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Abstract

To capture colour images, three primary colours at each pixel have to be acquired.

To reduce size and cost, a single image sensor is normally used with a Colour Filter

Array (CFA) which covers this single sensor to measure only one of the three

primary colours at each pixel location. The CFA image is then used to produce

a full-colour image by an interpolation process, known as CFA demosaicking, to

estimate the two missing colour components of each pixel. However, some image

processing algorithms, including demosaicking, produce colour artefacts in the

output images, and a post-processing method that removes those colour artefacts

is desired. To assess the performance of processing algorithms, Image Quality

Assessment (IQA) tools are used to measure the accuracy of the output colour

images.

In this thesis, the first aim is to develop a demosaicking algorithm with high

colour accuracy for newly acquired images. The second aim is to detect and

remove colour artefacts in already demosaicked or processed images, and the

third aim is to develop an IQA method to quantify visible colour artefacts in

processed images.

We develop a novel demosaicking technique that simultaneously demosaics the

three colour planes as a solution to problems with existing demosaicking tech-

niques that demosaic the three colour planes sequentially, which unknowingly

produces colour artefacts until the demosaicking process is completed. As a con-

sequence of our simultaneous interpolation of three colour planes, visible colour

artefact pixels can be identified and avoided from selection during the demosaick-

ing process. Our proposed simultaneous demosaicking method can produce high

colour accuracy in the output demosaicked images compared with other sequen-

tial demosaicking methods. Several RGB colour values will be simultaneously

created for each pixel location, and an optimal RGB colour value will be selected

based on the colour-line property. It has been shown that our novel demosaicking

method outperforms other benchmarking methods by producing highly accurate

demosaicked images with minimal visible colour artefacts.

Since image processing algorithms, such as demosaicking and denoising, will pro-

duce visible colour artefacts in the output images, it is desirable to have a post-

processing technique that removes those colour artefacts from the processed im-

ages. However, most existing post-processing techniques such as image denoising,

are unable to effectively filter out colour artefacts since colour artefacts do not

vi
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exhibit common noise characteristics and are more feature dependent, localized

and non-randomly distributed. To achieve the second aim of this thesis, a novel

blind colour artefact detection technique is developed to detect colour artefacts

without the original image to reference as the ground truth, which is not available

in practice. Incorporating our blind detection technique, we developed a novel

technique to correct colour artefacts by re-mapping their colours based on the

neighbouring true colour pixels in order to blend them with the neighbouring

colour pixels. It has been shown that the proposed methods can improve the

visual quality of the processed images.

As the majority of Image Quality Assessment (IQA) methods measure the over-

all image quality including all visible and non-visible errors, they often do not

correlate well with visual assessment since only visible errors are the main con-

tributing factor. In order to meet our third aim, a novel IQA method is developed

to quantify visible colour artefacts alone in a processed image. It has been shown

that our proposed IQA method correlates well with visual perception of colour

artefacts and is virtually independent of other errors, such as errors due to image

blurring.

All in all, the main original contributions to knowledge made in this thesis include:

(a) a novel proposed simultaneous demosaicking method that can produce high

quality and colour accurate demosaicked images that preserves sharp edges and

fine details; (b) a novel blind colour artefact detection without ground truth; (c)

a novel method for the removal of colour artefacts, that incorporates our blind

detection method, to improve the visual quality of images, and (d) a novel image

quality assessment method that can quantify only visible colour artefacts.
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Chapter 1

Introduction

1.1 Digital Camera

A highlight of the mid-1990s was the introduction of digital cameras. These

have become one of the most frequently used devices in consumer electronics

[1]. A digital camera acquisition system uses image sensors to acquire scenes

by sampling a digital signal created by light impacting the sensor [2–5]. The

most popular kinds of image sensors in digital cameras are charge-coupled devices

(CCD) and complementary metal-oxide silicon (CMOS). CCD and CMOS sensors

are monochromatic devices that can only measure the intensity of incident light.

A colour filter is placed on the top of each sensor to record colour information [3,6].

In order to acquire a colour scene using a digital camera, three separate image

sensors can be used with each sensor capturing one primary colour such as Red

(R), Green (G) and Blue (B), as shown in Figure 1.1(a), in order to assemble a

colour pixel and measure a full-colour image [2, 3, 5, 6]. In a three-sensor digital

camera, the incoming light is split into three optical paths and projected onto

each of the three sensors so that each sensor acquires one of the three primary

colours (R, G and B). A full-resolution colour image is then formed. However,

a three-sensor digital imaging system has several disadvantages. It is enormous

1
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Figure 1.1: Main digital camera types, (a) three sensors digital camera and (b)
single-sensor digital camera [1].

and cannot be embedded in small electronic imaging devices. It also requires a

beam-splitter to separate the incoming light onto the three sensors, which must

be aligned precisely to satisfy the accurate optical alignment. Moreover, a three-

sensor system is generally more expensive and it is not optimum in terms of cost

and resolution.

To overcome the disadvantages of a three-sensor imaging system, one image sensor

is commonly used in digital cameras to reduce their size, complexity and cost

[2–4,6,7]. For a single sensor imaging system, the incident light is passed through

an optical system to only one sensor at each pixel, as shown in Figure 1.1(b). As

image sensors are monochromatic, a full-colour image cannot be captured directly.

In order to capture a full-colour image with a single sensor, a mosaic pattern of

colour filters, a called Colour Filter Array (CFA), is placed in the front of the

sensor so that only one of the three primary colours R, G or B will be captured

at each pixel location [8]. While many CFA patterns have been proposed [9], the

Bayer CFA pattern [8] is commonly used in single-sensor imaging system [10].

As shown in Figure 1.2, the green colour is measured on a quincunx form and

occupies half of the CFA image area. The red and blue colours are measured in a

rectangular form with each occupying one quarter of the entire CFA image. The

green colour is recorded for double the rate of the red and blue colour components
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Figure 1.2: CFA Bayer pattern used in a single-sensor imaging system (US
Patent3971065).

due to the human visual system being most sensitive at the green wavelength [8].

The Bayer CFA pattern also utilises the fact that the luminance response of

human eyes is close to the frequency response of the green colour [11].

The raw image recorded by the single image sensor covered by a CFA filter is

known as a CFA mosaic image. As shown in Figure 1.2, each pixel location in a

CFA mosaic image holds only one of the three primary colour components and is

missing the other two colour components. To reconstruct a full-colour image from

a CFA mosaic image, these two missing colour components at each pixel location

must be interpolated. This process is known as CFA demosaicking [3, 12,13].

1.2 Colour Filter Array Demosaicking

CFA demosaicking is a digital interpolation process to obtain a full-colour image

from a one colour plane CFA mosaic image captured by a single image sensor. It

is the core of the image processing pipeline in a single-sensor imaging system [4,7].

Figure 1.3 shows the main steps of the image processing pipeline used in a single-

sensor imaging system. Figure 1.4 shows an example of a CFA mosaic image and

Figure 1.5 gives the output demosaicked full-colour image.
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In the literature, various demosaicking methods have been developed to recon-

struct a full-colour image since the 1970s [12] with different interpolation tech-

niques to estimate the missing colour values at each pixel location. In general,

these demosaicking approaches can be classified into heuristic and non-heuristic.

Non-heuristic demosaicking approaches attempt to address the demosaicking prob-

lem based on mathematical optimisation. Several non-heuristic demosaicking ap-

proaches have been proposed in [10, 11, 14, 15] as examples. Gunturk et al. [11]

have proposed a non-heuristic demosaicking method using inter-channel correla-

tion. In this method, the Projection-Onto-Convex-Sets (POCS) scheme is applied

to preserve the output demosaicked image within the defined constraint sets. An-

other example of a non-heuristic approach is demosaicking by successive approx-

imation [15], which is based on colour difference between the green and the red/

blue colour planes with the missing colour components iteratively approximated.

Zhang and Wu [14] also take advantage of the green-red and green-blue differ-

ence signals using the Linear Minimum Mean Square Error estimation (LMMSE)

method to determine the missing colour components.

Despite these examples, most extant demosaicking methods are heuristic ap-

proaches that are developed to solve the demosaicking problem based on a rule-

of-thumb scheme to determine the best estimation [16, 17]. Nearest neighbour,

bilinear interpolation and bi-cubic interpolation are the earliest and simplest

heuristic demosaicking methods [16]. These demosaicking methods are highly

computationally efficient, but they produce severe colour artefacts in their out-

put demosaicked images. For example, bilinear interpolation demosaics the three

colour planes individually and, in each colour plane, the missing colour values are

determined by averaging its neighbour colour values. While this method is easy to

implement and is computationally efficient, the output demosaicked images have

severe visible colour artefacts, especially around edges because of the effects of

low-pass filtering (averaging). Figure 1.6 shows examples of demosaicked images
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Figure 1.4: Example of a CFA mosaic image captured by a single-sensor imaging
system.

Figure 1.5: Example of a demosaicked image interpolated by one of the demo-
saicking methods.



CHAPTER 1. INTRODUCTION 7

produced by bilinear interpolation using images from the Kodak [18], IMAX [19],

Laurent Condats (LC) [20] and Berkeley segmentation [21] image datasets. As

shown in Figure 1.6, different degrees of colour artefacts are generated in these

images, with significant colour artefacts produced around edges and fewer in

smooth regions. Consequently, these kinds of simple demosaicking methods fail

to preserve image details such as edges and fine features.

Advance heuristic demosaicking techniques have been designed to produce better

quality demosaicked images by exploiting more information from the three colour

planes such as the spectral and spatial correlations among neighbouring pixels [3,

13,17,19,22–42]. As a result, better demosaicking performance has been achieved.

Despite a significant number of advanced demosaicking methods being developed,

interpolation errors are often produced in output demosaicked images. One rea-

son is that demosaicking is an ill-posed problem [12]. An insufficient information

is another problem of demosaicking since single-sensor imaging systems acquire

only one-third of the information available. The output demosaicked image is re-

constructed from only 50% of green colour values, and 25% of red and blue colour

values [8]. An incorrect estimation of the missing colour values made by demo-

saicking will manifest themselves as colour artefacts in the output demosaicked

images.
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Figure 1.6: Example of bilinearly demosaicked images from (a) Kodak, (b) IMAX,
(c) LC, and (d) Berkeley image datasets.



CHAPTER 1. INTRODUCTION 9

In addition to these issues of interpolation method, existing demosaicking meth-

ods have been developed based on sequential interpolation for the three colour

planes. They usually interpolate the green colour plane first, as it has twice

the information of the other colour planes, followed by the red and blue planes.

Unfortunately, colour artefacts still exist in their output demosaicked images as

a result of this sequential interpolation [12, 13, 43]. One of our aims is to de-

velop a novel demosaicking method that avoids the production of colour artefacts

by interpolating the three colour planes simultaneously, and this is described in

Chapter 2.

1.3 Colour Artefacts

Colour artefacts are errors commonly produced by colour image processing algo-

rithms, including CFA demosaicking methods [3,13,14,17,19,22–33,35–42,44–48],

image denoising [49–56], and image compression [57–60]. They are the undesir-

able appearance of colours in the output processed images, manifest as a distinct

visual colour variation from their original and surrounding colours [61]. Colour

artefacts greatly affect the visual quality of colour images.

Demosaicking is an image processing algorithm that can introduce colour artefacts

in the output demosaicked images since it involves estimating the missing colour

information that is comprised of 50% of the green colour plane and 75% for the red

and blue colour planes of a CFA image [62,63]. As a consequence, undesired colour

artefacts are produced in the output demosaicked images. The most common

visible colour artefacts produced by demosaicking algorithms are zipper effects

and false colours [3, 13].

Zipper effects are visible colour artefacts that appear as sudden and unnatural

changes in the intensities of the pixels and as colour differences among the neigh-

bourhood pixels [25]. They are more pronounced around edges manifesting as
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an on-off pattern [64]. Figure 1.7 shows an example of zipper effect in the de-

mosaicked image in (b), which is bilinearly interpolated, of the original image

in (a). This example contains image regions with edges at various orientations.

The failure of the demosaicking method to correctly interpolate edge orientation

results in the generation of zipper effects. In general, a main cause of zipper

effects is incorrect interpolation direction [3, 13, 15]. Interpolation across edges

rather than along them tends to produce incorrect colour values due to averaging

of neighbouring colour values across the edges of the image. This is shown in

Figure 1.7(b).

The second type of visible demosaicking colour artefact is false colours [3, 13].

False colours are identified as noticeable colour errors or the unusual appearance

of colours arising close to object boundaries and fine details in the output demo-

saicked images. An example of false colours is shown in Figure 1.8 where (a) is

the original image and (b) is the output demosaicked image produced by one of

the demosaicking methods. As shown in Figure 1.8(b), false colours appear as

steep edges in the roof region. In general, false colours often appear at colour

edges where the hue assumption (described in Section 5.2.1) does not hold [3].

Image denoising is another type of image processing method that can also produce

visible colour artefacts in the output denoised images [49–56, 65, 66]. In general,

the most common type of visible colour artefact created by denoising is colour

smearing [51]. Figure 1.9 shows an example of smearing colour artefacts generated

in the image (b), which is denoised using CBM3D denoising techniques [49]. By

comparing (b) with the original (a), severe smearing colour artefacts are observed

such as the pink and green colour artefacts at the edges of the building and the

white boat and in the regions of the river bank and car park. In general, most

image denoising techniques will produce visible colour artefacts [67].

Another image processing method that produces colour artefacts is image com-

pression [68]. The most common type of colour artefacts produced by image
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compression is colour bleeding [58–60, 69]. Several studies define colour bleeding

as dispersion of the colour information across edges and object boundaries in the

output compressed images [59, 68, 70]. It is also identified as smearing of colour

information among regions with strong chrominance divergences leading to a loss

in the colourfulness of the compressed images [71]. Colour bleeding is also the

leakage of colour information across colour edges such as flooding of colours from

one side of an edge to the other [59]. Colour bleeding artefacts are produced in

compressed images as a consequence of the quantisation and/or the subsampling

of the colour components during the decoding step [69]. An example of colour

bleeding artefacts is shown in Figure 1.10. In comparing the original image (a)

with the compressed image (b), the bleeding of the chrominance information

across edges causes colour artefacts in the blue sky region.

In order to remove colour artefacts from those above mentioned colour process-

ing algorithms, post-processing techniques are applied to produce better quality

images.
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Figure 1.7: Example of zipper artefacts, (a) original test image and (b) image
with zipper artefacts.

Figure 1.8: Example of false colour artefacts, (a) original test image and (b)
image with false colour artefacts.
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Figure 1.9: Example of smearing colour artefacts, (a) original test image and (b)
denoised image with smearing colour artefacts.

Figure 1.10: Example of colour bleeding, (a) original test image and (b) com-
pressed image with colour bleeding.
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1.4 Post-Processing Techniques for Colour Arte-

fact Removal

It is desirable to produce colour images that are free of colour artefacts [1,3,25,72].

As mentioned in Section 1.2, colour image restoration such as demosaicking is

an ill-posed problem [12] as it involves estimating missing colour information.

In addition to that, existing demosaicking methods perform a sequential demo-

saicking which result in colour artefacts in the output demosaicked images. In

order to remove colour artefacts from the already demosaicked and processed im-

ages, a post-processing technique is required for further correction. A number of

post-processing techniques have been developed in the literature of demosaicking

to remove colour artefacts from processed colour images; however, these post-

processing techniques are integrated into the proposed demosaicking methods

to improve the outcomes [1, 13, 17, 25, 28, 29, 39, 73]. Other post-processing tech-

niques have been proposed to remove noise from processed images such as median

filtering [3], Vector Median Filter (VMF) [74–76], and multishell filter [31,77,78].

Regularisation for colour image restoration [55,67,79–84] is another advance post-

processing technique that has been developed to improve the quality of colour

images. Most of the existing regularisation techniques have been designed based

on complicated functions [56] such as Total Variation (TV) [85,86] and Vectorial

Total Variation (VTV) [53–55,83].

However, most existing post-processing techniques, including filtering and image

regularisation, are ineffective in removing colour artefacts since colour artefacts do

not exhibit common noise characteristics [43,61,67,79,87]. Another disadvantage

of these image filtering techniques is that most of these techniques are applied to

all pixels instead of being selectively applied to only the colour artefact pixels. As

a result, true colour pixels in an image will be filtered along with colour artefact

pixels.
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In order to address the post-processing technique issues, a new post-processing

technique is proposed as an independent technique to improve the quality of al-

ready demosaicked or processed images. To remove the colour artefacts with the

preservation of colour fidelity, the proposed post-processing technique is selec-

tively applied to only colour artefact pixels. This is achieved by developing a

novel detection method to blindly detect colour artefact pixels. This is described

in Chapter 3. A removal method is then developed to remove those detected

colour artefacts without altering the true colour pixels. This is described in

Chapter 4.

As described above, demosaicking, image processing algorithms, and post-processing

techniques all affect, either negatively or positively, image quality. Image quality

can be assessed with Image Quality Assessment (IQA) methods.

IQA methods are also used for quantifying the performance of different processing

methods and assessing the fidelity of colour images.

1.5 Image Quality Assessment

Image Quality Assessment (IQA) is a fundamental metric used in digital imaging

processing to quantitatively measure the quality of processed images [88]. IQA

methods also play an essential role in benchmarking image processing algorithms

since they can reflect the colour fidelity of processed images [25,61,88,89]. They

are, therefore, employed for the evaluation of the performance efficiency of image

processing methods so that they can then be ranked based on the corresponding

IQA score. In general, the most efficient IQA method is the metric that correlates

well with the Human Visual System (HVS) [25,61,89]. That is, a processed image

that “looks good” to the HVS will score well using an IQA method, and an image

that “looks bad” will score poorly. Hence, the correlation of IQA methods with

the HVS is a crucial criterion when measuring the visual quality of processed
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colour images [90].

To measure the perceptible image quality based on the HVS, it is desirable to

perform a subjective evaluation involving human observers to quantify visual

image quality. In this type of assessment, a number of observers is needed for the

subjective evaluation. However, most IQA methods are objectively developed to

measure image quality quantitatively since, in practice, subjective evaluation is

often inconvenient, costly, time-consuming, and it needs special resources such as

image datasets with associated subjective opinion scores [91–94].

In digital image processing, the objective IQA methods can be classified based

on the availability of the original reference as ground truth as follows [94–96]:

• Full-reference IQA: the original reference image is available and required in

order to measure the quality of the processed image [97]. This type of IQA

method can be easily applied to measure image quality [96].

• Reduced-reference IQA: the original reference image is only partially accessi-

ble and this makes the measurement of image quality more challenging [98].

• No-reference IQA: the original reference image is not available and, there-

fore, the quality of a processed image is difficult, if not impossible, to mea-

sure [91–93]. As only the processed image is available, its quality will be

measured in its own right using some common statistical analysis meth-

ods such as natural scene statistics and specific regular statistical proper-

ties [91–93].

While numerous IQA methods have been proposed in the literature of quality

assessment, most of these methods are designed as full-reference IQA methods

[88]. This is because full-reference IQA methods are more feasible in practice for

most image processing applications [88]. The most common full-reference IQA

methods used in image processing applications are mean-squared error (MSE)
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and peak signal-to-noise ratio (PSNR) [99]. MSE and PSNR are simple and

easy to compute and implement [99]. However, MSE and PSNR IQA methods

have been criticised for not correlating well with human visual perception [61,

100]. This weak correlation of the perceived image quality is because they are

not able to differentiate the feature content of the processed image [101]. In

other words, they have not been designed to consider the image content [102].

Hence, new methods of image quality assessment have been proposed to better

correlate with human visual perception [94–96,100,101]. Different strategies have

been developed utilising image features, such as local statistical features, colour

differences, gradient and structural similarity, to perform better image quality

prediction [25,89].

Whereas a large number of advanced IQA methods have been developed, most

have not been designed to solely measure colour artefacts in the processed images.

A novel image quality assessment method that can specifically measure visible

colour artefacts alone, excluding other non-visible errors, is described in Chapter

5.

1.6 Research Contributions

This thesis makes several contributions to knowledge in the area of colour pro-

cessing and correction for digital colour images.

We have looked at the problem of existing demosaicking algorithms that produce

colour artefacts. It is because they are designed to interpolate the three colour

planes independently using sequential demosaicking. Colour artefacts, therefore,

cannot be identified before the three colour components for each pixel are deter-

mined due to the production of interpolation errors in the colour planes indepen-

dently. Hence, a novel demosaicking method to demosaic the three colour planes

simultaneously [43] has been developed and described in Chapter 2. The advan-
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tage of this simultaneous demosaicking method is that it can identify and exclude

colour artefact pixels from being selected within the demosaicking process so that

colour artefacts will be minimised in the demosaicked images.

The second contribution is blind detection of colour artefacts without the ground

truth [103], and this is described in Chapter 3. Gaussian Mixture Model [104–

110] has been used for clustering of the local RGB colour pixels so that better

identification of colour artefacts can be achieved. This is significant because the

original image is generally not available in practice, and no available detection

method in the literature identifies colour artefacts in processed images without

access to the original image. Our developed method makes this possible and the

blind detection results can later be used for colour artefact removal.

Our third contribution, in Chapter 4, is the removal of detected colour artefacts

while keeping true colour pixels unchanged [103]. The detected colour artefacts

are replaced by blending them with their neighbouring true colour pixels based

on the colour-line property of true colour pixels. As described in Section 2.2.2,

the colour-line property has been found that the RGB colour pixels within a local

region have a tendency to spread linearly along a regression line in RGB colour

space when these local RGB pixels are similar with regard to colour homogeneity

[67, 111]. The advantage of incorporating the developed detection method with

the removal method is that a substantial post-processing method can be used as a

standalone technique to improve the quality of already processed or demosaicked

images.

The fourth contribution, in Chapter 5, is the novel Normalised Colour Variation

(NCV) IQA method specifically for locating and quantifying colour artefacts [61].

Our developed NCV IQA method singles out only colour artefacts and excludes

other errors, such as blurring, based on the colour variation from their original

and surrounding colours. This is significant because colour artefacts are a crucial

factor in visual assessment even if they might make a small contribution to the
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overall errors. It is a useful method for the comparison and ranking of the degree

of colour artefacts produced by image processing algorithms.
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1.7 Thesis Outline

This thesis is organised as follows:

• Chapter 2: A novel simultaneous demosaicking method to determine the

missing colour components of a Bayer CFA image is presented. The new

proposed demosaicking method demosaics the three colour planes simulta-

neously to produce full colour demosaicked images.

• Chapter 3: A novel blind colour artefact detection technique is introduced.

The proposed technique detects the presence of colour artefacts in a pro-

cessed image without the original reference as ground truth.

• Chapter 4: A colour artefact removal technique is developed to suppress

detected colour artefacts. The detected colour artefacts are replaced by re-

mapping the colour of artefact pixels and blending them with the colours

of their neighbours on which the colour-line property of the region is based.

• Chapter 5: A novel image quality assessment method, namely Normalized

Colour Variation (NCV), is developed specifically for locating and quanti-

fying colour artefacts in the processed images.

• Chapter 6: The major conclusions arising from this thesis are presented and

potential for future work noted.



Chapter 2

Simultaneous CFA Demosaicking

of Three Colour Planes

2.1 Introduction1

A single-sensor image device is commonly used to capture colour images in many

digital imaging devices. The sensor is usually covered by a Colour Filter Array

(CFA) that constrains each pixel in the sensor to capturing only one of the three

primary colours in a CFA mosaic image. A common CFA filter is the Bayer CFA

pattern [8], as shown in Figure 1.2. CFA demosaicking is employed to compute

the two missing colour components at each pixel location, and a full-colour image

is thus reconstructed from a CFA mosaic image.

Conventionally, colour planes are demosaicked sequentially by existing demosaick-

ing methods to produce a full-colour image [3, 13, 14, 17, 19, 22–42, 44, 112]. The

green colour plane is usually demosaicked first because it contains twice the in-

formation of the other colour planes when using the Bayer pattern. The Bayer

pattern has 50% green colour values, 25% red values, and 25% blue colour values.

1The content of this chapter presents, and extends, research previously published in publi-
cation [[2]] referenced on Page ix.

21
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The demosaicked green colour plane is used in the subsequent demosaicking of

the red and blue colour planes.

Although most of the existing demosaicking methods are developed using ad-

vanced interpolation techniques to minimise colour artefacts, many undesired

colour artefacts are still produced in the output demosaicked images. Many possi-

ble causes can lead to the production of colour artefacts in the output demosaicked

images such as cross-channel aliasing and interpolation across edges [12, 13, 43].

However, one of the problems with a sequential process of demosaicking is that

it is unable to identify colour artefacts until demosaicking is completed [25, 43].

As described in Section 1.3, demosaicking colour artefacts, which often manifest

themselves as false colour [3,7,13,35,37,38], and Zipper effect [3,7,13,17,25], are

visible colour errors in the final output demosaicked images. In general, colours

can only be perceived when the three primary colour components are combined

as a full RGB colour pixel and, as a result, colour artefacts cannot be identified

until the three colours for each pixel are determined. Hence, some sequential

demosaicking methods cannot avoid the production of colour artefacts.

The aim of this chapter is to address the shortfall of the existing sequential de-

mosaicking methods by developing an efficient demosaicking method that can

produce minimal colour artefacts. Based on the Human Visual System (HVS)

model, that colours can be perceived only by processing the three colour compo-

nents simultaneously, a novel demosaicking method is developed to demosaic the

three colour planes simultaneously and produce a full-colour demosaicked image

with high colour accuracy. In our proposed method, the three colour planes are

demosaicked simultaneously so that during the estimation of the missing colour

values, potential colour artefacts can be identified and be avoided within the

demosaicking process.
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2.1.1 Overview of Existing CFA Demosaicking Techniques

Colour filter array demosaicking research is still an essential subject in single im-

age sensors due to the rapid growth of single-sensor devices, such as digital still

image and video cameras, smartphones, etc. [1,3,13,14,17,19,22–42,44,112,113].

In the literature, many simple and advanced demosaicking techniques have been

proposed to determine the missing colour components using different sequential

interpolation approaches [1, 17]. The simple demosaicking methods such as bi-

linear and nearest neighbour interpolation are simple to implement but produce

poor quality demosaicked images. On the other hand, advanced demosaicking

methods have been developed to provide better demosaicking performance and

produce better quality demosaicked images [3, 13, 14, 17, 19, 22–42, 44]. In this

thesis, we select six advanced benchmarking sequential demosaicking methods

for comparison with our proposed simultaneous demosaicking method since some

of these methods perform well in one particular image dataset but produce low

image quality in other image datasets. Moreover, some of these methods are de-

signed based on an assumption which is only valid in a specific domain, not in

other domains. Hence, we have selected these benchmarking methods with dif-

ferent interpolation approaches for the comparison with our proposed method to

show the robustness of our method’s performance across different image datasets

and its ability to produce better quality demosaicked images.

The first sequential demosaicking method selected for the comparison is Least-

Squares Luma-Chroma Demultiplexing (LSLCD), proposed by Leung et al. [33].

LSLCD is a luminance and chrominance multiplexing method that works in the

frequency domain using least-squares technique. In this method, the Bayer CFA

mosaic image is transformed into the frequency domain to utilise frequency cor-

relation among its colour planes. The luminance and chrominance components

of the CFA mosaic image are then separated using bandpass filters. These filters
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are designed using the least-squares technique and trained on a training image

set prior to the interpolation step. One disadvantage of this method is that in-

efficiencies in the training process may impact the performance of the LSLCD

method. These training inefficiencies may result from selection of images for the

training set and data augmentation with Gaussian noise.

The Local Directional Interpolation and Non-Local Adaptive Thresholding (LDI-

NAT) demosaicking method, proposed by Zhang et al. [19], is the second selected

method for comparison with our proposed demosaicking method. In this method,

Zhang et al. assume that the spectral redundancy of local regions is invalid in

images with high saturated colour or in sharp colour transition images. Based on

this assumption, the non-local redundancy of the image is exploited to enhance

the initial estimated colours in local regions. In other words, the inadequacy of

local redundancy can be recovered by the non-local redundancy via correlating

the local spectral with the non-local similarity. LDI-NAT sequentially determines

the missing colour components from four directions at each pixel in the CFA

mosaic image. For estimating the missing green colour components, these four

directions are from the North (N), South (S), East (E), and West (W) directions.

For red and blue colour planes, directions from the north-west (NW), north-east

(NE), south-west (SW), and south-east (SE) are considered for estimating the

missing red and blue colour components. Then, a search for non-local pixels that

are similar to the estimated local pixels is performed to improve the initial local

estimates. The final estimates are then determined using the Non-local Adaptive

Thresholding (NAT) method, and the final interpolation is performed to reduce

some of the initial interpolation errors. One disadvantage of this demosaicking

benchmarking method is that it is designed for high saturated images such as

the IMAX image dataset [19], and it may fail to produce good quality on less

saturated images, such as the Kodak image dataset [18].

The third sequential demosaicking method is Multi-Directional Weighted Inter-
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polation and refinement (MDWI) method proposed by [28]. Chen et al. have

developed this method with two stages: eight direction sequential interpolation

approaching from neighbouring pixels, and an interpolation post-processing step

to specifically minimise some of its interpolation errors. The first stage is the

interpolation approach to estimate the missing green colour components along

the North (N), South (S), West (W), East (E), North-West (NW), North-East

(NE), South-West (SW) and South-East (SE) directions [28]. Then, a weight

for each estimate is determined using the neighbourhood spatial and spectral

correlations. When the missing colour components of the green colour plane

are fully demosaicked, it is used for estimating the missing red and blue colour

components. Four diagonal directions, NW, NE, SW and SE, are considered to

determine the blue/red colour components at red/blue locations while at green

positions they are estimated along N, S, W, and E directions. As a result, the red

and blue colour planes are fully reconstructed based on the reconstructed green

plane. The second stage is the post-processing step which is then applied to re-

duce the produced interpolation errors during the determination of the missing

colour components in the Bayer CFA mosaic image [28]. The post-processing

step is designed based on the colour differences among the three colour planes

using an anti-aliasing FIR filter with a 5× 5 window. Finally, a full demosaicked

colour image is produced. One of the MDWI weaknesses is that it produces low

quality, smoother and less saturated images with ample colour artefacts. Even

though it is developed to reconstruct high saturated images, such as IMAX [19],

it sometimes produces a noticeable degree of blurriness along with colour arte-

facts in its output demosaicked images. This drawback of MDWI [28] is discussed

in the Visual Assessment Section of this chapter (Section 2.3.2) where Figures

2.22 - 2.25(e) show the output demosaicked images produced by MDWI method.

The fourth selected benchmarking sequential demosaicking method for the com-

parison is Residual Interpolation (RI) proposed by Kiku et al. [23]. RI has been
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developed based on colour differences using an alternative interpolation approach.

