myponga 

catchment (Bryan et al. 2009; Kandulu & Bryan 2009): 
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 microfiltration 

 enhanced coagulation 

 ultraviolet 

 dung beetles 

 targeted watercourse management 

If an assessment is made just on cost, the first of these might be judged the most appropriate.  

However, a wider cost benefit analysis can be made that includes ecosystem benefits (improved 

water quality, biodiversity, carbon sequestration).  When the changes are developed and 

implemented with the engagement of landholders, watercourse management comes into its own.  

Reductions of up to 90% in export of Cryptosporidium to the Myponga reservoir could be 

anticipated (Bryan et al. 2009). 

1.2.2 Nutrients 

Studies of nutrients in surface water focus on total Phosphorus (TP), total Nitrogen (TN) and total 

organic Carbon (TOC).  MLR studies have investigated local nutrient and total suspended solids 

(TSS) runoff from apple and cherry orchards (Cock Creek catchment) and a vineyard (Charleston 

catchment) (Cox, JW et al. 2012).  TP was found to exceed the “Australian environmental trigger 

value” (AETV) in >90% of samples from the vineyard but <10% of samples from the apple and 

cherry orchard.  Maximum TP amounts were 0.31mg/L (apple orchard), 0.54mg/L (cherry orchard) 

and 2.79mg/L (vineyard).  The AETV for TP was reported at the time to be 0.1mg/L by the 

Australian and New Zealand Environment and Conservation Council and Agriculture and Resource 

Management Council of Australia and New Zealand (2000), cited by (Cox, JW et al. 2012).  

Conversely, >90% of the samples from the cherry orchard and the vineyard exceeded the standard 

for TN.   

 

Detailed studies have also been carried out across the wider MLR (Fleming et al. 2010a, 2010b).  

Data were sourced from small single land-use catchments (2 – 200Ha) and from the composite 

sampler program largely managed by the Adelaide and Mount Lofty NRM.  In all, 21 datasets were 

studied for use in the Source Catchments modelling framework.  This led to an updating (Table 

1.1) of event mean concentrations of TP, TN and total suspended solids (TSS) by land use type for 

use in catchments modelling (Fleming et al. 2010a). 
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Table 1.1: Updated TSS, TN and TP event mean concentrations (EMC) for each MLR 
land use type (derived from Fleming et al. 2010a, 2010b, used with permission) 

 EMC (mg/L) 

Land Use TSS TN TP 

Conservation area 43 1.8 0.18 

Grazing 184 2.1 0.24 

Suburban 43 1.2 0.12 

Intensive grazing 300 2.8 0.50 

Annual horticulture 308 5.3 0.93 

Perennial horticulture 146 1.6 0.13 

 

Data such as these are being incorporated into models and decision support tools to predict the 

impact of land use changes (Cox, JW et al. 2013, pp. 36-7).  The expectation is that it will be 

possible to incorporate temporal and spatial variations identified with changing seasons in MLR 

catchments. 

 

1.3   Australian Drinking Water Guidelines and risk 

The Australian Drinking Water Guidelines (ADWG) provide an administrative and legislative 

framework that holds suppliers and health authorities accountable for the quality of drinking water 

in Australia.  In this context, ‘quality’ is assessed against the physical, microbial, chemical and 

radiological characteristics of the water.  The framework comprises 12 elements (NH&MRC 2011, 

p. 14): 

1. Commitment to drinking water quality management 

2. Assessment of the drinking water supply system 

3. Preventative measures for drinking water quality management 

4. Operational procedures and process control 

5. Verification of drinking water quality 

6. Management of incidents and emergencies 

7. Employee awareness and training 

8. Community involvement and awareness 

9. Research and development 

10. Documentation and reporting 

11. Evaluation and audit 

12. Review and continual improvement. 

This project addresses aspects of elements two and three in particular. 
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1.3.1 Element 2: assessment of the drinking water supply system 

The ADWG define the supply system as everything between the collection point and the consumer, 

including catchments, source waters, storage waters and intakes, treatment systems, distribution 

systems and consumers (NH&MRC 2011, p. 26).  Assessments of these components are made in 

relation to: 

 hazards – biological, chemical, physical or radiological agents that may cause harm, e.g., 

Cryptosporidium parvum.  Hazards can occur throughout the water supply system. 

 hazardous events – incidents causing a hazard to be manifested, e.g., failure in a treatment 

plant resulting in the release of C. parvum into the distribution system 

 risks – the likelihood that a hazardous event will occur, resulting in harm, and the severity of 

the harm, e.g., the probability that C. parvum is present in source waters and reaches the 

treatment plant in sufficient numbers to cause illness should the plant fail (NH&MRC 2011, 

p. 28). 

The Water Services Association of Australia (WSAA 2015, pp. 13-9) proposes two strategies to 

meet the ADWG Element 2 requirement for assessment of source water: 

1. Tier 1 – mandatory 

a. perform sanitary surveys of pathogen sources and their relationship to water 

sources and barriers 

b. aggregate sanitary survey data to derive a vulnerability assessment for the source 

c. accumulate microbial contamination data for raw water immediately before 

treatment 

The above information is used to assign the source to one of four catchment vulnerability 

categories (protected, moderately protected, poorly protected, unprotected) 

2. Tier 2 – optional 

If sufficient raw water pathogen data is available, a quantitative microbial risk assessment 

(QMRA) can be made.  The aim of this calculation is to determine what log10 reduction in 

oocyte concentrations is required to achieve one μDALY (disability-adjusted life year) 

(Water Research Australia 2019).  Tier 2 complements (i.e., does not replace) the 

assessment developed in the Tier 1 work.  Both of these strategies offer guidance on 

treatments required to make the water safe. 

1.3.2 Element 3: preventative measures for drinking water quality management 

Just as hazards can occur throughout the drinking water system, so too should the application of 

preventative measures.  These should be applied as near as possible to the source of the hazard.  

Preventative measures are thought of as barriers.  They are established throughout the system so 

that if one fails, others downstream will be able to compensate.  Barriers may include: 

 catchment management and source water protection, e.g., development controls, exclude 

human activity, protect riparian vegetation 



8 

 detention in protected reservoirs or storages (microorganisms are inactivated due to settling 

or UV irradiation) 

 extraction management, e.g., vary extraction points vertically and horizontally according to 

the quality, volume and density of reservoir inflows 

 coagulation, flocculation, sedimentation and filtration 

 disinfection 

 protection and maintenance of the distribution system (NH&MRC 2011, pp. 31-4). 

A significant advantage in applying barriers as near as possible to the source is that it reduces the 

need for disinfection at the treatment plant.  This has economic benefits due to: 

 reduced cost of chemicals 

 reduced energy use 

 improved health outcomes resulting from a reduction in disinfection by-products 

 
It is not common for sufficient information to be available to permit a fully quantified risk 

assessment.  As will be seen below, professional judgement will be called upon to assess risk 

levels, and a tolerance for uncertainty will be required.  Nevertheless, consumers must be kept 

safe so robust incident response capabilities must be in place (NH&MRC 2011, p. 46).  The ADWG 

provide a methodology for assessing risk, and guidance on the application of elements two and 

three of the framework (NH&MRC 2011, pp. 29-30, 1110-24). 

 

1.4   Modelling flows of water and pollutants 

Oliver, DM et al. (2016) reviewed modelling approaches used in predicting microbial water quality 

as measured by faecal indicator organisms (FIO) in catchment systems.  Their review nominated 

three classes of model: 

 export coefficient and regression 

 probabilistic or risk-based approaches where inputs are presented as samples from 

probability distributions 

 mechanistic or process-based models 

They cautioned that the choice of modelling approach will be influenced by the temporal and 

spatial scales used and by any requirement for transferability of the approach across contrasting 

agricultural systems. 

Neill et al. (2018) used two different modelling approaches to study an 11-year dataset that 

recorded observations of E. coli at ten monitoring sites distributed across a mixed land use 

catchment in the north-east of Scotland.  The data did not display a clear flow-concentration 

relationship.  However, a number of linear regression models indicated that anthropogenic point 
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sources were significant predictors of the spatial patterns of E. coli concentrations.  Neither arable 

nor pasture land was found to be significant.   

 

Figure 1.1: Predicted concentrations of E. coli in relation to monitoring sites (numbered) for 
Tarland Burn in NE Scotland (Neill et al. 2018, used with permission) 

 

Spatial-stream-network models (SSNM) were better at predicting the catchment scale 

concentrations that could be targeted with remediation work.  Figure 1.1 illustrates the SSNM 

output showing increasing concentrations of E. coli down through the stream network. 

Porter et al. (2017) tested the transferability of a modelling approach by taking one developed for 

analysing diffuse fine sediment pollution and applying it to the mapping of diffuse FIO risk.  Good 

results were obtained for one of the two catchments studied (rs of 0.88, p, 0.01), but not for the 

other (rs = -0.357, p > 0.05).  It was found that modifications to the original sediments’ framework 

would be required for a better realisation of the fate and transport of FIOs. 

1.4.1 Regression models 

The simplest form of regression model assumes a linear relationship between a dependent 

variable and one or more independent variables (Rogerson 2015, p. 225).  The linear relationship 

is determined using ordinary least squares (OLS) to find the line of best fit to the observations.  

McGrane, Tetzlaff and Soulsby (2014) employed this approach to estimate faecal coliform (FC) 

bacteria in the aquatic systems of catchments in relation to catchment characteristics.  Using a 

multiple linear regression, they established that variation in mean annual FC concentrations was 

best explained by percentage of improved pasture (90%) and human population size (62%).  
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Although this outcome provides guidance in predicting the effects of changing population sizes and 

agricultural practices, the authors concluded that more information was required in relation to short 

term dynamics.  A more expansive sampling network would aid in identifying contaminant sources. 

Not all relationships between dependent and independent variables are linear.  The influence of a 

parameter may vary spatially, i.e., what is observed may vary in part as a consequence of where it 

is observed – it exhibits non-stationarity.  Problems like this can be analysed with geographically 

weighted regression (GWR) which assigns higher weights to other observations closer to a given 

data point compared to those that are further away (Fotheringham, Brunsdon & Charlton 2002).  

Aljassim (2018) used GWR to analyse the effect of land use changes on the prevalence of FC 

bacteria in a river shellfish production area.  Predictors for FC risk included rainfall, water and air 

temperature, salinity and tide stage, plus the land use classes, residential, forestlands and open 

spaces.  However, the influences of these parameters on the model outcome were most significant 

within 1,800 m of the shellfish monitoring stations. 

Chen et al. (2016) compared multivariate OLS with GWR to study the effect of land use and 

population on N and P concentrations in surface water.  A manual method was used to include or 

exclude independent variables in order to reduce the impact of collinearity (rather than exploit it).  

Compared with stepwise multiple linear regressions, their optimised OLS technique improved the 

predictive capability of the model (as measured by Adjusted R2 values) by 14.3%.  The 

improvement produced by the GWR approach was 59.2%. 

Multivariate adaptive regression splines (MARS) (Friedman 1991) accommodates multicollinearity 

as well as a large number of variables, non-linearity and a substantial interaction amongst 

predictors (Muñoz & Felicísimo 2004).  The goal of MARS is to produce a parsimonious model.   

Alonso Fernández et al. (2014) developed a data mining strategy using MARS to model 

eutrophication and risk prevention in the Trasona reservoir in Northern Spain.  The objective was 

to predict chlorophyll in the reservoir.  They analysed seven biological (e.g., densities of 

Cyanobacteria, Cryptophytes, etc.) and 15 physical/chemical variables (water temperature, 

turbidity, total Nitrogen, etc.).  MARS determined that 10 of the variables would be used in the 

model (in order of importance): 

 Cyanobacteria 

 Phosphates_concentration 

 Dinophlagellata 

 Ambient_temperature 

 Alkalinity 

 Water_temperature 

 Conductivity 
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 Turbidity 

 Total_phosphorus 

 Nitrite_concentration 

The model displayed a good fit with the 149 observations obtained at the reservoir over the period 

2006 – 2010 (Figure 1.2). 

 

Figure 1.2: Comparison between observed and predicted levels of eutrophication in 
the Trasona reservoir (Alonso Fernández et al. 2014, used with permission) 

 

1.4.2 Probabilistic models 

Probabilistic, or stochastic, models draw random samples from probability distributions to initiate 

variables.  Consequently, each execution of the model produces a different output.  The 

alternative, deterministic, approach fixes initial values, e.g., at the mean value, so that any given 

initial state always produces the same output. 

Muirhead, Elliott and Monaghan (2011) used a Monte Carlo (stochastic) approach to model FIO 

contamination of streams by dairy cows and ducks.  They simulated a two-pond effluent system in 

the Toenepi catchment in New Zealand.  A number of distributions were used (Table 1.2): 
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Table 1.2: Examples of sampling distributions for variables (Muirhead, Elliott & Monaghan 2011, 
used with permission) 

Distribution Examples of use 

Log-normal Concentration of E. coli in cow and duck faeces, 

Flow rate in the stream, 

E. coli in-stream attenuation ratio over a kilometre 

Triangular Wet weight of an individual cow pat 

Poisson Number of ducks living in the stream 

Normal Proportion of cows in the herd defecating in the stream at each crossing 

Discrete Proportion of days per year that cows have access to the stream 

 

The E. coli concentration of the simulated stream output median showed good agreement with the 

measured one.  However, the range of concentration values was larger for the modelled one which 

the authors attributed to, “averaging of spatial variability at the larger scale”.  A sensitivity analysis 

of the simulation system suggested that farm inputs of <106 E. coli ha-1 day-1 would not affect the 

concentrations in water leaving the farm. 

The choice of distribution needs consideration to ensure it is fit for purpose, as defined, for 

example, by a set of statistical measures.  Medda and Bhar (2019) investigated stochastic models 

to represent seasonal flows in single-site (single river) and multi-site (a river and its tributaries) 

systems.  They sought to represent the stream flow of an existing river and another with a tributary.  

Models of the latter need to account for the cross-correlation (between two sites in the same 

month) inherent in multi-site systems.  Normal and gamma distributions were sampled in the 

generation of the stream flows.  Mean, standard deviation and serial correlation (between 

successive months) were well represented by both single- and multi-site models when applied to 

either river system and using either distribution.  However, if skewness was to be preserved, the 

gamma distribution had to be used and the multi-site model was required to account for cross-

correlation. 

1.4.3 Mechanistic or process-based models 

A mechanistic or process-based model represents each component of an environmental system 

with a corresponding variable and processes that are intended to reflect the behaviour of the 

natural system (Meineri et al. 2015). 

Coffey et al. (2010) modified the Soil and Water Assessment Tool (SWAT) to study the effect of 

changes in land use practices on water quality in a catchment.  The model incorporated data for 

topology, hydrology, climate, land use and E. coli concentrations.  Land use scenarios were 

defined for grazing, fertiliser use and on-site wastewater treatment.  Good results were obtained for 
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flow simulation (R2 = 0.83) but the modelled E. coli predictions were variable (R2 = 0.68).  

Nevertheless, the model was sufficiently sensitive to some bacteria settings (e.g., variation across 

manure types and soil adsorption) to provide useful land management advice.  For example, 

limiting the application of manure to periods of low rainfall.  The authors identified a need for more 

reliable input data for many variables – fertiliser application, distribution and loading of wastewater 

treatment systems, livestock access to streams, wildlife contribution, etc. 

Whitehead et al. (2016) developed a process model to represent the effects of land use on 

pathogen contamination (as measured by total coliforms (TC)) in the Thames catchment of the 

United Kingdom.  A schematic view of the model can be seen below (Figure 1.3). 

 

Figure 1.3: Pathogen process model of the Thames catchment (Whitehead et al. 
2016, used with permission) 

Each of the entities in the model was described by differential and rate equations that were solved 

numerically.  The results were incorporated into a modification of a catchment model previously 

used for studies of nutrients and other contaminants.  The model generated a reasonable 

representation of the observed daily flow (R2 = 0.67).  However, as in the previous example, the 

authors acknowledged that applying the model to the Thames catchment was a complex task, 

hampered by a lack of quantitative microbiological data. 

Mechanistic models use a “bottom up” approach.  They seek to simulate underlying interactions 

and the temporal and spatial features of the observed system.  The demands for an adequate 

amount of reliable input data can be substantial.  The size and the complexity of relationships in 

mechanistic models can create difficulties for any attempt at parsimony, although simplification is 

possible if some model components are replaced with constants (Cox, GM et al. 2006).  

Contrasted with this, regression techniques such as MARS start from a more agnostic position, 

teasing out the minimum number of parameters and relationships that comprise a parsimonious 

model by analysing accumulated observations empirically. 
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1.5   Description of the Mount Lofty Ranges precinct 

The MLR is subject to a variety of uses such as grazing, horticulture, forestry, urban or rural living 

and tourism.  There are over 20,000 properties that are subject to the oversight of nine local 

councils (EPA 2007, p. 3). 

 

 

Figure 1.4: Mount Lofty Ranges watershed (EPA 2005, used with permission) 

Characteristics of the MLR watershed (EPA 2004, 2005, 2019): 

 it supplies about 60% of Adelaide’s water 

 about 90% is privately owned 

 there are over 50,000 residents 

 it covers 1640 km2 

 most of the runoff (about 90%) occurs between July and September 

 the yield-to-catchment ratio is relatively low 

 25% of wastewater is treated on-site. 
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There are over 15,000 private dams in the Western MLR and 2,000 water allocation licences have 

been granted for the area.  The Adelaide and MRL region contributes 17% of South Australia’s 

agricultural production (Daniels & Good 2015).  

This study focuses on the drinking water catchments of six MLR water supply systems (Figure 1.5). 
 

 

Figure 1.5: Drinking water catchments in the Mount Lofty Ranges 

 

Bradley and Billington (2002) described a trial to accumulate land cover and land use information 

in the MLR.  The trial focused on a region around Lobethal that displayed a wide range of land 

cover and use.  The trial helped to refine the methodology and classification approaches used to 

extract information from 1:20,000 aerial photographs.  Through the efforts of a number of 

government departments and other agencies, it is now possible to access a comprehensive range 

of land cover data, not just for the MLR, but for the whole state (DEW 2019; Willoughby et al. 
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2018).  The dataset comprises 55 land cover layers, one for each land cover class plus 

supplementary confidence and most likely layers.  The cell/pixel size for these data is 25m. 

 

 

Figure 1.6: SA land cover model (2010 - 2015) (DEW 2019, used with permission) 

Figure 1.6 shows a sample of the South Australian land cover information (DEW 2019).  

The large blue area is the urban region of Adelaide.  To the East is part of the Mount Lofty 

Ranges that is the subject of this project.  It shows a preponderance of dryland agriculture 

and woody native vegetation. 
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1.6   Risk studies in the Mount Lofty Ranges 

Packer (2010a) applied the ADWG and other risk management frameworks and standards across 

the MLR.  This study sought to evaluate risks associated with all land uses and canvassed means 

of responding to those risks.  An extensive table summarised the approach by listing: 

 source of hazard, e.g., vegetation clearance 

 hazardous event, e.g., infrastructure failure such as seepage 

 hazard, e.g., pathogens 

 point and/or diffuse source 

 reason, e.g., bare ground 

 solution, e.g., development planning regulations 

 cost/benefit/priority 

This information was then used as input to a source catchments modelling framework (Packer 

2010b). 

