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SUMMARY

Indonesia has the highest number outbreaks of avian flu in poultry and the greatest

number of human casualties due to avian flu. It has also been speculated that the

country poses the biggest threat for a future epidemic caused by a mutated virus

resulting from recombination between avian flu and other strains of influenza-A. Work

to mitigate the impact of avian flu and control the spread of disease in Indonesia,

where millions of poor people rely on poultry for their livelihoods, is very important.

A synthesis of available best practice in emergency response is needed to advise the

country in capacity building, surveillance methods, and approaches for coping with new

introductions of avian flu as well as future emerging disease threats. Several important

issues in the control and impact of avian flu in Indonesia are little understood.

Indonesia has difficulties in containing avian flu due to enormous and complex

problems. Four main non medical factors in the spread and control of the disease

are domestic farming practices, the prominence of wet markets, lack of government

coordination on disease prevention, and economic constraints. This thesis addresses

the problems of modeling the effects of these factors to the spread and control of avian

flu and possible mutated viruses. It is assumed that a mutated virus, referred to here

as mutant-avian-flu, emerges as a result of a rare virus recombination between avian

flu and swine flu.

More specifically, it is assumed that avian flu, swine flu and mutant-avian flu are

spreading among linked populations of poultry and humans. The populations are char-

acterized by their disease states. The dynamics of the disease states are described as

deterministic processes and modeled in the form of well defined initial value problems

(IVPs) and optimal control problems (OCPs). The basic reproduction numbers are

defined for avian flu transmission among birds, swine flu transmission among humans

and mutant-avian flu transmission among humans. The equilibrium points of the sys-

tems are given as functions of the basic reproduction numbers. Stability analysis of

the equilibrium points are given. Some are globally asymptotically stable (GAS), and

others are locally asymptotically stable (LAS). Disease controls are defined as functions

of the basic reproduction numbers. The disease controls describe the effort to reduce

the effectiveness of the force of infection.

The models do not attempt to match observations in high detail but are intended

to capture the main features of the disease dynamics under certain assumptions. As

analytical tools, the models and methods developed in this study help to better under-

stand the dynamic behavior of avian flu, swine flu and mutant-avian flu among linked

populations of poultry and humans in Indonesia. The models presented in this thesis

are intended to demonstrate the feasibility of constructing a model-based tool to inform

decision making bodies in Indonesia regarding the management of future epidemics.
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PREFACE

This thesis can be classified as a mathematical epidemiology of infectious disease caused

by multi-strain influenza-A viruses. It contains models and methods for the solutions

of some problems on analyzing the disease transmission dynamics of avian flu, swine

flu and mutant-avian flu. The mutant-avian flu is a hypothetical virus to model the

threat of a future epidemic due to recombination between avian flu and swine flu. The

work herein is an analytical study; simulations are carried out to visualize some of the

results only. Even though the study addresses the specific circumstances in Indonesia,

the models and methods may be applicable to other under-resourced countries which

have similar problems to Indonesia.

Chapters 1, 2, and 3 provide background information. Chapters 4, 5, 6, and 7

present the original contributions of the thesis. Chapter 8 provides concluding remarks

of the thesis.

Chapter 1 serves as an introduction to the thesis. It states the motivation, rationale

and aims of the study. It also describes the material and methods used and lists the

outcomes of the study.

Chapter 2 reviews existing literature on biological and mathematical aspects of the

spread and control of multi-strain influenza-A. Section 2.1 provides some information

on the basic science of influenza-A viruses from biological and medical points of view.

Section 2.2 reviews existing mathematical models of the viruses. The review focuses

on the scope of the models and the modeling approaches used. The reviewed models

differ both in terms of the aspects of influenza-A outbreak considered and in terms

of the mathematical setting. The choice of mathematical setting is influenced by the

aspect of influenza-A outbreaks addressed in the study. Section 2.3 discusses modeling

approaches and in particular compartmental models. The discussion leads to a justifi-

cation that deterministic modeling is a suitable approach to tackle problems considered

in this study.

Chapter 3 gives some theoretical background on the basic ideas and techniques for

modeling infectious diseases. Section 3.1 describes a class of deterministic compart-

mental models considered in the study. Section 3.2 provides methods for characterizing

the local and global stability of a disease state equilibria. It includes the Salle’s invari-

ance principle and the Poincaré Bendixon theorem. Section 3.3 discusses the limiting

system. It provides a stability theorem for the limiting system and the method of bi-
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ological permanence. Section 3.4 derives a method to calculate the basic reproduction

number and its relation to the stability analysis. Section 3.5 describes optimal disease

control problems for the epidemic models. This section includes methods for designing

disease control and solving the optimal disease control problems.

Chapter 4 presents models for analyzing the effect of human behavior on the dy-

namics of the diseases caused by avian flu, swine flu and mutant avian flu in a single

isolated region. Section 4.1 discusses the modeling choices and assumptions made. A

well defined epidemic model is derived in Section 4.2. In Section 4.3, three reproduc-

tion numbers are defined as the threshold values of the disease transmissions. Section

4.5 provides stability analysis of six disease state equilibria. Numerical simulations are

given in Section 4.7. Epidemic parameters are taken from a case study of Tipar, a small

isolated village in the sub-district of Cikelet, West Java. Tipar has the largest number

of human cases in West Java. The sensitivity analysis of reproduction numbers is given

in Section 4.7.2. Section 4.8 discusses the analytical and numerical results and draws

some conclusions.

Chapter 5 presents models for analyzing the effects of bird trading to the dynamics

of the diseases in the bird and human world. Section 5.1 discusses the modeling choices

taken. The effect of bird trading on the spread of disease and control of disease is

modeled by transport-related infection and border-screening. A well defined epidemic

model is derived in Section 5.2. Section 5.3 discusses the disease transmission model in

two identical regions. Reproduction numbers are defined in Section 5.4. Disease state

equilibria and their stability analysis are given in Sections 5.5 and 5.6, respectively.

Section 5.7 provides some simulation results. The last section discusses the study

results and draws some conclusions.

Chapter 6 presents models for analyzing the effects of border screening for infected

birds on the dynamics of the diseases in the bird and human worlds. Section 6.1

discusses the modeling choices and assumptions made. A well defined epidemic model

is derived in Section 6.2. Section 6.3 discusses the disease transmission model in two

identical regions. Reproduction numbers are defined in Section 6.4. Disease state

equilibria and their stability analysis are given in Section 6.5. Section 6.7 provides

some simulation results. The last section discusses the study results and draws some

conclusions.

Chapter 7 presents models for analyzing the economic trade-off between the spread

and control of disease in an isolated region and the problem of designing optimal disease

controls. The first section recalls the disease dynamic with no control. Section 7.3

outlines a disease control problem. The necessary condition for the existence of an

optimal control is given in Section 7.4. Finally, Section 7.6 discusses some results of

the study. Section 7.5 outline an Indirect method algorithm for solving the optimal

disease control problem (ODCP) in the simulation study. Section 7.6 discusses some

results of the study and draws some conclusions.
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Chapter 8 serves as the concluding chapter of the thesis. This chapter summarizes

the study results and provides an overview of the new knowledge discovered during the

study followed by some implications of the study and future research directions.



1. INTRODUCTION

This chapter serves as an introduction to this thesis. The first section introduces the

motivation for the study. Section 1.3 states the rationale and the aims of the study.

Section 1.4 states the assumptions and approaches used to develop models and the

method of analysis. The outcomes and limitations of the study are listed in Section

1.5.

1.1 Motivation of the study

Indonesia has a long history of epidemics caused by influenza-A viruses. In 1539,

the island of Ternate in the Maluku archipelago (red dot in Figure 1.1) was hit by a

disease outbreak that rapidly destroyed healthy birds and soon after by a disease of

similar lethality in humans. As a result of the disease many places in the region were

depopulated [2].

Not all evidence points to avian-origin influenza-A (H5N1) or avian flu as being

responsible for the 1539 outbreak. Nevertheless, there is a lesson to be learned from

the outbreak. Features of the outbreak have some similarity to avian influenza of the

21st century. The disease was consistent with a zoonosis (an infectious disease that

can be transmitted from animals to humans), supporting the idea of transmission from

poultry to humans. The zoonosis appears to have been an emerging infectious disease,

not seen before by the indigenous people or by the Portuguese. Also, throughout the

island, the illness seems to have affected poultry before affecting humans [2].

The 1539 outbreak was prevented from spreading by the isolation of the region. The

isolation was due to a trading practices policy imposed on the region by Portuguese

colonists at that time [2]. This acted as an unintentional public health measure.

The second epidemic was the Spanish flu which occurred between 1918-1919. It

claimed 1.5 million out of 30 million lives in Indonesia (Dutch East Indies) [3], [4], [5].

The virus was believed to be derived from influenza-A [6] , [7], [8], [9]. The disease

spread from Hong Kong and Singapore to Indonesia through sea ports [3], [4], [5]. The

first case was reported on the east coast of Sumatra in July 1918. In the same month,

the disease spread to Java and Kalimantan and then Bali and Sulawesi, reaching as far

as the eastern part of the archipelago in Maluku and Timor. The second wave came in

October 1918 and was more widespread and brought the most deaths. In Tana Toraja,
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10 percent of the population reportedly died from the disease [3]. In Lombok island,

the disease claimed 36,000 lives or 5.9 percent of the island’s population.

Attempts to control the influenza pandemic were implemented in 1920 by ordering

regional authorities, schools, sea craft, and seaports to raise a special flag called the

Influenza Flag [4]. Posters on disease prevention were published in tribal languages

to educate the people. Often, posters were in the form of a dialog between characters

from puppet shows which were popular at the time.

Highly Pathogenic Avian Influenza (HPAI) is the most recent and globally impor-

tant of such emerging disease problems. This disease harms the livelihood of poor

farmers as well as commercial poultry producers. It infects humans and has the po-

tential to evolve into a human pandemic. In Indonesia, avian flu first appeared in

Pekalongan in Central Java in August 2003 and by January 2004 it had spread across

Java and into Bali, Kalimantan and southern Sumatra. In 2005, the disease reached

Sulawesi, North Sumatra, and Aceh, and in 2006, Papua. At the end of June 2006, 27

of 33 provinces were affected [10] and by the end of 2007, nearly all provinces reported

outbreaks (Figure 1.2).

Initial outbreaks of avian flu are thought to have been in the commercial poultry

sector, resulting from imports of live birds as breeding stock from China [10]. Phyloge-

netic analysis suggests that the Indonesian outbreak originated from a single introduc-

tion [11]. The rapid spread is most commonly explained as the result of transporting

infected commodities including commercial chickens [12]. The prevalence rate of the

disease among poultry varies between regions (Figure 1.2).

The avian flu epidemic among birds has raised some concern about poultry pro-

duction, marketing and consumption in Indonesia. Between August 2003 and January

2004, at least 600,000 chickens reportedly died of the flu in 17 of Central Java’s 35

regencies. Some 10.5 million birds were reportedly lost in 2004 due to the disease

and culling. During peaks of infection in February/March 2005 and 2006, recorded

monthly poultry deaths were 530,453 and 647,832 respectively. The losses due to dis-

ease or culling are estimated to have been between 15% and 20% of all poultry stock.

In 2004, the combined effect of 50% to 60% lower prices and 40% lower sales volumes

meant income reductions of 70% to 80% for traders [13]. Employment opportunities

dropped by 40% at large poultry farms. During outbreaks, there was a drop in poultry

product demand by 45− 60%. The industry operated at just a third of its full capac-

ity [13]. The economic loss resulting from avian flu epidemic from 2004 to June 2008

reached $32.4 million [14].
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Fig. 1.1: Map of Indonesia: 1539 Outbreak at Ternate island (red dot).
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In 2003 there were three cases of avian flu among humans in Vietnam and one in

Cambodia, all resulting in deaths. From 2005 to 2008, Indonesia had more deaths from

the disease than any other country and, at the time of writing this thesis, had the

highest number of total deaths (Table 1.1). By April 12, the cumulative number of

human cases in the country was 156 deaths out of 188 human cases [15].

The distribution of avian flu among humans in Indonesia has not been uniform.

Ninety seven percent occurred on Java and Sumatera (Table 1.2). The majority

of human cases in Indonesia occurred in Jakarta Province (25.2%) followed by two

neighboring provinces Banten (20.6%) and West Java (16.8%). Statistical analysis

showed that the confirmed cases were geographically clustered within an area on Java

island covered by eight districts along the border of three neighboring provinces of

Jakarta, West Java, and Banten [1] (Figure 1.5) .

There were the 113 sporadic and 26 cluster outbreaks detected between July 2005

and July 2009 [16], [17]. Opinions vary as to whether human H5N1 virus infections

in Indonesia have a cluster pattern. All human H5N1 cases have been among blood

relatives, suggesting a possible genetic predisposition toward susceptibility to H5N1

virus infection. A small cluster of eight cases of which seven were fatal, has been

identified in Karo, North Sumatra [10], [18], [19]. Whether the virus is capable of

sustaining human to human transmission is still unproven.

Indonesia has difficulties in containing avian flu due to enormous and complex

problems. Four main non-medical factors in the spread and control of the disease

are domestic farming practices, the prominence of wet markets, lack of government

coordination and economic constraints.

Poultry farming in the country is predominantly a rural or backyard enterprise.

Domestic poultry production has been identified as a key element in poverty alleviation

in rural areas. The problem is that most poor households have limited knowledge about

human and animal health. They do not understand the bio-security and health issues

at stake. In this case, the bio-security is understood to mean the protection of food

supply from contamination and threat. People raise birds and other animals such as

ducks and pigs in very close proximity, facilitating the spread of illnesses. Not only do

these people live close to their poultry, they also live close to each other, often sharing

farm tools without thorough cleaning between uses.

Wet markets, also called live bird markets, are common throughout Indonesia. Wet

markets typically consist of a hodge-podge of stalls selling pet birds, ornamental birds,

chickens, ducks, pigeons and many other types of birds. While the emphasis is on birds,

many of these markets also sell other animals such as cats, dogs, hamsters, mice, and

many more species. Among the stalls selling live birds and animals there are stalls

selling food and stalls where birds are de-feathered, slaughtered and cooked.
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Fig. 1.2: Avian flu outbreaks among poultry in Indonesia during 2005-2007 2008, [1]
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Often the sanitation is poor and stalls seldom have their own water supplies, relying

instead on water fetched in buckets from a common source. Grey waste water is usually

just poured out on the ground. There is little awareness among farmers, bird sellers, and

consumers on how diseases such as avian flu are spread and there are no procedures in

place to manage emergencies. It has been suggested that the mixture of species, the lack

of management, and multiple suppliers are all features that make the markets potential

hot spots for spreading viruses [20]. It is thought that poultry trading contributes to

the spread of the disease across the country [10], [18].

Most human cases in Indonesia have acquired avian flu infection from poultry and

live bird markets [10], [18]. Handling of sick or dead poultry during the week before

the onset of illness is the most commonly recognized risk factor[10], [18].

Both domestic farming practice and wet markets raise concern of possible virus mu-

tation through re-assortment or recombination between avian flu and other influenza-A

viruses such as swine flu [10], [18]. A mutation might result in a new virus with a epi-

demic potential among humans [21], [22], [23], [24]. However, unlike the 2009 swine flu

pandemic which was caused by a low pathogenic virus, a future epidemic caused by a

new mutant-avian flu could become one of the worst in history if it is highly pathogenic

[22], [25].

The third reason for the persistence of the disease and its spread in the country is

the lack of government coordination. Countrywide action and cooperation is essential

in combating a virus such as avian flu. This type of response becomes very challenging

in the presence of a decentralized government. From 1998, the Indonesian government

has undergone significant reforms moving from a highly centralized model to a more

decentralized one.

The local branches of government hold most of the power. As a result, it has been

very difficult to mount a united defense against the flu even for implementing border

screening and culling policies.

The fourth reason for the persistence of the disease and its spread in the country is

economic constraint. The country has little capacity, or regulatory enforcement power,

to implement control of even basic bio-security measures. The World Health Organiza-

tion has recommended the culling of infected birds and any bird which may have come

in contact with an infected bird. A lack of initial action and ineffective procedures,

however, has prevented these measures from being fully implemented. When culling

was utilized, few incentives were provided to the public to participate. The subsidy

offered by the government was less than the market value for chickens. The low level

of financial compensation from the government for bird depopulation does not provide

incentive for the farmers to cooperate [10].
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Tab. 1.2: Human cases of avian flu in Indonesia by province as of December 2007. The
percentages refer to the percent of the total confirmed or suspected cases.

Province Island Population Confirmed Suspected
density/km2 number (%) number (%)

DKI Jakarta Java 13,400 27 (25.2) 153 (50.7)
Banten Java 1,016 22 (20.6) 51 (16.9)
West java Java 1,033 18 (16.8) 0 (0)
Central Java Java 951 9 (8.4) 0 (0)
North Sumatra Sumatra 158 8 (7.5) 0 (0)
East Java Java 726 7 (6.5) 87 (28.8)
Riau Sumatra 52 7 (6.5) 0 (0)
West Sumatra Sumatra 100 3 (2.8) 0 (0)
Lampung Sumatra 197 2 (1.9) 0 (0)
Bali Bali 599 2 (1.9) 0 (0)
South Sumatra Sumatra 59 1 (0.9) 11 (3.6)
South Sulawesi Sulawesi 133 1 (0.9) 0 (0)

Total 107(26.2) 302 (73.8)

1.2 Tipar: A case study of an isolated village

West Java has had eighteen human cases of avian flu (Table 1.2), eleven of which were

located in Tipar, a small village in the sub-district of Ciketet, Kabupaten Garut, West

Java. The outbreak in Tipar is anomalous in that most other cases occurred in areas

with a large poultry industry or areas involved in the transport of poultry. Tipar is an

isolated village of 556 households comprising an area of about 60 acres surrounded by

hills and a mountain (Fig. 1.3). A typical household raises 15-20 chickens for domestic

consumption but there is no poultry industry and the village in not part of a trade

network in poultry. Houses are built about 50 cm above ground and chickens use this

space for shelter (Fig. 1.4). Chickens roam about the village freely.

During the day, men work the fields and women and children stay near the house

and tend the chickens. This is significant since most cases were among women and

children. A study showed that among housewives in Tipar, 62.4% had no knowledge

of avian flu and 79.2% have never had social support from the government [26].

The first human case of avian flu in Tipar occurred in June 2006. Some people from

Pameungpeuk, a village close to Tipar, brought chickens to a village function. The

chickens died the next day and some the villages own chickens died shortly afterward.

No one associated the death of the chickens with avian flu and the chickens were

consumed. Soon afterward, on June 16, 2006, a villager died after symptoms of high

fever. The local puskesmas (health care clinics) did not become aware of the outbreak

until three people died. The regional government of Garut only took action after five

people had died. The village was isolated and the villagers were vaccinated. The local

government reported 12 cases of suspected and confirmed avian flu (Table 1.3).



1. INTRODUCTION 9

Fig. 1.3: Tipar, Cikelet. An isolated village having twelve human cases of avian flu. It
surrounded by hills and a mountain

Tab. 1.3: Human cases of avian flu in Tipar, Cikelet from June to August 2006

No Name Age Feel Sick Case Status

1 Rahmat Hidayat 1 June 4 Suspected Dead, June 16
2 Satria 4 July 19 Suspected Dead, July 31
3 Robiah 13 July 28 Suspected Dead, August 1
4 Misbah binti Sukmaji 20 July 28 Suspected Dead, August 6
5 Umar bin Aup 17 July 28 Confirmed Survive
6 Euis Lina 35 July 19 Confirmed Dead, August 10
7 Ai Siti Amanah binti Ade 2 August 3 Confirmed Dead, August 15
8 Santi bin Iwan 6 August 3 Suspected Survive
9 Yana 60 August 15 Suspected Survive
10 Iswahati binti Pendi 5 August 15 Suspected Survive
11 Kuraesin 35 August 17 Suspected Survive
12 Osin Gil 14 August 20 Suspected Survive

Pasir Gambir and Pameungpeuk are two villages close to Tipar which also have had

a few human cases of avian flu. These villages are separated by a big river. Therefore,

the most likely mode of transmission of avian flu was through trading of chickens.

1.3 Rationale and aims of the study

Efforts were made by many institutions to track HPAI, develop vaccines and control

the disease in endemic countries to prevent a global pandemic but many of these were

not implemented in Indonesia. This work is of great importance in the context of

trans-boundary animal diseases, particularly those arising in developing countries such

as Indonesia whose scarce resources and capacity in disease control could lead to the

spread of diseases harmful to animal and human health in other regions around the
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Fig. 1.4: Typical house of Cikelet villagers. The wooden floor is raised about fifty cen-
timeters to house free range chickens resting during the nights

globe.

Work to mitigate the impact of HPAI in Indonesia, where many millions of poor

people rely on poultry for their livelihoods, is very important. A synthesis of available

best practices in emergency response is needed to advise the country in capacity build-

ing, surveillance methods and approaches for coping with new introductions of HPAI

as well as future emerging disease threats. Several important issues in the control and

impact of HPAI in Indonesia are little understood.

Mathematical models have been developed and used to understand the spread and

control of influenza-A viruses. The review of existing models given in Chapter 2 shows

that models have been developed based on the premise of ideal situations of bio-security

and un-limited resources for disease surveillance and containing the pandemic. Such

models may be applicable for developed countries but not for developing countries such

as Indonesia. No published work could be found which models the spread and control

of avian flu and the threat of a future epidemic in Indonesia.

There are lessons to learn from the three previous pandemics in Indonesia. Gov-

ernment regulations and propaganda programs for disease prevention are key factors

for disease prevention and eradication. Therefore, in order to mitigate further spread

of avian flu and anticipate future pandemics, a model is needed that demonstrates the

likely patterns of the spread of disease and allows for comparison between possible

control measures.
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Fig. 1.5: Location of human cases of Avian flu by Province in Indonesia per May 2007.
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In modeling control, the realities of Indonesian culture and economic state discussed

in Section 1.1 must be taken into account. For example, simply asking rural people to

cull their chickens is not viable as people will choose the threat of disease over certain

poverty. Compensating family farmers for their losses is not economically feasible and

resources do not exist to implement comprehensive preventative measures. This study

provides work toward a model for the spread and control of avian flu that is realistic

for Indonesia.

1.4 Scope of the study

Field studies show that human infection of avian flu is influenced by, and may even

depend on, host genetic susceptibility [17], [27], [28]. There is no evidence of human to

human transmission of avian flu [29], [30], [31], [32]. Therefore, it is assumed in this

study that avian flu rarely infects humans but is not communicable among humans.

Genome studies provide strong genetic evidence that new future strains could be

mixing and mutating in the tropics [33], [34]. A likely plausible scenario is that a new

virus results from recombination between avian-origin influenza-A (H5N1) and swine

flu [35], [36], [37], [38], [39]. The emergence of such a hypothetical virus is included in

this study and is referred to as mutant-avian flu.

This study is concerned with the development of new mathematical models and

methods for analyzing the disease spread and control of avian flu, swine flu and mutant-

avian flu among linked populations of birds and humans in Indonesia. It is assumed that

the three influenza-A virus strains cause five disease transmissions, namely (i) avian flu

transmission among birds. (ii) avian flu transmission from infected birds to humans.

(iii) swine flu transmission from infectious humans with swine flu to susceptible humans.

(iv) swine flu transmission from infectious humans with swine flu to humans having

swine flu but who are asymptomatic. (v) mutant-avian flu transmission among humans.

The disease transmissions are modeled by using the mass action incident assumption.

The linked populations of poultry birds and humans are characterized by their

disease-states. The dynamics of the disease states are described by deterministic pro-

cesses and modeled in the form of well-defined systems of differential equations. The

models and methods developed in this study are justified theoretically.

This thesis is an analytical study. In addition, simulations were carried out but

only to visualize some results. The epidemic parameters used for simulations were

taken from available literature on the 1918-1919 Spanish flu, the 2004-2009 avian flu

epidemics among birds, the 2004-2009 avian flu cases among humans and the 2009

swine flu pandemic.

Extensive algebraic manipulations were carried out by using the symbolic computa-

tion package of Maple 16 c©. Simulations were performed by using MATLAB R2010b c©.



1. INTRODUCTION 13

1.5 Outcomes and limitations

The models do not attempt to match observations in high detail but are intended

to capture the main features of the disease dynamics under certain assumptions. As

analytical tools, the models and methods developed in this study help to better under-

stand the dynamic behavior of avian flu, swine flu and mutant-avian flu among linked

population of poultry and humans in Indonesia.

The thesis outcomes are useful for modeling and analyzing the current and future

situations of disease spread and control of influenza-A in Indonesia. The models are

able to track the disease dynamics among birds and humans simultaneously. Specific

outcomes include:

• In Chapter 4, models are presented to analyze the dynamics of avian flu, swine

flu and mutant-avian flu in human and poultry populations.

• In Chapter 5, models are presented to study the effect of the transportation of

birds to the dynamics of the diseases in the bird and human worlds.

• In Chapter 6, models are presented to study the effect of border screening for

infected birds to the dynamic of the diseases in the bird and human worlds.

• In Chapter 7, models are presented to analyze economic trade-off between the

spread and control of the diseases.

Even though the work herein addresses the specific circumstances of Indonesia, the

models and methods may be applicable to other under resourced countries which have

similar conditions to Indonesia.

There are limitations to the models developed. One limitation is that precise knowl-

edge of epidemic parameters in particular disease transmission of mutant-avian flu is

unknown and is difficult to measure. Unfortunately, this is a key parameter that yields

the force of infection or transmission of the disease. It is a source of important non

linearity of the models and can make the difference between regular cyclic variations of

incidence and chaos. Another limitation of the models is the difficulty in running the

full model over all regions of interest in Indonesia. Therefore, the models cannot to be

used as prediction tools. The scope of the thesis is laying the mathematical foundation

for a model.Despite these limitations, the models can help interpret observed epidemi-

ological trends, guide the collection of data towards further understanding, and assist

the design of programs for the control of the diseases. The models can help gain insight

into the factors controlling the disease persistence and stability of disease transmission

within large human communities.



2. LITERATURE REVIEW

The purpose of this chapter is to review existing literature on biological and mathemat-

ical aspects of the spread and control of multi-strain influenza-A. Section 2.1 provides

some information on influenza-A viruses from biological and medical points of view.

Section 2.2 reviews existing mathematical models of influenza-A viruses including the

scope of the models and modeling approaches that have appeared in the literature. The

reviewed models differ both in terms of the aspects of the disease outbreak considered

and in terms of the mathematical setting. The choice of mathematical setting is often

influenced by the aspect of the disease outbreaks addressed in the study. The compart-

mental model is the most popular and the basic compartmental model is described in

Section 2.3. A discussion leads to the conclusion that deterministic models are suitable

for addressing the problems posed in Chapter 1.

2.1 Basic science of influenza-A

The various types of influenza-A viruses can broadly be categorized as low and high

pathogenic viruses. The cycle of a low pathogenic virus among waterfowl and wild birds

is genetically stable [40]. It persist in water [41], is capable of surviving more than 100

days at 17oC and uses ice as its reservoir [42], [43], [44]. Direct disease transmission

among birds is through a fecal-oral route [45]. Low pathogenic influenza may evolve

into high pathogenic virus [46], [47], [48].

Avian flu can be maintained, amplified, and disseminated in live-poultry markets

[45][49]. Once avian flu has developed in poultry birds, it can transmit horizontally

among poultry birds with a mortality rate of 60% [40], [47]. The interaction of migratory

wild birds and domestic poultry has sustained avian flu, but the importance of migrating

wild birds as an ecological reservoir is uncertain [49].

Influenza A virus of different subtypes infect many other species, in particular mam-

mals such as domestic cats [29], [30], [31], [50], dogs [32], mice [51], [52], ferrets [53], [54],

cynomolgous (monkeys) [55] and swine [35]. The pathogenic level of the virus depends

on its hosts. The differences in the surface proteins prevent these viruses from jumping

across species barriers and causing infection in humans [24]. The highly pathogenic

avian-origin influenza-A (H5N1) virus has succeeded in crossing the species barrier and

has started infecting humans [36], [56], [57], [58]. The virus is less pathogenic in mam-
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mals generally, but is highly pathogenic to ferrets [59] and humans. The mortality rate

in humans is about 60% [60], [61], [62].

Human cases of avian flu acquire the virus by direct transmission from infectious

birds [24], [47], [56], [60], [61], [62], [63] although the exact mode and sites of the virus

acquisition in the respiratory tract are not completely understood [64]. There is no

conclusive evidence of human to human transmission of avian flu [29], [30], [31], [32],

but there is a possibility that this might have happened [65], [56]. Clusters of human

avian flu illness with at least two epidemiological linked cases have been identified in

10 countries and have accounted for approximately one quarter of cases.

The 20th century witnessed three pandemics caused by influenza-A viruses namely

the Spanish flu which occurred between 1918 and 1919, Asian flu (H2N2) occurred 40

years later (1957-1958) and the Hong Kong flu (H3N2) 1968 to 1969. The first influenza

A pandemic of the 21st century was marked by the spread of Swine flu, a new strain

of swine-origin influenza-A (H1N1).

The Spanish flu pandemic has been described as “the greatest medical holocaust in

history” [66]. The global mortality rate of the disease is not known, but it is estimated

that 10% to 20% of those who were infected died [67]. With about a third of the world

population infected, this case-fatality ratio means that 3% to 6% of the entire global

population died [9]. Phylogenetic analyses of the complete genome of the 1918 influenza

virus suggest that the 1918 virus was derived from an avian source[6]. It is a bird flu

that learned how to spread among humans.