This interpolation is performed in a “residual domain” where residuals are gen-

erated by calculating the differences between the observed colour components in

a CFA mosaic image and the estimated colour components. Kiku et al. assume

that image interpolation can be more accurate when it is performed in a smaller

Laplacian energy domain. A guided filter is, therefore, applied to reduce the

Laplacian energy of the residuals. Based on this assumption, the missing colour

components are determined in the residual domain and a full-colour demosaicked

image is produced. This method is developed aiming to produce high quality

IMAX images, without considering a greater diversity of test images, such as

Kodak [18], Laurent Condats (LC) [20] and Berkeley [21].

The fifth selected benchmarking demosaicking method for the comparison with

the proposed method is Weighted Median filter - High-Order Interpolation (WM-

HOI) developed by Li and Randhawa [27]. The sequential interpolation technique

of WM-HOI demosaicking method is developed based on the application of the

Taylor series. Li and Randhawa estimate the missing colour components from

four opposite directions at each pixel location to avoid interpolation across edges

for preserving sharp edges. As a result, four interpolants for each missing colour

component are produced from the four directions. The optimal interpolant is

then selected using a weighted median filter that is designed based on an edge

orientation map to determine the weights. Then, the final output demosaicked

image is produced by selecting the optimal interpolants. Although WH-HOI

produces very good interpolants, in some cases, it fails to select the optimum

interpolant due to the assigned weight of the weighted median filter [31].

The last benchmarking demosaicking method selected for our comparison is the

distribution of Directional Colour Differences (DCD) proposed by Li et al. [31].

The High-Order sequential Interpolation (HOI) is incorporated to determine the

four interpolants for each missing colour component from four different directions.
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For each of these four estimated interpolants, a weight is then determined and

assigned based on the absolute directional colour differences (DCD). A threshold

value is used as a hard limit for the weights of interpolants so that zero will be

set to any weights that are below a threshold. The threshold value is determined

based on the frequency distribution of the directional colour differences. Con-

sequently, the weight of interpolants will depend on its position from an edge.

The interpolants from the other direction of an edge will have small normalised

weights while the weight will be large for those interpolants on the same side of

the edge. The final estimated colour component is then produced by the weighted

sum of the four interpolants. Li et al. have also proposed a detail-preserving step

to avoid propagation of the interpolation errors from green to the other colour

planes. Once the green colour plane is fully reconstructed, a median-based mul-

tishell filter for preserving image details is applied to prevent the reproduction

of HOI interpolation errors in the subsequent red and blue colour planes. The

DCD method solves the issue of WH-HOI [27], but it still performs a sequential

demosaicking that could produce some visible colour artefacts.

These selected benchmarking demosaicking methods have similar issues as exist-

ing demosaicking methods that produce colour artefacts due to the independent

interpolation of the three colour planes using sequential demosaicking. In this the-

sis, the proposed method is to resolve the issues of the sequential demosaicking by

developing a novel simultaneous demosaicking method that demosaics the three

colour planes simultaneously and produces highly accurate, colour demosaicked

images.
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2.1.2 Concept of Our Simultaneous Demosaicking Tech-

nique

The novel simultaneous demosaicking exploits the pixels in a neighbourhood to

improve the performance of interpolation around edges and to preserve sharp

edges. The interpolation is implemented along edges rather than across them by

determining four high-order interpolants in four different directions [27]. Based

on the interpolation in different directions to estimate a full-colour pixel for edge

preservation, multiple combinations of RGB colour values for a pixel location are

produced. Among those RGB combinations, some are good and bad estimates

while others may be colour artefacts. Using the colour-line property [67, 111] as

a classifier to discriminate potential estimates, an optimum RGB colour value

from those good estimates will be selected. The colour-line property states that

the local RGB colour values tend to distribute linearly along a regression line in

RGB colour space for natural colour images [111]. Hence, colour artefact pixels

are those outliers that deviate far from a regression line. From those multiple

combinations of RGB values obtained by the simultaneous demosaicking from

different directions, the optimum RGB colour value is, therefore, the nearest

value to the corresponding line. Hence, by selecting the optimum RGB colour

values, colour artefact pixels could be avoided in the output demosaicked images.

It has been demonstrated that the proposed simultaneous demosaicking algorithm

outperforms the other benchmarking algorithms and produces demosaicked im-

ages that are virtually free from colour artefacts. The experimental results, in

Section 2.4, show the consistency in the performance of the proposed demosaick-

ing method in both perceptual and objective evaluation for various types of image

datasets. The proposed demosaicking method also produces high colour accuracy

of demosaicked images with insignificant colour artefacts.
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2.1.3 Chapter Outline

The remainder of this chapter is organised as follows. We introduce our proposed

simultaneous demosaicking method in Section 2.2. Section 2.3 presents the quan-

titative and visual assessment comparison results of our proposed method with

the other six benchmarking demosaicking method. The conclusion of this chapter

is given in Section 2.4.

2.2 Proposed Simultaneous CFA Demosaicking

of Three Colour Planes

It is desirable that CFA demosaicking methods are developed that do not produce

colour artefacts, but the independent interpolation of the three colour planes us-

ing sequential demosaicking will have no knowledge of the production of colour

artefacts until demosaicking is completed. In order to address the problem of

sequential demosaicking, we determine the missing colour components of each

pixel location in the CFA mosaic image at the same time by demosaicking the

three colour planes simultaneously. As a result, colour artefacts can be identified

and avoided from selection during the interpolation process. Figure 2.1 gives the

flowchart of our proposed method of simultaneous demosaicking of three colour

planes. As shown on the left side of the flowchart of Figure 2.1, an initial de-

mosaicking of the input CFA image is first performed to obtain the required

information since the input CFA mosaic image does not contain enough informa-

tion. This demosaicking is used as an initial reference for the image segmentation

and the determination of regression lines. In our proposed method, the WM-HOI

demosaicking method [27] was used for initial demosaicking of the CFA input

image, but other demosaicking methods [19,23,27,28,31,33] can be chosen. The

right side of Figure 2.1 shows the procedure of determining the 25 RGB com-
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binations of each colour pixel exploiting the initial colour values produced by

the initial demosaicking. Based on the colour-line property, the optimum RGB

colour value is selected to produce the final output demosaicked images.

Our proposed method is explained in the following sections. Section 2.2.1 de-

scribes the interpolation of the three colour planes. Details on the colour-line

property is given in Section 2.2.2, followed by Section 2.2.3 on image partition-

ing. Section 2.2.4 gives the orientation of the regression line, and Section 2.2.5

describes the selection of the best colour pixel from 25 RGB combinations.
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Figure 2.2: 7× 7 Bayer CFA pattern.

2.2.1 RGB Combinations of a Colour Pixel

In this section, we describe the process of determining the possible RGB com-

binations of a colour pixel. Figure 2.2 shows an example of a 7 × 7 window of

a CFA Bayer array neighbourhood. In this window, each row and column is in-

dexed by i, and j respectively starting from the centre of the window at the blue

pixel location (i, j). Without losing generality, in this chapter, only the case in

Figure 2.2 is considered as an example for clarifying the proposed demosaicking

method.

As shown in Figure 2.2, each pixel in the Bayer pattern has only one of red, green,

or blue as a true colour value with the other two colours missing. The proposed

simultaneous demosaicking method produces multiple RGB colour combinations

for a pixel location. For each RGB combination of a colour pixel, the true

captured colour remains unchanged.

For each missing colour, four initial interpolants from four orthogonal directions
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are determined for edge preservation [27]. The four initial interpolants of the

missing green colour components, G̃, at red and blue locations are determined

using high-order interpolation. At the same time, a first-order interpolation is

used to estimate the missing red colour components, R̃, at green and blue loca-

tions and the missing blue colour components, B̃, at green and red locations.

To demosaic the three colour planes simultaneously, initial colour values for the

two missing colours are determined at each pixel by initial demosaicking using

WM-HOI [27]. These initial values will only be used in estimating the red and blue

colour values at the green pixel locations of the Bayer CFA pattern in Figure 2.2.

In the case that colour artefacts are produced by the initial demosaicking, these

colour artefacts will have a minor effect on our simultaneous demosaicking since

the initial red, green, and blue colour values are used individually.

As the estimate for a missing colour using the initial demosaicking method has

good accuracy for the smooth regions, it should be included.

The estimate for a missing colour using the initial demosaicking method yields

good accuracy for smooth regions because the hue assumption [27] is valid, and,

hence, it can be used directly without further analysis. As a result, this estimate

from the initial demosaicking and the four estimates from four interpolants of

the one missing colour result in five estimates of each missing colour value. Since

there are two missing colour values at each location, and five estimates for each

missing colour, there will be a total of 5× 5 = 25 RGB combinations at a pixel

location.

Estimation of Missing Red at a Blue Pixel Location

To estimate the missing red colour R̂i,j value at the blue pixel location (i, j)

considering the case shown in Figure 2.3, four estimates from different directions,

namely top-left (TL), R̂TL
i,j , top-right (TR), R̂TR

i,j , bottom-left (BL), R̂BL
i,j , and
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Figure 2.3: Estimation of missing red at a blue pixel location.

bottom-right (BR), R̂BR
i,j , are determined using first-order interpolation [27]. Be-

cause there are only 25% of red and blue pixels in the Bayer pattern, high-order

interpolation will not give further improvement. The red estimate at the location

(i, j) from the top-left direction, R̂TL
i,j , is given as follows:

R̂TL
i,j =Ri−1,j−1 +

(
G̃i,j − G̃i−1,j−1

)
, (2.1)

where Ri−1,j−1 is the true red captured value at the location (i − 1,j − 1), and

G̃i,j and G̃i−1,j−1 are the green estimates by the initial demosaicking method at

location (i,j) and (i− 1,j − 1) respectively. For the estimates for the other three

directions, R̂TR
i,j , R̂BL

i,j and R̂BR
i,j , the following equations are used as follows:

R̂TR
i,j =Ri−1,j+1 +

(
G̃i,j − G̃i−1,j+1

)
, (2.2)

R̂BL
i,j =Ri+1,j−1 +

(
G̃i,j − G̃i+1,j−1

)
, (2.3)

R̂BL
i,j =Ri+1,j+1 +

(
G̃i,j − G̃i+1,j+1

)
, (2.4)
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Figure 2.4: Estimation of missing red at a green pixel location.

where Ri−1,j+1, Ri+1,j−1, and Ri+1,j+1 are the true red captured value at the

location (i − 1,j + 1), (i + 1,j − 1), and (i + 1,j + 1), respectively. G̃i−1,j+1,

G̃i+1,j−1, and G̃i+1,j+1 are the green estimates by the initial demosaicking method

at location (i− 1,j + 1), (i+ 1,j − 1), and (i+ 1,j + 1), respectively.

Estimation of Missing Red at a Green Pixel Location

Estimating the red colour value at green location (i−1, j), R̂i−1,j, using first-order

interpolation requires four estimates from the two vertical directions, namely top

(T ), R̂T
i−1,j, and bottom (B), R̂B

i−1,j, and the two horizontal directions, namely

left (L), R̂L
i−1,j, and right (R), R̂R

i−1,j, considering the case shown in Figure 2.4.

The red estimate at location (i − 1,j) from the top direction, R̂T
i−1,j, is given as

follows:

R̂T
i−1,j = R̃i−2,j +

(
Gi−1,j − G̃i−2,j

)
, (2.5)

where Gi−1,j is the true green captured value at the location (i− 1,j), and R̃i−2,j
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and G̃i−2,j are the red and green estimates by the initial demosaicking method at

the location (i− 2,j), respectively. The red estimate from the bottom direction,

R̂B
i−1,j, at location (i−1,j) can be determined using a similar equation as follows:

R̂B
i−1,j = R̃i,j +

(
Gi−1,j − G̃i,j

)
, (2.6)

R̃i,j and G̃i,j are the red and green estimates by the initial demosaicking method

at the location (i,j) respectively. The red estimate at the location (i− 1,j) from

the left direction, R̂L
i−1,j, is given as follows:

R̂L
i−1,j =Ri−1,j−1 +

(
Gi−1,j − G̃i−1,j−1

)
, (2.7)

where Ri−1,j−1 is the true red captured value at the location (i − 1,j − 1), and

G̃i−1,j−1 is the green estimates by the initial demosaicking method at the location

(i − 1,j − 1). A similar equation can also be created for the red estimate from

the right direction ,R̂R
i−1,j, at the location (i− 1,j), as follows:

R̂R
i−1,j =Ri−1,j+1 +

(
Gi−1,j − G̃i−1,j+1

)
, (2.8)

where Ri−1,j+1 is the true red captured values at the location (i − 1,j + 1), and

G̃i−1,j+1 is the green estimate by the initial demosaicking method at the location

(i − 1,j + 1). As shown in Figure 2.2 at the green pixel location (i − 1,j), the

Equations, 2.5 - 2.8 are used to determine the missing red colour value where the

two neighbour true red captured values are from horizontal direction and the two

neighbour true blue captured values are from vertical direction.

At the green pixel location (i,j−1) shown in Figure 2.5, the two neighbours from

the horizontal are blue locations, with red locations in the vertical directions.

In this case, the missing red colour value at the green pixel location (i,j − 1) is

estimated from vertical and horizontal directions. From the vertical direction, the
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Figure 2.5: Estimation of missing red at a green pixel location.

red estimate at the location (i,j−1) from the top direction, R̂T
i,j−1, is determined

as follows:

R̂T
i,j−1 =Ri−1,j−1 +

(
Gi,j−1 − G̃i−1,j−1

)
, (2.9)

where Gi,j−1 is the true green captured value at the location (i,j − 1). A similar

equation can be used to determine the red estimate from the bottom direction,

R̂B
i,j−1, at location (i,j − 1), as follows:

R̂B
i,j−1 =Ri+1,j−1 +

(
Gi,j−1 − G̃i+1,j−1

)
, (2.10)

whereRi+1,j−1 is the true red captured value at location (i+1,j−1), and G̃i+1,j−1 is

the green estimate by the initial demosaicking method at the location (i+1,j−1).

From the horizontal direction, the red estimate at location (i,j − 1) from the left
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direction, R̂L
i,j−1, is determined as follows:

R̂L
i,j−1 = R̃i,j−2 +

(
Gi,j−1 − G̃i,j−2

)
, (2.11)

R̃i,j−2 and G̃i,j−2 are the red and green estimates by the initial demosaicking

method at the location (i,j − 2), respectively. The red estimate from the right

direction ,R̂R
i,j−1, at the same location (i,j − 1) can be determined by a similar

equation, as follows:

R̂R
i,j−1 = R̃i,j +

(
Gi,j−1 − G̃i,j

)
, (2.12)

Hence, based on the Bayer pattern in Figure 2.2, the red colour values are esti-

mated at the blue and green pixel locations using Equations 2.1 - 2.12.

Estimation of Missing Green at a Blue Pixel Location

The missing green colour values are determined using a second-order interpolation

because additional true captured colour values further from the centre sample in

the input CFA mosaic image are included for higher accuracy [27].

To estimate the missing green colour value at the blue pixel location (i, j), Ĝi,j,

four directional estimates from the top (T ), bottom (B), left (L), and right (R)

directions, ĜT
i,j, Ĝ

B
i,j, Ĝ

L
i,j and ĜR

i,j, respectively, are determined. To consider

the case shown in Figure 2.6, the green estimate at location (i, j) from the top

direction, ĜT
i,j, is given as follows:

ĜT
i,j =Gi−1,j +

1

2
(Bi,j −Bi−2,j) +

1

8
(Gi+1,j − 2Gi−1,j +Gi−3,j)

(2.13)

where Gi−1,j, Gi+1,j and Gi−3,j are the true captured green values at locations

(i−1,j), (i+1,j) and (i−3,j), respectively. Bi,j and Bi−2,j are the true captured
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Figure 2.6: Estimation of missing green at a blue pixel location.

blue colour values at the locations (i, j) and (i − 2,j), respectively. The other

estimates ĜB
i,j, Ĝ

L
i,j and ĜR

i,j at the same blue pixel location can be determined

similarly, as follows:

ĜB
i,j =Gi+1,j +

1

2
(Bi,j −Bi+2,j) +

1

8
(Gi−1,j − 2Gi+1,j +Gi+3,j)

(2.14)

ĜL
i,j =Gi,j−1 +

1

2
(Bi,j −Bi,j−2) +

1

8
(Gi,j+1 − 2Gi,j−1 +Gi,j−3)

(2.15)

ĜR
i,j =Gi,j+1 +

1

2
(Bi,j −Bi,j+2) +

1

8
(Gi,j−1 − 2Gi,j+1 +Gi,j+3)

(2.16)

where Gi,j−1, Gi,j+1, Gi,j−3, Gi,j+3, Gi+3,j are the true captured green values at

locations (i,j− 1), (i,j + 1), (i,j− 3), (i,j + 3), and (i+ 3,j), respectively. Bi+2,j,

Bi,j−2, Bi,j+2 are the true captured blue colour values at the locations (i+ 2, j),
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Figure 2.7: Estimation of missing green at a red pixel location.

(i,j − 2), and (i,j + 2), respectively.

Estimation of Missing Green at a Red Pixel Location

Similar to estimating a green value at a blue pixel location, estimating a green

value at a red pixel location uses higher-order interpolation due to the presence

of extra green pixel information in the neighbourhood for higher accuracy, as

shown in Figure 2.7. To estimate the missing green colour value at the red pixel

location (i − 1,j − 1), from the top (T ), bottom (B), left (L), and right (R)

directions, four estimates, ĜT
i−1,j−1, Ĝ

B
i−1,j−1, Ĝ

L
i−1,j−1 and ĜR

i−1,j−1, respectively,

are determined. To consider the case shown in Figure 2.7, the green estimate at

the location (i− 1, j − 1) from the top direction, ĜT
i−1,j−1, is given as follows:

ĜT
i−1,j−1 =Gi−2,j−1 +

1

2
(Ri−1,j−1 −Ri−3,j−1) +

1

8
(Gi,j−1 − 2Gi−2,j−1 +Gi−4,j−1)

(2.17)

where Gi−2,j−1, Gi,j−1 and Gi−4,j−1 are the true captured green values at locations

(i−2,j−1), (i,j−1) and (i−4, j−1), respectively. Ri−1,j−1 and Ri−3,j−1 are the
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true captured red colour values at the locations (i − 1,j − 1) and (i − 3, j − 1),

respectively. The other estimates ĜB
i−1,j−1, Ĝ

L
i−1,j−1 and ĜR

i−1,j−1 at the red pixel

location (i− 1,j − 1), can be determined similarly, as follows:

ĜB
i−1,j−1 =Gi,j−1 +

1

2
(Ri−1,j−1 −Ri+3,j−1) +

1

8
(Gi−2,j−1 − 2Gi,j−1 +Gi+2,j−1)

(2.18)

ĜL
i−1,j−1 =Gi−1,j−2 +

1

2
(Ri−1,j−1 −Ri−1,j−3) +

1

8
(Gi−1,j − 2Gi−1,j−2 +Gi−1,j−4)

(2.19)

ĜR
i−1,j−1 =Gi−1,j +

1

2
(Ri−1,j−1 −Ri−1,j+1) +

1

8
(Gi−1,j−2 − 2Gi−1,j +Gi−1,j+2)

(2.20)

Gi−1,j, Gi−1,j+2, Gi+2,j−1, Gi−1,j−2, Gi−1,j−4 are the true captured green values at

locations (i − 1,j), (i − 1,j + 2), (i + 2,j − 1), (i − 1,j − 2), and (i − 1,j − 4),

respectively. Ri−1,j+1, Ri+3,j−1, Ri−1,j−3 are the true captured red colour values

at the locations (i− 1,j + 1), (i+ 3, j − 1), and (i− 1,j − 3), respectively.

Hence, by using equations similar to 2.13 - 2.20, the missing green colour values

can be determined at all the red and blue locations.

Estimation of Missing Blue at a Red Pixel Location

To estimate the missing blue colour value at the red pixel location (i− 1,j − 1),

B̂i−1,j−1, we determine four estimates, namely B̂TL
i−1,j−1, B̂

TR
i−1,j−1, B̂

BL
i−1,j−1, and

B̂BR
i−1,j−1, from different directions, namely top-left (TL), top-right (TR), bottom-

left (BL), and bottom-right (BR) using first-order interpolation [27]. To consider

the case shown in Figure 2.8, the blue estimate at the location (i− 1,j − 1) from

the top-left direction, B̂TL
i−1,j−1, is given as follows:

B̂TL
i−1,j−1 =Bi−2,j−2 +

(
G̃i−1,j−1 − G̃i−2,j−2

)
, (2.21)
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Figure 2.8: Estimation of missing blue at a red pixel location.

where Bi−2,j−2 is the true blue captured value at the location (i−2,j−2). G̃i−1,j−1

and G̃i−2,j−2 are the green estimates by the initial demosaicking method at the

locations (i− 1,j − 1) and (i− 2,j − 2), respectively. The estimates for the other

three directions, B̂TR, B̂BL and B̂BR, are estimated as follows:

B̂TR
i−1,j−1 =Bi−2,j +

(
G̃i−1,j−1 − G̃i−2,j

)
, (2.22)

B̂BL
i−1,j−1 =Bi,j−2 +

(
G̃i−1,j−1 − G̃i,j−2

)
, (2.23)

B̂BR
i−1,j−1 =Bi,j +

(
G̃i−1,j−1 − G̃i,j

)
, (2.24)

Estimation of Missing Blue at a Green Pixel Location

At the green pixel location (i − 1,j), B̂i−1,j, four directional estimates, namely

B̂T
i−1,j, B̂

B
i−1,j, B̂

L
i−1,j, and B̂R

i−1,j, for the missing blue colour value are determined

from the top (T ), bottom(B), left (L) and right (R), using first-order inter-

polation, respectively. The blue colour value from the top direction, B̂T
i−1,j, is
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determined using a similar case in Figure 2.4 and given as follows:

B̂T
i−1,j = Bi−2,j +

(
Gi−1,j − G̃i−2,j

)
, (2.25)

where Bi−2,j and Gi−1,j are the true blue and green captured values at the loca-

tions (i−2,j) and (i−1,j), respectively. G̃i−2,j is the green estimate by the initial

demosaicking method at location (i − 2,j). The blue estimate from the bottom

direction (B̂B
i−1,j) is determined using a similar equation, as follows:

B̂B
i−1,j = Bi,j +

(
Gi−1,j − G̃i,j

)
, (2.26)

where Bi,j is the true blue captured value at the location (i,j), and G̃i,j is the

green estimate by the initial demosaicking method at location (i,j).

For the other direction, the blue horizontal estimate at the location (i−1,j) from

the left direction, B̂L
i−1,j, is given as follows:

B̂L
i−1,j = B̃i−1,j−1 +

(
Gi−1,j − G̃i−1,j−1

)
, (2.27)

where Gi−1,j is the true green captured value at the location (i − 1,j). B̃i−1,j−1

and G̃i−1,j−1 are the blue and green estimates by the initial demosaicking method

at location (i− 1,j− 1). The following equation will yield the right blue estimate

(B̂R
i−1,j) at the same location, (i− 1,j):

B̂R
i−1,j = B̃i−1,j+1 +

(
Gi−1,j − G̃i−1,j+1

)
, (2.28)

where B̃i−1,j+1 and G̃i−1,j+1 are the blue and green estimates by the initial demo-

saicking method at location (i− 1,j + 1).

Four estimates for the missing blue colour value are determined from all directions

at the green pixel location (i,j − 1). We determine B̂T , B̂B from the vertical



CHAPTER 2. SIMULTANEOUS CFA DEMOSAICKING OF THREE
COLOUR PLANES 44

directions, and B̂L and B̂R from the horizontal directions. To consider the case

shown in Figure 2.5, the blue estimate from the top direction B̂T
i,j−1 at the green

pixel location (i,j − 1) is given as follows:

B̂T
i,j−1 =B̃i−1,j−1 +

(
Gi,j−1 − G̃i−1,j−1

)
, (2.29)

where Gi,j−1 is the true green captured value at the location (i,j−1). B̃i−1,j−1 and

G̃i−1,j−1 are the blue and green estimates by the initial demosaicking method at

the location (i−1,j−1), respectively. The following equation is used to determine

the blue estimate from the bottom direction, B̂B
i,j−1, at the same location:

B̂B
i,j−1 =B̃i+1,j−1 +

(
Gi,j−1 − G̃i+1,j−1

)
, (2.30)

where B̃i+1,j−1 and G̃i+1,j−1 are the blue and green estimates by the initial demo-

saicking method at the location (i+ 1,j − 1), respectively.

From the horizontal direction, the blue estimate from the left direction, B̂L
i,j−1,

at the location (i,j − 1) is given as follows:

B̂L
i,j−1 = Bi,j−2 +

(
Gi,j−1 − G̃i,j−2

)
, (2.31)

where Bi,j−2 and Gi,j−1 are the true blue and green captured values at the location

(i,j − 2) and (i,j − 1), respectively. G̃i,j−2 is the green estimate by the initial

demosaicking method at the location (i,j − 2). Similarly, the blue estimate from

the right direction, R̂R
i,j−1, at the location (i,j − 1) can be determined as follows:

B̂R
i,j−1 = Bi,j +

(
Gi,j−1 − G̃i,j

)
, (2.32)

where Bi,j is the true blue captured value at the location (i,j), and G̃i,j is the

green estimate by the initial demosaicking method at the location (i,j).
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In general, at each pixel location of the CFA input image, there are five estimates

of each missing colour value. As a result, 5×5 = 25 RGB colour combinations are

determined for each colour pixel location with the true captured colour being the

same in all combinations. In order to select the optimum colour pixel from the

25 RGB combinations, we propose using the colour-line property as a classifier

to produce the final output demosaicked image by selecting an optimum colour

value, which will be free from colour artefacts.

2.2.2 Colour-Line Property

From the previous section, 25 RGB colour combinations for each colour pixel

location in a CFA image have been determined. This section describes the colour-

line property used in our proposed method to identify which of these 25 RGB

combinations will be selected as the final pixel colour value.

The colour-line property states that colour images have RGB colour pixel values

within local regions distributing almost linearly along a line in the RGB colour

space [111]. This property was first noticed by [111] in the colour-line model.

The colour-line model has been used in many applications, such as segmentation,

colour editing, compression, image dehazing, blur kernel estimation and saturated

colour correction [111, 114, 115]. In this model [111], colour pixels that have the

same colour value are represented by a point in the RGB colour space. A list

of colour-lines is then produced, and each colour-line is a set of RGB points

along the centre of an elongated cluster. The fundamental of the colour-line

is originally found in [116], and its heuristic property has a foundation in the

physics of image formation. Klinker et al [116] have presented a colour image

understanding system based on the Dichromatic Reflection model [117,118] which

is employed for colour image segmentation using colour lines. A more detailed

explanation and information about this model can be found in [117–120]. In
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general, colour lines are produced as a result of the Lambertian reflectance from

the surfaces in a scene [116]. The surfaces are varied based on the type of the

illumination directions, and at any point of a natural surface, the observed colour

is controlled by the Lambertian reflectance factor and illumination factor at each

pixel. These factors are variant among the colour pixels and resulting in a line of

colours.

In our proposed method, all the colour pixels are plotted in the RGB colour space

to analyse their distribution. While the colour-line model in [111] is not used in

our proposed method, we use the colour-line property as a classifier in the process

of the simultaneous demosaicking to select the optimum colour pixel.

To analyse the distribution of true and artefact colour pixels of a local region in

RGB colour space, the local region shown in Figure 2.9 is selected as a simplified

example. Figure 2.9(a) and (b) show the colour-line properties of the local image

region with and without colour artefacts, respectively. As shown in Figure 2.9(a),

the linear relationship of the colour pixel distribution is demonstrated in a colour

image by the colour-line property. In this figure, the colour pixels are highly

correlated and form an almost linear spatial structure in the RGB colour space.

However, in the presence of colour artefacts in the same local region of the image

as shown in Figure 2.9(b), the distribution of the colour pixels is dispersed and ex-

pands randomly in different directions as a consequence of the influence of colour

artefacts. In comparing Figure 2.9(a) with (b), although the colour artefacts vio-

late the linearity of the colour pixel distribution by scattering them randomly in

the RGB colour space, the main orientation of the distribution is still preserved

due to the presence of true colour pixels [121]. Hence, the colour-line property

of a local image region without colour artefacts has a narrow spread, and the lo-

cal colour pixels are almost linearly distributed along the regression line. On the

other hand, the colour-line property of colour artefacts has a wider dispersion due

to the deviation of those colour artefact pixels from the regression line. Colour
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artefact pixels are outliers that have a large deviation from the corresponding

line. Hence, by choosing the RGB colour value, from the 25 combinations found

in Section 2.2.1, that is closest to the centre of a regression line, we minimise the

chance of selecting a colour artefact in the production of the final demosaicked

images.



CHAPTER 2. SIMULTANEOUS CFA DEMOSAICKING OF THREE
COLOUR PLANES 48

Figure 2.9: Colour-line property of a local region extracted from image (a) with-
out colour artefacts and (b) with colour artefacts.

Figure 2.10: Colour-line property of local regions with (a) homogeneous colours
and (b) non-homogeneous colours.
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Since the colour-line property is only applicable within local regions and in the

RGB colour space [111], the image must be segmented into local regions before

the application of the colour-line property. Image segmenting can affect the satis-

faction of the colour-line property within a local region. The colour-line property

is satisfied within a local region when the RGB colour pixels are distributed in

almost a linear structure along a line in the RGB colour space. This happens

when the pixels of a local region are similar with respect to colour homogeneity.

On the other hand, it will not be satisfied within a local region that has different

colours and feature diversity. Colour pixels may form and extend into differ-

ent spatial structures that reflect the natural characteristics of the scene [111].

To illustrate the impact of image segmentation on the colour-line property, Fig-

ure 2.10 (a) and (b) show colour-line properties of the RGB colour pixels in

two segmented local regions. In the local region with a homogeneous colour, as

shown in Figure 2.10(a), its RGB colour pixels have a strong tendency to aggre-

gate and distribute in an elongated ellipsoid structure along the corresponding

line and, therefore, the colour-line property is satisfied in this local region. On

the other hand, in the local region with non-homogeneous colour, as shown in

Figure 2.10(b), the distribution of the colour pixels diverts into different struc-

tures due to the edge between the two colours and, consequently, the colour-line

property is not satisfied in this region.

Thus, in order to satisfy the colour-line property within a local region, images

must be segmented by matching object boundaries and colour homogeneity. Fur-

ther details about the impact of image segmentation on the satisfaction of the

colour-line property within local regions are presented in Section 3.2.3.3.
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2.2.3 Image Segmentation

In general, image segmentation is the process of partitioning an image into smaller

regions resulting in a set of image segments or regions that represent the entire

image [122]. Image segmentation is significant in some image processing applica-

tions as it simplifies the image representation so that the image will be easier to

analyse and to detect objects and boundaries [123]. In the proposed simultaneous

demosaicking method, image segmentation is required prior to the application of

the colourline property to make the colour-line property applicable within local

region.