 

An Australia-wide view adopted a similar approach to the enumeration of hazards, events and 

sources (Miller, Guice & Deere 2009).  However, it provides more guidance on determining levels 

and impact of risk and uncertainty.  For example Table 1.3 outlines the source information relating 

to each risk tier level and the effort required to address it. 
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Table 1.3: Explanations of risk tier level (edited for microbial content only) (Miller, Guice & Deere 2009, p. 
29, used with permission) 

Risk 
Tier 

Level 

Source 
vulnerability 

Water Quality 
risk 
microbial 

Political or 
social 
issues 

Downstream 
barriers 
present 

Resourcing 
requirements 

1 Source recharge 
area is well 
protected; source 
itself has good 
dilution and detention 
barriers. 

Risk of raw 
water 
contamination 
by microbial 
parameters is 
low 

Limited to 
none, few 
stakeholders 

Source has 
robust 
downstream 
barriers that 
address all 
known raw 
water risks 

Desktop study 
with 
supervisory 
support from 
project team 

2 Source recharge 
area having 
some protection, 
source itself has 
good dilution and 
detention barriers, but 
they can fail during 
high risk events. 

Risk of raw 
water 
contamination 
by microbial 
parameters is 
moderate 

Some local 
issues in 
past and 
predicted 
occasionally 
for the future 

Source has 
robust 
downstream 
barriers that 
address most 
raw water 
risks, except 
under event 
conditions 

Preliminary 
desktop study 
and then 
verification 
through 
workshop-based 
process 

3 Source recharge 
area having only 
limited effective 
protection, source itself 
having good dilution 
and detention 
barriers, but they 
can fail during 
high risk events. 

Risk of raw 
water 
contamination 
by microbial 
parameters is 
high 

Local and/or 
state based 
political and 
social issues 
in the past 
and 
anticipated 
for the future 

Source has 
robust 
downstream 
barriers that 
address most 
raw water 
risks, except 
under event 
conditions 

Workshop-
based 
process 
– including 
external 
stakeholders 
(if required) 

 

According to these criteria a small community may be serviced by an isolated source with no 

known issues.  Current land uses pose minimal risk.  This scenario would be assigned a risk tier 

level value of 1 and be addressed by a desktop study.  Conversely, a large metropolitan 

community serviced by a source with some reportable events each year and questionable barrier 

integrity would score 3.  This would be assessed by means of workshops and a full application of 

the risk assessment process. 

 

Swaffer et al. (2018) carried out a Tier 2 QMRA (quantitative microbial risk assessment) on 

datasets obtained from monitoring stations in the Little Para and Anstey Hill catchments.  They 

determined that one μDALY (disability-adjusted life year) could be achieved with “significantly 

lowered” treatment in most sub-catchments.  For two of the monitoring sites, an increase in 

treatment was indicated. 

Dooley et al. (2011a, 2011b) studied the risks to the quality of water in the MLR’s potable water 

supply and aquatic ecosystems.  They identified hazards and their likelihood and consequences for 

each land use type.  Likelihood was scored 1 (rare) to 5 (almost certain) and consequences were 

scored 1 (insignificant) to 5 (catastrophic).  Risk was defined as a function of likelihood and 

consequences and was summarised in Table 1.4. 



19 

Table 1.4: Risk matrix (Spies and Woodgate (2005, used with permission) cited by Dooley et al. (2011a, p. 
9)) 

 

Raster files of 5m cell size were developed representing likelihood and consequence for each land 

use type.  Each cell of the likelihood and consequence rasters was allocated a value of 1 – 5 

according to the ratings in Table 1.4.  The overall risk hazard raster was determined by multiplying 

the likelihood values by the consequence values (Dooley et al. 2011b, p. 5).  An example of the 

output of this process is shown in Figure 1.7. 
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Figure 1.7: Consequent (risk) ratings for the nutrient hazard to potable water 
(Dooley et al. 2011a, p. 19, used with permission)  

 

Swaffer (2014) and SA Water Corporation (2014) adopted a different approach to the 

determination of the risk value derived from each land use type.  They reported that the maximum 

stocking rate in the MLR is estimated to be 20 dry sheep equivalents (DSE) (McLaren 1997) and 

that breeding cattle presented the highest risk on grazing land of 12 DSE (Swaffer 2014, p. 13).  

(These numbers appear to be a little low – AMLRNRMB (2017, p. 57) suggest a range for breeding 

cattle of 9 – 25 DSE).  Assuming: 

 1.7 breeding cows/ha 
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 grazing land fully occupied by breeding cows 

 manure production of 20kg/animal 

 4000 oocysts/g of manure 

 15% of cows infected with Cryptosporidium 

a worst-case risk for Cryptosporidium could be determined.  This was scored as 100.  Given that: 

 not all grazing animals are breeding cows 

 stocking rates vary for different animals 

 Cryptosporidium infection rates vary 

 total manure production and oocyst loadings vary, 

it is possible to calculate a likely risk for all animal sources of Cryptosporidium for grazing land use 

and express this as a proportion of the breeding cattle maximum.  Calculations like these led to 

infection risk ratings for different land use types (Swaffer 2014, pp. 13-8). 

The studies by Swaffer (2014) and SA Water Corporation (2014) were also based on a spatial 

approach with 5m cell size.  This dimension was chosen in anticipation of modelling risks inside 

and outside of fences, e.g., protecting watercourses.  The focus was on modelling Cryptosporidium 

risks to water quality across the MLR and was referred to as a Catchment Risk Analysis (CRA).  

The modelling environment was a geographical information system (GIS) which produced a risk 

raster such as can be seen in Figure 4.3 below.  In combination with sanitary surveys, the CRA 

satisfies the requirements of a Tier 1 assessment (Swaffer 2014, p. 43).  This work formed the 

basis of the project described in the following chapters. 

1.7   Research agreement project plan 

A research agreement was negotiated between Flinders University and South Australian Water 

Corporation.  The agreement included the outline of a project plan (Appendix A).  Briefly, this plan 

guided the research described below to: 

 develop a Python application to replicate the existing pathogen CRA 

 use the Python application to review and revise the current pathogen CRA for at least one 

drinking water catchment, but preferably all of them, in the MLR 

 undertake a sensitivity analysis 

 verify the outputs using end-of-catchment data 

 apply the experience gained above to nutrients, sediments and pesticides 

 update literature 

 document the steps from input spreadsheet data to output risk raster files. 

 



22 

1.8   Scope 

This thesis describes work done under the auspices of SAW to visualise risks of water 

contamination in the MLR using GIS tools.  Experience gained during the SAW phase of the work 

revealed that the GIS implementation could be awkward to use for a number of reasons.  In 

particular, it is a large application not well-suited to the quick turn-around and record-keeping 

associated with “what-if” or sensitivity analyses.  It was also developed with just Cryptosporidium 

contamination in mind.  Adaptation to other pollutants may not have been a simple exercise. 

A number of assumptions underlie the SAW work: 

 some variables, e.g., reservoir impedance, have been applied as catchment-wide averages 

 the ephemeral systems of the MLR can be represented by annual averages 

 measurements at a monitoring station represent the entire catchment 

 there is a linear relationship between calculated risk and end-of-catchment observations. 

This study sets out to address these and other issues by rewriting the system as a Python 

application that offers: 

 an uncomplicated interface 

 data maintenance 

 simplification of the model definition 

 record-keeping associated with repetitive model execution 

 extension to other pollutants 

 enhancements to the model 

 expanded reporting options. 

The development of the Python application and the evolution of the model are described in this 

thesis.  
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2. METHODS 

2.1 SAW prior work 

In previous work, SAW described the development of a model to assess the risk of 

Cryptosporidium contamination of drinking water catchments in the Mount Lofty Ranges (MLR).  

This work was described in two unpublished reports, a summary (SA Water Corporation 2014) and 

a detailed report (Swaffer 2014).  These documents and an agreement (Appendix A) between the 

University and SAW form the basis of the current project. 

2.1.1 SAW workflow 

The SAW workflow is described in: 

 Swaffer (2014) – the business processes workflow (Appendix B), and 

 SA Water Corporation (2014) – The ArcMap (ESRI 2018) processes workflow (Appendix 

C).  The SAW work was carried out in ArcMap v10.3 but the current project employed 

v10.6.1.  Note: ArcMap is also known as ArcGIS Desktop. 

Briefly, SAW maintains data in Excel spreadsheets (Microsoft Corporation 2016) about pathogen 

sources and environmental factors that affect the distribution of the pathogens.  Sanitary surveys 

(Swaffer 2014, p. 20) are conducted to observe changes in land use or other environmental 

factors.  These observations and a literature review were used to estimate maximum and likely 

risks of contamination associated with each land use type.  The likely risk estimates are scaled 

against the maximum resulting in values the range 0 – 100.  These values are imported into shape 

file attribute tables in ArcMap (Swaffer 2014, pp. 12-9).  

  

Figure 2.1 is an example of how the source data are managed in the shape file environment.  It 

shows the shape file outline of the MLR study region with the boundaries of irrigated areas 

displayed and information about these, such as risk estimate, shape area, etc., in the attribute 

table. For the rows showing in the attribute table, the risk estimate, mlrirrigat is 21.5. 
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Figure 2.1: ArcMap shape file, MLR_Irrigation and attribute table for the irrigation 
variable mlrirrigat 

In general, variables of interest in the tables are each exported into raster files (cell size 5 x 5 m) 

for subsequent processing in the model computations.  A few raster files, such as for slope, 

streams and the Digital Elevation Model (DEM), were sourced separately (but also from SAW).  

The variables used in the SAW model, and hence raster file names, are listed in Appendix D. 

 

2.1.2 SAW model definition 

The original SAW model was constructed from terms of the form: 

    W * R 

    Where, 

      W is a weight estimated by SAW professional staff 

      R is the risk for a given variable as described above 

The value of weight is derived from a budget of 1.0 allocated across all variables (Swaffer 2014, 

pp. 31-2).  An example of SAW’s original model definition follows (Figure 2.2).  This is the form in 

which it would have been entered into ArcMap’s Raster Calculator to generate a single risk surface 

for the entire MLR catchments region. 



25 

((0.15 * " pathgraz2") + (0.15 * " pathirrpas2") + (0.15 * " pathintapr") + (0.05 * " pathresid ") + (0.075 
* " pathnatveg") + (0.05 * "pathwaste") + (0.025 * "pathwwfail") + (0.025 * "pathresdist") + (0.025 * 
"pathstrdist") + (0.025 * "mlrrain") + (0.025 * "mlrslope") + (0.025 * "pathgulero") + (0.025 * 
"pathwatero") + (0.025 * "pathirrigate") - (0.15 * "mlrbuffer") - (0.05 * "pathfencing")) * "mlrsaw" 

Figure 2.2: Defining the model in Raster Calculator (variables defined in Appendix D) 

Most terms add to the risk.  The exceptions are fencing and buffers (Figure 2.2, pathfencing and 

mlrbuffer respectively).  Fences can be used to exclude stock from stream beds, thereby reducing 

the risk level.  Buffers represent secondary storage within which pathogens can complete their life 

cycle and die before reaching a primary reservoir.  Again, the risk is reduced.  The multiplicative 

term, mlrsaw, is simply a mask that excludes non-drinking water catchments from this study. 

 

2.1.3 SAW model optimisation 

Figure 2.2 represents the end point of the SAW development in 2015.  A number of sensitivity 

studies (“sens1” up to “sens6”) had been performed prior to this.  For example, in the sens1 study, 

all variables (or layers in the raster calculation) were given equal weighting.  In sens3, the    

hydrological terms rainfall and slope were considered to have greater influence on propagating 

pathogen risk.  In the last analysis, sens6, land use is most important for pathogen generation 

while fencing and buffers were applied to reduce the risk levels (Swaffer 2014, pp. 34-8). 

 

At the time the original SAW modelling work was completed, experimental studies were revealing 

that most oocysts were not infective.  An overlay function was applied to the sens6 output to reflect 

this.  The sens6 output was adjusted as follows in Raster Calculator (Swaffer 2014, pp. 40-1): 

sens6infect = 0.2 * sens6 * infectivity% + 0.8 * sens6    (Eq. 2.1) 

 

2.1.4 SAW verification 

Monitoring stations are available for each catchment in the MLR.  These provided “end-of-

catchment” water quality measures (described below in 8.1) that could be used to assess the 

veracity of the model.  Least squares regression analyses were undertaken for this (Swaffer 2014, 

pp. 38-41).  The model’s ArcMap Zonal Statistics mean output for each catchment was plotted 

against the end-of-catchment water quality data.  The model was assumed to be linear. 

 

2.2 New approach to workflow  

A number of limitations were identified in the approach described above: 

 limited support for “what if” sensitivity studies 

 difficulty keeping a record of a study series 

 single pollutant focus 

These limitations and other issues are addressed in the current study.   
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2.2.1 Spreadsheet use 

The use of spreadsheets to maintain source data has been retained.  A new spreadsheet-based 

model definition simplifies the task of allocating the weights budget across the variables (Table 

2.1).  Note that the same variables (renamed here as described in the naming conventions section 

below) and weights still apply. 

Table 2.1: Extract from the spreadsheet model definition 

Variable 
/Layer Weight Operator 
presid 0.050 + 
pwaste 0.050 + 
pwwfail 0.025 + 
tbuffer 0.150 - 
tfence 0.050 - 
tgulero 0.025 + 

 

The familiar device of a spreadsheet adds the capability of recording different weight settings for 

each execution of the model.  This enhances the ability to quickly modify weight settings in a model 

and follow the trail of these changes during a sensitivity study.  A facility was also added to store a 

user reference number that appeared on the standard risk surface report. 

 

2.2.2 Model development in Python 

The SAW workflow has been abstracted from ArcMap to a simple Graphical User Interface (GUI) 

by means of a Python V2.7.15 (Python Software Foundation 2019) script (Appendix E).  Facilities 

provided by the Python application (relevant function definitions are shown in parentheses) include: 

 initialisation: 

o present the GUI (initGUI) 

o read the list of variable/layer names from a text file 

o receive choice of pollutant (pathogen, nutrient, pesticide or sediment) or transport 

from the user (initGUI) 

o read the relevant model from a spreadsheet (modelUpdate) 

 receive an action choice and implement it: 

o update a shape file from the spreadsheet source (shapesUpdate) 

o generate one or more raster files from a shape file (rastersUpdate) 

o generate a risk surface from the raster files collection (risksUpdate) 

o generate the standard risk surface and Zonal Statics reports (reportsUpdate) 

o generate a detailed sub-catchment report (detailedAnalysis). 

Figure 2.3 illustrates how data flow through the Python implementation from spreadsheet sources 

to the final reports. 
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Figure 2.3: Flow of data through the Python environment 

 

2.2.3 Naming conventions 

The names of the variables have been modified to distinguish the classes of variables, i.e., 

pathogens, nutrients and transport.  In Table 2.1 above, the variables prefixed with a ‘p’ relate to 

pathogen sources while those prefixed with a ‘t’ influence the transport of the pathogens. 

 

The risk surface names have also been changed to reflect the extension of the application to 

include different pollutants and to support the version control requested by users.  Hence, the risk 

surface raster file name “nriskv005” refers to the fifth version of a nutrients risk raster.  Similarly, 

“MLR_Landusepv001.shp” refers to version one of the pathogens land use shape file.  In one 

version of the watershed studies, the variable names had a ‘w’ appended, e.g., pgraz became 

pgrazw.  Later, a separate folder structure was used instead. 

 

The risk surface report now includes all the variables and their weights in a table.  The table also 

includes the user reference number. 

 

2.2.4 Selected data structures 

The key data structures for the Python implementation are listed below.  The shapeVars dictionary 

is used to look up raster names associated with each shape file.  The OPTIONS array lists shape 

file names for use in a drop-down menu selection for shape or rasters file updates.  The rcDict 

dictionary holds the model variables, weights and operators read from the spreadsheet instance of 

the model. 
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 shapeVars – dictionary with shape file names (key) and corresponding tuple of raster 

layer(s) (value), e.g., 

shapeVars = {'MLR_Stream_Distance': ('tstrdist',), 'MLR_WW_Risk': ('pwwfail',), …} 

 OPTIONS – list of shape file names, e.g., 

OPTIONS = ['DWC_MLR', 'MLR_Buffer', …] 

 rcDict – dictionary of raster layers (key) and list of corresponding weight and operator 

(value) read from the model spreadsheet, e.g., 

rcDict = {u'tstrdist': [0.025, u'+'], u'tresdist': [0.025, …]} 

 Raster files – ESRI GRID format, 5 x 5m cell size, 

Geographic Coordinate Reference: GCS_GDA_1994 

Projection: GDA_1994_Lambert_Conformal_Conic XY Coordinate System. 

 Shape files – ESRI Polygon Feature Class 

Projected Coordinate System: GDA_1994_South_Australia_Lambert, 

Projection: Lambert_Conformal_Conic 

 

2.2.5 Reporting 

Standard reports 

Standard reports include an overall MLR risk surface annotated with catchment boundaries, 

version number and a table of raster names, weights and the reference number that applied to the 

model run.  Zonal Statistics output for both catchments and sub-catchments are also generated. 

Detailed ad hoc reports 

The availability of a GUI presentation introduces other reporting possibilities.  An example 

developed in this project uses a series of drop-down menus to select a catchment, or sub-

catchment.  The application then generates a report for the selected area that illustrates fenced 

and high-risk areas in relation to a stream network. 

 

2.3 Adapting the model 

The Python implementation of the SAW sens6 workflow represents the baseline for the current 

project.  This initial development is referred to below as “sens7”.  It facilitated subsequent 

modifications to the model, including: 

 explicitly dealing with the absence of any pollutants in a given cell 

 distinguishing between watersheds and catchments at the monitoring sites 

 substituting a flow rate risk in place of the slope risk 

 adaptation for other contaminants. 

Further, the influence of each variable on the overall risk outcome could be investigated.  As both 

sens6 and sens7 add all terms in the model equation, they are referred to as “all risks” versions 

below.  



29 

 

2.3.1 Account for the absence of pollutants 

The initial land use table that houses the seven pathogen sources had about 10,000 rows at the 

beginning of this study.  It has subsequently grown to over 44,000 rows.  This has implications for 

the model definition as many of the rows don’t list a contaminant source, e.g., because they refer 

to roads, quarries, etc.  However, as Figure 2.2 illustrates, even if all the pathogen terms are zero, 

the model still determines a risk (of pathogen contamination) from the transport terms.  Hence, the 

model has been modified from: 

pathogen risk = source risk + transport risk 

to: 

if source risk > 0  

           then 

              pathogen risk = source risk + transport risk  

           else 

              pathogen risk = 0 

This version of the model was allocated the name “sens8” and a qualifier was added to emphasise 

that terms with zero source have been excluded from the model’s output. 

 

2.3.2 Contribution of each variable to total risk 

Other supporting utilities were also developed during this project.  One of these determined the 

total contribution of each variable to the overall risk for the entire MLR (Appendix F).  This 

development was prompted by the discovery that the fencing and buffer variables appeared to 

carry too much weight in the model, to the extent that significant negative total risk values were 

appearing.  This issue should properly be addressed by the catchment scientists at SAW.  In the 

interim, the risk values for the buffer variable were reduced as a workaround that permitted 

continued development. 

