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ABSTRACT 

Optimal operation and control of microgrids depends on the accuracy of the fault detection and 

classification capabilities, which allows for quick fault identification, isolation, and recovery. Due to 

a reliance on large fault currents and the dynamic nature of microgrids, there is a need for the 

development of new fault detection techniques.  

This study investigates and proposes a machine learning-based microgrid fault detection scheme for 

high precision using Bayesian regularization algorithm. The proposed machine learning method 

extracts its learning features from the point of common coupling of the distributed energy resources 

and the main grid using the discrete wavelet transform. Under different fault and microgrid operating 

conditions, the learning features extracted were the three-phase measurements of the voltage 

magnitude, three-phase measurements of the current magnitude, fault impedance, zero sequence 

voltage values, zero sequence current values, and frequency. The Discrete Wavelet Transform was 

used to extract the learning features and then decompose them into the time-frequency characteristics. 

The eight extracted features were then applied as the input variables for purposes of machine learning. 

To investigate and validate the performance and effectiveness of the detection and classification 

model, the results were compared to other training algorithms for accuracy, selectivity, and 

sensitivity. The results of the simulations were compared to the Levenberg Marquardt training 

algorithm. The simulation results clearly indicate that the Bayesian Regularization algorithm provides 

more accurate detection and classification of faults while guaranteeing better response to changes in 

input variables resulting from microgrid operating conditions. The Bayesian Regularization algorithm 

did not experience overfitting and provided accurate results even with an introduction of new 

variables. Although the Bayesian Regularization algorithm provided accurate results and the best 

response, it had a longer processing time which may not be suitable for use in time-constrained 

operations. 
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CHAPTER 1 

Introduction 

1.1 Background 

The increased push toward the minimization of carbon emissions has resulted in a rapid adoption of 

renewable energy sources and the deployment of Distributed Energy Resources (DER). This 

transformation in the energy market has contributed to the development of microgrids. A microgrid 

is a localised group of distributed energy resources, loads, and energy storage systems within specific 

boundaries, like remote mining sites, cities, and campuses, as shown in Figure 1. 

Figure 1: Layout of a Microgrid with Distributed Energy Resources, Loads, and Energy Storage Systems [1]. 

Microgrids predominantly feature as an attractive way of electricity delivery to final consumers. The 

advancement of hardware and software technologies is driving the microgrid market through a cost-

effective approach thanks to the commoditization of battery storage and solar PV. With governments 

continuing to invest in microgrids, the annual spending is expected to reach $25.9 billion by 2030, 

with a cumulative spending expected to hit $110.5 billion globally as the Asia Pacific region 

continued to be the market leader as shown in Figure 2. The Australian government is bolstering its 

plans to transform Australia into a renewable energy superpower with a $40 billion commitment to 

renewable energies in the 2023-2024 budget [2].  

Figure removed due to copyright restriction
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Figure 2: Microgrid Capacity and Spending by Region Between 2021 to 2030 [3]. 

 The continued penetration of renewable energy as an alternative power source has sparked an 

increased adoption of microgrids, which are characterized by Distributed Energy Resources (DER), 

energy storage systems, and loads. The efficient operation and management of microgrids has been 

underpinned by the integration of sophisticated control algorithms and modern power electronics.  

For resilience and reliability, microgrids must be secured and protected in both islanded and grid 

operating modes. The adoption of microgrids has been largely limited by the challenge of protection. 

Microgrid protection is difficult to implement in inverter-based microgrids because inverters do not 

provide large fault currents during faults. This is in contrast to traditional distribution power 

protection system have been designed for radial flows and that depend on large fault currents from 

induction and synchronous machines. In inverter-based systems, fault currents look similar to motor 

inrush or start currents and classic overcurrent protection schemes may not detect faults.  

1.2 Problem Statement 

While microgrids have come off as a secure, reliable, and cost-effective energy supply option, their 

inherent configuration continues to pose challenges in protection. The high penetration of distributed 

energy resources such as inverter interfaced distributed generators (IIDGs) and asynchronous-based 

distributed generators (ASDG) makes the protection and control of microgrids challenging 

Dehghanian et al. [4]. The different operating modes, which are grid-connected and islanded mode, 

also add to the problem of protection in microgrids. These challenges are attributed to the peculiar 

Figure removed due to copyright restriction
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characteristics associated with microgrids, including: (i) variations in fault current (Due to grid-

connected and islanded operating modes, weather conditions, e.g., irradiance, and DER operating 

modes), (ii) bi-directional power flow, (iii) limited short-circuit capacity, and (iv) low inertia resulting 

in critical frequency abnormalities in islanded mode. Microgrids also rely on inverter-based resources 

where inverters don’t dynamically behave in the same manner as induction/synchronous machines 

since their fault current are not based on the electromagnetic characteristics of traditional machines 

Maheswari et al. [5]. These varying characteristics call for the development of a robust fault detection 

and classification framework.  

A relevant research area is the detection and classification of faults in microgrids using machine 

learning. 

1.3 Objectives 

• To develop a fault detection and classification framework for microgrids based on machine

learning.

• To model various microgrid operating parameters, operating conditions and key fault

parameters to obtain a nearly realistic machine learning training dataset.

• To apply machine learning in the prediction and classification of three phase microgrid faults.

• To compare and assess the performance and effectiveness of two machine learning training

algorithms (Bayesian Regularization and Levenberg Marquardt).