In the literature, different image segmentation techniques have been developed

to partition an image into local regions and to allocate each pixel into a region

based on some characteristic such as colour, texture, or intensity [123–130]. In

this thesis, an image segment produced by image segmentation method must meet

the requirement of satisfying the colour-line property within local regions. The

Simple Linear Iterative Clustering (SLIC) superpixel algorithm [127] partitions

images based on colour homogeneity and feature continuity resulting in different

shapes and sizes of superpixels that are constructed by segmenting images to

form a perceptual grouping of pixels. A superpixel is a local region that con-

sists of a small set of pixels with homogeneous colour that perceptually have a

meaningful atomic region. SLIC has been developed based on a k-means clus-

tering method to effectively produce superpixels. This clustering is performed in

the five-dimensional space [labxy], where [lab] is the vector of pixels in CIELAB

colour space, and [xy] is the position of the pixel. Once the k value, which is the

preferred number of superpixels, is specified, the clustering method starts with

the initialisation step by sampling k initial cluster centres on a regular grid which

is spread out at random locations. The cluster centres are then shifted to seed

positions which are the lowest possible gradient position in a neighbourhood of
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3 × 3 pixels. This step of the centres moving procedure is important to prevent

centring superpixels on image edges and minimising the possibility of seeding a

superpixel with a noisy or artefact pixel. The next step is the assignment step

where pixels with the nearest cluster centre are combined in a group. This pixel

grouping is accomplished based on a 5D Euclidean distance in [labxy] space that

determines the nearest cluster centre for each pixel by measuring the distance

between a pixel and a cluster centre. Those pixels with short distances to the

closest cluster centre are then merged in a group of pixels with a similar colour

Then, the update step is carried out to adjust the cluster centres to be the mean

vector of all the pixels be associated with the cluster. The assignment and update

steps are reiterated until the residual error converges, however, it has been no-

ticed that the converges is reached after ten iterations for most images. Finally,

a post-processing step reassigns some of the disjoint pixels to nearby superpixels

and imposes new connectivity with a similar colour homogeneity. Therefore, each

local region consists of pixels with similar colour, and as a result, the colour-line

property will be satisfied in local regions.

Hence, the SLIC superpixel image segmentation method is well suited for this

application of simultaneous demosaicking as it can generate superpixels as local

regions that will better match object boundaries. The colour-line property will

be satisfied within each local region, a well-oriented regression line within a local

region can be obtained, and no future process is required to satisfy the colour-

line property within a local region. Figure 2.11 and Figure 2.12 show examples of

image segmentation using the SLIC method for images from the IMAX [19] and

Laurent Condats (LC) [20] image datasets, respectively. As shown in Figure 2.11

and Figure 2.12, the images in (b) were segmented such that each local region

consists of similar colour pixels within an object boundary. In the examples

of Figure 2.11 and Figure 2.12, it is clearly seen that the images are segmented

based on homogeneous appearance resulting in local regions where the colour-line
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property is satisfied.

As shown in Figure 2.1, the CFA mosaic image format is not suitable for image

segmentation, it has to be demosaicked to a full-colour image first prior to seg-

mentation. This initial demosaicked image is then used as an initial reference for

the image segmentation and the orientation of regression lines in Section 2.2.4.
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Figure 2.11: Image segmentation using (a) input IMAX image 18 and (b) output
segmented image using SLIC method.

Figure 2.12: Image segmentation using (a) input LC image 77 and (b) output
segmented image using SLIC method.
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2.2.4 Orientation of the Regression Line in Colour-line

Property

As we require a regression line for each local region as a reference to choose an opti-

mum colour value from the 25 RGB combinations determined in Section 2.2.1, the

local regions obtained from the initial demosaicked image are used. As described

above, the initial demosaicked image is produced for the purpose of segmenta-

tion using the SLIC method [127], and then, for each segmented local region, the

orientation of the regression line is obtained to be used for the selection of the

optimal RGB colour value. As only the orientation of a regression line is required

for the selection of one of the 25 RGB combinations, minor colour artefacts pro-

duced by the initial demosaicking technique have minimal effect on the accuracy

of the orientation of the regression line. As mentioned in Section 2.2.2, the main

orientation of the colour-line property will be preserved in a local image region

in the presence of colour artefacts [121].

To approximate the regression line of a local region in the segmented image, Prin-

cipal Component Analysis (PCA) [131,132] can be applied to construct a best-fit

regression line using the largest eigenvalue (first principal component) and its

corresponding eigenvector. Singular Value Decomposition (SVD) [121, 133–135]

can also be utilised for this purpose using the largest eigenvalue (largest singular

value) and its corresponding eigenvector. As our applications were implemented

by MATLAB, there is no advantage to SVD over PCA in general [136]. This is

because PCA by default uses SVD to analyse matrices [136], and more precise re-

sults can be produced when SVD is used [132]. The main difference between PCA

and SVD is that PCA computes the eigenvalues and eigenvectors of the covari-

ance of the input data matrix while SVD is applied directly on the data matrix

to obtain the eigenvalues and eigenvectors [137–141]. Tanwar et al. [141], Wall et

al [140], and Jan [139] have investigated the differences, similarities and relations
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between PCA and SVD in comparative case studies in digital image processing,

and they have concluded that PCA and SVD are very similar. They [139–141]

have summarised that PCA finds the eigenvectors of the covariance matrix and

ranks them based on corresponding eigenvalues, and its principal components

are the eigenvectors with the largest eigenvalues. The eigenvectors generated by

PCA are equivalent to the singular vectors in SVD, but the eigenvalues in PCA

are the square values of the singular values produced by SVD. In terms of per-

formance, SVD is more efficient than PCA since the extra step of computing the

covariance matrix is not required in SVD, and, therefore, less numerical round-

ing problems can be introduced in the process of calculating the eigenvalues and

eigenvectors [141].

In order to obtain a regression line of a local region, the mean of the colour pixels

in each segmented local region is firstly determined. To capture the regression

line direction of a segmented local region, the eigenvector is secondly extracted

in the direction of the first principal component (or largest singular value). For

each of these segmented local regions, a regression line is then constructed in the

direction of its eigenvector passing through its determined mean. To improve

the accuracy of the regression line, half of the colour pixels that are furthest

away from the initial regression line are discarded so that outliers can be avoided.

The regression line is then reconstructed again based on the recalculated largest

eigenvalue and its corresponding eigenvector using the remaining half of colour

pixels that represent the median value of the total number of colour pixels in a

cluster. This regression line in each local region is then used to select the optimum

RGB colour value as described in the following section.
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2.2.5 Optimum Colour Pixel Selection from 25 RGB Com-

binations

In this section, the optimum colour value from the 25 RGB combinations de-

termined in Section 2.2.1 is selected. As previously noted in Section 2.2.2, the

colour-line property of true RGB colour pixels will have a narrow dispersion due

to their tendency to distribute close to the regression line. On the other hand,

the colour-line property of colour artefact pixels has a wider dispersion from the

regression line and present as outliers. Hence, the orthogonal distance of true

colour pixels to the regression line is relatively small whereas the colour artefact

pixels will have larger orthogonal distance. Thus, minimum orthogonal distance

is the criteria for choosing the optimum RGB colour value for each pixel.

The regression line found in Section 2.2.4 is used as a reference in the selection

of the optimum colour pixel. Let S be a superpixel segment, which is a local

region with homogeneous colour pixels segmented by SLIC method, and MS is

the vectorised form of S. In this regard, MS is a N -by-3 matrix, where N is the

number of the homogeneous colour pixels in S. MS is then decomposed by SVD

as follows:

MS = UΛUT (2.33)

where Λ=diag{λ1, λ2, λ3} is the 3 × 3 diagonal eigenvalue matrix, λ1,λ2 and λ3

are the eigenvalues s.t. λ1 ≥ λ2 ≥ λ3, and UT is the 3×3 eigenvector matrix. Let

~u = [u1,1 u1,2 u1,3] be the first row of UT matrix representing the eigenvector

for λ1 (the largest eigenvalue), and its corresponding eigenvector, ~u, gives the

direction of the regression line.

To select the optimum colour value from the 25 RGB combinations found in
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Section 2.2.1, the orthogonal distance from each combination to the regression

line is first determined. The optimum RGB colour value is the one that has the

minimum orthogonal distance to the regression line.

Let dn be the orthogonal distance from an RGB colour value to the regression

line given by ~u. This distance is computed as follows:

dn =

∥∥∥ ~Wn × ~u
∥∥∥

‖~u‖
(2.34)

where n = 1, 2, . . . , 25 and ‖.‖ denotes the length (`2 norm) of a vector. As shown

in Figure 2.13, the vector ~Wn is a vector which is representing the point Qn, an

RGB colour pixel, in RGB space

Figure 2.13 shows an example of an orthogonal distance, dn, between a colour

pixel Qn and a regression line in ~u direction for a superpixel segment S, where

n = 1, 2, . . . , 25.

To select the optimum RGB colour value, let D be the minimum orthogonal

distance value in {dn}, where n = 1, 2, . . . , 25, given as follows:

D = min ({dn}) (2.35)

where n = 1, 2, . . . , 25. The colour pixel is, therefore, the optimum pixel with

an orthogonal distance equal to D. By selecting the optimum RGB colour value

among the 25 RGB combinations at each pixel location, the final simultaneous

demosaicked image is produced.

2.3 Experimental Results

In this section, the experimental results of the proposed simultaneous CFA demo-

saicking of three colour planes is given and compared with other benchmarking
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Figure 2.13: Orthogonal distance of a colour pixel from the regression line.

demosaicking methods. Kodak [18], IMAX [19], Laurent Condats (LC) [20] and

Berkeley segmentation [21] image datasets are often used in demosaicking research

for assessing the performance of demosaicking methods. The performance of our

demosaicking method was assessed using the above-mentioned image datasets

because they have different degrees of inter-channel correlation [1, 19, 41].

The Kodak image dataset [18] consists of 24 images. These images are known

to not be saturated with strong inter-channel correlation [19]. These images are

considered to be challenging in the evaluation of demosaicking methods due to

their smooth and unsaturated appearance with significant variety in colour and

textured regions. On the other hand, images from the IMAX image dataset [19],

which includes 18 images, are deemed to be closer to images that would be cap-

tured by image sensors and have low inter-channel correlation [1, 41]. Moreover,

the LC image dataset [20] has 150 images that have characteristics similar to
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IMAX images. The inter-channel correlation of test colour images is important

in demosaicking research. It is because most demosaicking methods take ad-

vantage of this correlation to select the best estimated interpolants of a missing

colour component by calculating the difference between channels in the gradient

domain [11, 46, 113, 142, 143]. The inter-channel correlation can be exploited in

colour images locally or globally [11, 142]. The global inter-channel correlation

is impacted by the colour saturation where image regions with a less saturated

appearance will have a strong inter-channel correlation [143]. On the other hand,

the local inter-channel correlation can be exploited in neighbouring pixels to de-

termine the best interpolation direction [142], and an example of inter-channel

correlation is the hue assumption [27]. Hence, when an invalid assumption of

inter-channel correlation is made by a demosaicking method, colour artefacts

such as false colours or zipper effects will be produced in the output demosaicked

image. The images from the Berkeley image dataset [21], which contains 500

images, are human segmented natural scene images. These images are usually

used for image segmentation in computer vision research [21].

The performance of our proposed simultaneous demosaicking method was com-

pared, quantitatively and visually, with six benchmarking demosaicking meth-

ods, namely WM-HOI [27], LSLCD [33], LDI-NAT [19], MDWI [28], RI [23], and

DCD [31], which were described in Section 2.1.1.

2.3.1 Quantitative Assessment

This section presents a quantitative assessment of the performance of our pro-

posed method in comparison with six benchmarking demosaicking methods, namely:

WM-HOI [27], LSLCD [33], LDI-NAT [19], MDWI [28], RI [23], and DCD [31].

Four different image datasets, Kodak [18], IMAX [19], Laurent Condats (LC) [20]

and Berkeley segmentation [21], were used in this quantitative comparison. All
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692 images from the four image datasets were used to generate the results in

Tables 2.1 - 2.4.

Four different Image Quality Assessment (IQA) methods, namely colour Peak

Signal-to-Noise Ratio (CPSNR) [34], Gradient Magnitude Similarity Deviation

(GMSD) [89], Zipper Effect (ZE) [25], and Normalized Colour Variation (NCV)

[61] were used to quantitatively evaluate the performance of each demosaicking

method. CPSNR is a commonly used IQA method in image processing and mea-

sures the total errors in the demosaicked image by computing the mean squared

difference between the output demosaicked image and original image. The GMSD

method measures image distortion to predict the perceptual image quality in the

demosaicked image by calculating the standard deviation of the gradient magni-

tude similarity. The lower the GMSD score, the less the amount of distortion in

the image and, therefore, the higher the image perceptual quality. ZE method

has been developed to specifically measure one form of colour artefact, namely

zipper effects, produced by demosaicking. It computes the change in colour dif-

ference between a pixel and its neighbouring pixels. Therefore, the higher the

percentage value of ZE, the larger the colour difference range, and thus the lower

image quality. NCV, which is our proposed IQA method described in Chapter

5, was developed to measure the degree of visible colour artefacts produced by

image processing methods. NCV locates and quantifies the colour artefact pixels

based on the measurement of colour variation corresponding to the change in

hue in the RGB colour space, and its value increases with the amount of colour

artefacts produced by a method. An NCV value of zero implies that no visual

colour artefacts were measured. Therefore, the lower the NCV value, the higher

the quality of the demosaicked image. The four IQA methods, CPSNR, GMSD,

ZE, and NCV are described in Chapter 5.

Tables 2.1 - 2.4 show the average numerical results for the performance of our

proposed simultaneous demosaicking method against the six benchmarking de-
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mosaicking methods using all the test images from the Kodak, IMAX, LC and

Berkeley image datasets, respectively.
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Table 2.1: The average CPSNR, GMSD, ZE and NCV values for Kodak dataset
with the best in bold

CPSNR (dB) GMSD (×10−2) ZE (%) NCV (×10−3)

WM-HOI 39.05 1.578 7.23 0.845

LSLCD 39.23 1.623 6.93 0.694

LDI-NAT 37.70 2.798 8.15 1.790

MDWI 37.04 1.680 12.06 1.606

RI 38.99 1.378 7.81 0.981

DCD 39.43 1.130 6.76 0.604

Proposed 39.71 1.126 6.58 0.511
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Table 2.2: The average CPSNR, GMSD, ZE and NCV values for IMAX dataset
with the best in bold

CPSNR (dB) GMSD (×10−2) ZE (%) NCV (×10−3)

WM-HOI 35.02 2.500 12.65 0.344

LSLCD 32.56 4.567 18.03 1.337

LDI-NAT 35.57 1.766 12.32 3.697

MDWI 36.07 2.061 14.16 0.373

RI 36.72 1.672 12.10 0.251

DCD 35.46 2.300 12.05 0.234

Proposed 36.13 1.567 12.00 0.197
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Table 2.3: The average CPSNR, GMSD, ZE and NCV values for LC dataset with
the best in bold

CPSNR (dB) GMSD (×10−2) ZE (%) NCV (×10−3)

WM-HOI 33.87 2.507 14.65 0.712

LSLCD 32.55 3.479 16.96 0.935

LDI-NAT 33.87 4.899 14.19 2.363

MDWI 33.43 2.517 16.56 1.078

RI 34.46 2.115 14.63 0.697

DCD 34.11 2.125 13.12 0.618

Proposed 35.65 1.764 11.92 0.498
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Table 2.4: The average CPSNR, GMSD, ZE and NCV values for Berkeley dataset
with the best in bold

CPSNR (dB) GMSD (×10−2) ZE (%) NCV (×10−3)

WM-HOI 38.02 1.701 10.90 1.860

LSLCD 38.57 2.888 6.979 1.939

LDI-NAT 37.20 4.974 11.931 4.924

MDWI 35.57 2.078 17.83 3.111

RI 37.67 1.674 12.12 2.087

DCD 38.58 1.612 8.39 1.808

Proposed 39.72 1.117 5.21 0.711
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From the comparison in Tables 2.1 - 2.4, the proposed simultaneous demosaicking

method provides better performance than the six benchmarking demosaicking

methods. It achieved the best results in all four IQA measures, and outperformed

the six demosaicking methods for the Kodak image dataset as shown in Table

2.1. For the IMAX image dataset, our proposed method is the second best for

CPSNR [34] but remains the best for the other three IQA measures as shown in

Table 2.2. As mentioned in Chapter 5, colour artefacts are visible colour errors

while CPSNR measures the total errors including both visible and non-visible

errors, CPSNR does not correlate with visual assessment as well as the other

three IQA measures [3, 7, 27, 144].

For the LC and Berkeley image datasets, our proposed method also outperformed

the six demosaicking methods across the four IQA methods as shown in Tables

2.3 and 2.4. The output demosaicked images produced by our proposed method

had the highest CPSNR values and lowest distortion in terms of GMSD than

the other benchmarking demosaicking methods. Moreover, the results of ZE

and NCV, which are designed to specifically quantify colour artefacts, show the

simultaneous demosaicking method achieved the best results by producing the

lowest index values.

As shown in Tables 2.1 - 2.4, our proposed demosaicking method achieved the

best performance by producing the best IQA index values. The next section

presents a visual assessment to illustrate that the proposed method does produce

better quality demosaicked images with less image distortion and insignificant

colour artefacts.
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2.3.2 Visual Assessment

In this section, the performance of the proposed simultaneous demosaicking method

is visually assessed. Various cropped image regions from the four image datasets

were used for the visual comparison of our proposed method with the demosaick-

ing benchmarking methods. Figures 2.14 - 2.17 show the selected cropped image

regions from the four image datasets. These images are commonly used for the

visual evaluation of developed algorithms due to the variety of features present

such as colour heterogeneity and edges with different directions. They also con-

tain challenging regions where severe colour artefacts are usually produced as

a result of their Nyquist frequency details [145]. Figure 2.14 and Figure 2.15

show the selected images from the Kodak image dataset [18] and the IMAX im-

age dataset [19], respectively. The images in Figure 2.16 and Figure 2.17 were

selected from the LC image dataset [20] and the Berkeley image dataset [21], re-

spectively. The images in Figures 2.14 - 2.17 are difficult for most demosaicking

methods since they have high-frequency features and regions with closely spaced

edges and fine details.

An example of a challenging image region is the blinds in the window region

in Kodak image 1 (top left image in Figure 2.14). This image region is well

known in demosaicking research as one that results in demosaicking methods

producing colour artefacts due to its closely spaced, narrow, bright and dark grey

horizontal edges. Another example is a region from IMAX image 5, in the top

left of Figure 2.15. It is a big challenge for most demosaicking methods due to

its thin colour features. Colour artefacts are most likely to be produced around

the borders and the thin colour features. Other challenging regions with vertical

and horizontal edges were selected for the visual assessment from the LC image

dataset such as the windmill and visual arts in Figure 2.16 and from the Berkeley

dataset such as the zebra and eastern chipmunk in Figure 2.17. These image
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regions are widely known in demosaicking to cause colour artefacts due to the

edges and fine details at various orientations [25, 27,31,40,146].

Figure 2.14: Selected Kodak test images for visual assessment, top-left is image
1, top-right is image 8, bottom-left is image 19, and bottom-right is image 24.
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Figure 2.15: Selected IMAX test images for visual assessment, top-left is image
3, top-right is image 5, bottom-left is image 7, and bottom-right is image 8.
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Figure 2.16: Selected LC test images for visual assessment, top-left is image 52,
top-right is image 64, bottom-left is image 77, and bottom-right is image 98.
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Figure 2.17: Selected Berkeley test images for visual assessment, top-left is image
78004, top-right is image 101087, bottom-left is image 253027, and bottom-right
is image 123074.
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Figures 2.18 - 2.33 give the visual experimental results of our demosaicking

method and the six benchmarking methods where the images in (a) are the

original ground truth images. The images in (b) - (g) were produced by the

six demosaicking algorithms, namely, WM-HOI [27], LSLCD [33], LDI-NAT [19],

MDWI [28], RI [23], and DCD [31], respectively, and the images in (h) were

produced by our proposed simultaneous demosaicking method.

Figures 2.18 - 2.21 give the output demosaicked images using the Kodak images

presented in Figure 2.14. The image of Figure 2.18(a) is the cropped window

region of the top left Kodak image from Figure 2.14 where the fine details of

the frame and the window blinds create significant challenges to most of the

demosaicking methods. Most of the demosaicking methods produce visible colour

artefacts in this region due to the high spatial frequencies of the thin edges of

the blinds and the corner edges of the window frame. It is clearly shown that the

demosaicked images produced by the six demosaicking methods in Figure 2.18(b)-

(g) have false colours and zipper artefacts. In contrast, the image in Figure 2.18(h)

produced by our proposed method is virtually free from colour artefacts. The

images produced by WM-HOI method in Figure 2.18(b), for example, suffers from

some false colours since none of the four directional interpolants is an accurate

estimate [31]. The DCD method [31], in some cases such as the thin feature in

Figure 2.18(g), also produces colour artefacts.

Figure 2.19(a) focuses on the picket fence region of the lighthouse image, Kodak

image 19, in the bottom left image in Figure 2.14. This is also a challenging

region to most of the demosaicking methods. This is because it has edges that

are closely spaced together in the vertical direction. As a result, most of the

demosaicking methods fail to produce the correct colours in this local region. As

shown in Figure 2.19(b)-(g), the output demosaicked images produced by the six

benchmarking methods suffer from ample colour artefacts. On the other hand,

our proposed method produced an output demosaicked image that is free from
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visible colour artefacts, as shown in Figure 2.19(h).

Other examples of Kodak images with challenging regions to demosaicking meth-

ods are Kodak image 8, shown in the top right of Figure 2.20(a), and Kodak

image 24, shown in the bottom right of Figure 2.21(a). The region of Figure 2.20

with the fine aqua colour texture on the roof and the fine colourful feathers of

the parrots in Figure 2.21 are very likely to cause colour artefacts due to their

high spatial frequencies. As shown in Figures 2.20 - 2.21(b)-(g), the images pro-

duced by the six benchmarking demosaicking methods contain significant visible

colour artefacts whereas our proposed method, Figures 2.20 - 2.21(h), was able

to produce output images with negligible colour artefacts.
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Figure 2.18: Window image region of (a) the original Kodak image 1, and the
demosaicked output images using (b) WM-HOI, (c) LSLCD, (d) LDI-NAT, (e)
MDWI, (f) RI, (g) DCD, and (h) the proposed method.
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Figure 2.19: Picket-fence image region of (a) the original Kodak image 19, and
the demosaicked output images using (b) WM-HOI, (c) LSLCD, (d) LDI-NAT,
(e) MDWI, (f) RI, (g) DCD, and (h) the proposed method.



CHAPTER 2. SIMULTANEOUS CFA DEMOSAICKING OF THREE
COLOUR PLANES 76

Figure 2.20: Roof image region of (a) the original Kodak image 8, and the demo-
saicked output images using (b) WM-HOI, (c) LSLCD, (d) LDI-NAT, (e) MDWI,
(f) RI, (g) DCD, and (h) the proposed method.
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Figure 2.21: Parrot image region of (a) the original Kodak image 23, and the
demosaicked output images using (b) WM-HOI, (c) LSLCD, (d) LDI-NAT, (e)
MDWI, (f) RI, (g) DCD, and (h) the proposed method.
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The images in Figures 2.22 - 2.25(a) are the original image regions selected from

the IMAX images shown in Figure 2.15. The output demosaicked images in

Figures 2.22 - 2.25(b)-(g) were produced by WM-HOI [27], LSLCD [33], LDI-

NAT [19], MDWI [28], RI [23], and DCD [31], respectively, and the image in

Figures 2.22 - 2.25(h) were produced by our proposed method.

The cropped yellow feature region of the IMAX image in Figure 2.23(a) was

the first challenging region used for the visual assessment. As shown in the

images of Figure 2.23(b)-(f), the WM-HOI, LSLCD, LDI-NAT, MDWI and RI

demosaicking methods produce visible colour artefacts around the boundary of

the yellow features of the white T-shirt and specially over the thin feature on

the top side of the image region. The DCD demosaicking and our proposed

algorithm produced negligible visual artefacts as shown in Figure 2.23 (g) and

(h), respectively.

The decorative doily pattern in the cropped image region shown in Figure 2.24(a)

is another example where most demosaicking methods, including the six bench-

marking methods, produce colour artefacts around the curved edges. As shown in

Figure 2.24(b)-(g), the demosaicking methods produced images with colour arte-

facts around the curved edges whereas our simultaneous demosaicking method

exhibited negligible colour artefacts.

For the other two demosaicked images of the IMAX dataset in Figure 2.22 and

Figure 2.25, our proposed method also produced minor colour artefacts in these

image regions compared with the six benchmarking methods in Figure 2.22 and

Figure 2.25(b)-(g).

As shown in Figures 2.22 - 2.25(e), the output demosaicked images produced by

MDWI method contain ample visible colour artefacts together with a noticeable

degree of blurriness. One reason for this is that it includes more far samples

in a 9 × 9 Bayer CFA neighbourhood from the centre sample of the missing
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green colour, and it does not exploit the horizontal or vertical correlations in

estimating the missing red/blue colours [30]. Comparing the demosaicked images

produced by RI [23], as shown in Figures 2.22 - 2.25(f), with the demosaicked

images produced by our proposed method as shown Figures 2.22 - 2.25(h), our

method visually contains fewer colour artefacts. This is supported by a smaller

NCV value, even though the CPSNR result of our proposed method in Table 2.2

is slightly less than that of the RI [23] method.
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Figure 2.22: Bouquet image region of (a) the original IMAX image 3, and the
demosaicked output images using (b) WM-HOI, (c) LSLCD, (d) LDI-NAT (e)
MDWI, (f) RI, (g) DCD, and (h) the proposed method.



CHAPTER 2. SIMULTANEOUS CFA DEMOSAICKING OF THREE
COLOUR PLANES 81

Figure 2.23: White T-shirt image region of (a) the original IMAX image 5, and
the demosaicked output images using (b) WM-HOI, (c) LSLCD, (d) LDI-NAT,
(e) MDWI, (f) RI, (g) DCD, and (h) the proposed method.
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Figure 2.24: Decorative doily pattern image region of (a) the original IMAX
image 7, and the demosaicked output images using (b) WM-HOI, (c) LSLCD,
(d) LDI-NAT, (e) MDWI, (f) RI, (g) DCD, and (h) the proposed method.
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Figure 2.25: Clothing fabric image region of (a) the original IMAX image 8, and
the demosaicked output images using (b) WM-HOI, (c) LSLCD, (d) LDI-NAT,
(e) MDWI, (f) RI, (g) DCD, and (h) the proposed method.
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Demosaicking methods often produce colour artefacts around fine features, such

as the vertical and horizontal edges of the visual arts image and the curved edges

of the Tbilisi Sameba Cathedral image from the LC dataset shown in Figure 2.16.

The building and skiff image and Polynesian boy from the Berkeley image dataset,

shown in Figure 2.17, are also known to cause visible colour artefacts along the

close vertical edges of the building windows and the diagonal edges of the stick

and canoe.

Figures 2.26 - 2.33(a) show the original image regions in the selected LC and

Berkeley images from Figure 2.16 and Figure 2.17. The output demosaicked

images in Figures 2.26 - 2.33(b)-(g), produced by WM-HOI [27], LSLCD [33],

LDI-NAT [19], MDWI [28], RI [23], and DCD [31], respectively, have ample

visible colour artefacts in the challenging regions described above. In contrast,

the output demosaicked image produced by the proposed demosaicking method

in Figures 2.26 - 2.33(h) are free from noticeable colour artefacts and are closer

to the original images.

As shown in the images of Figures 2.18 - 2.33(h), the proposed simultaneous

demosaicking method produced images free from visible colour artefacts. This

agrees with the quantitative results in Tables 2.1 - 2.4, that our proposed method

is the best across all image datasets. In addition, the six benchmarking methods

showed inconsistent performance across the different image datasets. Although

some methods produced good output results for one of the image datasets, such

as Kodak, and favourable results for other datasets, such as IMAX and LC, none

of them performed consistently well for all images from the four different image

datasets. On the other hand, our proposed demosaicking method was able to

produce the best quality demosaicked images with minimal visual colour arte-

facts in all the images from the four image datasets. In summary, our proposed

demosaicking method was able to produce demosaicked images with high colour

accuracy.
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Figure 2.26: Windmill image region of (a) the original LC image 52, and the
demosaicked output images using (b) WM-HOI, (c) LSLCD, (d) LDI-NAT, (e)
MDWI, (f) RI, (g) DCD, and (h) the proposed method.
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Figure 2.27: Samsung signage region of (a) the original LC image 64, and the
demosaicked output images using (b) WM-HOI, (c) LSLCD, (d) LDI-NAT, (e)
MDWI, (f) RI, (g) DCD, and (h) the proposed method.
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Figure 2.28: Tbilisi Sameba Cathedral image region of (a) the original LC image
77, and the demosaicked output images using (b) WM-HOI, (c) LSLCD, (d)
LDI-NAT, (e) MDWI, (f) RI, (g) DCD, and (h) the proposed method.



CHAPTER 2. SIMULTANEOUS CFA DEMOSAICKING OF THREE
COLOUR PLANES 88

Figure 2.29: Visual arts image region of (a) the original LC image 98, and the
demosaicked output images using (b) WM-HOI, (c) LSLCD, (d) LDI-NAT, (e)
MDWI, (f) RI, (g) DCD, and (h) the proposed method.
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Figure 2.30: Building image region of (a) the original Berkeley image 78004, and
the demosaicked output images using (b) WM-HOI, (c) LSLCD, (d) LDI-NAT,
(e) MDWI, (f) RI, (g) DCD, and (h) the proposed method.
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Figure 2.31: Polynesian boy’s Stick region of (a) the original Berkeley image
101087, and the demosaicked output images using (b) WM-HOI, (c) LSLCD, (d)
LDI-NAT, (e) MDWI, (f) RI, (g) DCD, and (h) the proposed method.
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Figure 2.32: Zebra image region of (a) the original Berkeley image 253027, and
the demosaicked output images using (b) WM-HOI, (c) LSLCD, (d) LDI-NAT,
(e) MDWI, (f) RI, (g) DCD, and (h) the proposed method.



CHAPTER 2. SIMULTANEOUS CFA DEMOSAICKING OF THREE
COLOUR PLANES 92

Figure 2.33: Eastern chipmunk region of (a) the original Berkeley image 123074,
and the demosaicked output images using (b) WM-HOI, (c) LSLCD, (d) LDI-
NAT, (e) MDWI, (f) RI, (g) DCD, and (h) the proposed method.
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2.4 Summary

In this chapter, we presented a novel demosaicking method to simultaneously

demosaic the three colour planes produced by a colour filter array over a single

sensor image capture device. Our proposed method is the first demosaicking

method that performs simultaneous demosaicking of three colour planes with an

advantage of avoiding colour artefacts within the demosaicking process.

Our proposed simultaneous demosaicking method produces multiple combina-

tions of RGB values for a possible estimated value of the full-colour pixel. By

using the colour-line property as a classifier, pixels containing colour artefacts

can be identified and excluded from selection within the process, and an opti-

mum RGB colour value is chosen for that possible estimate of the full-colour

pixel.