Asian flu was identified first in Guizhou, China in February 1957. It spread quickly

to Singapore in the same month, reached Hong Kong by April, and the US by June

[68]. It caused approximately two million deaths worldwide.

Hong Kong flu was detected first in Hong Kong in early 1968. The pandemic

infected an estimated 500,000 Hong Kong residents, 15% of the population [69]. It

arrived in the United States in September 1968 and became widespread in December

1968. Deaths peaked in December 1968 and January 1969 with the elderly being hit

hardest. The virus returned in 1970 and 1972. Total deaths were approximately 33,800,

making it a mild pandemic [69].

Swine flu was first identified in Mexico in April 2009 and soon spread worldwide.

The disease is communicable among humans with a mortality rate similar to seasonal

flu, around one percent [70], [71]. In May of 2009, the World Health Organization

(WHO) announced that there had been 30,000 confirmed cases of swine flu influenza,

but the same day, the Centers for Disease Control and Prevention (CDC) estimated

around a million cases [72]. In November of 2011, WHO reported that the global

swine flu pandemic included more than 18 thousand deaths and that the virus was

still circulating, though at much reduced levels compared to those in 2009. Swine flu

vaccination programs have been effective in halting the disease spreading further [73].
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The programs might be optimized by giving the vaccine to a targeted population only

[74], [75], [76], [77].

The spread of avian flu among birds appear to be principally related to the move-

ment of poultry and poultry products [47], [62], [78], [79]. Poultry markets, in particular

live bird markets, are the most risky places for disease transmission [63], [78]. A bird

is most likely to get infected if the bird resides within a radius of one km from an out-

break area (26.2%). The second largest possibility to get infected is during transport

(21.3%). A bird may also get infected by indirect transmission from poultry workers

and their tools (9.4%) and in the slaughter house (8.5%). Only a small proportion

(1.0%) of poultry birds get infected by a direct transmission from wild birds in nature

[79].

The WHO has warned that the threat of a new influenza pandemic has been aggra-

vated with the appearance of highly pathogenic avian flu [80]. The Food and Agricul-

ture Organization (FAO) has estimated that avian flu has led to the death or destruction

of more than 200 million birds worldwide, resulting in economic losses of over 20 billion

dollars [81]. Experts claim that the next flu pandemic could become one of the worst

in history, not because it has killed many people yet but because of its potential [22],

[25].

The threat of a mutated version of avian flu causing pandemic is real. Simultaneous

infection of humans by avian flu and other influenza A viruses could theoretically

generate novel influenza viruses with pandemic potential [36], [82], [83]. The lesson to

learn is that of the 2009 swine flu pandemic. The virus is thought to be a mutation,

more specifically, a recombination of four known strains of influenza A virus subtype

H1N1, one endemic in humans, one endemic in birds, and two endemic in pigs [71],

[84].

A virus mutation process could be in the form of antigenic shift or antigenic drift.

Antigenic shift is the process by which two or more different strains of a virus combine

to form a new subtype having a mixture of the surface antigens of the original strains.

Antigenic drift describes small and gradual changes in the surface proteins (antigens)

of the virus through random mutational processes [23], [85].

Figure 2.1 depicts a possible scenario of future pandemic generation. A virus re-

combination can occur when avian flu (which can live in birds with 2-3 receptors) from

birds and swine flu (which can live in mammals and human with 2-6 and 2-3 receptors)

from human recombine to become more infectious and then infect the human popu-

lation [35], [36], [37], [38], [39]. These molecular-biological and genomic studies are

important to unfold in advance possible new strains which may have pandemic poten-

tial [83]. The new strains found could then be utilized to support the development of

vaccine or other disease control planning processes [36], [83].

Hybrid viruses have the potential to express surface antigens from avian flu to
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Fig. 2.1: Pandemic Generation.

which the human population has no preexisting immunity [25]. Therefore, it has been

suggested that the virus may only need to change slightly to become communicable

among humans [22], [56], [65], [25]. The process for a pandemic can be triggered by

three stages of virus mutation[21]. First, an incremental increase in the ability of the

virus to move from birds or animals to humans. Second, an incremental increase in the

virulence of virus. Third, an incremental increase in the contagiousness of the virus

between humans.

2.2 Scope of mathematical modeling of influenza-A

The foundations of mathematical epidemiology were laid in the late nineteenth and

early twentieth centuries by public-health physicians and biological scientists [86], [87],

[88], [89], [90]. The concept of differential mortality was used to estimate the rate of

deaths attributable to a given disease such as the 1918 influenza pandemic. A discrete

chain binomial was used to model the spread of infection in a susceptible population

[86], [91].

A disease control model was first developed by R. A. Ross in his work on malaria,

which earned him the second Nobel prize in Medicine in 1902. His model showed that

the spread of malaria in a region can be controlled by reducing the mosquito population

[87]. The result was generalized later for larger classes of diseases by introducing the

concept of reproduction numbers [88], [89], [90].
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The reproduction number is the number of secondary infections caused by a single

infective introduced into a homogeneous population made up entirely of susceptible

individuals over the course of the infection of this single infective [88], [89], [90], [92],

[93]. A non homogeneous population is considered as a multi state population. The

reproduction number of a multi state population based on age classes and types of

individuals are referred to as state-reproduction number [94] and type reproduction

number [95], respectively.

Models have been developed for understanding the spread and control of avian

influenza. Various issues have been considered in influenza epidemic and pandemic

models such as the number of virus strains, the population of study, transmissibility,

disease control measures, effect of spatial demographics, delay, and virus mutation. The

following subsections (2.2.1 to 2.2.7) review the existing models based on the scope of

models.

2.2.1 Number of virus strains

Most of the existing models consider a single influenza-A virus strain spread among

birds populations only [60], [62], [96] or among human population only [61], [71], [97],

[98], [99], [100]. Only few consider multi strain influenza-A viruses circulating in both

bird and human populations [101], [102], [103], [104].

2.2.2 Transmissibility

A main focus of modeling infectious diseases has been in the understanding and com-

putation of the basic reproduction number [105], [106], [107], [108], [109], [110], [111],

[112], [113]. If the value of reproduction number is less than or equal to one, then

the disease free equilibrium is locally asymptotically stable and therefore the disease

cannot invade the population. If it is greater than one, the disease free equilibrium is

unstable and the disease may invade the population.

Transmissibility of avian flu in poultry birds has been estimated. The disease la-

tency period among birds varies from 0.20 days to 0.44 days. The mean infectious

period varies from 1.3 days to 2.5 days and the reproduction number varies from 0.99

to 2.0 [114]. These estimated reproduction numbers are slightly lower than those based

on a field observation of 2.0 to 3.5 [17], [115].

In humans, avian flu transmission due to direct transmission from infectious birds

is very rare [103], [104]. The resampling-based test was used to detect person-to-person

transmission of avian flu among humans [17], [116], [117]. Studies show that there is

no evidence of transmissibility of avian flu virus among humans.
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2.2.3 Risk of epidemic

The risk of a future avian flu epidemic among human populations has been modeled

and analyzed. Most of the existing models are based on the underlying assumption

that the disease is already communicable among humans such as 1918 (Spanish) flu

[98], [99], swine flu [61], [71], and 1957 (Asian) flu [100].

Some assumed that avian flu has a high risk of causing an imminent pandemic

such as in the Spanish (1918) flu pandemic. In these models, epidemic parameters

based on 1918 Spanish pandemic where used [7], [8]. The reproduction numbers were

estimated between 2 to 3 [7] or 1.49 (spring wave) and 3.75 (autumn wave) [118].

These reproduction numbers are higher than the reproduction number of Asian flu

(H2N2) which was estimated to be between 1.6 − 1.8 [33], [100]. The reproduction

number of Spanish flu is also higher than the reproduction number of the Hong Kong

flu (H3N2) pandemics which where estimated as 1.06−2.06 [119]. These models ignore

the complexities of cross species infection processes. Only a few consider virus mutation

when modeling the risk of an avian flu epidemic among human [103], [104].

2.2.4 Disease controls

The basic reproduction number may also be considered to be the control effort needed to

eliminate the infection from a homogeneous host population [120]. Feasible intervention

strategies both biomedical and behavioral have been modeled and analyzed. The control

policies can be categorized into two groups. The first group of control policies aims

to reduce the effectiveness of the force of disease transmissions. In this category the

disease control could constitute vaccination [79], antiviral agents [121], social distancing

policies such as school closure [100], [122], travel restrictions [46], [79] or a combination

of these [123], [124]. The second group of control policies aims to manage the disease

out break such as screening for infectious individuals followed by quarantine [98], public

health measures [8], [97], bird culling [125] and cleaning the environment [96].

Disease control by vaccination

Theoretically, a pandemic with a reproduction number of 2 to 4 could be prevented by

vaccinating or administering antiviral prophylaxis to 50−75% of the population [7]. For

highly contagious viruses (i.e. a reproductive rate of 2.3 or higher), the use of the vaccine

for approximately 20% of the population leaves 30%− 50% of the population infected

[126]. Given enough drugs for 50% of the population, household-based prophylaxis

coupled with reactive school closure could reduce clinical attack rates by 40 − 50%.

More widespread prophylaxis might reduce attack rates by over 75% [126].

Vaccine stockpiled in advance of a pandemic could significantly reduce attack rates

even if the efficacy is low [127]. Vaccine production capacity and antiviral medication
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stockpiles are insufficient to provide for broad coverage, even in wealthy countries.

Therefore, optimal distribution strategies are very important [128]. Shifting vaccination

resources away from the high-risk groups to the high-activity groups will result in

improved herd immunity in both the high-risk group and the population as whole [129].

Targeted layered containment is important for resource efficiency [130]. Targeted use of

antivirals would be sufficient to contain an outbreak with reproduction number below

1.4, as long as the intervention is applied within the first 21 days of the outbreak

[121]. Incentives are necessary for voluntary vaccine programs to be the successful

[131], [132]. Vaccination, however, is considered to be too expensive to be a practical

control in Indonesia. Therefore, vaccination is not included in the models presented in

this thesis.

Disease control by social distancing

Disease control measures that generally reduce contacts between individuals may be

the most powerful protection against a pandemic until adequate vaccine and antiviral

medicines can be produced [8]. Effective isolation measures in hospital clinics at best

would only ensure control with probability 0.87 while reducing the transmission rate

by greater than 76.5% guarantees stopping an epidemic [99].

Behavioral interventions such as closing schools, quarantining infected individuals

or imposing travel restrictions have been modeled and analyzed for effectiveness. Pro-

longed school closures could reduce the cumulative number of influenza cases by 13 to

17% [122]. It has been suggested that household quarantine could be more effective

than closing schools [127].

Some combination of behavioral and biomedical interventions are more effective

for containing the pandemic [128], [131], [132]. In the case of the 1918 (Spanish)

flu; time-limited public health interventions reduced total mortality only moderately

(perhaps 10−30%). The impact of intervention was limited because interventions were

implemented too late and lifted too early [8]. The effectiveness of human quarantine

varies depending on when the limitation on travel between communities is implemented

and how long it lasts, and a policy of introducing quarantine at the earliest possible

time may not always lead to the greatest reduction in cases of a disease [98].

2.2.5 Global scale models

The worldwide spread of a pandemic and its possible containment strategy at a global

level have been modeled. Migratory birds may spread avian flu viruses to new geo-

graphic regions [60], [133]. There is a pattern to the spread of avian flu among birds

from Asia into Alaska [60], [96]. The inclusion of air transportation is crucial in the

assessment of the occurrence probability of global outbreaks [126]. A global coopera-

tive strategy, including countries that make part of their resources available for global
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use, has proven to be effective for containing the disease [84], [96], [134]. It has been

suggested that a pandemic could be effectively contained if one country donates some

of their stockpiled antivirals to other countries in need [126]. Spatial demographic and

delay both have effect on the spread of disease [135], [136] . It has been suggested that

extensive air travel restrictions would not delay spread of a pandemic by more than a

few weeks [127], [136].

2.2.6 Population dispersal

There have been many investigations concerning the effect of population dispersal on

the spread of a disease. Epidemic models have been considered to describe the dynam-

ics of disease spread between two or more patches and study the threshold dynamics

[137], [138], [139], [140], [141]. Also the effect of population dispersal on the spread

of a disease have been investigated [137], [138], [139]. The movement of susceptible

or infected individuals can enhance or suppress the spread of disease, depending on

the heterogeneity and connectivity of the spatial environment [139], [140]. All these

investigations ignored the possibility that individuals become infective during travel.

Transport-related infection models for two identical regions were investigated [142].

The study shows that transport-related infection can make the disease endemic even

if two isolated regions are disease free [142]. Furthermore, restricting travel of infected

individuals in the form of border screening [143] [144] is important for disease eradica-

tion since this allows the possibility to eradicate the component of the disease driven

by transport-related infection.

2.2.7 Cross species models

The models for the spread and control of disease listed above have been developed for

a single strain such as seasonal flu [97], 1918 (Spanish) flu [98], [99], swine flu [61], [71]

or 1957 (Asian) flu [100]. They may not be suitable for describing epidemics generated

by strains that emerge due to recombination of species-specific strains and subsequent

cross-species transmission. Interaction between birds and humans results in a different

scenario for the spread and control of disease than for a single population of birds or

humans [101], [102], [103], [104].

It has been suspected that confined animal feeding operations serve as amplifiers of

influenza. A study showed that when the workers comprised 15−45% of the community,

human influenza cases increased by 42− 86%. Successful vaccination of at least 50% of

the workers canceled the amplification [101].

It was pointed out in Section 2.1 that a virus mutation process can be modeled by a

drift or shift mechanism [23], [85]. There are only few published studies to consider the

effect of a virus mutation [102], [103], [145], [125], [104], [146]. The drift evolution in
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seasonal influenza was first modeled as an evolutionary model [102]. The model assumes

that the susceptible class is continually replenished because the pathogen changes ge-

netically, and hence immunologically, from one epidemic to the next, causing previously

immune hosts to become susceptible. The inter-epidemic period, and the probability

that a host will become reinfected, depend on the rate of amino acid substitution in

the pathogen.

On the other hand, interaction between infectious birds and infectious humans may

also result in a virus mutation of avian flu. Shift mechanisms have been used to model

the effect of avian-human [103] and swine-human [101] cross species virus mutations.

An avian-human cross species model considered a hypothetical mutant virus as a shift

virus mutation of avian flu [103]. The results show that when mutant influenza-A has

already occurred, the spread of avian flu in the human world can be prevented only by a

combination of culling infected birds and quarantining the infected humans. Reducing

the contact rate between susceptible humans and the individuals infected with mutant

influenza-A also helps to prevent the occurrence of a pandemic [135]. The quarantine

policy can effectively reduce both human morbidity and mortality but a bird culling

policy can increase human morbidity or mortality in a worst case situation [125].

Further, a model that incorporates both drift and shift as evolution mechanisms of

influenza was proposed in [104]. As in [102], the drift evolution of influenza was mod-

eled by the total number of the amino-acid substitutions during the strain circulating

time. The study showed that amino-acid substitution structure of human influenza can

destabilize the human influenza equilibrium and sustained oscillations are possible. For

low levels of infection in domestic birds, these oscillations persist, inducing oscillations

in the number of humans infected with the avian flu strain.

2.3 Modeling approaches

When modeling a complex system such as the spread and and control of influenza-A

viruses, there is a trade off between a model’s degree of abstraction and its useful-

ness. Each model has its own approach and set of assumptions. Most existing models

reviewed in the previous section are based on simulation studies.

At the microscopic level for virus mutation, bio-informatics methods have been used

to predict antigenic variants of avian flu virus. These methods predict the emergence of

a new strain of influenza-A with human to human transmission capability. A simulation

study showed that a new influenza-A pandemic might happen as a result of recombina-

tion of avian flu and swine flu. A human already infected with avian flu might become

infected with swine flu [36], [37]. Readers who are interested in simulation studies for

virus mutations may refer to [147], [148], [149], [150], [151], [152].

Some models have been proposed for detecting person-to-person transmission in

closed social contact networks. The models assumed that each individual has a finite
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set of contacts to whom they can pass infection. The ensemble of all such contacts

forms a mixing network. Knowledge of the structure of the network allows models

to compute the epidemic dynamics at the population scale from the individual-level

behavior of infections [153], [117], [116]. There is still much to be done in validating

the simulation results and relating them to the theory. Readers who are interested in

studying epidemics using social networks may refer to [153], [154], [155], [156]. There is

also reference to the use of bond percolation for infectious disease prediction and control

[157]. Network theory also has been used for predicting outbreak diversity [156], [158],

[159].

Most of models discussed in the previous sections partition the population of interest

according their disease states. Such models are referred to as compartmental models.

compartmental models are very important in mathematical epidemiology of infectious

diseases due to analytical properties of the models. The following subsection reviews

the description and development of simple compartmental models.

2.3.1 Compartmental models

Compartmental models assume that population groups are fully-mixed, so every indi-

vidual has an equal chance of spreading the disease to any other member. Compart-

mental models are identified by a string of letters that provides information about the

structure of the model. A compartmental model with disease states of susceptible (S),

infectious (I) and (R) recovered is referred to as a SIR model. The model becomes

SEIR if the infection transmission has an exposed (E, infected but not infectious) pe-

riod. SIR models become SIS (or SIRS) if susceptibility returns after infection (or after

immunity).

Let S(t), I(t) and R(t) be random variables representing compartmental measure-

ments of susceptible, infective and recovered individuals, respectively. The measure-

ment can be a cumulative number or a ratio. S(t), I(t) and R(t) are the disease state

variables and they may be discrete or continuous. A disease state variable may be

modelled as a continuous variable if its rate of change is small compared to the number

of individuals. Epidemic models can be classified according the type of their disease

state variables. If the transition of disease states are probabilistic in nature, the disease

state variables are probabilistic and the model is referred to as a stochastic epidemic

model, otherwise the model is a deterministic epidemic model.

The transition rate from the compartment of susceptible individuals to the com-

partment of infectious individuals is modeled by the force of infection, which is the rate

(in deterministic models) or probability (in stochastic models) at which susceptible in-

dividuals become infected. The force of infection is proportional to the transmission

rate, the effective number of contacts per unit time and the proportion of infectious

individuals. The transmission rate or contact rate is the average number of adequate
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contacts per day of an infected individual with susceptible individuals which may result

in disease transmission.

Stochastic models are used to estimate the probabilistic quantities for the outcome

events, such as the probability distribution of extinction time, the probability distribu-

tion of final epidemic size, the associate mean and so on. Consider first a simple SIR

stochastic model. It has two independent discrete probabilistic random variables S(t)

and I(t) since the random variable R(t) can be found by R(t) = N − I(t)− S(t). The

bi-variate process {(S(t), I(t))}∞t=0 has a joint probability function

ps,i(t) = Prob [S(t) = s, I(t) = i] ,

and it has the Markov property and is time-homogeneous.

Let ∆S = S(t+∆t)−S(t) and ∆I = I(t+∆t)−I(t). The probability of a transition

is denoted as

p(s+k,i+j),(s,i)(∆t) = Prob ((∆S,∆I) = (k, j)|(S(t), I(t)) = (s, i)) .

At a disease state (S(t), I(t)) = (s, i), there are five possible outcomes in a near

future time t+ ∆t: a new infection, a death, a birth, or a recovery, no change (station-

ary). Assume that the probability that there will be an additional infectious individual

is b(i) = αβi s
N ∆t, where α is the effective number of contacts per unit time and β is the

transmission rate. The formulation βI(t)
N is the so-called true mass-action model and

includes the mixing process, i.e. the individuals in the population will be totally mixed

and the probability of contact with an infected member will decrease as population

size increases. Another approach, the pseudo mass-action with infection force βI(t)

assumes a constant probability of contact with an infected member is independent of

population size (i.e. the number of contacts increases with population size) [160]. The

probability that the number of infectious individuals is reduced by one due to of a death

and recovery are d(i) = γ i∆t and r(i) = b (N − s− i)∆t, respectively. The probability

that the disease state remains the same is 1− αβi s
N ∆t− (γi+ b(N − s)) ∆t. Therefore,

the transition probabilities can be defined as a six valued function representing six

possible outcomes, [110]

pji(∆t) =



αβis
N ∆t if (k, j) = (−1, 1)

γi∆t if (k, j) = (0,−1)

b i∆t if (k, j) = (1,−1)

b(N − s− i)∆t if (k, j) = (1, 0)

1− αβi s
N ∆t− (γi+ b(N − s)) ∆t if (k, j) = (0, 0)

0 if otherwise.

(2.1)
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These transitions represent all possible changes in the state i during the time interval

∆t, which must be chosen small enough such that the transition probabilities lie in the

interval [0, 1] and the sum of them is equal to one.

Applying the Markov property that the future state of the processes depends only

on the current state and not on the past and the preceding transition probabilities, the

probabilities pi at time t+ ∆t can be calculated based on pi(t) [105],

p(s,i)(t+ ∆t) = p(s+1,i−1)(t)
αβ

N
(i− 1)(s+ 1)∆t+ p(s,i+1)(t)γ(i+ 1)∆t

+ p(s−1,i+1)b(i+ 1)∆t+ p(s−1,i)(t)b(n− s+ 1− i)∆t)

+ p(s,i)(t)

(
1−

(
αβ

N
i s+ γi+ b(N − s)

)
∆t

)
. (2.2)

In matrix form (2.2) can be written as

p(t+ ∆t) = P (∆t)p(t) = Pn+1(∆t)p(0) (2.3)

where t = n∆t and P (∆t) = (pij(∆t)) is the transition matrix. When the transition

probability is independent of time, the process is referred to as time homogeneous, and

is equivalent to an autonomous system in a deterministic model. The epidemic process

{I(t)}∞t=0 is completely formulated by (2.2) or (2.3).

Often, time in the epidemic equation (2.2) or (2.3) is treated as a discrete variable in

which case the Markov Chain property (the current state depends only on the previous

state) is typically invoked. Such a model is referred to as a discrete time Markov chain.

A discrete time Markov chain is suitable for modeling an epidemic with disease states

which are changing relatively slowly in time such that time can be discretised. If disease

states are changing so fast such that the time can not be discretised, the models are

referred to as a continuous time Markov chain [110], [161], [162].

Comparing corresponding deterministic and stochastic models, one can say in gen-

eral that if the model is linear, the deterministic equations are the same as the equations

for the means of the stochastic model and the two have the same solutions [105], [163],

[164]. That is not true for nonlinear models. For example, in a stochastic SIS model

the expected number of infectious individuals is calculated by

E(I(t)) =

N∑
i=0

ipi(t).

As t→ 0, one easily has [110]

E(I(t))

dt
≤ β

N
[N − E(I(t))]E(I(t))− (b+ γ)E(I(t)).

This is the rate of change of the expected number of infectious individuals. If the tran-
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sition of disease states are deterministic in nature then the disease state variables are

deterministic and E(I(t)) = I(t). Consequently, the number of infectious individuals

in the final time is calculated by

dI(t)

dt
=

β

N
[N − I(t)]I(t)− (b+ γ)I(t).

These show that the final mean number of infected individuals in the stochastic SIS

model is less than the final number of infected individuals in the deterministic SIS

model.

Simple SIS and SIR stochastic models discussed in the literature review show that

they do capture the variability of the disease transmission, recovery, birth, and death

processes at the individual level. Stochastic models have several advantages. More

specifically, they allow follow-up of each individual in the population on a chance basis.

There are some disadvantages in using the stochastic approach.

The first disadvantage is that there is a problem regarding the reproduction number

used for describing the properties of disease free equilibria in the population [88], [89],

[90], [92], [93]. In a stochastic model, the disease free equilibrium may be independent

of a reproduction number. For example, recall the discrete time Markov chain for

SIS model is (2.2). The set of disease states S = {0, 1, 2, .., N} can be partitioned

into the set of recurrent states R and the set of transient states T . A disease state

zi is said to be transient if, for a given starting disease state zi, there is a non-zero

probability that it will never return to zi; otherwise it is a recurrent. (2.2) has R = {0}
and T = {1, 2, .., N}. The zero state {0} is an absorbing state, no other state can be

reached from the zero state. Let Pn = (p
(n)
ij ), where p

(n)
ij is the (i, j) element of the nth

power of transition matrix, P (n), then for any state i ∈ S and any transient state i ∈ T

lim
n→∞

p
(n)
ij = 0.

In matrix form, the transition probability is given by (2.3). By using the Markov chain

condition, [110], [165]

lim
t→∞

p(t) = (1, 0, . . . , 0)T ,

where t = n∆t. Therefore the population approaches a disease free equilibrium regard-

less of the reproduction number. The average time to reach a disease free equilibrium

depends on the initial condition and the epidemic parameter values, but it can be ex-

tremely long. The absence of a reproduction number in disease free equilibrium is not

really expected, as a reproduction number is the central point of epidemiology modeling

[88], [89], [90], [92], [93].

The second disadvantage is regarding the complexity of designing the transition

probabilities. For a simple SIR model with only two variables S, I (where R can be
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found by R = N − S − I under a constant population assumption), the transition

probabilities are defined as a six valued function (2.1). Increasing the number of disease

states in the model will increase the model complexity exponentially. By contrast, the

complexity of a deterministic model increases only linearly with the number of disease

states.

The third disadvantage is the use of a stochastic model for large populations. In a

large population, the variability of the disease state variables are very small and many

transitions are needed to model small changes. These models can become mathemati-

cally very complex and do not lend themselves to an explanation of the dynamic.

For the reasons listed above, stochastic modeling will not be pursued further in this

work. Stochastic models are not suitable for this study. Useful references include [110],

[112], [113], [161], [162], [166].



3. DETERMINISTIC MODELS

The purpose of this chapter is to provide background on the basic ideas, theories and

techniques used in this thesis. Section 3.2 describes a class of deterministic models

considered in the study. Characteristics of these epidemic models, in particular for the

uniqueness of solution and stability of the disease equilibrium states are given. Section

3.3 provides methods for characterizing local and global stability. Mathematical results

on the stability analysis for the models are presented in this section. Section 3.6 derives

a method for calculating the reproduction number. Section 3.7 describes optimal disease

control problems for the epidemic models. Methods for designing disease control and

solving the optimal disease control problems are also given.

3.1 Euclidean Space Rn

The n-dimensional linear space over reals Rn is the vector space used throughout the

thesis. Rn equipped with a scalar product is referred to as Euclidean Space. The scalar

product is a function (x,y) : Rn × Rn → R satisfying condition

i (x,x) ≥ 0;

ii (x,x) = 0 if only if x = 0;

iii (x,y) = (y,x);

iv for any t ∈ R, (tx,y) = t(x,y);

v (x + y, z) = (x, z) + (y, z).

If {e1, ..., en} is a basis in Rn, and x =
∑
xiei,y =

∑
yjej then (x,y) =

∑
i,j xiyj(eiej).

In particular if {e1, ..., en} is an orthonormal basis in Rn, then (x,y) =
∑
xiyi. The

length (or the Euclidean norm) of the vector is |x| =
√

(x,x) which satisfies the following

properties:

(a) |x| > 0 for x 6= 0;

(b) |tx| = |t||x| for t ∈ R and x ∈ Rn;

(c) |x + y| ≤ |x|+ |y|.
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Definition 3.1. A set A ⊂ Rn is open, if for each a ∈ A there is an open ball

B(a, r) = {x ∈ Rn : |x− a| < r, r ∈ R} such that B ⊂ A. A set X ⊂ Rn is closed if its

complement Xc = Rn \X is open .

A sequence {xm} ⊂ Rn converge to x if limk→∞ |xk − x| = 0

Definition 3.2. A set K ⊂ Rn is compact, if any sequence {xm} ⊂ K has a sub-

sequence {xmj} convergent to a point from K.

Theorem 3.3. A set K ⊂ Rn is compact if only if it is closed and bounded.

3.2 A class of deterministic compartmental models

In a deterministic compartmental model, individuals in the population are assigned to

different subgroups or compartments, each representing a specific disease state. The

disease states are assumed to be uniformly distributed throughout space.

Suppose there are n disease states. Let

z(t) = (z1(t), . . . , zn(t))

be the vector of disease state variables. The independent variable t ∈ R1
+ is referred to

as time. Let Ω ⊆ Rn+ be the set of all disease states

Ω = {z(t) | 0 ≤ t ≤ ∞}.

Let

Q = { q | q = (q1, . . . , qk)} ⊆ Rk+

be a set of epidemic parameters. It is an open set Rk+. For a given set of epidemic

parameters q ∈ Q, the dynamics of the disease states is described by

z′ = f(z; q), (3.1a)

z(0) = z0 ∈ Ω. (3.1b)

Here z′ is the first derivative of z with respect to time t,

f : R+ × Rn+ −→ Rn+.

and z(0) is an initial disease state.

In the following, some definitions and terminology are introduced which will be used

in later discussions on the qualitative behavior of the disease dynamics. A solution of
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(3.1a), z = z(t; q) ∈ Rn+ is a map, z, from some interval I ∈⊂ R1 into Rn

z : I → Rn,

t→ z(t),

which satisfies (3.1a),

z′(t) = f(t, z(t); q).

The map z(t; q) has a geometrical interpretation as a curve in Rn and (3.1a) gives the

tangent vector at each point of the curve. For this reason, f is referred to as a vector

field. The space of dependent variables of (3.1a) (i.e, Rn) is referred to as the phase

space of (3.1a). A solution curve that passes through an initial state (3.1b)

z(t0, z0; q) = z0.

is referred to as the solution of initial value problem (IVP) (3.1a), (3.1b).