 

2.3.3 Watersheds vs catchments 

Other Python scripts developed outside the GUI application introduced a new approach to the 

modelling of water as a transport medium (Appendix G).  This was in addition to the rainfall.  The 

intent, initially, was to address the static nature of the slope contribution by substituting a flow rate 

(see below).  The basic model used slope to reflect the flow of water.  The difficulty with this is that 

a cell with a given slope, e.g., three degrees, made the same contribution to the final risk 

calculation as any other cell with the same slope elsewhere in the catchment.  This is a problem 

because it does not take account of the flow of water from the contributing area upstream from the 

cell. 
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The application of a flow rate entailed the determination of the watersheds that discharged towards 

the monitoring stations where contaminants were sampled.  It emerged that for only two of the 

sampling points (Happy Valley and Hope Valley) did the watershed coincide with the catchment.  A 

new approach was therefore developed that focused only on the watersheds related to each 

sampling point rather than the entire surrounding catchment.  This watersheds version was called 

“sens9” and was evaluated in Raster Calculator.   

 

During the development of the watershed views, it became apparent that the one for the Myponga 

region was incorrect.  Comparison of the flow accumulation raster with a separate shapefile of the 

streams network showed a significant discrepancy.  It emerged that there were errors in the 

underlying digital elevation model (DEM).  These were resolved with the assistance of Keane 

(2019), enabling the expected watershed to be determined. 

 

2.3.4 Water flow rates in place of slope 

For the “sens10” (flow replaces slope) version, a flow rate was used in place of slope.  Python 

scripts were developed to assist in determining the flow rates (Appendix G) while the final 

computations were carried out in Raster Calculator. 

 

The Python scripts have been adapted from the interactive approach described in an on-line 

tutorial (ESRI 2019).  Starting with the DEM, raster layers were derived for flow direction and 

accumulation.  At this point, a separate raster was defined manually that positioned a “pour point” 

or outlet on the flow accumulation path nearest the latitude/longitude position of each SAW 

monitoring point.  Further Python code then determined the watershed, slope, slope area and 

finally a raster layer that encoded flow rates throughout the MLR.  ArcMap’s Raster Calculator was 

used to limit this last layer to a maximum of 2m/s according to the advice in ESRI (2019). 

 

The technique outlined in ESRI (2019) is a simplified one that excludes variations over time and 

discharge rate.  It focuses on velocity as affected by spatial components, including slope and flow 

accumulation.  The computation was derived from Maidment et al. (1996): 

 
V = Vm * (sbAc) / (sbAc

m)                                                                       (Eq. 2.2) 

    Where, 

      V is velocity at a cell of slope s and upstream contributing area A 

      b = c = 0.5m/s 

      Vm is an assumed average velocity of 0.1m/s 

      sbAc
m  is the average slope area throughout the watershed. 
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The local slope of each cell and the area of upstream cells that flow into it are used to determine a 

velocity for the cell.  Note that sens10 is still an additive model. 

 

2.3.5 Final multiplicative version 

The flow rates can be very low, even zero.  To account for this, the final version of the model was 

created, where the flow variable (tflows) was removed from the transport group and a product, 

rather than a sum, of the terms was generated: 

total risk = (sum of source risks) * (sum of transport risks without tflows) * tflows 

This version is referred to below as “sens11” or flow modifier version.  

 

2.3.6 Other pollutants 

The modular development of the Python script, together with the categorisation of source data, 

support adaptation of the modelling system other pollutants.  Modules and data structures have 

been designed to work readily with the different pollutant choices.  In the event, the pathogens 

processes were the most fully developed.  Some nutrient processing was also performed in 

relation to Phosphorus (described below). 

 

2.4  Verification 

The existing regression analysis employed by SAW was applied in this project for comparison. 
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3. MODEL DEVELOPMENT - SPREADSHEET 

3.1 Results – spreadsheet implementation of the model 

The original model Raster Calculator version of the model can now be represented by a 

spreadsheet (Figure 3.1).  Note: the variable definitions can be found in Appendix D. 

Raster Calculator Spreadsheet 

 

((0.15 * "pgraz") + (0.15 * "pirrpas") + 
(0.15 * "pintapr") + (0.05 * "presid ") + 
(0.075 * "pnatveg") + (0.05 * "pwaste") + 
(0.025 * "pwwfail") + (0.025 * "tresdist") + 
(0.025 * "tstrdist") + (0.025 * "train") + 
(0.025 * "tslope") + (0.025 * "tgulero") + 
(0.025 * "twatero") + (0.025 * "tirrigate") - 
(0.15 * "tbuffer") - (0.05 * "tfence")) * 
"tsaw" 

 

 

Figure 3.1: Model definition in the Raster Calculator (L) and in a spreadsheet (R) 

 

The Python application reads the first three columns of the spreadsheet comprising variable 

names, the weight applied to each of them and whether the variable increases or decreases the 

risk of contamination.  Fencing, for example, can be used to exclude dairy cattle from water 

courses so its value (tfence) reduces the risk.  Both the Raster Calculator version and the 

spreadsheet representation describe the same information, namely the original sens6 (all risks) 

definitions. 

 

Figure 3.1 also illustrates the categorisation of the variables in the model into two classes.  The 

source class nominates the variables that generate the contamination.  In this case, the ‘p’ prefix 

indicates pathogens.  Those variables prefixed with a ‘t’ influence the transport of pathogens.  

These class distinctions became important in later variations of the model. 

 

The advent of a spreadsheet version facilitates sensitivity analyses (Figure 3.2).  The current 

weights definitions in the second column are copied to an unused column on the right where the 
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weights can be altered and copied back for a new run of the model.  It is a simple matter to insert 

temporarily a built-in SUM function at the bottom of the weights column to ensure the total weights 

values are held within a budget of 1.0 (excluding the drinking water mask, tsaw).  Further details 

can be recorded in other sheets if necessary. 

 

Figure 3.2 also demonstrates the use of a user-defined reference number.  This is recorded on the 

main risk surface report and can be used to tie the report to the spreadsheet definition. 

 

 

Figure 3.2: The spreadsheet version weights manipulation and recording 

 

3.2 Discussion of Spreadsheet Model Development 

SAW staff defined a model of the risks of Cryptosporidium contamination in the MLR.  In order to 

test the model, they devised a series of sensitivity studies.  These studies varied the weights 

applied to each variable (or combinations of them) to assess how well the model performed against 

end-of-catchment measures of Cryptosporidium contamination.  This task proved tedious.  The 

ArcMap Raster Calculator is awkward to use in a repetitive series of experiments and does not 

provide a record of activities over time. 

 

The current project sought to address these concerns by providing an uncomplicated interface, that 

simplified the user’s view of model implementation and could maintain a record of model execution.  

These aims are achieved through a simple spreadsheet layout that preserves the basic arithmetic 

application of the model but adds a number of record-keeping capabilities: 
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 A free text reference number can be assigned by the user to each model run.  This could, 

for example, be date related: 20190805a, 20190805b, etc. 

 The weights assigned to each run can be stored in their own spreadsheet column, in 

sequence and with a meaningful heading, e.g., in Figure 3.2, “Buf down Rain up” is a 

reminder that the buffer weight was traded off against rainfall in that experiment. 

 Whole series of experiments can be stored in separate spreadsheet tabs prior to a major 

change in strategy. 
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4. MODEL DEVELOPMENT – PYTHON 

4.1 Results – Graphical User Interface 

The workflow illustrated in Figure 2.3 has been implemented as a Python script (Appendix E) which 

presents the following interface to the user (Figure 4.1): 

 

Figure 4.1: GUI interface provided by the Python script 

 

Features that can be noted in this interface include: 

 radio buttons to choose the pollutant source, or transport, for study.  This is the origin of the 

prefix letter used in filenames (e.g., nriskv002) and for internal decision-making in the script 

 drop-down menus to select data sources or catchments 

 buttons to invoke the various updating functions or report generation 

 a message window to keep the user informed to progress during execution. 
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Due to a bug in the Python implementation used for this project, the code for the Compare function 

had to be developed separately.  The Statistics function has been set aside for now. 

 

4.2 Results - Python implementation of the model 

ESRI has made available a library, arcpy, that exposes much of the capability of ArcMap to the 

Python programmer.  Specifically, it provides “map algebra” functions that mimic the behaviour of 

the Raster Calculator.  The use of this can be found at the core of the model’s execution in the 

function risksUpdate main loop from which the following edited script has been extracted (Figure 

4.2): 

 

Figure 4.2: The core loop of the model execution in the risksUpdate function 

Here, the weight (i.e., the coefficient obtained previously from the model spreadsheet) is multiplied 

by the value of the corresponding variable and added to the accumulating sum.  This is equivalent 

to the arithmetic shown previously in Figure 3.1 above. 

Although the final value of the raster calculations above is expressed as the sum of transport and 

source values, the logic is the same as used by SAW (Figure 3.1).  It has been expressed in this 

way to facilitate modifications to the model described below. 

The raw output of the risksUpdate computation (colourised to match the symbology used by SAW) 

is shown in Figure 4.3.  This represents the SAW sens6 output (now termed sens7), as amended 

by the larger land use table and reduced buffer risk values.  Unfortunately, detailed comparisons 

with the previous work are not possible as its output is no longer available.  The two white regions 

represent non-drinking water catchments that are not part of this study.  The variable tsaw was 

used to mask them out.

for cR in currentRasters: 

    cRName = <raster name string> 

    if cRName[0] == 't': 

        tSumRaster = tSumRaster + coeff(cRName) * arcpy.Raster(rastersDir + cR) 

    elif cRName[0] == pollutantSrc: 

        sSumRaster = sSumRaster + coeff(cRName) * arcpy.Raster(rastersDir + cR) 

sumRaster = tSumRaster + sSumRaster 
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sens7 (all risks/Python) sens6 (all risks/ArcMap) 

  

Figure 4.3: Raw output from the Python risksUpdate sens7 computation (L) and the corresponding SAW ArcMap Raster Calculator 
sens6 view (R) from Swaffer (2014)
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When the reports function is invoked on the GUI, it causes the following three standard reports to 

be generated – risks summary, Zonal Statistics for catchments and Zonal Statistics for sub-

catchments.  The first, Figure 4.4, shows the summary risk surface covering all the drinking water 

catchments of the MLR.  It illustrates the new features offered by the Python implementation, 

namely, version control, the table of weights and reference number. 

 

Figure 4.4: Standard reports summary all risks surface for pathogen contamination across the MLR 
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Figure 4.5: Standard reports of Zonal Statistics means for catchments (L) and sub-catchments (R) 
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The standard reports images in Figure 4.5 are of the Zonal Statistics output for catchments and for 

sub-catchments.  In this case, the option of the statistical MEAN for each (sub-)catchment was 

chosen as this is the value that was used in the SAW verification strategy (see Chapter 8 below). 

4.3 Discussion of Python Model Development 

The Python-defined GUI supports the endeavour of enhancing the model environment for the user.  

Here, the emphasis is on simplifying interactions with the model support systems: 

 the user sees the simple, familiar device of a radio button menu to choose between 

pollutant sources or transport variable data maintenance.  Underlying this choice are 

supporting data definitions (the file name prefix letter referred to above) and generic Python 

script sequences that can accept the radio button selection and work with the relevant files 

 data maintenance has been simplified, with a simple button click required to update shape 

and raster files, to generate the summary risk surface or to produce the set of standard 

reports.  Formerly, an error-prone copy-and-paste from Excel to ArcMap was required to 

incorporate the spreadsheet data into an attribute table 

 the main risk report records the spreadsheet-defined weights and reference number, plus 

the automatically updated risk file version number 

 the Zonal Statistics output automatically includes the mean for each catchment for use in 

the validating process. 

In order to support this level of abstraction, various support capabilities have been added to the 

Python script.  These include function or class definitions for initialising the GUI, managing the 

cursor activity status, file name version control, purging intermediate files, displaying spreadsheet 

contents, sending messages to the GUI window, laying out the reports, statistics generation, shape 

selection, etc. 

 

In its sens7 (all risks) form, the model generates negative risk values and these don’t reflect any 

activity occurring in the real world of the MLR.  This issue is discussed in detail below but in the 

interim two further support functions have been developed, normalise and scale.  The first of these 

simply converts the raw risk values into the range 0 to 100.  This is currently used in the standard 

risk report where SAW previously used the terms Low and High.  Ultimately, when the issue of 

negative values is resolved, calculated risks will be scaled against the maximum for the MLR. 
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5. APPLYING THE PATHOGEN MODEL 

5.1 Results – generating new views 

Given the ability in the GUI to choose a catchment or sub-catchment (Figure 5.1), further analysis 

beyond the standard reports can now be made available.   

 

Figure 5.1: Choosing a catchment or sub-catchment for further analysis 

Clicking on the Analyse button causes the detailedAnalysis function to be invoked.  This produces 

a report displaying fenced and high-risk regions in relation to streams (Figure 5.2).  High risk is 

defined as a risk level greater than 60% as suggested in Swaffer (2014, p. 54). 

 

 



42 

 

Figure 5.2: Pages Flat high risk relative to fencing 

 

5.2 Discussion of Model Application 

The Python scripts provide an infrastructure to support new developments in this project.  In later 

chapters, variations in the model itself are considered.  However, even in the current model, new 

ad hoc views become relatively easy to implement.  An example is given here that displays 

potentially high-risk areas in relation to streams and fenced areas.  Other possibilities include: 

 refining the risk display according to particular variables, e.g., intensive animal production 

(pintapr) or irrigated pasture (pirrpas) 

 estimating the costs and water quality benefits of riparian plantings within a nominated 

stream buffer zone in the high-risk areas (Connor et al. 2019) 

 signalling high-risk regions that don’t comply with the Development Act’s restriction on 

development within 60 m of watercourses (Government of South Australia 2019c) 

 plotting the distribution of dams in relation to high risk areas to assess the impact of dam 

failures (Pisaniello 2010). 
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The detailed output addresses another issue with the original workflow.  The feedback loop from a 

change in one of the source file spreadsheets to the standard risk surface report or regression 

analysis is long and indistinct.  By displaying data in a finer grain as shown in Figure 5.2, the 

spatial disposition of a particular variable against risk can be readily appreciated by developers and 

planners.  This could guide decisions as to where new physical mitigation work might be 

considered.  The addition of before and after views of a change would assist this understanding. 
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6. REFINING THE PATHOGEN MODEL 

A series of six results is presented here relating to the developments enabled by the Python 

representation of the model, including: 

 dealing with the absence of pollutants 

 contribution of each variable to the final risk outcome 

 refining the measurement regions from catchments to watersheds 

 determining the risks associated with watersheds 

 substituting water flow velocities in place of slope 

 combining the source and transport variable classes with flow in the form of a product 

calculation rather than simple addition. 

 

6.1 Results 

6.1.1 Pathogen absence 

In Figure 4.2 above which illustrated the core loop of risk calculations in the risksUpdate function, 

total pathogen risk was shown to be the sum of source risks and transport risks.  This implies there 

will always be a pathogen risk due, at least, to the transport values.  As argued in 2.3.1, the risk 

should be zero in the absence of pathogens.  Thus, the last line in Figure 4.2 now becomes: 

sumRaster = Con(sSumRaster > 0, sSumRaster + tSumRaster, 0) 

Figure 6.1: Returning zero pathogen risk if the source risk is zero 

That is, the total risk is only positive if the sum of the source rasters is positive.  Otherwise it is 

zero.  This generates the following total MLR risk surface (the previous version is included for 

comparison) (Figure 6.2):  

Two features should be noted in the images in Figure 6.2.  First, in the sens7 output, the NW 

region of the Little Para system (circled in green) shows relatively high risk.  This decreases in the 

sens8 output.  Second, in contrast, the NE region of the Barossa system (circled in blue) appears 

to have done the opposite, i.e., the risk has increased in sens8.  This is an artefact of the way 

ArcMap’s symbology has been applied.  When zero and below values are removed, what were 

formerly low positive values are given higher value colours when the colour scale is applied.   

These and other observations prompted an investigation, presented below, into the contributions 

each of the risk variables to the total risk outcome. 
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  sens7 (all risks)   sens8 (exclude zero source terms) 

  

Figure 6.2: Original sens7 risk surface (L); new sens8 surface reduced by zero pathogen transport risk (R).  The circles are to assist in comparing 
regions (see below) 
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6.1.2 Relative contributions of model variables 

Appendix F lists the Python script that analysed the risk contributed by each variable to the total.  

The output from that script is shown below in Figure 6.3: 

 

Figure 6.3: Risk contributed by each variable to the total 

It is apparent that the tbuffer (upstream storage impedance) variable contributes a substantial 

negative amount of risk to the total.  This reflects both the high initial risk and the weight assigned 

to this variable in the source and model data.  Also, the pathogen source variables appear to have 

considerably less influence than the transport variables on what is actually a pathogen risk 

calculation.  Note that the pinfect and plife (see Appendix D) terms were set to zero as they were 

not being studied here. 

This variable shares Python script could be readily adapted to address the requirement in Swaffer 

(2014, p. 54) to report on which source rasters (land use type, transport, etc.) at a given location 

contributed most to the overall risk. 
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6.1.3 Watersheds vs catchments 

In order to introduce the concept of a flow rate in place of slope in the model, it was necessary to 

determine the watersheds contributing to the flow past the six catchment monitoring points.  

 

 

Figure 6.4: Monitoring points (●) and their associated watersheds 

Figure 6.4 shows the MLR catchments in outline with the six monitoring points and their associated 

watersheds.  It is apparent that for some systems, the watersheds and catchments do not coincide.  

This is particularly the case for Myponga in the south and Little Para in the north-west.  It should 



48 

also be noted that the Anstey Hill catchment (in red) shows two monitoring points.  These were 

each connected to separate watersheds but their analysis was combined as only one water quality 

figure was quoted in Swaffer (2014).  Only one of this pair was employed in the nutrients study 

(see below). 

 

6.1.4 Watershed risks 

Given the finding above, it was appropriate to investigate the risks associated with the watersheds.  

This output was designated sens9 and is compared with the previous whole-of-catchment output 

(sens8) in Figure 6.5.  Where the watersheds overlay the catchments, the images are largely the 

same.  However, there are some variations in symbology as the range of values over which it is 

applied may vary.  The circled areas demonstrate this where the colour for the low valued green 

regions is less intense in the sens9 version. 
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  sens9 (watersheds)   sens8 (exclude zero source terms) 

  

Figure 6.5: sens9 watershed (L) and sens8 whole-of-catchment (R) risks. Circled areas are for comparison 
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6.1.5 Surface water flow rates in place of slope 

Another variant of the model incorporates the previous changes with an even further reduced 

tbuffer risk value to counter the generation of negative risk numbers.  In addition, this variant 

substitutes a surface flow rate (tflows) in place of slope (tslope), resulting in the “sens10” version of 

the model (Figure 6.6).  Note that this version still adds all the risk terms. 
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  sens10 (flow replaces slope)   sens9 (watersheds) 

  

Figure 6.6: Comparison of sens10, flow rate (L) and sens9, watersheds (R) versions of the model 
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The sens10 version of the model shows a wider range of risk values compared with the previous 

version. 

In a variation of this approach, the weight applied to tbuffer and tfence was traded off to other 

parameters such as train, pintapr (intensive animal production) and pirrpas (irrigated pasture) in 

order to reduce the negative impact of the first two (Figure 6.7).   

 

Figure 6.7: The final expression (sens10) of the additive version of the pathogens model  
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It should be noted that Figure 6.7 represents the final version of the model that adds (or subtracts) 

the value of each weighted variable.  In summary, it accommodates the lack of pathogen sources, 

the distinction between watersheds and catchments, and it substitutes surface water flow risk in 

place of a slope risk.  It appears in this view that the extent of high-risk regions has been reduced 

compared with previous versions.  There is a corresponding increase in low-risk areas.  