The performance of the proposed simultaneous demosaicking algorithm has been

evaluated using various images of different characteristics from the Kodak, IMAX,

LC and Berkeley datasets. The experimental results show that our proposed

method outperforms the demosaicking benchmarking methods quantitatively and

visually by producing highly accurate demosaicked images with insignificant arte-

facts.



Chapter 3

Blind Colour Artefact Detection

3.1 Introduction1

Visible colour artefacts are a significant issue affecting the perceptual quality of

processed images. The presence of colour artefacts results in unpleasant colour

images [3, 7, 147]. Colour artefacts are a critical factor in visual assessment and

a visually displeasing type of error to the Human Visual System (HVS) [25,

31, 61]. Post-processing methods exist to remove colour artefacts from already

demosaicked or processed images [11,17,25,67,79].

Most extant post-processing methods are unable to remove colour artefacts since

colour artefacts do not have a standard noise characteristic [43, 61, 67, 79, 87]. In

addition, post-processing methods tend to be applied to all image pixels, not just

colour artefact pixels, so that they alter the true colours of the input processed

image as well. It is, therefore, desirable to develop a new post-processing method

that can be applied to only the colour artefact pixels and to preserve the true

colour pixels. Hence, colour artefact pixels must first be identified and located

in a processed image. A removal technique can then be applied to re-map only

1The content of this chapter presents, and extends, research that will appear in publication
[[3]] referenced on Page ix.

94
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those detected colour artefact pixels while preserving the colour fidelity of input

images.

In this chapter, we introduce a novel blind colour artefact detection method to

detect colour artefacts in processed images without having the original image to

reference as the ground truth. Our proposed colour artefact detection method

can be used for many significant image processing applications especially when

the original reference image is not available, such as developing an efficient blind

IQA method. In this thesis, the main application for our blind detection method

is for the removal of the colour artefacts to produce better quality of already

demosaicked and processed images, and this is explained in Chapter 4.

3.1.1 Overview of Existing Colour Artefact Detection Tech-

niques

Existing detection techniques in the literature have been developed to identify

achromatic errors, including blocking effects, blurriness, and ringing errors pro-

duced by compression algorithms [57, 71, 148–151]. Other techniques have been

developed for image denoising, which often does not perform detection of noise

for removal as denoising is applied to all image pixels and not selectively on noisy

pixels [49–56, 152]. Colour artefacts, including false colour [3, 13, 35, 37, 38], zip-

per effect [3, 13, 17, 25], colour bleeding [58–60], and colour smearing [51–56], are

visible chromatic errors and do not present as common noise [3,7,25,61,87]. Our

approach is to identify colour artefact for removal but, unfortunately, there is al-

most no literature on the blind detection of visible colour artefacts. In addition,

most of the available literature [3, 7, 49–57, 71, 87, 148, 152] does not deals with

visible colour artefacts, and very little was found in the literature that deals with

colour artefacts but without detection step [67,79,153].

Some demosaicking methods have been developed with a post-processing tech-
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nique as a refinement or a re-interpolation process to reduce their interpolation

errors using all the pixels [1, 11, 17, 25, 28, 62, 154]. In particular, a demosaicking

method that implements a detection technique was proposed by Lu and Tan [25].

In this method [25], an initial detection step for zipper effects is used within the

post-processing step. The detection step is developed based on their assump-

tion that colour artefacts are more likely to appear around edges. A discrete

Laplace operator is applied to detect image edges using the demosaicked green

colour plane. A refinement process is then applied to those detected edge pixels

whether they are zipper effect or true colour pixels. In fact, the Lu and Tan [25]

detection procedure behaves as an edge detector rather than colour artefact de-

tector. Hence, it does not produce accurate results when used for colour artefact

detection. In addition, only the green colour plane is used for detecting colour

artefacts, ignoring the full-colour components of pixels and, therefore, it does not

accurately detect colour artefact pixels. Figure 3.1 shows an example of the de-

tection method used in [25]. The image in Figure 3.1(a) is the original Kodak test

image 19, and the image in (b) is the output result of the detection method. As

shown in Figure 3.1, whereas the input image in (a) is a ground truth image with

no colour artefacts, their proposed method detects most of the image features in

(b) as colour artefacts since it is practically designed to detect edge regions.

In this chapter, our investigation is on the development of a blind detection

technique to identify colour artefacts.
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Figure 3.1: Example of Lu and Tan detection method using (a) the ground truth
Kodak image 19 and (b) output detection result.
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3.1.2 Concept of Our Blind Colour Artefact Detection

Technique

The remainder of this chapter presents a novel blind colour artefact detection

method to detect the presence of colour artefacts in a processed image without

the original image to reference as the ground truth. After investigating different

colour models to determine a relationship between the true and colour artefact

pixels, the RGB colour model is chosen due to this model being the only one

supporting the colour-line property [67, 111]. In order to apply the colour-line

property, the image is first segmented into local regions. This segmentation is

performed using Simple Linear Iterative Clustering (SLIC) [127] and Density-

Based Spatial Clustering of Applications with Noise (DBSCAN) [155] to satisfy

the colour-line property in a local region. As a result, each local region will

consist of pixels of similar colour and, therefore, it will satisfy the colour-line

property. The Gaussian Mixture Model (GMM) [104,108,156,157] is then applied

to decompose the distribution of the colour pixels into clusters within a local

region. Those clusters are analysed to classify them into a cluster of artefact

pixels or a cluster of true colour pixels. Colour artefacts can be detected based

on the dispersion of the colour-line property, which will be widespread for local

regions with colour artefacts and narrow for those regions without. It has been

shown that our novel blind colour artefact detection method produces results that

correlate well with visual assessment.

3.1.3 Chapter Outline

The remainder of this chapter is organised as follows. Section 3.2 introduces

the proposed blind colour artefact detection method to detect the visible colour

artefacts in already demosaicked and denoised images. Section 3.3 presents the

visual assessment results of our proposed method using different image datasets.
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Finally, in Section 3.4, a brief summary of this chapter is given.

3.2 Proposed Blind Colour Artefact Detection

Technique

In this section, we introduce our novel blind colour artefact detection method

to detect colour artefacts without the original image to reference as the ground

truth. Figure 3.2 gives the main flowchart summarising our method. Image

segmentation is the first step in the detection process to partition the input image

into local regions. This is required since we use the colour-line property, which is

only applicable within local regions, to analyse the distribution of colour pixels.

For each local region, Gaussian Mixture Model (GMM) is applied to cluster the

colour pixels. Then, a classification step for each cluster is carried out based on

the degree of spread of its colour pixels from a regression line in the RGB colour

model. The degree of spread of each cluster is then compared with a threshold

value to classify its colour pixels into artefact or true colour pixels. Those pixels

with a spread above the threshold value are classified as colour artefacts, and

those below are classified as true colour pixels.

The proposed blind colour artefact detection method is explained in the following

sections. Section 3.2.1 gives an investigation of different colour models and the

best colour model for our application. Based on this investigation, the RGB

colour model is chosen for our blind detection application due to the existence

of the colour-line property, which is described in Section 3.2.2. Section 3.2.3

gives the image segmentation methods used to partition the input image into

local regions. Section 3.2.4 describes the use of the GMM for clustering the

RGB colour pixels within a local region, and Section 3.2.5 gives the classification

procedure of those clusters.
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Figure 3.2: Flowchart of the proposed colour artefact detection method.
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3.2.1 RGB Colour Model

Many colour models exist to represent colours with each supporting different im-

age processing applications [5,7,12,111,147,158–164]. In general, colour models,

which are transformed from the RGB colour model, can be classified into two

main types [111]:

• Linear colour models: these include all colour models that can be linearly

transformed from the RGB colour model. One example of a common linear

colour model is Y CbCr. The colour information in this model is separated

into intensity plane (Y ) and two colour planes (Cb and Cr). The Y CbCr

model is used in applications such as digital video, television broadcasting

and image compression.

• Non-linear colour models: these include all the colour spaces that are non-

linearly transformed from the RGB colour model. The International Com-

mission on Illumination (or Commission Internationale de l'Eclairage in

French) (CIE) defines some of the common non-linear colour models such

as CIE−LAB and CIE−LUV . The colour information is separated into

one luminance plane L and two chrominance planes AB and UV . Another

non-linear transformation of colour from RGB is the Hue, Saturation and

Value (HSV ) colour model where the chromatic, Hue (H) and Saturation

(S), are separated from the achromatic (V ) information. The HSV colour

space is used in some computer vision applications since colour information

in H and S can be processed independently from value information and are

associated with the function of human eyes in perceiving colour [160–163].

Selecting an appropriate colour model for our application is important in our

investigation since a relationship between colour artefact and true colour pixels

is required for the blind detection of colour artefacts. In order to select an appro-

priate colour model for our application, we experimented with four colour models
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Figure 3.3: RGB colour pixel distribution of a cropped image region from Kodak
image 16 using (a) original image and (b) processed image generated by MDWI
demosaicking method.

transformed from RGB, namely CIE −LAB, CIE −LUV , HSV , and Y CbCr,

as well as the RGB colour model. These colour models were used to analyse the

distribution of artefact and true colour pixels in these different colour models and

to determine a relationship among artefact and true colour pixels. As a result

of this analysis, presented in Appendix A, the RGB colour model was shown to

exhibit more organised spatial structures that are recognised by the colour-line

property [111] and could be used to identify the presence of colour artefacts.

Figure 3.3 gives an illustration of colour pixel distribution in the RGB colour

model of a local region without and with colour artefacts in (a) and (b), respec-

tively. The local region without colour artefacts, shown in (a), was extracted

based on colour homogeneity from Kodak image 16. The same homogeneous

colour region with colour artefacts, shown in (b), was extracted from a processed

image generated by MDWI demosaicking method [28] to produce some colour

artefacts. As shown in Figure 3.3, the colour pixels of the region without colour

artefacts in (a) and with colour artefacts in (b) are distributed in the form of
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elongated ellipsoids attributable to the colour-line property.

In summary, the RGB colour model is chosen as the suitable colour model in our

blind colour artefact detection application for the following reasons:

• It is characterised by the colour-line property [111], which is used when

analysing the distribution of artefact and true colour pixels.

• One of the main drawbacks of most other colour models is that they do not

consider image properties through a fixed colour transformation from the

RGB colour model [111].

• Since our proposed CFA demosaicking, in Chapter 2, is based on the Bayer

RGB pattern, it is desirable to analyse the distribution of colour pixels in

the same colour model.

Throughout this thesis, colours are represented in the RGB colour model, and

the colour-line property is incorporated into our blind colour artefact detection

method by using all the RGB colour pixels of a local region.
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3.2.2 Colour-Line Property

As mentioned in Section 2.2.2, the colour-line property is the local distribution of

colour pixels in the RGB colour model and states that local image regions with

homogeneous colour have RGB colour pixel values distributing almost linearly in

the RGB colour space [111]. As shown in Figures A.34 - A.37, the colour pixels

are almost linearly distributed in only the RGB colour space. This distribution

becomes wider only when visible colour artefacts are present in a local region while

the main orientation and the relationship of colour pixels are still preserved [121].

Hence, colour artefact pixels can be identified as outliers that deviate from the

regression line.

We take advantage of the colour-line property by incorporating it in the process

of the proposed blind detection method to analyse the colour pixel distribution

within a local region. As the colour-line property is only applicable in local

regions, the input image must first be segmented into local regions.

3.2.3 Image Segmentation

Since the colour-line property is only applicable in local regions, partitioning

the input processed image into local regions is an essential step in our proposed

method. In the Local Colour Nuclear Norm (LCNN) method [67], the regular

grids method was used for image segmentation to meet the requirement of the

colour-line property. Most images do not have colour edges that fit within regular

grids and that is why partitioning on regular grids will not fit the homogeneity

property required for the colour-line property. On the other hand, the Simple

Linear Iterative Clustering (SLIC) superpixel algorithm [127] can better meet

the homogeneity requirement for the colour-line property because it segments

images based on colour homogeneity to fit irregularity of colour edges. These two

image segmentation methods are explained in the following sections.
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3.2.3.1 Regular Grids Method

Regular grids [67] is a conventional image segmentation method that partitions

the input image into blocks of local image regions with similar shapes and sizes.

This method is simple and easy to implement, however, it partitions images

without any consideration to feature continuity and colour homogeneity. In this

way, the colour-line property can be applied locally at each local region. However,

the colour-line property is not satisfied in each local region since colour pixels in

some local regions are not similar with respect to colour homogeneity, as explained

in Section 3.2.3.4 and shown in Figure 3.10 and Figure 3.11.

Figure 3.4 and Figure 3.5 give examples of two images segmented using the regular

grids method. The images in Figure 3.4(a) and Figure 3.5(a) were selected from

IMAX [19] and LC [20] image datasets, and the images in (b) are the output of

the regular grids image segmentation. As shown in (b), most of the local regions

produced by regular grids have non-homogeneous colour pixels and different image

features.

In order to detect colour artefacts, the colour-line property must be satisfied

in each local region before applying the blind detection procedure. To satisfy

the colour-line property in those non-homogeneous local regions produced by

the regular girds method, further processing must be applied to each region, as

described in Appendix B.
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Figure 3.4: Image segmentation using (a) input original IMAX image 11 and (b)
output segmented image by regular grids.

Figure 3.5: Image segmentation using (a) input original LC image 124 and (b)
output segmented image by regular grids.
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3.2.3.2 SLIC Method

As mentioned in Chapter 2, the input image must be segmented based on colour

homogeneity to satisfy the colour-line property in each local region. As described

in Section 2.2.2, the SLIC superpixel algorithm [127] is the most appropriate

segmentation method for our applications. This is because it produces different

shapes and sizes of superpixels as local regions by partitioning images based on

colour homogeneity and human perception. As a result, the colour-line property

is satisfied in each local region, which can be seen in Figure 3.10 and Figure 3.11,

and the proposed blind detection method can, therefore, be applied to each local

image region. Figure 3.6 and Figure 3.7 show IMAX test image 11 and Bilinear

demosaicked image using LC test image 124 segmented by the SLIC algorithm.

The input images in (a) were used to generate the output segmented images (b).

As shown in Figure 3.6(b) and Figure 3.7(b), SLIC constructs local regions by

forming multiple local regions with homogeneous colour.
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Figure 3.6: Image segmentation using (a) input original IMAX image 11 and (b)
output segmented image by SLIC.

Figure 3.7: Image segmentation using (a) input Bilinear demosaicked LC image
124 and (b) output segmented image by SLIC.
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SLIC constructs local regions by segmenting the image to form a perceptual

grouping of pixels and preserves more image features. This produces multiple,

adjacent local regions of the same colour to match human perception as shown in

Figure 3.6(b) and Figure 3.7(b). Since our blind detection method is applied to

each local region, this detection procedure will be repeated again on those local,

adjacent regions that have similar colour pixels. Therefore, in order to improve

the accuracy of detection of colour artefacts by including more similar colour

pixels in a region, adjacent local regions with a similar colour are merged into

one local region using the Density Based Spatial Clustering of Applications with

Noise (DBSCAN) algorithm [155].

DBSCAN [155] combines neighbouring SLIC local regions that have similar colour

by measuring the colour distance between two adjacent local regions to produce a

more concise set of local regions. Neighbouring local regions with a small colour

distance are merged into one local region. Figure 3.8 (a) and Figure 3.9 (a) give

the SLIC segmentation of image 11 from the IMAX dataset and LC image 77

which is demosaicked by MDWI [28]. Figure 3.8 (b) and Figure 3.9 (b) show the

result of applying DBSCAN and illustrates how the number of local regions is

reduced. DBSCAN produces local regions that are generally larger in size and

that consist of similar colour pixels within an object boundary.
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Figure 3.8: Segmented IMAX original image 11 using (a) SLIC method only and
(b) SLIC followed by DBSCAN.

Figure 3.9: Segmented LC demosaicked image 77 using (a) SLIC method only
and (b) SLIC followed by DBSCAN.



CHAPTER 3. BLIND COLOUR ARTEFACT DETECTION 111

3.2.3.3 Impact of Image Segmentation on Colour-line Property

Image segmentation has a significant impact on the satisfaction of the colour-line

property within a local region as mentioned Section 2.2.2 and, as a result, this will

affect the blind detection efficiency of colour artefacts. In order to illustrate this

impact of image segmentation on satisfying the colour-line property, Figure 3.10

and Figure 3.11 show examples of local regions that are partitioned with and

without considering colour homogeneity. The local regions (b)-(d) are extracted

from images (a) in each of Figure 3.10 and Figure 3.11. The distribution of

colour pixels of the local regions (b) of Figure 3.10 and Figure 3.11 splits into

two main groups with some scattered colour pixels in the RGB colour model.

This is because of the non-homogeneous colour pixels of these local regions and,

therefore, the colour-line property is not satisfied. On the other hand, the colour-

line property is satisfied in those local regions (c) and (d) in Figure 3.10 and

Figure 3.11 as they are segmented based on colour homogeneity and their pixels

have a high tendency to distribute along the corresponding line in the RGB colour

model.

3.2.3.4 Selecting Appropriate Image Segmentation Method

A suitable image segmentation method for our proposed blind colour artefact

detection technique is chosen on the basis of the satisfaction of the colour-line

property in each local region of the segmented image. Partitioning an image

without considering the colour homogeneity using the regular grids image seg-

mentation method is not suitable for our application and, therefore, is not used.

In order to satisfy the colour-line property within a local region, the regular grids

method requires further processing by grouping the distribution of colour pixels

into clusters whereby each cluster can satisfy the colour-line property.
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Figure 3.10: Impact of image segmentation on satisfaction of the colour-line prop-
erty within local regions segmented form (a) IMAX image 11, the colour-line
property of (b) not satisfied, (c) satisfied, and (d) satisfied.
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Figure 3.11: Impact of image segmentation on satisfaction of the colour-line prop-
erty within local regions segmented form (a) IMAX image 11, the colour-line
property of (b) not satisfied, (c) satisfied, and (d) satisfied.
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Hence, SLIC and DBSCAN are more suitable in our application and, therefore,

they are used in our blind detection method. In this case, further processing is

not required and colour artefact pixels can be identified without ambiguity.

3.2.4 Clustering of Local Regions

After partitioning the image, the colour pixels of each local region will be grouped

into clusters for the blind detection of colour artefact pixels. As the probability

distribution of colour images is distinguished as a mixture of Gaussian densities

[106,107,156,165,166], the Gaussian Mixture Model (GMM) has been applied in

many colour image processing techniques including image segmentation [107,109,

110,167–171], depth estimation [172], and image restoration [80,173–176]. Hence,

GMM [104,108,156,157] is incorporated in the proposed blind detection method

to produce clusters in each local region in order to separate colour artefact pixels

and true colour pixels. These clusters may have overlapping densities of colour

pixels but, within a cluster, colour pixels will be well modelled by GMM [104]

3.2.4.1 Gaussian Mixture Model

To assign colour pixels to GMM clusters, each local image region is first vectorised

into an N×3 matrix, where N is the number of pixels of an individual local region

and the three columns are the vectorised red, green and blue colour channels. Let

X be a vectorised local region with N rows and 3 columns defined as follows:

X =


...

...
...

XR XG XB

...
...

...

 =


xR1 xG1 xB1
...

...
...

xRN xGN xBN

 (3.1)

where XR, XG, XB ∈ RN
+ are the vectorised red, green and blue colour channel

respectively, and Qn = (xRn , x
G
n , x

B
n ) is an individual colour pixel in X, where
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n = 1, 2, . . . , N . GMM is then applied to each X to produce clusters of colour

pixels.

Let p be the Gaussian density function for the GMM, and K be the number of

multivariate Gaussian density components, then the Gaussian density function

for a vectorised local region X is given as follows [104]:

p(X) =
K∑
k=1

ΓkN (X|µk,Ek) (3.2)

where N (X|µk,Ek) is a multivariate Gaussian distribution given by:

N (X|µk,Ek) =

1

(2π)D/2 |E|1/2
exp

{
−1

2
(X− µ)T E−1 (X− µ)

}
,

(3.3)

and ΓK is a non-negative mixture proportion that must satisfy the condition

such that
∑K

k=1 Γk = 1 and 0 ≤ Γk ≤ 1. Each of the multivariate Gaussian

components has a 1 × D mean vector µ and a D × D covariance matrix E,

with |E| denoting the determinant of E, and E−1 denoting the inverse of the

covariance matrix. In our application, there are three vectorised colour channels

(i.e., red, green and blue), therefore D = 3. The mixture parameters Γk, µk, and

Ek, where k = 1, 2, . . . , K, of the multivariate GMM components are estimated

by applying the Maximum Likelihood (ML) approach using the Expectation-

Maximization (EM) algorithm [177,178]. The EM algorithm estimates the GMM

parameters with initial values, and iteratively updates them over Expectation (E )

and Maximization (M ) steps. After each iteration, EM computes the likelihood

convergence, and the iteration will be repeated until convergence is satisfied. In

the case that the convergence is not satisfied, the E and M steps are repeated.

The posterior probabilities γ(znk) of each GMM component are determined during
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E steps using the existing parameter values, as follows:

γ(znk) =
ΓkN (Qn|µk,Ek)∑K
j=1 ΓjN (Qn|µj,Ej)

(3.4)

where n = 1, 2, · · · , N , and N is the number of the colour pixels in a vectorised

local region X. The existing GMM parameters are then updated in M steps using

the current posterior probabilities, as follows:

µnewk =
1

Nk

N∑
n=1

γ(znk)Qn

Enew
k =

1

Nk

N∑
n=1

γk(znk)(Qn − µnewk )(Qn − µnewk )T

Γnewk =
Nk

N

(3.5)

where Nk is the number of the colour pixels allocated in a GMM component k.

Nk =
N∑
n=1

γ(znk) (3.6)

The EM algorithm repeats E and M steps until convergence is satisfied. Conver-

gence is assessed at each iteration by determining the value of the log likelihood

function as follows,

ln p(X|µ,E,Γ) =
N∑
n=1

ln

{
K∑
k=1

ΓkN (Qn|µk,Ek)

}
(3.7)

After fitting the GMM, the colour pixel distribution in a vectorised local region

X is partitioned into K components where each GMM component represents a

cluster Ck ⊂ X. In order to separate artefact pixels from true colour pixels in

each local region, at least two GMM clusters are needed.
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3.2.4.2 GMM Clusters

The number of GMM clusters K should be selected based on the satisfaction of

the colour-line property in a local region. In other words, it is based on the way

that the input image is segmented. When the colour-line property is satisfied in

a local region, segmented by SLIC for example, two GMM clusters are needed

to separate artefact pixels from true colour pixels. On the other hand, in the

case that the colour line property is not satisfied in a local region, segmented by

regular grids for instance, the number of GMM clusters should be equal or greater

than two since the distribution of colour pixels has more random structures and,

therefore, the number of clusters needs to be determined, as described in the

Appendix B.

Different image datasets, namely Kodak [18], IMAX [19], LC [20], and Berke-

ley [21], were used to investigate an image segmentation method that suits our

blind colour artefact detection and the optimal number of clusters that will be

compatible with the used image segmentation method. As a consequence of this

investigation, we use SLIC image segmentation followed by DBSCAN in our pro-

posed blind detection method as only two GMM clusters are needed, whereby the

colour pixels can be assigned to one of the two clusters that consist of artefact or

true colour pixels. This gave the best blind detection results of colour artefacts

produced in Section 3.3 and the best colour artefact removal results as described

in Section 4.4.

Hence, by using SLIC and DBSCAN image segmentation, the selected number

of GMM clusters is K = 2. In other words, C1 ∪ C2 = X, and |C1| + |C2| = |X|

where |C1|, |C2| and |X| are the cardinal numbers of C1, C2 and X, respectively.

Figure 3.12 and Figure 3.13 show examples of GMM clustering of local regions ex-

tracted from Kodak image 8 and 1, respectively. Figure 3.12(a) and Figure 3.13(a)

show the two GMM clusters of local regions that contain true colour pixels, high-
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lighted in green, and colour artefacts, highlighted in red. Figure 3.12(b) and

Figure 3.13(b) show another example of the same local regions but containing

only true colour pixels where the both two clusters, highlighted in red and green,

are narrowly spread along the regression line. Referring to Figure 3.12(a) and

Figure 3.13(a), in this case, all the colour artefact pixels, highlighted in red, re-

side in only one GMM cluster that is spread further from the regression line.

This demonstrates that GMM is able to separate artefact pixels, highlighted in

red, from true colour pixels, highlighted in green. Even though it shows that

there are two clusters, both clusters are different from those of Figure 3.12(b)

and Figure 3.13(b).

Those clusters are then classified into a cluster of artefact pixels or a cluster of

true colour pixels, as described in Section 3.2.5.
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Figure 3.12: GMM clustering of the cropped roof region of Kodak image 8 con-
taining (a) true colour pixels mixed with colour artefact pixels and (b) only true
colour pixels.

Figure 3.13: GMM clustering of the cropped window region of Kodak image 1
containing (a) true colour pixels mixed with colour artefact pixels and (b) only
true colour pixels.
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3.2.5 Cluster Classification

This section describes the classification of the clusters produced by GMM in

Section 3.2.4. One advantage of using GMM in our method is its capability in

clustering overlapped data with different densities [104]. In our application, the

distributions of artefact and true colour pixels overlap each other and, therefore,

by using GMM clustering, those pixels (i.e., artefact pixels) that scatter far from a

regression line can be separated from those (i.e., true colour pixels) that distribute

close to the regression line resulting in two independent clusters.

Figure 3.14 and Figure 3.15 illustrate an example of two local regions with colour

artefacts clustered by GMM. As shown in the first row of Figure 3.14(a) and

Figure 3.15(a), the local regions contain colour artefacts, and by using GMM

clustering, the artefact pixel region is separated from true colour pixel region

as shown individually in (b) and (c), respectively. The GMM clusters of these

regions are shown in the second row of Figure 3.14 and Figure 3.15. As shown in

the second row of Figure 3.14(a) and Figure 3.15(a), the colour pixels, artefact

and true colour pixels, of the local region, are clustered into a cluster containing

colour artefact pixels, highlighted in green, and a cluster containing true colour

pixels, highlighted in red. The overlapping distribution of the artefact pixels,

highlighted in green, with the true colour pixels, highlighted in red, is clearly

shown in these Figure 3.14(a) and Figure 3.15(a). These clusters are shown

separately as a cluster of colour artefact pixels (b) and a cluster of true colour

pixels (c).

To demonstrate the GMM capability for clustering local regions without colour

artefacts, another example of GMM clustering is shown in Figure 3.16 and Fig-

ure 3.17 where the same local regions are used but containing only true colour

pixels. As shown in Figure 3.16(a) and Figure 3.17(a), the GMM separates the

true colour pixels into two clusters that are highlighted in green and red, and these
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clusters are shown independently in (b) and (c), respectively. The colour pixels

of the two true clusters, highlighted with green and red in (a)-(c) of Figure 3.16

and Figure 3.17, are distributed linearly and closely along the regression line,

whereas in Figure 3.14(b) and Figure 3.15(b), the clusters, highlighted in green,

are spread further from the regression line due to the random distribution of the

colour artefacts. In comparing the performance of GMM clustering in Figure 3.14

and Figure 3.15 with the Figure 3.16 and Figure 3.17, it is evident that GMM

is able to cluster the colour pixels of a local region that satisfies the colour-line

property into two clusters, in both the cases without ambiguity. Consequently,

the clusters of colour artefact pixels can be distinguished from the clusters of true

colour pixels and, as a result, they can be classified.
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Figure 3.14: Cluster separation of (a) the fence local region containing two clus-
ters, a cluster of colour artefact pixels, highlighted in green, and true colour pixels,
highlighted in red, into (b) a cluster of colour artefact pixels and (c) a cluster of
true colour pixels.
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Figure 3.15: Cluster separation of (a) the window local region containing two
clusters, a cluster of colour artefact pixels, highlighted in green, and true colour
pixels, highlighted in red, into (b) a cluster of colour artefact pixels and (c) a
cluster of true colour pixels.



CHAPTER 3. BLIND COLOUR ARTEFACT DETECTION 124

Figure 3.16: Cluster separation of (a) the fence local region containing two clus-
ters of true colour pixels into (b) a cluster of true colour pixels and (c) another
cluster of true colour pixels.
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Figure 3.17: Cluster separation of (a) the window local region containing two
clusters of true colour pixels into (b) a cluster of true colour pixels and (c) another
cluster of true colour pixels.
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In order to classify the two GMM clusters into a cluster of artefact pixels and

a cluster of true colour pixels, the degree of spread of the colour pixels from

the regression line of each cluster has to be determined. The degree of spread

is represented by the dispersion of the colour-line property, which has a wide

spread for local regions with colour artefacts and a narrow spread for those regions

without. This is because the colour artefact pixels deviate and scatter randomly

from the regression line as shown in Figure 3.14(b) and Figure 3.15(b) whereas

the true colour pixels are distributed almost linearly around the regression line

as shown in Figure 3.16 and Figure 3.17. Colour artefact pixels are, therefore,

classified as outliers that have a large deviation from the regression line.

Different techniques were investigated to determine the degree of spread of each

cluster, Ck. One method is to find the maximum value of the orthogonal distances,

which are the distances from pixels in a cluster to the regression line, to be used

as the degree of spread of a cluster. Another method is to use the variance of

the colour pixels of a cluster as the spread of the colour pixel within a cluster.

Both techniques have disadvantages due to their sensitivity to outliers. Hence,

Principal Component Analysis (PCA) is used in our blind detection method to

provide better detection of results and accurate feature extraction. PCA is a

useful technique for high dimensional data with low sensitivity to noise [131].

To determine the degree of spread of each cluster Ck, Singular Value Decompo-

sition (SVD) [121, 133–135] is applied to all the pixels in Ck. Each cluster Ck is

decomposed by SVD as follows:

Ck = UkΛkU
T
k

(3.8)

where k = 1, 2 are the cluster labels. As each cluster has three vectorised red,

green and blue colour planes, three eigenvalues will be given, λ1k , λ
2
k , λ

3
k. Let

Λk=diag{λ1k , λ2k , λ3k} be the 3×3 diagonal eigenvalue matrix and, without loss



CHAPTER 3. BLIND COLOUR ARTEFACT DETECTION 127

of generality, let λ1k ≥ λ2k ≥ λ3k, and UT
k be the 3×3 eigenvector matrix with their

corresponding eigenvectors, ~u1k, ~u
2
k and ~u3k, respectively.

As the eigenvalue for a factor measures the variance in all colour pixels that is

accounted for by that factor within the cluster, the eigenvector of the largest

eigenvalue, therefore, gives the direction of the largest variance in the same direc-

tion as the regression line. Consequently, the ratio of the second largest eigenvalue

to the largest eigenvalue of a cluster, i.e., rk, gives the degree of spread of colour

pixels from the regression line in our case. This process is repeated to find the

ratio, rk, for each cluster, Ck, within the corresponding local region. The ratio of

the second largest eigenvalue to the largest eigenvalue is therefore given by the

following equation:

rk =
λ2k
λ1k

(3.9)

Using the ratio of the eigenvalues provides better determination for the degree

of spread of a cluster since it represents a ratio of the width to the length of a

cluster. As a result, the dispersion of colour pixel distribution in a cluster can be

reflected by this ratio.