• To test and validate the machine learning algorithms using a standard IEC microgrid.

1.4 Methodology 

The research is primarily performed using the MATLAB/Simulink simulation software. The 

simulation of three phase microgrid faults is performed by the development of 12 individual 

microgrid models to represent each fault scenario. Different microgrid operating and load conditions 

are also simulated in order to achieve a variety of realistic microgrid operating conditions. Different 

operating conditions are achieved by changing the solar irradiance and wind power generation 

profiles. Different load conditions are achieved by using constant load as well as dynamic loads. 

MATLAB scripts are used to read microgrid fault data and the Discrete Wavelet Transform is used 

to perform signal processing of eight extracted features, phase voltages, phase currents, zero sequence 

voltage, and zero sequence current. These extracted features are used as the inputs for training the 

machine learning algorithm. A performance analysis and assessment is performed on the machine 

learning models, which are then tested on a standard IEC microgrid.  
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1.5 Limitations 

The machine learning models and techniques proposed in this study was based on simulated data of 

real-world microgrid systems. While these models are useful in performing various analyses, they 

cannot be an actual substitute for real-world, measured data. Besides, there is a possible shortcoming 

of not being able to generate a simulation data set that exhaustively and truly represents all possible 

real-world scenarios. Besides, since machine learning methods may perform poorly when they 

encounter new cases or rare occurrences not learned in the training, simulated data may be inadequate 

for training commercialized machine learning models for real world systems.  

Machine learning models, particularly deep learning models are quite prone to overfitting. This occurs 

when a model performs well on training data but responds poorly to new and unseen data. In this 

work, the Levenberg Marquardt training algorithm was found to suffer from overfitting, hence the 

use of a regularisation algorithm to mitigate overfitting. 
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CHAPTER 2 

Literature Review 

2.1 Introduction 

Microgrids, which are characterized by the integration of DERs, loads, and energy storage systems 

are increasingly being adopted for the potential they bear in enhancing efficiency, reliability, and 

sustainability of overall power systems. However, their dynamic and intermittent nature presents huge 

challenges in terms of protection, fault detection, and classification. Conventional protection and 

detection schemes designed for traditional grids with large fault currents and unidirectional flow of 

power are often insufficient for microgrids which may exhibit low fault currents, bidirectional power 

flow, and operate in either islanded or grid connected mode. This literature will review the present 

state of research into machine learning algorithms for fault detection in microgrids, highlighting key 

methodologies, comparative studies, challenges, and any advancements. 

2.2 Machine Learning 

The use of machine learning in power systems has gained traction because of its ability to work with 

huge data sets and identify complex operational patterns. Machine learning is by large an umbrella 

term referring to a wide range of algorithms that make intelligent predictions based on a specific data 

set Nichols et al. [6]. With regard to microgrids, machine learning schemes are utilized to help 

enhance fault detection and classification by processing the diverse data that is generated from various 

measuring points and devices. Machine learning algorithms are largely classified into supervised, 

unsupervised, and reinforcement learning. 

• Supervised learning trains a machine learning model based on labelled data where the inputs

and expected outputs are known. Some common supervised learning ML algorithms include

Decision trees, Support Vector Machine (SVM), Neural Networks, and Random Forests.

Models developed from these algorithms learn from historical fault data and make relevant

predictions based on new and unseen data. More popular supervised learning tasks are

classification, which separates data and regression, which fits data Han [7].

• Unsupervised learning uses unlabelled data to find hidden patterns or intrinsic structures in

the input data without human interference. With this concept, popular learning tasks include

density estimation, clustering, feature learning, anomaly detection, etc.

• Reinforcement learning technique lets machines and software agents evaluate the optimal

behaviour in a specific environment or context to improve efficiency. This learning uses a
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penalty-reward approach to reward desired outcomes and penalize undesired outcomes Sarker 

et al. [8].  

2.3 Feature Extraction Techniques 

The effective detection of faults in microgrids heavily relies on the accurate extraction of key fault 

signatures and features from raw data. These fault features include current and voltage measurements, 

frequency, impedance, and the various sequence components. The Discrete Wavelet Transform 

(DWT) is a powerful feature extraction technique that decomposes signals into their time-frequency 

components to capture the transient behaviour characteristics of different faults in microgrids.  

2.4 Machine Learning Algorithms for Fault Detection 

Multiple machine learning algorithms have been explored and investigated for the detection and 

classification of faults in microgrids. This section will review the more commonly used ones, 

including their potential merits and limitations.  

• Support Vector Machines (SVM): SVMs have proven to be effective for classification

problems that are binary and of multiple classes. These algorithms work to identify the optimal

hyperplane that distinguishes various classes in the features. SVMs have demonstrated great

robustness and high accuracy in the detection of various fault types in microgrids.

• Random Forests and Decision Trees: The Random Forest machine learning method builds

on the idea of decision trees by combining a forest of decision trees working together into a

single model. Each decision tree that is within the model makes a prediction and the results

from the majority of trees become the result of the algorithm. The number and complexity of

trees can be altered to test the combination that provides the best results [9].

• Neural Networks (NN): The neural network algorithm is modelled based on the

communication of neurons in the brain, allowing it to detect relationships and patterns within

datasets. This algorithm is based on an input layer, hidden layers, and an output layer. Neural

networks were used for this study.
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2.5 Comparative Studies 

Multiple studies have explored the use of machine learning and analysed the performance of different 

schemes in the detection and classification of faults in microgrids.  