 

6.1.6 Final version with flow rate as a multiplier 

It has been assumed above that the absence of pathogens (the source) implies a lack of risk of 

pathogens.  By analogy here, it is intended that if there is no risk of water flow, there will be no 

transport of pathogens and hence little or no risk of contamination at the cell being evaluated.  

Hence, in this final implementation, rather than simply adding the flow rate component to the 

model, it is used as a multiplier on the transport and source groups.  This approach produced the 

following output (Figure 6.8), which will be referred to as the “sens11” flow rate modifier version: 
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Figure 6.8: Multiplicative pathogens model (source * transport * flow) 

For comparison, this last version is shown below with the original (sens7).  Note that the unscaled 

risk values are shown.  The negative minimum for sens11 has almost been eliminated. 
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  sens11 (flow rate modifier)   sens7 (all risks) 

  

Figure 6.9: Final (sens11) and original (sens7) pathogens model outputs 
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In Chapter 8 below, comparisons will be made between the scaled mean risk values for sens11 

watersheds and sens6 catchments in order to demonstrate the changes brought about by the new 

model.  The Zonal Statistics MEAN was determined for the watersheds and catchments as 

illustrated in Figure 4.5 above.  The maximum mean value in each case was assigned the scaled 

value of 100 and the values for the other regions was scaled against this.  The effect is 

represented visually below in Figure 6.10 but the assessment of the numerical details is detailed 

further in Chapter 8.  Note that, as in many cases throughout this report, the only imagery available 

from the original SAW report is in the form of a non-revisable figure so some detail has been lost. 
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sens11 (flow modifier) 
mean risk for watersheds 

sens6 (all risks) 
mean risk for catchments 

  

Figure 6.10: Comparison of pathogens mean risk values for sens11 watersheds (L) and sens6 catchments (R) (Swaffer 2014, p. 38) 
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Table 6.1: Risk statistics for the final (sens11) and 
first (sens7) pathogens models 

 sens11 sens7 

Minimum -0.4 -10.0 

Mean 0.6 1.8 

Maximum 141.5 14.8 

Standard Deviation 2.2 3.1 

 

Although the maximum value for the sens11 output is ten times the one for sens7 (Figure 6.9), its 

mean is closer to zero (Table 6.1).  This is unsurprising given that flow rate risk is now one of the 

drivers of the model as defined here.  As Figure 6.11 illustrates clearly, low to medium (green-

yellow) risk values predominate in this layer.  Note, however, that its weighting in the model is quite 

low – the same as was previously used for slope (0.020). 

 

 

Figure 6.11: 1:30,000 view of the flow rate raster at the northern tip of Mt Bold Reservoir 

Table 6.2 summarises the features that have been added or modified at each stage in the 

refinement of the model. 
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Table 6.2: Summary of modifications for sens7 – sens11 

Model 
variant 

Add source 
and 
transport 
groups 

Ignore 
transport if 
source is 
zero 

Account for 
Watersheds 

Substitute 
flow rate for 
slope 

Multiply 
source, 
transport and 
flow terms 

sens6      

sens7      

sens8      

sens9      

sens10      

sens11      

 

The final configurations of the pathogen and nutrient models can be found in Appendix H. 

 

 

6.2 Discussion of Model Refinements 

In a model defined at a resolution of 5 x 5 m cells, there are more than 236 million cells defining 

the MLR.  For each of these, an evaluation is performed of 16 raster images representing the 

contamination risk associated with each of the model variables.  It is conceivable that for many of 

these cells, the result of the evaluation would be zero.  This was not the case for the model at the 

start of the project.  There was almost no circumstance where the addition of 14 variables’ risks 

and the subtraction of two could result in zero.  In fact, there were situations where substantial 

negative values appeared.  This doesn’t seem to represent any activity occurring in the real 

environment. 

 

In order for a model to represent the contamination by pathogens of surface water arriving at 

reservoir monitoring stations, two necessary conditions must obtain: 

 there is a source of pathogens, and 

 surface water must be able to flow in the direction of the reservoir in order to carry the 

pathogens there. 

There are many situations across the MLR where at least one of these conditions is not met.  For 

example, a cell covers a road pavement which cannot be the source of pathogens.  Alternatively, a 
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cell may represent water pooled in a dam where oocytes may be held long enough to lose their 

viability. 

 

This project set out to account for these observations in new ways, providing a more nuanced view 

of the impact of the variables and their interactions.  Instead of simply adding terms, the model now 

makes pathogen presence and surface water flow the drivers of the model.  This is achieved by 

multiplying the source group of terms by the transport group and by the water flow risk.  Any of 

these terms can now force the entire calculation for a cell to zero, resulting in the overall lower risk 

profile of Figure 6.8 above. 

 

The process of developing the final model from the original one, led to some difficulties having to 

be overcome.  Two strategies were applied to reduce the negative risk values originally observed.  

The initial risk values for buffer and the weights for fence were both reduced.  The weight for 

rainfall was increased (see the table in Figure 6.8) to maintain the overall weight budget at 1.0.  

This choice was also in keeping with making water movement a key influence on the outcomes.  

However, it is acknowledged that these modifications need to be reviewed by the catchment 

management professionals at SAW as they have the deeper understanding of the data. 

 

The determination of water flow rates across the MLR required the derivation from the DEM of 

watersheds above each of the catchments water quality monitoring sites.  In an intermediate step 

in this process, the flow accumulation network was also determined.  For the Myponga catchment, 

a disconnect appeared between the flow accumulation view and the stream network view which 

was available separately.  In the event, new DEM and flow accumulation rasters had to be 

calculated.  This has only been completed for the Myponga catchment as the discrepancy was not 

observed in the northern catchments.  Nevertheless, this should be followed up with the agency 

that manages the DEM. 

 

It became apparent during this process that the watersheds above monitoring points can be quite 

different from entire catchments.  This led to a new approach where risk was evaluated for 

watersheds only.  Others may be in a position to argue that conclusions drawn from watershed 

studies may be applied more broadly to their hosting catchments and that, therefore, the original 

approach should stand.  However, a deeper statistical analysis of the layers may suggest 

otherwise.  There are some opportunities available to do this analysis, even from the existing 

limited data set: 

 compare the watersheds and catchments for Happy Valley and Hope Valley – they should 

be substantially the same 

 compare the watersheds and catchments for Little Para and Myponga where the two 

entities differ substantially 
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 compare the two watersheds in the Anstey Hill catchment – this will provide support, or 

otherwise, for the argument that a watershed can realistically represent a catchment. 

 

The Python script to evaluate the contribution of each variable to the overall risk was developed in 

response to a specific need at the time.  However, it is anticipated that it will become a useful tool 

in its own right to monitor the effect of changes to any variable, or combinations of them, not just 

the ones generating a negative outcome.  The routine can be folded into the main Python 

application, under the Compare button, once a bug fix becomes available to overcome a problem 

with file access from the Python system. 
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7. MODELLING NUTRIENT RISK 

The design of the Python application facilitates its extension to models of pollutants other than 

pathogens.  This study applied the approach to nutrients, specifically the release of Phosphorus 

into the MLR catchments.  The results are discussed below. 

 

7.1 Results 

 

Figure 7.1: Output of the original sens7 model as applied to nutrients 
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Two results are presented here to illustrate the application of the modelling strategies developed 

for pathogens to nutrients (specifically Phosphorus).  The first (Figure 7.1 above) shows the output 

of the sens7 additive model.  As there are more nutrient terms in the model, the weights budget 

has been distributed proportionately.  The details of the variables and their weights can be seen in 

Appendix I and Appendix H respectively.  The underlying risk estimates for each land use type 

were provided by SAW in the form of a separate MLR_Landusen.xlsx spreadsheet.  This was read 

into the Python application in place of the corresponding pathogens’ spreadsheet used previously. 

The output in Figure 7.1 is similar to the analogous one for pathogens (Figure 4.4 above).  This is 

to be expected as pathogens and nutrients are afforded comparable treatment in the model (Figure 

7.2 below), i.e., each weighted term is added to (or subtracted from) the final risk value. 

 



64 

  sens7 pathogen risk surface (all risks)   sens7 nutrients risk surface (all risks) 

  

Figure 7.2: Comparison of the pathogen (L) and nutrient (R) outputs for sens7 
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The second outcome of the nutrient study (Figure 7.3 below) shows the impact of the final model 

development (sens11).  This put the focus on monitoring station watersheds with nutrient presence 

and water flows as the major influences.  Again, there is the appearance of generally reduced risk 

across the watersheds. 

 

 

Figure 7.3: The sens11 output for nutrients 
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The final output of the pathogens and nutrient studies is shown below (Figure 7.4 below).  This 

comparison clearly shows the differences in watersheds determined for the pathogen and nutrient 

views.  This is due to some monitoring points being in different positions, resulting in different 

watersheds being calculated.  The range of risk values also differs considerably between the two 

although negative values have been almost eliminated in both.  This was achieved largely by 

trading off fencing against rainfall, with the other transport variables held constant.  The final values 

for the model variables and a description of them can be found in Appendix H and Appendix I 

respectively. 
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  Pathogen sens11 (flow modifier)   Nutrients sens11 (flow modifier) 

  

Figure 7.4: Comparison of the sens11 output for pathogens (L) and nutrients (R), illustrating the difference in watersheds associated 
with the different monitoring stations 
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7.2 Discussion of the Nutrients Model 

This series of experiments investigated how well the techniques developed in the pathogens study 

could be applied to other pollutants such as nutrients, pesticides or sediments.  Surprisingly little 

effort was required for this to succeed.  First, a number of Python support functions developed for 

pathogens could be applied directly to different pollutants.  These have to do with user 

presentation, data maintenance, model execution, reporting, etc.  Second, initial attention to data 

design and naming conventions meant that the same code could be applied to each pollutant.  

Differences were external to the Python script in files holding data and the definitions relevant to 

each pollutant.  Once a pollutant choice was received from the user, the resulting parameter was 

used to guide data file choice, report layout and so on without pollutant-specific code sections 

being required. 

 

A number of limitations became apparent during the nutrients study.  The strategy has generally 

worked well.  However, the approach is predicated on the assumption that only Phosphorus would 

be modelled.  No attempt has been made to represent the more complex behaviours of Nitrogen 

here.  For the purposes of this study, it has been assumed that Phosphorus behaves similarly to 

pathogens.  Being more reactive than Nitrogen, Phosphorus is more likely to be carried off with 

other contaminants in surface water, as is Cryptosporidium.  Other behaviours of Phosphorus such 

as draining into the soil or leaching from non-biological sources remain to be investigated. 

 

One difficulty highlighted by the application of the Python model to nutrients relates to the way 

contamination monitoring is deployed.  The SAW approach for pathogens allocated one monitoring 

station (or two combined for Anstey Hill) per catchment and assumed that whatever was observed 

at the station reflected the behaviour of the whole catchment.  This may be the case but it would be 

worthwhile confirming.  The need to work with monitoring station watersheds revealed the 

possibility of variations across catchments.  As the results from more monitoring stations become 

available, watersheds of finer resolution will be able to be defined.  This may reveal variations 

across catchments that are not currently visible, at least in the current system. 

 

Another difficulty raised by the Python activity, concerns the representation of the underlying 

model.  Through the different stages of development here, as a new model was established, the 

previous one was commented out in the risksUpdate function (Appendix E).  It may not be difficult 

to adapt the behaviour of sediments to the new flow parameter.  However, the modelling of 

Nitrogen’s behaviour in different soil types may require an alternative technique for expressing the 

model in Python and in model selection following the user’s pollutant choice.  From a programming 

point of view, this is the core of the transferability problem alluded to by Oliver, DM et al. (2016) 
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and Porter et al. (2017).  It could be addressed by replacing the existing model definitions in 

risksUpdate with calls to separate functions that model each pollutant’s behaviour. 

 

It may be possible in future to use points shapefiles with latitude/longitude positions of pour points 

(or watershed outlets) to automate the manual raster pour point placement used in this project.  

This would provide a single process to generate the flow velocity layer.  This process was 

mimicked by the two automated and one manual process used here.  For the six points used in 

each of the pathogen and nutrient experiments, the latitude/longitude data provided did not align 

with the flow accumulation derived from the DEM.  This is a common problem when establishing 

pour points and is fixed with a standard procedure.  In this study, alignment is required as the flow 

accumulation is necessary for the calculation of flow rates.  It is possible, therefore, that the full 

extent of each watershed would not be established with a completely automated approach. 

 

There were other steps towards the end of the project that were carried out manually in ArcMap 

simply because there was not sufficient time to complete the Python development.  There is scope 

for considerable enhancement of the Python system to refine how models are defined and to 

automate standard data maintenance, model execution and reporting. 

Nevertheless, what has been achieved thus far significantly improves the turnaround times for data 

updates and the record-keeping required to support multiple sensitivity studies.  As measured by 

the SAW regression approach there also appears to be some improvement in the model’s 

predictive behaviour.  This is discussed further in Chapter 8. 
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8. MODEL VALIDATION 

The previous SAW work only addressed the issue of Cryptosporidium contamination of water.  

Consequently, the focus of the validation work here is also on the pathogen contamination so that 

some comparisons with the prior work can be made.  The same approach has also been applied to 

the nutrients study. 

 

8.1 Results 

SAW applied an infectivity overlay (Eq. 2.1) to the final sens6 output to reflect the fact that only a 

proportion of oocysts would be infective.  The infectivity measurement or estimate used in the 

overlay for each catchment is listed in Figure 8.1 (L).  Figure 8.1 below compares the SAW sens6 

infectivity view with that generated by Raster Calculator in ArcMap for the sens11 flow modified 

model.
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  SAW catchment infectivity (sens6dwsinfect)   Flow watershed infectivity (sens11infect) 

  

Figure 8.1: Infectivity overlay output for (L) SAW's sens6 (all risks) (Swaffer 2014, p. 40) and (R) sens11 (flow modifier) 
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Differences are clearly visible in the infectivity overlay outputs produced by the two versions in of 

the model, catchments and watersheds.  The differences can be appreciated both visually (Figure 

8.1) and numerically (Table 8.1) where the infectivity of the sens6 version displays a wider range of 

values.   

The result of applying the same infectivity overlay to the catchment (sens6) and watershed 

(sens11) scaled risk means is shown in Table 8.1.  Note that it has been necessary to adapt to 

some labelling conventions used in the original SAW report.  The values in the sens6 and sens11 

infectivity columns in Table 8.1 are plotted in Figure 8.2 and Figure 8.3 as “Scaled CRA outputs” 

on the Y-axis.  These are the infectivity overlay values described above.  In Table 8.1, they are 

derived from the adjacent columns of scaled catchment/watershed risk means by applying Eq. 2.1.  

These scaled means were calculated as described in Section 6.1.6 above. 

Table 8.1: Cryptosporidium scaled end-of-catchment water quality, catchment/watershed scaled risk means 
and infectivity derived from the sens6 (all risks) catchments and sens11 (flow modifier) watersheds models 

WTP System Scaled 
water 
quality 
data 

sens6 
scaled 
catchment 
risk means  

sens6 
infectivity 
(Scaled CRA 
outputs) 

sens11 
scaled 
watershed 
risk means 

sens11 
infectivity 
(Scaled CRA 
outputs) 

Anstey Hill 100.0 91 84 85 78 

Barossa 52.4 8 7 51 44 

Happy Valley 62.3 44 36 44 36 

Hope Valley 68.5 79 68 65 56 

Little Para 85.1 100 82 100 82 

Myponga 72.2 100 86 85 73 

SAW accumulated end-of-catchment water quality data as a presumptive count of oocysts per 10L 

(determined by an infectivity assay).  These were expressed as log10 values.  The maximum of 

these values, for Anstey Hill, was assigned the scaled value of 100.0.  The remaining water quality 

values were scaled against Anstey Hill’s (Swaffer 2014, pp. 38-9).  These values are displayed in 

Table 8.1, Figure 8.2 and Figure 8.3 as “Scaled water quality data” on the X-axis. 

The SAW regression strategy applied a least squares regression calculation to the scaled sens6 

Zonal Statistics means and to the infectivity version.  The raw risk surface for sens6 produced an 

R2 value of 0.60 and the corresponding value for sens6infect was 0.65.  Assuming a linear model, 

the least squares regression analysis of the infectivity numbers revealed (Figure 8.2): 
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Figure 8.2: SAW scaled sens6 (all risks) model infectivity risk output (Scaled CRA outputs) compared with 
observed end-of-catchment pathogen concentrations (Scaled water quality data) (Swaffer 2014, p. 41) (P = 
0.05) 

The corresponding calculation for the sens11 (flow modifier) infectivity values produced (Figure 

8.3): 

 

Figure 8.3: Scaled sens11 (flow modifier) model infectivity risk output (Scaled CRA outputs) compared with 
end-of-watershed pathogen concentrations (Scaled water quality data) 

Finally, the sens11 (flow modifier) data for nutrients is presented below (Figure 8.4): 
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Figure 8.4: Scaled sens11 (flow modifier) model risk output (Scaled CRA outputs) compared with end-of-
watershed flow-weighted nutrients (Total Phosphorus Kg/ML/yr) 

The trend lines above are described by the following corresponding equations: 

sens6 (all risks) pathogens model: 

sens6infectivity risk = 1.54 * (Pathogen scaled water quality data) - 53.0  (Eq. 8.1) 

 sens11 (flow modifier) pathogens model: 

  sen11infectivity risk = 0.94 * (Pathogen scaled water quality data) - 7.6 (Eq. 8.2) 

 sens11 (flow modifier) nutrients model: 

  sen11Phosphorus risk = 1.12 * (Phosphorus scaled water quality data) - 6.0 (Eq. 8.3) 

The sens11 versions of the model display Y-intercepts closer to the expected mean of zero than 

the original sens6 version. 

A summary of the regression studies can be found below (Table 8.2).  It reveals a steady decline in 

the R2 values as the pathogen model is refined.  The improvements in the last variation reflect a 

review of the underlying risk estimate for the tbuffer variable and the weights of tfence and train.  

The intent of the review was to reduce the generation of negative risk outcomes while avoiding as 

much as possible modifications to the original SAW settings. 
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Table 8.2: Summary R2 values for each development of the model 

Pollutant sens6 
all 
risks 

sens7 
all 
risks 

sens8 
exclude 
zero 
source 

sens9 
water- 
sheds 

sens10 
flow 

sens11 
flow 
modifier 

Pathogens 0.60 0.60 0.58 0.54 0.49 0.61 

Pathogen 
infectivity 

0.65     0.70 

Nutrients  0.63    0.78 

 

 

8.2 Discussion of model validation 

The practical approach to performing regression analysis has been to extract the Zonal Statistics 

means for each area (catchment or watershed) and then manually copy them to a spreadsheet for 

the regression computation.  This is tedious and prone to error.  It would be a simple matter to 

capture the statistical means within the Python application and perform the regression calculation 

there.  This could include plotting as required. 

 

The model has gained some more realistic characteristics during its development from the sum of 

linear terms (sens6/7) to the interaction of three groups of these terms (sens11).  In this latter form, 

it appears to have gained in its predictive capability when applied to nutrients.  This is a qualified 

position.  In this context, “nutrients” relates only to that behaviour of Phosphorus that participates in 

the biological activities being modelled here. 

 

More formally, there remain significant aspects of the model to be tested to establish if it is linear, 

or that this is a reasonable assumption (Hastie 2009, p. 236; Rogerson 2015): 

 Are the predictive variables independent of each other or is a degree of collinearity being 

exhibited? 

 Do the errors have a normal distribution about the regression line? 

 Is the mean of the errors zero and the variance constant (i.e., homoscedasticity is 

preserved)? 