According to the colour-line property, a cluster consisting of only true colour

pixels will have a narrow dispersion. On the other hand, a cluster containing

colour artefact pixels will have a wider spread of pixels from the regression line.

In order to identify whether a cluster, Ck, contains colour artefacts, the spread

of the pixels can be determined by the corresponding rk. A cluster Ck will be

classified as a cluster containing colour artefact pixels if the following condition

is satisfied:

rk ≥ T (3.10)

where T is a positive, predefined threshold value determined experimentally.
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We have investigated the best threshold value T using all the test images from the

Kodak [18], IMAX [19], Laurent Condats (LC) [20] and Berkeley [21] datasets and

different Image Quality Assessment (IQA) methods in Chapter 4. In Section 4.3,

we have experimentally justified that the best threshold value is T = 0.08. This

value gave virtually all the correct colour artefact removal results produced in

Section 4.4, and the best performance of our method for the blind detection and

removal of colour artefacts.

From our experiment results in this chapter using all the test images from the

Kodak, IMAX, LC and Berkeley datasets, this same value T = 0.08 was used in

all the results produced in Section 3.3 showing virtually all correct identification

of colour artefacts. Based on Equation (3.10), a cluster is classified as a cluster

of colour artefact pixels when its ratio is greater than or equal the threshold

value. A cluster of true colour pixels is classified when its ratio is less than to the

threshold value. If the ratios for the two clusters within a local region are both

less than the threshold value T , then this local region is free of colour artefacts.
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3.3 Experimental Results

This section presents the results of the proposed blind colour artefact detection

technique. As mentioned in Section 3.1.1, our proposed blind detection of visi-

ble colour artefacts for processed images without the original image is a newly

proposed method and no other benchmarking detection methods of visible colour

artefacts without the ground truth are available for comparison.

To assess the performance of our proposed method, the 24 Kodak [18], 18 IMAX

[19], 150 LC [20] and 500 Berkeley [21] images were used. All the images from the

four image datasets were used to produce 692 test images with colour artefacts

by demosaicking and denoising.

Cropped local regions of the Kodak, IMAX, LC and Berkeley images were selected

for the visual assessment as shown in Figures 3.18 - 3.21. These local regions are

challenging to most demosaicking and denoising algorithms since they contain

closely packed features and various directional edges that could cause severe vis-

ible colour artefacts in processed images. Examples of challenging regions from

the test images are shown in Figure 3.18, Figure 3.19, Figure 3.20 and Figure 3.21.

The results in this section were produced using SLIC and DBSCAN image seg-

mentation, two clusters in each local region, and the ratio classification method.



CHAPTER 3. BLIND COLOUR ARTEFACT DETECTION 130

Figure 3.18: Selected Kodak test images for visual assessment, top-left is image 1,
top-right is image 6, middle-left is image 8, middle-right is image 19, bottom-left
is image 20, and bottom-right is image 24.
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Figure 3.19: Selected IMAX test images for visual assessment, top-left is image 1,
top-right is image 4, middle-left is image 5, middle-right is image 7, bottom-left
is image 8, and bottom-right is image 13.
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Figure 3.20: Selected LC test images for visual assessment, top-left is image 26,
top-right is image 52, middle-left is image 77, middle-right is image 98, bottom-
left is image 126, and bottom-right is image 147.
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Figure 3.21: Selected Berkeley test images for visual assessment, top-left is image
42044, top-right is image 78004, middle-left is image 108005, middle-right is image
260081, bottom-left is image 253027, and bottom-right is image 101087.
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To visually assess the detection of colour artefacts by our proposed blind colour

artefact detection method, Figures 3.22 - 3.29 give our experimental results. The

demosaicked test images were generated using three different demosaicking algo-

rithms, namely Bilinear, MDWI [28], WM-HOI [27], to produce various degrees

of colour artefacts. Figures 3.22 - 3.25 show the output results of the proposed

blind detection method using Kodak, IMAX, LC, and Berkeley image datasets,

respectively. The images in column (a) of Figures 3.22 - 3.25 give the original

ground truth images and column (b) the input demosaicked images produced by

the demosaicking methods. The images in column (c) give the output results of

our blind detection method. By comparing the images in column (a) with (b), it

is clearly seen in (c) that our proposed method can detect colour artefact pixels

in demosaicked images without false detection of true colour pixels. As shown in

Figure 3.22(c) the detected artefact pixels by our proposed method, it is clearly

shown that our blind colour artefact detection method was able to detect the

visible colour artefacts. Similarly, colour artefacts can also be correctly detected

from IMAX, LC and Berkeley image datasets as shown in Figures 3.23 - 3.25,

respectively.

Figure 3.26 shows the performance of our proposed method of detecting colour

artefacts in denoised images. For the visual comparison, the original images in

Figure 3.26 (a) are from each of the Kodak, IMAX, LC and Berkeley datasets

from top to bottom. The denoised test images in (b) were produced by applying

the CBM3D denoising method [49] to noisy images which were generated by

adding Gaussian noise with standard deviation of 0.15. The images in (c) show

the colour artefact pixels detected by our proposed blind colour artefact detection

method. The colour artefact pixels are visually distinguishable from the images

in column (b) and correlate well with the detected colour artefact pixels in the

images in column (c). It is clear that our proposed method was also able to detect

the colour artefacts produced by denoising without ambiguity.
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Figure 3.22: Cropped regions of (a) the original Kodak test images, (b) the
input demosaicked images, and (c) the output detected colour artefacts using the
proposed method.
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Figure 3.23: Cropped regions of (a) the original IMAX test images, (b) the in-
put demosaicked images, and (c) the output detected colour artefacts using the
proposed method.
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Figure 3.24: Cropped regions of (a) the original LC test images, (b) the input
demosaicked images, and (c) the output detected colour artefacts using the pro-
posed method.
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Figure 3.25: Cropped regions of (a) the original Berkeley test images, (b) the
input demosaicked images, and (c) the output detected colour artefacts using the
proposed method.
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Figure 3.26: Cropped regions of (a) the original images, from top to bottom,
Kodak image 19, IMAX image 8, LC image 147, and Berkeley image 42044,
(b) the input processed images generated by the denoising method, and (c) the
output detected colour artefacts using the proposed method.
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The performance of the proposed blind colour artefact detection method was also

evaluated on colour artefacts produced at edges. Figure 3.27 shows demosaicked

images with colour artefacts at edges along different directions. The images in

Figure 3.27(a) are cropped regions from the original Kodak test images and used

for the visual comparison. The first row of Figure 3.27(b) has demosaicked images

with colour artefacts along the horizontal edges whereas the demosaicked images

in the second row have colour artefacts along the vertical edges. The images in

the third row have colour artefacts at edges along the diagonal direction. As

shown in Figure 3.27(c), our method was able to detect all those colour artefacts.

In addition, we assessed the performance of the proposed blind colour artefact

detection method on various degrees of visible colour artefacts using the window

region of Kodak test image 1. Figure 3.28 gives the output detection results of

our proposed method. The images in Figure 3.28(a) are cropped window regions

from the original Kodak test images 1, which are used for the visual comparison.

As shown in Figure 3.28(b), the window region was demosaicked using different

demosaicking methods to produce various degrees of colour artefacts. It is clearly

shown in Figure 3.28(c) that our proposed method was able to detect all these

various degrees of visible colour artefacts, and the detection results correlate well

with the colour artefacts in the images (b).
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Figure 3.27: Cropped regions of (a) the original Kodak images, top and middle
are from image 24 and bottom is from image 6, (b) the input demosaicked images,
and (c) the output detected colour artefacts using the proposed method.
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Figure 3.28: Cropped window regions of (a) the original Kodak image 1, (b) the
input demosaicked images, and (c) the output detected colour artefacts using the
proposed method.
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To test the performance of our proposed blind detection method, a further as-

sessment on the original images in the absence of colour artefacts is performed

using one image each from the Kodak, IMAX, LC and Berkeley image datasets

from top to bottom shown in Figure 3.29. Our proposed blind detection method

is applied on the original ground truth images in Figure 3.29(a). As shown in

the output results of our detection method in (b), our proposed detection method

correctly did not detect any colour artefact pixels as indicated by the black colour

in this column.

To quantitatively assess the detection accuracy of the proposed blind colour arte-

fact detection, colour artefacts were simulated by using Bilinear demosaicking

which has been shown that it produces ample colour artefacts [27]. The demo-

saicked output image was then compared with the original image. If there was a

colour error over a threshold, this colour pixel was considered as a colour arte-

fact pixel and its location was recorded. Any pixels below that threshold were

reverted to the actual values of the original image. This image was then used

as the testing image with colour artefacts. The threshold in our experiment was

determined by equation 5.26 in Chapter 5. Simulated colour artefacts were pro-

duced similarly, and their locations were recorded for all the testing images in

the image datasets, namely Kodak, IMAX, LC and Berkeley, and the detection

accuracies of our proposed blind detection method are shown in Table 3.1. In

this Table, the “TPR”, “TNR”, “FPR”, “FNR” columns are the true positive,

true negative, false positive, and false negative rates, respectively. The true pos-

itive and true negative rates are all above 99.31% and the false positive and false

negative rates are all below 0.67%. The true positive rate (TPR) is calculated

using the following equation:

TPR =
TP

TP + FN
× 100 (3.11)
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where TP is the number of true positive, and FN is the number of false negative.

The true negative rate (TNR) is calculated using the following equation:

TNR =
TN

TN + FP
× 100 (3.12)

where TN is the number of true negative, and FP is the number of false positive.

Similarly, false positive rate (FPR) and false negative rate (FNR) are calculated

using the following equations:

FPR =
FP

FP + TN
× 100 (3.13)

FNR =
FN

FN + TP
× 100 (3.14)

Table 3.1: Detection accuracy of the proposed blind detection method

Image Dataset TPR TNR FPR FNR

Kodak 99.90 % 99.91 % 0.08 % 0.09 %

IMAX 99.95 % 99.63 % 0.36 % 0.04 %

LC 99.89 % 99.62 % 0.37 % 0.10 %

Berkeley 99.91 % 99.31 % 0.67 % 0.08 %
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Figure 3.29: Cropped regions of (a) the original images, from top to bottom,
Kodak image 19, IMAX image 4, LC image 126, and Berkeley image 101087 as
inputs and (b) the output detected colour artefacts using the proposed method.
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As shown in Figures 3.22 - 3.28, the colour artefact pixels were clearly visible in

(b), and they correlate well with the detected artefact pixels in (c). It is evident

that our novel method for the blind detection of colour artefacts can effectively

locate and detect different degrees of colour artefacts such as due to demosaicking

with large colour deviation and denoising with small colour deviation. It also

agrees well with our quantitative results in Tables 4.1 - 4.5. It also gives negligible

detection results when the input images were the original ground truth images.

This implies that our blind detection method can distinguish between the artefact

and true colour pixels.
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3.4 Summary

In this chapter, a novel blind colour artefact detection technique was presented

for the identification of colour artefacts without the original image to reference

as the ground truth. It is developed based on the dispersion of the colour-line

property, which has a wide and random distribution for local regions with colour

artefacts and narrow, almost linear distribution for those regions without. Using

SLIC and DBSCAN image segmentation methods, images can be segmented into

homogeneous regions, and accordingly the colour-line property in a local region

is satisfied. We have found that this type of image segmentation produces better

satisfaction of the colour-line property compared with the regular grids image

segmentation method and, therefore, better detection results are produced. The

Gaussian Mixture Model (GMM) is used to cluster the distribution of RGB colour

pixels of local regions, and by using a cluster ratio, the degree of spread of colour

pixels in a cluster is determined. Clusters are then classified into a cluster of

artefact pixels or a cluster of true colour pixels based on its degree of spread.

It has been shown that our proposed detection method is able to detect various

degrees of colour artefacts with minimal errors as confirmed by the experiment

results in Section 4.4. Our experimental results using image datasets with dif-

ferent characteristics prove that our proposed classification methods can produce

accurate detection results with minimal errors and they agree well with human

visual assessment. One application of our blind colour artefact detection method

is for the removal of colour artefacts, as described in the next chapter.



Chapter 4

Removal of Colour Artefacts

4.1 Introduction1

Existing post-processing methods, such as image denoising [3, 31, 74–78], and

regularization techniques [53–56,67,79–86] are not designed to selectively process

artefact pixels but instead are applied to the entire processed image. This type

of processing may lead to the modification of the colour values of true pixels

as they are not excluded from the processing. In addition, these methods are

ineffective at filtering colour artefacts since these artefacts do not exhibit common

noise characteristics [67, 79, 87]. Colour artefacts are therefore difficult, if not

impossible, to remove by currently available methods since they are more feature

dependent, localised and non-randomly distributed [87].

As mentioned in Chapter 1, colour artefacts are errors generally produced by

many CFA demosaicking methods [3,8,13,14,17,19,22–33,35–42,44–48,179], im-

age denoising [49,50,53–56,67,81,83–86], and image compression [58–60]. In order

to tackle this problem, an artefact removal method that selectively applies only

to colour artefact pixels is desired. Such a method must also be designed based

1The content of this chapter presents, and extends, research that will appear in publication
[[3]] referenced on Page ix.

148
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on the special characteristics of colour artefacts so that they can be effectively

filtered.

Our proposed method is by detection and removal. The first step is the detection

of colour artefacts, which was presented in the previous chapter. After our blind

colour artefact detection method has identified visible colour artefact pixels, our

final step is applied to remove those detected colour artefacts while preserving

the other true colour pixels. As a result, colour artefacts will be removed and

unified with neighbouring colours with no alteration of the true colour pixels.

4.1.1 Overview of Existing Noise and Colour Artefact Re-

moval Techniques

Most post-processing techniques found in the literature are particularly developed

to reduce noise [49, 50, 53–56, 67, 81, 83–86] in processed images, but very little

was found in relation to colour artefact removal [67].

Median filtering is one of the post-processing techniques used in a number of

demosaicking methods to filter outliers obtained during the process of estimating

missing colour values [3, 25, 76, 180]. Freeman [180] was the first researcher to

report using a median filter to remove demosaicking colour artefacts. He assumes

that colour artefacts exhibit as outliers and distinct colours that can be removed

by filtering the inter-channel colour differences using a median filter. However,

this method has been found to be less effective in removing colour artefacts around

edge regions and fine details [25]. This is because the colour planes are separately

filtered without considering spectral correlation among the colour planes [25].

An extension for the standard median filter has been developed for filtering the

three colour planes together using Vector Median Filter (VMF) [74–76]. VMF is

developed to remove outliers by minimising the distance among the vectors in a

neighbouring region [76]. It has been found that VMF is not effective in remov-
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ing colour artefacts [25, 76]. This is because most of the existing demosaicking

methods are developed to interpolate the three colour planes sequentially and,

consequently, interpolation errors are generated in the colour planes indepen-

dently [25,76].

Lu and Tan have developed a demosaicking post-processing technique based on

median filtering [25] by exploiting the spectral correlation of the three colour

planes to remove colour artefacts [25]. This method has been developed as a

refinement process for their initial demosaicked images to reduce colour artefacts

obtained from the interpolation step. The median filter is used with the spectral

correlation by updating the three colour values of each pixel. According to Lu

and Tan [25], the true captured colour values are also included in the median

filtering, and, as result of changing the captured colour values, the true colours of

the demosaicked image are not preserved. In addition to that, the median filter

is applied to all edge regions of the input image, not selectively to artefact pixels,

as intended. This is because their detection method detects edges and fine details

of image regions regardless of whether colour artefacts exist or not, as mentioned

in Section 3.1.1. Hence, it has been found to be less effective in removing colour

artefacts as shown in the following examples.

Figure 4.1 and Figure 4.2 show examples of Lu and Tan’s post-processing tech-

nique applied to processed images for colour artefact removal. The images in Fig-

ure 4.1(a) and Figure 4.2(a) are the demosaicked images produced by MDWI [28]

and WM-HOI [27], respectively, and provided as input into Lu and Tan’s post-

processing technique. The images in (b) are the output from this post-processing.

As shown in Figure 4.1(b) and Figure 4.2(b), after applying their post-processing,

colour artefacts still exist in the window blinds and the roof regions with a de-

gree of blurriness as a result of filtering. Hence, colour artefacts are not removed

effectively.
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Figure 4.1: Cropped window region of (a) the input processed Kodak image 1
generated by MDWI demosaicking method and (b) the output image with colour
artefacts removed by Lu and Tan’s post-processing technique.

Figure 4.2: Cropped roof region of (a) the input processed Kodak image 8 gen-
erated by WM-HOI demosaicking method and (b) the output image with colour
artefacts removed by Lu and Tan’s post-processing technique.
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Other post-processing techniques have been developed for noise removal such as

image denoising and regularization techniques [49,51,52,55,56,67,79–84]. These

denoising techniques [49–56, 85, 86] and regularisation techniques, including To-

tal Variation (TV) [85, 86] and Vectorial Total Variation (VTV) [53–55, 83], are

generally ineffective at removing colour artefacts due to the reason that colour

artefacts have special characteristics that do not exhibit as standard noise [83,87].

It is also because these denoising techniques are not designed for the purpose of

colour artefact removal [67,79].

A Local Colour Nuclear Norm (LCNN) regularization method has been recently

developed by Ono and Yamada (2016) for the removal of colour artefacts in

colour image restoration [67]. LCNN [67] has been developed as a post-processing

step for the removal of colour artefacts caused by denoising and is probably the

only method found in the literature that is specially designed for colour artefact

removal. Hence, the performance of our proposed colour artefact removal method

is compared with the LCNN method in their ability to remove different degrees

of colour artefacts.

The LCNN method segments the input denoised image first into square blocks of

local regions with fixed size using the regular grid method and then processes these

square blocks of pixels. To remove the colour artefacts produced by denoising

in each block of a local region, a fixed weight is applied to promote the colour-

line property of all the colour pixels, including artefact and true colour pixels,

regardless of whether the colour-line property is satisfied in that local region.

This application of the colour-line property is repeated for all the local regions of

the input denoised image regardless of whether the local region contains colour

artefacts or not. In fact, we have found that the LCNN method is less effective

at removing colour artefacts due to the following limitations:

• Image segmentation: in the LCNN method, an input image is segmented
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into square blocks of local regions of fixed size, ignoring important character-

istics such as colour homogeneity and coherent features. The segmentation

method applied may be inappropriate as the colour-line property, which

states that the local RGB colour values tend to distribute linearly along

a regression line in RGB colour space [111], will not be satisfied in each

block of the local region, as mentioned in Sections 3.2.3 and 3.2.3.3. This

is because the natural properties of different scenes have different spatial

structures for the distribution of the local RGB colour pixels [111].

• Colour artefact detection: as colour artefact detection is not incorporated

within the LCNN method, all the pixels in each local region are processed.

It is desirable to operate on the colour artefact pixels only without altering

true colour pixels.

• Colour-line property promotion: due to the inherent problems of the im-

age segmentation used in the LCNN method, there are segments in which

the colour-line property is unsatisfied. However, the LCNN method will

still promote the colour-line property in those segments regardless, causing

more colour artefacts as a result, such as colour smearing and fading across

boundaries. In addition, since the LCNN method applies a fixed weighting

to promote the colour-line property in every local region with no regard

to whether the colour-line property is satisfied or not, it is less effective

when the colour artefacts have a large colour deviation from their original

colours. Hence, the fixed weight will be inadequate to reduce colour arte-

facts with large colour deviation, such as those colour artefacts produced

by demosaicking algorithms.

• Adaptation: LCNN searches for the optimum global parameters for an im-

age, but it will be more effective to optimise local parameters for the indi-

vidual block (segment), such as the block size. This optimisation of global
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instead of local parameters will reduce the effectiveness in removing differ-

ent degrees of colour artefacts.

• Output results the LCNN method dulls some colourful local image regions.

This is because LCNN forces the colour pixel distribution to promote the

colour-line property in every local region even where it is not satisfied [67].

As a result, the colour artefacts are not effectively removed from input

images. Moreover, it has been observed from the experiment results that

LCNN is incapable of preserving true colours of an input image and, as

shown in Section 4.4.2, it produced new colour artefacts when applied to

original images.

For more effective removal of visible colour artefacts than that of the LCNN

method, we have developed a colour artefact removal method incorporating our

novel blind colour artefact detection method in Chapter 3.

4.1.2 Concept of Our Colour Artefact Removal Technique

The remainder of this chapter presents a proposed colour artefact removal tech-

nique to remove the visible colour artefacts in processed images without altering

the true colour pixels. After applying our novel blind colour artefact detection

method from Chapter 3, our proposed removal technique corrects the colour of

detected artefact pixels by re-mapping their colours to blend with their neigh-

bours based on the colour-line property of the region. The proposed removal

technique applies an adaptive weight, which is determined based on the spread

of the true colour pixel distribution, to promote the colour-line property of the

colour artefact pixels so that the corrected colour of these pixels will have a sim-

ilar distribution to those true colour pixels within a local region. Consequently,

different degrees of colour artefacts can be effectively removed from the input

processed image with the true colour pixels left unchanged. Our proposed colour
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artefact removal technique is more effective in removing colour artefacts than

the benchmarking method since our removal technique is applied selectively to

only the detected colour artefact pixels and adaptively promotes the colour-line

property of a cluster containing colour artefacts. It is demonstrated below that

our proposed technique outperforms the LCNN method in the removal of colour

artefacts and can remove severe colour artefacts while LCNN is less effective.

4.1.3 Chapter Outline

The remainder of this chapter is organised as follows. Section 4.2 describes the

proposed colour artefact removal technique. Section 4.3 gives the determination

of the threshold value for our blind colour artefact detection method, described

in Chapter 3. Section 4.4 presents the quantitative and visual assessment for the

performance of the proposed removal technique. The summary and conclusion of

this chapter is given in Section 4.5.

4.2 Proposed Colour Artefact Removal Tech-

nique

In this section, the proposed colour artefact removal technique is described. Fig-

ure 4.3 presents a flowchart of our proposed colour artefact removal technique.

As shown in Figure 4.3, once our blind detection method is applied, the colour

pixels within a local region are classified into two clusters: a cluster of colour

artefact pixels or true colour pixels. The cluster of true colour pixels will re-

main unchanged. For the cluster of colour artefact pixels, its colour-line property

is promoted using Singular Value Decomposition (SVD) [121] where the colour

artefact pixels are then corrected by re-mapping their colours into the region of

the cluster of true colour pixels. Thus, visible colour artefacts are removed with-
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out altering the true colours and an output image with better visual quality is

produced.
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Figure 4.3: Flowchart of the proposed colour artefact removal method.
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4.2.1 Artefact Removal Using SVD

Our proposed colour artefact removal method only applies to those colour arte-

fact pixels classified by our blind detection method defined in Equation (3.10).

The pixels which are classified as true colour pixels will remain unaffected. The

approach is to adaptively promote the colour-line property of a cluster containing

artefact pixels by mapping the colour values of the artefact pixels closer to the

regression line resulting from the colour-line property of the cluster containing

true colour pixels within a local region. This results in a cluster with more linear

structure and a narrower distribution of colour pixels.

SVD on the clusters of artefact and true colour pixels in a local region yield

eigenvalues where the second and third largest correspond to the cluster spread.

Our proposed method replaces the eigenvalues of the cluster containing artefact

pixels with the eigenvalues of the cluster containing true colour pixels, re-mapping

the colour artefact pixels. In order to promote the colour-line property for a

cluster of colour artefact pixels, each cluster Ck of the local region identified with

colour artefacts is analysed by SVD as follows:

Ck = UkΛkU
T
k

(4.1)

where k = 1, 2 is the number of clusters. As each cluster has three vectorised

red, green and blue colour channels, the equation will give three eigenvalues,

λ1k , λ
2
k , λ

3
k, from SVD. Let Λk=diag{λ1k , λ2k , λ3k} be the 3× 3 diagonal eigen-

value matrix and, without loss of generality, let λ1k ≥ λ2k ≥ λ3k. U
T
k be the 3 × 3

eigenvector matrix with the corresponding eigenvectors, ~u1k, ~u
2
k and ~u3k, respec-

tively. In RGB colour space, λ1k, λ
2
k, and λ3k represent the length, width and

depth of the colour pixel distribution of a cluster Ck.

Without loss of generality, as there are only two clusters, i.e., k = 1, 2, within
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a superpixel, let C1 be the cluster containing true colour pixels and C2 be the

cluster containing colour artefact pixels. The colour-line property for the cluster

containing colour artefact pixels, C2, is then promoted to Ĉ2, which is a cluster

containing re-mapped colour artefact pixels as follows:

Ĉ2 = U2Λ̂2U
T
2

(4.2)

where Λ̂2 is given as follows:

Λ̂2 = diag
{
λ12 , λ

2
1 , λ

3
1

}
(4.3)

In this case, λ22 is replaced by λ21 and λ32 is replaced by λ31 so that Ĉ2 will now

have a similar spread as that of the cluster containing true colour pixels, C1.

In rare cases when both clusters are classified as clusters containing colour artefact

pixels, in other words, Equation (3.10) is satisfied for both k = 1 and k = 2, then:

Λ̂2 = diag
{
λ12 , 0 , 0

}
(4.4)

The second and third largest components of a cluster of true colour pixels tend to

be very small values and, therefore, in this special case, the values of the second

and third components are set to zero assuming that this local region has an ideal

colour-line property. Figure 4.4 illustrates a block diagram which summarises

the total process of the colour artefact removal and promotion of the colour-line

property of Ĉ2.

As a consequence of the promotion of the colour-line property for a cluster Ĉk,

colour artefacts are removed in the identified local regions.
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4.3 Threshold Determination for Our Blind Colour

Artefact Detection Method

An empirical experimental study was conducted to select an appropriate threshold

value of T used for the blind detection method in Equation (3.10). The threshold

value is compared with the spread of the cluster, and if the spread is above

or equal to the threshold value, this cluster is classified as a cluster of colour

artefact pixels. In order to select a threshold value that can provide the best

performance for our blind detection and colour artefact removal method, a range

of threshold values and 692 processed test images were used. The 692 images

were the Kodak [18], IMAX [19], LC [20] and Berkeley [21] image datasets. Our

proposed method was then applied to blindly detect and remove colour artefacts

in these input processed images. The input processed images were produced by

using Bilinear demosaicking which has been shown that it produces ample colour

artefacts [27]. The performance of our proposed method was then measured using

four IQA methods, namely CPSNR [34], GMSD [89], ZE [25], and our proposed

NCV [61], presented in Chapter 5. Different ranges of the threshold values were

initially attempted and a peak value was found between 0.06 to 0.10. Hence,

the final range of threshold values was determined to be from 0 to 0.18. This

procedure was repeated at this final range of threshold values with intervals of

0.005 to select the appropriate threshold value of T to find the best possible

performance.

Figures 4.5 - 4.8 show the CPSNR, GMSD, ZE, and NCV performance of our

proposed blind detection and removal method under different settings of threshold

T . Figure 4.5 shows the CPSNR gain averaged over the 24 Kodak, 18 IMAX, 150

LC, and 500 Berkeley test images. Similarly, Figure 4.6, Figure 4.7, and Figure 4.8

show the GMSD, ZE, and NCV gain averaged over these images, respectively.

As shown in the Figures 4.5 - 4.8, when T = 0, all the colour pixels of the
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input processed image are identified as colour artefact pixels by the proposed

blind detection method. This also means that all the clusters produced by GMM

(Section 3.2.4.1) are classified as artefact colour clusters. At T = 0, the proposed

detection and removal method still shows some improvement in all the IQA meth-

ods, and the results still outperformed the best results by the LCNN [67] method,

as shown in Section 4.4.

When T is greater than 0.14, as shown in Figures 4.5 - 4.8, most of the colour

pixels in the input processed image are identified as true colour pixels. This

implies that the threshold value is too high allowing a large spread resulting in

most of the colour artefact pixels being included in the cluster of true colour

pixels.

As shown in Figures 4.5 - 4.8, the best performance of our proposed method

in detection and removal is achieved in all the IQA methods and using all the

test images at a threshold value between T = 0.075 and T = 0.085. In this

range of T values, no significant difference in gain could be observed since most

of the colour artefact pixels are included in the removal process, and most of

the true colour pixels are preserved. Hence, the maximum gain obtained in the

mid of this range at T = 0.08 is chosen to be the optimum value for all IQA

methods. Therefore, the threshold value of T = 0.08 is used in Equation (3.10)

for our proposed detection method and used to produce all the results of our

blind detection method presented in Section 3.3 and the quantitative and visual

results of the removal method in Section 4.4 of this chapter.
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4.4 Experimental Results

To quantitatively and visually evaluate the performance of our proposed method

for removal of colour artefacts, Kodak [18], IMAX [19], LC [20] and Berkeley [21]

image datasets were used. The 24 Kodak images have strong inter-channel cor-

relation so that they have a less saturated and smoother appearance [19]. To

the contrary, the 18 IMAX and 150 LC images are considered to be closer to

images captured by current digital image sensors with low inter-channel corre-

lation [1, 41]. The 500 human segmented natural scene images of the Berkeley

dataset are commonly used in computer vision for the assessment of image seg-

mentation and boundary detection methods [21]. All the images from the four

image datasets were used to produce 692 test images with colour artefacts by

demosaicking and denoising.

The demosaicked test images were generated using four different demosaick-

ing algorithms, namely Bilinear interpolation, MDWI [28], WM-HOI [27], and

DCD [31], to produce various degrees of colour artefacts. Among these four de-

mosaicking methods, the Bilinear interpolation is used since it produces a larger

amount of colour artefacts [13]. The denoised test images were produced by ap-

plying Colour Block-Matching and 3D filtering (CBM3D) method [49] to noisy

images which were generated by adding Gaussian noise with a standard deviation

of 0.15. Our proposed colour artefact removal technique is a recently developed

approach that is specifically designed to remove colour artefacts and, therefore,

only one benchmark, the LCNN method [67], is available for quantitative and

visual comparisons. We also assess the improvement of our proposed colour arte-

fact removal technique as a post-processor for existing demosaicking methods. In

the following sections, the performance of the proposed colour artefact removal

method is assessed quantitatively in Section 4.4.1 and visually in Section 4.4.2.
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4.4.1 Quantitative Assessment

To assess the quantitative performance of our proposed method in comparison

with the LCNN method, all the 692 images from the four image datasets were

used to generate the results in Tables 4.1 - 4.5. Four different IQA methods,

namely CPSNR [34], GMSD [89], ZE [25], and NCV [61] were applied for our

quantitative comparison. CPSNR measures the total errors in a processed image,

GMSD measures the image distortion in a processed image, ZE is a measure

of zipper effects produced by demosaicking, and NCV, which is our proposed

IQA method described in the next chapter, measures the degree of visible colour

artefacts produced by image processing methods. The lower the GMSD score,

the higher the image perceptual quality, and, similarly, the lower values of ZE

and NCV, the higher image quality. A zero NCV value implies no measurable

visual colour artefacts. These four IQA methods are described further in the next

chapter.