In [9], Deb & Jain investigate the detection and classification of faults in low-voltage microgrids 

using a hybrid machine learning approach that combined the cosine k-Nearest Neighbour and Bagged 

Ensemble Learner (BEL) algorithms. Local current and voltage measurements are used by BEL to 

detect faults while C-kNN performs classification as either pole-to-pole or pole-to-ground. While this 

method showed high accuracy in fault detection and a promise of efficiency in real-time applications, 

its effectiveness for larger, complex systems still needs further validation. 

Ahmadi et al. [10] introduced a novel method of detecting high impedance faults in power grids using 

Support Vector Machines (SVMs). The study focused on the identification of faults such as single 

line and double line in distributed generation system. Notable improvement in fault detection was 

observed through the differentiation of fault conditions from other fault-like phenomena while 

providing an enhanced response time when compared to methods like the Wavelet Transformation 

(WT) method. While this study showed the effectiveness of SVM in differentiating fault and non-

fault scenarios while considering variations in fault impedance, changing in microgrid operating 

conditions were not considered.  

The study by Ananth et al. [11] focused on the use of Generalized Regression Neural Networks to 

estimate the dynamic fault currents in microgrids under different operational conditions. The 

approach employed adopted well to different fault scenarios induced by the microgrid operating 

modes (islanded or grid-connected) and weather conditions that could affect power generation. The 

dynamic fault conditions influenced by different operating modes were considered for fault currents 

alone and no other parameters were put to test. 

Kanojia & Shah [12] presented a fault detection method using the Wavelet theory in grid-tied solar 

PV and battery-based AC microgrid. Particle Swarm Optimization for MPPT was proposed in the 

study to help improve power quality problems during faults. While real-time microgrid operating 

conditions with varying solar irradiances were studies for quick and accurate fault detection, different 

impedance levels were not considered for the various fault conditions. 

A method for diagnosing faults in islanded microgrids using the Support Vector Machine (SVM) and 

the Wavelet sliding window energy was presented by Han et al. [13]. By addressing the challenges 

of limited fault information and short fault dynamics, this study enhanced feature extraction by 

processing wavelet coefficients with the help of sliding windows. Transient characteristics were 
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analysed, and wavelet energy used as a fault feature vector to establish fast and accurate local 

microgrid fault diagnosis. While a higher diagnostic accuracy was achieved with incredibly short 

diagnosis times, only islanded operating mode of the microgrid was considered. 

Sarangi et al. [14] presented an intelligent microgrid protection scheme using the Fast Fourier 

Discrete Transform to extract differential and spectral energy features resulting from microgrid fault 

scenarios. Key features like minimum and maximum differential energy were calculated and used as 

inputs to a hybrid optimization algorithm that combined Kernel Extreme Learning Machine (KELM) 

and Particle Swarm Optimization (PSO) for accurate fault detection. Innovative signal processing 

was used as the primary method of fault detection. 

Sahoo & Samal [15] introduced a novel machine learning approach for online fault detection, 

classification, and prediction. Different fault types, including line to line and line to ground were 

detected and classified using a Deep Neural Network (DNN). Instantaneous fault parameters like 

voltage and current are processed in real time while data analysis was performed using techniques 

like SVM, Naive Bayes and logistic regression. While this study compared multiple machine learning 

methods, the consideration of varying fault impedance levels was not considered.  

2.6 Gap Statement 

Although numerous papers have tried to explore fault detection in microgrids, several gaps are still 

evident in most of the studies undertaken. A key shortcoming of most studies is the lack of 

consideration of various parameters that are pertinent in the operation of microgrids. The 

consideration of a combination of operational parameters like current, voltage, impedance, and 

frequency are crucial in the analysis of faults in microgrids. Accurate fault detection and analysis 

requires an analysis of the dynamic operating nature of microgrids. As a result, the impact of different 

microgrid operating conditions like changing solar irradiance and varying loads is not adequately 

investigated. Most of the studies in the literature explored consider stable microgrid operating 

conditions. The combination of various microgrid operational parameters and operating conditions in 

the investigation of faults can help engineers create resilient protection systems.  
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CHAPTER 3 

Methodology 

3.1 Microgrid Model Design and Development 

Building machine learning models for fault detection and classification in microgrids requires the 

generation of data to train and test the models. A more reliable way to obtain this data is by collecting 

field measurements from microgrid systems. However, this presents the risk of damage on microgrid 

equipment by short circuit currents and voltages due to intentional faults. As a result, the required 

dataset was produced through a numerical simulation of microgrids on MATLAB/Simulink. Different 

microgrid operating events are considered to ensure the machine learning algorithm works on a large 

dataset for reliability and to address the research gaps identified where studies focus on few 

parameters. The microgrid operating events are classified into no fault events (to represent normal 

operating conditions) and fault events. The fault event and no-fault event groups are summarized in 

Table 1 and Table 2. 

TABLE 1: Table Showing the Simulation Parameters, Fault Events, and the Number of Counts for 

Each When Fault Events Were Considered. 

Parameters Events Variations 

 Type of Fault Single line to ground: A to 

ground, B to ground and C to 

ground 

Double line to ground fault: AB 

to ground, AC to ground, and 

BC to ground 

Double line fault: Double line 

AB, Double line AC, Double 

line BC. 