 Do any of the variables express spatial autocorrelation? 

Variables have been scaled against their own estimated numerical maximum.  The variability in 

spatial scale between variables should be addressed.  These, and other attributes, require an 

evaluation that is beyond the scope of this project.  They have a practical application, however.  

For example, it seems reasonable to expect that high intensity agricultural activity is correlated with 

rainfall.  Perhaps, also, there is a degree of autocorrelation within the industries associated with a 
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source variable because of the existence of supporting culture and infrastructure amongst property 

owners. 

 

Finally, consideration should be given to expanding the number of observation points available to 

this modelling effort.  This would be supported by the new strategy to determine the watersheds 

associated with monitoring stations.  It would open up the study to the examination of non-linear 

behaviours in higher order models and to the application of automated regression analyses.   
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9. DISCUSSION AND CONCLUSIONS 

The work described here is a response to the Water Services Association of Australia’s (WSAA 

2015, pp. 13-9) Tier 1 (mandatory) requirements for assessing a drinking water supply system.  In 

this instance, SA Water carried out sanitary surveys to identify pathogen (i.e., Cryptosporidium) 

sources and intensity.  The microbial indicator assessment was derived from measurements of 

Cryptosporidium at end-of-catchment monitoring stations above each of the six water treatment 

plants in the MLR.  The vulnerability assessment task was addressed by developing a model to 

assess the risks of Cryptosporidium contamination.  This model was established as a Raster 

Calculation in ArcMap.  It was accompanied by an extensive collection of data in the form of 

spreadsheets, shape files and raster files.  Two unpublished reports provided supporting material 

from the literature to document the sources of the data and, with the results of the sanitary surveys, 

to justify settings for stocking and infection rates, etc.  These reports also outlined the workflow for 

generating a contamination risk surface for the MLR catchments and for validating this work.  This 

substantial body of work formed the baseline of the current project. 

 

9.1 Limitations of the previous model 

At the level of development it had reached, the previous model was constrained in a number of 

ways: 

 the terms were always added (or subtracted), leading to a value for risk derived from the 

transport terms even if there were no pathogens present 

 flowing water (slope was the proxy for this) should be required for the transport of 

pathogens.  In the absence of water flow, a risk was still generated  

 substantial negative values for risk could be generated by the model due to the impact of 

the buffer and fencing variables 

 the risk value of each variable and the weighting applied to it were fixed during the 

execution of the model 

 the GIS package was cumbersome to use when sensitivity analyses were performed  

 there was no built-in support for record keeping during a series of experiments 

 only the risk from pathogens was being modelled 

 the DEM for the Myponga catchment contained errors (it is not clear if the slope term used 

in the sens6 and earlier versions was derived from this DEM) 

 

The establishment of the pathogens model benefitted from the exercise of considerable 

professional judgement for the estimation of variable risks and weights.  This enabled the 

development in ArcMap of a comprehensive pathogen risk model for water catchments.  However, 

subsequent tuning of such a model presented difficulties.  For example, a problem with conducting 

a what-if study manually is that a local minimum or maximum may distract the focus of the user.  
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This could lead to the acceptance of a model that has less predictive power than might otherwise 

be the case. 

 

A large GIS system provides all the tools needed to develop a modelling system.  However, when 

used for data maintenance, when carrying out sensitivity studies or in comparing the behaviours of 

different pollutants, those same tools can become unwieldy and intrude on the workflow. 

 

9.2 Responses to limitations of the previous model 

This project has addressed the concerns above with the development of a different implementation 

of the workflow in Python that hides the idiosyncrasies of the GIS package.  The goal has been to 

provide a simple user interface and familiar tools to support data maintenance, sensitivity studies 

and reporting.  This goal has been achieved.  Further, enhancements to the underlying model have 

also been facilitated by the Python system. 

 

The output of this work has been a group of Python scripts that largely implement the original 

workflow and add the tools described above.  Some new functionality still runs under ArcGIS as 

there was insufficient time to complete the Python development.  The main outcomes of the project 

include the ability to carry out the basic workflow more conveniently, to gain new insights into the 

data and to extend the model to deal with new pollutants and behaviours. 

 

Most of the SAW workflow has been reduced to simple point and click operations that enable a 

user to: 

 incorporate updated data into shapefiles 

 output new model variable raster files from the shapefiles 

 generate new MLR risk surfaces to describe the distribution of the risk of pathogen 

contamination 

 create reports 

Standard features of spreadsheets have been exploited to support record-keeping during 

sensitivity studies.  Some new analysis capabilities have also been provided in the form of a 

fencing risk mitigation guide.  This technique could be applied more generally to address some of 

the recommendations for improvement suggested in Swaffer (2014, pp. 55-6).  These 

recommendations included identifying the principal contributor to the risk at a location, e.g., land 

use, irrigation, distance to watercourse, etc. 

 

A Python script was developed to elaborate the contribution of each model variable to the overall 

risk.  This has led to a better understanding of the behaviour of all the variables in relation to each 

other.  The transport variables appear to exert a greater influence on the output than might have 

been expected.  In particular, the buffers term appears to predominate. 
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In this project, the negative outcomes generated by the mitigation terms buffers and, to a lesser 

extent fencing, were addressed by reducing their risk value and weight respectively.  Swaffer 

(2014, p. 54) proposed to avoid the negative risk results by dividing by the mitigation terms rather 

than subtracting them.  This would not work for the fencing variable as it would lead to a divide-by-

zero error.  The effect of dividing by the buffers value has not been investigated here but see the 

comments below. 

 

A sequence of developments has been undertaken on the model itself to improve its 

representation of the natural systems: 

 only cells with non-zero pathogen (or nutrients) values contribute to the final risk 

 only cells that are members of the contributing area above monitoring stations (called 

watersheds here) are included in the risk calculation, leading to a more refined measure of 

risk than averaging across whole catchments 

 the slope term has been replaced by a water flow rate that is influenced by upstream flows  

 errors in the DEM were discovered and corrected 

 the first steps have been taken to generalise this modelling system so it can be applied to 

other pollutants apart from pathogens 

 

Fundamentally, pathogens (or Phosphorus in the nutrients version) must be present and water 

must be flowing for any given cell to contribute to the final risk outcome.  Expression has been 

given to this behaviour by multiplying the source group of variables by the transport group and the 

flow rate term.  However, this initial application of a flow variable in the model will benefit from 

further refinement.  While it introduces a useful geographical weighting to the behaviour of water, it 

is still a static term.  There are situations, e.g., in reservoirs, where a static value of zero is not 

always useful.  In fact, variable detention times and multiple extraction points (horizontal and 

vertical) would result in a variety of risk values for a given reservoir (NH&MRC 2011, pp. 33-4).  

The problem of static values is discussed further below. 

 

Superficially, the suggestion that the accumulating risk be divided by buffers appears to offer a 

similar benefit to the use of flow above.  However, there is a significant difference.  A cell’s flow 

rate risk varies spatially across a watershed depending on the contributing area above it.  

Conversely, the buffers term is assigned an average risk mitigation amount across whole 

catchments (or two or three subdivisions of them).  By analogy with the flow determination, an 

understanding of the hierarchy of contributing secondary storages on the stream network may 

accommodate better the use of a buffer divisor.  As oocysts are transported down through the 

stream network, the impedance contributed by secondary storages could be accumulated.   
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Infectivity is another term that, like buffers, has been assigned a catchment-wide value.  In this 

case, some values have been derived from measurements, while others are reasonable estimates 

(Swaffer 2014, pp. 40-1).  On the other hand, rainfall varies generally across the MLR.  Still other 

terms vary in relation to a feature such as a reservoir or a stream.  Finally, fencing and irrigation 

are given values specific to a local precinct. 

 

In summary, the current model (excluding the new flows term) provides for a spatial disposition that 

fixes values for each cell.  The next development of the model could consider the impact of 

geographical weighting, allowing the risk contribution of a cell to be influenced by the values of 

others around it. 

 

9.3 Further work 

The principal recommendation for further work is that a deeper understanding of the data be 

sought.  In particular, where are spatial cross-correlation and autocorrelation expressed and how 

can these be accommodated in the model?  This effort would be aided by a more elaborate data 

set containing sufficient observations to provide both training and testing data sets.  Given the new 

capability of working with watersheds associated with monitoring stations, the smaller sub-

catchments studied in Swaffer et al. (2018) might prove useful here.  

 

The availability of a larger data set would support the application of one or more automated 

approaches to regression, parameter estimation and selection such as MARS (Multivariate 

Adaptive Regression Splines) (Friedman 1991; Hastie 2009, pp. 321-7; Milborrow 2019; Rudy 

2013) or CART (Classification and Regression Tree) (Wilkes et al. 2011).  These strategies would 

be expected to lead to a more parsimonious model. 

 

This leads to the question of what variables should be available to the regression analysis.  The 

current study introduced a term to model the behaviour of water.  It may be appropriate to 

introduce another factor that alters that behaviour, e.g., some land cover types would be expected 

to retard water flow, leading to a reduction in oocyte infectivity.  Similarly, in addition to pollutants 

having sources, they could also have behaviours attributed to them that could be modified.  For 

example, Phosphorus flow can be affected by adsorption, plant uptake or leaching from the soil.   

 

The existing model already includes secondary storages (buffers) to retard the flow of 

Cryptosporidium.  It currently deducts buffer risks from the total risk.  Buffers might instead work as 

a modifier of the source group although it would not be directly analogous to flow.  Flow is a rate 

modification whereas buffers apply a delay in the movement of Cryptosporidium towards the 

primary storage.  This introduces another concept that is missing from the existing system, i.e., 

time. 
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The current model avoids having to deal with time by expressing values in terms of, e.g., annual or 

flow-rated averages.  However, the natural systems being modelled may vary continuously over 

time or they may exhibit discontinuous behaviours.  For example, watercourses cease flowing in 

the hotter months and will not resume their flow for some time after the first rains of the season.   

Muirhead, Elliott and Monaghan (2011) note that sporadic inputs to streams do not affect median 

concentration values (such as are used in the SAW model) but they do have a large effect on 95 

percentile values.  Roser and Ashbolt (2007) address this problem by proposing a qualitative 

microbial risk assessment that incorporates a consideration of run-off conditions.  Further, the 

sources of pathogens may also behave episodically.  Peaks in human health risk appear to be 

aligned with the breeding cycles of, especially, dairy cattle, rather than peak water flows (Swaffer 

et al. 2018).  These observations suggest that an event-driven model (in this case, based on a 

Python queue) would have merit.   

 

The risk values of each of the variables and their corresponding weights are currently fixed during 

the execution of the model.  These values could be sampled from distributions characteristic of 

each variable.  With time available to the model, this sampling could reflect the fact that the 

behaviour of variables changes over time, e.g.: 

 ambient temperature changes over a year that are likely to affect the viability of 

Cryptosporidium oocysts (King et al. 2005) 

 rainfall variations over time that can be varied by sampling from a distribution 

 Cryptosporidium oocysts themselves may exhibit a distribution in their viability rates at the 

time of their dispersal (Jenkins et al. 1997).   

 

It is a relatively simple modification to the Python script to accommodate data and decision-making 

regarding different pollutants.  It is less simple to express models that represent different pollutant 

behaviours.  The behaviour of each pollutant could be captured in its own Python module that 

would be activated according to the user’s choice.  For example, it has been assumed for this 

study that the transport of pathogens or Phosphorus relies on surface water movements only.  If 

Nitrogen is to be considered, aspects of the sub-surface strata relevant to its transport would 

require description in the model.  This task is best defined inside the nutrients’ own class definition.  

The corresponding pollutant object would be created at run time according to the user’s choice and 

without impacting on the main script. 

 

Such modularisation doesn’t just provide for distinguishing between pollutant groups.  Within a 

group, the behaviours of the pollutants could also be modelled.  So too could a variety of 

preventative or mitigation measures and barrier management strategies (NH&MRC 2011, pp. 

1120-9). 



82 

 

The Python setting creates a rich environment for further development of this model in ways that 

might not be possible in the native GIS environment. 

 

9.4 Conclusions 

ArcGIS provides interfaces to a number of programming languages, including Python.  It is now 

possible to implement, as free-standing Python applications, model systems that were previously 

wholly contained in ArcGIS.  Any such new system is easy to use for maintenance activities and 

sensitivity studies.  It also provides new insights into how the data behave, which in turn can feed 

back into the design of the model. 

 

What has emerged from this project is the understanding that, in addition to generic transport 

variables, there are for each pollutant: 

 an accompanying model 

 source/transport variables 

 associated behaviours. 

 
Python’s support for modules, functions and classes would be well suited to representing these 

entities.  The existing main line code would retain its roles in user interaction, data maintenance 

and reporting while the details of each pollutant’s data requirements and behaviours could be 

hidden inside its own class definition.   

 

The information-hiding capabilities of Python present opportunities for enhancement of the model 

in a modular fashion.  It provides for the expression of spatial attributes and behaviours that were 

not formerly part of the model.  This will lead to the creation of a model that is generalisable across 

pollutant domains and contribute to a deeper understanding of the risks of water contamination in 

the Mount Lofty Ranges. 
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APPENDICES 

Appendix A: SA Water Plan - GIS-Enabled Water Quality Risk Assessment in a Drinking 

Water Catchment 

 

Background 

The project will be conducted by Ian McDonald in part fulfilment of his candidature for the degree 

of Master in GIS.  The Ian will be supervised by Prof Howard Fallowfield, College of Science and 

Engineering with the assistance of ….. SAW will provide in kind support through access to 

facilities, staff and relevant databases.  

Project outline 

I. Please note: 

 number of catchments (1 or more general) can be adjusted, but the desire is to have Ian 

work on the total of the Mount Lofty Ranges Watershed, as our current CRA is based on it 

(see attached general info and map; still relevant, but a bit old) 

  Focus on risk assessment can be adjusted according to the speed and desire the student 

wants to undertake one or different risk assessments, using the existing (GIS-based) 

protocol, e.g., (in priority order): 

o Review and revise / update the current pathogen CRA 

o Conduct the CRA for nutrients (TP, TN) and sediments (TSS) export 

o Conduct the CRA for pesticides 

 

II. Desired outcomes/outputs: 

a. CRA outputs similar to the attached 

b. Report (see below for suggestion of content) 

c. Hand over to SAW of all literature, files, modification of GIS configurations (including 

new python scripts) in useable format  

 

III. Steps would include: 

1. Familiarisation with SA Water’s GIS-based protocol/method currently used for our existing 

pathogen Catchment Risk Assessment (CRA) and progress made to date 

a. Review the data which supports the quantification of pathogen risk by various land 

use categories.  

b. Update the data with new literature (some good papers have come out recently on 

oocyst shedding in animals which should be incorporated) 
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2. Convert the step by step procedure into Python script 

3. Inform/update/modify existing (pathogen) CRA in GIS for new constituents (e.g., nutrients, 

sediments),  

a. ‘Parameterisation’ of nutrient exports from various land uses/ land management 

types via 

i. Targeted literature review and building a literature ‘library’ from which to 

draw data used to populate the nutrient export from various land use types 

(SAW also has some land use/nutrient information available) 

ii. Build/adapt a set of shapefiles used to estimate nutrient export. Updating 

GIS input layers (e.g., through populating a set of excel tables which will be 

used to populate attributes of shapefiles)  

iii. Selected ground truthing in the field might be needed 

b. Combine the source shapefiles into a single output, ensuring to undertake a 

sensitivity analyses  

c. Verify the output using end of catchment data (i.e. model outputs, composite 

sampler data etc  

d. Undertake or recommend verification (water quality monitoring, if significant data 

gaps are present in the verification data sources 

4. Document the step by step instructions for undertaking the risk assessment, from the 

creation of shapefiles from excel tables, all the way through to the output rasters.  

Report could either be focused on just nutrients, or bring both the pathogen and nutrient CRA 
conceptualisation, literature review, methodology, outputs, and discussion of value into a thesis 
format 
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Appendix B: SA Water Catchment Risk Assessment Workflow 

 

 

(Swaffer 2014, p. 50, used with permission)
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Appendix C: SAW Process Map for ArcMap 

 

 (SA Water Corporation 2014, p. 19, used with permission) 
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Appendix D:  Variables used in the SAW pathogens risk model (SA Water Corporation 2014, 

pp. 6-7) and (Swaffer 2014, pp. 21-30) (renamed for this project) 

# Source raster layer Layer name Comment 

1 SA Water mlrsaw (tsaw) Used to delineate drinking water catchments from non-drinking 
water catchments (such as Finniss River, Hindmarsh River etc) 

2 Water Treatment 
Systems 

DWC_SAW Used to delineate WTP systems 

3 Subcatchments MLR_Subcatchment Used to delineate subcatchments across the Mount Lofty 
Ranges (SDEDBA.MLRSubCatchment) 

4 Landuse - native 
vegetation 

pathnatveg 

(pnatveg) 

Pathogen risk from native vegetation, based on density and 
composition of feral animals, manure production, oocyst 
concentration and infected animal prevalence 
(Landuse2008_ALUMv6) 

5 Landuse - residential 
areas 

pathresid (presid) Pathogen risk from residential zones, based on dwelling 
density (Landuse2008_ALUMv6) 

6 Landuse - grazing pathgraz (pgraz) Pathogen risk from grazing areas, based on stock type and 
stocking rate, manure production, oocyst concentration and 
infected animal prevalence (Landuse2008_ALUMv6) 

7 Landuse - intensive 
animal production 

pathintapr 

(pintapr) 

Pathogen risk from intensive animal production, based on stock 
type and stocking rate, manure production, oocyst 
concentration and infected animal prevalence 
(Landuse2008_ALUMv6) 

8 Landuse - irrigated 
pasture 

pathirrpas 

(pirrpas) 

Pathogen risk from irrigated pasture (assumed to be dairy 
farms) and based on stocking rate, manure production, oocyst 
concentration and infected animal prevalence 
(Landuse2008_ALUMv6) 

9 Landuse - waste pathwaste 

(pwaste) 

Pathogen risk from sewerage treatment plants (landfill 
removed) based on maximum treatment capacity (ML/day) 
(Landuse2008_ALUMv6) 

10 Wastewater failure pathwwfail 

(pwwfail) 

Pathogen failure rate from sewerage infrastructure. 
Unsatisfactory septic tanks or upgrade pending status 
presented the highest failure rate, council-operated sewer 
networks presented a moderate rate, with SA Water operated 
systems the lowest rate 

11 Reservoir pathresdist (tresdist) Proximity to reservoir. Risk is greater with closer proximity to 
the water body (SDEBA.Reservoir) 

12 Stream pathstrdist (tstrdist) Proximity to stream. Risk is greater with closer proximity to 
stream (SDEBA.MLROrderedStreams) 

13 Rain mlrrain (train) Rainfall. Risk is greater in higher rainfall areas 
(MLRAnnualRainfall) 

14 Slope mlrslope (tslope) Slope. Risk is greater in areas with steeper slopes 

15 Soils – gully erosion pathgulero (tgulero) Soils. Risk is greater on highly erodible soils 
(SDEBA.SoilsSA2007) 

16 Soils – water erosion pathwatero 
(twatero) 

Soils. Risk is greater on highly erodible soils 
(SDEBA.SoilsSA2007) 

17 Irrigation pathirrigate 
(tirrigate) 

An annual irrigation volume (ML/ha) was assigned to the land 
parcel based on the likely crop type. Risk is greater on parcels 
with higher irrigation requirements (Landuse2008_ALUMv6) 

