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SUMMARY

Indonesia has the highest number outbreaks of avian flu in poultry and the greatest

number of human casualties due to avian flu. It has also been speculated that the

country poses the biggest threat for a future epidemic caused by a mutated virus

resulting from recombination between avian flu and other strains of influenza-A. Work

to mitigate the impact of avian flu and control the spread of disease in Indonesia,

where millions of poor people rely on poultry for their livelihoods, is very important.

A synthesis of available best practice in emergency response is needed to advise the

country in capacity building, surveillance methods, and approaches for coping with new

introductions of avian flu as well as future emerging disease threats. Several important

issues in the control and impact of avian flu in Indonesia are little understood.

Indonesia has difficulties in containing avian flu due to enormous and complex

problems. Four main non medical factors in the spread and control of the disease

are domestic farming practices, the prominence of wet markets, lack of government

coordination on disease prevention, and economic constraints. This thesis addresses

the problems of modeling the effects of these factors to the spread and control of avian

flu and possible mutated viruses. It is assumed that a mutated virus, referred to here

as mutant-avian-flu, emerges as a result of a rare virus recombination between avian

flu and swine flu.

More specifically, it is assumed that avian flu, swine flu and mutant-avian flu are

spreading among linked populations of poultry and humans. The populations are char-

acterized by their disease states. The dynamics of the disease states are described as

deterministic processes and modeled in the form of well defined initial value problems

(IVPs) and optimal control problems (OCPs). The basic reproduction numbers are

defined for avian flu transmission among birds, swine flu transmission among humans

and mutant-avian flu transmission among humans. The equilibrium points of the sys-

tems are given as functions of the basic reproduction numbers. Stability analysis of

the equilibrium points are given. Some are globally asymptotically stable (GAS), and

others are locally asymptotically stable (LAS). Disease controls are defined as functions

of the basic reproduction numbers. The disease controls describe the effort to reduce

the effectiveness of the force of infection.

The models do not attempt to match observations in high detail but are intended

to capture the main features of the disease dynamics under certain assumptions. As

analytical tools, the models and methods developed in this study help to better under-

stand the dynamic behavior of avian flu, swine flu and mutant-avian flu among linked

populations of poultry and humans in Indonesia. The models presented in this thesis

are intended to demonstrate the feasibility of constructing a model-based tool to inform

decision making bodies in Indonesia regarding the management of future epidemics.
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PREFACE

This thesis can be classified as a mathematical epidemiology of infectious disease caused

by multi-strain influenza-A viruses. It contains models and methods for the solutions

of some problems on analyzing the disease transmission dynamics of avian flu, swine

flu and mutant-avian flu. The mutant-avian flu is a hypothetical virus to model the

threat of a future epidemic due to recombination between avian flu and swine flu. The

work herein is an analytical study; simulations are carried out to visualize some of the

results only. Even though the study addresses the specific circumstances in Indonesia,

the models and methods may be applicable to other under-resourced countries which

have similar problems to Indonesia.

Chapters 1, 2, and 3 provide background information. Chapters 4, 5, 6, and 7

present the original contributions of the thesis. Chapter 8 provides concluding remarks

of the thesis.

Chapter 1 serves as an introduction to the thesis. It states the motivation, rationale

and aims of the study. It also describes the material and methods used and lists the

outcomes of the study.

Chapter 2 reviews existing literature on biological and mathematical aspects of the

spread and control of multi-strain influenza-A. Section 2.1 provides some information

on the basic science of influenza-A viruses from biological and medical points of view.

Section 2.2 reviews existing mathematical models of the viruses. The review focuses

on the scope of the models and the modeling approaches used. The reviewed models

differ both in terms of the aspects of influenza-A outbreak considered and in terms

of the mathematical setting. The choice of mathematical setting is influenced by the

aspect of influenza-A outbreaks addressed in the study. Section 2.3 discusses modeling

approaches and in particular compartmental models. The discussion leads to a justifi-

cation that deterministic modeling is a suitable approach to tackle problems considered

in this study.

Chapter 3 gives some theoretical background on the basic ideas and techniques for

modeling infectious diseases. Section 3.1 describes a class of deterministic compart-

mental models considered in the study. Section 3.2 provides methods for characterizing

the local and global stability of a disease state equilibria. It includes the Salle’s invari-

ance principle and the Poincaré Bendixon theorem. Section 3.3 discusses the limiting

system. It provides a stability theorem for the limiting system and the method of bi-
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ological permanence. Section 3.4 derives a method to calculate the basic reproduction

number and its relation to the stability analysis. Section 3.5 describes optimal disease

control problems for the epidemic models. This section includes methods for designing

disease control and solving the optimal disease control problems.

Chapter 4 presents models for analyzing the effect of human behavior on the dy-

namics of the diseases caused by avian flu, swine flu and mutant avian flu in a single

isolated region. Section 4.1 discusses the modeling choices and assumptions made. A

well defined epidemic model is derived in Section 4.2. In Section 4.3, three reproduc-

tion numbers are defined as the threshold values of the disease transmissions. Section

4.5 provides stability analysis of six disease state equilibria. Numerical simulations are

given in Section 4.7. Epidemic parameters are taken from a case study of Tipar, a small

isolated village in the sub-district of Cikelet, West Java. Tipar has the largest number

of human cases in West Java. The sensitivity analysis of reproduction numbers is given

in Section 4.7.2. Section 4.8 discusses the analytical and numerical results and draws

some conclusions.

Chapter 5 presents models for analyzing the effects of bird trading to the dynamics

of the diseases in the bird and human world. Section 5.1 discusses the modeling choices

taken. The effect of bird trading on the spread of disease and control of disease is

modeled by transport-related infection and border-screening. A well defined epidemic

model is derived in Section 5.2. Section 5.3 discusses the disease transmission model in

two identical regions. Reproduction numbers are defined in Section 5.4. Disease state

equilibria and their stability analysis are given in Sections 5.5 and 5.6, respectively.

Section 5.7 provides some simulation results. The last section discusses the study

results and draws some conclusions.

Chapter 6 presents models for analyzing the effects of border screening for infected

birds on the dynamics of the diseases in the bird and human worlds. Section 6.1

discusses the modeling choices and assumptions made. A well defined epidemic model

is derived in Section 6.2. Section 6.3 discusses the disease transmission model in two

identical regions. Reproduction numbers are defined in Section 6.4. Disease state

equilibria and their stability analysis are given in Section 6.5. Section 6.7 provides

some simulation results. The last section discusses the study results and draws some

conclusions.

Chapter 7 presents models for analyzing the economic trade-off between the spread

and control of disease in an isolated region and the problem of designing optimal disease

controls. The first section recalls the disease dynamic with no control. Section 7.3

outlines a disease control problem. The necessary condition for the existence of an

optimal control is given in Section 7.4. Finally, Section 7.6 discusses some results of

the study. Section 7.5 outline an Indirect method algorithm for solving the optimal

disease control problem (ODCP) in the simulation study. Section 7.6 discusses some

results of the study and draws some conclusions.
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Chapter 8 serves as the concluding chapter of the thesis. This chapter summarizes

the study results and provides an overview of the new knowledge discovered during the

study followed by some implications of the study and future research directions.