Tables 4.1, 4.3, 4.4, and 4.5 show the average numerical results for the perfor-

mance of our proposed artefact removal method against the LCNN benchmarking

method using all the test images from the Kodak, IMAX, LC and Berkeley im-

age datasets, respectively. Table 4.1 gives the CPSNR results of the four image

datasets for the LCNN and our proposed methods where the “Processed” column

is the CPSNR of the output images processed by the demosaicking and denoising

methods. These processed images are used as the input images to the LCNN

method and our proposed detection and removal method. The “LCNN” and the

“Proposed” columns in Table 4.1 give the CPSNR of the output images produced

by the LCNN method and our proposed method, respectively. The best values

were highlighted in bold. The “LCNN gain” column in Table 4.2 gives the CP-

SNR gain of the LCNN method over that of the “Processed”, i.e., the differences

in dB of CPSNR between the LCNN output and its input, and similarly for the
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“Proposed” column. Positive and negative signs in Table 4.2 refer to the gain and

loss in CPSNR, respectively. The “Diff” column gives the differences between the

CPSNR gain in dB of our proposed method and the LCNN method, with a posi-

tive value indicating that our proposed method outperformed the LCNN method.

As shown in the “Diff” column of Table 4.2, our proposed method outperformed

the LCNN method by at least +1 dB and up to almost +4 dB on average over all

692 images. For the LCNN method, the maximum gain for the Bilinear demo-

saicked images was +0.46 dB and +0.03 dB for the CBM3D denoised images. On

the other hand, the rest of the results by the LCNN method in Table 4.2 were all

negative values, meaning that the LCNN method deteriorated its input images

instead of providing any improvement. This shows that the LCNN method in

general has limited capability in removing colour artefacts from processed im-

ages. To the contrary, as shown in Table 4.2, our proposed method produced all

positive values specifically in CPSNR, and this is showing that it is effective in

removing colour artefacts from images processed by any method.

The columns in Tables 4.3 - 4.5 are organised similarly to those in Table 4.1

but give the average scores of the other IQA methods, namely GMSD, ZE and

NCV IQA methods, respectively. For these IQA methods, a smaller value im-

plies better performance. The best values are highlighted in bold. As shown in

Tables 4.3 - 4.5, our proposed method also produced the best results over all the

IQA methods because its values are smallest of the “Processed” and “LCNN”

columns. In most cases, the LCNN method produced worse IQA values than

its input processed images. In other words, the LCNN method produced more

distortion, as shown in Tables 4.3, and added more colour artefacts, as shown in

Figure 4.18, in its output images rather than removed them. On the other hand,

our proposed method enhanced image fidelity by producing lower GMSD val-

ues in the “Proposed” column than the input images in the “Processed” column

as shown in Table 4.3. Similarly, our proposed method reduced visible colour
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artefacts by producing lower ZE and NCV values than its input and also LCNN

images as shown, respectively, in Tables 4.4 - 4.5. This implies that our proposed

method was able to remove colour artefacts without altering the true colours or

causing distortion to its input processed images, while the LCNN method would

cause more distortion, as shown in Tables 4.3, and colour artefacts, as shown in

Figure 4.18 and discussed in Section 4.4.2, to its input processed images when

removing colour artefacts. All in all, our proposed method outperformed the

benchmarking LCNN method for all the IQA methods using all images from the

Kodak, IMAX, LC and Berkeley datasets.
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Table 4.1: The average CPSNR values in dB for Kodak, IMAX, LC and Berkeley datasets with the best in bold.

Kodak IMAX LC Berkeley

Processed LCNN Proposed Processed LCNN Proposed Processed LCNN Proposed Processed LCNN Proposed

DEMOSAICKING

Bilinear 30.27 30.73 33.92 32.34 32.56 33.94 28.43 28.87 32.73 28.98 29.39 30.91

MDWI 37.04 36.44 38.17 36.07 35.04 37.08 33.43 32.78 35.04 35.57 34.70 37.40

WM-HOI 39.05 37.36 40.41 35.02 34.17 36.03 33.87 33.27 35.06 38.02 36.18 39.04

DCD 39.43 37.23 40.48 35.46 34.26 36.49 34.11 33.14 35.68 38.58 36.82 39.69

DENOISING

CBM3D 29.51 29.53 30.53 29.34 29.32 30.41 27.92 27.95 29.32 28.50 28.53 29.55
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Table 4.2: The average gain of CPSNR values in dB for Kodak, IMAX, LC and Berkeley datasets.

Kodak IMAX LC Berkeley

LCNN
gain

Proposed
gain

Diff LCNN
gain

Proposed
gain

Diff LCNN
gain

Proposed
gain

Diff LCNN
gain

Proposed
gain

Diff

DEMOSAICKING

Bilinear + 0.46 + 3.65 + 3.19 + 0.22 + 1.60 + 1.38 + 0.44 + 4.30 + 3.86 + 0.41 + 1.93 + 1.52

MDWI - 0.60 + 1.13 + 1.73 - 1.03 + 1.01 + 2.04 - 0.65 + 1.61 + 2.26 - 0.87 + 1.83 + 2.70

WM-HOI - 1.69 + 1.36 + 3.05 - 0.85 + 1.01 + 1.86 - 0.60 + 1.19 + 1.79 - 1.84 + 1.02 + 2.86

DCD - 2.20 + 1.05 + 3.00 - 1.20 + 1.03 + 2.23 - 0.97 + 1.57 + 2.54 - 1.76 + 1.11 + 2.87

DENOISING

CBM3D + 0.02 + 1.02 + 1.00 + 0.02 + 1.07 + 1.05 + 0.03 + 1.40 + 1.37 + 0.03 + 1.05 + 1.02
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Table 4.3: The average GMSD (×10−2) values for Kodak, IMAX, LC and Berkeley datasets with the best in bold.

Kodak IMAX LC Berkeley

Processed LCNN Proposed Processed LCNN Proposed Processed LCNN Proposed Processed LCNN Proposed

DEMOSAICKING

Bilinear 4.483 3.931 2.968 2.694 3.141 2.312 4.615 4.288 3.235 4.574 4.259 3.622

MDWI 1.680 1.940 1.311 2.061 2.658 1.622 2.517 2.860 1.898 2.078 2.538 1.316

WM-HOI 1.578 1.958 1.073 2.500 3.160 1.991 2.507 3.001 1.713 1.701 2.489 1.137

DCD 1.130 1.402 1.007 2.300 2.526 1.691 2.125 2.016 1.517 1.612 1.617 1.035

DENOISING

CBM3D 8.214 8.177 8.079 8.573 8.424 7.997 8.425 8.421 7.981 8.200 8.197 7.420
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Table 4.4: The average ZE (%) values for Kodak, IMAX, LC and Berkeley datasets with the best in bold.

Kodak IMAX LC Berkeley

Processed LCNN Proposed Processed LCNN Proposed Processed LCNN Proposed Processed LCNN Proposed

DEMOSAICKING

Bilinear 40.18 30.24 19.60 28.52 25.35 17.67 40.76 29.89 23.97 45.29 32.98 16.78

MDWI 12.06 11.91 7.11 14.16 13.21 10.96 16.56 15.02 12.84 17.83 12.51 10.61

WM-HOI 7.23 6.43 4.82 12.65 12.37 11.23 14.65 13.13 10.96 10.90 9.09 7.35

DCD 6.76 8.29 4.13 12.05 12.54 10.24 13.12 13.83 9.35 8.39 7.52 5.79

DENOISING

CBM3D 17.52 14.71 14.38 21.61 19.62 18.91 24.41 21.97 20.64 22.29 18.06 17.01
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Table 4.5: The average NCV (×10−3) values for Kodak, IMAX, LC and Berkeley datasets with the best in bold.

Kodak IMAX LC Berkeley

Processed LCNN Proposed Processed LCNN Proposed Processed LCNN Proposed Processed LCNN Proposed

DEMOSAICKING

Bilinear 10.362 6.381 3.735 2.804 2.306 0.839 7.854 4.882 2.242 13.441 9.072 3.055

MDWI 1.606 1.378 1.003 0.373 0.346 0.202 1.078 0.925 0.533 3.111 1.907 1.250

WM-HOI 0.845 0.831 0.595 0.344 0.329 0.215 0.712 0.637 0.473 1.860 1.151 0.717

DCD 0.604 0.715 0.401 0.234 0.219 0.165 0.618 0.583 0.408 1.808 1.666 0.735

DENOISING

CBM3D 2.565 2.046 1.970 1.357 1.293 0.897 1.652 1.410 1.274 3.486 2.792 2.025
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4.4.2 Visual Assessment

A selection of cropped regions of the Kodak [18], IMAX [19], LC [20] and Berke-

ley [21] image dataset were used for visual assessment for comparing our proposed

method with the benchmarking LCNN method. Six test images each from the

Kodak, IMAX, LC, and Berkeley image datasets were selected for the visual

assessment as shown in Figures 4.9 - 4.12, respectively. These regions are chal-

lenging for most demosaicking and denoising algorithms because they contain

closely packed edges, diagonal and curved edges, and those features can cause

severe colour artefacts [25,27,31,40,145,146].
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Figure 4.9: Selected Kodak test images for visual assessment, top-left is 1, top-
right is image 5, middle-left is image 8, middle-right is image 18, bottom-left is
image 19, and bottom-right is image 23.
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Figure 4.10: Selected IMAX test images for visual assessment, top-left is image 1,
top-right is image 3, middle-left is image 4, middle-right is image 5, bottom-left
is image 7, and bottom-right is image 8.
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Figure 4.11: Selected LC test images for visual assessment, top-left is image 26,
top-right is image 52, middle-left is image 64, middle-right is image 77, bottom-
left is image 98, and bottom-right is image 147.
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Figure 4.12: Selected Berkeley test images for visual assessment, top-left is image
101087, top-right is image 78004, middle-left is image 106024, middle-right is
image 108005, bottom-left is image 260081, and bottom-right is image 253027.
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Visual assessment of the test images are shown in Figures 4.13 - 4.17. The regions

selected from the test images are known to result in colour artefacts such as the

white picket fence region with vertical edges in the 6th row in Figure 4.13 from the

Kodak image dataset, the decorative doily pattern with curved edges in the top

row in Figure 4.14 from the IMAX image dataset, the regions with diagonal and

curved edges in the 4th row in Figure 4.15 from the LC image dataset, and the

zebra image with edges at various directions in the 2nd row in Figure 4.16 from

the Berkeley image dataset. In Figures 4.13 - 4.16, the images in column (a) give

the cropped regions from the selected test original images. The images in column

(b) were generated by the demosaicking methods using Bilinear, MDWI [28],

HOI [27], and DCD [31]. The images in columns (c) and (d) are the output images

produced by the LCNN method and our proposed method after the removal of

colour artefacts, respectively.

Figure 4.17 is the visual assessment of our proposed method for the removal of

colour artefacts caused by denoising. The original images are presented in column

(a) where, from top to bottom, they are from the Kodak, IMAX, LC and Berkeley

datasets, respectively. The images in column (b) are denoised images generated

by the CBM3D denoising method [49], with the noisy images being generated by

adding Gaussian noise with standard deviation of 0.15. These denoised images

were used as input test images for the LCNN method and our proposed method.

The output images in columns (c) and (d) of the same Figure 4.17 were produced

after colour artefacts had been removed by the LCNN method and our proposed

method, respectively.

In Figures 4.13 - 4.17, by comparing the original images in column (a) with images

produced by the LCNN method in column (c), it is evident that a significant

amount of colour artefacts still remains. On the other hand, our proposed method

was able to detect and remove those colour artefacts effectively resulting in clean

images visually similar to the original images as shown in column (d). As shown
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in the output images produced by our proposed method in column (d), the regions

of colour artefact pixels were now mapped to colour pixels which blend well in

colour with the surrounding true colour pixels improving the visual appearance of

our output images. It is evident that our proposed method can effectively correct

colour artefacts and agrees well with our quantitative results in Tables 4.1 - 4.5.
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Figure 4.13: Cropped regions of (a) the original images using Kodak dataset,
(b) the input processed images generated by the demosaicking methods using
Bilinear, MDWI, HOI, and DCD, and the output images with colour artefacts
removed by (c) LCNN method and (d) proposed method.
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Figure 4.14: Cropped regions of (a) the original images using IMAX dataset,
(b) the input processed images generated by the demosaicking methods using
Bilinear, MDWI, HOI, and DCD, and the output images with colour artefacts
removed by (c) LCNN method and (d) proposed method.
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Figure 4.15: Cropped regions of (a) the original images using LC dataset, (b) the
input processed images generated by the demosaicking methods using Bilinear,
MDWI, HOI, and DCD, and the output images with colour artefacts removed by
(c) LCNN method and (d) proposed method.
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Figure 4.16: Cropped regions of (a) the original images using Berkeley dataset,
(b) the input processed images generated by the demosaicking methods using
Bilinear, MDWI, HOI, and DCD, and the output images with colour artefacts
removed by (c) LCNN method and (d) proposed method.
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Figure 4.17: Cropped regions of (a) the original images, from top to bottom,
Kodak image 19, IMAX image 8, LC image 147, and Berkeley image 78004, (b)
the input processed images generated by the denoising method, and the output
images with colour artefacts removed by (c) LCNN method and (d) proposed
method.
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To further examine our proposed method on the preservation of the original im-

ages in the absence of colour artefacts, we applied our proposed blind detection

and removal method directly on original images using one image from each of the

four image datasets as shown in Figure 4.18. The images in column (a) of Fig-

ure 4.18 are cropped regions from the original images of the Kodak, IMAX, LC,

and Berkeley from top to bottom. The images in column (b) of Figure 4.18 were

produced by the LCNN method and it can be seen that new colour artefacts were

produced. In other words, the LCNN method was incapable of preserving the

original images. To the contrary, our proposed method could faithfully preserve

the original images as shown in Figure 4.18(c). The visual results of our proposed

methods in Figure 4.18(c) indicate that our proposed method produced images

visually identical to the original images without any colour change or degrada-

tions. No colour distortions around the edges and smooth regions were noticed

in the output images. This is because our proposed detection method did not

detect any colour artefact pixels in the input original images, so that the original

images could be preserved without further processing.
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Figure 4.18: Cropped regions of (a) the original images, from top to bottom,
Kodak image 19, IMAX image 4, LC image 126, and Berkeley image 101087 as
inputs, and the output images by (b) LCNN method and (c) proposed method.
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We investigated the degree of improvement on the promotion of the colour-line

property after our proposed colour artefact removal method was applied to a

processed image identified with colour artefacts.

To examine the promotion of the colour-line property, Figures 4.19 - 4.26 show the

resulting colour-line properties of the LCNN method and our proposed removal

method. Figure 4.19(a) and Figure 4.20(a) give the original cropped image regions

from the Kodak dataset in the first row, and the second row gives their colour-

line properties. The images in the first row of (b) give the demosaicked cropped

regions and its colour-line property is given in the second row. The output images

in the first row of (c) and (d) of Figure 4.19 and Figure 4.20 were produced

after colour artefacts had been removed by the LCNN method and our proposed

method, respectively, and their colour-line properties are presented in the second

rows. Similarly, Figure 4.21 and Figure 4.22(a) -(d) give, in the first row, the

entire original, demosaicked, LCNN output, and our proposed output images

using the boat and zebra images from Berkeley dataset, respectively. The second

row gives their corresponding colour-line properties.

We also examined the promotion of the colour-line property by the LCNN method

and our proposed removal method using denoised images. The same window and

fence cropped regions in Figure 4.23 and Figure 4.24 and the entire boat and

zebra images in Figure 4.25 and Figure 4.26 were used for the visual comparison.

The outputs in Figures 4.20 - 4.26 show that our proposed removal method

promotes the colour-line property, which is similar to the colour-line property of

the original image. This promotion of the colour-line property reflects that the

output images produced by our proposed removal method in the first row of the

figures are visually free from colour artefacts.
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Figure 4.19: Cropped window region of Kodak image 1 and its colour-line proper-
ties of (a) the original image, (b) demosaicked image using HOI, and the output
images with colour artefacts removed by (c) LCNN method and (d) proposed
method.
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Figure 4.20: Cropped fence region of Kodak image 19 and its colour-line proper-
ties of (a) the original image, (b) demosaicked image using HOI, and the output
images with colour artefacts removed by (c) LCNN method and (d) proposed
method.
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Figure 4.21: Berkeley image 78004 and its colour-line properties of (a) the original
image, (b) demosaicked image using HOI, and the output images with colour
artefacts removed by (c) LCNN method and (d) proposed method.
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Figure 4.22: Berkeley image 253027 and its colour-line properties of (a) the origi-
nal image, (b) demosaicked image using HOI, and the output images with colour
artefacts removed by (c) LCNN method and (d) proposed method.
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Figure 4.23: Cropped window region of Kodak image 1 and its colour-line prop-
erties of (a) the original image, (b) denoised image, and the output images with
colour artefacts removed by (c) LCNN method and (d) proposed method.
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Figure 4.24: Cropped fence region of Kodak image 19 and its colour-line prop-
erties of (a) the original image, (b) denoised image, and the output images with
colour artefacts removed by (c) LCNN method and (d) proposed method.
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Figure 4.25: Berkeley image 78004 and its colour-line properties of (a) the original
image, (b) denoised image, and the output images with colour artefacts removed
by (c) LCNN method and (d) proposed method.
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Figure 4.26: Berkeley image 253027 and its colour-line properties of (a) the orig-
inal image, (b) denoised image, and the output images with colour artefacts
removed by (c) LCNN method and (d) proposed method.
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4.5 Summary

In this chapter, a colour artefact removal technique was presented that removes

visible colour artefacts from processed images. In order to preserve the true colour

pixels of the input image, the proposed removal method is selectively applied to

only colour artefact pixels that are detected by our blind colour artefact detection

technique, presented in Chapter 3. To remove those detected colour artefacts,

our proposed colour artefact removal method promotes the colour-line property

of those clusters identified as clusters of colour artefact pixels, so that only the

detected colour artefact pixels are blended with the neighbouring colours while

preserving true colour pixels in a region.

It has been demonstrated that the proposed colour artefact removal method is

able to remove colour artefacts with visually pleasing results. The experiment

results show that our proposed method outperformed the LCNN method quanti-

tatively, by producing the best average score for all the IQA methods in all the

image datasets, and qualitatively, by visual assessment.

All in all, our proposed detection and removal method can be used to improve the

quality of existing images that contain visible colour artefacts produced by earlier

generation demosaicking and/or denoising methods. Since existing image filters

and denoising methods are unable to filter out colour artefacts, our proposed

method is a promising novel development for improving old images.



Chapter 5

Image Quality Assessment

Techniques

5.1 Introduction1

Image Quality Assessment (IQA) is a significant area of research in image process-

ing since image quality is inevitably distorted by noise during processes including

acquisition, transmission, and compression [88, 92–94, 96–98]. Image quality is

also impacted by image interpolation such as demosaicking in the form of colour

artefacts present in the output demosaicked image [3, 13, 17,25,35,37,38].

In the literature, different IQA methods have been developed to measure image

quality, but most of these methods measure overall errors, including visible and

non-visible colour errors, in the processed colour images [88,91–94,96–98]. As de-

scribe in Section 5.2.2, colour errors are deemed to be visible when the absolute

colour differences for each colour plane must be at least equal to one quantiza-

tion step. This means that, non-visible errors are any errors less than half a

quantisation step [61].

1The content of this chapter presents, and extends, research previously published in publi-
cation [[1]] referenced on Page ix.
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Hence, IQAs commonly do not correlate well with visual assessment particularly

when either non-visible colour errors are proportionally large or visible colour

errors (i.e., colour artefacts) are proportionally small in relation to the total

errors in a processed image [61]. This is because colour artefacts are the most

visually annoying colour errors perceived by human eyes and they influence the

visual quality of processed images [13, 19,25,61].

Colour artefacts can be generated by different colour image processing algorithms

such as Colour Filter Array (CFA) demosaicking [3, 13, 14, 19, 23–33, 39, 40, 44,

46, 47], image compression [57–60], and image denoising [49–56], but are not

caused, in general, by blurring for example. As mentioned in Chapter 1, the

most common types of visible colour artefacts are false colour [3, 13, 35, 37, 38],

zipper effect [3, 13,17,25], and colour bleeding [58–60,181].

According to Jain [182], image quality can be defined as a measurement of the

fidelity of perceived image quality. Image quality is also reported by Janssen [183]

as a description of the visible errors present in the processed image. It is desirable

to measure the visual image quality by quantifying visible colour artefacts alone,

excluding other non-visible errors. The reason for this is that colour artefacts are

easily noticed by the human visual system and, therefore, they have a significant

impact on the visual quality of the processed images even if they are only a small

contribution to the total errors.

In this chapter, we introduce a new IQA method that can quantify colour artefacts

only and exclude all other errors. A novel Normalized Colour Variation (NCV)

[61] method is developed with an index for image quality assessment to specifically

quantify visible colour artefacts while remaining unaffected by other errors. While

there has not been a formal definition of colour artefacts [3, 13, 14, 17, 19, 23–33,

35,37–40,44,46,47,57–60,181], the general perception is that colour artefacts are

pixels with distinct visual colour variation from their original and neighbouring

colour values. To conceptualise this idea, when a processed pixel with a colour
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variation between its original is larger than the colour variation between the

original and its surrounding colours, that processed colour is considered to be

distinct and that pixel is classified as a colour artefact. In other words, pixels

with errors due to blurring will not be classified as colour artefacts as they do not

have distinct colour variation from their original and neighbouring colour pixels.

Our proposed NCV IQA method can be used for many significant image pro-

cessing applications to measure visible colour artefacts and to evaluate the per-

formance of image processing methods, such as CFA demosaicking, denoising,

and compression, in terms of their production of visible colour artefacts. Conse-

quently, our novel NCV IQA method will positively contribute to expanding the

field of image quality assessment.

5.1.1 Overview of Existing IQA Techniques

Most of the IQA methods in the literature quantitatively measure image qual-

ity [88, 92–94, 96–98]. Common benchmarking IQA methods are Colour Peak

Signal-to-Noise Ratio (CPSNR) [34], and Gradient Magnitude Similarity Devia-

tion (GMSD) [89]. Other common IQA methods, used for evaluating colour differ-

ences between the original and processed images, are the Zipper Effect (ZE) [25]

and Normalised Colour Difference (NCD) [184].

In this chapter, we have used the CPSNR [34], GMSD [89], ZE [25] and NCD [184]

IQA methods in comparison with our NCV IQA method to evaluate their sensitiv-

ity to various degrees of colour artefacts. The CPSNR and GMSD are selected for

the comparison with NCV since they are widely recognised in the image process-

ing community for the assessment of noise attenuation and gradient magnitude

similarity. These IQA methods measure the overall errors in a processed image

but are incapable of distinguishing between different types of errors such as in-

terpolation errors, colour artefacts, blurring, and motion artefacts. Since visible
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colour artefacts are our main focus in this thesis, we have used two other methods,

namely ZE and NCD, which are developed based on colour differences. ZE is used

in CFA demosaicking research to measure zipper effects in demosaicked images,

and NCD measures the similarity between the original and processed images.

Colour Peak Signal-to-Noise Ratio (CPSNR) [34] is the most common IQA method

used in colour image processing. It assesses the quality of processed images in

Decibels (dB) that it measures all errors, whether errors are colour artefacts, or

other differences between pixel values. CPSNR is a pixel-wise fidelity IQA tool

that determines the differences between pixels of the original reference and pro-

cessed images by computing the mean squared difference between them. Its index

value is determined based on the colour mean squared error (CMSE), which is

given as follows [34]:

CMSE =
1

3HW

∑
k=r,g,b

H∑
y=1

W∑
x=1

(Io(x, y, k) − Ip(x, y, k))2, (5.1)

where Io and Ip are the original and the processed images, respectively, and H

and W represent the height and width, respectively, of both images. The CPSNR

index value for an 8-bit image is then defined by the following equation [34]:

CPSNR = 10 log10(
(255)2

CMSE
). (5.2)

As given in Equation (5.2), the dB value of CPSNR gives overall quality of the

processed image, where the higher the dB value, the better quality is the processed

image.

The CPSNR method is widely used in image processing applications since it has

a low-complexity and simple mathematical model. However, it does not correlate

well with visual assessment sometimes as it measures the signal to noise in a

logarithm ratio and includes overall errors in processed images in the assessment
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[3, 7, 27, 144].

Gradient Magnitude Similarity Deviation (GMSD), proposed by Xue et al [89],

is the second IQA method used for comparison with our proposed NCV method.

GMSD measures image quality using the global variation of image gradients. Xue

et al [89] assume that the image gradients are sensitive to image distortions that

vary across the local image structures. Based on the variety of the local features

of a processed image, the image will have different degrees of degradations. A

Local Quality Map (LQM) is therefore locally determined using the pixel-wise

similarity technique between the processed and the original reference image.

The gradient magnitude similarity (GMS) is then determined based on LQMs

using the gradient of the original reference and the input processed image as

follows [89]:

GMS(i) =
2mo(i) mp(i) + c

m2
o(i) + m2

p(i) + c
(5.3)

where mo(i) and mp(i) are the gradient magnitudes of the original reference and

processed images respectively at location i, and determined as follows:

mo(i) =
√

(o⊗ hx)2(i) + (o⊗ hy)2(i) (5.4)

mp(i) =
√

(p⊗ hx)2(i) + (p⊗ hy)2(i) (5.5)

hx and hy are the horizontal (x) and vertical (y) Prewitt filters which are defined

as follows:

hx =


1/3 0 −1/3

1/3 0 −1/3

1/3 0 −1/3

 (5.6)
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hy =


1/3 1/3 1/3

0 0 0

−1/3 −1/3 −1/3

 (5.7)

The final image quality index, GMSD, for the input image is determined by

computing the standard deviation of the gradient magnitude similarity (GMS)

maps, as follows:

GMSD =

√√√√ 1

N

N∑
i=1

(GMS(i)−GMSM)2 (5.8)

where N is the total number of image pixels and GMSM is the mean of the

GMS map, which is determined as follows:

GMSM =
1

N

N∑
i=1

GMS(i) (5.9)

The GMSD score is then used to measure overall image quality based on the global

variation of the local image quality degradation. A lower GMSD score means less

image distortion and better image quality. On the other hand, a higher score in-

dicates more distortion and worse image quality. The benchmarking GMSD IQA

method measures image quality based on the image gradient using a luminance

similarity. Using GMSD might not be an accurate measure for colour artefacts

that cannot be distinguished by luminance information alone. Hence, without us-

ing chrominance information, colour artefacts may not be quantified accurately

resulting in an imprecise visual image quality measurement.

The third benchmarking IQA method used for comparison is Zipper Effect (ZE)

[25]. ZE was developed by Lu and Tan [25] to measure the presence of zipper

artefacts, which are a type of demosaicking colour artefact. It measures these

errors by computing a percentage of the colour pixels corrupted by zipper effect.
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Lu and Tan defined zipper effect as unusual changes of colour differences among

neighbouring pixels and it manifests as an “On-Off” pattern [25], as shown in

Figure 1.7. The zipper effect is calculated by computing the colour difference

between the processed image and original reference image in the CIELAB colour

space [185]. In a neighbourhood of eight pixels, the colour differences in the

original reference image and in the input processed image are determined to

identify zipper effect pixels [25]. A colour pixel is identified as a zipper effect pixel

when its colour difference is greater than its neighbour pixels. In this method

[25], CIELAB ∆E∗ which is a measure of the Euclidean distance between the

reference image and in the input processed image in CIELAB colour space. ∆E∗

is given as follows:

∆E∗ =
1

N

∑
1≤n≤N

‖O(n)Lab −R(n)Lab‖ (5.10a)

where O(n)Lab and R(n)Lab are the CIELAB colour values of the nth colour pixel

in the original and input processed images, respectively.

In more detail, colour differences between a target pixel P and its eight neigh-

bouring pixels are first determined in the original reference image. From these

eight neighbour pixels, the pixel I with the minimum colour difference to the

target pixel P in the original reference image is identified as follows:

I = min
i∈N

∆E∗(P, i) (5.10b)

where N is the set of the eight neighbouring pixels, and ∆E∗(P, I) is the colour

difference between the two pixels P and I in the original image. Similarly, the

colour difference ∆Ẽ∗(P, I) between the same pair of pixels in the processed

image is determined. Then, a colour pixel is identified as a zipper effect pixel if
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the following is true:

| ∆Ẽ∗(P, I)−∆E∗(P, I) |> TH (5.11)

where TH is a threshold value set by Lu and Tan [25] to 2.3.

Even though the ZE IQA method is developed to measure one type of demosaick-

ing colour artefact, it does not always give an accurate index for image quality

assessment. One reason is that when all the neighbouring pixels are colour arte-

facts, it will fail to identify colour artefact pixels since the colour difference in

this case will be less than the threshold value.

Normalised Colour Difference (NCD) [184] is the fourth IQA technique used for

the comparison. NCD measures the colour differences between the original and

processed images by assessing the differences of colour chromaticity between the

colour vectors in the CIE − LUV colour space. The error in a processed image

is, therefore, quantified by measuring the amount of perceived difference between

the two colour vectors.

The NCD index is a normalised measurement with range from 0 to 1 from the

best to worst image quality and determined as follows:

NCD =

∑H
x=1

∑W
y=1

√∑
c=L,U,V (Īo(x, y, c)− Īp(x, y, c))2∑H

x=1

∑W
y=1

√∑
c=L,U,V Īo(x, y, c)

2
, (5.12)

where Io and Ip are the original and the processed images, respectively, and Īo

and Īp are the CIE − LUV vectors representing Io and Ip, respectively, in the

RGB colour space. A smaller NCD value indicates a smaller colour difference

and better image quality whereas a higher value signifies that the processed image

has larger colour errors.

According to Omer [111], the main disadvantage of all these linear and non-

linear colour models, described in Section 3.2.1, is that they do not consider the



CHAPTER 5. IMAGE QUALITY ASSESSMENT TECHNIQUES 208

features and particular image properties during a fixed transformation from the

RGB colour model. In addition to this colour transformation drawback, NCD is

a pixel-wise fidelity IQA tool that determines the colour differences between the

original and processed images in CIE − LUV colour space and, consequently,

it sometimes fails to distinguish between colour artefacts and non-visible colour

errors such as blurring, as shown in Tables 5.1 - 5.4.

To overcome the limitations of the existing IQA methods, it is desirable to develop

a new IQA method in the RGB colour model that can quantify the visible colour

artefacts alone, excluding other errors in processed images in order to correlate

with the visual assessment and precisely measure visual quality.