It is assumed that new infections can only happen by means of interaction between

susceptible individuals with infectious individuals (horizontal transmission). It is pos-

sible to have more than one disease in the transmission model. However, it is assumed

that there is no double infection of the same disease. A double infection may happen

for two or more different diseases. Each disease transmission results in a change of

disease state.

Let z = (y,x) where y = (z1, z2 . . . , zd) is the vector corresponding to infected

compartments and x = (zd+1, . . . , zn) is the vector corresponding to susceptible com-

partments. The set of disease free states, D ⊂ Ω can be written as

D = {z = (y,x)|z ∈ Ω, y = 0}.

This study considers a class of deterministic epidemic models with a polynomial vector

field f(t, z; q) satisfying the following conditions.

(C1) . The set of all disease states Ω is positively invariant for the the vector field

f(z; q). That is, for any initial value z0 ∈ Ω the disease states z(t) remains in Ω

for all t > 0. It is assumed that Ω is a Cr positively invariant manifold with

r ≥ 1. Here Cr refers to the set of continuously differentiable functions of order

r.

(C2) . The subspace of disease free states D is positively invariant for the vector field

f(z; q).

(C3) . In the absence of the disease, the population has a stable equilibrium.
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For a given set of disease parameters q ∈ Q and initial disease state z0 ∈ Ω , the

problem of finding the disease propagation, i.e. disease state over time, is equivalent

to the problem of finding solutions to the IVP (3.1a), (3.1b).

The existence and uniqueness of z(t; q, z0) ∈ Rn is guaranteed by the following

theorem.

Theorem 3.4. For a given set of disease parameter q ∈ Q and initial condition z0 ∈ Ω,

the IVP (3.1a), (3.1b) has a unique non negative solution z(t; q, z0).

Proof. By conditions (C1) and (C2) the existence of a solution is guaranteed. For the

proof of the uniqueness of the solution can be referred to [167], [168], [169].

Furthermore, the solution can be extended to a compact set containing the initial

condition z0.

Theorem 3.5. The solution of (3.1a), (3.1b), z(t; p, z0), can be extended up to the

boundary of a compact set containing the initial condition z0.

Proof. By Condition (C1), the set of all disease states Ω is positively invariant for the

the vector field f(t, z; q), is closed and bounded. By Theorem 3.3, Ω is compact. For a

complete proof,see [169].

Corollary 3.6. The solution of (3.1a), (3.1b), z(t; q, z0) , is bounded above. There are

positive numbers Ki, such that zi(t) ≤ lim supt→∞ zi(t) ≤ Ki for i = 1, . . . , n.

The problem of understanding the qualitative behavior of the disease dynamics

governed by IVP (3.1a), (3.1b) is in general a very hard problem. The important

starting point in understanding the disease dynamics is to find the equilibria of (3.1a),

(3.1b). Many key questions regarding the progress of an epidemic can be studied by

analyzing the disease equilibrium states. For example, whether the introduction of a

few infective individuals results in an epidemic or not.

The propagation of the disease starting from an initial disease state z0 is depicted

by a graph z(t, z0) over t which is also referred to as an integral curve

z(t, z0) = {(z, t) ∈ Rn+ × R1
+|z′ = f(z; q), z(0) = z0, t ∈ [0, tF ]}

where tT is the final time. A disease state is said to be in equilibrium, denoted as

z∗ ∈ Rn+, if its does not change with time. Since (3.1a) is an autonomous or independent

of time ordinary differential equation, the equilibrium points the system of differential

equations in IVP (3.1a), (3.1b) can be found using the following theorem

Theorem 3.7. z∗ is an equilibrium point of IVP (3.1a), (3.1b) if only if f1(z∗; q) =

· · · = fn(z∗; q) = 0.
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It is of interest to see in the long run (t→∞) whether the disease will be eliminated

or if it will exist in the population indefinitely. z = (y,x) where y = (z1, z2 . . . , zd) is

the vector corresponding to infected compartments and x = (zd+1, . . . , zn) is the vector

corresponding to susceptible compartments. A disease state in which the population

remains in the absence of disease is referred to as a disease free equilibrium. A disease

state equilibrium in which infected individuals remain present is referred to as disease

endemic equilibrium.

Definition 3.8. The system (3.1a), (3.1b) is disease permanent if and only if there

is one or more disease endemic equilibrium stat es. i.e. if there exist a lower bound

ki, > 0 such that

ki ≤ lim inf
t→∞

yi(t)

for at least one i. Such disease state variables correspond to infected compartments.

Let ϕ(t, z0) denote the solution of IVP (3.1a), (3.1b) under the initial condition z0.

The equilibrium disease state z∗ is an attractor of (3.1a), (3.1b) if limt→∞ ϕ(t, z0) = z∗

for all z0 in some open set containing z0. Let N be the maximal open set of initial

disease states z0 satisfying the above condition. N is referred to as basin attraction of

z∗. N is the stable manifold of z∗. In case N = Ω, z∗ is a global attractor.

3.3 Characterizing the stability of a disease state equilibrium

Roughly speaking, an equilibrium state z∗ of ϕ(t, z0) is stable if for any other disease

state that is “close” enough to z∗ at a given time will remain close to z∗ for all later

time. Formally,

Definition 3.9. (Lyapunov Stability) An equilibrium state z∗ is said to be stable

(or Lyapunov stable) if given ε > 0, there exists a δ = δ(ε) > 0 such that for any

other solution, y(t), of (3.1a) satisfying |z∗(t′) − y(t′)| < δ then |z∗(t) − y(t)| < ε for

t > t′, t′ ∈ R. When z∗ is not stable it is called unstable.

Definition 3.10. (Asymptotic Stability) An equilibrium state z∗ is said to be asymp-

totically stable if it is Lyapunov stable and for any other solution, y(t), of (3.1a), there

exists a constant b > 0 such that, if |z∗(t0)y(t0)| < b, then limt→∞ |z∗(t0)y(t0)| = 0.

Therefore z∗ is an attractor. The equilibrium state z∗ is said to be a locally asymp-

totically stable (LAS) or globally asymptotically stable (GAS) if it is a local or global

attractor, respectively.

3.3.1 Local stability

To determine the local stability a disease state equilibrium z∗ = (z∗i )i=1...n, it is nec-

essary to understand the nature of the solution near z∗. Let Nz∗ be the set of disease
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states near the disease state equilibrium z∗. Nz∗ is referred to as a neighborhood of z∗.

The notion of nearness may be specified by defining Nz∗ explicitly as dependent on a

parameter δ > 0, by

Nz∗ = {z ∈ Rn+ | |z− z∗| ≤ δ, } (3.2)

where |.| denotes the Euclidean norm on Rn.

Consider the disease states in the neighborhood Nz∗ . If δ is sufficiently small, then

the evolution of the disease state z can be approximated by the linearized system [170],

[171]

z′ = Jf(z
∗)(z− z∗) (3.3)

where Jf(z
∗) =

[
∂fi
∂zj

]
z=z∗

, the Jacobian matrix of the vector field f evaluated at the

disease state equilibrium z∗. The local stability of the disease state equilibrium of

(3.1a), (3.1b) can be characterized by the following theorem [170], [171].

Theorem 3.11. z∗, a disease state equilibrium of (3.1a), (3.1b), is LAS if and only if

all eigenvalues of the Jacobian matrix Jf(z
∗) have a negative real part.

The spectrum of Jf(z
∗) is given by the roots of its characteristic polynomial. Let

anλ
n + an−1λ

n−1 + ...+ a1λ+ a0 = 0

be the characteristic polynomial of Jf(z
∗). A disease state equilibrium of (3.1a), (3.1b),

is LAS if and only if all roots of corresponding characteristic polynomial λi for i =

1, 2, . . . n have a negative real part.

3.3.2 Global stability

The fact that all the eigenvalues of the Jacobian matrix Jf(z
∗) have a negative real part

is in general not enough to ensure the global asymptotic stability in Ω [172]. The main

approach used to deal with such a problem is to resort to Lyapunov functions which

are defined as follows [172].

Definition 3.12. Let G ⊆ Ω ⊂ Rn+ be a set of disease states generated the vector field

f = (f1, f2, . . . , fn) in (3.1a), (3.1b) and z∗ ∈ Ω be an equilibrium state. A continuous

map F : G→ R+ is a Lyapunov function for f on Ω if

• F(z∗) = 0

• F(z) > 0 z ∈ G \ {z∗}

• LfF ≤ 0 for z ∈ G,
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where Lf is the Lie derivative associated to vector field f, Lfϕ =
∑
fi∂ziϕ.

The global stability can be characterized by the following theorem [170], [171], [172].

Theorem 3.13. The equilibrium state z∗ of (3.1a), (3.1b) is a GAS if and only if there

exists a Lyapunov function F : Nz∗ → R.

The idea of the sets of ω-limit and α-limit is used to characterize the global stability

of a disease state equilibria. These are defined as follows [170].

Definition 3.14. A disease state ẑ is called an ω-limit point, denoted as ω(ẑ), if there

exists a sequence {ti}, ti → ∞, such that ϕ(ti, z) → ẑ. A disease state ẑ is called

an α-limit point, denote α(ẑ), if there exists a sequence {ti}, ti → −∞, such that

ϕ(ti, z) → ẑ. The sets of all ω-limit points is called the ω-limit set. The sets of all

α-limit points is called the α-limit set.

The global stability is characterized by the following theorem, which is a version of

the LaSalle’s invariance principle in [172].

Theorem 3.15. Let f = (f1, f2, . . . , fn) be the vector field f in (3.1a), (3.1b) and let z

be disease state generated by f. Let G be a closed subset of Rn and assume that f has

a Lyapunov function F : G→ R. Let J be the largest invariant set for f contained in

{z ∈ G | LfF(z) = 0}. Then the following statements hold.

• For any z ∈ G such that z(t) ∈ G for all t there exist w(z) ⊂ J .

• If J is a singleton, say z∗, then it is an equilibrium of f. If moreover G is compact

then any solution z ∈ G tends to z∗ as t→∞. In particular, if G is compact and

positively invariant then z∗ is globally asymptotically stable in G.

Proof. See [172].

Similar results from a more geometric approach are obtained by creating a Dulac

function defined as follows [171], [173].

Definition 3.16. Let Ω ⊂ Rn be an open set and ϕ : Ω → R a C1 function. ϕ is

a Dulac function of (3.1a), (3.1b) on Ω if ϕ(z) ≥ 0, ∀z ∈ Ω and ϕ(z) = 0 implies

f(z) = 0.

It is very important to understand the key feature of a dynamical system. Pe-

riodic orbits can be used to understand the orbit evolution from the distant past

(i.e. as → −∞) to the distant future (i.e. as → ∞). The entire course of the evo-

lution is determined by knowledge over a finite time interval, i.e., the period.
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When the dimension of (3.1a), (3.1b) is two, the global stability can be charac-

terized by the following Bendixson-Dulac theorem [171], [173]. Let two dimensional

autonomous system

ẋ = f ⇔

 ẋ

ẏ

 =

 f1(x, y)

f2(x, y)

 (3.4)

where f1 and f2 are at least C1.

Theorem 3.17. (Bendixson’s criterion) If on a simply connected region D ⊂ R2 (i.e.,

D has no holes in it) ∆.(ϕf) 6= 0 and does not change sign, then (3.4) has no closed

orbits lying entirely in D.

Proof. Using (3.4) and applying the chain rule,∫
Γ
f1(x, y)dy − f2(x, y)dx = 0

for a closed orbit Γ. By Green’s theorem this implies∫
S

(
∂f1

∂x
+
∂f2

∂y

)
dxdy = 0

where S is the interior bounded by Γ. But if ∂f1
∂x + ∂f2

∂y 6= 0 and doesn’t change the

sign, then this can’t be true. Therefore, there must be no closed orbit in D.

The criterion was generalized as follow

Theorem 3.18. (Bendixson-Dulac) If there exists a C1 function ϕ(x, y), the Dulac

function, such that ∆.(ϕf) 6= 0 in a simply connected region R of the plane then (3.4)

has no periodic solutions lying entirely in R.

The following theorem is refereed to as the Poincaré-Bendixson theorem [170].

Theorem 3.19. (Poincaré-Bendixson) Let a finite set of disease states M ⊂ Ω ⊂ Rn be

positively invariant for the vector field f of (3.1a), (3.1b). Let a disease state equilibrium

z∗ ∈M . If there is ω(z∗) then the following possibilities holds

i) ω(z∗) is a fixed point;

ii) ω(z∗) is a closed orbit;

iii) ω(z∗) consist of a finite number of fixed points q1, . . . qn and orbits γ with ω−(γ) =

qi and ω(γ) = qj

Proof. To proof the theorem, the following lemma [170] is required.
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Lemma 3.20. If ω(p) does not contain fixed points, then ω(p) is a closed orbit.

If ω(p) contains only fixed points, then it must consist of a unique fixed point, since

the number of fixed points in M is finite and ω(p) is a connected set. If ω(p) contains

no fixed points, then, by Lemma 3.20, it must be a closed orbit. Suppose that ω(p)

contains fixed points and nonfixed points (sometimes called regular points). Let γ be

a trajectory in ω(p) consisting of regular points. Then ω(γ) and α(γ) must be fixed

points since, if they were not, then, by Lemma 3.20, ω(γ) and α(γ) would be closed

orbits, which is absurd, since ω(p) is connected and contains fixed points. It is shown

that every regular point in ω(p) has a fixed point for an α and γ limit set. This proves

iii) and completes the proof of Theorem 3.19 ( Poincare-Bendixson).

3.4 The limiting systems

The disease dynamic (3.1a), (3.1b) can be qualitatively determined by those of the

limiting system under some conditions [103]. Define y0 as an initial disease state of

disease dynamic (3.1a), (3.1b) and let ω(y0) denote an ω-limit set of the orbit through

y0. Recall that with the initial condition y0 and the state of all disease states Ω ⊂ Rn+
is forward invariant for the the vector field f(y0 q). Let G ⊂ Ω.

Theorem 3.21. If ω(y0) ⊂ G for all y0 ∈ Ω and there exists exactly one equilibrium

point E such that E is GAS on G and E is LAS on Ω, then E is GAS on Ω

Proof. It s required to show that E ∈ ω(ỹ0) for all ỹ ∈ Ω\G Since Ω is forward invariant

and ω(ỹ0) ⊂ G for ∀ỹ0 ∈ Ω \G. ω(ỹ0) must include some element σ ∈ G. (i.e ∃σ ∈ G
such as σ ∈ ω(ỹ0). Since E is GAS on G and ω(ỹ0) is an invariant set, it is concluded

that E ∈ ω(ỹ0) for all ỹ ∈ Ω \G. Thus, E is GAS on Ω because E is LAS on Ω.

3.5 The method for biological permanence

Recall the system (3.1a), (3.1b)

z′ = f(z; q),

z(0) = z0 ∈ Ω.

where z = (z1, z2 . . .) ∈ Rn+ and f : Rn+ → Rn. z = (y,x) where y = (z1, z2 . . . , zd)

is the vector corresponding to infected compartments and x = (zd+1, . . . , zn) is the

vector corresponding to susceptible compartments. By Definition 3.8), the system

(3.1a), (3.1b) is disease permanent if and only if there is one or more disease endemic

equilibrium states.
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It is consider here the subject of biological permanence, i.e., the study of the long-

term survival of each disease state. If there is is difficulty to predict an asymptotic

behaviour such as an equilibrium, it is necessary to examine the condition for perma-

nence, which require that all solution eventually enter and remain in a region with

non-zero distance from the boundary [174]. The system will be called permanent if

there exists a compact subset in the interior of the state space where all orbits starting

from the interior eventually end up [175].

Theorem 3.2 guarantee the solution set of IVP (3.1a), (3.1b), z(t;p, z0) can be

extended into a compact set containing the initial solution z0. Assume that V is a

compact subset of Rn+ and W is a compact subset of V. Let V be forward invariant.

Suppose that there exists a C1 function P : V → R+ which satisfies P (z) = 0 if and

only if z ∈ V . Let “.” denote differentiation along an orbit and π(z0, t) denote the

solution of (3.1a) and z0 is the initial value (3.1b).

Theorem 3.22. If Ṗ (w) > 0 for all w ∈W , then there exist some positive constant k

and sufficiently large time T such that P (π(ξ̃0, t)) > k for all ξ̃0 ∈ V \W and ∀t ≥ T .

Proof. Proof of this theorem appear in [103], given here for completeness. Since W is

compact and Ṗ (ξ0) is continuous on V , There exists inf Ṗ (ξ0) on W . Define Ṗ (ξ0) = c̃

and c = c̃/2. Since Ṗ (ξ0) is continuous on V and Ṗ (w) > 0 ∀w ∈W.

∀w ∈W, ∃ρ > 0, ∀u ∈W : |w − u| < ρ⇒ Ṗ (u) > c.

Thus, define the neighborhood N(w) ∀w ∈W such that

N(w) = {u ∈ V : |w − u| < ρ},

and N(w) for w ∈W forms an open cover of W (i.e.W ⊂ ∪w∈WN(w)). Since W is com-

pact, there is a finite sub-cover N1(w1), N2(w2) . . . Nn(wn) such that W ⊂ ∪nk=1Nk(wk.

In addition let U =
⋃n
k=1Nk(wk then U is a subset of V i.e, (V \W

⋂
U 6= ∅) such that

Ṗ (ξ0). Since tP (w) > 0 for all w ∈ W . Since V \W is a compact set, there is some

r∗ = infP (ξ̃0) ∀ξ̃0 ∈ V \ U . Thus there exists some positive constants r2 < r1 < r∗

such that

U1 = {ξ ∈ U : P (ξ ≤ r1, U2 = {ξ ∈ U : P (ξ ≤ r2 and W ⊂ U1 ⊂ U2 ⊂ U.

It is assumed that there exists some t2 ≥ t0 such that P (π(ξ̃0, t2)) ≤ r2 (i.e. π(ξ̃0, t) ∈
U2) ∀ξ̃0 ∈ V \ W . Then there exists some t1 < t2 such that π(ξ̃0, t1) ∈ U1 \ U2

because π(ξ̃0, t) is continuous in t. Since P (π(ξ̃0, t1)) > P (π(ξ̃0, t2)), then there must

exists some t̂ ∈ [t1, t2] such that Ṗ (π(ξ̃0, t̂)) < 0 and π(ξ̃0, t̂) ∈ U . However, Ṗ (u) >

c ∀ξ̃0 ∈ U \ V goes out from U . On the other hand, there exists some t̃ such that

π(ξ̃0, t̃) ∀ξ̃0 ∈ U \ V goes out from U . In the similar manner, there does not exists
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t3 > t̃ such as π(ξ̃0, t3) ∈ U2. Thus, there exists sufficiently large time T such that

∀ξ̃0 ∈ V \W, ∀t ≥ T, π(ξ̃0, t̃) ∩ U2 = ∅. It is clear that P (π(ξ̃0, t)) > r2 ∀t ≥ T.

3.6 Reproduction number and stability

Stability analysis of disease state equilibria for a class of epidemic models governed

by (3.1a), (3.1b) satisfying conditions (C1), (C2) and (C3) were given in the previous

sections. The state variables in an epidemiological model represent fractions of the

population and so they should remain nonnegative as time goes forward.

The condition (C1) assumes that the solution space is a positively invariant mani-

fold. The nonnegative cone Rn+ is positively invariant for the family f(z, q). Only the

positive cone Rn+ of the epidemic parameters space Rn+ is of interest. The condition is

equivalent to the following.

(C1)′ Write each fi(z, q) uniquely in the form fi(z, q) = fi,1(z, q) + xifi,2(z, q) where

fi,1 does not depend on xi. to requiring for each i that

∀q ≥ 0 ∀z, fi,1(z; q) ≥ 0.

The condition (C2) assume that the disease free subspace is positively invariant. This

condition is equivalent to the following statement.

(C2)′ The subspace V of Rn defined by z1 = . . . = zd = 0, where d < n, is invariant for

the family f(z, q). Let us write z = y,x with y = z1, . . . , zd and x = zd+1, . . . , zn.

This condition is equivalent to requiring that

∀i = 1, . . . , d, fi(0,x, q) = 0.

The LaSalle’s invariance principle in Theorem 3.15 and Theorem 3.19 (Poincare-

Bendixson) however are very hard to implement. In particular it is impossible to

provide generic Lyapunov and ω+-limit functions for epidemic models with three or

more disease state variables. Therefore, the additional condition (C3) states that in

the absence of the disease, the population has a stable equilibrium. Given a disease

free equilibrium (0, ψ(q)) such that ψ(q) is locally asymptotically stable for the family

of vector fields h(x, q). For the considered family of vector fields f(z, q), the condition

(C3) is equivalent to the following statement.

(C3)′ There exists a smooth map ψ : URnd such that ψ(q) is a hyperbolic locally

asymptotically stable equilibrium of h(x, q).

Condition (C3)′ is reasonable from a biological perspective and is useful from a

mathematical perspective because of Theorem 3.25 below. To set up the theorem
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however, it is necessary to recall two class of matrices namely, Z-matrices and M -

matrices which are used in the theorem.

A real matrix is called nonnegative if all its entries are nonnegative. It is called a

Z−matrix if all its off-diagonal entries are nonpositive (i.e less or equal to zero). A

matrix A = (aij) is called a Z−Matrix if aij ≤ 0, i 6= j. A matrix A = (aij) is called

an M -Matrix if aij ≤ 0 whenever i 6= j and all principal minors of A are positive. An

M matrix is a Z-matrix with eigen-values whose real parts are positive. These two

classes of matrices are useful in spectral analysis of certain classes of matrices [176]. A

matrix A with nonpositive off-diagonal elements is an M-matrix if and only if A is non

singular and A−1 is nonnegative [176]. A d× d matrix A is an M-matrix if and only if

it may be written in the form A = sIdB, where B is nongenative and s > ρ(B). Here

ρ(.) stands for the spectral radius.

Recall also that a square matrix A is called reducible if there exists a permutation

matrix P such that PAP t is block triangular, where P t denotes matrix transpose of

P . Otherwise, it is called irreducible. A fundamental result concerning nonnegative

matrices is the following theorem known as the Perron-Frobenius theorem.

Theorem 3.23. (Perron-Frobenius) Let A be a real d × d irreducible matrix. Then

ρ(A) is a simple eigenvalue of A. Moreover, it has an eigen-vector w with positive

entries, i.e., wi > 0 for i = 1, . . . , d.

The following lemma gives two characterizations of M-matrices [172].

Lemma 3.24. Let A = (ai,j) be a d×d real Z-matrix and let D be the diagonal matrix

whose ith diagonal entry is ai,i. Then the following properties are equivalent.

i) A is an M -matrix.

ii) All the diagonal entries of A are positive and ρ
(
Id −D−1A

)
< 1.

iii) All the leading principal minors of A are positive.

A classical approach for the study of the local asymptotic stability of the system

(3.1a)

z′ = f(z; q)

near an equilibrium z∗ consists in considering the linear differential system

w′ = ∂zf(z
∗; q).w (3.5)

where ∂zf(z
∗; q) stands for the Jacobian matrix, with respect to z, of f at z∗. The

flow generated by the differential system (3.5) is nothing but exp(t∂zf(z
∗; q)).w =
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∂zl(z
∗, t; q).w. In particular, the origin 0 which is an equilibrium of the system (3.5) is

asymptotically stable if and only if all the eigenvalues of the matrix ∂zf(z
∗; q) have a

negative real part.

Theorem 3.25. . Consider the class of epidemic models in (3.1a), (3.1b) where f(z; q)

satisfies the conditions (C1)′ and (C2)′. Let us write z = (y,x) where y = (z1, z2 . . . , zd)

is the vector corresponding to infected compartments and x = (zd+1, . . . , zn) is the vector

corresponding to susceptible compartments and let ψ : P → Rn−d be a smooth map,

where P ⊂ Rk+is an open set. Let

g(y; q) = (f1(y, ψ(q); q), . . . , fd(y, ψ(q); q))

and

h(x; q) = (fd+1(0,x; q), ..., fn(0,x; q)).

Then the following properties are satisfied:

i) The Jacobian matrix, ∂zf(0, ψ(q); q), of f at (0, ψ(q)) has the form(
∂yg(0; q) 0

B ∂xh(ψ(q); q)

)

and ∂yg(0; q) is a Z-matrix.

ii) The point (ψ(0, q) is a hyperbolic locally asymptotically stable equilibrium of f(z; q)

if and only if the point ψ(q) for the vector field h(x; q) and ∂yg(0; q) is an M-

matrix.

Proof. The vector field h(y, q), which is the restriction of f(z, q) to the disease free

subspace, governs the behavior of the population in the absence of the disease.

i) Clearly, ∂yif(0, ψ(q); q) = ∂yg(0; q) and ∂xjf(0, ψ(q); q) = ∂xjh(ψ(q); q)(
∂yg(0; q) C

B ∂xh(ψ(q); q)

)
.

By an assumption of satisfying condition (C2)′ each fi(y,x; q), i = 1, ..., d can be

written in the form fi(y,x; q) =
∑d

1 vk(y,x; q)yk. This gives ∂xifi(0, ψ(q); q) = 0

and so C = 0. On the other hand, By assumption (C1) fi(y,x; q) ≥ 0 for any

x ≥ 0 and any y ≥ 0 such that yi = 0. In particular, for x = ψ(q) and i = 1, ..., d

fi(y, ψ(q); q) = gi(y; q) ≥ 0 for any y ≥ 0 such that yi = 0. This shows that

Rn+ is positively invariant for the family of vector fields g(y; q), and since 0 is an

equilibrium of g(y; q) it follows from Lemma 4.1 that ∂yg(0; q) is a Z-matrix.
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ii) Clearly, (0, ψ(q)) is an equilibrium of f(y,x; q) if and only if so is ψ(q) for

h(x; q). Moreover, the triangular structure of the matrix ∂zf(0, ψ(q); q) implies

that its characteristic polynomial is the product of the characteristic polynomials

of ∂yg(0; q) and ∂xh(ψ(q); q) This shows that (0, ψ(q)) is hyperbolic and stable,

i.e., all the eigenvalues of ∂xh(ψ(q); q) have a negative real part, if and only if so

is ψ(q for ∂yg(0; q) is an M-matrix.

The following corollary holds for the class of epidemic models satisfying conditions

(C1)′-(C3)′.

Corollary 3.26. Consider the class of epidemic models (3.1a), (3.1b) where f(z; q)

satisfies the conditions (C1)′-(C3)′. Then the following properties are equivalent.

i) The equilibrium (0, ψ(q)) of f(z, q) is hyperbolic and locally asymptotically stable.

ii) All the diagonal entries of the matrix ∂yg(0; q) are negative and ρ(Id−D−1∂yg(0; q)) ≤
1, where D is the diagonal matrix having the same diagonal as ∂yg(0; q).

iii) All the leading principal minors of the matrix ∂yg(0; q) are positive

where Id is the identity matrix of dimension d× d.

Proof. By Theorem 3.25 and assumption (C3)′, (0, ψ(p)) is hyperbolic and locally

asymptotically stable if and only if ∂yg(0; q) is an M-matrix. The fact that i) is equiv-

alent to ii) and iii) is then a direct consequence of Lemma 3.24.

This result means ρ(Id − D−1∂yg(0; q)) is a threshold value to justify whether an

equilibrium (0, ψ(q)) of f(z, q) is hyperbolic and locally asymptotically stable or not. If

ρ(Id−D−1∂yg(0; q)) ≤ 1 then (0, ψ(q)) is hyperbolic and locally asymptotically stable,

otherwise unstable. The spectral radius of matrix Id −D−1∂yg(0; q) is less than one if

and only if all the leading principal minors of the matrix ∂yg(0; q) are positive.

The threshold value ρ(Id−D−1∂yg(0; q)) is referred to as basic reproduction number

[93], [177], or basic reproduction ratio [92], and is denoted by Ro. Thus

Definition 3.27.

Ro = ρ(Id −D−1∂yg(0; q)). (3.6)

Matrix Id −D−1∂yg(0; q) is referred to as next generation matrix [92] for the class

of epidemic models (3.1a), (3.1b) satisfying conditions (C1)′-(C3)′ and can be thought

of as the number of cases one case generates on average over the course of its infectious
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period, in an otherwise uninfected population. Ro is useful because it helps determine

whether or not an infectious disease can spread through a population. When R0 ≤ 1

the infection will die out in the long run. But if R0 > 1, the infection will be able to

remain in the population indefinitely.

3.7 Disease control problem

An important motivation behind mathematical modelling the spread of infectious dis-

eases is evaluation of alternative control policies. One approach to this is via optimal

control theory. Let us define the disease control set

Φ = {φ(t) = (φ1(t), . . . , φm(t))| a ≤ φj(t) ≤ b, 0 ≤ t ≤ tF }

for a, b, tF > 0. φ(t) represents a set of policies to control the diseases from an initial

time t = 0 to a final time tF .

It is assumed that the dynamics of diseases are modeled by

z′(t) = f(t, z, φ; p) (3.7a)

z(0) = z0, z0 ∈ Ω (3.7b)

where

f = (f1, . . . , fn) : R+ × Rn+ × Rm+ −→ Rn+

is continuous and has continuous first order partial derivatives with respect to z and

u. The fi are continuous functions and the first derivatives with respect to zi, φj

and t for all i = 1, . . . , n and j = 1, . . . ,m are also continuous functions. Setting

φj = 0,∀j = 1, . . . ,m reduces (3.7) into the disease dynamics without control (3.7).

It is assumed that the disease control φ(t) = (φj(t)) for j = 1, . . . ,m are Lebesgue

measurable functions. The existence of solutions to the initial value problem (3.7) is

guaranteed by the following theorem

Theorem 3.28. Starting from an initial value z0 ∈ Ω IVP, (3.7) has bounded solutions

z(t, φ; z0) ∈ Rn+ passing through the initial condition.

