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Summary

Quantifying the spatial variability of surface water-groundwater fluxes remains a chal-

lenge. The ability to either upscale point measurements or down scale reach/catchment

scale measurement invariably introduces error into the estimation processes. This thesis

addresses two methods that have been used to estimate surface water – groundwater flux,

and investigates an approach to determining stream-aquifer connection state. The aims

of this Doctoral thesis are to: 1) determine the representative scale at which standard

hydraulic methods can be applied in this field of research, 2) quantify the variability in

surface water – groundwater fluxes in ephemeral environments, and 3) develop methods

of measuring hydraulic heads beneath and adjacent to streams.

In the first part of this research, the spatial scale of Darcy’s law was investigated in

the context of surface water – groundwater interaction. The primary supposition being

that when applying Darcy’s law to estimate groundwater discharge to a stream, the estim-

ated discharge determined using a well at a distance of 50 m will encapsulate discharge

over a greater proportion of the stream than a well at a distance of 10 m. This was in-

vestigated using numerical methods and stochastic K-fields to determine the influence of

aquifer properties i.e., variance and correlation length of the K-fields on this question of

scale. An estimate of the integrated hydraulic conductivity between the well and stream

was determined by simulating a change in stream stage. The findings of this body of

work suggest that an approximate 1:1 relationship exists between the distance of the ob-

servation well and the length of stream represented by the Darcian groundwater discharge

estimate. In addition to this, the correlation length within the aquifer will strongly influ-

ence the variability in the discharge estimates. A similar approach was applied to a highly

instrumented field site. The results of the field study concur with those of the numerical

simulations i.e., variability in discharge estimates decreases as the distance of the well

from the stream increases.

The second part focussed on determining the spatial variability in seepage flux beneath

xix



an ephemeral channel. The use of flood front movement along a channel has emerged as

a technique to determine the hydraulic conductivity of streambed sediments and thereby

quantify the seepage flux for a given flow event. This approach was applied to a con-

trolled flow event along a 1387 m reach of an artificial stream channel. We investigated

the usefulness including surface water and groundwater data to assist in the calibration

processes. The results of this study identified areas of high seepage flues in the upstream

reaches and low seepage fluxes in the downstream reaches. A Latin Hypercube Monte

Carlo analysis of the model indicated that specific yield had the strongest influence on the

calibration.

The final part of this research investigated a well completion design which would

enable the direct monitoring of the connection state of a stream, by enabling placement of

wells beneath streams and floodplains. This approach required the well to be sealed so that

surface water would be unable to enter, and the total pressure (from a non-vented pressure

transducer) within the well could be monitored. A controlled laboratory experiment was

used to compare the total pressure response in an open and sealed well to various water

levels. The results indicated that the total pressure within the open and sealed wells were

equal. Therefore, the groundwater response in the aquifer can be obtained using the total

pressure data obtained from within a sealed well. The advantage of this approach is that it

negates the need for tall standpipes and additional infrastructure, which would otherwise

be damaged during high flow events.
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