18 Fencing pathfencing (tfence) Pathogen risk is lowered by the presence of a watercourse 
fence.  

19 Reservoir dilution mlrbuffer (tbuffer) Pathogen risk is lowered by the presence of upstream 
storages. 
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Appendix E: Python script of main application 

 
import arcpy 
from arcpy import env 
import os 
from Tkinter import * 
import datetime 
import ScrolledText as scrolledtext 
from arcpy.sa import * 
import re 
from shutil import copyfile 
import numpy as np 
import matplotlib.pyplot as plt 
import xlrd 
 
MLRDIR = '<User directory>' 
VERLEN = 3 
DEBUG = True 
 
arcpy.CheckOutExtension("Spatial") 
arcpy.env.extent = "MAXOF" 
arcpy.env.overwriteOutput = True 
arcpy.env.qualifiedFieldNames = False 
arcpy.env.cellSize = "FinalRaster\mlrcra" 
arcpy.env.workspace = MLRDIR 
arcpy.env.scratchWorkspace = MLRDIR 
 
srcSpreadsheetsDir = MLRDIR + "SourceSpreadsheets\\" 
srcShapesDir = MLRDIR + "SourceShapefiles\\" 
shapesDir = MLRDIR + "Shapes\\" 
rastersDir = MLRDIR + "RastersWS\\" 
reportsDir = MLRDIR + "Reports\\" 
risksDir = MLRDIR + "Risks\\" 
mapTemplatesDir = MLRDIR + "MapTemplates\\" 
 
# Read raster names for each shapefile from layers text file and store in shapeVars dictionary 
shapeVars = {} 
with open(MLRDIR + '/layersListWS.txt','r') as input_file: 
    for line in input_file: 
        shapeName = line.split(':')[0] 
        rasters = line.split(':')[1].strip('\n') 
        rastersTuple = tuple(rasters.split(',')) 
        shapeVars[shapeName] = rastersTuple 
input_file.close() 
print "shapeVars =", shapeVars, '\n' 
 
OPTIONS = sorted(shapeVars.keys()) 
if DEBUG: 
    print "OPTIONS = ", OPTIONS 
 
root = Tk() 
 
rasSrc = StringVar(root) 
rasSrc.set("Select source data") 
pSrc = StringVar()        # pollutant source 
pSrc.set("p")             # i.e., default choice is Pathogens 
dwcVar = StringVar(root)  # set default as for rasSrc? 
dwcVar.set("Select catchment") 
dwcDict = {} 
dwcChoices = [] 
refNum = StringVar(root)      # Reference number for the risk map legend 
 
# Create the containers for the GUI 
frame0 = Frame(root, width=440, height=45, pady=3) 
frame1 = Frame(root, width=440, height=60, pady=3) 
frame2 = Frame(root, width=400, height=40, pady=3) 
frame3 = Frame(root, width=440, height=60, pady=3) 
frame4 = Frame(root, width=440, height=40, pady=3) 
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frame5 = Frame(root, width=440, height=15, pady=3) 
 
# lay out the containers 
root.grid_rowconfigure(1, weight=1) 
root.grid_columnconfigure(0, weight=1) 
frame0.grid(row=0)                       # pollution source radio buttons 
frame1.grid(row=1)                       # shapefile dropdowns & shape/raster buttons 
frame2.grid(row=2)                       # Reporting buttons 
frame3.grid(row=3)                       # Analyse buttons 
frame4.grid(row=4)                       # message window 
frame5.grid(row=5)                       # Quit button 
 
# Message window needs to be global to be accessible from different functions 
msgWin = scrolledtext.ScrolledText(frame4, width = 50, height = 4) 
 
class BusyManager: 
    # Adapted from http://effbot.org/zone/tkinter-busy.htm 
    # Viewed on 22 August 2018 
 
    def __init__(self, widget): 
        if DEBUG: 
            print "Entering BusyManager._init_" 
        self.toplevel = widget.winfo_toplevel() 
        self.widgets = {} 
 
    def busy(self, widget=None): 
        if DEBUG: 
            print "Entering BusyManager.busy" 
 
        # attach busy cursor to toplevel, plus all windows 
        # that define their own cursor. 
 
        if widget is None: 
            w = self.toplevel # myself 
        else: 
            w = widget 
 
        if not self.widgets.has_key(str(w)): 
            try: 
                # attach cursor to this widget 
                cursor = w.cget("cursor") 
                if cursor != "watch": 
                    self.widgets[str(w)] = (w, cursor) 
                    w.config(cursor = "watch") 
            except TclError: 
                pass 
        for w in w.children.values(): 
             self.busy(w) 
 
    def notbusy(self): 
        if DEBUG: 
            print "Entering BusyManager.notbusy" 
        # restore cursors 
        for w, cursor in self.widgets.values(): 
            try: 
                w.config(cursor=cursor) 
            except TclError: 
                pass 
        self.widgets = {} 
 
def purge(dir, pattern): 
    # From: https://stackoverflow.com/questions/1548704/delete-multiple-files-matching-a-pattern/38189275 
    # Accessed 13/03/2019 
    if DEBUG: 
        print "Entering purge" 
    for f in os.listdir(dir): 
        if re.search(pattern, f) and (f[-5:] != ".lock"): 
            os.remove(os.path.join(dir, f)) 
 
def printSpreadSheetFieldNames(fName): 
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    if DEBUG: 
        print "Entering printSpreadSheetFieldNames" 
        for i in range(0, len(fName)): 
            print fName[i], 
        print "\n" 
 
def printSpreadSheetData(spreadSheet): 
    if DEBUG: 
        print "Entering printSpreadSheetData" 
    with arcpy.da.SearchCursor(spreadSheet, '*') as cursor: 
        for row in cursor: 
            for i in range(0,len(row)): 
                print row[i], 
            print "\n", 
    del cursor 
 
def getCurrentVerName(fList, fName): 
    if DEBUG: 
        print "\nEntering getCurrentVerName with fName =", fName 
    listOfFiles = [f for f in fList if fName in f] 
    if len(listOfFiles) > 0: 
        latestVer = listOfFiles[-1] 
    else: 
        latestVer = "" 
    return latestVer 
 
def genNewVerName(fList, fName): 
    if DEBUG: 
        print "\nEntering genNewVerName with:" 
        print "fName =", fName 
#        print " flist =",  flist 
    latestVer = getCurrentVerName(fList, fName) 
    if latestVer != "": 
        oldFn, oldFtype = os.path.splitext(latestVer) 
        oldVerNum = oldFn[-VERLEN:] 
        newVerNum = str(int(oldVerNum) + 1).zfill(VERLEN) 
        newVer = oldFn.replace(oldVerNum, newVerNum) 
    else: 
        newVer = fName + str(0).zfill(VERLEN) 
    return newVer 
 
def readModel(): 
    if DEBUG: 
        print "Entering readModel" 
    pS = pSrc.get() 
    if pS == 't': 
        pS == 'p'  # Not dealing with transport variables as separate task yet 
    inSpreadSheet = MLRDIR + pS + "modelflows.xlsx" 
    rcDict = {} 
 
    # Get first sheet of spreadsheet - this is the most recent model 
    workbook = xlrd.open_workbook(inSpreadSheet, on_demand=True) 
    sheetNames = workbook.sheet_names() 
    sheetName = sheetNames[0] 
    workbook.release_resources() 
 
    inMemorySheet = "in_memory" + "\\" + "model" 
 
    # Read model spreadsheet into in-memory table 
    arcpy.Delete_management(inMemorySheet) 
    arcpy.ExcelToTable_conversion(inSpreadSheet, inMemorySheet, sheetName) 
 
    # Build dictionary of model layer name (the key) and corresponding coefficients and operators 
    with arcpy.da.SearchCursor(inMemorySheet, '*') as cursor: 
        for row in cursor:                          # {rasname: [weight, operator, rasSum]} 
            rcDict[row[1]] = [row[2], row[3], 0.0]  # rasSum will store total contribution of 
    del cursor                                      # each raster to total risk for later plotting 
    arcpy.Delete_management(inMemorySheet) 
    refNum.set(rcDict.get('Reference', "None")[1])  # Extract Reference Number for Risk map legend 
    del rcDict['Reference']                         # and delete it from the model dictionary 
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    if DEBUG: 
        print "leaving readModel with rcDict =", rcDict 
    return rcDict 
 
def msgOut(txt): 
    if DEBUG: 
        print "Entering msgOut with txt =", txt 
    msgWin.insert(END, txt + "\n") 
    msgWin.see(END) 
    msgWin.update() 
 
def shapesUpdate(): 
    if DEBUG: 
        print "Entering shapesUpdate" 
    inShapesDir = srcShapesDir 
    outShapesDir = shapesDir 
    arcpy.env.workspace = shapesDir 
    arcpy.env.scratchWorkspace = shapesDir 
#    outRastersDir = rastersDir 
    inSpreadSheetsDir = srcSpreadsheetsDir 
    inSheetName = "AttributeTable" 
    inMemorySheet = "in_memory" + "\\" + "attribTable" 
    inShapeName = rasSrc.get() 
    inSpreadSheet = inShapeName + ".xlsx" 
    outShapeName = genNewVerName(arcpy.ListFiles("*.shp"), inShapeName + 'v') 
    print "shapefiles list =", arcpy.ListFiles("*.shp") 
    print "New shapefile name =", outShapeName 
 
    manager = BusyManager(root) 
    manager.busy() 
 
    # read spreadsheet into memory 
    # https://gis.stackexchange.com/questions/138043/using-arcpy-to-read-from-excel-spreadsheet-to-python-dictionary 
    # Accessed 4/6/2018 
    arcpy.Delete_management(inMemorySheet) 
    arcpy.ExcelToTable_conversion(inSpreadSheetsDir + inSpreadSheet, inMemorySheet, inSheetName) 
 
    # Get field names from spreadsheet (not OID) 
    dsc = arcpy.Describe(inMemorySheet) 
    fields = dsc.fields 
    fieldnames = [field.name for field in fields if field.name != dsc.OIDFieldName] 
    # uncomment the following lines to check the spreadsheet headings and contents 
    #printSpreadSheetData(inMemorySheet) 
    #printSpreadSheetFieldNames(fieldnames) 
 
    # Copy source shapefile to new version of shapefile 
    arcpy.FeatureClassToFeatureClass_conversion(inShapesDir + inShapeName + ".shp", outShapesDir, outShapeName 
+ ".shp") 
    msgOut("Updating copy of shapefile: " + outShapeName) 
 
    # Copy spreadsheet rows over new shapefile attribute table rows 
    rowsCur = arcpy.UpdateCursor(outShapesDir + "\\" + outShapeName + ".shp") 
    rowsUpd = arcpy.SearchCursor(inMemorySheet) 
    rowCur = rowsCur.next() 
    rowUpd = rowsUpd.next() 
    j = 0 
    while rowCur: 
        for i in range (2, len(fieldnames)): 
            # Note: FID and shape can't be edited.  Hence start from column 2 
            #print "fieldnames[" + str(i) + "] =", fieldnames[i] + ":" 
            #print "  existing value =", rowCur.getValue(fieldnames[i]) 
            #print "  new value      =", rowUpd.getValue(fieldnames[i]) 
            rowCur.setValue(fieldnames[i], rowUpd.getValue(fieldnames[i])) 
            rowsCur.updateRow(rowCur) 
        rowCur = rowsCur.next() 
        rowUpd = rowsUpd.next() 
        j = j + 1 
        if j%1000 == 0: 
            msgOut("Table lines processed: " + str(j)) 
    del rowsCur 
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    del rowsUpd 
    arcpy.Delete_management(inMemorySheet) 
 
    arcpy.env.workspace = MLRDIR 
    arcpy.env.scratchWorkspace = MLRDIR 
    msgOut("End of shapes update processing") 
    manager.notbusy() 
 
def rastersUpdate(): 
    if DEBUG: 
        print "Entering rastersUpdate" 
    inShapeName = rasSrc.get()       # i.e., the shapefile that holds the field(s) from which to generate raster(s) 
    print "Source shapefile for raster generation =", inShapeName 
    manager = BusyManager(root) 
    manager.busy() 
    msgOut("Beginning rasters update processing") 
    arcpy.env.workspace = shapesDir 
    arcpy.env.scratchWorkspace = shapesDir 
    currentShapeVer = getCurrentVerName(arcpy.ListFiles("*.shp"), inShapeName + 'v') 
    srcShape = shapesDir + currentShapeVer 
    arcpy.env.workspace = rastersDir 
    arcpy.env.scratchWorkspace = rastersDir 
 
    # Select rasters for the pollutant source (pSrc): 
    # p = pathogen, n = nutrient, c = pesticide, s = sediment, t = transport 
    pSrcRasters = [] 
    pS = pSrc.get() 
    for r in shapeVars[inShapeName]:  # inShapeName is the key into the shapeVars dictionary built from layersList.txt 
        if r[0] == pS:                # r is the raster name derived from the field name in the shapeVars entry 
            pSrcRasters.append(r) 
    fullRastersList = arcpy.ListRasters('*') 
    for nR in pSrcRasters: 
        msgOut("Processing raster: " + nR) 
        outRaster = rastersDir + genNewVerName(fullRastersList, nR + 'v') 
        arcpy.FeatureToRaster_conversion(srcShape, nR, outRaster)  # add new raster as next version of existing one 
 
    arcpy.env.workspace = MLRDIR 
    arcpy.env.scratchWorkspace = MLRDIR 
    msgOut("End of rasters update processing") 
    manager.notbusy() 
 
def risksUpdate():        # Needs ArcGIS v10.6.1 
    if DEBUG: 
        print "Entering risksUpdate" 
 
    def coeff(lyr): 
        if DEBUG: 
            print "Entering coeff with lyr =", lyr 
        # Note: Only dealing with the +/- operator.  Assuming all coefficients will be multiplied 
        if rcDict[lyr][1] == '+': 
            c = float(rcDict[lyr][0]) 
        else: 
            c = -float(rcDict[lyr][0]) 
        return c 
 
    manager = BusyManager(root) 
    manager.busy() 
    msgOut("Beginning risks update processing") 
    inRasDir = rastersDir 
    outRasDir = risksDir 
    rcDict = readModel() 
 
    # Apply raster calculations 
    msgOut("Beginning raster processing.") 
    msgOut("It will take a few minutes\nto process the following rasters:") 
    arcpy.env.workspace = rastersDir 
    arcpy.env.scratchWorkspace = rastersDir 
    pollutantSrc = pSrc.get() 
    fullRastersList = arcpy.ListRasters('*') 
    pollutantSrcSubset = [r for r in fullRastersList if r[0] == pollutantSrc or (r[0] == 't')] 
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    print "pollutantSrcSubset =", pollutantSrcSubset 
 
    # Build lists of the current transport and source raster names 
    # Set aside saw and flows names 
    tRasters = [] 
    sRasters = [] 
    for rK in rcDict.keys(): 
        print "\nrK =", rK 
        if 'tsaw' in rK: 
            tsawName = getCurrentVerName(pollutantSrcSubset, rK) 
        elif 'tflows' in rK: 
            tflowsName = getCurrentVerName(pollutantSrcSubset, rK) 
        elif rK[0] == 't': 
            tRasters.append(getCurrentVerName(pollutantSrcSubset, rK)) 
        else: 
            sRasters.append(getCurrentVerName(pollutantSrcSubset, rK)) 
    print "tsawName =", tsawName                   # Put messages out here 
    print "tflowsName =", tflowsName 
    print "tRasters =", tRasters 
    print "sRasters =", sRasters 
    msgOut(tflowsName) 
    for t in tRasters: 
        msgOut(t) 
    for s in sRasters: 
        msgOut(s) 
 
    tName = tRasters[0][:-(VERLEN + 1)] 
    print"tName =", tName 
    sName = sRasters[0][:-(VERLEN + 1)] 
    print"sName =", sName 
    tSumRasters = coeff(tName) * arcpy.Raster(rastersDir + tRasters[0]) 
    sSumRasters = coeff(sName) * arcpy.Raster(rastersDir + sRasters[0]) 
    for t in tRasters[1:]: 
        print "t =", t          # message out here 
        tName = t[:-(VERLEN + 1)] 
        tSumRasters = tSumRasters + coeff(tName) * arcpy.Raster(rastersDir + t) 
    for s in sRasters[1:]: 
        sName = s[:-(VERLEN + 1)] 
        print "sName =", sName 
        sSumRasters = sSumRasters + coeff(sName) * arcpy.Raster(rastersDir + s) 
#    sumRasters = tSumRasters + sSumRasters 
#    sumRasters = Con(sSumRasters > 0, sSumRasters + tSumRasters, 0)   # No pollutants = no risk 
 
    sumRasters = Con(sSumRasters > 0, sSumRasters, 0) \ 
                 * tSumRasters * coeff('tflowsw') * arcpy.Raster(rastersDir + tflowsName)  # no flows ... 
    # Remove non-drinking water catchments and save risk raster 
    # Actually we don't have to any more because everything is tied to watersheds 
    # Note: the first attempt produced a limited colour range whereas the Con approach was brighter 
    # sumRaster = sumRaster * arcpy.Raster(rastersDir + tsawCurrent) # original SAW approach 
    # sumRaster = arcpy.sa.Con(arcpy.Raster(rastersDir + tsawCurrent), sumRaster, 0) 
 
    # Generate name for next version of risk raster and save 
    arcpy.env.workspace = risksDir 
    arcpy.env.scratchWorkspace = risksDir 
    pS = pSrc.get() 
    pSrcRiskRasters = arcpy.ListRasters(pS + "*") 
    nextpSrcRR = genNewVerName(pSrcRiskRasters, pS + "riskv") 
    sumRasters.save(outRasDir + nextpSrcRR) 
    tmpRas = arcpy.Raster(nextpSrcRR) 
    print "New risk raster min, mean and max =", tmpRas.minimum, tmpRas.mean, tmpRas.maximum 
    print "rcDict is now", rcDict 
 
    arcpy.env.workspace = MLRDIR 
    arcpy.env.scratchWorkspace = MLRDIR 
    msgOut(nextpSrcRR + " saved\nEnd of risks update processing") 
    manager.notbusy() 
 
def generateMXD(inRas, outMXD, tmpltFile, tmpltLayer, titleStr, symbology): 
    if DEBUG: 
        print "Entering generateMXD with inRas, outMXD =", inRas, outMXD 
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        print "Temporary .mxd is", mapTemplatesDir + tmpltFile 
 
    # https://gis.stackexchange.com/questions/82335/ 
    #         how-to-programmatically-change-raster-symbology-after-reclassification 
    # Viewed 4/7/2018 
    templateSymbology = mapTemplatesDir + symbology 
    mxd = arcpy.mapping.MapDocument(mapTemplatesDir + tmpltFile) 
    df = arcpy.mapping.ListDataFrames(mxd)[0] 
    addLayer = arcpy.mapping.Layer(inRas) 
 
    # Build table of raster layers and their weightings for risk surface 
    inRasWeights = ("prisk" in inRas) or ("nrisk" in inRas) 
    if inRasWeights: 
        rcDict = {} 
        rcDict = readModel() 
        rasterWeights = "Weight  Layer\n------  -----\n" 
        for key, val in sorted(rcDict.items()): 
            if key != "tsaww": 
                c = "{0:.3f}".format(float(val[0])) 
                rasterWeights = rasterWeights + val[1] + c + "  " + key + "\n" 
        rasterWeights = rasterWeights + "   \nRef: " + refNum.get() 
 