Proof. Since the disease controls φj(t) j = 1, . . . ,m are Lebesgue measurable functions,

the right hand side of differential equations in (3.7) is continuous in the disease state

variable z(t) but only measurable in t for fixed z. The existence of solutions is guaranteed

by results in [178], [179].

The problem of designing optimal disease control policies is equivalent to the prob-
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lem of finding optimal policies z∗(t, φ∗(t)) ∈ Ω ⊆ Rn+ such that

J [φ∗] = max
φ∈Φ

J [φ], (3.8)

where

J [φ] =

∫ tF

a
g(t, z, u; p) + Υ(z(zF )) dx. (3.9)

Here Υ(z(zF )) is the value of disease states at the final time tF . The problem of solving

(3.7), (3.8), (3.9) is referred as an optimal disease control problem (ODCP).

Instead of searching an optimal solution in the solution domain Ω, there are sufficient

and necessary conditions for an optimal solution for the ODCP (3.7), (3.8), (3.9). In

the case of Υ(z(xF )) = 0 the sufficient condition for existence of an optimal control for

the optimal control problem is guaranteed by the following theorem

Theorem 3.29. Let M > 0 and D+ = {(yo, y) | ∃v ∈ U, y = g(t, z, u; p), yo ≥
g(t, z, u; p)}. If

• ∃M > 0, |z(t, u)| ≤M for all u ∈ U and t ∈ [0, tF ]

• g is lower semi-continuous, (ie., lim infz→z∗ g(z) ≥ g(z∗)), z∗ ∈ Ω,

• D+ is convex for (t, z) ∈ [0, zF ]× {|x| ≤M}

then there exists an optimal control u∗ ∈ U .

For Υ(z(xF )) 6= 0, the necessary condition for the existence of an optimal solution

for the optimal control problem is referred to as Pontryagins maximum principle [180],

[181], [182], [183].

Theorem 3.30. Let u∗ ∈ U be an optimal control of the ODCP (3.7), (3.8), (3.9).

Then there exists a set of adjoint functions λ = (λi).λi : R −→ Rn such that z(t, u∗), u∗, λi

satisfy the state system

z′(t) = f(t, z, u∗; p), (3.10a)

z(0) = z0, z0 ∈ Ω (3.10b)

and the adjoint system

λ′(t) = −∂L
∂z

= −
(
gz(t, z, u

∗; p) + λT .fz(t, z, u
∗; p)

)
(3.11)

with transversality condition

λ(tF ) = Υ′(z(tF )) (3.12)
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where L is referred to as the Hamiltonian functional

L(t, z, u) = f(t, z, u; p) + λT .g(t, z, u; p), (3.13)

and where T denotes the transpose.



4. DISEASE DYNAMICS IN A SINGLE REGION

This chapter presents models for analyzing the dynamics of diseases caused by multi

strain influenza-A viruses among poultry and human populations in a single region.

Based on modeling choices and assumptions taken in Section 4.1, a mathematical model

is developed in Section 4.2. The model captures the dynamic of diseases caused by

multi strain influenza-A. The model also captures a mutation process due to genetic

assortment between avian flu and swine flu. In Section 4.3, three reproduction numbers

are defined as the threshold value of three disease transmissions. In Section 4.4, disease

state equilibria of the model are derived. The ordinates of each equilibria are presented

and associated to the reproduction numbers. Section 4.5 provides stability analysis

of disease state equilibria. Section 4.6 discusses disease persistence among humans.

Numerical simulations are given in Section 4.7. Section 4.8 discusses the analytical and

numerical results and draws some conclusions.

4.1 Modeling choices and assumptions

4.1.1 Virus strains

This study considers three influenza viruses that are spreading among linked popula-

tions of poultry and humans. The first virus, avian flu, is transmissible between birds,

transmissible from birds to humans, but not between humans. The second virus, swine

flu, spreads and is communicable among humans but does not infect birds. The third

virus is a hypothetical virus that results from a rare mutation process in the form of

recombination of avian flu and swine flu viruses [36], [37], [38], [39]. This virus is re-

ferred to as mutant-avian flu virus. The mutant virus is assumed to be able to spread

among humans with epidemic potential similar to swine flu. An epidemic caused by the

mutant-avian flu could become severe because of the potential to combine the ability

of swine flu to spread between humans and the virulence of avian flu [22], [25].

4.1.2 Population assumptions

Only populations of poultry birds are considered in the model. While wild birds may

contribute to the onset of flu among poultry birds, interactions between poultry and

wild birds are not likely to contribute significantly to spread of avian flu among poultry
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birds [49]. Wild birds are extremely unlikely to contribute to the spread of avian flu

among humans [49].

Populations of birds and humans change over time due to births, deaths, migration

and other means of movements. However, the net of change in total population is

assumed to be negligibly small over the time interval over which the model is applied

(a few weeks or a few months). Here, total bird and human populations are assumed

to be constant.

It is assumed that individuals in the interrelated population of poultry birds (or

birds for short) and humans are assigned to compartments, each representing a specific

disease stage. Each sub population in any compartment is assumed to be homogeneous

in the sense that individuals have the same infectious periods, immunity periods, and

contact rates with individuals in other sub populations. Disease transmissions among

birds and humans are modeled on the mass action incident assumption, where the

number of effective contacts is constant.

An infection is transmitted through contacts between the infectious and the suscep-

tible individuals (horizontal transmission). Therefore, it is assumed that all newborns

are susceptible.

4.1.3 Avian flu dynamic among the bird population

Let Sp(t) be the compartment for susceptible poultry birds. It is assumed that suscep-

tible bird offspring and the restocking of birds result in population growth of ηpSp(t).

Death among susceptible birds removes birds at a rate of δpSp(t). It is assumed that

ηp and δp are independent of time t.

Let Ip(t) be the compartment of infectious birds. A susceptible bird becomes infec-

tious at the rate of αpκp Ip(t)Sp(t), where αp is the avian flu transmission rate from

infectious birds to susceptible birds and κp is the number of effective contacts be-

tween an infectious bird and susceptible birds per unit time. Avian influenza is highly

pathogenic among birds. Death among infected birds however, may be caused by nat-

ural incidence or by the disease. Infected birds are removed at a rate of (δp +mp)Ip(t).

Here, mp can be considered as the avian flu virulence in the bird population. It is

assumed that αp, κp,mp are independent of time t. Thus, the bird system follows a

simple SI model

S′p = ηp − δp Sp − αpκpIpSp (4.1a)

I ′p = αpκpIpSp − (δp +mp)Ip. (4.1b)
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4.1.4 Disease dynamic among humans

Let Sh(t) denote the compartment for susceptible humans. Human offspring are as-

sumed to be susceptible to the diseases. It is assumed that human offspring and sus-

ceptible immigrants enter the population at a rate of ηh. Death removes susceptible

humans at a rate δhSh(t).

Human infection by avian flu occurs by means of direct virus transmission from

infectious birds to humans [24]. Susceptible humans become infected by avian flu at a

rate of αph κph Ip(t)Sh(t), where αph is the avian flu transmission rate from infectious

poultry birds to susceptible human and κph is the number of effective contacts between

an infectious bird and susceptible humans per unit time.

Existing models of the disease spread and control of avian flu among humans, such

as in [103],[104], consider one infected disease state only. Here, infected humans with

avian flu are classified as asymptomatic and symptomatic. Let Ia(t) and Ib(t) be the

compartments for asymptomatic or symptomatic humans with avian flu, respectively.

This partition is important, since individuals in these groups are treated differently.

Asymptomatic individuals are usually still active while symptomatic individuals are

very sick and are usually isolated [16], [17], [28]. Since the mutations considered here

require further infection of swine flu and hence contact with swine flu infected humans,

only asymptomatic individuals are modeled as having the potential to host a virus

mutation.

A human infected with avian flu may be asymptomatic with probability γ and

symptomatic with probability 1− γ. Therefore susceptible humans move to the states

of asymptomatic at a rate of γαph κph Ip(t)Sh(t) and move to the states of symptomatic

at a rate of (1− γ)αph κph Ip(t)Sh(t),

Death among infected humans with avian flu may be caused by a natural incidence

or by the disease. They are removed at a rate of (δh + ma)Ia(t) and (δh + mb)Ib(t),

where ma and mb can be considered as avian flu virulence on asymptomatic humans

and symptomatic humans, respectively.

Consider a second virus, swine flu, which is spreading and communicable among

humans with a transmission rate of αsh. Let Is(t) denote the compartment of humans

infected by swine flu. A susceptible human becomes infectious with swine flu at the

rate of αsh κsh Is(t)Sh(t), where κsh is the effective number of contacts among humans

per unit time in normal circumstance. Humans infected by swine flu are removed at

a rate of (δh + ms)Is(t). Here, ms can be considered as the swine flu virulence in the

human population.

It is assumed here that a pandemic threat posed by avian flu virus mutation is a re-

sult of re-combination between avian flu and swine flu. It is assumed that a double virus

co-infection happens only when an infected but asymptomatic human with avian flu is
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subsequently infected by swine flu. Suppose the co-infection happens at the rate of αsa.

Therefore αsa κsa Is(t)Ia(t) can be considered as the transmission of co-infection, where

κsa is the effective number of contacts between infected but asymptomatic humans of

avian flu and infectious humans with swine flu.

It is assumed that the virus re-combination of avian flu and swine flu mutate in vivo

into a new avian flu virus strain with a probability of mutation µ. The virus is referred

to as mutant-avian flu virus. It is assumed that the virus has the ability to transmit

between humans at a rate of αmh. Let Im(t) be the compartment for infectious humans

with mutant-avian flu. A susceptible human becomes infectious with mutant-avian flu

at the rate of αmh κmh Im(t)Sh(t).

Based on the above assumptions, the dynamic of the diseases among humans can

be modeled as

S′h = ηh − δh Sh − αphκphIpSh − αshκshIsSh − αmhκmhImSh (4.2a)

I ′s = αshκshIsSh − (δh +ms) Is (4.2b)

I ′a = γαphκphIpSh − µαsaκsaIsIa − (δh +ma) Ia (4.2c)

I ′b = (1− γ)αphκphIpSh − (δh +mb) Ib (4.2d)

I ′m = µαsaκsaIsIa + αmhκmhImSh − (δh +mm) Im. (4.2e)

4.2 Diseases transmission model for a single region

It is obvious from (4.1a, 4.1b ) and (4.2a − 4.2e ) that disease dynamics among birds

are independent of the disease dynamics among humans. However the disease dynamics

among humans does depend on the disease dynamics in the bird world. Figure 4.1

shows a schematic diagram of the compartments of the bird and human populations.

Let Z(t) be the vector of disease state variables for the linked population of birds

and humans.

Z(t) = (Sp(t), Ip(t), Sh(t), Is(t), Ia(t), Ib(t), Im(t))

and Ω1 ⊆ R7
+ be the set of all disease states

Ω = {Z(t) | 0 ≤ t <∞}.

For a given set of epidemic parameters q ∈ Q1 ⊆ R21
+

Q1 ={q|q = (qj), qj = ηp, ηh, δp, δh, αp , αsh, αph, µ, αsa, αmh, κp , κsh, κph, κsa, κmh,

mp,ma,mb,ms,mm, γ}
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Fig. 4.1: Compartments of humans and bird populations. The red line is avian flu trans-
mission, the yellow line is swine flu transmission, the brown line is mutant-avian
flu transmission.

and an initial disease state

Z(0) = Z0, Z0 = (Sp0 , Ip0 , Sh0 , Is0 , Ia0 , Ib0 , Im0) ∈ Ω,

the dynamics of the disease state Z(t) is described by the initial value problem (IVP)

S′p = ηp − δp Sp − αpκpIpSp (4.3a)

I ′p = αpκpIpSp − (δp +mp) Ip (4.3b)

S′h = ηh − δh Sh − αphκphIpSh − αshκshIsSh − αmhκmhImSh (4.3c)

I ′s = αshκshIsSh − (δh +ms) Is (4.3d)

I ′a = γαphκphIpSh − µαsaκsaIsIa − (δh +ma) Ia (4.3e)

I ′b = (1− γ)αphκphIpSh − (δh +mb) Ib (4.3f)

I ′m = µαsaκsaIsIa + αmhκmhImSh − (δh +mm) Im, (4.3g)

Z(0) = Z0, Z0 ∈ Ω. (4.3h)

The existence of a solution for IVP (4.3a)− (4.3g) and (4.3h) is guaranteed by the

following lemma.

Lemma 4.1. For a given set of disease parameter q ∈ Q1 and initial condition Z0 ∈ Ω1,
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there is a solution, Z(t; q, Z0), for the IVP (4.3a)− (4.3g) and (4.3h).

Proof. The disease state variable Z has a mixed structure between infected and unin-

fected. It is convenient to group the disease state variables into infected and uninfected

compartments. For this reason, the state variable will be reordered so that the first five

elements of the new state variable correspond to infected sub-populations. The disease

state vector becomes Z̄ = (Ip, Is, Ia, Ib, Im, Sp, Sh). Under the ordered variable Z̄, the

right hand side of system of differential equations (4.3a)− (4.3g) can be written as

f = f̂ + f̆ (4.4)

where

f̂ =



αpκpIpSp

αshκshIsSh

γαphκphIpSh − µαsaκsaIsIa

(1− γ)αphκphIpSh

µαsaκsaIsIa + αmhκmhImSh

−αpκpIpSp

−αphκphIpSh − αshκshIsSh − αmhκmhImSh



, f̆ =



− (δp +mp) Ip

− (δh +ms) Is

− (δh +ma) Ia

− (δh +mb) Ib

− (δh +mm) Im

ηp − δp Sp

ηh − δh Sh



.

The component f̂ models the rate of new infections, while the component f̆ models

the rates of transfer due to births, deaths, disease mortality. The system described

(4.3a)−(4.3g) is an autonomous system, because f does not depend on time. Therefore,

if Z̄(t; q) is a solution of the system on interval t ∈ (t1, t2) then for any real number

τ ∈ <1, the function Z̄(t− τ ; q) is a solution of the system on interval (t1 + τ, t2 + τ).

Thus, given an initial condition Z̄0 as a solution at initial time t0 ∈ T , the existence of

a solution at a future time t > t0 is guaranteed.

Furthermore, the solution is unique and non-negative. This is formalized in the

following theorem.

Theorem 4.2. For a given set of disease parameter q ∈ Q1 and initial condition Z0 ∈
Ω1, the IVP (4.3a)− (4.3g) and (4.3h) has a unique non negative solution Z(t; q, Z0).

Proof. The reordered disease state variable Z̄ can be written as

Z̄ = (V,W )
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where V = (Ip, Is, Ia, Ib, Im) and W = (Sp, Sh). The set of disease states becomes

Ω1 = {Z̄ = (V,W ) : Z̄ ≥ 0}.

Note that the reordered disease states variable Z̄ only been used in a section that is

required to define a reproduction number. Let

D1 = {Z̄ = (V,W ) : V = (0, 0, 0, 0, 0)}

be the set of disease free states. All disease parameters, qi ≥ 0 for all qi ∈ Q, for any

initial disease state Z̄(0), Ω1 and D1 are positively invariant under f . Therefore, the

uniqueness of the solution is guaranteed by Theorem 3.4 in Section 3.2.

Let K ⊂ Ω be a compact set containing the initial condition (Z̄(0)). Since (4.3a)−
(4.3g) is an autonomous system, the solution Z̄(t, t0, Z̄(0); q) can be uniquely extended

forward in time t up to the boundary of D1, (Theorem 1.1.9 of [170]).

4.3 Reproduction numbers

In Section 2.2, the reproduction number was defined as the expected number of sec-

ondary infections produced in a completely susceptible population by a typical infected

individual during the individuals entire period of infection. If the reproduction number

is less than or equal to one then the disease free equilibrium is locally asymptotic stable

and so the disease cannot invade the population. But if the reproduction number is

greater than one, then the a disease free equilibrium is unstable and the disease may

invade the population.

In the reordered notation of the disease state variable, Z̄, the disease state equilibria

Z∗i can be written as Z̄∗i = (V ∗i ,W
∗
i ), where V ∗i corresponds to infected compartments

V ∗i = (I∗p1 , I
∗
s1 , I

∗
a1 , I

∗
b1
, I∗m1

) and W ∗1 = (S∗p1 , S
∗
h1

). The disease free equilibrium state Z∗1
has five disease free compartments,

V ∗ = (I∗p1 , I
∗
s1 , I

∗
a1 , I

∗
b1 , I

∗
m1

) = (0, 0, 0, 0, 0).

Therefore, using the decomposition of f in (4.4), only the first five elements are con-

sidered, and so f1 = f̂1 + f̆1 becomes

f1 =



αpκpIpSp

αshκshIsSh

γαphκphIpSh − µαsaκsaIsIa

(1− γ)αphκphIpSh

µαsaκsaIsIa + αmhκmhImSh


+



− (δp +mp) Ip

− (δh +ms) Is

− (δh +ma) Ia

− (δh +mb) Ib

− (δh +mm) Im





4. DISEASE DYNAMICS IN A SINGLE REGION 52

The Jacobian matrices of f̂1 and f̆1 are

Jf̂1 =



αpκpSp 0 0 0 0

0 αshκshSh 0 0 0

γαphκphSh −µαsaκsaIa −µαsaκsaIs 0 0

(1− γ)αphκphSh 0 0 0 0

0 µαsaκsaIa µαsaκsaIs 0 αmhκmhSh


and

Jf̆1 =



−(δp +mp) 0 0 0 0

0 −(δh +ms) 0 0 0

0 0 −(δh +ma) 0 0

0 0 0 −(δh +mb) 0

0 0 0 0 −(δh +mm)


,

respectively. Substituting Z∗1 into Jf̂1 and Jf̆1 results in

F̂1 =



ηpαpκp
δp

0 0 0 0

0 ηhαshκsh
δh

0 0 0

γαphκphηh
δh

0 0 0 0

(1−γ)αphκphηh
δh

0 0 0 0

0 0 0 0 ηhαmhκmh
δh


and

F̆1 =



−(δp +mp) 0 0 0 0

0 −(δh +ms) 0 0 0

0 0 −(δh +ma) 0 0

0 0 0 −(δh +mb) 0

0 0 0 0 −(δh +mm


.

F̂1 · F̆−1
1 (where F̆−1

1 is the inverse matrix of F̆1) is referred to as the next generation

matrix (Section 3.6). The characteristic polynomial of the matrix is

C1 = λ2

(
λ− ηp αpκp

δp (δp +mp)

)(
λ− ηh αshκsh

δh (δh +ms)

)(
λ− ηh αmhκmh

δh (δh +mm)

)
. (4.5)

Based on Theorem 3.25 and Corollary 3.26 in Section 3.6, the basic reproduction num-

bers for the epidemic model (4.3a) − (4.3g) are defined as the spectral radius of the
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next generation matrices. Therefore

Rp =
ηp αpκp

δp (δp +mp)
, (4.6)

Rsh =
ηh αshκsh
δh (δh +ms)

(4.7)

and

Rmh =
ηh αmhκmh

δh (δh +mm)
. (4.8)

Rp is the basic reproduction number for the transmission of avian flu among birds, Rsh

is the basic reproduction number for the transmission of swine flu among humans, and

Rmh is the basic reproduction number for the transmission of mutant-avian flu among

humans.

4.4 Disease state equilibria

4.4.1 Disease state equilibria among poultry birds

Since humans do not infect birds, avian flu dynamics among birds is independent of the

dynamics of diseases among humans. The bird dynamical system (4.1a) - (4.1b) can be

treated as a stand alone system. It is assumed there is no infected poultry, Ip = 0. For

equilibrium it is required that S′p = 0. Having Ip = 0, (4.1b ) becomes ηp − δp S∗p0 = 0,

S∗p0 =
ηp
δp
.

The pair

e∗0 = (S∗p0 , 0) (4.9)

is referred to as the bird disease free state.

In an endemic situation Ip 6= 0. For an endemic equilibrium, it is required

I ′p = 0 ⇔
[
αpκpS

∗
p+ − (δp +mp)

]
I∗p+ = 0.

Since I∗p+ 6= 0 then αpκpS
∗
p+ − (δp +mp) = 0. Therefore,

S∗p+ =
δp +mp

αpκp

=
ηp
δp

1

Rp
.
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Given ηpαpκp − δp (δp +mp) > 0,

I∗p+ =
ηpαpκp − δp (δp +mp)

αpκp (δp +mp)
,

=
ηp

δp +mp
− δp
αpκp

=
ηp

δp +mp
(1− 1

Rp
).

The bird system has an endemic state

e∗+ = (S∗p+ , I
∗
p+). (4.10)

4.4.2 Disease state equilibria for the full system

The dynamics of the diseases among humans does depend on the dynamics of avian

flu among birds. The influence of the bird populations on the human populations may

be modeled as a time dependent external source. Another possibility is to combine

the human and bird populations into a single system. The advantage of the latter is

that the system remains autonomous. Therefore, to study the dynamic of the diseases

among humans, it is convenient to consider the full dynamical system (4.3a)− (4.3g),

(4.3h). It has five disease state equilibria

Zi = (S∗pi , I
∗
pi , S

∗
hi
, I∗si , I

∗
ai , I

∗
bi
, I∗mi), i = 1, . . . , 5.

The first three happen when there is disease free in the bird world I∗pi = 0, i = 1, 2, 3

and last two happen when the disease is endemic among birds, I∗pi 6= 0, i = 4, 5.

Consider first when there is no infected poultry, I∗p = 0. In this case, the full system

(4.3a)− (4.3g), (4.3h) has at most three equlibria points. Let Z∗i denote an equilibrium

point.

Z∗i = (S∗pi , 0, S
∗
hi
, I∗si , I

∗
ai , I

∗
bi
, I∗mi).

At Z∗i the equilibrium requires

S′p = 0 ⇔ ηp − δp S∗pi = 0 (4.11a)

S′h = 0 ⇔ ηh −
[
δh − αshκshI∗si − αmhκmhI

∗
mi

]
S∗hi = 0 (4.11b)

I ′s = 0 ⇔
[
αshκshS

∗
hi
− (δh +ms)

]
I∗si = 0 (4.11c)

I ′a = 0 ⇔ (−1)
[
µαsaκsaI

∗
s1 − (δh +ma)

]
I∗ai = 0 (4.11d)

I ′b = 0 ⇔ (−1) [(δh +mb)] I
∗
bi

= 0 (4.11e)

I ′m = 0 ⇔ µαsaκsaI
∗
siI
∗
ai +

[
αmhκmhI

∗
miS

∗
h1 − (δh +mm)

]
I∗mi = 0, (4.11f)
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From (4.11a)

S∗pi = S∗p0 =
ηp
δp
i = 1, 2, 3.

Since µαsaκsaI
∗
si ≥ (δh +ma) > 0 it follows from (4.11d) that

I∗ai = 0, i = 1, 2, 3.

Now (4.11e) implies that

I∗bi = 0, i = 1, 2, 3,

and hence (4.11f) gives

S∗hi =
δh +mm

αmhκmh
or I∗mi

= 0.

In the case of the former alternative then

αmhκmhI
∗
miS

∗
hi
− (δh +mm) 6= 0

and so (4.11c) gives

I∗si = 0.

Thus from (4.11b),

ηh −
[
δh − αshκshI∗si − αmhκmhI

∗
mi

] δh +mm

αmhκmh
= 0

and hence provided ηhαshκsh − δh +mm > 0 there is an equilibrium coordinate

I∗mi =
ηh

δh +mm
− δh
αmhκmh

> 0.

In the case of the latter alternative then (4.11c) gives the further alternative

S∗hi =
δh +ms

αshκsh
or I∗si = 0.

In the case of the former of the further alternatives then (4.11b) gives

ηh −
[
δh − αshκshI∗si − αmhκmhI

∗
mi

] δh +ms

αshκsh
= 0
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and provided ηhαshκsh − δh(δh +ms) > 0, there is an equilibrium coordinate

I∗s1 =
ηh

δh +ms
− δh
αshκsh

.

In the case of the latter of the further alternatives, (4.11b) shows that

S∗hi = S∗h0 =
ηh
δh
.

Thus, in the case of no infected birds, I∗p = 0, the full system (4.3a) − (4.3g), (4.3h)

has three equlibria points. First, the disease free equilibrium is

Z∗1 = (S∗p1 , 0, S
∗
h1 , 0, 0, 0, 0), (4.12)

S∗p1 = S∗p0 =
ηp
δp
,

S∗h1 =
ηh
δh
.

Second, the swine flu epidemic equilibrium is

Z∗2 = (S∗p2 , 0, S
∗
h2 , I

∗
s2 , 0, 0, 0) (4.13)

where

S∗p2 = S∗p0 =
ηp
δp
,

S∗h2 =
δh +ms

αshκsh
,

=
ηh
δh

1

Rsh

I∗s2 =
ηh αshκsh − δh(δh +ms)

αshκsh (δh +ms)

=
ηh

δh +ms
(1− 1

Rsh
)

Z∗2 is the state in which there are no birds or humans infected by avian flu and no

human infected by mutant-avian flu but there are humans infected by swine flu.

Third, the mutant-avian flu epidemic equilibrium is

Z∗3 = (S∗p3 , 0, S
∗
h3 , 0, 0, 0, I

∗
m3

) (4.14)
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where

S∗p3 = S∗p0 =
ηp
δp
,

S∗h3 =
δh +mm

αmhκmh

=
ηh
δh

1

Rmh

I∗m3
=
ηh αmhκmh − δh(δh +mm)

αmhκmh (δh +mm)

=
ηh

δh +mm
(1− 1

Rmh
)

Z∗3 is the state in which there are no birds or humans infected by avian flu and no

humans infected by swine flu but there are humans infected by mutant-avian flu. Z∗1 , Z
∗
2

and Z∗3 are disease equilibria of the full system (4.3a)− (4.3g), (4.3h) when there is no

avian-flu epidemic in the bird world.

In the case of an endemic situation in the bird world, Ip 6= 0, the full system

(4.3a)− (4.3g), (4.3h) has at most two equlibria points

Zi = (S∗pi , I
∗
pi , S

∗
hi
, I∗si , I

∗
ai , I

∗
bi
, I∗mi), i = 4, 5. (4.15)

The first,

Z4 = (S∗p4 , I
∗
p4 , S

∗
h4 , 0, I

∗
a4 , I

∗
b4 , 0) (4.16)

is the avian flu epidemic equilibrium state among birds and humans. The equilibrium

requires

S′p = 0⇔ ηp − δp S∗p4 − αpκpI
∗
p4S
∗
p4 = 0 (4.17a)

I ′p = 0⇔ αpκpI
∗
p4S
∗
p4 − (δp +mp)I

∗
p4 = 0 (4.17b)

S′h = 0⇔ ηh − δhS∗h4 − αphκphS
∗
s4 = 0 (4.17c)

I ′a = 0⇔ γαphκphI
∗
p4S
∗
h4 − (δh +ma) I

∗
a4 = 0 (4.17d)

I ′b = 0⇔ (1− γ)αphκphI
∗
p4S
∗
h4 − (δh +mb) I

∗
b4 = 0. (4.17e)

I∗p4 > 0 and the condition I ′p = 0 implies

S∗p4 =
δp +mp

αpκp

=
ηp
δp

1

Rp
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S∗p4 = S∗p+ . Now I ′p = 0 gives

I∗p4 =
ηp

δp +mp
− δp
αpκp

=
ηp

δp +mp

[
1− δp(δp +mp)

ηpαpκp

]
=

ηp
δp +mp

(1− 1

Rp
)

I∗p4 = I∗p+ . The condition S′h = 0 gives

S∗h4 =
ηh

δh + αphκphI∗p4

=
ηh

δh + αphκph
ηp

δp+mp

(
1− 1

Rp

)
=

ηh
δh

1 +
αphκphηp
ηh (δp+mp)

(
1− 1

Rp

)
S∗h4 also can be written as

S∗h4 =

ηh
δh

1 + rph

where rph is defined as

rph =
αphκphηp

ηh (δp +mp)

(
1− 1

Rp

)
. (4.18)

The derivation of I∗a4 and I∗b4 are as follows. Since I∗s4 = 0 the equation (4.17d)

implies

I∗a4 =
γαphκphI

∗
p4S
∗
h4

δh +ma
.

Since I∗m4
= 0 and from (4.17c) gives αphκphI

∗
p4 = ηh−δhS∗h4 and so the above expression

becomes

I∗a4 =
γαphκphI

∗
p4S
∗
h4

δh +ma

=
γ

δh +ma
(ηh − δhS∗h4)

=
γηh

δh +ma

(
1− 1− 1

1 + rph

)
.
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A similar derivation using (4.17e) gives

I∗b4 =
(1− γ)αphκphI

∗
p4S
∗
h4

δh +mb

=
(1− γ)

δh +mb
(ηh − δhS∗h4)

=
(1− γ)ηh
δh +mb

(
1− 1− 1

1 + rph

)
.

The last equilibrium disease state

Z∗5 = (S∗p5 , I
∗
p5 , S

∗
h5 , 0, I

∗
a5 , I

∗
b5 , I

∗
m5

), (4.19)

is the disease state equilibrium in which there are avian flu epidemics among birds and

humans and also an epidemic of mutant-avian flu among humans.