Triple line fault: Triple line 

ABC and triple line ABC to 

ground fault. 

11 combinations 

Faulted lines Lines A, Line B, and Line C Multiple variations 

Fault distance (in kilometres) 0 – 50 kms Step size of 1 kilometre (50 

counts) 

Fault resistance From 0 to 𝑅𝑚𝑎𝑥  Ω High impedance faults and low 

impedance faults 

Operating mode Islanded mode and Grid-

connected mode 

2 variations 

Operating conditions Different solar irradiance 

profiles 

Multiple solar irradiance 

variations. 

Loading conditions Both constant and variable 

loads 

Multiple load variations 
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TABLE 2: Table Showing the Simulation Conditions for No Fault Events. 

Parameters Non-Fault Events Variations 

Operating modes Islanded mode and grid-

connected mode 

2 

Loading conditions Constant load and variable 

loads 

Step size of 1 kilometre (50 

counts) 

Operating conditions Multiple solar irradiance 

profiles 

Different fault resistances 

Loading conditions Both constant and variable 

loads 

Multiple load variations 

Distributed energy resources 

penetration level 

0 – 100% Multiple variations of 

penetration levels. 

3.2 Data Collection 

The voltage magnitude, current magnitude, and sequence components from the 6.6 kV point of 

common coupling bus were collected. The data sets were collected to cover a wide range of fault 

conditions, such as high fault impedance, and microgrid operating conditions (varying loads and 

changing irradiances on the PV module). As a result, 8 input features are extracted from the fault data 

obtained, which are the 3 phase voltages, 3 phase currents, the zero-sequence voltage, and the zero-

sequence current measurement. 

3.3 Data Pre-processing and Feature Extraction 

A crucial step in the automated identification of relationships and patterns in a huge dataset is the 

extraction of features that can be used for model building. A feature can be defined as a property that 

is derived from the raw data with the aim of deriving a suitable representation. As a result, feature 

extraction helps preserve discriminatory information and separate the factors of variation that are 

relevant to the learning task Goodfellow et al. [16]. The discrete wavelet transform is also used to 

extract the time-frequency domain characteristics from the phase voltage, phase current, and zero 

sequence component data and analyse the transients in the fault signals. The fault signals contain high 

frequency components that that are analysed for accurate representation of the fault characteristics. 

Due to the presence of noise, inconsistencies and outliers, data pre-processing was done to clean the 

data and remove any noise because of frequencies resulting from incipient faults. Normalization and 

scaling were also done to ensure the data was in a consistent format and scale.  
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Figure 3: The General Architecture of Feature Extraction from the Fault Signals. The Extracted Features Are 

Then Used as the Inputs to The Training Network. 

3.3.1 Discrete Wavelet Transform 

A discrete signal is transformed into its discrete wavelet equivalent using the Discrete Wavelet 

Transform (DWT), which provides a time-scale representation of a signal in in time-frequency 

characteristics. The Wavelet Transform (WT) is ideal in the analysis of nonperiodic signals since it 

located different frequency spectrum components of a signal over time. The criteria for using the 

discrete wavelet are that is should be oscillatory in nature, decay quickly to zero, and have a zero 

average value.  

In fault detection, the DWT provides a sparse representation of the transients in the fault signals. The 

WT of a continuous signal 𝑥(𝑡) is expressed as: 

𝑊𝑇(𝑎, 𝑏) =
1

√𝑎
∫ 𝑥(𝑡)𝜓

∞

−∞

(
𝑡 − 𝑏

𝑎
) 𝑑𝑡      (1) 

Where, a is the scaling constant, b the shifting constant, and 𝜓 is the wavelet function. 

As a result, the DWT is expressed as: 
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𝐷𝑊𝑇(𝑚, 𝑘) =
1

√𝑎0
𝑚

∑ 𝑥(𝑛)𝑔

𝑛

(
𝑘 − 𝑛𝑎0

𝑚

𝑎0
𝑚 )  (2) 

Where x(n) is described as the mother wavelet and a and b are a function of an integer parameter m; 

𝑎 = 𝑎0
𝑚 and 𝑏 = 𝑛𝑎0

𝑚

The DWT utilizes multiresolution analysis which breaks down the original signal into the 

approximate and detailed (low-frequency and high-frequency) components with different resolution 

scales with the help of a high pass and low pass filter. Both high-frequency and low frequency signals 

undergo further decomposition through a multistage filter bank as shown in Figure 3.  

Figure 4: Signal Decomposition Tree Through a Filter bank Using the Discrete Wavelet Transform. 

The extraction of features using the Discrete Wavelet Transform into the time-frequency 

characteristics is shown in Appendix 1. 

In this work, the Discrete Wavelet Transform (DWT) is used to convert the time domain fault signals 

into wavelets (small waves) that have different frequency bands. The decomposition tree in Figure 4 

comprises two filters at each stage, a high pass filter (Hi) and a low pass filter (Lo) to divide the signal 

into varying frequency bands. The Discrete Wavelet Transform of the signal at each stage separates 

the fault signatures into low frequency components 𝐴3,Approximation Coefficient and high 

frequency components 𝐷3, known as the Detailed Coefficient Orlando et al. [17]. The raw fault 

signatures obtained as shown in Appendix 1 are decomposed and divided into 8 levels of 

segmentation, which represent the 8 parameters that are needed to analyse the nature of the fault 

events. The 8 features extracted from the raw fault data are then used for machine learning training.  
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3.4 Machine Learning Training and Model Building 

During machine learning model building, the extracted features are used by the learning algorithm to 

identify relationships and patterns that are relevant to the respective learning task. Each family of 

learning algorithms uses different mechanisms for purposes of analytical model building. In 

classification models, the learning algorithms learn by splitting the data records into increasingly 

homogenous portions Janiesch et al. [18]. In this work, the learning algorithm was trained using the 

recorded fault voltages, currents and zero sequence components collected from the simulation of 

different microgrid operating conditions. The training data is composed of eight inputs, which include 

the fault voltages and currents of each of the three phases and the zero sequence currents and voltages. 