5.1.2 Concept of Our Normalized Colour Variation (NCV)

IQA Technique

The remainder of this chapter presents a novel IQA method to quantify visible

colour artefacts in processed images. Measuring colour artefacts alone without

including other errors is important since they are a crucial factor in visual assess-

ment, but they might only have a small contribution to the total errors as they

are often minorities. While there is no formal definition of colour artefacts in the

literature, we formalise the perception that colour artefacts manifest as a distinct

visual colour variation from their original and surrounding colours. Based on

this perception, our proposed IQA method, named Normalized Colour Variation

(NCV), has been specifically designed to locate and quantify colour artefacts. It

gives an NCV index that is a measure of the degree of colour artefacts. It is shown

that our proposed NCV method correlates well with our visual perception. The

NCV index is a good indicator of the degree of colour artefacts and is virtually

independent of other errors.
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5.1.3 Chapter Outline

The remainder of this chapter is organised as follows. Section 5.2 introduces our

proposed NCV IQA method and its associated index. Results from a quantitative

and visual assessment experiment of the NCV IQA method are presented in

Section 5.3. Finally, Section 5.4 gives the summary of the chapter.

5.2 Proposed NCV IQA Technique

In this section, we introduce our novel Normalized Colour Variation (NCV) IQA

method for quantifying the visible colour artefacts in processed images and eval-

uating image processing algorithms. As previously mentioned, we aim to develop

an IQA method that can accurately measure the visual image quality by quan-

tifying colour artefacts in processed images with no influence from other errors.

Figure 5.1 gives the flowchart of the main steps of our proposed NCV image qual-

ity assessment method. As shown in Figure 5.1, for each pixel in the processed

image, an adaptive threshold value is determined based on the colour variation

of the corresponding neighbourhood in the original image. At the same time, the

amount of colour variation for each pixel in the processed image is determined

based on the change of hue, which in demosaicking research means the change

of colour differences [25, 27, 186], in the processed and original image. Based on

a determined threshold value for a pixel, a pixel is identified as a visible colour

artefact pixel or a true colour pixel. The NCV index then measures the degree

of visible colour artefacts in the processed image by the total colour variation of

all visible colour artefact pixels identified in that image.

The proposed NCV method is explained in the following sections. The mea-

surement of colour variation of each pixel in a processed image is described in

Section 5.2.1. In Section 5.2.2, a threshold value is determined for each pixel to
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classify pixels as colour artefacts or true colours based on their colour variation.

Finally, in Section 5.2.3, the total size of colour artefact areas is measured by a

P index, and the degree of visible colour artefacts is quantified by our proposed

NCV index.
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Figure 5.1: Flowchart of the proposed NCV method.
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5.2.1 Measuring Colour Variation

Inspired by our observation of colour artefacts, a colour artefact pixel is identified

by its colour variation from its original and neighbouring colours. We propose

to measure this colour variation by measuring the change in hue. As stated in

Section 3.2.1, the RGB colour model is an appropriate model for representing

colour pixels in our applications and is a common model used by many digital

imaging devices. Moreover, with CFA demosaicking, a common CFA is the Bayer

pattern [8] in the RGB colour space. Hence, it is desirable to detect colour

artefacts in the same colour space.

According to the hue assumption, the difference between the colour values of two

adjacent pixels is a constant [25, 27, 186]. Any change in that constant value in

the corresponding region in the processed image is a reflection of a change in hue

in that region. Hence, a change in hue can be quantified by the change of this

constant. Therefore, if the processed and original pixels have a similar colour,

the following is true for the red and green pixels at the same pixel location (i,j)

according to the hue assumption [25]:

GP
i,j −RP

i,j ≈ GO
i,j −RO

i,j
(5.13)

where GP , RP , and GO, RO, are the green and red pixels in the processed and

original images, respectively. As a result, the following equation is implied:

∣∣GP
i,j −GO

i,j

∣∣ ≈ ∣∣RP
i,j −RO

i,j

∣∣ . (5.14)

Let αi,j be the absolute difference of a colour value between the processed and

the original pixels in (5.14), therefore

αGi,j ≈ αRi,j. (5.15)
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Similarly, for the blue pixels, we define:

αBi,j =
∣∣BP

i,j −BO
i,j

∣∣ . (5.16)

For the same reason,

αGi,j ≈ αRi,j ≈ αBi,j. (5.17)

Based on the hue assumption, a constant hue implies that αGi,j, α
R
i,j, α

B
i,j are

approximately equal. Hence any fluctuations among those values implies a change

in hue. Their standard deviation is a measure of the degree of fluctuation and,

therefore, it is a good indicator of the degree of change in hue. As a result,

we define the colour variation, σαi,j, as the standard deviation among these three

colour differences as follows:

σαi,j =√(
αRi,j − µαi,j

)2
+
(
αGi,j − µαi,j

)2
+
(
αBi,j − µαi,j

)2
3

(5.18)

where i=1,2,. . . ,M , j=1,2,. . . ,N , M and N are the dimensions of the image, and

µαi,j is the mean given by:

µαi,j =
1

3
(αRi,j + αGi,j + αBi,j). (5.19)

The general observation of a colour artefact pixel is a pixel that has a distinct

colour variation between itself and its original. In order to formalise this idea, the

amount of colour variation to be considered significant is quantified by a threshold

value for the classification of colour artefacts. Hence, in the following section, we

determine a threshold value for each colour pixel to be used to identify a pixel as

either a colour artefact pixel or a true colour pixel.
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5.2.2 Threshold Determination

The maximum colour variation within a 3× 3 kernel in the original image is used

as a reference for the allowable colour variation between a processed pixel and

its original in that region. The threshold for classification of colour artefacts is a

relative quantity based on the maximum colour variation within that region and

determined adaptively for each pixel.

To determine the threshold value for the classification of colour artefacts for the

pixel at (i,j), let S be the shell, which is a set of eight colour pixels surrounding

it in the original image [77, 78]. We define SR, SG, SB be a shell for the red,

green, and blue colour planes respectively as follows:

SR =


RO
i−1,j−1 RO

i−1,j RO
i−1,j+1

RO
i,j−1 RO

i,j+1

RO
i+1,j−1 RO

i+1,j RO
i+1,j+1


(5.20)

SG =


GO
i−1,j−1 GO

i−1,j GO
i−1,j+1

GO
i,j−1 GO

i,j+1

GO
i+1,j−1 GO

i+1,j GO
i+1,j+1


(5.21)

SB =


BO
i−1,j−1 BO

i−1,j BO
i−1,j+1

BO
i,j−1 BO

i,j+1

BO
i+1,j−1 BO

i+1,j BO
i+1,j+1


. (5.22)

For each of the three shells of the original image, eight absolute differences, βm,n,

are determined between the pixel at (i,j) and each of the eight pixels in the shell
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as follows:

βRm,n =
∣∣RO

i,j − SRm,n
∣∣

βGm,n =
∣∣GO

i,j − SGm,n
∣∣

βBm,n =
∣∣BO

i,j − SBm,n
∣∣

(5.23)

where (m,n) ∈ { (i−1,j−1), (i−1,j), (i−1,j+1), (i,j−1), (i,j+1), (i+1,j−1),

(i+ 1,j), (i+ 1,j + 1)}.

Similar to (5.18), the colour variation, σβm,n, in the original image is given as

follows:

σβm,n =√√√√(βRm,n − µβm,n)2 +
(
βGm,n − µ

β
m,n

)2
+
(
βBm,n − µ

β
m,n

)2
3

(5.24)

where µβm,n is the mean value of the three colour absolute differences given by the

following:

µβm,n =
1

3
(βRm,n + βGm,n + βBm,n). (5.25)

The threshold value (T ) is therefore defined as the maximum of these eight colour

variations plus a determined tolerance (δ) as follows:

T = max{σβm,n}+ δ (5.26)

where (m,n) ∈ { (i−1,j−1), (i−1,j), (i−1,j+1), (i,j−1), (i,j+1), (i+1,j−1),

(i+ 1,j), (i+ 1,j + 1)}. (δ) is two quantisation steps and determined as follows:

δ = 2q ≈ 7.81× 10−3. (5.27)

The reason for adding two quantisation steps, 2q, is that for 24-bit RGB colour

images, each colour is quantised to 8-bit or 256 levels. As the intensity range
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is normalised to [0, 1], each quantisation step size, q, is equal to 1/256. For

any colour variation to be visible, the absolute colour differences for each colour

plane must be at least equal to one quantisation step. To accommodate for the

maximum possible quantisation errors of the difference between two quantised

intensity values, the tolerance to guarantee these two discrete values are distinct

is therefore equal to two quantisation steps (2q).

Consequently, when the colour variation of a pixel in the processed image is

larger than the determined threshold for the corresponding pixel, this pixel is

classified as an artefact. Accordingly, those pixels that are classified as visible

colour artefact pixels are used to measure the size of the artefact area by the P

index, and the degree of colour artefacts in a processed image by the NCV index.

5.2.3 Colour Artefacts: Its Affected Area P and Normal-

ized Colour Variation (NCV)

Following the identification of visible colour artefact pixels in a processed image,

the total size of the colour artefact areas and the degree of the visible colour

artefacts are measured. In this section, we introduce our proposed image quality

indices P and Normalized Colour Variation (NCV) to measure the visual quality

of processed images.

Let L be a set that contains the locations of colour artefact pixels in the processed

image,

L =
{

(i, j) : σαi,j > T
}

(5.28)

and |L| be the cardinal number of the set L. The percentage, P , of the total area

that contains colour artefact pixels in the processed image is given by:

P =
|L|

M ×N
× 100 (5.29)
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where M and N are the dimensions of the image. This percentage, P , can serve

as a supplementary index to quantify the size of total affected areas by colour

artefacts.

The proposed Normalized Colour Variation (NCV) index is defined by the fol-

lowing:

NCV =

∑
i,j∈L

σαi,j

M ×N
(5.30)

where M and N are the dimensions of the image.

The NCV index is the total colour variation of all colour artefact pixels identified

in the whole processed image and normalised by the image size. It is, therefore,

a measure of the degree of colour artefacts produced in that image. The NCV

index is an effective and suitable method for image quality assessment for the

comparison of colour artefacts produced by various algorithms. An algorithm

producing fewer colour artefacts will yield a lower NCV index value, and a zero

NCV value implies no detected colour artefacts.

5.3 Experimental Results

Various types of errors, including colour artefacts, blurring, and compression er-

rors, were used to quantitatively and visually evaluate the performance of our

proposed Normalized Colour Variation (NCV) IQA method. These results also

illustrate NCV’s insensitivity to errors other than the colour artefacts. For gen-

erating CFA demosaicking errors, we used seven methods to produce various de-

grees of colour artefacts: WM-HOI [27], LSLCD [33], LDI-NAT [19], MDWI [28],

RI [23], DCD [31] and Bilinear. For generating other errors, Gaussian and mo-

tion blur, and JPEG2000 compression [187–190] were used. Gaussian blur was

simulated using a 5 × 5 filter window with a standard deviation of unity, and

motion blur, which approximates the linear motion of a camera, was simulated
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using the same window size.

Four different image datasets were used for the quantitative and visual assess-

ment: Kodak [18], IMAX [19], Laurent Condats (LC) [20] and Berkeley segmen-

tation [21]. These image datasets contain a variety of colour images with various

features and characteristics. As previously mentioned in Section 2.3, the 24 Ko-

dak images have strong inter-channel correlation and are less saturated with a

smooth appearance [19]. Whereas the 18 IMAX and 150 LC images have low

inter-channel correlation and tend to have similar features to those captured by

digital cameras [1, 41]. The Berkeley image dataset has 500 human segmented

natural scene images. We used all the images from the four image datasets to

produce 692 test images with different degrees of colour artefacts resulting from

the processing methods.

The performance of our NCV IQA method was compared with other IQA methods

in their ability to quantify colour artefacts. Four common IQA methods, namely

Colour Peak Signal-to-Noise Ratio (CPSNR) [34], Gradient Magnitude Similarity

Deviation (GMSD) [89], Zipper Effect (ZE) [25] and Normalised Colour Difference

(NCD) [184], were used. As mentioned in Section 5.1.1, CPSNR measures overall

errors in the processed image. GMSD measures the image distortion, ZE is a

measure of one form of demosaicking colour artefacts, and NCD is a similarity

measure between the original and the processed images in the CIE−LUV colour

model. In the following sections, the performance of our NCV IQA method is

evaluated against these three IQA methods quantitatively in Section 5.3.1 and

visually in Section 5.3.2.

5.3.1 Quantitative Assessment

Tables 5.1 - 5.4 show the performance of CPSNR, GMSD, ZE, NCD, and NCV

IQA methods applied to all 692 test images after various processing techniques
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including blurring, demosaicking, compression and denoising.

Table 5.1 shows the average numerical results for the different processing tech-

niques using all 24 Kodak images. Table 5.2 gives the average results of the 18

IMAX images. Tables 5.3 and 5.4 provide the average numerical results of the

150 LC and 500 Berkeley images, respectively.

From Tables 5.1 - 5.4, the NCV index yields negligible values when minimal colour

artefacts were produced by the blurring methods. This is expected as blurring

does not generally produce colour artefacts. In contrast, the other IQA methods

produce significant values from blurred images. This is surprising in the ZE case,

which is intended to only detect one form of colour artefact, as well as the NCD

case, which should give negligible scores as no colour differences were produced

between the original and the blurred image. As indicated in Tables 5.1 - 5.4,

ZE is less effective in identifying visible zipper effects and is affected by invisible

errors in the processed images. This is because ZE applies a fixed threshold value

to consider the change in colour difference as visible error. Hence, those IQA

methods do not give a true reflection of the actual degree of visible colour arte-

facts. Moreover, for JPEG2000 with a compression ratio of 100% (i.e., maximum

quality), for instance, the decompressed image is visually indistinguishable from

the original image with no visible colour artefacts. However, those IQA methods

still produced some values reflecting the presence of errors, while our NCV index

values are negligible showing no visible colour artefacts detected.

From Tables 5.1 - 5.4, it has been shown that the proposed NCV method is

able to produce a better correlated index in quantifying colour artefacts than

the other IQA methods. The proposed NCV index has a higher sensitivity to a

different degree of colour artefacts than the other IQA methods. Hence, it may

find application in the assessment of colour image processing algorithms.
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Table 5.1: Image quality assessment: CPSNR, GMSD, ZE, NCD and proposed
NCV For Kodak dataset.

CPSNR (dB) GMSD (×10−2) ZE (%) NCD (×10−3) NCV (×10−3)

Blurring

Gaussian 29.52 4.413 6.45 30.86 < 10−7

Motion 28.89 5.814 10.07 31.91 < 10−7

Demosaicking

WM-HOI 39.05 1.578 7.23 25.623 0.845

LSLCD 39.23 1.623 6.93 25.99 0.694

LDI-NAT 37.70 2.798 8.15 27.41 1.790

MDWI 37.04 1.680 12.06 30.25 1.606

RI 38.99 1.378 7.81 27.117 0.981

DCD 39.43 1.130 6.76 24.63 0.604

Bilinear 30.25 4.483 40.18 60.60 10.362

JPEG2000 with different compression ratios

100% 50.43 0.077 0.04 9.96 0

25% 49.85 0.090 0.09 10.60 0

10% 42.16 0.712 3.50 21.60 < 10−7

1% 29.20 8.692 13.88 61.74 2.359

Denoising

CBM3D 29.51 8.214 17.52 62.62 2.565
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Table 5.2: Image quality assessment: CPSNR, GMSD, ZE, NCD and proposed
NCV For IMAX dataset

CPSNR (dB) GMSD (×10−2) ZE (%) NCD (×10−3) NCV (×10−3)

Blurring

Gaussian 31.08 3.498 12.68 50.00 < 10−7

Motion 29.44 5.628 16.37 56.39 < 10−7

Demosaicking

WM-HOI 35.02 2.500 12.65 52.68 0.344

LSLCD 32.56 4.567 18.03 68.06 1.337

LDI-NAT 35.57 1.766 12.32 49.66 3.697

MDWI 36.07 2.061 14.16 45.20 0.373

RI 36.72 1.672 12.10 42.46 0.251

DCD 35.46 2.300 12.05 48.82 0.234

Bilinear 32.34 2.694 28.52 54.77 2.804

JPEG2000 with different compression ratios

100% 49.95 0.078 0.15 14.82 0

25% 45.98 0.196 3.24 22.98 0

10% 39.18 1.100 12.84 44.16 < 10−7

1% 28.29 10.215 21.79 108.22 2.458

Denoising

CBM3D 29.34 8.573 21.61 99.95 1.357
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Table 5.3: Image quality assessment: CPSNR, GMSD, ZE, NCD and proposed
NCV For LC dataset

CPSNR (dB) GMSD (×10−2) ZE (%) NCD (×10−3) NCV (×10−3)

Blurring

Gaussian 27.73 4.579 14.806 47.12 < 10−7

Motion 26.74 6.584 17.936 50.59 < 10−7

Demosaicking

WM-HOI 33.87 2.507 14.65 43.98 0.712

LSLCD 32.55 3.479 16.96 52.88 0.935

LDI-NAT 33.87 4.899 14.19 43.34 2.363

MDWI 33.43 2.517 16.56 42.87 1.078

RI 34.46 2.115 14.63 40.52 0.697

DCD 34.11 2.125 13.12 42.47 0.618

Bilinear 28.43 4.615 40.76 66.01 7.854

JPEG2000 with different compression ratios

100% 50.15 0.072 0.194 9.21 0

25% 45.35 0.151 2.053 19.23 0

10% 37.70 1.394 14.086 36.99 < 10−7

1% 26.08 11.114 23.293 93.36 3.189

Denoising

CBM3D 27.92 8.425 24.41 79.99 1.652
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Table 5.4: Image quality assessment: CPSNR, GMSD, ZE, NCD and proposed
NCV For Berkeley dataset

CPSNR (dB) GMSD (×10−2) ZE (%) NCD (×10−3) NCV (×10−3)

Blurring

Gaussian 28.35 4.341 8.41 34.26 < 10−7

Motion 27.64 5.761 13.57 35.88 < 10−7

Demosaicking

WM-HOI 38.02 1.701 10.90 27.93 1.860

LSLCD 38.57 2.888 6.979 27.12 1.939

LDI-NAT 37.20 4.974 11.931 30.17 4.924

MDWI 35.57 2.078 17.83 33.51 3.111

RI 37.67 1.674 12.12 29.62 2.087

DCD 38.58 1.612 8.39 26.27 1.808

Bilinear 28.98 4.574 45.29 67.21 13.441

JPEG2000 with different compression ratios

100% 50.93 0.077 0.040 8.64 0

25% 46.81 0.169 0.179 10.62 0

10% 41.42 0.885 5.471 22.17 < 10−7

1% 27.13 9.856 17.533 72.25 4.213

Denoising

CBM3D 28.50 8.200 22.29 66.40 3.486
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5.3.2 Visual Assessment

In this section, we visually assess the sensitivity of our NCV IQA method to

various degrees of colour artefacts using the four image datasets. To visually

assess the effectiveness of our proposed method in locating colour artefacts, we

selected four images each from the Kodak [18], IMAX [19], Laurent Condats

(LC) [20] and Berkeley segmentation [21] image datasets as shown in Figures

5.2 - 5.5, respectively. These images are commonly known to have challenging

regions for most image processing methods. For example, the white picket fence

of image 19 in the Kodak image set, the white string net of image 12 in the

IMAX image set, windmill of image 52 in the LC image set, and zebra of image

253027 in the Berkeley image set contain image regions that commonly cause

colour artefacts.
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Figure 5.2: Selected Kodak test images for visual assessment, top-left is image 1,
top-right is image 8, bottom-left is image 13, and bottom-right is image 19.



CHAPTER 5. IMAGE QUALITY ASSESSMENT TECHNIQUES 226

Figure 5.3: Selected IMAX test images for visual assessment, top-left is image 7,
top-right is image 8, bottom-left is image 12, and bottom-right is image 13.
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Figure 5.4: Selected LC test images for visual assessment, top-left is image 23,
top-right is image 52, bottom-left is image 134, and bottom-right is image 147.
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Figure 5.5: Selected Berkeley test images for visual assessment, top-left is image
106024, top-right is image 103070, bottom-left is image 103041, and bottom-right
is image 253027.
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Figures 5.6 - 5.21 present the output visual results of the proposed NCV method in

two rows using cropped regions of the test images in Figures 5.2 - 5.5, respectively.

The first row of Figures 5.6 - 5.21 shows the test images in the (a) - (l) columns

after undergoing different types of processing to generate errors, as follows:

(a) unprocessed cropped image regions of the selected original test images from

the four datasets in Figures 5.2 - 5.5.

(b) - (h) demosaicked images produced by WM-HOI [27], LSLCD [33], LDI-

NAT [19], MDWI [28], RI [23], DCD [31], and Bilinear methods.

(i) - (j) Gaussian and motion blurred images, respectively. Gaussian blur was

simulated using a 5 × 5 filter window with a standard deviation of unity,

and motion blur, which approximates the linear motion of a camera, was

simulated using the same window size.

(k) decompressed images that were produced by compressing the images Figures

5.6 - 5.21(a) by JPEG2000 with a compression ratio of 1% [190].

(l) denoised images that were generated by applying the Colour Block- Matching

and 3D filtering (CBM3D) method [49] to the noisy images. The noisy

images were generated using the images in Figures 5.6 - 5.21(a) by adding

Gaussian noise with a standard deviation of 0.15.

The second row of Figures 5.6 - 5.21 show the colour artefact pixels identified in

the processed images in the corresponding first row images using the proposed

NCV IQA method.

Figures 5.6 - 5.9 show colour artefacts and NCV assessment for regions of the

images chosen from the Kodak image dataset. As illustrated in these figures, the

window region with horizontal edges in Figure 5.6, the white picket fence region

with vertical edges in Figure 5.7, the roof region with fine aqua colour texture
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in Figure 5.8 and the mountain stream region with diagonal edges in Figure 5.9

are well known image regions to cause colour artefacts by most image process-

ing methods. It has been observed from the output visual results that the NCV

method has a limitation specifically when amply visible colour artefacts are pro-

duced in a processed image. One example is when a simple demosaicking method

is used such as Bilinear interpolation in Figure 5.6(h). The NCV method in this

particular situation tolerates over a distance of one colour pixel and sometimes

alters the colour value of a pixel in a different direction of its neighbour colour

pixels within a distance of one pixel. As shown in the output demosaicked images

produced by Bilinear method in Figure 5.6(h), some of the colour artefact pixels

were not detected by NCV especially on the left side of the image at the edge

where the colour changes from yellowish grey to red. The reason is that these

neglected artefact pixels are adjacent to intense colour, which is the dark red in

this example, and, therefore, this sharp change in colour will influence the NCV

guidance and diverge into a different direction of the original image.

Challenging image regions from the chosen IMAX images are presented in Fig-

ures 5.10 - 5.13. The first image region is the clothing fabric region with fine

diagonal edges in Figure 5.10 while the second image region shown in Figure 5.11

is the decorative doily pattern with curved edges. The third and fourth selected

image regions are the white string net with diagonal and curved edges shown in

Figure 5.12 and hand-drawn wallpaper with fine red and green features shown

in Figure 5.13. These challenging image regions are difficult to most of the de-

mosaicking, compression and denoising methods due to the high packing of fine

features.

To further examine the effectiveness of NCV method in locating colour artefacts

for the visual assessment using different image datasets, four challenging image

regions were selected from each of the chosen LC images and Berkeley images.

The selected image regions from the LC dataset are shown in Figures 5.14 - 5.17,
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with Figures 5.18 - 5.21 showing the image regions from Berkeley. These regions,

such as the windmill image of LC dataset and zebra image of Berkeley dataset, are

known to cause visible colour artefacts due to the delicate features and different

edge directions.

The visible colour artefacts are quite distinguishable in the demosaicked images,

in the (b) - (h) columns, of a number of the test images, including: the window in

Figure 5.6, white picket fence in Figure 5.7, roof in Figure 5.8, mountain stream in

Figure 5.9, clothing fabric in Figure 5.10, decorative doily pattern in Figure 5.11,

white string net in Figure 5.12, hand-drawn wallpaper in Figure 5.13, fabric mak-

ing machine in Figure 5.14, windmill in Figure 5.15, roof in Figure 5.16, Galway

city in Figure 5.17, penguin in Figure 5.18, blue-footed booby in Figure 5.19,

sea-bird in Figure 5.20, and zebra in Figure 5.21. For these processed images,

the colour artefact pixels, identified by the NCV method in the second row of the

figures, visually correlate well with the artefacts present in the processed images

in the first row.

It is visually clear that the blurring algorithms in the (i) and (j) columns yield

minimal colour artefacts and this is reflected in almost no pixels identified as

colour artefacts in the NCV output. Accordingly, the NCV indices in Tables 5.1

- 5.4 gave negligible values. Note that blurring does introduce substantial errors

in the processed image, but not colour artefacts, and these non-colour artefact

errors are not detected by the NCV method.

The JPEG2000 compression and CBM3D denoising in the (k) and (l) columns

produced some colour artefacts and these, again, correlate well with the pixels

identified by NCV in the second row and with the NCV indices in Tables 5.1 -

5.4.

The experimental results in Tables 5.1 - 5.4 showed that the proposed NCV IQA

method was able to identify the visible colour artefacts, while ignoring other
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errors, and can quantify visible colour artefacts produced by various image pro-

cessing methods. By comparing the images in the first row to the corresponding

colour artefacts identified in the second row of Figures 5.6 - 5.21, it is evident that

the proposed NCV IQA method can locate and identify colour artefacts specif-

ically, and hence it correlates well with visual assessment. Even though there

is no formal definition of colour artefacts in the literature with no ground truth

for comparison, our experimental results have confirmed that our formalisation

of the definition of colour artefacts based on the maximum colour variation in

the original image correlates very well with the observation of colour artefacts.

Hence, the proposed NCV method is suitable for the evaluation of the degrees of

colour artefacts, which are the main visible errors produced by image processing

methods.



CHAPTER 5. IMAGE QUALITY ASSESSMENT TECHNIQUES 233

F
ig

u
re

5.
6:

S
ec

on
d

ro
w

is
th

e
d
et

ec
te

d
co

lo
u
r

ar
te

fa
ct

s
in

th
e

cr
op

p
ed

w
in

d
ow

re
gi

on
of

th
e

fi
rs

t
ro

w
:

(a
)

th
e

or
ig

in
al

K
o
d
ak

im
ag

e
1,

an
d

th
e

p
ro

ce
ss

ed
ou

tp
u
t

im
ag

es
u
si

n
g

(b
)

W
M

-H
O

I,
(c

)
L

S
L

C
D

,
(d

)
L

D
I-

N
A

T
,

(e
)

M
D

W
I,

(f
)

R
I,

(g
)

D
C

D
,

(h
)

B
il
in

ea
r,

(i
)

G
au

ss
ia

n
b
lu

r
fi
lt

er
,

(j
)

m
ot

io
n

b
lu

r
fi
lt

er
(k

)
J
P

E
G

20
00

,
an

d
(l

)
C

B
M

3D
d
en

oi
si

n
g.



CHAPTER 5. IMAGE QUALITY ASSESSMENT TECHNIQUES 234

F
ig

u
re

5.
7:

S
ec

on
d

ro
w

is
th

e
d
et

ec
te

d
co

lo
u
r

ar
te

fa
ct

s
in

th
e

cr
op

p
ed

p
ic

ke
t

fe
n
ce

re
gi

on
of

th
e

fi
rs

t
ro

w
:

(a
)

th
e

or
ig

in
al

K
o
d
ak

im
ag

e
19

,
an

d
th

e
p
ro

ce
ss

ed
ou

tp
u
t

im
ag

es
u
si

n
g

(b
)

W
M

-H
O

I,
(c

)
L

S
L

C
D

,
(d

)
L

D
I-

N
A

T
,

(e
)

M
D

W
I,

(f
)

R
I,

(g
)

D
C

D
,

(h
)

B
il
in

ea
r,

(i
)

G
au

ss
ia

n
b
lu

r
fi
lt

er
,

(j
)

m
ot

io
n

b
lu

r
fi
lt

er
(k

)
J
P

E
G

20
00

,
an

d
(l

)
C

B
M

3D
d
en

oi
si

n
g.



CHAPTER 5. IMAGE QUALITY ASSESSMENT TECHNIQUES 235

F
ig

u
re

5.
8:

S
ec

on
d

ro
w

is
th

e
d
et

ec
te

d
co

lo
u
r

ar
te

fa
ct

s
in

th
e

cr
op

p
ed

ro
of

re
gi

on
of

th
e

fi
rs

t
ro

w
:

(a
)

th
e

or
ig

in
al

K
o
d
ak

im
ag

e
8,

an
d

th
e

p
ro

ce
ss

ed
ou

tp
u
t

im
ag

es
u
si

n
g

(b
)

W
M

-H
O

I,
(c

)
L

S
L

C
D

,
(d

)
L

D
I-

N
A

T
,

(e
)

M
D

W
I,

(f
)

R
I,

(g
)

D
C

D
,

(h
)

B
il
in

ea
r,

(i
)

G
au

ss
ia

n
b
lu

r
fi
lt

er
,

(j
)

m
ot

io
n

b
lu

r
fi
lt

er
(k

)
J
P

E
G

20
00

,
an

d
(l

)
C

B
M

3D
d
en

oi
si

n
g.



CHAPTER 5. IMAGE QUALITY ASSESSMENT TECHNIQUES 236

F
ig

u
re

5.
9:

S
ec

on
d

ro
w

is
th

e
d
et

ec
te

d
co

lo
u
r

ar
te

fa
ct

s
in

th
e

cr
op

p
ed

m
ou

n
ta

in
st

re
am

re
gi

on
of

th
e

fi
rs

t
ro

w
:

(a
)

th
e

or
ig

in
al

K
o
d
ak

im
ag

e
13

,
an

d
th

e
p
ro

ce
ss

ed
ou

tp
u
t

im
ag

es
u
si

n
g

(b
)

W
M

-H
O

I,
(c

)
L

S
L

C
D

,
(d

)
L

D
I-

N
A

T
,

(e
)

M
D

W
I,

(f
)

R
I,

(g
)

D
C

D
,

(h
)

B
il
in

ea
r,

(i
)

G
au

ss
ia

n
b
lu

r
fi
lt

er
,

(j
)

m
ot

io
n

b
lu

r
fi
lt

er
(k

)
J
P

E
G

20
00

,
an

d
(l

)
C

B
M

3D
d
en

oi
si

n
g.



CHAPTER 5. IMAGE QUALITY ASSESSMENT TECHNIQUES 237

F
ig

u
re

5.
10

:
S
ec

on
d

ro
w

is
th

e
d
et

ec
te

d
co

lo
u
r

ar
te

fa
ct

s
in

th
e

cr
op

p
ed

cl
ot

h
in

g
fa

b
ri

c
re

gi
on

of
th

e
fi
rs

t
ro

w
:

(a
)

th
e

or
ig

in
al

IM
A

X
im

ag
e

7,
an

d
th

e
p
ro

ce
ss

ed
ou

tp
u
t

im
ag

es
u
si

n
g

(b
)

W
M

-H
O

I,
(c

)
L

S
L

C
D

,
(d

)
L

D
I-

N
A

T
,

(e
)

M
D

W
I,

(f
)

R
I,

(g
)

D
C

D
,

(h
)

B
il
in

ea
r,

(i
)

G
au

ss
ia

n
b
lu

r
fi
lt

er
,

(j
)

m
ot

io
n

b
lu

r
fi
lt

er
(k

)
J
P

E
G

20
00

,
an

d
(l

)
C

B
M

3D
d
en

oi
si

n
g.