S∗p5 = S∗p+ =
δp +mp

αpκp
=
ηp
δp

1

Rp

I∗p5 = I∗p+ =
ηp

δp +mp
− δp
αpκp

=
ηp

δp +mp
(1− 1

Rp
)

The derivation of S∗h5 , I
∗
a4 , I

∗
b5

and I∗m5
are as follows. The relevant equilibrium equations

are

S′p = 0 ⇔ S′p5 = ηp − δp Sp5 − αpκpIp5Sp5 = 0 (4.20a)

I ′p = 0 ⇔ αpκpIp5Sp5 − (δp +mp) Ip5 = 0 (4.20b)

S′h = 0 ⇔ ηh − δh Sh5 − αphκphIp5Sh5 − αshκshIs5Sh5 − αmhκmhIm5Sh5 = 0

(4.20c)

I ′a = 0 ⇔ γαphκphIp5Sh5 − µαsaκsaIs5Ia5 − (δh +ma) Ia5 = 0 (4.20d)

I ′b = 0 ⇔ (1− γ)αphκphIp5Sh5 − (δh +mb) Ib5 = 0 (4.20e)

I ′m = 0 ⇔ µαsaκsaIs5Ia5 + αmhκmhImSh5 − (δh +mm) Im5 = 0. (4.20f)

Suppose I∗s5 = 0 and I∗m5
> 0 the condition I ′m = 0 gives

S∗h5 =
δh +mm

αmhκmh
=
ηh
δh

1

Rmh
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The condition (4.20c), S′h = 0, now implies

I∗m5
=
ηh −

(
δh + αphκphI

∗
p5

)
S∗h5

αmhκmhS
∗
h5

=
ηh −

[
δh + αphκph

ηp
δh+mm

(1− 1
Rp

)
]
δh+mm
αmhκmh

δh +mm

=
δh

αmhκmh

[
αmhκmhηh
δh(δp +mm)

− 1−
αphκphηh
δh(δp +mp)

(1− 1

Rp
)

]
=

δh
αmhκmh

[Rmh − (1 + rph)] .

where rph is defined by (4.38)

rph =
αphκphηp

ηh (δp +mp)

(
1− 1

Rp

)
.

The final equilibrium equations (4.20d) and (4.20e) give I ′a = 0 and I ′b = 0. Hence,

I∗a5 =
γαphκphI

∗
p5S
∗
h5

δh +ma

=
γαphκph

ηp
δp+mp

(1− 1
Rp

) δh+mm
αmhκmh

δh +ma

=
γηhrph

(δh +ma)Rmh

and

I∗b5 =
(1− γ)αphκphI

∗
p5S
∗
h5

δh +mb

=
(1− γ)αphκph

ηp
δp+mp

(1− 1
Rp

) δh+mm
αmhκmh

δh +mb

=
(1− γ)ηhrph

(δh +mb)Rmh
.

4.5 Stability analysis of disease state equilibria

The following subsections (4.5.3 to 4.5.7) analyze the local and global stability of the

disease state equilibrium points. The Poincaré-Bendixon theorem (Theorem 3.19 in

Section 3.3) is used to prove global stability of disease state equilibria, namely that

for any initial disease state Z0, there will always exist ω(Z0), the ω-limit set of orbits

through Z0 in Ω.
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4.5.1 Stability analysis of disease state equilibria among birds

Recall that the bird system (4.1a, 4.1b ) has two disease state equilibria; e0 and e+,

where e0 and e+ are respectively given by (4.9)

e0 = (S∗p0 , 0) where S∗p0
=
ηp

δp
,

and (4.10)

e+ = (S∗p+ , I
∗
p+)

where

S∗p+ =
ηp
δp

1

Rp

and

I∗p+ =
ηp

δp +mp
(1− 1

Rp
).

The stability analysis of these disease equilibria are well known, see for example [177]

[103], but are given here for completeness.

Theorem 4.3. If Rp ≤ 1 then e0 is GAS on R2
+. On the other hand, if Rp > 1 then

e+ is GAS on Int(R2
+).

Proof. The Jacobian matrix for the bird system (4.1a, 4.1b) is

J =

 −δp − αpκpIp −αpκpSp

αpκpIp αpκpSp − (δp +mp)

 . (4.21)

(4.21) evaluated at (S∗p0 , 0) is

J(e0) =

 −δp − (δp +mp) Rp

0 (δp +mp) (Rp − 1)

 . (4.22)

The eigenvalues of this Jacobian matrix are −δp and (δp +mp) (Rp − 1). Both eigen

values are negative if Rp < 1. Therefore, e0 is locally stable on R2
+.

To justify that Sp → ηp
δp

and Ip → 0 as t→∞, the LaSalle’s invariance principle is

used. First construct a Lyapunov function L. The most common types of Lyapunov

functions for infectious disease transmission models are quadratic and Volterra type of

functions [184], [185]. Following [103], let

L =
1

2
(Sp − Sp0)2 + Sp0Ip,
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where S∗p0 =
ηp
δp

. Differentiating along the orbit results in

L̇ = (Sp − Sp0)(ηp − δpSp − αpκp) + Sp0 [αpκpIpSp − (δp +mp) Ip]

= (Ip − Sp0) [−δp (Sp − Sp0)− αpκpIp (Sp − Sp0)− αpκpIpSp0 ]

+ Sp0 [αpκpIpSp − (δp +mp) Ip]

= − (δp + αpκpIp) (Sp − Sp0)2 + Sp0(δp +mp)(Rp − 1).

If Rp ≤ 1 then L̇ ≤ 0. Meanwhile the largest invariant subset of L̇ = 0 is the singleton

{(ηpδp , 0)}. Therefore, the use of the LaSalle invariance principle in Section 3.3, results

in Sp → ηp
δp

and Ip → 0 whenever Rp ≤ 1 and t → ∞. Therefore, e0 is globally stable

on R2
+.

The Jacobian matrix (4.21) evaluated at (S∗p+ , I
∗
p+) is

J(e+) =

 −δpRp −(δp +mp)

δp (Rp − 1) 0

 (4.23)

with its characteristic polynomial

Cb(λ) = λ2 + δλRpλ+ (Rp − 1) δp (δp +mp) .

For Rp > 1, the linear coefficient and constant coefficient of the characteristic equation

are positive. That is δpRp > 0 and (Rp − 1) δp (δp +mp) > 0. Therefore the roots of

the characteristic equation have negative real parts.

Let the right hand side of (4.3a ) and (4.3b ) be denoted as ψ(Sp, Ip) and χ(Sp, Ip)

ẋ = f ⇔

 ẋ

ẏ

 =

 ψ(Sp, Ip)

χ(Sp, Ip)

 .
By using Theorem 3.18 (Bendixson-Dulac), define a positive Dulac function as

Let the right hand side of (4.3a, 4.3b ) be denoted by the vector

f =

 ψ(Sp, Ip)

χ(Sp, Ip)


and define a Dulac function

Ψ =
1

SpIp
.
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Then

∆.(Ψf) =
∂(Ψψ)

∂Sp
+
∂(Ψχ)

∂Ip

=
∂

∂Sp

[
ηp
SpIp

− δp
Ip
− αpκp

]
+

∂

∂Ip

[
αpκp −

δp +mp

Sp

]
= − ηp

S2
pIp

since Sp > 0, Ip > 0 and ηp > 0. Hence, the first two equations of the disease

transmission model (4.3a) − (4.3g) does not have a limit cycle in G ⊂ R2. Hence the

Dulac criterion implies that there is no periodic solution in R2
+. Applying the Poincaré

Bendixon theorem (Theorem 3.19 in Section 3.3), for Rp > 1 gives limt→∞ Sp(t) =
ηp
δp

1
Rp

and limt→∞ Ip(t) =
ηp

δp+mp
(1− 1

Rp
)). Therefore, e+ is globally stable on IntR2

+.

4.5.2 Stability analysis of disease state equilibria for the full systems

In the following subsections, the full system (4.3a) − (4.3g) will be used to study the

stability of equilibria. The Jacobian matrix of the system is given by

J =

 J1 O

J J2

 , (4.24)

where J is given by (4.21), the Jacobian matrix of the bird system (4.1a, 4.1b)

J1 =

 −δp − αpκpIp −αpκpSp

αpκpIp αpκpSp − (δp +mp)

 , (4.25)

O =

 0 0 0 0 0

0 0 0 0 0

 , J =



0 j3,2

0 0

0 j5,2

0 j6,2

0 0


,
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and

J2 =



j3,3 j3,4 0 0 j3,7

j4,3 j4,4 0 0 0

j5,3 j5,4 j5,5 0 0

j6,3 0 0 j6,6 0

j7,3 j7,4 j7,5 0 j7,7


, (4.26)

where j3,2 = −αphκphSh, j3,3 = −δh − αphκphIp − αshκshIs − αmhκmhIm, j3,4 =

−αshκshSh, j3,7 = −αmhκmhSh, j4,3 = −αshκshIs, j4,4 = αshκshSh − δh −ms,

j5,2 = γaαphκphSh, j5,3 = γaαphκphIp, j5,4 = −µαsaκsaIa, j5,5 = −µαsaκsaIs −
(δh + ma), j6,2 = (1 − γa)αyhκphSh, j6,3 = (1 − γa)αyhκphIp, j6,6 = −(δh + mb),

j7,3 = αmhκmhIm, j7,4 = µαsaκsaIa, j7,5 = µαsaκsaIs, j7,7 = αmhκmhSh − (δh +

mm).

J and J2 are referred to as key Jacobian matrices or principal minors. The Jacobian

matrix (4.24) is stable at an equilibrium point z∗ if and only if the key Jacobian matrices

J(z∗) and J2(z∗) are stable (by Corollary 3.26).

4.5.3 Stability analysis of disease free equilibrium

The stability behavior of the disease free equilibrium Z∗1 is analyzed as follows.

Lemma 4.4. If Rp ≤ 1, Rsh ≤ 1 and Rmh ≤ 1 then Z∗1 = (
ηp
δp
, 0, ηhδh , 0, 0, 0, 0) is LAS.

Proof. At Z∗1 = (S∗p1 , 0, S
∗
h1
, 0, 0, 0)

S∗p1 =
ηp
δp
> 0 and S∗h1

=
ηh

δh
> 0.

At Z∗1 the key Jacobian matrices (4.25) and (4.26) becomes

J11 =

 j1,1 j1,2

0 j2,2

 (4.27)

and

J12 =



j3,3 j3,4 0 0 j3,7

0 j4,4 0 0 0

0 0 j5,5 0 0

0 0 0 j6,6 0

0 0 0 0 j7,7


(4.28)
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respectively, where j1,1 = (−1)δp, j1,2 = −αpκpS∗p2 , j2,2 = −αpκpS∗p2 − (δp +mp),

j3,3 = −δh, j3,4 = (−1)αshκshS
∗
h1

, j3,7 = (−1)αmhκmhS
∗
h1

, j4,4 = αshκshS
∗
h1
−

(δh +ms), j5,5 = (−1)(δh−ma), j6,6 = (−1)(δh−mb), j7,7 = αmhκmhS
∗
h1
− (δh +

mm).

The characteristic polynomial for the first key Jacobian matrix, J , is

|λI − J11| = (λ+ δp)
[
λ− αpκpS∗p1 + (δp +mp)

]
= (λ+ δp)

[
λ− αpκpηp

δp
+ (δp +mp)

]
and hence J11 is stable provided

αpκpS
∗
p1 − (δp +mp) ≤

αpκpηp
δp

− (δp +mp) ≤ 0⇔ Rp ≤ 1.

The characteristic polynomial for the second key Jacobian matrix, J12, is

|λI − J12| =



λ− j3,3 −j3,4 0 0 j3,7

0 λ− j4,4 0 0 0

0 0 λ− j5,5 0 0

0 0 0 λ− j6,6 0

0 0 0 0 λ− j7,7


J12 is stable provided

αshκshS
∗
h1 − (δh +ms) ≤ 0⇔ αshκshηh

δh
− (δh +ms) ≤ 0⇔ Rsh ≤ 1

and

αmhκmhS
∗
h1 − (δh +mm) ≤ 0⇔ αmhκmhηh

δh
− (δh +mm) ≤ 0⇔ Rmh ≤ 1.

Therefore Z∗1 = (
ηp
δp
, 0, ηhδh , 0, 0, 0, 0) is well defined and stable if Rp ≤ 1, Rsh ≤ 1 and

Rmh ≤ 1.

In the following, the Poincaré-Bendixon theorem (Theorem 3.19 in Section 3.3) is

used to prove that Z∗1 is also globally stable; for any initial disease state Z0 there will

always exist ω(Z0), ω-limit set of orbit through Z0.

Starting from any initial disease state Z0, the final disease state when t → ∞ is

subject to the following lemma,

Lemma 4.5. Let S∞h = lim supt→∞ Sh(t). Then S∞h ≤ S∗h1
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Proof. Equation (4.3c) gives

S′h = ηh − δh Sh − αphκyhIpSh − αshκshIsSh − αmhκmhImSh ≤ ηh − δh Sh.

Integrating the inequality over [0, t] results in

Sh(t) ≤ S∗h1 + |Sh(0)− S∗h1 |e
−δht.

Therefore ∀ε > 0,∃t1 such that |Sh(0)− S∗h1 |e
−δht ≤ ε for any t > t1.

Hence Sh(t) ≤ S∗h1 + ε for t ≥ t1. Thus for T1 ≥ t1, lim supt≥T1 Sh(t) ≤ S∗h1 + ε.

Letting for T1 →∞, results in S∞h ≤ S∗h1 + ε, S∞h ≤ S∗h1 for ε > 0.

The global stability behavior of Z∗1 is analyzed as follows. For Z = (Sp, Ip, Sh, Is, Ia, Ib, Im),

let

Ω1 = {Z|Sp > 0, Ip ≥ 0, Sh > 0, Is ≥ 0, Ia ≥ 0, Ib ≥ 0, Im ≥ 0}

G1 = {Z|Sp > 0, Ip = 0, Sh > 0, Is = 0, Ia = 0, Ib = 0, Im = 0}.

Theorem 4.6. If Rp ≤ 1, Rsh < 1 and Rmh < 1 then Z∗1 = (S∗p1 , 0, S
∗
h1
, 0, 0, 0, 0) is

GAS on Ω1.

Proof. Since S′p + δpSp = ηp is a linear first order differential equation can be solved

exactly to give Sp(t) = ηp/δp + (S∗p0 − ηp/δp)e
−δpt → ηp/δp as t→∞. Having Ip = 0 in

equation (4.3f) and integrating over [0,∞] results in limt→∞ Ib(t) = 0.

By using Lemma 4.5, equation (4.3d) becomes

I ′s ≤
[
αshκshS

∗
h1 − (δh +ms)

]
Is

or

I ′s ≤ (δh +ms)(Rsh − 1) Is.

Since Rsh < 1, limt→∞ Is(t) = 0. Hence, limt→∞ Ia(t) = 0. Therefore, as t → ∞
equation (4.3g) becomes

I ′m ≤ αmhκmhImS
∗
h1 − (δh +mm) Im

or

I ′m ≤ (δh +mm) (Rmh − 1) Im.

Since Rmh < 1, limt→∞ Im(t) = 0. These imply that for any initial disease state

Z0 ∈ Ω1 there will always exist ω-limit set of orbit through Z0, ω(Z0) ∈ G1. Therefore
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Z∗1 is GAS on G1. Since G1 ⊂ Ω1 and Z∗1 is LAS on Ω1(by Lemma 4.4), hence Z∗1 is

GAS on Ω1.

4.5.4 Stabilty analysis of swine flu epidemic equilibrium

The swine flu epidemic equilibrium, Z∗2 , corresponds to the situation in which there

are no birds or humans infected by avian flu and no humans infected mutant-avian

flu but there are humans infected by swine flu. By using the definitions of the basic

reproduction numbers in Section 4.3,

Z∗2 = (S∗p2 , 0, S
∗
h2 , I

∗
s2 , 0, 0, 0) (4.29)

where

S∗p2 = S∗p0 =
ηp
δp
,

S∗h2 =
ηh
δh

1

Rsh
,

I∗s2 =
ηh

δh +ms
(1− 1

Rsh
).

Lemma 4.7. If Rp ≤ 1 and Rsh > max{Rmh, 1} then Z∗2 = (S∗p2 , 0, S
∗
h2
, I∗s2 , 0, 0, 0) is

LAS.

Proof. At Z∗2
∗
p2 =

ηp
δp
> 0 S∗h2 = δh+ms

αshκsh
Note that

I∗s2 =
ηh

δh +ms

(
1− 1

Rsh

)
> 0⇔ Rsh > 1

and so I∗s2 > 0 provided Rsh > 1.

At Z∗2 the key Jacobian matrices (4.25) and (4.26) becomes

J21 =

 j1,1 j1,2

0 j2,2

 (4.30)

and

J22 =



j3,3 j3,4 0 0 j3,7

j4,3 0 0 0 0

0 0 j5,5 0 0

0 0 0 j6,6 0

0 0 j7,5 0 j7,7


, (4.31)
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respectively, where j1,1 = (−1)δp, j1,2 = −αpκpS∗p2 , j2,2 = −αpκpS∗p2 − (δp +

mp), j3,3 = (−1)(δh + αshκshI
∗
s2), j3,4 = (−1)αshκshS

∗
h2
, j37 = (−1)αmhκmhS

∗
h2

,

j4,3 = (−1)αshκshI
∗
s2 , j5,5 = (−1)

[
µαshκshI

∗
s2 + (δh +ma)

]
, j6,6 = (−1)(δh + mb),

j7,5 = (−1)[µαsaκsaI
∗
s2 , j7,7 = αmhκmhS

∗
h2

+ (δh +mm).

The key Jacobian matrix J21 is stable if Rp ≤ 1 because J21 = J11 and J11 is stable

if Rp ≤ 1. The characteristic polynomial of the key Jacobian matrix (4.31) is

|λI − J22| =



λ− j3,3 −j3,4 0 0 j3,7

j4,3 λ 0 0 0

0 0 λ− j5,5 0 0

0 0 0 λ− j6,6 0

0 0 j7,5 0 λ− j7,7


or

|λI − J22| = (λ− j5,5)(λ− j6,6)(λ− j7,7)

 λ− j3,3 j3,4

−j4,3 λ


= (λ− j5,5)(λ− j6,6)(λ− j7,7)(λ2 + bλ+ c)

where b = −j3,3 and c = −j4,3j3,4. Since j5,5 = (−1)
[
µαsκsI

∗
s2 + (δh +ma)

]
and

j6,6 = (−1)(δh +mb) < 0 the matrix J2 is stable if

j7,7 =
αmhκmh(δh +ms)

αshκsh
≤ 0⇔ Rmh ≤ Rsh

and the roots of the quadratic λ2 + bλ+ c have negative real parts. Since

b = −j3,3 = δh + αshκshI
∗
s2 =

αshκshηh
δh +ms

> 0

it follows that the roots of the quadratic have negative real parts if

c = −j4,3j3,4 = α2
shκ

2
shI
∗
s2S
∗
h2 =

(
αshκshηh
δh +ms

− δh
)

(δh +ms) ≥ 0⇔ Rsh ≥ 1.

Hence Z∗2 is well-defined and stable if Rp ≤ 1 and Rsh > max{Rmh, 1}. It is interesting

to consider the slightly stronger condition j7,7 = −εm < 0. If Sh = S∗h2 and I∗a2 = 0

then the final system equation becomes

I ′m(S∗h2 , 0)(t) = −εmIm(S∗h2 , 0)(t)

and so if Im(S∗h2 , 0)(t) > 0 then Im(S∗h2 , 0)(t) ↓ I∗m2
= 0 as t→∞. Hence the condition

j7,7 ≤ 0 ⇔ Rmh ≤ Rsh is effectively a stability condition on the coordinate Im at the

point I∗m2
= 0.
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For Z = (Sp, Ip, Sh, Is, Ia, Ib, Im), let

Ω2 = {Z|Sp > 0, Ip ≥ 0, Sh > 0, Is > 0, Ia ≥ 0, Ib ≥ 0, Im ≥ 0}

G2 = {Z|Sp > 0, Ip = 0, Sh > 0, Is > 0, Ia = 0, Ib = 0, Im = 0}.

The global stability of Z∗2 on Ω2 is analyzed as follow. In relation to the equilibrium at

the point Z∗2 , by setting Ip = 0, Ia = 0, Ib = 0 and Im = 0, the full system is simplified

to

S′p = ηp − δpSp (4.32a)

S′h = ηh − δhSh − αshκshIhSh (4.32b)

I ′s = αshκshIsSh − (δh +ms)Is. (4.32c)

Lemma 4.8. If Rsh > 1 then Y ∗2 = (S∗p2 , S
∗
h2
, I∗s2) is LAS for the simplified system

(4.32a)-(4.32c).

Proof. It is important to understand that the variables Sp, Sh and Is are conditionally

independent of the remaining variables Ip, Ia, Ib only if these neglected variables are

guaranteed at the nominated zero values. The coordinates for the equilibrium point

Y ∗2 = (S∗p2 , S
∗
h2
, I∗s2) in the simplified system (4.32a)-(4.32c)

S∗p2 =
ηp
δp
, S∗h2 =

δp +ms

αshκsh
, I∗s2 =

ηh
δh +ms

− δh
αshκsh

.

These coordinates are well-defined and positive provided I∗s2 > 0⇔ Rsh > 1. Now the

Jacobian matrix at Y ∗2 is

H =


−δp 0 0

0 −αshκshηh
δh+ms

−(δh +ms)

0 αshκshηh
δh+ms

− δh 0


and so the characteristic polynomial is

|λI −H| = (λ+ δp)

(
λ2 +

αshκshηh
δh +ms

λ+ αshκshηh − δh(δh +ms)

)
.

The condition Rsh > 1 ensures that the constant coefficient of the quadratic factor

is nonnegative. Since the two remaining coefficients in the quadratic factor are also

positive it follows that the two roots of the quadratic have negative real parts. Since the

remaining root of the characteristic polynomial is negative it follows that the simplified

system is stable at Y ∗2 .

Lemma 4.8 applies to the simplified system (4.32a)-(4.32c)and the projected point
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Y ∗2 = (S∗p2 , S
∗
h2
, I∗s2) and does not apply to the full system (4.3a)-(4.3g) and the point

Z∗2 = (S∗p2 , 0, S
∗
h2
, I∗s2 , 0, 0, 0). In terms of convergence it can be seen that Z2(t) → Z∗2

implies Y2(t)→ Y ∗2 but the reverse implication is not true.

Theorem 4.9. If Rp ≤ 1 and Rsh ≥ max{Rmh, 1} then Z∗2 = (S∗p2 , 0, S
∗
h2
, I∗s2 , 0, 0, 0)

is GAS on Ω2.

Proof. Since S′p + δpSp = ηp is a linear first order differential equation can be solved

exactly to give Sp(t) = ηp/δp + (S∗p0 − ηp/δp)e
−δpt → ηp/δp as t→∞. Having Ip = 0 in

equation (4.3f) and integrating it over [0,∞] results in limt→∞ Ib(t) = 0. By Lemma

4.5, S∞h ≤ S∗h1 . Since Rmh ≤ 1, limt→∞ Im(t) = 0. Hence, limt→∞ Ia(t) = 0. Therefore,

as t→∞ equation (4.3g) becomes

I ′m ≤ αmhκmhImS
∗
h2 − (δh +mm) Im

or

I ′m ≤ (δh +mm) (Rmh − 1)) Im.

Since Rmh ≤ 1, limt→∞ Im(t) = 0. These imply that for any initial disease state, Z0,

there will always exist an ω-limit set of orbit through Z0, ω(Z0) ∈ G2. By Lemma 4.8,

Z∗2 is GAS on G2. Since G2 ⊂ Ω2 and Z∗2 is LAS on Ω2 then Z∗2 is GAS on Ω2.

4.5.5 Stabilty analysis of mutant-avian flu epidemic equilibrium

The mutant avian flu epidemic equilibrium, Z∗3 , corresponds to the situation in which

there are no birds or humans infected by avian flu and no humans infected by swine

flu but there are humans infected by mutant-avian flu. By using the definitions of the

basic reproduction numbers in Section 4.3,

Z∗3 = (S∗p3 , 0, S
∗
h3 , 0, 0, 0, I

∗
m3

), (4.33)

where

S∗p3 = S∗p0 =
ηp
δp

S∗h3 =
ηh
δh

1

Rmh
,

I∗m3
=

ηh
δh +mm

(1− 1

Rmh
).

Lemma 4.10. If Rp ≤ 1 and Rmh > max{Rsh, 1} then Z∗3 = (S∗p3 , 0, S
∗
h3
, 0, 0, 0, I∗m3

)

is LAS.
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Proof.

S∗p3 = S∗p0 =
ηp
δp
, S∗h3 =

δh +mm

αmhκmh
, I∗m3

=
ηh

δh +mm
− δh
αmhκmh

.

Note that

ηh
δh +mm

− δh
αmhκmh

> 0⇔ ηh
δh +mm

(
1− 1

Rmh

)
> 0⇔ Rmh > 1

and so I∗m3
> 0 provided Rmh > 1.

At Z∗3 the key Jacobian matrices (4.25) and (4.26) becomes

J31 = J11 =

 j1,1 j1,2

0 j2,2

 (4.34)

and

J32 =



j3,3 j3,4 0 0 j3,7

0 j4,4 0 0 0

0 0 j5,5 0 0

0 0 0 j6,6 0

j7,5 0 0 0 j7,7


(4.35)

respectively, where j1,1 = (−1)δp, j1,2 = −αpκpS∗p2 , j2,2 = −αpκpS∗p2 − (δp + mp),

j3,3 = (−1)(δh+αmhκmhI
∗
m3

), j3,4 = (−1)αshκshS
∗
h3

, j3,7 = (−1)αmhκmhS
∗
h3

, j4,4 =

(−1)αshκshS
∗
h3
− (δh + ms), j5,5 = (−1)(δh + ma), j6,6 = (−1)(δh + mb), j7,3 =

(−1)αmhκmhI
∗
m3

, j7,7 = αmhκmhS
∗
h3
− (δh +mm).

The key Jacobian matrix J31 is stable if Rp ≤ 1 because J31 = J11 and J11 is stable

if Rp ≤ 1.

|λI − J32| = (λ− j4,4)(λ− j5,5)(λ− j6,6)(λ2 + bλ+ c)

where b = (−1)j3,3 and c = −j7,3j3,7. The roots j5,5 < 0 and j6,6 < 0

j4,4 ≤ 0⇔ αshκsh
αmhκmh

− (δh +ms) ≤ 0⇔ Rmh ≥ Rsh.

Hence it follows that the matrix J2 will be stable if the roots of the quadratic λ2 +bλ+c

have negative real parts. Since b = (−1)j3,3 > 0 the stability is assumed provided

c = α2
mhκ

2
mhI

∗
m3
S∗h3 =

(
αmhκmhηh
δh +mm

− δh
)

(δh +mm) ≥ 0⇔ Rmh ≥ 1.

Hence Z∗3 is well-defined and stable if Rp ≤ 1 and Rmh > max{Rsh, 1}.
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The global stability of the disease free equilibrium Z∗3 is analyzed as follows. For

Z = (Sp, Ip, Sh, Is, Ia, Ib, Im), let

Ω3 = {Z|Sp > 0, Ip ≥ 0, Sh > 0, Is ≥ 0, Ia ≥ 0, Ib ≥ 0, Im > 0},

G3 = {Z|Sp > 0, Ip = 0, Sh > 0, Is = 0, Ia = 0, Ib = 0, Im > 0}.

In domain G3 , (4.3a)− (4.3g) reduces to

S′p = ηp − δpSp (4.36a)

S′h = ηh − δhSh − αshκshIhSh (4.36b)

I ′m = αmhκmhImSh − (δh +mm) Im. (4.36c)

Lemma 4.11. If Rmh > 1 then Y ∗3 = (S∗p3 , S
∗
h3
, I∗m3

) is LAS for the simpified system

(4.36a)-(4.36c).

Proof. The variables Sp, Sh and Im are conditionally independent of the remaining

variables Ip, Ia, Ib only if these neglected variables are guaranteed at the nominated

zero values. The coordinates for the equilibrium point Y ∗3 = (Sp3 , Sh3 , Is3) in the

simplified system (4.36a)-(4.36c)

S∗p3 =
ηp
δp
, S∗h3 =

δp +mm

αmhκmh
, I∗m2

=
ηh

δh +mm
− δh
αmhκmh

.

These coordinates are well-defined and positive provided I∗m3
> 0 ⇔ Rmh > 1. Now

the Jacobian matrix at Y ∗3 is

H =


−δp 0 0

0 −αmhκmhηh
δh+mm

−(δh +mm)

0 αmhκmhηh
δh+mm

− δh 0


and so the characteristic polynomial is

|λI −H| = (λ+ δp)

(
λ2 +

αmhκmhηh
δh +mm

λ+ αmhκmhηh − δh(δh +mm)

)
.

The condition Rmh > 1 ensures that the constant coefficient of the quadratic factor

is nonnegative. Since the two remaining coefficients in the quadratic factor are also

positive it follows that the two roots of the quadratic have negative real parts. Since the

remaining root of the characteristic polynomial is negative it follows that the simplified

system is stable at Y ∗3 .
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Lemma 4.11 applies to the simplified system (4.36a)-(4.36c)and the projected point

Y ∗3 = (S∗p3 , S
∗
h3
, I∗m3

) and does not apply to the full system (4.3a)-(4.3g) and the point

Z∗3 = (S∗p3 , 0, S
∗
h3
, 0, 0, 0, I∗m3

). In terms of convergence it can be seen that Z3(t) → Z∗3
implies Y3(t)→ Y ∗3 but the reverse implication is not true.

Theorem 4.12. If Rp ≤ 1 and Rmh ≥ max{Rsh, 1} then Z∗3 = (S∗p3 , 0, S
∗
h3
, 0, 0, 0, I∗m3

)

is GAS on Ω3.