    # Place new layer underneath catchment polygons 
    arcpy.mapping.AddLayer(df, addLayer, "BOTTOM") 
    reclass_raster_lyr = arcpy.mapping.ListLayers(mxd)[tmpltLayer] 
 
    # Apply symbology from .lyr template file and save map 
    arcpy.ApplySymbologyFromLayer_management(reclass_raster_lyr, templateSymbology) 
    arcpy.RefreshActiveView() 
    for elm in arcpy.mapping.ListLayoutElements(mxd, "TEXT_ELEMENT"): 
        if elm.text == "Title": 
            elm.text = titleStr 
            elm.elementPositionX = 2.5 
            elm.elementPositionY = 26.0 
        elif elm.text == "Author:": 
            elm.text = ("Author: " + "IDM") 
            #elm.text = ("Author: " + os.getenv('username')) 
        elif elm.name == "rasterweights": 
            if inRasWeights: 
                elm.text = rasterWeights 
    legend = arcpy.mapping.ListLayoutElements(mxd, "LEGEND_ELEMENT", "Legend")[0] 
    legend.elementPositionX = 2.5 
    legend.elementPositionY = 10.0 
 
    mxd.saveACopy(outMXD +".mxd") 
    del mxd, addLayer 
 
def reportHeading(catchment, pS, rptTypeVer): 
    if pS == 'p': 
        pSrcText = "Pathogen" 
    elif pS == 'n': 
        pSrcText = "Nutrient (P)" 
    elif pS == 'c': 
        pSrcText = "Pesticide" 
    elif pS == 's': 
        pSrcText = "Sediment" 
    else: 
        pSrcText = "Transport" 
    if "Mean" in rptTypeVer: 
        scaling = "\n(scaled view)" 
    else: 
        scaling = "\n(normailsed view)" 
    return "Mount Lofty Ranges Watershed " + catchment + "\n" + pSrcText + rptTypeVer + scaling 
 
def reportsUpdate(): 
    if DEBUG: 
        print "Entering reportsUpdate" 
 
    def generatePDF(outDir, cType): 
        # Read back the map with new symbology 
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        # http://desktop.arcgis.com/en/arcmap/10.3/analyze/arcpy-mapping/textelement-class.htm 
        # Viewed 4/7/2018 
        if DEBUG: 
            print "Entering generatePDF with mxd name =", outDir + cType + ".mxd" 
        mxd = arcpy.mapping.MapDocument(outDir + cType + ".mxd") 
        arcpy.mapping.ExportToPDF(mxd, outDir + cType + ".pdf") 
        del mxd 
 
    def normaliseRaster(inRas, outDir, outRas): 
        # convert reals to integers in range 0 - 100 
        if DEBUG: 
            print "Entering normaliseRaster with inRas =", inRas 
            inRasTmp = arcpy.Raster(inRas) 
            print "inRasTmp minmum and maximum =", inRasTmp.minimum, inRasTmp.maximum 
        nmlRaster = (arcpy.Raster(inRas) - arcpy.Raster(inRas).minimum) /    \ 
                    (arcpy.Raster(inRas).maximum - arcpy.Raster(inRas).minimum) * 100 + 0.5 
        arcpy.Int_3d(nmlRaster, outDir + outRas) 
 
    def scaleRaster(inRas, outDir, outRas): 
        # convert reals to integers in range 0 - 100 
        if DEBUG: 
            print "Entering scaleRaster with inRas =", inRas 
            inRasTmp = arcpy.Raster(inRas) 
            inRasMin = inRasTmp.minimum 
            inRasMean = inRasTmp.mean 
            inRasMax = inRasTmp.maximum 
            print "inRasTmp minmum, mean and maximum =", inRasMin, inRasMean, inRasMax 
        scaledRaster = inRasTmp / inRasMax * 100 + 0.5 
        arcpy.Int_3d(scaledRaster, outDir + outRas) 
 
    def genZonalStats(zData, zField, fN, zStat, template, tmpltLayer, titleStr, symbology): 
        if DEBUG: 
            print "Entering genZonalStats witn fN =", fN 
        msgOut("Beginning " + fN + " Zonal Stats processing") 
        outZonalStatistics = ZonalStatistics(zData, zField, inValueRaster, zStat) 
        outZonalStatistics.save(reportsDir + fN) 
 
        # Generate scaled DWC risk surface, remove non-DWC regions and save PDF 
#        normaliseRaster(fN, reportsDir, fN + "n") 
        scaleRaster(fN, reportsDir, fN + "n") 
        fNExclNon = arcpy.sa.Con(arcpy.Raster(rastersDir + "tsawwv000"), arcpy.Raster(reportsDir + fN + "n"),) 
        fNExclNon.save(reportsDir + fN) 
 
        if (zField == "System") and (zStat == "MEAN"):        # Add MEAN values to label of each WTP system 
            print "Entering ZonalStatisticsAsTable" 
            outZStable = ZonalStatisticsAsTable(srcShapesDir + "DWC_MLR.shp", "System", reportsDir + fN, 
                                                reportsDir + "dwcZSMeanTable.dbf", "DATA", "MEAN") 
            outZStableUnscaled = ZonalStatisticsAsTable(srcShapesDir + "DWC_MLR.shp", "System", inValueRaster, 
                                                reportsDir + "dwcZSMeanTableUnscaled.dbf", "DATA", "MEAN") 
 
            # Build dictionary of Zonal Stats mean values with WTP name as the key 
            # The value is formatted as a string for incorporation into layout labels 
            zonalStatsDBF = r"dwcZSMeanTable.dbf" 
            zonalStatsFields = ['System', 'ZONE_CODE', 'COUNT', 'AREA', 'MEAN'] 
#            zonalStatsDict = {r[0]:" (" + str(int(r[4])) + ")" for r in arcpy.da.SearchCursor(zonalStatsDBF, zonalStatsFields)} 
            zonalStatsDict = {r[0]:"/" + str(int(r[4])) for r in arcpy.da.SearchCursor(zonalStatsDBF, zonalStatsFields)} 
 
            # Create version of DWC_MLR shapefile annotated with Zonal Statistics table MEAN values 
            inShapeName = "DWC_MLR.shp" 
            outShapeName = "DWClbl.shp" 
            arcpy.FeatureClassToFeatureClass_conversion(srcShapesDir + inShapeName, reportsDir, outShapeName) 
            outFieldNames = [f.name for f in arcpy.ListFields(outShapeName)] 
            with arcpy.da.UpdateCursor(reportsDir + outShapeName, outFieldNames) as cursor: 
                for row in cursor: 
                    if row[2] != "Non-drinking water": 
                        meanValue = zonalStatsDict[row[2]] 
                        row[2] = row[2] + meanValue 
                    cursor.updateRow(row) 
            del cursor 
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            # Generate labelled mxd template 
            mxd = arcpy.mapping.MapDocument(mapTemplatesDir + "dwcTemplate.mxd") 
            df = arcpy.mapping.ListDataFrames(mxd)[0] 
 
            # Remove the existing layer in the template but keep the layout 
            for lyr in arcpy.mapping.ListLayers(mxd, "", df): 
                if lyr.name == "DWC_MLR": 
                    arcpy.mapping.RemoveLayer(df, lyr) 
            newDWCLayer = arcpy.mapping.Layer(reportsDir + "DWClbl.shp") 
            arcpy.mapping.AddLayer(df, newDWCLayer) 
            reclass_raster_lyr = arcpy.mapping.ListLayers(mxd)[0] 
            reclass_raster_lyr.showLabels = True 
            arcpy.ApplySymbologyFromLayer_management(reclass_raster_lyr, "dwcMeanLabelledTemplate.lyr") 
            arcpy.RefreshActiveView() 
            mxd.saveACopy(mapTemplatesDir + "dwcLabelledTemplate.mxd") 
            del mxd 
            generateMXD(reportsDir + fN, reportsDir + fN, "dwcLabelledTemplate.mxd", tmpltLayer, titleStr, symbology) 
        else: 
            generateMXD(reportsDir + fN, reportsDir + fN, template, tmpltLayer, titleStr, symbology) 
        generatePDF(reportsDir, fN) 
        arcpy.Delete_management(fN + "n") 
#        arcpy.Delete_management(fN + ".mxd") 
#        arcpy.Delete_management(fN) 
 
    manager = BusyManager(root) 
    manager.busy() 
    msgOut("Beginning standard reports processing") 
    inRasDir = MLRDIR + "Risks\\" 
#    reportsDir = MLRDIR + "Reports\\" 
 
    # Get latest risk raster for the pollutant source 
    # Note: ListRasters can only list rasters in the current directory 
    #       so change workspace and scratchworkspace for this step, then restore them 
    arcpy.env.workspace = inRasDir 
    arcpy.env.scratchWorkspace = inRasDir 
    pS = pSrc.get() 
    pSrcRiskRasters = arcpy.ListRasters(pS + "*") 
    firstRR = pSrcRiskRasters[0] 
    currentRiskRaster = getCurrentVerName(pSrcRiskRasters, firstRR[:-VERLEN]) 
    inValueRaster = inRasDir + currentRiskRaster 
    arcpy.env.workspace = reportsDir 
    arcpy.env.scratchWorkspace = reportsDir 
 
    # Generate normalised DWC risk surface, remove non-DWC regions and save PDF 
    msgOut("Generating risk surface MXD and PDF files") 
    normaliseRaster(inValueRaster, reportsDir, currentRiskRaster + "tmp") 
    rrExclNon = arcpy.sa.Con(arcpy.Raster(rastersDir + "tsawwv000"), arcpy.Raster(reportsDir + currentRiskRaster + 
"tmp")) 
#    rrExclNon = arcpy.sa.Con(arcpy.Raster(rastersDir + "gsawv000"), arcpy.Raster(risksDir + currentRiskRaster)) 
    rrExclNon.save(reportsDir + currentRiskRaster) 
    tmpltLayer = 2 
    titleStr = reportHeading("Catchments", pS, " Risk Assessment V" + currentRiskRaster[-3:]) 
    generateMXD(reportsDir + currentRiskRaster, reportsDir + currentRiskRaster, 
                "risksTemplate.mxd", tmpltLayer, titleStr, "rasterSymbologyTemplate.lyr") 
    generatePDF(reportsDir, currentRiskRaster) 
    msgOut("Saved risk surface MXD and PDF files") 
 
    # Uncomment the following to get minimum and maximum values for the risk raster 
#    inRasTmp = arcpy.Raster(currentRiskRaster + "tmp") 
#    print "Normalised risk raster minmum and maximum =", inRasTmp.minimum, inRasTmp.maximum 
    arcpy.Delete_management(currentRiskRaster + "tmp") 
 
    # Generate normalised DWC Zonal Stats Mean view for System variable 
    msgOut("Generating Zonal Statistics MEAN output") 
    dwcPDFs = arcpy.ListFiles(pS +"dwc*.pdf") 
    dwcNextMean = genNewVerName(dwcPDFs, pS + "dwcmeanv") 
    inZoneData = srcShapesDir + "DWC_MLR.shp" 
    zoneField = "System" 
    stat = "MEAN" 
    tmpltLayer = 1 
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    #   **** Build titleStr as above (as a separate function? *** 
    titleStr = reportHeading("Catchments", pS, " Mean Zonal Statistics V" + dwcNextMean[-3:]) 
    genZonalStats(inZoneData, zoneField, dwcNextMean, stat, "dwcTemplate.mxd", tmpltLayer, titleStr, 
                 "rasterSymbologyTemplate.lyr") 
#    outZStable = ZonalStatisticsAsTable(inZoneData, zoneField, inValueRaster, reportsDir + "dwcZSMeanTable.dbf", 
"DATA", "MEAN") 
 
    # Generate normalised sub-DWC Zonal Stats Mean view for SUB_NAME variable 
    subPDFs = arcpy.ListFiles(pS +"sub*.pdf") 
    subNextMean = genNewVerName(subPDFs, pS + "submeanv") 
    inZoneData = srcShapesDir + "MLR_Subcatchment.shp" 
    zoneField = "SUB_NAME" 
    stat = "Mean" 
    tmpltLayer = 2 
    # Check title string function call below 
    titleStr = "Mount Lofty Ranges Watershed Sub-catchments\nPathogen Mean Zonal Statistics V" + subNextMean[-3:] + 
"\n(normalised view)" 
#    titleStr = reportHeading("Sub-catchments", pS, " Mean Zonal Statistics V" + subNextMean[-3:]) 
##    # Generate normalised sub-DWC Zonal Stats Maximum view for SUB_NAME variable 
##    subNextMax = subNextMean[:4] + "max" + subNextMean[-4:] 
##    inZoneData = srcShapesDir + "MLR_Subcatchment.shp" 
##    zoneField = "SUB_NAME" 
##    stat = "Maximum" 
##    tmpltLayer = 2 
    # Check title string function call below 
##    titleStr = "Mount Lofty Ranges Watershed Sub-catchments\nPathogen Maximum Zonal Statistics V" + subNextMax[-
3:] + "\n(normalised view)" 
#    titleStr = reportHeading("Sub-catchments", pS, " Maximum Zonal Statistics V" + subNextMax[-3:]) 
##    genZonalStats(inZoneData, zoneField, subNextMax, stat, "dwsubcTemplate.mxd", tmpltLayer, titleStr 
##                 "rasterSymbologyTemplate.lyr") 
 
    arcpy.env.workspace = MLRDIR 
    arcpy.env.scratchWorkspace = MLRDIR 
    msgOut("End of standard reports processing") 
    manager.notbusy() 
 
def createUniqueValuesMap(currentRR): 
    if DEBUG: 
        print "Entering createUniqueValuesMap" 
    # Create a map file with values reclassified to unique for histogram statistics generation 
    histRas = arcpy.Raster(reportsDir + currentRR) 
    histRas.save(reportsDir + "histRas") 
    tmpltLayer = 2 
    titleStr = "Unique values raster\nfor histogram statistics" 
    generateMXD(reportsDir + "histRas", reportsDir + "histRas", 
                "risksTemplate.mxd", tmpltLayer, titleStr, "uniqueValuesTemplate.lyr") 
 
def selectDwcShape(ctchmntType, ctchmntChoice, whereVar, dwcChoiceUpper): 
    if DEBUG: 
        print "Entering selectDwcShape" 
    srcShapeFile = srcShapesDir + ctchmntType 
    arcpy.MakeFeatureLayer_management(srcShapeFile, "lyr") 
    whereClause = whereVar + " = '" + dwcChoiceUpper + "'" 
    arcpy.SelectLayerByAttribute_management("lyr", "NEW_SELECTION", whereClause) 
    arcpy.FeatureClassToFeatureClass_conversion("lyr", reportsDir, "selectShape") 
 
def detailedStatistics(): 
    if DEBUG: 
        print "Entering detailedStatistics" 
    msgOut("Unused for now") 
 
def detailedComparison(): 
    if DEBUG: 
        print "Entering detailedComparison" 
    msgOut("rasShares code goes here when a bug in Python/PyScripter is resolved") 
 
def detailedAnalysis():           # Specific to pathogens for now 
    if DEBUG: 
        print "Entering detailedAnalysis" 
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    manager = BusyManager(root) 
    manager.busy() 
    msgOut("Beginning of detailed analysis processing") 
    arcpy.env.workspace = reportsDir 
    arcpy.env.scratchWorkspace = reportsDir 
 
    # Need to build in error checking to force sub-DWC choice before proceeding 
    dwcChoice = dwcVar.get()       # From dwcMenuButton in initGUI below 
    print "dwcChoice =", dwcChoice 
    dwcChoiceUpper = dwcChoice.upper() 
 
    # Create copy of current risk raster with intergers in range 0 - 100 rather than reals 
    pS = pSrc.get() 
    pSrcRiskRasters = arcpy.ListRasters(pS + "*") 
    firstRR = pSrcRiskRasters[0] 
    currentRiskRaster = getCurrentVerName(pSrcRiskRasters, firstRR[:-VERLEN]) 
    createUniqueValuesMap(currentRiskRaster) 
 
    msgOut("Generating high risk regions for sub-DWC " + dwcChoice) 
    selectDwcShape("MLR_Subcatchment.shp", dwcChoiceUpper, "SUB_NAME", dwcChoiceUpper) 
    inMask = "selectShape.shp" 
 
    # Create raster of the top 10% of risk values for this sub-DWC 
    inRisk = risksDir + "priskv000"           # *** in development.  Version number is hard coded *** 
    cutRisk = ExtractByMask(inRisk, inMask) 
    cutRisk.save(reportsDir + "cutRisk") 
    cutRisk = arcpy.Raster("cutRisk") 
    cutRiskTop = Con(cutRisk > 0.6 * cutRisk.maximum, 1, 0)   # Get dwc high risk values 
    cutRiskTop.save(reportsDir + "cutRiskTop") 
 
    # Create raster of fencing for this sub-DWC 
    inFence = "tfencev000"                   # *** in development. pfence must be converted to tfence *** 
    cutFence = ExtractByMask(inFence, inMask)        # Also, get it from rasters 
    cutFence.save(reportsDir + "cutFence") 
 
    # Create streams shapefile for this sub-DWC 
    inStreams = srcShapesDir + "MLR_Streams.shp" 
    arcpy.Clip_analysis(inStreams, inMask, reportsDir + "cutStreams") 
 
    # Separate out later to generalised generateMXD above? 
    # https://community.esri.com/thread/204754-arcpyapplysymbologyfromlayermanagement 
    #         -does-not-define-symbology-within-stand-alone-script 
    symbology = {"cutStreams" : mapTemplatesDir + "cutStreamsTemplate.lyr", 
                 "selectShape" : mapTemplatesDir + "selectShapeTemplate.lyr", 
                 "cutFence" : mapTemplatesDir + "cutFenceTemplate.lyr", 
                  "cutRiskTop" : mapTemplatesDir + "cutRisktopTemplate.lyr"} 
    layerList = ["selectShape.shp", "cutRiskTop", "cutFence", "cutStreams.shp"] 
 
    # Add detailed sub-DWC layers to template already loaded with scale bar, north arrow and legend 
    mxd = arcpy.mapping.MapDocument(mapTemplatesDir + "detailedsubdwcTemplate.mxd") 
    df = arcpy.mapping.ListDataFrames(mxd)[0] 
    for lL in layerList: 
        print "Adding layer " + lL + " to mxd template" 
        addLayer = arcpy.mapping.Layer(lL) 
        arcpy.mapping.AddLayer(df, addLayer) 
 
    # Apply symbology in template .lyr files to layers 
    for l in arcpy.mapping.ListLayers(mxd): 
        print "Apply symbology for layer name:", l.name 
        arcpy.ApplySymbologyFromLayer_management(l, symbology[l.name]) 
    arcpy.RefreshTOC() 
    arcpy.RefreshActiveView() 
    for elm in arcpy.mapping.ListLayoutElements(mxd, "TEXT_ELEMENT"): 
        print "elm.text =", elm.text 
        if elm.text == "Title": 
            elm.text = dwcChoice + " High Risk Regions\nRelative to Streams and Fencing" 
    mxd.saveACopy(reportsDir + "subDWC.mxd") 
 