For normal, no-fault operating conditions, the target output is set to 0 while a target output of 1 is 

used to allocate the fault conditions. In this case, a total of 6,000 observations are made for the 8 

different fault conditions. In this work, training and model building was done using the MATLAB 

Neural Network Fitting and Neural Network Pattern Recognition tools. Two training algorithms were 

then incorporated into these tools, i.e. Bayesian Regularization and Levenberg Marquardt. 

In this paper, the multilayered feedforward neural network is trained with the Bayesian Regularization 

algorithm to accurately detect and classify three phase faults. Network training in Bayesian 

Regularization algorithm uses Jacobian calculations and training continues until the network makes 

good generalizations or until any further training doesn’t result in improvements in the network’s 

generalization. Through Bayesian Regularization, both overtraining and overfitting are avoided since 

the network trains on weights or effective network parameters while ignoring any irrelevant 

parameters. The training objective function used by Bayesian Regularization is shown in equation 1, 

with 𝑆𝑤 being the sum of squared weights and 𝑆𝑒 the sum of the squared network errors.  

𝐹(𝑤) = 𝛼𝑆𝑤 + 𝛽𝑆𝑒

During training, the combination of the squared network errors and weights is reduced until an 

optimal combination is achieved, that allows the neural network to achieve a good generalization. 

Training stops when a good generalization is achieved. A simplified machine learning script used in 

this work is shown in Appendix 3. 
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3.5 Performance Assessment 

For an assessment of the machine learning model quality, different aspects are considered, including 

the performance, computational resources, and the interpretability. Performance-based metrics are 

used to make an evaluation of how the model accurately satisfies the objective specified by the 

learning task. Regression models can be evaluated by measuring estimation errors like the root mean 

square error (RMSE) or mean absolute percentage error (MAPE). To assess the performance of the 

training algorithms, critical aspects like the confusion matrix, performance validation plot, and the 

mean square error (through the regression plot) are generated and analysed to establish the 

relationship between the real and predicted values. To validate the suitability of machine learning 

prediction models, a comparison was made to models with a different training algorithm. 

3.6 Comparison of Training Algorithms 

To confirm and validate the effectiveness of machine learning for fault detection in microgrids, the 

outcomes of both training algorithms (Levenberg Marquardt and Bayesian Regularization) are 

compared in terms of their achieved performances. The comparison of the training algorithms is done 

by comparing the regression and mean square error as well as the performance validation plots of the 

trained models. A comparison of these performances is shown in Figure 5 and Figure 6. This 

comparison of both training algorithms seeks to provide comparative insights into the accuracy and 

effectiveness of both algorithms and provide a clear picture of the best performing model for purposes 

of fault detection in microgrids.   
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CHAPTER 4 

Results and Discussion 

Within the proposed machine learning framework for detecting faults in microgrids, the performance 

and effectiveness of the algorithms was analysed, and the developed machine learning model tested. 

The performance of the algorithms with respect to their training efficiency was assessed using 

performance validation plots, regression plots and a confusion matrix. 

Performance Validation Plot 

The variation of the Mean Square Error versus the number of epochs for training, validation and 

testing of the data is observed as shown in Figure 5. The mean Square Error values are observed to 

decrease gradually to indicate better achieved accuracy for the training. The gradual decrease in the 

MSE values is due to the continuous update of the weights after every epoch. The errors start high 

then continue to decrease until no further training continues, or the model stops generalizing any 

further. 

Figure 5: The Performance Validation Plots for the Bayesian Regularization and Levenberg Marquardt 

Algorithms. The Bayesian Regularised Algorithms Takes 1000 Epochs (Iterations) to Converge While the 

Levenberg Marquardt Algorithm Converged in 416 Iterations. 
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Regression Plot 

The regression plots in machine learning provide a visual representation of the relationship between 

the predicted and actual values. They assess a machine learning model’s performance on how the 

predictions align with the actual outcomes. The data follows closely along the diagonal line, which 

indicates a higher accuracy of the learning model. The Bayesian Regularization algorithm has a 

regression value of 0.99979 while Levenberg Marquardt achieves a regression of 0.98071. The 

Bayesian Regularised model achieves better accuracy than the Levenberg Marquardt algorithm. 

Figure 6: Regression Plots for the Bayesian Regularization Trained Algorithm and the Levenberg Marquardt 

Training Algorithm. 
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Algorithms in Action: Single Line A to Ground Fault 

 

Figure 7: A Comparison of the Fault Detection and Classification Results for Bayesian Regularization and 

Levenberg Marquardt Algorithms. Both Algorithms Exhibit Accurate Fault Detection and Classification 

Abilities for Single Line A to Ground Faults but Levenberg Marquardt Algorithm-Trained Network Suffers 

from Overfitting and Detects Undesired Noises (Circled in Red). 