CHAPTER 5. IMAGE QUALITY ASSESSMENT TECHNIQUES 238

F
ig

u
re

5.
11

:
S
ec

on
d

ro
w

is
th

e
d
et

ec
te

d
co

lo
u
r

ar
te

fa
ct

s
in

th
e

cr
op

p
ed

d
ec

or
at

iv
e

d
oi

ly
p
at

te
rn

re
gi

on
of

th
e

fi
rs

t
ro

w
:

(a
)

th
e

or
ig

in
al

IM
A

X
im

ag
e

8,
an

d
th

e
p
ro

ce
ss

ed
ou

tp
u
t

im
ag

es
u
si

n
g

(b
)

W
M

-H
O

I,
(c

)
L

S
L

C
D

,
(d

)
L

D
I-

N
A

T
,

(e
)

M
D

W
I,

(f
)

R
I,

(g
)

D
C

D
,

(h
)

B
il
in

ea
r,

(i
)

G
au

ss
ia

n
b
lu

r
fi
lt

er
,

(j
)

m
ot

io
n

b
lu

r
fi
lt

er
(k

)
J
P

E
G

20
00

,
an

d
(l

)
C

B
M

3D
d
en

oi
si

n
g.



CHAPTER 5. IMAGE QUALITY ASSESSMENT TECHNIQUES 239

F
ig

u
re

5.
12

:
S
ec

on
d

ro
w

is
th

e
d
et

ec
te

d
co

lo
u
r

ar
te

fa
ct

s
in

th
e

cr
op

p
ed

w
h
it

e
st

ri
n
g

n
et

re
gi

on
of

th
e

fi
rs

t
ro

w
:

(a
)

th
e

or
ig

in
al

IM
A

X
im

ag
e

12
,

an
d

th
e

p
ro

ce
ss

ed
ou

tp
u
t

im
ag

es
u
si

n
g

(b
)

W
M

-H
O

I,
(c

)
L

S
L

C
D

,
(d

)
L

D
I-

N
A

T
,

(e
)

M
D

W
I,

(f
)

R
I,

(g
)

D
C

D
,

(h
)

B
il
in

ea
r,

(i
)

G
au

ss
ia

n
b
lu

r
fi
lt

er
,

(j
)

m
ot

io
n

b
lu

r
fi
lt

er
(k

)
J
P

E
G

20
00

,
an

d
(l

)
C

B
M

3D
d
en

oi
si

n
g.



CHAPTER 5. IMAGE QUALITY ASSESSMENT TECHNIQUES 240

F
ig

u
re

5.
13

:
S
ec

on
d

ro
w

is
th

e
d
et

ec
te

d
co

lo
u
r

ar
te

fa
ct

s
in

th
e

cr
op

p
ed

h
an

d
d
ra

w
n

w
al

lp
ap

er
re

gi
on

of
th

e
fi
rs

t
ro

w
:

(a
)

th
e

or
ig

in
al

IM
A

X
im

ag
e

13
,

an
d

th
e

p
ro

ce
ss

ed
ou

tp
u
t

im
ag

es
u
si

n
g

(b
)

W
M

-H
O

I,
(c

)
L

S
L

C
D

,
(d

)
L

D
I-

N
A

T
,

(e
)

M
D

W
I,

(f
)

R
I,

(g
)

D
C

D
,

(h
)

B
il
in

ea
r,

(i
)

G
au

ss
ia

n
b
lu

r
fi
lt

er
,

(j
)

m
ot

io
n

b
lu

r
fi
lt

er
(k

)
J
P

E
G

20
00

,
an

d
(l

)
C

B
M

3D
d
en

oi
si

n
g.



CHAPTER 5. IMAGE QUALITY ASSESSMENT TECHNIQUES 241

F
ig

u
re

5.
14

:
S
ec

on
d

ro
w

is
th

e
d
et

ec
te

d
co

lo
u
r

ar
te

fa
ct

s
in

th
e

cr
op

p
ed

fa
b
ri

c
m

ak
in

g
m

ac
h
in

e
re

gi
on

of
th

e
fi
rs

t
ro

w
:

(a
)

th
e

or
ig

in
al

L
C

im
ag

e
23

,
an

d
th

e
p
ro

ce
ss

ed
ou

tp
u
t

im
ag

es
u
si

n
g

(b
)

W
M

-H
O

I,
(c

)
L

S
L

C
D

,
(d

)
L

D
I-

N
A

T
,

(e
)

M
D

W
I,

(f
)

R
I,

(g
)

D
C

D
,

(h
)

B
il
in

ea
r,

(i
)

G
au

ss
ia

n
b
lu

r
fi
lt

er
,

(j
)

m
ot

io
n

b
lu

r
fi
lt

er
(k

)
J
P

E
G

20
00

,
an

d
(l

)
C

B
M

3D
d
en

oi
si

n
g.



CHAPTER 5. IMAGE QUALITY ASSESSMENT TECHNIQUES 242

F
ig

u
re

5.
15

:
S
ec

on
d

ro
w

is
th

e
d
et

ec
te

d
co

lo
u
r

ar
te

fa
ct

s
in

th
e

cr
op

p
ed

w
in

d
m

il
l

re
gi

on
of

th
e

fi
rs

t
ro

w
:

(a
)

th
e

or
ig

in
al

L
C

im
ag

e
52

,
an

d
th

e
p
ro

ce
ss

ed
ou

tp
u
t

im
ag

es
u
si

n
g

(b
)

W
M

-H
O

I,
(c

)
L

S
L

C
D

,
(d

)
L

D
I-

N
A

T
,

(e
)

M
D

W
I,

(f
)

R
I,

(g
)

D
C

D
,

(h
)

B
il
in

ea
r,

(i
)

G
au

ss
ia

n
b
lu

r
fi
lt

er
,

(j
)

m
ot

io
n

b
lu

r
fi
lt

er
(k

)
J
P

E
G

20
00

,
an

d
(l

)
C

B
M

3D
d
en

oi
si

n
g.



CHAPTER 5. IMAGE QUALITY ASSESSMENT TECHNIQUES 243

F
ig

u
re

5.
16

:
S
ec

on
d

ro
w

is
th

e
d
et

ec
te

d
co

lo
u
r

ar
te

fa
ct

s
in

th
e

cr
op

p
ed

ro
of

re
gi

on
of

th
e

fi
rs

t
ro

w
:

(a
)

th
e

or
ig

in
al

L
C

im
ag

e
in

13
4,

an
d

th
e

p
ro

ce
ss

ed
ou

tp
u
t

im
ag

es
u
si

n
g

(b
)

W
M

-H
O

I,
(c

)
L

S
L

C
D

,
(d

)
L

D
I-

N
A

T
,

(e
)

M
D

W
I,

(f
)

R
I,

(g
)

D
C

D
,

(h
)

B
il
in

ea
r,

(i
)

G
au

ss
ia

n
b
lu

r
fi
lt

er
,

(j
)

m
ot

io
n

b
lu

r
fi
lt

er
(k

)
J
P

E
G

20
00

,
an

d
(l

)
C

B
M

3D
d
en

oi
si

n
g.



CHAPTER 5. IMAGE QUALITY ASSESSMENT TECHNIQUES 244

F
ig

u
re

5.
17

:
S
ec

on
d

ro
w

is
th

e
d
et

ec
te

d
co

lo
u
r

ar
te

fa
ct

s
in

th
e

cr
op

p
ed

G
al

w
ay

ci
ty

re
gi

on
of

th
e

fi
rs

t
ro

w
:

(a
)

th
e

or
ig

in
al

L
C

im
ag

e
14

7,
an

d
th

e
p
ro

ce
ss

ed
ou

tp
u
t

im
ag

es
u
si

n
g

(b
)

W
M

-H
O

I,
(c

)
L

S
L

C
D

,
(d

)
L

D
I-

N
A

T
,

(e
)

M
D

W
I,

(f
)

R
I,

(g
)

D
C

D
,

(h
)

B
il
in

ea
r,

(i
)

G
au

ss
ia

n
b
lu

r
fi
lt

er
,

(j
)

m
ot

io
n

b
lu

r
fi
lt

er
(k

)
J
P

E
G

20
00

,
an

d
(l

)
C

B
M

3D
d
en

oi
si

n
g.



CHAPTER 5. IMAGE QUALITY ASSESSMENT TECHNIQUES 245



CHAPTER 5. IMAGE QUALITY ASSESSMENT TECHNIQUES 246

F
ig

u
re

5.
18

:
S
ec

on
d

ro
w

is
th

e
d
et

ec
te

d
co

lo
u
r

ar
te

fa
ct

s
in

th
e

cr
op

p
ed

p
en

gu
in

re
gi

on
of

th
e

fi
rs

t
ro

w
:

(a
)

th
e

or
ig

in
al

B
er

ke
le

y
im

ag
e

10
60

24
,

an
d

th
e

p
ro

ce
ss

ed
ou

tp
u
t

im
ag

es
u
si

n
g

(b
)

W
M

-H
O

I,
(c

)
L

S
L

C
D

,
(d

)
L

D
I-

N
A

T
,

(e
)

M
D

W
I,

(f
)

R
I,

(g
)

D
C

D
,

(h
)

B
il
in

ea
r,

(i
)

G
au

ss
ia

n
b
lu

r
fi
lt

er
,

(j
)

m
ot

io
n

b
lu

r
fi
lt

er
(k

)
J
P

E
G

20
00

,
an

d
(l

)
C

B
M

3D
d
en

oi
si

n
g.



CHAPTER 5. IMAGE QUALITY ASSESSMENT TECHNIQUES 247

F
ig

u
re

5.
19

:
S
ec

on
d

ro
w

is
th

e
d
et

ec
te

d
co

lo
u
r

ar
te

fa
ct

s
in

th
e

cr
op

p
ed

b
lu

e-
fo

ot
ed

b
o
ob

y
re

gi
on

of
th

e
fi
rs

t
ro

w
:

(a
)

th
e

or
ig

in
al

B
er

ke
le

y
im

ag
e

10
30

70
,

an
d

th
e

p
ro

ce
ss

ed
ou

tp
u
t

im
ag

es
u
si

n
g

(b
)

W
M

-H
O

I,
(c

)
L

S
L

C
D

,
(d

)
L

D
I-

N
A

T
,

(e
)

M
D

W
I,

(f
)

R
I,

(g
)

D
C

D
,

(h
)

B
il
in

ea
r,

(i
)

G
au

ss
ia

n
b
lu

r
fi
lt

er
,

(j
)

m
ot

io
n

b
lu

r
fi
lt

er
(k

)
J
P

E
G

20
00

,
an

d
(l

)
C

B
M

3D
d
en

oi
si

n
g.



CHAPTER 5. IMAGE QUALITY ASSESSMENT TECHNIQUES 248

F
ig

u
re

5.
20

:
S
ec

on
d

ro
w

is
th

e
d
et

ec
te

d
co

lo
u
r

ar
te

fa
ct

s
in

th
e

cr
op

p
ed

se
a-

b
ir

d
re

gi
on

of
th

e
fi
rs

t
ro

w
:

(a
)

th
e

or
ig

in
al

B
er

ke
le

y
im

ag
e

10
30

41
,

an
d

th
e

p
ro

ce
ss

ed
ou

tp
u
t

im
ag

es
u
si

n
g

(b
)

W
M

-H
O

I,
(c

)
L

S
L

C
D

,
(d

)
L

D
I-

N
A

T
,

(e
)

M
D

W
I,

(f
)

R
I,

(g
)

D
C

D
,

(h
)

B
il
in

ea
r,

(i
)

G
au

ss
ia

n
b
lu

r
fi
lt

er
,

(j
)

m
ot

io
n

b
lu

r
fi
lt

er
(k

)
J
P

E
G

20
00

,
an

d
(l

)
C

B
M

3D
d
en

oi
si

n
g.



CHAPTER 5. IMAGE QUALITY ASSESSMENT TECHNIQUES 249

F
ig

u
re

5.
21

:
S
ec

on
d

ro
w

is
th

e
d
et

ec
te

d
co

lo
u
r

ar
te

fa
ct

s
in

th
e

cr
op

p
ed

ze
b
ra

re
gi

on
of

th
e

fi
rs

t
ro

w
:

(a
)

th
e

or
ig

in
al

B
er

ke
le

y
im

ag
e

25
30

27
,

an
d

th
e

p
ro

ce
ss

ed
ou

tp
u
t

im
ag

es
u
si

n
g

(b
)

W
M

-H
O

I,
(c

)
L

S
L

C
D

,
(d

)
L

D
I-

N
A

T
,

(e
)

M
D

W
I,

(f
)

R
I,

(g
)

D
C

D
,

(h
)

B
il
in

ea
r,

(i
)

G
au

ss
ia

n
b
lu

r
fi
lt

er
,

(j
)

m
ot

io
n

b
lu

r
fi
lt

er
(k

)
J
P

E
G

20
00

,
an

d
(l

)
C

B
M

3D
d
en

oi
si

n
g.



CHAPTER 5. IMAGE QUALITY ASSESSMENT TECHNIQUES 250

5.4 Summary

In this chapter, we presented a new contribution to colour image quality assess-

ment research by proposing the Normalised Colour Variation (NCV) IQA method.

Based on our general observation that a colour artefact pixel has a distinct colour

variation between itself and its original, a novel NCV index has been proposed for

image quality assessment to quantify colour artefacts produced by image process-

ing algorithms. A colour variation of each pixel is determined in a corresponding

hue change between its original and neighbouring colours. An adaptive thresh-

old, determined from colour variation in the original image, is used to distinguish

colour artefacts from true colours allowing colour artefact pixels to be effectively

identified and located.

Our proposed NCV IQA method will add another tool for colour image quality

assessment. The NCV method focusses on identifying visual colour artefacts

whereas existing IQA methods measure overall errors, visible and non-visible, that

often have low correlation with visual assessment. Applications of NCV includes

the comparison of image interpolation algorithms such as CFA demosaicking since

the main visible errors produced by demosaicking are colour artefacts. It is also

useful for other colour image processing applications such as colour accuracy

assessment. It has been shown by experimental results that our proposed NCV

IQA method can effectively quantify colour artefacts with virtually no influence

from other errors. It has also been proven to be a very effective IQA method for

comparing different CFA demosaicking algorithms in their production of colour

artefacts.



Chapter 6

Conclusion and Future Work

6.1 Conclusion

We have successfully achieved, and presented in this thesis, all stated research

aims.

For producing high accurate full-colour images, we developed a method of simul-

taneous CFA demosaicking of three colour planes. Current demosaicking methods

interpolate the three colour planes sequentially by first demosaicking the green

colour plane, followed by the red and blue planes. This sequential process of

demosaicking may unknowingly produce colour artefacts once the demosaicking

process is complete. Our proposed method is able to demosaic the three colours

of a pixel simultaneously in a way that avoids colour artefacts [43]. By performing

this simultaneous demosaicking and using the colourline property, an optimum

RGB colour value is selected for each pixel location. It has been shown that

our method is able to produce highly accurate demosaicked colour images with

minimal visual colour artefacts compared with existent state-of-the-art developed

demosaicking algorithms. This was supported by experimental results that show

consistency in performance in both perceptual and objective evaluation for vari-

ous types of image datasets.
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In the detection and removal of colour artefacts in already demosaicked or pro-

cessed images, we also developed a colour artefact removal algorithm incorporat-

ing a novel blind colour artefact detection method. This improves the final visual

quality by re-mapping those colour artefact pixels based on their neighbours so

that only the detected colour artefact pixels are blended with the neighbouring

colours while true colour pixels remain unchanged. Our proposed method is more

effective in removing colour artefacts than the LCNN benchmarking method. Our

method achieves this effectiveness through a number of techniques to resolve its

problems [13,25,28,29,39,55,67,73,79,83] as follows:

• Blind colour artefact detection: our proposed algorithm includes a novel

blind colour artefact detection method that can identify colour artefacts

without the ground truth. The advantage is that it allows a removal method

to correct only colour artefact pixels and will not corrupt true colour pixels.

• Image segmentation: our proposed algorithm applies the SLIC method to

segment images into local regions based on colour homogeneity and coherent

features. This segmentation method allows the colour-line property in each

local region to be better satisfied than the regular grids image segmentation

method used by the LCNN method that will not always satisfy the colour-

line property in that local region.

• Clustering: our proposed algorithm uses Gaussian Mixture Model (GMM)

to decompose the RGB colour pixel distribution of a local region into two

clusters: one cluster for the colour artefact pixels and the other cluster for

the true colour pixels. Hence, our method is able to promote the colour-

line property for the cluster of colour artefact pixels individually based on

the statistics of the cluster containing true colour pixels for the same local

region. The LCNN method promotes the colour-line property for all the

pixels within the local region with artefact and true colour pixels mixed in
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one cluster. Consequently, LCNN will be less effective in removing colour

artefacts and results in dull images with some colour artefacts.

• Adaptive parameters: our proposed algorithm adaptively adjusts the local

parameters for each individual local region, such as local region size and

adaptive weights, based on the true colour pixel distribution to be more

effective in removing colour artefacts.

To quantify just the visible colour artefacts, excluding all other errors, we devel-

oped a novel Normalized Colour Variation (NCV) IQA method [61] based on the

general observation of colour artefacts. As there is no formal definition of colour

artefacts, we define that colour artefacts manifest themselves as a distinct visual

colour variation from their original and surrounding colours. Current IQA meth-

ods measure the overall image quality including all visible and non-visible errors

and, therefore, do not correlate with visual assessment. This lack of correlation

is due to the non-visible errors impacting the IQA score but not affecting the

visual assessment. Our NCV method excludes non-visible errors so that it can

be used to compare various image processing algorithms, producing numerical re-

sults that correlate well with visual perception. Our proposed NCV IQA method

was also designed specifically to quantify the degree of colour artefacts only with

no impact from other errors such as blurring. This feature was supported by

experimental results.

All in all, the main focus of this thesis, to develop algorithms for producing

high quality new demosaicked images, processing already demosaicked images

and measuring colour accuracy, was fulfilled.
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6.2 Future Work

The image quality of the proposed methods was our main consideration. Hence,

the proposed colour processing and correction techniques may not be compu-

tationally efficient for real-time applications since the proposed techniques were

performed using MATLAB ( version 9.7.0.1190202 (R2019b), 64 bit), on a Win-

dows 10 (64 bit) desktop computer with an Intel Core i7 3.40 GHz processor and

16 GB of RAM. One future area of work is, therefore, to implement our pro-

posed algorithms in hardware using Field Programmable Gate Arrays (FPGAs)

for real-time image processing. Another area for future work is to streamline

the software of our proposed algorithms in order to improve their computational

efficiency for firmware implementation within imaging devices.

In many image processing applications, such as demosaicking and denoising, the

original image is not available for referencing as the ground truth. In order to

assess the visual quality of the output processed images, the presence of visible

colour artefacts in a processed image must then be measured without the ground

truth. Further work can be carried out in developing an efficient blind Image

Quality Assessment (IQA) method by incorporating our proposed blind colour

artefact detection method to quantify visible colour artefacts.



Appendix A

Colour Models

This Appendix presents the evaluation of five colour models to determine which

to use for the blind detection of colour artefacts presented in Chapter 3. As

a result of this evaluation, only the RGB colour model yielded structures that

allows for the detection of colour artefacts.

Four colour models transformed from RGB, namely CIE − LAB, CIE − LUV ,

HSV , and Y CbCr were used in our investigation of selecting an appropriate

colour model. The distribution of colour pixels within a local region was examined

twice, without colour artefacts using the original ground truth images and with

colour artefacts using processed images, employing these four colour models. The

RGB colour model was also employed with the four colour models to analyse the

distribution of artefact and true colour pixels in these different colour models.

Different local regions without colour artefacts are extracted based on colour

homogeneity from the four image datasets, that is Kodak [18], IMAX [19], Laurent

Condats (LC) [20] and Berkeley segmentation [21]. The same local regions but

with colour artefacts were extracted from processed images generated by different

demosaicking methods. The processed images were generated using Bilinear,

MDWI [28], HOI [27], and DCD [31] demosaicking methods to produce different

degrees of visible colour artefacts. Figure A.1 shows the selected images from the
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four image datasets. Figure A.1(a) shows the original test images from each of the

Kodak, IMAX, LC, and Berkeley image datasets from top to bottom. The images

in column (b) were generated by demosaicking methods using DCD, Bilinear, HOI

and MDWI from top to bottom. The highlighted regions in Figure A.1 were used

as examples to examine the distribution of their colour pixels.
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Figure A.1: Selected images, from top to bottom, Kodak image 19, IMAX im-
age 14, LC image 38, and Berkeley image 101087, (a) original images and (b)
processed images.
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CIE−LAB was the first colour model used for this analysis as shown in Figures

A.2 - A.5. The distribution of luminance and chrominance components of the

L, A, and B vectors of the original test image regions were plotted in a three-

dimensional representation in (a) and the LAB components of the processed

image regions were plotted in (b). Since the CIE−LAB colour model separates

chrominance components, in the A and B vectors, from luminance components

(L), the distribution of A against B was also examined. The distribution of

chrominance components is shown in Figures A.6 - A.9 where (a) shows distri-

bution of the components within the original image region and (b) shows the

distribution within the processed image region.

Figure A.2: CIE−LAB component distribution of the Kodak image region using
(a) original image and (b) processed image.

Figure A.3: CIE−LAB component distribution of the IMAX image region using
(a) original image and (b) processed image.
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Figure A.4: CIE − LAB component distribution of the LC image region using
(a) original image and (b) processed image.

Figure A.5: CIE − LAB component distribution of the Berkeley image region
using (a) original image and (b) processed image.

Figure A.6: Distribution of CIE − LAB chrominance components of the Kodak
image region using (a) original image and (b) processed image.
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Figure A.7: Distribution of CIE − LAB chrominance components of the IMAX
image region using (a) original image and (b) processed image.

Figure A.8: Distribution of CIE − LAB chrominance components of the LC
image region using (a) original image and (b) processed image.

Figure A.9: Distribution of CIE−LAB chrominance components of the Berkeley
image region using (a) original image and (b) processed image.
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The second colour model used for our investigation was CIE−LUV as shown in

Figures A.10 - A.17. The same local regions as in Figure A.1 were used. Similarly,

the component distribution of the L, U , and V vectors, including luminance

and chrominance, were visualised in three dimensional plots where the LUV

components of the original image regions and the processed image regions are

shown in (a) and (b) respectively. We also plot just the chrominance components

of CIE − LUV since the U and V vectors represent the colour information of

these local regions. Figures A.14 - A.17 show the distribution of U against V

components of the same original image regions and processed image regions in

(a) and (b) respectively.

Figure A.10: CIE − LUV component distribution of the Kodak image region
using (a) original image and (b) processed image.

Figure A.11: CIE − LUV component distribution of the IMAX image region
using (a) original image and (b) processed image.



APPENDIX A. COLOUR MODELS 262

Figure A.12: CIE − LUV component distribution of the LC image region using
(a) original image and (b) processed image.

Figure A.13: CIE − LUV component distribution of the Berkeley image region
using (a) original image and (b) processed image.

Figure A.14: Distribution of CIE−LUV chrominance components of the Kodak
image region using (a) original image and (b) processed image.
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Figure A.15: Distribution of CIE−LUV chrominance components of the IMAX
image region using (a) original image and (b) processed image.

Figure A.16: Distribution of CIE − LUV chrominance components of the LC
image region using (a) original image and (b) processed image.

Figure A.17: Distribution of CIE−LUV chrominance components of the Berke-
ley image region using (a) original image and (b) processed image.
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Results from the HSV colour model are shown in Figures A.18 - A.25 using the

same original and processed local image regions from Figure A.1. Figures A.18 -

A.21 show the component distribution of three vectors H, S and V by plotting

them in three dimensions where (a) and (b) of these figures show the component

distribution of the original and processed local image regions, respectively. Since

the H and S vectors represent the chromatic information of images, their compo-

nent distribution was also examined separately in two dimensions as illustrated

in Figures A.22 - A.25(a) and (b) for the original and processed local regions,

respectively.

The last colour model transformed from RGB used in our investigation was

Y CbCr. As for the other colour models, the distribution of the luminance Y

against the two chrominance Cb and Cr components of the original and processed

local image regions is presented in Figures A.26 - A.29 (a) and (b), respectively.

The distribution of the chrominance vectors Cb and Cr for the same were also

analysed separately in Figures A.30 - A.33 in case a relationship between them

can be determined.

Figure A.18: HSV component distribution of the Kodak image region using (a)
original image and (b) processed image.
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Figure A.19: HSV component distribution of the IMAX image region using (a)
original image and (b) processed image.

Figure A.20: HSV component distribution of the LC image region using (a)
original image and (b) processed image.

Figure A.21: HSV component distribution of the Berkeley image region using
(a) original image and (b) processed image.
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Figure A.22: Distribution of HSV chrominance components of the Kodak image
region using (a) original image and (b) processed image.

Figure A.23: Distribution of HSV chrominance components of the IMAX image
region using (a) original image and (b) processed image.

Figure A.24: Distribution of HSV chrominance components of the LC image
region using (a) original image and (b) processed image.
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Figure A.25: Distribution of HSV chrominance components of the Berkeley im-
age region using (a) original image and (b) processed image.

Figure A.26: Y CbCr component distribution of the Kodak image region using
(a) original image and (b) processed image.

Figure A.27: Y CbCr component distribution of the IMAX image region using
(a) original image and (b) processed image.
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Figure A.28: Y CbCr component distribution of the LC image region using (a)
original image and (b) processed image.

Figure A.29: Y CbCr component distribution of the Berkeley image region using
(a) original image and (b) processed image.

Figure A.30: Distribution of Y CbCr chrominance components of the Kodak im-
age region using (a) original image and (b) processed image.
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Figure A.31: Distribution of Y CbCr chrominance components of the IMAX image
region using (a) original image and (b) processed image.

Figure A.32: Distribution of Y CbCr chrominance components of the LC image
region using (a) original image and (b) processed image.

Figure A.33: Distribution of Y CbCr chrominance components of the Berkeley
image region using (a) original image and (b) processed image.
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The final colour model used in our investigation was RGB, which represents

colour in highly correlated red, green, and blue colour planes as shown in Figures

A.34 - A.37. The same local regions from Figure A.1(a) and (b) were used to

analyse the distribution of colour pixels in the RGB colour model in Figures

A.34 - A.37(a) and (b) respectively.

Figure A.34: RGB component distribution of the Kodak image region using (a)
original image and (b) processed image.

Figure A.35: RGB component distribution of the IMAX image region using (a)
original image and (b) processed image.

Figure A.36: RGB component distribution of the LC image region using (a)
original image and (b) processed image.
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Figure A.37: RGB component distribution of the Berkeley image region using
(a) original image and (b) processed image.

As a result of this investigation, it was observed that colour models transformed

from RGB do not yield an obvious relationship among their vectors, as shown

in Figures A.2 - A.33. On the other hand, the RGB colour components are

distributed in more organised spatial structures that are recognised by the colour-

line property [111]. A relationship can therefore be determined based on the

distribution of the RGB pixels, as shown in Figures A.34 - A.37. Even in the

case of local image regions with colour artefacts present, Figure A.1(b), we are

still able to determine a relationship in terms of the main orientation of the pixel

distribution being preserved [121], as shown in Figures A.34 - A.37(b).



Appendix B

Regular Grids Method

A key component of the proposed blind colour artefact detection method pre-

sented in Chapter 3 is clustering of colour artefact and true colour pixels in local

regions of a segmented image. This appendix presents an evaluation of clustering

approaches when using the Regular Grids segmentation method. Ultimately, the

blind colour artefact detection method used the SLIC/DBSCAN segmentation

approach described in Chapter 3.

In general, selecting the number of densities is a key point in mixture models

because a large number leads to over-fitting and an insufficient number will limit

the flexibility of clustering data [105, 191]. Therefore, an accurate number of

clusters is difficult to estimate in a local region with different colour homogeneity.

By using the conventional regular grids segmentation method, the number of

clusters can be estimated using different methods. One method used to estimate

the number of clusters in a local region is Calinski-Harabasz index (CH) [192].

CH index is less computationally expensive than other methods but is suitable

for normally distributed multivariate data [192–196]. The CH index is a ratio

of a distance between clusters and within a cluster so that a well-defined cluster

will have a large variance with other clusters and a small variance within itself.

The CH index determines the number of clusters with the highest variance ratio

272
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criteria (VRC) index based on overall inter and intra variance as follows:

V RCK =
SSB
SSW

× (N −K)

(K − 1)
, (B.1)

where K is an initial number of clusters, N is the total number of pixels, SSB

is total variance among clusters and SSW is total variance within a cluster as

follow:

SSB =
K∑
i=1

ni ‖mi − µ‖2 ,

SSW =
K∑
i=1

∑
X∈Ci

‖X −mi‖2 ,
(B.2)

where µ is the global mean of the sample data in X, Ci is the ith cluster, mi is

the centroid of cluster i, and ni is the number of pixels in cluster i. The cluster is

clearly constructed when the value of SSW is small and SSB is large. The higher

the value of V RCK , the better the estimated number of clusters is and the better

data partitioning can be achieved [197].

We have investigated the impact of the regular grids segmentation methods on

estimating the number of clusters in local block regions with different sizes and

different features. Figure B.1 and Figure B.2 (a) - (c) show that the same number

of clusters is estimated in three block regions with three different sizes, 32x32x3,

64x64x3, and 96x96x3.

We also have examined the regular grids method image segmentation on block

regions with different features as shown in Figure B.3 and Figure B.4(a)-(c).
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Figure B.1: Estimating number of clusters using different size of local regions
from processed Kodak image 1 segmented by regular grid with (a) block size
32× 32× 3, (b) block size 64× 64× 3, and (c) block size 96× 96× 3.

Figure B.2: Estimating number of clusters using different size of local regions
from processed Kodak image 1 segmented by regular grid with (a) block size
32× 64× 3, (b) block size 64× 128× 3, and (c) block size 96× 256× 3.
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Figure B.3: Estimating number of clusters in local regions with different features
from processed Kodak image 1 segmented by regular grid.

Figure B.4: Estimating number of clusters in local regions with different image
features from (a) Kodak image 1, (b) IMAX image 5, and (c) Kodak image 19.
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In summary, using the conventional regular grids for image segmentation is not

an efficient method for our application since the colour-line property is not always

satisfied and the number clusters has to be estimated, which can affect the accu-

racy of the detection. As shown in Figure B.2(a), the number of clusters was not

accurately estimated as it should be at least the same number as those regions

in (b) and (c). In Figure B.3(b) and (c), the number of clusters should be grater

than the number in (a) since the number of clusters should increase with increas-

ing image features and appearance homogeneity in a local region. Hence, we use

SLIC image segmentation followed by DBSCAN in our blind detection applica-

tion as this provides more accurate detection results with less implementation

complexity, as described further in Chapter 3.
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