    # Read back mxd with new symbology applied and generate layout PDF 
    mxd = arcpy.mapping.MapDocument(reportsDir + "subDWC.mxd") 
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    arcpy.mapping.ExportToPDF(mxd, reportsDir + dwcChoice + ".pdf") 
 
    del mxd, addLayer 
    purge(reportsDir, "histRasTbl") 
#    purge(reportsDir, "selectShape") 
    purge(reportsDir, "histogramStats") 
    arcpy.Delete_management("histRas.mxd") 
    arcpy.Delete_management("histRas") 
 
    arcpy.env.workspace = MLRDIR 
    arcpy.env.scratchWorkspace = MLRDIR 
    msgOut("End of detailed analysis processing") 
    manager.notbusy() 
 
def quit(): 
    if DEBUG: 
        print "Entering quit" 
    root.destroy() 
 
def readDWCChoices(): 
    if DEBUG: 
        print "Entering readDWCChoices" 
#    inSpreadSheet = MLRDIR + "histogramChoices.xlsx" 
    pS = pSrc.get() 
    menuDict = {} 
    if (pS == 'p') or (pS == 'g'): 
        sheetName = "pathogens" 
    elif pS == 'n': 
        sheetName = "nutrients" 
    elif pS == 'c': 
        sheetName = "pesticides" 
    else: 
        sheetName = "sediments" 
#    inMemorySheet = "in_memory" + "\\" + "histogram" 
 
    # Read menu and submenu names from histogramChoices text file 
    menus = [] 
    with open(MLRDIR + '/DWC.txt','r') as input_file: 
        for line in input_file: 
            menus.append([subMenu.strip('\n') for subMenu in line.split(',')]) 
    input_file.close() 
    return menus 
 
def initGUI(root): 
    if DEBUG: 
        print "Entering initGUI" 
    root.geometry("470x760") 
    root.title("MLR Risk Management Decision Support") 
 
    # Create pollutant source radiobutton widgets for the top frame 
    pollutantSrcLabel = Label(frame0, font = 'None 11 underline', text = "\nPollutant source", fg = "blue") 
    pathogen = Radiobutton(frame0, text = "Pathogen", padx = 60, variable = pSrc, value = "p") 
    nutrient = Radiobutton(frame0, text = "Nutrient", padx = 60, variable = pSrc, value = "n") 
    pesticide = Radiobutton(frame0, text = "Pesticide", padx = 60, variable = pSrc, value = "c") 
    sediment = Radiobutton(frame0, text = "Sediment", padx = 60, variable = pSrc, value = "s") 
    transport = Radiobutton(frame0, text = "Transport", padx = 60, variable = pSrc, value = "t") 
 
    # Lay out radiobutton widgets in the top frame 
    pollutantSrcLabel.grid(row=0, column = 0, pady = 10) 
    pathogen.grid(row = 1, column = 0, sticky = 'w') 
    nutrient.grid(row = 2, column = 0, sticky = 'w') 
    pesticide.grid(row = 3, column = 0, sticky = 'w') 
    sediment.grid(row = 4, column = 0, sticky = 'w') 
    transport.grid(row = 5, column = 0, sticky = 'w') 
    if DEBUG: 
        print "pSrc = ", pSrc.get() 
 
    # Create and lay out frame1 data source dropdown widget and update buttons 
    dataSrcLbl = Label(frame1, font = 'None 11 underline', text = "Data Management", fg = "blue") 
    dataSrcLbl.grid(row = 0, column = 0)           #, padx = (32,) 
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    dataSrcLb2 = Label(frame1, 
            font = (None, 10), 
            text = "Select shapefile for Shapes or Rasters updates", fg = "blue") 
    dataSrcLb2.grid(row = 1, column = 0)           #, padx = (32,) 
    dataSrc = OptionMenu(frame1, rasSrc, *OPTIONS) 
    dataSrc.config(width=21) 
    dataSrc.grid(row = 2, column = 0, pady = 10)                  #, sticky = "w" 
 
    stdRptsLbl = Label(frame2, font = 'None 11 underline', text = "\nStandard Reports", fg = "blue") 
    stdRptsLbl.grid(row = 0, column = 0, padx = (32,)) 
    stdRptsLb2 = Label(frame2, font = 'None 10', text = "Risk surface and Zonal Statistics", fg = "blue") 
    stdRptsLb2.grid(row = 1, column = 0, padx = (32,)) 
 
    # Frame 3 catchment choice and statistics analysis 
    dwcMenuButton = Menubutton(frame3, textvariable = dwcVar, indicatoron = True, borderwidth = 2, relief=RAISED) 
    dwcMenuButton.config(width = 29) 
    dwcMenuButton.grid(row = 2, column = 0, padx = (0, 0), pady = 0)     #, sticky = 'w' 
    dwcMenu = Menu(dwcMenuButton, tearoff = False) 
    dwcMenuButton.configure(menu = dwcMenu) 
    for item in readDWCChoices(): 
        menu = Menu(dwcMenu, tearoff=False) 
        dwcMenu.add_cascade(label = item[0], menu = menu) 
        i = 0 
        for value in item[1:]: 
            if value == '*': 
                i += 1 
                menu.add_separator() 
            else: 
                if i == 0: 
                    dwcDict[value] = "dwc" 
                    lbl = value + " (DWC)" 
                elif i == 2: 
                    dwcDict[value] = "wtp" 
                    lbl = value + " (WTP)" 
                else: 
                    dwcDict[value] = "sub" 
                    lbl = value 
                menu.add_radiobutton(value = value, label = lbl, variable = dwcVar) 
    analyseLbl = Label(frame3, font = 'None 11 underline', text = "\nAnalysis", fg = "blue") 
    analyseLbl.grid(row = 0, column = 0, padx = (32,)) 
    analyseLb2 = Label(frame3, 
            font = (None, 10), 
            text = "Select relevant catchment type before\n" + \ 
                   "detailed statistics or analysis (sub-DWC only) reports\n", fg = "blue") 
    analyseLb2.grid(row = 1, column = 0, padx = (32,)) 
 
    # Create and lay out frame1-3 update and reports buttons 
    buttonShapes = Button(frame1, text = "Shapes", command = shapesUpdate) 
    buttonShapes.config(width = 8) 
    buttonShapes.grid(row = 3, column = 0, padx = (0, 102), pady = 0)          #, sticky = 'w' 
    buttonRasters = Button(frame1, text = "Rasters", command = rastersUpdate) 
    buttonRasters.config(width = 8) 
    buttonRasters.grid(row = 3, column = 0, padx = (100, 0), pady = 0)         #, sticky = 'e' 
    buttonRisks = Button(frame2, text = "Risks", command = risksUpdate) 
    buttonRisks.config(width = 8) 
    buttonRisks.grid(row = 3, column = 0, padx = (0, 100), pady = 10)         #, padx = (15, 10), sticky = 'w' 
    buttonReports = Button(frame2, text = "Reports", command = reportsUpdate) 
    buttonReports.config(width = 8) 
    buttonReports.grid(row = 3, column = 0, padx = (100, 0), pady = 10)         #, padx = (15, 5), sticky = 'e' 
    buttonStatistics = Button(frame3, text = "Statistics", command = detailedStatistics) 
    buttonStatistics.config(width = 8) 
    buttonStatistics.grid(row = 3, column = 0, padx = (0,150), pady = 10)         #, padx = (15, 5) 
    buttonCompare = Button(frame3, text = "Compare", command = detailedComparison) 
    buttonCompare.config(width = 8) 
    buttonCompare.grid(row = 3, column = 0, padx = (150, 150), pady = 10)         #, padx = (15, 5) 
    buttonAnalyse = Button(frame3, text = "Analyse", command = detailedAnalysis) 
    buttonAnalyse.config(width = 8) 
    buttonAnalyse.grid(row = 3, column = 0, padx = (150, 0), pady = 10)         #, padx = (15, 5) 
 
    # Lay out frame5 message window (created above as a global) 
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    msgWin.grid(row = 0, column = 0, pady = (10,10)) 
 
    # Create and lay out frame4 Quit button widget 
    buttonQuit = Button(frame4, text = "Quit", command = quit) 
    buttonQuit.config(width = 9) 
    buttonQuit.grid(row = 2, column = 0, pady = (10, 10)) 
 
def main(): 
    initGUI(root) 
    root.mainloop() 
 
if __name__ == '__main__': 
    main() 
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Appendix F: Python script for total risk contribution of each variable 

# Needed 64-bit environment to avoid arcpy error 
import arcpy 
import numpy as np 
import matplotlib.pyplot as plt 
import time as time 
from matplotlib import style 
import xlrd 
 
MLRDIR = r'<User directory>/Project/' 
RASDIR = MLRDIR + 'Rasters/' 
SHRDIR = MLRDIR + 'Utility/Share' 
 
style.use('seaborn-whitegrid') 
 
rasDict = {} 
 
def readModel(): 
 
    rDict = {} 
 
    # Get first sheet of spreadsheet - this is the most recent model 
    workbook = xlrd.open_workbook('pmodel.xlsx', on_demand=True) 
    sheetNames = workbook.sheet_names() 
    sheetName = sheetNames[0] 
    print('sheetName =', sheetName) 
    workbook.release_resources() 
    inMemorySheet = "in_memory" + "\\" + "model" 
 
    # Read model spreadsheet into in-memory table 
    arcpy.Delete_management(inMemorySheet) 
    arcpy.ExcelToTable_conversion('pmodel.xlsx', inMemorySheet, sheetName) 
 
    # Build dictionary of model layer name (the key) and corresponding coefficients and operators 
    with arcpy.da.SearchCursor(inMemorySheet, '*') as cursor: 
        for row in cursor: 
            key = row[1] 
            rDict[key] = [row[2], row[3]] 
            print('rDict[' + key + '] =', rDict[row[1]]) 
    del cursor 
    arcpy.Delete_management(inMemorySheet) 
    del rDict['Reference'] 
    return rDict 
 
arcpy.env.workspace = RASDIR 
arcpy.env.scratchWorkspace = RASDIR 
fullRastersList = arcpy.ListRasters('*') 
rasSubset = [r for r in fullRastersList if (r[0] == 'p') or (r[0] == 't')] 
print(rasSubset) 
sh = np.zeros(len(rasSubset), dtype = float) 
arcpy.env.workspace = SHRDIR 
arcpy.env.scratchWorkspace = SHRDIR 
 
rasDict = readModel() 
print('rasDict =', rasDict) 
sh = [] 
i = 0 
for r in rasSubset: 
    start = time.time() 
    inRas = arcpy.Raster(RASDIR + r) 
    rNameRoot = inRas.name[:-4] 
    print(rNameRoot, rasDict[rNameRoot][0], rasDict[rNameRoot][1]) 
    if rasDict[rNameRoot][1] == '+': 
        weight = float(rasDict[rNameRoot][0]) 
    elif rasDict[rNameRoot][1] == '*': 
        weight = 0.0 
    else: 
        weight = -float(rasDict[rNameRoot][0]) 
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    inRasArray = arcpy.RasterToNumPyArray(inRas, nodata_to_value=0) 
    weightedArray = inRasArray * weight 
    sum = np.sum(weightedArray) 
    sh.append(sum/10e6) 
    i += 1 
    end = time.time() 
    print(inRas.name + ' sum =', sum, 'at time', end - start) 
print(sh) 
plt.rcParams.update({'font.size': 15}) 
plt.figure(figsize = (10,10.8)) 
plt.xlabel('Variable rasters') 
plt.ylabel('Total risk/1,000,000') 
labels = sorted(rasDict.keys()) 
x = np.arange(i) 
plt.bar(x, height = sh, align = 'center') 
plt.xticks(x,labels, rotation = 'vertical') 
plt.margins(x = 0) 
plt.show() 
 
 

  



104 

Appendix G: Python scripts for flow rate replacement of slope 

""" 
 
catchmentFlowsAccumulation 
 
Use catchment shapes to clip out catchment DEMS and fill any sinks. 
Calculate flow directions. 
Calculate flow accumulation prior to determining the position of the 
watershed outlet (pour point) 
""" 
 
import arcpy 
from arcpy.sa import * 
 
FLOWSDIR = <flows directory path> 
 
arcpy.env.workspace = FLOWSDIR 
arcpy.env.scratchWorkspace = FLOWSDIR 
arcpy.env.overwriteOutput = True 
arcpy.env.qualifiedFieldNames = False 
arcpy.CheckOutExtension("Spatial") 
 
mlrDEM = FLOWSDIR + "mlrdem" 
mlrCatchments = FLOWSDIR + "DWC_MLR.shp" 
fieldNames = [f.name for f in arcpy.ListFields(mlrCatchments) if f.type != 'OID'] 
print "Catchment field names =", fieldNames 
 
# https://gis.stackexchange.com/questions/6775/using-integer-variable-in-where-clause-of-arcpy-script 
# https://learn.arcgis.com/en/projects/predict-floods-with-unit-hydrographs/ 
# Accessed 20190731 
# https://gis.stackexchange.com/questions/27457/including-variable-in-where-clause-of-arcpy-select-analysis 
# Accessed 20190820 
arcpy.MakeFeatureLayer_management(mlrCatchments, "lyr") 
mlrCatchmentRows = arcpy.SearchCursor(mlrCatchments) 
for row in mlrCatchmentRows: 
    wtpVal = row.getValue("System") 
    if wtpVal != 'Non-drinking water': 
        print "System =", wtpVal 
        cName = wtpVal.split()[0].lower() # need raster name suitable for each WTP System 
        print "cName =", cName 
        arcpy.SelectLayerByAttribute_management("lyr", "NEW_SELECTION", ' "System"= ' + "'%s'" % wtpVal) 
        arcpy.FeatureClassToFeatureClass_conversion("lyr", FLOWSDIR, cName) 
        arcpy.Clip_management(mlrDEM, "", cName + "dem", cName + ".shp", "", "ClippingGeometry", 
"MAINTAIN_EXTENT") 
        cDEMfilled = Fill(cName + "dem") 
        cDEMfilledName = FLOWSDIR + cName + "fil" 
        cDEMfilled.save(cDEMfilledName) 
        cFlowDirection = FlowDirection(cDEMfilledName) 
        cFlowDirectionName = FLOWSDIR + cName + "fld" 
        cFlowDirection.save(cFlowDirectionName) 
        cFlowAccumulation = FlowAccumulation(cFlowDirectionName) 
        cFlowAccumulationName = FLOWSDIR + cName + "acc" 
        cFlowAccumulation.save(cFlowAccumulationName) 
 
''' 
At this point, we need to pause for an interactive step in ArcMap: 
 - measure the distance between points in the MLR_Outlets shapefile and their 
   nearest flow accumulation cell 
 - using this measure (rounded up to a suitable value), run the Snap Pour Point 
   tool to generate a new raster with pour points on their flow accumulation 
   paths. 
Do this for each catchment. Then the watersheds can be determined above the 
pour points.  This is done in the next script (catchmentFlowsVelocity) 
which ultimately calculates the velocity field risk surface. 
''' 
print "Finished" 
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""" 
 
catchmentFlowsVelocity 
 
Calculate the slope area term after delineating the watershed 
""" 
import arcpy 
from arcpy.sa import * 
 
FLOWSDIR = <flows directory path> 
 
arcpy.env.workspace = FLOWSDIR 
arcpy.env.scratchWorkspace = FLOWSDIR 
arcpy.env.overwriteOutput = True 
arcpy.env.qualifiedFieldNames = False 
arcpy.CheckOutExtension("Spatial") 
 
mlrDEM = FLOWSDIR + "mlrdem" 
mlrCatchments = FLOWSDIR + "DWC_MLR.shp" 
fieldNames = [f.name for f in arcpy.ListFields(mlrCatchments) if f.type != 'OID'] 
print "Catchment field names =", fieldNames 
 
# https://gis.stackexchange.com/questions/6775/using-integer-variable-in-where-clause-of-arcpy-script 
# https://learn.arcgis.com/en/projects/predict-floods-with-unit-hydrographs/ 
# Accessed 20190731 
# https://gis.stackexchange.com/questions/27457/including-variable-in-where-clause-of-arcpy-select-analysis 
# Accessed 20190820 
arcpy.MakeFeatureLayer_management(mlrCatchments, "lyr") 
mlrCatchmentRows = arcpy.SearchCursor(mlrCatchments) 
for row in mlrCatchmentRows: 
    wtpVal = row.getValue("System") 
    if wtpVal != 'Non-drinking water': 
        print "System =", wtpVal 
        cName = wtpVal.split()[0].lower() # need raster name suitable for each WTP System 
        print "cName =", cName 
        fNameStem = FLOWSDIR + cName 
        cDEMfilledName = fNameStem + "fil" 
        cFlowsWatershedName = fNameStem + "wsh" 
        cFlowsWatershed = Watershed(fNameStem + "fld", fNameStem + "snp") 
        cFlowsWatershed.save(cFlowsWatershedName) 
        cFlowAccumulationName = fNameStem + "acc" 
        cFlowsSlope = Slope(cDEMfilledName, "PERCENT_RISE", 1) 
        cFlowsSlopeName = fNameStem + "slo" 
        cFlowsSlope.save(cFlowsSlopeName) 
        cFlowsSlopeArea = SquareRoot(cFlowsSlopeName) * SquareRoot(cFlowAccumulationName) 
        cFlowsSlopeAreaName = fNameStem + "sla" 
        cFlowsSlopeArea.save(cFlowsSlopeAreaName) 
        arcpy.env.mask = cFlowsWatershedName 
        slopeAreaTmp = arcpy.Raster(cFlowsSlopeAreaName) 
        slopeAreaMean = slopeAreaTmp.mean 
        cFlowsVelocityUnlimitedName = fNameStem + "unl" 
        cFlowsVelocityUnlimited = 0.1 * (slopeAreaTmp / slopeAreaMean) 
        cFlowsVelocityUnlimited.save(cFlowsVelocityUnlimitedName) 
print "Finished" 
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""" 
After determining the maximum valocity in the unlimited velocity rasters, 
use this value to scale the velocity rasters to a value of 100. 
""" 
import arcpy 
from arcpy.sa import * 
 
FLOWSDIR = <flows directory path> 
 
arcpy.env.workspace = FLOWSDIR 
arcpy.env.scratchWorkspace = FLOWSDIR 
arcpy.env.overwriteOutput = True 
arcpy.env.qualifiedFieldNames = False 
arcpy.CheckOutExtension("Spatial") 
 
MAXV = 228.345   # This needs to be revised after each change in underlying data 
                 # Could find it automatically with an initial pass over the unl files 
 
watersheds = ['ansteygk', 'barossa', 'happy', 'hope', 'little', 'myponga'] 
for w in watersheds: 
 
    # What follows must be calculated relative to all watersheds. 
    # Save the maximum for all six and use the highest value to be 100% 
    # Scale everything against this 
    print "Watershed =", w 
    velocityUnlimitedTmp = arcpy.Raster(w + 'unl') 
    velocityUnlimitedMax = MAXV 
    velocityScaledRiskName = w + "vsc" 
    velocityScaledRisk = velocityUnlimitedTmp / velocityUnlimitedMax * 100.0 
    velocityScaledRisk.save(velocityScaledRiskName) 
print "Finished" 
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Appendix H: Final Model configurations 

H.1 : Pathogens 

 

H.2 : Nutrients 
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Appendix I: Nutrient-specific variables added for the SAW nutrients study 

Note: These variables were used to hold values of the risk of Phosphorus contamination in surface 

water run-off from each land use type. 

# Layer name Land use 

1 ngraz Grazing 

2 nintanpr Intensive animal production 

3 nintprod Intensive production 

4 nnirrmodp Irrigated modified pasture 

5 nmanfor Managed forest 

6 nnatveg Native vegetation 

7 nfrutnut Olives, tree fruits & tree nuts 

8 nrures Rural residential 

9 nshrub Shrub berries and fruits 

10 nurbsur Urban services 

11 nvegherb Vegetables and herbs, flowers & bulbs 

12 nvines Vine fruits 

13 nwater Water 
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