Bayesian Regularization Algorithm Learning Outcome 

Levenberg Marquardt Algorithm Learning Outcome 
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For the single line A to ground fault occurring in the microgrid, the fault parameters were depicted 

by a high phase current and reduced phase voltage in the affected phases. With different fault events 

simulated, the dataset obtained comprised different fault signature patterns that were distinct to each 

three-phase fault. These patterns were then used to train and develop a machine learning model based 

on the Bayesian Regularization and Levenberg Marquardt algorithms. The machine learning model 

was then tested using a standard IEC microgrid for different three phase faults. From Figure 7, 

different machine learning model outcomes were obtained for the different training algorithms used. 

The machine learning model outcomes are displayed in a visual dashboard with a heatmap color-

coded in blue, green, and yellow to show the extent of the fault. Blue and green are in the no-fault 

region (Logic 0) while yellow is the fault region (Logic 1). The x-axis of the individual plots 

represents time while the y-axis is encoded in Logic 0 or Logic 1 to represent the presence of a fault 

or no-fault. During a fault event, the fault detection model jumps from Logic 0 to Logic 1 between 

the timeframe of 0.02 seconds and 1 second. In the same instance, the classification model would 

simultaneously work to decipher the type of fault and make the classification. In this case, for the 

presence of a single Line A to ground fault, the fault detection model decodes the fault signature and 

uses Logic 1 for the period of the fault. The classification model then performs a single-handed 

classification to intelligently distinguish the fault from all others.  
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Algorithms in Action: Double Line AB Fault 

 

Figure 8: A Comparison of the Fault Detection and Classification Results for Bayesian Regularization and 

Levenberg Marquardt Algorithms. Both Algorithms Exhibit Accurate Fault Detection and Classification 

Abilities for Double Line AB Faults but the Levenberg Marquardt Algorithm-Trained Network Suffers from 

Overfitting and Detects Undesired Noises (Circled in Red). 

Bayesian Regularization Algorithm Learning Outcome 

Levenberg Marquardt Algorithm Learning Outcome 
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The IEC microgrid under study is then subjected to a double line AB fault and the instantaneous 

voltage, current and fault signatures obtained from the microgrid’s point of common coupling. From 

the results obtained in Figure 8, the phase voltage for the two faulted phases reduced to nearly 1800 

V while the fault current increases drastically for the affected phases. The output of the fault detection 

machine learning models accurately determines the presence of a fault condition by switching 

between Logic 0 to Logic 1 for the fault event period, between 0.02s and 0.1s. When a presence of a 

fault is detected, the classification model extracts the fault signal features from the point of common 

coupling to accurately classify the type of fault. From Figure 8, the outputs from both machine 

learning models clearly indicate and predict the presence of a fault as a double line fault by switching 

from Logic 0 to Logic 1 and the non-faulted phases remaining at Logic 0 all through.  

A comparison of both detection and classification schemes shows a stack contrast with respect to the 

detection of undesired noise. Both the Bayesian Regularization and Levenberg Marquardt algorithms 

accurately detect and classify the double line AB fault. However, the Levenberg-trained models is 

observed to detect undesired noises, as circles in red. These are undesired fault signatures detected, 

and which could present false signals. The detection of the undesired noises in the fault signals is 

attributed to the nature of the Levenberg Marquardt algorithm which tends to have a limitation with 

accuracy when it is presented with a new event.  
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Algorithms in Action: Double Line BC Fault 

 

Figure 9: A Comparison of the Fault Detection and Classification Results for Bayesian Regularization and 

Levenberg Marquardt Algorithms. Both Algorithms Exhibit Accurate Fault Detection and Classification 

Abilities for Double Line BC Faults but the Levenberg Marquardt Algorithm-Trained Network Suffers from 

Overfitting and Detects Undesired Noises (Circled in Red). 

Bayesian Regularization Algorithm Learning Outcome 

Levenberg Marquardt Algorithm Learning Outcome 
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The IEC microgrid under study was then subjected to a double line BC fault condition. The 

instantaneous voltage and current waveforms recorded from the point of common coupling of the 

microgrid show a decrease in the voltage waveform for the affected phases while the current for the 

affected phases increased. The machine learning model trained using the fault signal parameters and 

features extracted from the point of common coupling was then implemented on the test IEC 

microgrid to examine its ability to detect and classify the fault based on the extracted fault signatures. 

From Figure 9, different machine learning model outcomes were obtained for the different training 

algorithms used. The machine learning model outcomes are displayed in a visual dashboard with a 

heatmap color-coded in blue, green, and yellow to show the extent of the fault. Blue and green are in 

the no-fault region (Logic 0) while yellow is the fault region (Logic 1). The x-axis of the individual 

plots represents time while the y-axis is encoded in Logic 0 or Logic 1 to represent the presence of a 

fault or no-fault. During the double line BC fault event, the fault detection model accurately identifies 

the presence of a fault by switching from Logic 0 to Logic 1 between the timeframe of 0.02 seconds 

and 1 second. In the same instance, the classification model simultaneously works to decipher the 

type of fault and make the classification. In this case, for the presence of a double Line BC fault, the 

fault detection model decodes the fault signature and uses Logic 1 for the period of the fault. The 

classification model then performs a single-handed classification to intelligently distinguish the 

nature of the three-phase fault from all others.  