Proof. Since S′p + δpSp = ηp is a linear first order differential equation can be solved

exactly to give Sp(t) = ηp/δp + (Sp(0)− ηp/δp)e−δpt → ηp/δp as t→∞. Having Ip = 0

in equation (4.3f) and integrating over [0,∞] results in limt→∞ Ib(t) = 0.

By using Lemma 4.5, S∞h ≤ S∗h1 . Since Rmh ≤ 1, limt→∞ Im(t) = 0. Hence,

limt→∞ Ia(t) = 0. Therefore, at t→∞ equation (4.3d) becomes

I ′s ≤ (δh +ms)
(
αshκshS

∗
h3 − 1)

)
Is, t→∞

or

I ′s ≤ (δh +ms) (Rsh − 1)) Is.

Since Rsh ≤ 1, limt→∞ Is(t) = 0. These imply that for any initial disease state Z0, there

will always exist ω(Z0), the ω-limit set of orbit through Z0 in D3. By Lemma 4.11, Z∗3
is GAS on G3. Since Z∗3 is LAS on Ω3, Z∗3 is GAS on Ω3.

4.5.6 Stability analysis of avian-flu epidemic equilibrium (among birds and humans)

Z∗4 coresponds to the situation in which there are avian flu epidemics among birds and

humans. By using the definitions of the basic reproduction numbers, the disease state

when there are avian flu epidemics among birds and humans, Z∗4 , becomes

Z∗4 = (S∗p4 , I
∗
p4 , S

∗
h4 , 0, I

∗
a4 , I

∗
b4 , 0). (4.37)

S∗p4 =
ηp
δp

1

Rp
> 0,

I∗p4 =
ηp

δp +mp
(1− 1

Rp
),

S∗h4 =

ηh
δh

1 +
αphκphηp
ηh (δp+mp)

(
1− 1

Rp

)
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or

S∗h4 =

ηh
δh

1 + rph

where rph is defined as

rph =
αphκphηp

ηh (δp +mp)

(
1− 1

Rp

)
. (4.38)

S∗h4 > 0⇔ Rp > 1

I∗a4 =
γηh

δh +ma

(
1− 1

1 + rph

)
> 0

and

I∗b4 =
(1− γ)ηh
δh +mb

(
1− 1

1 + rph

)
> 0

The conditionRp > 1 means rph > 0 and hence guarantees that I∗p4 > 0, S∗h4 > 0, I∗a4 > 0

and I∗b4 > 0.

Theorem 4.13. If Rp > 1 and max{Rsh, Rmh} < 1 + rph then

Z∗4 = (S∗p4 , I
∗
p4 , S

∗
h4
, 0, I∗a4 , I

∗
b4
, 0) is LAS.

Proof. At Z∗4 the key Jacobian matrices (4.25) and (4.26) becomes

J41 =

 j1,1 j1,2

j2,1 0

 (4.39)

and

J42 =



j3,3 j3,4 0 0 j3,7

0 j4,4 0 0 0

j5,3 j5,4 j5,5 0 0

j6,3 0 0 j6,6 0

0 j7,4 0 0 j7,7


(4.40)

respectively, where j1,1 = (−1)δp(αpκpI
∗
p4), j1,2 = −αpκpS∗p4 , j2,1 = αpκpI

∗
p4 −

(δp + mp),, j2,2 = αpκpS
∗
p4 − (δp + mp), j3,3 = (−1)(δh + αphκphI

∗
p4), j3,4 =

(−1)αshκshS
∗
h4
, j3,7 = (−1)αmhκmhS

∗
h4

, j4,4 = (−1)αshκshS
∗
h4
− (δh + ms), j5,3 =

γαphκphI
∗
p4 , j5,4 = (−1)µαsaκsaI

∗
a4 , j5,5 = (−1)(δh + ma), j6,3 = (1 − γ)αphκphI

∗
p4 ,

j6,6 = (−1)(δh +mb), j7,4 = µαsaκsaI
∗
a4 , j7,7 = αmhκmhS

∗
h4

+ (δh +mm).
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It follows that

|λI − J41| = (λ− j1,1)λ− j1,2j2,1
= λ2 − j1,1λ− j1,2j2,1
= λ2 − bλ− c

where the formulæfor S∗p4 and I∗p4 can be used to see that

b = −j1,1 = αpκpI
∗
p4 =

µpαpκp
δp +mp

> 0

and

c = −j1,2j2,1 = α2
pκ

2
pS
∗
p4I
∗
p4 > 0.

Hence if the root are real they are both negative. If the root are complex conjugates

then the real part is negative. In either case J41 is stable. Next

|λI − J42| = (λ− j6,6)



λ− j3,3 −j3,4 0 j3,7

0 λ− j4,4 0 0

−j5,3 −j5,4 λ− j5,5 0

0 j7,4 0 λ− j7,7



= (λ− j6,6)(λ− j5,5)


λ− j3,3 −j3,4 −j7,7

0 λ− j4,4 0

0 λ− j7,7 0


or

|λI − J42| = (λ− j6,6)(λ− j5,5)(λ− j4,4)(λ− j7,7)

 λ− j3,3 −j7,7

0 λ− j7,7


= Π7

k=3 (λ− jk,k)

= 0

if λ = jk,k for each k = 3, . . . , 7. Clearly j3,3, j5,5 and j6,6 are all negative. j4,4 < 0 if

αshκshS
∗
h4
−(δh−ms) < 0 and j7,7 < 0 if αmhκmhS

∗
h4
−(δh−mm) < 0. Hence the matrix

J42 is stable if αshκshS
∗
h4
−(δh−ms) = −εs < 0 and αmhκmhS

∗
h4
−(δh−mm) = −εs < 0.

These conditions are interesting because when Sh = S∗h4

I ′s(S
∗
h4 , t) =

[
αshκshS

∗
h4 − (δh −ms)

]
Is(S

∗
h4 , t) = εsIs(S

∗
h4 , t)
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and so Is(S
∗
h4
, t) > 0 then Is(S

∗
h4
, 0, t) ↓ 0 as t ↑ ∞. Is I∗s4 = 0 and Sh = S∗h4 then

I ′m(S∗h4 , 0, t) =
[
αmhκmhS

∗
h4 − (δh −mm)

]
Im(S∗h4 , t) = εmIm(S∗h4 , t)

and so if Im(S∗h4 , 0, t0) > 0 then Im(S∗h4 , 0, t) ↓ 0 as t ↑ ∞. Hence these conditions are

essentially stability conditions on I∗s4 = 0 and I∗m4
= 0 respectively. Note that

αshκsh

ηh
δh

1 + rph
− (δh −ms) < 0⇔ ηhαshκsh

δh(δh −ms)
< 1 + rph ⇔ Rsh < 1 + rph

and

Hence Z∗4 well-defined and stable if Rp > 1 and max{Rsh, Rmh} < 1+rph. Therefore

Z∗4 is LAS.

4.5.7 Stability analysis of avian flu epidemic among birds and humans combined

with mutant avian flu epidemic among humans

The disease state equilibrium point Z∗5 corresponds to the situation in which there are

avian flu epidemic among birds and humans combined with mutant avian flu epidemic

among humans,

Z∗5 = (S∗p5 , I
∗
p5 , S

∗
h5 , 0, I

∗
a5 , I

∗
b5 , I

∗
m5

). (4.41)

S∗p5 =
ηp
δp

1

Rp
> 0.

From (4.20a) it follows that

I∗p5 =
ηp

δp +mp
(1− 1

Rp
)

Hence for I∗p5 > 0 it is required that Rp > 1. it follows from (4.20f)

S∗h5 =
δh +mm

αmhκmh
> 0.

Now (4.20c) gives

I∗m5
=

δh
αmhκmh

[Rmh − (1 + rph)] .
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where rph is defined by (4.38)

rph =
αphκphηp

ηh (δp +mp)

(
1− 1

Rp

)
Therefore for I∗m5

> 0 it is necessary that Rmh > 1 + rph. Finally (4.20d) and (4.20e)

give

I∗a5 =
γηhrph

(δh +ma)Rmh
> 0

and

I∗b5 =
(1− γ)ηhrph

(δh +mb)Rmh
> 0

The condition Rp > 1 and Rmh > 1 + rph guarantees that I∗p5 > 0, I∗a5 > 0, I∗b5 > 0

and I∗m5
> 0.

Theorem 4.14. If Rp > 1 and Rmh > max{Rsh, 1 + rph} then

Z∗5 = (S∗p5 , I
∗
p5 , S

∗
h2
, 0, I∗a5 , I

∗
b5
, I∗m5

) is LAS.

Proof. At Z∗5 the key Jacobian matrices (4.25) and (4.26) becomes

J51 =

 j1,1 j1,2

j2,1 0

 (4.42)

and

J52 =



j3,3 j3,4 0 0 j3,7

0 j4,4 0 0 0

j5,3 j5,4 j5,5 0 0

j6,3 0 0 j6,6 0

j7,3 j7,4 0 0 j77


(4.43)

respectively. where j1,1 = (−1)δp(αpκpI
∗
p5), j1,2 = −αpκpS∗p5 , j2,1 = αpκpI

∗
p5 − (δp +

mp), j2,2 = αpκpS
∗
p5−(δp+mp) = 0, j3,3 = (−1)(δh+αphκphI

∗
p5+αmhκmhI

∗
m5

), j3,4 =

(−1)αshκshS
∗
h5

, j3,7 = (−1)αmhκmhS
∗
h5

, j4,4 = (−1)αshκshS
∗
h5
− (δh + ms), j5,3 =

γαphκphI
∗
p5 , j5,4 = (−1)µαsaκsaI

∗
a5 , j5,5 = (−1)(δh + ma), j6,3 = (1 − γ)αphκphI

∗
p5 ,

j6,6 = (−1)(δh + mb), j7,3 = αmhκmhI
∗
m5
, j7,4 = µαsaκsaI

∗
a4 , j7,7 = αmhκmhS

∗
h4

+

(δh +mm).

The key Jacobian matrix J51 is stable if Rp ≥ 1 because J51 = J41 and J41 is stable
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if Rp > 1. The characteristic polynomial of the second key Jacobian matrix J52 is

|λI − J52| = (λ− j6,6)



λ− j3,3 −j3,4 0 j3,7

0 λ− j4,4 0 0

−j5,3 −j5,4 λ− j5,5 0

j7,3 −j7,4 λ− j7,7



= (λ− j6,6)(λ− j5,5)


λ− j3,3 −j3,4 −j7,7

0 λ− j4,4 0

j7,3 λ− j7,7 0


= (λ− j6,6)(λ− j5,5)(λ− j4,4)(λ− j7,7)

 λ− j3,3 −j7,7

−j7,7 λ− j7,7


=
[
Π7
k=3 (λ− jk,k)

]
[λ2 + bλ+ c]

= 0

where b = (−1)(j3,3 + j7,7) and c = j3,3j7,7− j7,3j3,7. Hence |λI − J2| = 0 if and only if

λ = jk,k for each k = 4, 5, 6 or if λ2 + bλ+ c = 0. Now

b = 2δh +mm + αphκphI
∗
p5 − αmhκmhS

∗
h5 + αmhκmhI

∗
m5

= 2δh +mm + αphκph

(
ηp

δp +mp
− δp
αpκp

)
− αmhκmh

δh +mm

αmhκmh

+ αmhκmh

(
ηh

(δh +mm)
− δh
αmhκmh

−
αphκphηp

αmhκmh (δp +mp)
+

αphκphδp
αmhκmhαpκp

)
=
αmhκmhηh

δh +mm

> 0

and

c = (−1)(δh + αphκphI
∗
p5 + αmhκmhI

∗
m5

)[αmhκmhS
∗
h5 − δh +mm]

+ αmhκmhI
∗
m5
αmhκmhS

∗
h5

= −δhαmhκmh
δh +mm

αmhκmh
− αphκph

(
ηp

δp +mp
− δp
αpκp

)
(δh +mm)

+ αmhκmhI
∗
m5
αmhκmhS

∗
h5

= αmhκmhI
∗
m5
αmhκmhS

∗
h5

> 0

Since b > 0 and c > 0 it follows that the roots of the equation λ2 + bλ+ c = 0 are

complex conjugates with negative real parts or else they are both real and negative.
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The roots j5,5 and j6,6 are both negative. It follows that J52 is stable if and only if

j4,4 = αshκshS
∗
h5
− δh + ms = εs < 0. This is an interesting condition because when

Sh = S∗h5 ,

I ′(S∗h5 , t) =
[
αshκshS

∗
h5 − δh +ms

]
(I∗h5 , t) = −εsI(S∗h5 , t).

If I(S∗h5 , t) > 0 then I(S∗h5 , t) ↓ 0 as t ↑ ∞. Hence this is effectively a stability condition

for the coordinate I∗s5 = 0. Since

αshκshS
∗
h5 − (δh +ms) < 0⇔ αshκsh

(δh +mm)

αmhκmh
− (δh +ms) < 0⇔ Rsh < Rmh.

Therefore, Z∗5 is well-defined and stable if Rp > 1 and Rmh > max{Rsh, 1 + rph}.

4.6 Disease persistence among humans

If avian flu is epidemic among birds then the disease persists among humans. When

Rp > 1, non-zero lower bounds for each of the human disease states are guaranteed by

following theorem.

Lemma 4.15. If Rp(t) > 1 then there are positive lower bounds ki for Ia, Ib, Is, Im.

Proof. For Z = (Sp, Ip, Sh, Is, Ia, Ib, Im) ∈ R7
+, let

Ω+ = {Z|Sp ≥ kx, Ip ≥ ky, k ≤ n+N ≤ K},

Dh = {Z = (Sp, Ip, Sh, Is, Ia, Ib, Im) ∈ R7
+ : Sp ≥ kx, Ip ≥ ky, H = 0, k ≤ n+N ≤ K}.

Theorem 4.2 guarantees the existence of a unique solution of the full system (4.3a) −
(4.3g). Ω+ is a compact subset of R7

+ and Dh is a compact subset of Ω+. On the

other hand, the bird system (4.1a, 4.1b ), which is independent of (eq: HumanSingle

Ch41,4.2e), has a globally stable epidemic state on IntR2
+ (by Theorem 4.3). Therefore

Ω+ is forward invariant.

Consider ξ as a function of t, ξ : Ω+ → R+ is a continuously differentiable function

satisfying

• ξ(ε) = 0 if only if ε ∈ Dh

• ξ̇(ε) > 0 for all ε ∈ Dh,

where “.” denotes differentiation along an orbit.

Thus, based on Theorem 3.22, for the initial disease state Z0 ∈ Ω+ \Dh there exists

some positive constant kh such that

lim inf
t→∞

Sh(t) ≥ kh.
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Next, define

Ds = {Z = (Sp, Ip, Sh, Is, Ia, Ib, Im) ∈ R7
+ : Sp ≥ kx, Ip ≥ ky, Sh ≥ kh, Is = 0, k ≤ n+N ≤ K}.

By using a similar method, it is easy to show that there are positive constants ks, ka, kb, km

such that

lim inf
t→∞

Is(t) ≥ ks,

lim inf
t→∞

Ia(t) ≥ ka,

lim inf
t→∞

Ib(t) ≥ kb,

lim inf
t→∞

Im(t) ≥ km,

where

Ds = {Z = (Sp, Ip, Sh, Is, Ia, Ib, Im) ∈ R7
+ : Sp ≥ kx, Ip ≥ ky, Is = 0, k ≤ n+N ≤ K},

Da = {Z = (Sp, Ip, Sh, Is, Ia, Ib, Im) ∈ R7
+ : Sp ≥ kx, Ip ≥ ky, Ia = 0, k ≤ n+N ≤ K},

Db = {Z = (Sp, Ip, Sh, Is, Ia, Ib, Im) ∈ R7
+ : Sp ≥ kx, Ip ≥ ky, Ib = 0, k ≤ n+N ≤ K},

Dm = {Z = (Sp, Ip, Sh, Is, Ia, Ib, Im) ∈ R7
+ : Sp ≥ kx, Ip ≥ ky, Im = 0, k ≤ n+N ≤ K}.

Theorems 4.13 and 4.14 show that Z∗4 and Z∗5 are LAS. Lemma 4.15 shows that the

swine flu, avian flu and mutant-avian flu exist persistently in the human world even

though there is no more avian flu among birds. Thus, the uniqueness of Z∗4 and Z∗5
suggests that these equlibria are GAS. The proof for GAS seem to follow similarly to

proving GAS for other disease equilibria but the size of the problem is so large that

the computations have not been completed. However, the following corollaries would

justify the use of the lower bounds (4.16) and for (4.17) in solving the optimal disease

control problems addressed in Chapter 7.

Corollary 4.16. If Rp > 1, Rsh > 1, Rmh > 1, Rmh > Rsh, rsa ≤ 1 then Sp(t) ≥
S∗p+ , Ip(t) ≥ I

∗
p+ , Sh(t) ≥ S∗h4 , Ia(t) ≥ I

∗
a4 , Ib(t) ≥ I

∗
b4

and

Corollary 4.17. If Rp > 1, Rsh > 1, Rmh > 1, Rmh > Rsh, rsa ≤ 1 then Sp(t) ≥
S∗p+ , Ip(t) ≥ I

∗
p+ , Sh(t) ≥ S∗h2 , Ia(t) ≥ I

∗
a5 , Ib(t) ≥ I

∗
b5
, Im(t) ≥ I∗m5

.
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4.7 Simulation

4.7.1 Epidemic Parameters: Tipar case

The epidemic parameters used in the following simulation are based on the case study

of the Tipar village in Cikelet, West Java, described in Section 1.2. There is no swine

flu in Tipar and no mutant avian flue has yet appeared in Tipar. Parameters for these

aspects of the simulation are taken from available literature.

The chicken population of Tipar is about 10,000 and so this is the value taken for

Np. In a year, a typical hen produces two broods of about ten hatchlings each. Some

are sold, eaten or die of natural causes leaving about six new chickens per hen, per year.

With an average of about 10 hens per household and 556 households, the recruitment

rate per day is taken as ηp = 90.

The mean life span of chickens is two years [13], [186], [187], [188]. The rate of

natural death daily is 1
2∗365 = 0.001369863. Hence, δp = 0.001369863.

As free-range poultry, the chickens spread unrestricted trough the village by day and

shelter underneath houses at night. Thus the assumptions of even contact rates and well

mixing of the population are well satisfied by healthy birds. However, sick birds are less

mobile. The effective contact rate between infectious chickens and susceptible chickens

is taken as two or three per day. Thus, values for κp are set at 2 or 3, κp = 2, 3. The

transmission rate of avian flu among birds is estimated to be 0.2 with a mean infectious

period (incubation period) of four days [10], [16]. Therefore, the daily transmission rate

is 0.2, αp = 0.2. An infected chicken will die in about four days and so the mortality

among chickens due to avian flu is taken as mp = 0.25.

The total population of Tipar is 2010 and so Sh = Nh(0) = 2010. The mean lifespan

of villagers is about 60 years. The rate of natural death daily is 1
60∗365 ≈ 0.00005.

Hence, δh = 0.00005. Tipar is an isolated village and so there is no daily immigration

or emigration. Since Sh = Nh(0) = ηh
δh

= 2010, the birth rate for humans is ηh = 0.092.

Every day the villagers have contact with chickens. A population member has equal

change to have contact with chickens. It is assumed that the number of effective con-

tacts between an infectious bird and susceptible humans is 2 per day. The estimated

transmission rate of avian influenza from infected birds to susceptible humans in In-

donesia is 2.0× 10−4 [28], [17]. The estimated mean infectious period of humans with

avian influenza is about nine days [189], [28], [17]. The estimated mean infectious pe-

riod is about 10 days. Since 1
mp

= 10, the mortality rate of avian flu among human

is mp = 0.1. Table 1.3 shows that out of twelve human cases in Tipar: six died while

six survived; nine are suspected (without symptom) and three are confirmed (with

symptom). There is no report to say that a survivor became infected again. In the

simulation it is assumed that a survivor can remain infected but is not infectious. In

this study, the proportion of asymptomatic case is assumed to be γ = 3/4.
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The estimated transmission rate of swine flu from infectious humans with swine

flu to susceptible humans is 1.82 × 10−4 [61] [190][191]. Virulence among infectious

humans with swine flu is 0.01 per day [61]. Therefore, αsh = 1.82× 10−4 and 1
ms

= 14

or ms = 0.07 per day.

The number of effective contacts between an infectious human with swine flu and

susceptible humans per day is one, κsh = 1. Otherwise, if swine flu is epidemic κsh =

0.1. It is assumed that κmh = 1 if the mutant-avian flu is epidemic otherwise κmh = 0.1.

It is assumed that κsa = 0.1 if the swine flu epidemic otherwise κsa = 0.01.

It is estimated that the virulence of the mutant-avian flu as a result of virus recom-

bination between avian flu and swine flu viruses is lower than avian flu but much higher

than swine flu. It is assumed that the future epidemic due to mutant-avian flu is com-

parable with the severe situation of the 1918 pandemic [189]. Estimated transmission

rates of the 1918 Spain pandemic vary very widely, ranging from 1.2 to 20 [99], [192],

[7], [193]. It is assumed that the probability of mutation as a result of virus recombina-

tion of avian flu and swine flu is 4.125×10−4 per day, µ = 0.0004. This is two thirds of

the probability of virus mutation for the “sole” mutation of 5.50× 10−4 per day [125].

Following [125], it is assumed here that transmission rate of mutant-avian influenza

is 2.8 × 10−4 per day with an estimated mean infectious period of about 14 days for

humans with swine flu. Therefore, αmh = 2.8 × 10−4 and 1
mm

= 14 or mp = 0.07 per

day.

Simulation studies show that the spread of avian flu in the human world appears

later than that in the bird world. Mutant influenza-A has a bigger magnitude than

avian flu in terms of the proportion of individuals acquiring the disease. Variation

in the number of effective contacts between susceptible and infectious individuals has

significant effects on the spread of disease.

Variation on the number of effective contacts between an infectious individual and

susceptible individuals have significant effects to the spread of disease. Figure 4.2 shows

the effect of variation of the number of effective contacts between an infectious bird and

susceptible birds, κp, on the disease transmission among birds. There is no epidemic if

κp is three or less. When κp = 3 there is a small outbreak in the second day, but then

disappear. Avian flu is epidemic among birds if κp ≥ 4. The first outbreak happens

in the second day and will be followed by another outbreak about one month later.

Increasing κp will increase the concavity of the corresponding graphs. The red and

black lines intersect at about fourth and tenth days.

Figure 4.3 shows the effect of the variation of κp on disease transmission among

humans. Increasing κp will also increase the spread of the diseases among humans

except the swine flu. Figure 4.3 (a) shows increasing κp will decrease the spread of

the swine flu. The decrease on the proportion of human infectious with swine flu is

due to double co-infection with avian flu. Comparing Figure 4.3 (a) (b), (c) and (d)



4. DISEASE DYNAMICS IN A SINGLE REGION 83

Fig. 4.2: The effect of varying the number of effective contacts between an infectious bird
and susceptible birds, κp, on the dynamics of the avian flu in the bird world.
The vertical axis shows the proportion of birds with avian flu. The horizontal
axis shows the time in days. Green, blue, red and black lines are the dynamics
of avian flu among birds when κp equals to 2, 3, 4 and 5, respectively

shows that the outbreak of avian flu in the human world happens just after the time

of outbreak in the bird world. The time of outbreak of swine flu is independent to

the time of outbreak of avian flu in the bird world. The outbreak of mutant avian flu

happens just after the time of outbreak of avian flu and swine in the human world.

Comparing Figure 4.3 (a) and (b), the proportion of human infected with avian flu

but asymptomatic is higher than that of symptomatic. This is in line with reports by

World Health Organization (WHO) that the number of human cases (infected humans

with avian flu) is higher than that of being reported in [15].

Variations in κph, κsh, κsa and κmh have no effect to the dynamics of avian flu

among birds. They all all have significant effects on the spread of diseases among

humans (Figures 4.4 - 4.7). As expected, the effective number of contacts between an

infectious bird and humans for spreading avian flu from birds to humans (κph) effects the

proportion of humans with avian flu (both symptomatic and asymptomatic) more than

the proportion of people with mutant-avian flu (Figure 4.4). The number of effective

contacts between humans for spreading swine flu between humans(κsh) effects all human

groups severely (Figure 4.5) while the the number effective contacts between a human

with swine flu and asymptomatic humans with avian flu (κsa) influences the mutant

avian flu group most, as expected (Figure 46). The number of effective contacts between

humans for spreading the mutant avian flu (κmh) obviously has greatest influence on

the proportion of humans with mutant avian flu (Figure 4.7).

Figures 4.2 - 4.7 demonstrate that the effects of the number of effective contacts
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Fig. 4.3: The effect of varying the number of effective contacts between an infectious bird
and susceptible birds, κp, on the dynamics of diseases in human world. The
vertical axes show the proportion of humans with the diseases. (a) Proportion
of infected human with swine flu. (b) Proportion of infected human with avian
flu but asymptomatic. (c) Proportion of infected human with avian flu and
symptomatic. (d) Proportion of infected human with mutant-avian flu. Green,
blue, red and black lines are the dynamics of the diseases when κp is equal to
2, 3, 4 and 5, respectively. The horizontal axes show the time in days.
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Fig. 4.4: The effect of varying the number of effective contacts between an infectious
bird and susceptible human, κph, on the dynamics of the diseases in human
world. The vertical axes show the proportion of humans with the diseases.
The horizontal axes show the time in days. Green, blue, red and black lines are
the dynamics of the diseases when κph is equal to 1, 2, 3 and 4, respectively. (a)
Proportion of infected human with swine flu. (b) Proportion of infected human
with avian flu but asymptomatic. (c) Proportion of infected human with avian
flu and symptomatic. (d) Proportion of infected human with mutant-avian flu.
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Fig. 4.5: The effect of varying the number of effective contacts between an infectious
human with swine flu and susceptible human, κsh, on the dynamics of the
diseases in human world. The vertical axes show the proportion of humans
with the diseases. The horizontal axes show the time in days. Green, blue,
red and black lines are the dynamics of the diseases when κsh is equal to 1,
2, 3 and 4, respectively. (a) Proportion of infected human with swine flu. (b)
Proportion of infected human with avian flu but asymptomatic. (c) Proportion
of infected human with avian flu and symptomatic. (d) Proportion of infected
human with mutant-avian flu. The horizontal axes show the time in days.
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Fig. 4.6: The effect of varying the number of effective contacts between an infectious hu-
man with swine flu and humans infected with avian flu but asymptomatic,κsa,
on the dynamics of the diseases in human world. The vertical axes show the
proportion of humans with the diseases. The horizontal axes show the time in
days. Green, blue, red and black lines are the dynamics of the diseases when
κsa is equal to 1, 2, 3 and 4, respectively. (a) Proportion of infected human
with swine flu. (b) Proportion of infected human with avian flu but asymp-
tomatic. (c) Proportion of infected human with avian flu and symptomatic.
(d) Proportion of infected human with mutant-avian flu.
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Fig. 4.7: The effect of varying the number of effective contacts between an infectious
human with mutant-avian flu and susceptible humans ,κmh, on the dynamics
of the diseases in human world. The vertical axes show the proportion of
humans with the diseases. Green, blue, red and black lines are the dynamics
of the diseases when κmh is equal to 1, 2, 3 and 4, respectively. (a) Proportion
of infected human with swine flu. (b) Proportion of infected human with avian
flu but asymptomatic. (c) Proportion of infected human with avian flu and
symptomatic. (d) Proportion of infected human with mutant-avian flu. The
horizontal axes show the time in days.
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between susceptible and infectious individuals may be substantial even for κp which

does not involve humans directly.

4.7.2 Sensitivity Analysis

There are uncertainties in the values of the epidemic parameters. Sampling methods

and sensitivity analysis are used to determine the degree of uncertainty in the basic

reproduction numbers that is due to uncertainty in the epidemic parameters.

Each of the reproduction numbers (4.6), (4.7) (4.7) and (4.8) were simulated by

sampling a single value from each epidemic parameter’s distribution. The Latin Hy-

percube Sampling method [194] was used. For each epidemic parameter, the method

defines and stratifies a probability density function into N serial intervals with equiva-

lent probability. A single value is then selected randomly from every interval and this

is done for every parameter. In this way, an input value from each sampling interval is

used only once in the analysis but the entire parameter space is equitably sampled in

an efficient manner [195], [194] [196].

There is little information in the literature regarding distributions of the parameters

in the model. In absence of other information, each distribution was taken to be

normal centered at the parameter value used in the simulations above and with standard

deviation given by approximately one tenth of the value or 1 for discrete parameters

such as the numbers of effective contacts per unit time. The specific distributions are

as follows.

• δp ∼ N(0.1, 0.01), δh ∼ N(0.1, 0.01),

• αp ∼ N(0.041, 0.001), αph ∼ N(0.00041, 0.000041),

• αsh ∼ N(0.000182, 0.00001), αmh ∼ N(0.2, 0.009)

• κp ∼ N(3, 1) or αp ∼ N(2, 1),

• κsh ∼ N(3, 1) or κsh ∼ N(2, 1),

• κmh ∼ N(3, 1) or κmh ∼ N(2, 1),

• mp ∼ N(0.8, 0.1),ms ∼ N(0.07, 0.001),mm ∼ N(0.2, 0..9),

• Rp ∼ N(µp, σp), Rsh ∼ N(µsh, σsh), Rmh ∼ N(µmh, σmh)

• µ ∼ N(0.001, 0.0001).