A comparison of both detection and classification schemes shows a stack contrast with respect to the 

accuracy of their fault classification capabilities. Both the Bayesian Regularization and Levenberg 

Marquardt algorithms accurately detect and classify the double line BC fault. However, the 

Levenberg-trained models is observed to detect undesired noises, as circles in red (for the fault single 

Line B to ground). These are undesired fault signatures detected, and which could present false 

signals. The detection of the undesired noises in the fault signals is attributed to the nature of the 

Levenberg Marquardt algorithm which tends to have a limitation with accuracy when it is presented 

with a new event. This characteristic of the machine learning algorithm is known as overfitting, where 

a machine learning algorithm learns properly but fails to make accurate predictions when presented 

with a new data set.  
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Algorithms in Action: Triple Line to Ground Fault 

Figure 10: A Comparison of the Fault Detection and Classification Results for Bayesian Regularization and 

Levenberg Marquardt Algorithms. Both Algorithms Exhibit Accurate Fault Detection and Classification 

Abilities for Triple Line To Ground Faults but the Levenberg Marquardt Algorithm-Trained Network Suffers 

from Overfitting and Detects Undesired Noises (Circled in Red). 

Bayesian Regularization Algorithm 

Levenberg Marquardt Algorithm 
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To further confirm and validate the accuracy of machine learning in the detection and classification 

of three-phase faults, the IEC microgrid under study was then subjected to a triple line ABC to ground 

fault condition. The instantaneous voltage and current waveforms recorded from the point of common 

coupling of the microgrid show a decrease in the voltage waveform for the affected phases while the 

current for the affected phases increased. The machine learning model trained using the fault signal 

parameters and features extracted from the point of common coupling was then implemented on the 

test IEC microgrid to examine its ability to detect and classify the fault based on the extracted fault 

signatures.  

From Figure 10, different machine learning model outcomes were obtained for the different training 

algorithms used. The machine learning model outcomes are displayed in a visual dashboard with a 

heatmap color-coded in blue, green, and yellow to show the extent of the fault. Blue and green are in 

the no-fault region (Logic 0) while yellow is the fault region (Logic 1). The x-axis of the individual 

plots represents time while the y-axis is encoded in Logic 0 or Logic 1 to represent the presence of a 

fault or no-fault. During the triple line ABC to ground fault event, the fault detection model accurately 

identifies the presence of a fault by switching from Logic 0 to Logic 1 between the timeframe of 0.02 

seconds and 1 second. In the same instance, the classification model simultaneously works to decipher 

the type of fault and make the classification. In this case, for the presence of a triple Line ABC to 

ground fault, the fault detection model decodes the fault signature and uses Logic 1 for the period of 

the fault. The classification model then performs a single-handed classification to intelligently 

distinguish the nature of the three-phase fault from all others.  

A comparison of both detection and classification schemes shows a stack contrast with respect to the 

accuracy of their fault classification capabilities. Both the Bayesian Regularization and Levenberg 

Marquardt algorithms accurately detect and classify the triple line ABC to ground fault. However, 

the Levenberg-trained models is observed to detect undesired noises, as circles in red (for the fault 

double Line BC to ground). These are undesired fault signatures detected, and which could present 

false signals. The detection of the undesired noises in the fault signals is attributed to the nature of 

the Levenberg Marquardt algorithm which tends to have a limitation with accuracy when it is 

presented with a new event. This characteristic of the machine learning algorithm is known as 

overfitting, where a machine learning algorithm learns properly but fails to make accurate predictions 

when presented with a new data set.  
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Key Findings 

Comparative analysis of proposed machine learning algorithms for fault detection and 

classification. 

From the results shown in Figure 7, Figure 8, Figure 9 and Figure 10, the accurate prediction and 

classification abilities of the Bayesian Regularization and Levenberg Marquardt algorithms are 

compared. Different types of three phase faults were introduced and the two trained learning models 

were used to examine how accurately they would detect and classify the fault. As observed, both the 

Bayesian Regularization and Levenberg Marquardt training algorithms accurately detected the single 

line to ground fault. The presence of the fault is confirmed by the fault detection line moving from 

Logic 0 to Logic 1 for the period of the fault (from 0.02 seconds to 0.1 seconds). Both algorithms 

also accurately classify the three-phase fault as a single line to ground fault as displayed on the output 

windows.  

It was also observed that some undesired spikes and noises were detected in other fault detection 

display outputs, as highlighted in red. The undesired outliers were witnessed in the detection and 

classification scheme trained using the Levenberg Marquardt algorithm. These undesired fault 

detection samples indicated the algorithms susceptibility to overfitting and false positives when tested 

using new variables. 

Bias and Drift in Data 

In analytical model building, the awareness of the presence of cognitive biases that were introduced 

into the machine learning models is also considered. These are biases that the model may heavily 

adopt to an extent that the models exhibit the same induced tendencies present in the data or even 

amplify them Fuchs, D [19]. Cognitive biases are illogical beliefs or inferences that people may adopt 

as a result of flawed reporting of facts or flawed decision heuristics Howard et al. [20] In this work, 

the presence of biases in the results was witnessed in the machine learning models that were trained 

using the Levenberg Algorithm. These biases presented themselves in the form of undesired noises 

detected by the learning model.   

Overfitting 

Overfitting is a common issue in machine learning, where the machine learning model learns too 

complex and fails to fit the training data well. This often results in a poor performance on new, 

unseen data. In this work, the machine learning model trained using the Levenberg Marquardt 

algorithm suffered from overfitting. This was evident due to the model’s ability to learn to 

recognize outliers or noise in the training dataset as important analytical features whereas they were 

not. This is an undesired characteristic in machine learning that could result in false positives.  
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CHAPTER 5 

Conclusion and Future Work 

Conclusion 

The objective of this work was to develop a machine-learning based fault detection and classification 

scheme for microgrids. Three-phase fault scenarios were obtained under different microgrid operating 

conditions, and the discrete wavelet transform was used to extract the time-frequency characteristics 

of the raw data. A total of 8 distinct features were extracted from the data set and used as the input 

variables for the purpose of machine learning. The Bayesian Regularization algorithm was used for 

model training and its performance assessed based on the regression value and the mean square error. 

The performance, fault detection accuracy, and prediction capabilities of the Bayesian Regularization 

algorithm were compared to the Levenberg Marquardt training algorithm for the same input variables 

and hidden layers. 

The detection and predictive performance of both training algorithms was analysed, and the Bayesian 

Regularization training algorithm was found to provide better accuracy and performance. The error 

rate displayed by the Bayesian Regularization algorithm was low and the algorithm was found to 

make accurate predictions and better generalizations even with the introduction of new distinct 

variables. From the comparative analysis, it can be concluded that the Bayesian Regularization 

training algorithm provides better machine learning performance for fault detection and classification 

in microgrids and is a suitable choice where high accuracy is needed. However, the training algorithm 

is time-consuming and may not be appropriate for use where training speed is a huge constraint. The 

Levenberg Marquardt algorithm would be a better choice for time-constrained training situations. 

The findings of this work demonstrated the huge potential for the use of machine learning in 

microgrids for monitoring and predicting the presence of faults. This opens up the opportunity for the 

development of automated monitoring systems and decision support tools that can help engineers in 

predicting and detecting fault events in microgrid systems. Two machine learning algorithms have 

been used to assess the effectiveness of their predictive capabilities. Evaluating their performance, it 

was discovered that both algorithms used in this study achieved performance assessment values that 

were above the optimal threshold. Notably, the Bayesian Regularization algorithm emerged as the 

most accurate model for the detection and classification of faults. 

The practical significance of the study conducted in this paper lies in its ability to aid in the early 

detection of faults in microgrids, provide a more targeted prevention strategy, and guide more precise 
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interventions. These implications have a potential to immensely enhance the fault diagnosis outcomes 

for microgrids by effectively addressing the challenge of accurate detection due to the dynamic 

operating nature of microgrids. As a result, this study introduces new perspectives to the field of fault 

detection in microgrids through its hybrid innovative approach, incorporation of a wide range of 

parameters, the development of accurate prediction models, and proposal for individualized 

implementation. 

By incorporating different machine learning algorithms, this study provides a comprehensive and 

robust investigation of the analytical and predictive capabilities of machine learning to reveal hidden 

patterns and relationships in data that may not be easily identified through conventional statistical 

methods.  

Future Works 

The application of machine learning techniques and models in the detection and classification of 

faults in microgrids paves the way for the adoption of data-driven methods in decentralized energy 

systems. While this work leverages the implementation of machine learning models, some key areas 

not addressed by this work could provide a direction for future work. There areas are as follows: 

Data management 

The adoption of data driven methods and techniques presents the challenge of efficiently managing 

transmission of operation and fault data from smart and intelligent devices. While existing techniques 

provide approaches for maximizing network traffic, more research needs to be done on how rapid 

configuration modifications can impact the integrity and accuracy of the data Gorban and Andrei 

[21].  

In addition, microgrids of the future will depend on robust communication network for efficient 

operation, optimal use, and protection. Due to the extensive use of communication networks, there is 

a need to perform more research into the effect of communication latencies and noise on overall 

microgrid protection.  

Transfer Learning 

Training machine learning models for fault detection and classification in power systems relies on 

enormous simulation data. The generation of such data points may be difficult to achieve with real-

world power systems. As a result, machine learning training based on simulation data may lead to a 

deterioration in accuracy of detection. As a result, transfer learning could be explored as a possible 

solution to this problem. Transfer learning is an improved way of learning a new task through 
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knowledge transfer from a related task that has already occurred. Transfer learning is a two-step 

approach; the first is training a model based on a source task and data set followed by the transfer of 

the learned knowledge and features to a new model to help with training for a new data set Fatemeh 

et al. [22]. Transfer learning has been found to enhance the learning speed of models and reduce the 

amount of training data needed while providing notable improvements in accuracy.  

IoT and Edge Computing Integration 

The continued proliferation of Internet of Things (IoT) devices and an adoption of edge computing 

provides more opportunities for enhancement of fault detection systems for microgrids. IoT can help 

process data closer to its source, hence reducing problems with latency Kumar & Singh [23]. Besides, 

IoT devices can provide a rich and comprehensive data set for the training and validation of machine 

learning models.  
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APPENDICES 

APPENDIX 1: FEATURE EXTRACTION IN ACTION FROM 

MICROGRID FAULT SIGNAL SIGNATURES. 
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APPENDIX 2: SIMPLIFIED MACHINE LEARNING PROCESS 

Detection Model 
Classification Model 
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APPENDIX 3: MACHINE LEARNING TRAINING SCRIPT



35 