The model was run 1000 times with different parameter sets sampled from the distri-

butions above.
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Equations for the basic reproduction numbers (4.6), (4.7) and (4.8) are non-linear.

Therefore it is appropriate to use the Spearman Rank Correlation Coefficients (SRCCs)

for sensitivity analysis of the basic reproduction numbers. The calculation of SRCCs

are useful for ranking the importance of the correlation between epidemic parameters

and the basic reproduction numbers.

Table 4.1 shows the SRCCs for the epidemic parameters ηp, δp, αp,mp, κp and the

basic reproduction number Rp. The first row corresponds to SRCC values when κp = 3

and Rp = 0.82. The second row corresponds to SRCC values when κp = 4 and Rp =

1.32. The table shows that κp has the biggest SRCCs to the basic reproduction number

Tab. 4.1: The Spearman Rank Correlation Coefficients for Rp and related epidemic pa-
rameters. For every parameter, there are two rows. The first row corresponds
to SRCC values when κp = 3 and Rp = 0.82. The second row corresponds to
SRCC values when κp = 4 and Rp = 1.32.

SRCCs ηp δp αp mp κp
ηp 1 0.012591 -0.029300 -0.003100 0.027533

1 -0.020150 -0.030360 0.026735 -0.062570
δp 0.012591 1 -0.021170 -0.017610 -0.002330

-0.020150 1 0.060087 0.024298 0.001436
αp -0.029300 -0.021170 1 -0.013320 -0.031380

-0.030360 0.060087 1 -0.060480 -0.015940
mp -0.003100 -0.017610 -0.013320 1 0.047320

0.026735 0.024298 -0.060480 1 0.013221
κp 0.027533 -0.002330 -0.031380 0.047320 1

-0.062570 0.001436 -0.015940 0.013221 1
Rp 0.209705 -0.201080 0.023493 -0.118070 0.931383

0.194453 -0.288710 0.041830 -0.218570 0.865198

Rp. The corresponding p-values for the SRCCs are given in Table 4.2 below. The first

row corresponds to the p-values of SRCC when κp = 3 and Rp = 0.82. The second row

corresponds to the p-values of SRCC when κp = 4 and Rp = 1.32. Table 4.2 shows that

the p-values of SRCCs for κp to Rp are zero, κp is the most significant contributor to

Rp. Therefore Rp is the most sensitive to κp. Furthermore, the Tornado plot in Figure

4.8 shows the importance of the uncertainty of each epidemic parameter in contributing

to that the variability of epidemic parameters to the basic reproduction number Rp .

Brown bars are SRCCs when κp = 3 and Rp = 0.82. Blue bars are SRCCs when κp = 4

and Rp = 1.32. κp is the most important contributor to the variability of Rp.

In the following, sensitivity analysis is carried out to determine the degree of uncer-

tainty for the basic reproduction numbers Rsh and Rmh. Table 4.3 shows that κsh has

the biggest SRCCs to the basic reproduction number Rsh. Table 4.4 shows that κsh

is the most significant contributor to Rsh. Therefore Rsh is the most sensitive to κsh.

The Tornado plot in Figure 4.9 shows that the variability of κsh is the most important

contributor to the variability of Rsh.

Table 4.5 below shows that κmh has the biggest SRCCs to the basic reproduction
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Tab. 4.2: The p-values of SRCCs for Rp and its epidemic parameters. The p-values of
SRCCs when κp = 3 and Rp = 0.82 are given in the top rows. The below rows
show the p-values of SRCCs when κp = 4 and Rp = 1.32

p-values ηp δp αp mp κp
ηp 0 0.690809 0.354568 0.921958 0.384377

0 0.524409 0.337388 0.398316 0.047937
δp 0.690809 0 0.503639 0.577920 0.941381

0.524409 0 0.057514 0.442714 0.963809
αp 0.354568 0.503639 0 0.673935 0.321523

0.337388 0.057514 0 0.055881 0.614659
mp 0.921958 0.577920 0.673935 0 0.134805

0.398316 0.442714 0.055881 0 0.676204
κp 0.384377 0.941381 0.321523 0.134805 0

0.047937 0.963809 0.614659 0.676204 0
Rp <0.000001 <0.000001 0.457976 0.000184 0

<0.000001 <0.000001 0.186237 <0.000001 0

Fig. 4.8: Tornado plot of SRCCs, indicating the importance of each parameter’s uncer-
tainty in contributing to the variability in the time to the basic reproduction
number Rp. Brown bars are SRCCs when κp = 3 and Rp = 0.82. Blue bars
are SRCCs when κp = 4 and Rp = 1.32

.

Tab. 4.3: The Spearman Rank Correlation Coefficients for Rsh and its epidemic param-
eters

SRCCs ηh δh αsh ms κsh
ηh 1 -0.003490 -0.000590 -0.021520 0.095111
δh -0.003490 1 0.010101 0.002796 -0.05293
αsh -0.000590 0.010101 1 0.009823 0.024352
ms -0.021520 0.002796 0.009823 1 0.010505
κsh 0.095111 -0.052930 0.024352 0.010505 1
Rsh 0.261014 -0.293140 0.105717 -0.587900 0.674317
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Tab. 4.4: The p-values of SRCCs for Rsh and its epidemic parameters

p-values ηh δh αsh ms κsh
ηh 0 0.912295 0.985099 0.496549 0.002616
δh 0.912295 0 0.749662 0.929624 0.094334
αsh 0.985099 0.749662 0 0.756334 0.441684
ms 0.496549 0.929624 0.756334 0 0.740006
κsh 0.002616 0.094334 0.441684 0.740006 0
Rsh <0.000001 <0.000001 0.000818 0 0

Fig. 4.9: Tornado plot of partial rank correlation coefficients, indicating the importance
of each parameter’s uncertainty in contributing to the variability in the time
to the basic reproduction number Rsh

number Rmh. Table 4.6 shows that κmh is the most significant contributor to Rmh.

Therefore Rmh is the most sensitive to κmh. The Tornado plot in Figure 4.10 shows

that the variability of κmh is the most important contributor to the variability of Rmh.

4.8 Discussion

(a) Z∗1 = (
ηp
δp
, 0, ηhδh , 0, 0, 0, 0) is well defined and stable if Rp ≤ 1, rsh ≤ 1 and rmh ≤ 1.

(b) Z∗2 = (S∗p2 , 0, S
∗
h2
, I∗s2 , 0, 0, 0) is well defined and stable ifRp ≤ 1, rsh > max{rmh, 1}.

Tab. 4.5: The Spearman Rank Correlation Coefficients for Rmh and its epidemic param-
eters

SRCCs ηh δh αmh mm κmh
ηh 1 0.025510 -0.078980 -0.009650 -0.064610
δh 0.025510 1 -0.035470 0.019286 0.049140

αmh -0.078980 -0.035470 1 -0.036180 -0.040490
mm -0.009650 0.019286 -0.036180 1 -0.037050
κmh -0.064610 0.049140 -0.040490 -0.037050 1
Rmh 0.138857 -0.228870 0.076889 -0.642560 0.654698
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Tab. 4.6: The p-values of SRCCs for Rmh and its epidemic parameters

p-values ηh δh αmh mm κmh

ηh 0 0.420288 0.012499 0.760521 0.041098
δh 0.420288 0 0.262380 0.542353 0.120421

αmh 0.012499 0.262380 0 0.252957 0.200725
mm 0.760521 0.542353 0.252957 0 0.241731
κmh 0.041098 0.120421 0.200725 0.241731 0
Rmh <0.000001 <0.000001 0.015033 0 0

Fig. 4.10: Tornado plot of partial rank correlation coefficients, indicating the importance
of each parameter’s uncertainty in contributing to the variability in the time
to the basic reproduction number Rmh

(c) Z∗3 = (S∗p3 , 0, S
∗
h3
, 0, 0, 0, I∗m3

) is well defined and stable ifRp ≤ 1, rsh > max{rsh, 1}.

(d) Z∗4 = (S∗p4 , I
∗
p4 , S

∗
h4
, 0, I∗a4 , I

∗
b4
, 0) is well defined and stable if Rp ≤ 1, rsh >

max{rsh, rmh} < 1 + rph.

(e) Z∗6 = (S∗p6 , I
∗
p6 , S

∗
h6
, 0, I∗a6 , I

∗
b6
, I∗m6

) is well defined and stable if Rp ≤ 1, rmh >

max{rsh, 1 + rph}.

The results above hold under the assumption that there is no external source of infec-

tion. An external source of infection may result in different disease dynamics behavior.

The next chapter discusses the effect of bird trading to the disease dynamics and how

to devise a screening policy to control the spread of the diseases.
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Jakarta is the biggest consumers of chicken in the country, but only a small number

of chickens are raised in the city. Chickens from Central Java are transported to West

Java and Jakarta. Some chicken in Jakarta markets are re-transported to Banten and

then to Lampung in Sumatra. On the other hand, Table 1.2 shows that DKI Jakarta

has the highest number of human cases. Nationally, the city has 50.7% of all suspected

avian flu and 25% confirmed of avian flu. This indicates that the spread of the disease

is largely due to the transport of chickens.

It has been suspected that bird transportation enhances the spread of the diseases

and may result in different dynamic behaviors of the diseases. This chapter develops

models for analyzing and interpreting the effect of bird trading on the spread of avian

flu, swine flu and mutant-avian flu.

This chapter is organized as follow. Section 5.1 describes modeling choices and

assumptions. Section 5.2 formulates a model to describe the effect of transporting

birds to the dynamics of the diseases. A model for a special case of two identical

regions is given in Section 5.3. Analytical analysis for the model is given in Sections

5.4, 5.5 and 5.6. Numerical simulations for n ≥ 2 regions are given in Section 5.7.

Section 5.8 discusses the analytical and numerical results and draws some conclusions.

5.1 Modeling choices and assumptions

Demographically, the domain of the study comprises several regions which have different

characteristics in terms population, mobility, disease transmission and capability to

administer disease controls.

The modeling choices and assumptions of Chapter 4 are adopted here. The same

notation is used for compartments and epidemic parameters, but with subscript i refer-

ring to region i. Poultry birds may move from one region to another region as a result

of bird trading. It is assumed that there is no hatching or restocking during travel.

Let θji denote the rate of transfer of poultry birds from region j to region i. Not all

incoming susceptible birds successfully reach the destination region in the state of sus-

ceptible; some become infected during travel. Let βpji and κpji denote the transmission

rate of avian flu and the number of effective contacts between an infectious bird and

susceptible birds during travel from region i to region j, respectively. Due to conditions
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during the transportation of the birds, the infection rate and the effective number of

contacts between an infectious bird and susceptible birds per unit time may be higher

during transport than in the normal circumstance. It is assumed that βpji ≥ αpi and

βpji ≥ αpj . While κpji ≥ κpi and κpji ≥ κpj . The incoming birds are assumed to fully

mix with the destination compartments of the same disease states.

The dynamics of the disease states among birds is described by

S′pi(t) =ηpi − (δpi +
∑
j 6=i

θij)Spi − αpiκpiIpiSpi +
∑
j 6=i

θji(1− βpjiκpjiIpj )Spj

I ′pi(t) =αpiκpiIpiSpi − (δpi +mpi +
∑
j 6=i

θij)Ipi +
∑
j 6=i

θji(1 + βpjiκpjiSpj ) Ipj .

(5.1)

The incoming birds are assumed to fully mix with the destination compartments of the

same disease states. An incoming infected bird is mixed with local infected birds, an

incoming susceptible bird is mixed with susceptible birds. It is assumed that humans

do not move, they remain in the same region. Therefore, a human is infected by local

infectious chickens only. The dynamics of the disease states among humans in region i

is described by

S′hi(t) =ηhi − δhiShi − αphiκphiIpiShi − αshiκshiIsiShi − αmhiκmhiImiShi ,

I ′si(t) =αshiκshiIsiShi − (δhi +msi) Isi ,

I ′ai(t) =γiαphiκphiIpiShi − µiαsaiκsaiIsiIai − (δhi +mai) Iai ,

I ′bi(t) =(1− γi)αphiκphiIpiShi − (δhi +mbi) Ibi ,

I ′mi(t) =µiαsaiκsaiIsiIai + αmhiκmhiImiShi − (δhi +mmi) Imi . (5.2)

5.2 Diseases transmission model for multi-regions

Figure 5.1 shows a schematic diagram of the compartments of bird and human popu-

lations in two regions. The disease dynamics among birds in any region is independent

of the disease dynamics among humans. Due to transportation, an infectious bird from

a region may infect humans in any region. Therefore, the disease dynamics among

humans is dependent on the disease dynamics in the bird world. Let Qn ⊆ R27n
+ be the

set of disease parameters

Qn ={q = (qi)| qi = ηpi , ηhi , δpi , δhi , αpi , αshi , αphi , αsai , αmhi , κpi , κshi ,

κphi , κsai , κmhi , µ,mpi ,mai ,mbi ,msi ,mmi , γi, θij , βpij ,κpij , i = 1, . . . , n}.

Let Ωn ⊆ R7n
+ be the set of all disease states

Ωn = {Z(t) = (Zi(t))i=1,...,n|Zi(t) = (Spi(t), Ipi(t), Shi(t), Isi(t), Iai(t), Ibi(t), Imi(t))}.
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Fig. 5.1: Compartments of humans and poultry bird populations in two regions. Solid
red lines represent local avian flu transmission, dashed red lines represent avian
flu transmission due to transporting of birds, yellow lines represent swine flu
transmission, brown lines represent transmission of mutant-avian flu.
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For a given set of epidemic parameters q ∈ Qn and an initial disease state Z0 ∈ Ωn

the dynamics of the disease state Z(t) is modeled by

S′pii(t) =ηpi − (δpi +
∑
j 6=i

θij)Spi − αpiκpiIpiSpi +
∑
j 6=i

θji(1− βpjiκpjiIpj )Spj

(5.3a)

I ′pi(t) =αpiκpiIpiSpi − (δpi +mpi +
∑
j 6=i

θij)Ipi +
∑
j 6=i

θji(1 + βpjiκpjiSpj ) Ipj ,

(5.3b)

S′hi(t) =ηhi − δhiShi − αphiκphiIpiShi − αshiκshiIsiShi − αmhiκmhiImiShi , (5.3c)

I ′si(t) =αshiκshiIsiShi − (δhi +msi) Isi , (5.3d)

I ′ai(t) =γiαphiκphiIpiShi − µiαsaiκsaiIsiIai − (δhi +mai) Iai , (5.3e)

I ′bi(t) =(1− γi)αphiκphiIpiShi − (δhi +mbi) Ibi , (5.3f)

I ′mi(t) =µiαsaiκsaiIsiIai + αmhiκmhiImiShi − (δhi +mmi) Imi , (5.3g)

Z(0) =Z0, Z0 ∈ Ωn. (5.3h)

If θij = 0 for all i, j = 1, . . . , n, then (5.3a)-(5.3g) becomes n copies of (4.3a)-(4.3g)

while Ωn becomes Ω1 for each n. Therefore, the IVP (5.3a)-(5.3h) becomes n copies of

the IVP (4.3a)-(4.3h).

The existence of a unique solution for IVP (5.3a)-(5.3h) is guaranteed by the fol-

lowing theorem.

Theorem 5.1. For any non negative initial condition Z0 ∈ Ωn, (5.3a)-(5.3g) has a

unique and bounded solution passing through the initial condition (5.3h).

Proof. (5.3a)-(5.3g) is an autonomous system. It is easy to show that the set of all

disease states Ωn and its subspace of disease free states are positively invariant under

f , the vector field (right hand side) of the system of differential equations (5.3a)-(5.3g).

Therefore, the uniqueness of the solution of IVP (5.3a), (5.3h) is guaranteed by Theorem

3.4 in Section 3.2.

5.3 Diseases transmission model for two identical regions

To be able to analyze the dynamics of the diseases analytically, consider two identical

regions, i.e., with epidemic parameters the same for each region. Denote the first region

as region 1 and the second region as region 2.

Avian flu dynamics among birds is independent of the dynamic of diseases among
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humans. The dynamics of avian flu among birds in two identical regions is

S′p1 (t) = ηp − (δp + θ)Sp1 − αpκpIp1Sp1 + θ(1− βpκpIp2)Sp2 , (5.4a)

I ′p1 (t) = αpκpIp1Sp1 − (δp +mp + θ) Ip1 + θ(1 + βpκpSp2) Ip2 , (5.4b)

S′p2 (t) = ηp − (δp + θ)Sp2 − αpκpIp2Sp2 + θ(1− βpκpIp1)Sp1 , (5.4c)

I ′p2 (t) = αpκpIp2Sp2 − (δp +mp + θ) Ip2 + θ(1 + βpκpSp1)Ip1 , (5.4d)

W (t) = W0, W0 ∈ Ω2B, (5.4e)

where W0 ∈ Ω2B is an initial disease state and

Ω2B = {W = (W1,W2) : W1 = (Sp1 , Ip1),W2 = (Sp2 , Ip2)}.

The difference between two identical regions and one region is the inclusion of the

transportation terms.

The full system (5.3a)-(5.3h) is reduced to

S′p1 (t) = ηp − (δp + θ)Sp1 − αpκpIp1Sp1 + θ(1− βpκpIp2)Sp2 , (5.5a)

I ′p1 (t) = αpκpIp1Sp1 − (δp +mp + θ) Ip1 + θ(1 + βpκpSp2) Ip2 , (5.5b)

S′h1 (t) = ηh − δhSh1 − αphκphIp1Sh1 − αshκshIs1Sh1 − αmhκmhIm1Sh1 , (5.5c)

I ′s1 (t) = αshκshIs1Sh1 − (δh +ms) Is1 , (5.5d)

I ′a1 (t) = γαphκphIp1Sh1 − µαsaκsaIs1Ia1 − (δh +ma) Ia1 , (5.5e)

I ′b1 (t) = (1− γ)αphκphIp1Sh1 − (δh +mb) Ib1 , (5.5f)

I ′m1
(t) = µαsaκsaIs1Ia1 + αmhκmhIm1Sh1 − (δh +mm) Im1 , (5.5g)

S′p2 (t) = ηp − (δp + θ)Sp2 − αpκpIp2Sp2 + θ(1− βpκpIp1)Sp1 , (5.5h)

I ′p2 (t) = αpκpIp2Sp2 − (δp +mp + θ) Ip2 + θ(1 + βpκpSp1)Ip1 , (5.5i)

S′h2 (t) = ηh − δhSh2 − αphκphIp2Sh2 − αshκshIs2Sh2 − αmhκmhIm2Sh2 , (5.5j)

I ′s2 (t) = αshκshIs2Sh2 − (δh +ms) Is2 , (5.5k)

I ′a2 (t) = γαphκphIp2Sh2 − µαsaκsaIs2Ia2 − (δh +ma) Ia2 , (5.5l)

I ′b2 (t) = (1− γ)αphκphIp2Sh2 − (δh +mb) Ib2 , (5.5m)

I ′m2
(t) = µαsaκsaIs2Ia2 + αmhκmhIm2Sh2 − (δh +mm) Im2 , (5.5n)

Z(0) = Z0, Z0 ∈ Ω2, (5.5o)

where Z0 ∈ Ω2 is an initial disease state and

Ω2 = {Z = (Zi) : Zi = (Spi , Ipi , Shi , Si, Isi , Iai , Ibi , Imi), i = 1, 2}.



5. DISEASE DYNAMICS IN MULTI-REGIONS 99

5.4 Reproduction numbers

The following basic reproduction numbers of the spread of the diseases in two identical

regions are defined by using procedures similar to those in Section 4.3. The basic

reproduction numbers for the disease dynamics among birds, (5.4a) - (5.4d), is derived

by using the same methods as in Chapter 4.

The disease state variables Y = (Sp1 , Ip1 , Sp2 , Ip2) are grouped into infected and

uninfected compartments. For this reason, the state variable will be reordered so that

the first five elements of the new state variable correspond to infected sub-populations.

The disease state vector becomes Ȳ = (Ip1 , Ip2 , Sp1 , Sp2). Under the ordered variable

Ȳ , the right hand side of system of differential equations (5.4a) - (5.4d) can be written

as

f = f̂ + f̆

where

f̂ =



αpκpIp1Sp1 + θβpκpIp2Sp2

αpκpIp2Sp2 + θβpκpIp1Sp1

−αpκpIp1Sp1 + θβpκpIp2Sp2

−αpκpIp1Sp2 + θβpκpIp1Sp1


and

f̆ =



− (δp +mp) Ip1 + θIp2

− (δp +mp) Ip2 + θIp1

ηp − δp Sp1 + θ Sp2

ηp − δp Sp2 + θ Sp1 .


.

The component f̂ models the rate of new infections, while the component f̆ models the

rates of transfer due to births, deaths, disease mortality.

In the reordered notation of the disease state variable, Ȳ , a disease state equilibria

Y ∗i can be written as (V ∗i ,W
∗
i ), where V ∗i corresponds to infected compartments V ∗i =

(I∗p1 , I
∗
p2) and W ∗1 = (S∗p1 , S

∗
p2). The disease free equilibrium state has two disease free

compartments,

V ∗ = (I∗p1 , I
∗
p2) = (0, 0).
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Only the first two elements are considered, and so

f1 = f̂1 + f̆1

where

f̂1 =

 αpκpIp1Sp1 + θβpκpIp2Sp2

αpκpIp2Sp2 + θβpκpIp1Sp1


and

f̆1 =

 − (δp +mp) Ip1 + θ Ip2

− (δp +mp) Ip2 + θ Ip1 .

 .
The Jacobian matrices of f̂1 and f̆1 are

Jf̂1 =

 αpκpSp θβpκpSp

θβpκpSp αpκpSp


and

Jf̆1
=

 (δp +mp) + θ −θ

−θ (δh +ms) + θ


respectively. It is assumed there is no infected poultry, Ip = 0. For equilibrium it is

required that S′p = 0. Having Ip = 0 and omitting the index i (5.4a) and (5.4a) become

ηp − δp S∗p0 = 0,

S∗p0 =
ηp
δp
.

At Y ∗1 = (S∗p0 , 0, S
∗
p0 , 0) = (

ηp
δp
, 0,

ηp
δp
, 0), the Jacobian matrices Jf̂1 and Jf̆1 at Y ∗1 become

F̂1 =

 ηpαpκp
δp

ηpθβpκp
δp

ηpθβpκp
δp

ηhαshκsh
δh


and

F̆1 =

 (δp +mp) + θ −θ

−θ (δp +mp) + θ,


respectively. The next generation matrix is F̂1 · F̆−1

1 (where F̆−1
1 is the inverse matrix
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of F̆1). The characteristic polynomial of the matrix is

C1 = λ

(
λ− ηp (αpκp + θβpκp)

δp (δp +mp)

)
. (5.6)

Therefore the basic reproduction number for avian flu transmission among birds is

Rpθ =
ηp (αpκp + θβpκp)
δp (δp +mp)

, (5.7)

or

Rpθ = Rp +Rpβ, (5.8)

where Rp is the basic reproduction number due to “local” avian flu transmission among

birds which is defined by (4.6)

Rp =
ηp αpκp

δp (δp +mp)
(5.9)

and Rpβ is the basic reproduction number avian flu transmission among birds during

transport

Rpβ =
ηp θβpκp

δp (δp +mp)
. (5.10)

Since a human becomes infected with avian flu virus by local infectious chickens only

and becomes infected with swine flu and mutant-avian flu viruses by local infectious

humans only, the reproduction for swine flu transmission among humans and the re-

production for mutant-avian flu transmission among humans are remain the same as

for an isolated region discussed in Chapter 4. Recall from (4.7)

Rsh =
ηh αshκsh
δh (δh +ms)

(5.11)

and from (4.8)

Rmh =
ηh αmhκmh

δh (δh +mm)
(5.12)

respectively.

5.5 Disease state equilibria

5.5.1 Disease state equilibria among poultry birds

Since humans do not infect birds, avian flu dynamics among birds is independent of the

dynamics of diseases among humans. The bird dynamical system (5.4a) - (5.4d) can be
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treated as a stand alone system. Consider first, a situation when there is no infected

poultry in either region, so that Ip1 = Ip2 = 0. For an equilibrium it is required that

S′pi = 0, i = 1, 2. Having Ip1 = 0, (5.4a) and (5.4c) become

S′p1 = 0 ⇔ ηp − (δp + θ)S∗p1 + θS∗P2
= 0,

S′p2 = 0 ⇔ ηp − (δp + θ)S∗p2 + θS∗P1
= 0.

Adding these equations, results

2ηp − δp(S∗p1 + S∗p2) = 0 ⇔ (S∗p1 + S∗p2) = 2
ηp
δp
⇔ S∗pi =

ηp
δp
, i = 1, 2.

therefore

S∗pi = S∗p0 =
ηp
δp
.

The disease state

E∗0 = (S∗p0 , 0, S
∗
p0 , 0) (5.13)

is referred to as the disease free state of the bird world.

In an endemic situation Ipi 6= 0, i = 1, 2. For an endemic equilibrium, it is required

from (5.4b) and (5.4d),

I ′p1 = 0 ⇔
[
αpκpS

∗
p1 − (δp +mp + θ)

]
I∗p1 + θ

[
1 + βpκpS∗p2

]
I∗p2 = 0

I ′p2 = 0 ⇔
[
αpκpS

∗
p2 − (δp +mp + θ)

]
I∗p2 + θ

[
1 + βpκpS∗p1

]
I∗p1 = 0

Adding these equations result in

(αpκp + θβpκpI∗p1)S∗p1 + (αpκp + θβpκpI∗p2)S∗p2 − (δp +mp)(I
∗
p1 + I∗p2) = 0.

Only balanced equilibria are reported in this study. They are well behaved and asymp-

totically stable. Their impact to the spread of the diseases in human world are mea-

surable. Therefore, it is assumed here that, S∗p1 = S∗p1 = S∗p⊕ and I∗p1 = I∗p1 = I∗p⊕ . At

a disease state equilibria

E∗⊕ = (S∗p⊕ , I
∗
p⊕ , S

∗
p⊕ , I

∗
p⊕),

it is required that

(αpκp + θβpκp)S∗p⊕I
∗
p⊕ − (δp +mp)I

∗
p⊕ = 0.
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Since I∗p⊕ 6= 0,

(αpκp + θβpκp)S∗p⊕ − (δp +mp) = 0 ⇔ .S∗p⊕ =
(δp +mp)

(αpκp + θβpκp)

S∗pi = S∗p⊕ =
(δp +mp)

(αpκp + θβpκp)
=
ηp
δp

1

Rpθ
, i = 1, 2.

Given ηp(αpκp + θβpκp)− δp (δp +mp) > 0,

I∗p⊕ =
ηp(αpκp + θβpκp)− δp (δp +mp)

(αpκp + θβpκp) (δp +mp)
,

=
ηp

δp +mp
− δp

(αpκp + θβpκp)

=
ηp

δp +mp

[
1− δp(δp +mp)

ηp(αpκp + θβpκp)

]
=

ηp
δp +mp

(1− 1

Rpθ
), i = 1, 2.

The system dynamic (5.4a) - (5.4d) has an endemic state

E∗⊕ = (S∗p⊕ , I
∗
p⊕ , S

∗
p⊕ , I

∗
p⊕), (5.14)

where

S∗p⊕ =
ηp
δp

1

Rpθ
,

I∗p⊕ =
ηp

δp +mp
(1− 1

(Rpθ − 1)
).

In the case of θ = 0, there is no movement of poultry birds, the endemic disease

equilibrium (5.14) becomes

E∗+ = (e∗+, e
∗
+) (5.15)

where

e∗+ = (S∗p+ , I
∗
p+)

with

S∗p+ =
δp +mp

αpκp
=
ηp
δp

1

Rp
,

I∗p+ =
ηp

δp +mp
− δp
αpκp

=
ηp

δp +mp
(1− 1

(Rp − 1)
).
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is the endemic equilibrium of single isolated region (4.1a)-(4.1a).

Consider the initial disease states Spi(0) ≥ 0 and Ipi(0) ≥ 0 for i = 1, 2. It is

assumed that 0 ≤ θ ≤ 1. The last term in equation (5.4a) and (5.4c) satisfy

θSpi − θβpκpIpiSpi ≥ 0, i = 1, 2

for any Spi ≥ 0 and Ipi ≥ 0 when 0 ≤ θ ≤ 1. This is reasonable from a biological

point of view, since the first term θSpi represents the susceptible poultry birds leaving

region i and the second denotes poultry birds in θβpκpIpiSpi becoming infected during

travel from region i to j. Hence, the number (or proportion) of infected poultry birds

during travel is at most the same as the number (or proportion) of susceptible birds

who travel.

5.5.2 Disease state equilibria for the full system

The dynamics of the diseases among humans does depend on the dynamics of avian

flu among birds. Therefore, to study the dynamics of the diseases among humans, it is

convenient to consider the full dynamical system (5.3a)-(5.3h). It has five disease state

equilibria

Z∗iθ = (Z∗it, Z
∗
it), i = 1, . . . 5

where

Z∗it = (S∗piθ , I
∗
piθ
, S∗hiθ , I

∗
siθ
, I∗aiθ , I

∗
biθ
, I∗miθ).

The first three happen when there is disease free in bird world I∗piθ = 0, 1, 2, 3 and last

two happen when there is disease endemic among birds, I∗piθ 6= 0, i = 4, 5.

Consider first when there is disease free in bird world I∗piθ = 0, 1, 2, 3. By omitting

index i, for equilibrium it is required that S′p = 0. Having Ip = 0, (5.5a ) and (5.5h )

become ηp − δp S∗p0 = 0, therefore

S∗p0 =
ηp
δp
.

For an equilibrium, it is required that S′hi = 0 i = 1, 2. Having Isi = Iai = Ibi = Imi = 0

and by omitting index i, f (5.5b ) and (5.5j ) become ηh − δp S∗h0 = 0, therefore

S∗h0 =
ηh
δh
.

Z∗1θ = (Z∗1t, Z
∗
1t) (5.16)
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where Z∗1t is given by

Z∗1t = (S∗p1θ , 0, S
∗
h1θ
, 0, 0, 0, 0),

where

S∗p1θ = S∗p0 =
ηp
δp
,

S∗h1θ =
ηh
δh
.

Z∗1t is the disease free equilibrium in each region and Z∗1θ is referred to as the bird

disease free state of (5.3a)-(5.3h). Second, the swine flu epidemic equilibrium is

Z∗2θ = (Z∗2t, Z
∗
2t). (5.17)

Z∗2t = Z∗2 , where Z∗2 is the swine flu epidemic equilibrium in each region given in (4.29).

Hence,

Z∗2t = (S∗p2θ , 0, S
∗
h2θ
, I∗s2θ , 0, 0, 0, 0), (5.18)

where

S∗p2θ = S∗p0 =
ηp
δp
,

S∗h2θ =
ηh
δh

1

Rsh
,

I∗s2θ =
ηh

δh +ms
(1− 1

Rsh
).

Third, the mutant-avian flu epidemic equilibrium is

Z∗3θ = (Z∗3t, Z
∗
3t). (5.19)

Z∗3t = Z∗3 , where Z∗3 is the mutant-avian flu epidemic equilibrium in each region given

in (4.33). Hence,

Z∗3t = (S∗p3θ , 0, S
∗
h3θ
, 0, 0, 0, I∗m3θ

)

is the mutant-avian flu epidemic equilibrium in each region. Here

S∗p3θ = S∗p0 =
ηp
δp
,

S∗h3θ =
ηh
δh

1

Rmh
,

I∗m3θ
=

ηh
δh +mm

(1− 1

Rmh
).
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When Rpθ > 1 (avian flu is epidemic among birds) there are two disease state

equilibria, Z∗4θ and Z∗5θ.

Z∗4θ = (Z∗4t, Z
∗
4t) (5.20)

where

Z∗4t = Z∗4 = (S∗p4θ , I
∗
p4θ
, S∗h4θ , 0, I

∗
a4θ
, I∗b4θ , 0). (5.21)

Z∗4 is the disease equilibrium state of each region when there are avian flu epidemics

among birds and humans. Here

S∗p4θ = S∗p⊗ =
ηp
δp

1

Rpθ
,

I∗p4θ = I∗p⊗ =
ηp

δp +mp
(1− 1

Rpθ
).

S∗h4θ =
ηh

δh + αphκphI∗p4θ

=
ηh

δh + αphκph
ηp

δp+mp

(
1− 1

Rpθ

)
=

ηh
δh

1 +
αphκphηp
ηh (δp+mp)

(
1− 1

Rpθ

)
=

ηh
δh

1 + rphθ

where rphθ is defined as

rphθ =
αphκphηp

ηh (δp +mp)

(
1− 1

Rpθ

)
. (5.22)

I∗a4θ =
γαphκphI

∗
p4S
∗
h4θ

δh +ma

=
γ

δh +ma
(ηh − δhS∗h4θ)

=
γηh

δh +ma

(
1− 1

1 + rph

)
> 0
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and

I∗b4θ =
(1− γ)αphκphI

∗
p4θ
S∗h4θ

δh +mb

=
(1− γ)

δh +mb
(ηh − δhS∗h4)

=
(1− γ)ηh
δh +mb

(
1− 1

1 + rph

)
> 0

The condition Rpθ > 1 means rphθ > 0 and hence guarantees that I∗p4θ > 0, S∗h4θ >

0, I∗a4θ > 0 and I∗b4θ > 0.

The fifth equilibrium state is

Z∗5θ = (Z∗5t, Z
∗
5t) (5.23)

where

Z∗5t = Z∗5 = (S∗p5θ , I
∗
p5θ
, S∗h5θ , 0, I

∗
a5θ
, I∗b5θ , I

∗
m5θ

). (5.24)

Z∗5 is the disease state equilibrium of each region when there are avian flu epidemics

among birds and humans and also an epidemic of mutant-avian flu among humans.

Here

S∗p5θ = S∗p⊗ =
ηp
δp

1

Rpθ
,

I∗p5θ = I∗p⊗ =
ηp

δp +mp
(1− 1

Rpθ
).

Hence for I∗p5θ > 0 it is required that Rpθ > 1. It follows from (4.20f)

S∗h5θ =
δh +mm

αmhκmh
> 0.

Now (4.20c) gives

I∗m5θ
=
ηh −

(
δh + αphκphI

∗
p5θ

)
S∗h5θ

αmhκmhS
∗
h5θ

=
ηh −

[
δh + αphκph

ηp
δh+mm

(1− 1
Rpθ

)
]
δh+mm
αmhκmh

δh +mm

=
δh

αmhκmh

[
αmhκmhηh
δh(δp +mm)

− 1−
αphκphηh
δh(δp +mp)

(1− 1

Rpθ
)

]
=

δh
αmhκmh

[Rmh − (1 + rph)] .
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where rphθ is defined by (4.38)

rphθ =
αphκphηp

ηh (δp +mp)

(
1− 1

Rpθ

)
.

Therefore for I∗m5θ
> 0 it is necessary that Rmh > 1 + rphθ. Finally (4.20d) and (4.20e)

give

I∗a5θ =
γαphκphI

∗
p5θ
S∗h5θ

δh +ma

=
γαphκph

ηp
δp+mp

(1− 1
Rpθ

) δh+mm
αmhκmh

δh +ma

=
γηhrph

(δh +ma)Rmh
> 0

and

I∗b5θ =
(1− γ)αphκphI

∗
p5θ
S∗h5θ

δh +mb

=
(1− γ)αphκph

ηp
δp+mp

(1− 1
Rpθ

) δh+mm
αmhκmh

δh +mb

=
(1− γ)ηhrph

(δh +mb)Rmh
> 0

Following the previous result on disease persistence in human world, Lemma 4.15

in Section 4.6, a disease free state among birds in region 1 would not necessarily stop

the disease from spreading among humans; the disease among humans in region 1 may

disappear (disease free in both bird and human world), there could be a swine flu

epidemic, a mutant-avian flu epidemic, or epidemics of all human diseases except avian

flu.

5.6 Stability analysis of disease state equilibria

Reorder disease state variables

Z = (Sp1 , Ip1 , Sh1 , Is1 , Ia1 , Ib1 , Im1 , Sp2 , Ip2 , Sh2 , Is2 , Ia2 , Ib2 , Im2)

into

Z̄ = (Sp1 , Ip1 , Sp2 , Ip2 , Sh1 , Is1 , Ia1 , Ib1 , Im1 , Sh2 , Is2 , Ia2 , Ib2 , Im2).
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In this new variable, (5.5a)-(5.5n) becomes

S′p1 (t) = ηp − (δp + θ)Sp1 − αpκpIp1Sp1 + θ(1− βpκpIp2)Sp2 , (5.25a)

I ′p1 (t) = αpκpIp1Sp1 − (δp +mp + θ) Ip1 + θ(1 + βpκpSp2) Ip2 , (5.25b)

S′p2 (t) = ηp − (δp + θ)Sp2 − αpκpIp2Sp2 + θ(1− βpκpIp1)Sp1 , (5.25c)

I ′p2 (t) = αpκpIp2Sp2 − (δp +mp + θ) Ip2 + θ(1 + βpκpSp1)Ip1 , (5.25d)

S′h1 (t) = ηh − δhSh1 − αphκphIp1Sh1 − αshκshIs1Sh1 − αmhκmhIm1Sh1 , (5.25e)

I ′s1 (t) = αshκshIs1Sh1 − (δh +ms) Is1 , (5.25f)

I ′a1 (t) = γαphκphIp1Sh1 − µαsaκsaIs1Ia1 − (δh +ma) Ia1 , (5.25g)

I ′b1 (t) = (1− γ)αphκphIp1Sh1 − (δh +mb) Ib1 , (5.25h)

I ′m1
(t) = µαsaκsaIs1Ia1 + αmhκmhIm1Sh1 − (δh +mm) Im1 , , (5.25i)

S′h2 (t) = ηh − δhSh2 − αphκphIp2Sh2 − αshκshIs2Sh2 − αmhκmhIm2Sh2 , (5.25j)

I ′s2 (t) = αshκshIs2Sh2 − (δh +ms) Is2 , (5.25k)

I ′a2 (t) = γαphκphIp2Sh2 − µαsaκsaIs2Ia2 − (δh +ma) Ia2 , (5.25l)

I ′b2 (t) = (1− γ)αphκphIp2Sh2 − (δh +mb) Ib2 , (5.25m)

I ′m2
(t) = µαsaκsaIs2Ia2 + αmhκmhIm2Sh2 − (δh +mm) Im2 , (5.25n)

The Jacobian matrix of (5.25a)-(5.25n) at Z̄iθ∀i = 1, . . . , 5 is given by

Jiθ =


Jiθ1 O1 O1

J4 Jiθ2 O3

J5 O3 Jiθ3

 fori = 1, . . . , 5. (5.26)

Jiθ1 =



j1,1 j1,2 j1,3 j1,4

j2,1 j2,2 j2,3 j2,4

j3,1 j3,2 j3,3 j3,4

j4,1 j4,2 j4,3 j4,4


, (5.27)

where j1,1 = −δp − θ − αpκpIp1 , j1,2 = −αpκpSp1 , j1,3 = θ(1 − βpκpIp2), j1,4 =

−θβpκpSp2 , j2,1 = αpκpIp1 , j2,2 = αpκpSp1 − (δp + mp) − θ, j2,3 = θβpκpIp2 ,

j2,4 = θ(1 + βpκpSp2), j3,1 = θ(1 − βpκpIp1), j3,2 = −θβpκpSp1 , j3,3 = −δp − θ −
αpκpIp2 , j3,4 = −αpκpSp2 , j4,1 = θβpκpIp1 , j4,2 = θ(1 + βpκpSp1), j4,3 = αpκpIp2 ,
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j4,4 = αpκpIp2 − (δp +mp)− θ(1 + βpκpSp1).

Jiθ2 =



j5,5 j5,6 0 0 j5,9

j6,5 j6,6 0 0 0

j7,5 j7,6 j7,7 0 0

j8,5 0 0 j8,8 0

j9,5 j9,6 j9,7 0 j9,9


, (5.28)

Jiθ3 =



j10,10 j10,11 0 0 j10,14

j11,10 j11,11 0 0 0

j12,10 j12,11 j12,12 0 0

j13,10 0 0 j13,13 0

j14,10 j14,11 j14,12 0 j14,14


, (5.29)

where j5,5 = j10,10 = −δh − αphκphIp1 − αshκshIs − αmhκmhIm, j5,6 = j10,11 =

−αshκshSh1 , j5,9 = j10,14 = −αmhκmhSh1 , j6,5 = j11,10 = −αshκshIs, j6,6 = j11,11 =

αshκshSh1 − (δh + ms), j7,5 = j12,10 = γaαphκphIp1 , j7,6 = j12,11 = −µαsaκsaIa,
j7,7 = j12,12 = −µαsaκsaIs1 − (δh + ma), j8,5 = j13,10 = (1 − γa)αyhκphIp1 , j8,8 =

j13,13 = −(δh + mb), j9,5 = j14,10 = αmhκmhIm1 , j9,6 = j14,11 = µαsaκsaIa, j9,7 =

j14,12 = µαsaκsaIs1 , j9,9 = j14,14 = αmhκmhSh1 − (δh +mm).

J4 =



0 j5,2 0 0

0 0 0 0

0 j7,2 0 0

0 j8,2 0 0

0 0 0 0


, J5 =



0 0 0 j10,4

0 0 0 0

0 0 0 j12,4

0 0 0 j13,4

0 0 0 0


,

where j5,2 = j10,4 = −αphκphSh1 , j7,2 = j12,4 = γaαphκphSh1 , j8,2 = j13,4 = (1 −
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γa)αyhκphSh1 . O1, O2 and O3 are zero matrices

O1 =



0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0


, O2 =



0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0


.

J1, J2 and J3 are the key Jacobian matrices or principal minors of the Jacobian matrix

J given in (5.26). The Jacobian matrix is stable at an equilibrium point Z∗iθ, i = 1, . . . 6

if and only if the key Jacobian matrices are stable at Z∗iθ (by Corollary 3.26).

5.6.1 Stability analysis of the disease free equilibrium

The first disease equilibrium (i = 1) is the disease free equilibrium, Z∗1θ = (Z∗1t, Z
∗
1t)

where Z∗1t = (
ηp
δp
, 0, ηhδh , 0, 0, 0, 0). Stability analysis of Z∗1θ = (Z∗1t, Z

∗
1t) is given as follows.

Theorem 5.2. If Rpθ < 1, Rsh ≤ 1, Rmh ≤ 1, rph ≤ 1, then Z∗1θ is LAS.

Proof. At E∗0 = (
ηp
δp
, 0,

ηp
δp
, 0, ), first key Jacobian matrix is

J1θ1 = J1(E∗0) =



j1,1 j1,2 j1,3 j1,4

0 j2,2 0 j2,4

0 j3,2 j3,3 j3,4

0 j4,2 0 j4,4


,

where j1,1 = −δp − θ, j1,2 = −αpκp ηpδp , j1,3 = θ, j1,4 = −θβpκp ηpδp , j2,1 = 0,

j2,2 = αpκp
ηp
δp
− (δp + mp) − θ, j2,3 = 0, j2,4 = θ(1 + βpκp ηpδp ), j3,1 = θ, j3,2 =

−θβpκp ηpδp , j3,3 = −δp−θ, j3,4 = −αpκp ηpδp , j4,1 = 0, j4,2 = θ(1+βpκp ηpδp ), j4,3 = 0,

j4,4 = −(δp +mp)− θ(1 + βpκp ηpδp ).

The characteristic polynomial of J1θ1 is

C1θ = (λ−mp(R0 − 1))2 (λ+ δp)(λ+ (δp + 2θ))

Hence, the key Jacobian matrix J1θ1 is stable if R0θ < 1. The key Jacobian matrix J1θ2
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and J1θ3 are the same as the key Jacobian matrix (4.28),

J1θ2 = J1θ2 = J12 =



j3,3 j3,4 0 0 j3,7

0 j4,4 0 0 0

0 0 j5,5 0 0

0 0 0 j6,6 0

0 0 0 0 j7,7


,

where j3,3 = −δh, j3,4 = (−1)αshκshS
∗
h1θ

, j3,7 = (−1)αmhκmhS
∗
h1θ

, j4,4 = αshκshS
∗
h1θ
−

(δh+ms), j5,5 = (−1)(δh−ma), j6,6 = (−1)(δh−mb), j7,7 = αmhκmhS
∗
h1θ
−(δh+mm),

j8,1 = −δp, j8,2 = − (δp +mp) Rpθ, j9,2 = j9,9 = (δp +mp) (Rpθ − 1). Recall some re-

sults from Sub-section 4.5.3 that J11 is proven to be stable if Rp ≤ 1 and J12 is proven

to be stable if Rsh ≤ 1 and Rmh ≤ 1. Since J1θ1 = J11 and Rp ≤ Rpθ, therefore J1θ1 is

stable if Rpθ ≤. Since J1θ2 = J1θ2 = J12 therefore J1θ2 = J1θ2 are stable if Rsh ≤ 1 and

Rmh ≤ 1. Therefore Z∗1θ is well defined and stable if Rp < 1, Rsh ≤ 1 and Rmh ≤ 1.

This result means that disease eradication is possible for a sufficient small parameter

βp when the both regions are disease free without traveling (that is, Rpθ for small

βp when Rp < 1). From 5.8, if βp = 0 and Rp < 1 holds, then infectious diseases

should disappear in both regions. However, the disease free state among birds does not

guarantee a disease free state among humans. The following are three possible disease

equilibria.

5.6.2 Stability analysis of swine flu epidemic equilibrium in both regions

The swine flu epidemic equilibrium is (5.17)

Z∗2θ = (Z∗2t, Z
∗
2t)

where

Z∗2t = (S∗p2θ , 0, S
∗
h2θ
, I∗s2θ , 0, 0, 0, 0),

is the swine flu epidemic equilibrium in each region. Here

S∗p2θ = S∗p0 =
ηp
δp
,

S∗h2θ =
ηh
δh

1

Rsh
,

I∗s2θ =
ηh

δh +ms
(1− 1

Rsh
).
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Theorem 5.3. If Rpθ < 1 and Rsh > max{Rmh, 1} then the swine flu epidemic equi-

librium Z∗2θ is LAS.

Proof. At Z̄∗2θ the Jacobian matrix (5.26) becomes

J2θ = J (Z̄∗2θ) =


J2θ1 O1 O1

J4 J2θ2 O3

J5 O3 J2θ3

 .
J2θ1 = J1θ1, so from the last Sub-section, J2θ1 is table if and only if Rpθ < 1.

The second and third key Jacobian matrices J2θ2 = J2θ3, are the same as the key

Jacobian matrix given in (4.31)

J2θ2 = J2θ3 = J12 =



j3,3 j3,4 0 0 j3,7

j4,3 0 0 0 0

0 0 j5,5 0 0

0 0 0 j6,6 0

0 0 j7,5 0 j7,7


where j3,3 = (−1)(δh +αshκshI

∗
s2θ

), j3,4 = (−1)αshκshS
∗
h2θ

, j37 = (−1)αmhκmhS
∗
h2θ

,

j4,3 = (−1)αshκshI
∗
s2θ

, j5,5 = (−1)
[
µαshκshI

∗
s2θ

+ (δh +ma)
]
, j6,6 = (−1)(δh +mb),

j7,5 = (−1)[µαsaκsaI
∗
s2θ

, j7,7 = αmhκmhS
∗
h2θ

+ (δh +mm).

Recall some results from Sub-section 4.5.4 that J21 is proven to be stable if Rp ≤ 1

and J12 is proven to be stable if Rsh > max{Rmh, 1}. Since J2θ1 = J21 and Rp ≤ Rpθ,

then J2θ1 is stable if Rpθ ≤ 1 Since J2θ2 = J1θ3 = J22 therefore J2θ2 = J1θ3 are stable

if Rsh > max{Rmh, 1}.

5.6.3 Stabilty analysis of mutant-avian flu epidemic equilibrium

The mutant avian flu epidemic equilibrium, Z∗3β, corresponds to the situation in which

there are no birds or humans infected by avian flu and no humans infected by swine

flu but there are humans infected by mutant-avian flu. By using the definitions of the

basic reproduction numbers in Section 4.3,

Z∗3θ = (Z∗3t, Z
∗
3t), (5.30)

with

Z∗3t = (S∗p3θ , 0, S
∗
h3θ
, 0, 0, 0, I∗m3θ

),
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where

S∗p3θ = S∗p0 =
ηp
δp

S∗h3θ =
ηh
δh

1

Rmh
,

I∗m3θ
=

ηh
δh +mm

(1− 1

Rmh
).

Theorem 5.4. If Rpθ < 1 and Rmh > max{Rsh, 1} then Z∗3θ is LAS.

Proof. At Z̄∗3θ the Jacobian matrix (5.26) becomes

J3θ = J (Z̄∗3θ) =


J3θ1 O1 O1

J4 J3θ2 O3

J5 O3 J3θ3

 .
J3θ1 = J1θ1, so J3θ1 is table if and only if Rpθ < 1.

The second and third key Jacobian matrices J3θ2 = J3θ3, are the same as J32, the

key Jacobian matrix given in (4.40),

J3θ2 = J3θ3 = J32 =



j3,3 j3,4 0 0 j3,7

0 j4,4 0 0 0

0 0 j5,5 0 0

0 0 0 j6,6 0

j7,5 0 0 0 j7,7


, fork = 1, . . . , 4,

where j1,1 = (−1)δp, j1,2 = −αpκpS∗p3θ j2,2 = −αpκpS∗p3θ − (δp + mp), j3,3 =

(−1)(δh + αmhκmhI
∗
m3

), j3,4 = (−1)αshκshS
∗
h3θ
, j3,7 = (−1)αmhκmhS

∗
h3

, j4,4 =

(−1)αshκshS
∗
h3θ
− (δh + ms), j5,5 = (−1)(δh + ma), j6,6 = (−1)(δh + mb), j7,3 =

(−1)αmhκmhI
∗
m3θ

, j7,7 = αmhκmhS
∗
h3θ
− (δh +mm).

Recall some results from Sub-section 6.6.3 that J31 is proven to be stable if Rpθ1

and J32 is proven to be stable if Rmh > max{Rsh, 1}. Since J3θ1 and Rp ≤ Rpθ < 1

therefore J3θ1 are stable if Rpθ < 1. Since J3θ2 = J3θ3 = J32 therefore J3θ2 and J3θ3 are

stable if Rmh > max{Rsh, 1}.

5.6.4 Stability analysis of avian-flu epidemic equilibrium.

The disease state when there are avian flu epidemics among birds and humans, Z∗4θ, is

Z∗4θ = (Z∗4t, Z
∗
4t) (5.31)



5. DISEASE DYNAMICS IN MULTI-REGIONS 115

with

Z∗4t = (S∗p4θ , I
∗
p4θ
, S∗h4θ , 0, I

∗
a4θ
, I∗b4θ , 0),

where

S∗p4θ =
δp +mp

αpκp
=
ηp
δp

1

Rp
> 0

I∗p4θ =
ηp

δp +mp
(1− 1

Rpθ
)

S∗h4θ =

ηh
δh

1 + rph

where rph is defined as (4.38),

rphθ =
αphκphηp

ηh (δp +mp)

(
1− 1

Rpθ

)
. (5.32)

I∗a4 =
γηh

δh +ma

(
1− 1

1 + rphθ

)
,

and

I∗ab =
(1− γ)ηh
δh +mb

(
1− 1

1 + rphθ

)
.

Theorem 5.5. If Rpθ > 1, Rpθ ≤ 2Rp and max{Rsh, Rmh} < 1 + rph then Z∗4θ =

(Z∗4t, Z
∗
4t) is LAS.

Proof. At Z̄∗4θ the Jacobian matrix (5.26) becomes

J4θ = J (Z̄∗4θ) =


J4θ1 O1 O1

J4 J4θ2 O3

J5 O3 J4θ3

 .
From (5.33)

J4θ1 =



j1,1 j1,2 j1,3 j1,4

j2,1 j2,2 j2,3 j2,4

j3,1 j3,2 j3,3 j3,4

j4,1 j4,2 j4,3 j4,4


,

where j1,1 = −δp − θ − αpκpIp4θ , j1,2 = −αpκpSp4θ , j1,3 = θ(1 − βpκpIp2), j1,4 =

−θβpκpSp2 , j2,1 = αpκpIp4θ , j2,2 = αpκpSp4θ−(δp+mp)−θ, j2,3 = θβpκpIp2 , j2,4 =
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θ(1+βpκpSp4θ), j3,1 = θ(1−βpκpIp4θ), j3,2 = −θβpκpSp4θ , j3,3 = −δp−θ−αpκpIp4θ ,
j3,4 = −αpκpSp4θ , j4,1 = θβpκpIp1 , j4,2 = θ(1 + βpκpSp4θ), j4,3 = αpκpIp2 ,

j4,4 = αpκpIp4θ − (δp +mp)− θ(1 + βpκpSp4θ).

Denote the partition matrix J4θ1 as

J4θ1 =

 A B

B A

 (5.33)

where

A =

 −δp − θ − αpκpIp4θ −αpκpSp4θ

αpκpIp4θ αpκpSp4θ − (δp +mp)− θ


and

B =

 θ(1− βpκpIp4θ) −θβpκpSp4θ

θβpκpIp4θ θ(1 + βpκpSp4θ)


At E∗⊕

S∗p4θ = S∗p⊗ =
ηp
δp

1

Rpθ
,

I∗p4θ = I∗p⊗ =
ηp

δp +mp
(1− 1

Rpθ
)

A =

 −δp − θ − αpκp
ηp

(δp+mp)(1− 1
Rpθ

) −αpκp ηpδp
1
Rpθ

αpκp
ηp

(δp+mp)(1− 1
Rpθ

) αpκp
ηp
δp

1
Rpθ
− (δp +mp)− θ


=

 −δp − θ −
Rp
δp

(1− 1
Rpθ

) − Rp
(δp+mp)

1
Rpθ

Rp
δp

(1− 1
Rpθ

) 1
(δp+mp)

Rp
Rpθ
− (δp +mp)− θ



and

B =

 θ(1− βpκp ηp
(δp+mp)(1− 1

Rpθ
)) −θβpκp ηpδp

1
Rpθ

θβpκp ηp
(δp+mp)(1− 1

Rpθ
) θ(1 + βpκp ηpδp

1
Rpθ

)


=

 θ − Rpβ
δp

(1− 1
Rpθ

) − Rpβ
(δp+mp)

1
Rpθ

Rp
δp

(1− 1
Rpθ

) θ +
Rp

(δp+mp)
1
Rpθ

)

 .



5. DISEASE DYNAMICS IN MULTI-REGIONS 117

At E∗⊕, the eigen-values of matrix J4θ1 is identical to those A1 +A2 and A1−A2 where

A+B =

 −δp −
Rpθ
δp

(1− 1
Rpθ

) − 1
(δp+mp)

2Rp
δp

(1− 1
Rpθ

) 2
(δp+mp)

Rp
Rpθ
− (δp +mp)


and

A−B =

 −δp − 2θ − (Rpβ−Rp)
δp

(1− 1
Rpθ

) − (Rpβ−Rp)
(δp+mp)

1
Rpθ

0 −2θ − (δp +mp)

 .
First, consider the matrix A+B. Trivially tr(A+B) < 0. From (5.7),

(ηp (αpκp + θβpκp))
1

Rpθ
− δp (δp +mp) = 0.

Since Rpθ > 1, hence

(ηp (αpκp + θβpκp))
1

R2
pθ

− δp (δp +mp) < 0. (5.34)

. Therefore the determinant of A+B

det(A+B) > 0.

Hence the eigen values of matrix A+B have negative real parts. Since 0 ≤ β ≤ 1, 0 ≤
κ ≤ 1 and Rpθ > 1, (5.34) results in

tr(A−B) <

(
(αpκp − θβpκp)

1

R2
pθ

−mp

)
< 0.

In addition det(A − B) > 0 when Rpθ ≤ 2Rp. Therefore, the eigen values of matrix

A − B have negative real parts. Since the eigen values of matrices A + B and A − B
have negative real parts at E∗4θ = (S∗p4θ, I

∗
p4θ, S

∗
p4θ, I

∗
p4θ), the key Jacobian matrix J4θ1

is stable when Rpθ ≤ 2Rp.

The second and third key Jacobian matrices

J4θ2 = J4θ3 =



j3,3 j3,4 0 0 j3,7

0 j4,4 0 0 0

j5,3 j5,4 j5,5 0 0

j6,3 0 0 j6,6 0

0 j7,4 0 0 j7,7


for k = 1, . . . 4
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where j1,1 = (−1)δp(αpκpI
∗
p4θ

), j1,2 = −αpκpS∗p4θ , j2,1 = αpκpI
∗
p4θ
− (δp + mp),

j2,2 = αpκpS
∗
p4θ
−(δp+mp) = 0, j3,3 = (−1)(δh+αphκphI

∗
p4θ

), j3,4 = (−1)αshκshS
∗
h4θ

,

j3,7 = (−1)αmhκmhS
∗
h4θ

, j4,4 = (−1)αshκshS
∗
h4θ
− (δh + ms), j5,3 = γαphκphI

∗
p4θ

,

j5,4 = (−1)µαsaκsaI
∗
a4θ

, j5,5 = (−1)(δh + ma), j6,3 = (1 − γ)αphκphI
∗
p4θ

, j6,6 =

(−1)(δh +mb), j7,4 = µαsaκsaI
∗
a4θ

, j7,7 = αmhκmhS
∗
h4θ

+ (δh +mm).

Next for the other key Jacobian matrices, B4k, k = 1, . . . , 4. Results from Sub-

section 4.5.6 show that

|λI − J4θ2| = |λI − J4θ3| = Π7
k=3 (λ− jk,k) = 0

with jk,k, i = 1, . . . 7 are all real negatives. Furthermore, the matrix J4θ2 and J4θ3 are

stable if

αshκsh

ηh
δh

1 + rphθ
− (δh −ms) < 0⇔ ηhαshκsh

δh(δh −ms)
< 1 + rphθ

⇔ Rsh < 1 + rphθ

and

αmhκsh

ηh
δh

1 + rphθ
− (δh −mm) < 0⇔ ηhαmhκmh

δh(δh −mm)
< 1 + rphθ

⇔ Rmh < 1 + rphθ.

Therefore Z∗4θ well-defined and stable if Rpθ > 1 and max{Rsh, Rmh} < 1 + rphθ.

Therefore Z∗4 is LAS.

5.6.5 Stability analysis of avian flu epidemic among birds and humans combined

with mutant avian flu epidemic among humans

The disease state equilibrium point Z∗5 corresponds to the situation in which there are

avian flu epidemic among birds and humans combined with mutant avian flu epidemic

among humans,

Z∗5θ = (Z∗5t, Z
∗
5t) (5.35)

with

Z∗5t = (S∗p5θ , I
∗
p5θ
, S∗h5θ , 0, I

∗
a5θ
, I∗b5θ , I

∗
m5θ

),

where

S∗p5θ =
ηp
δp

1

Rpθ
.
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From (4.20a) it follows that

I∗p5θ =
ηp

δp +mp
(1− 1

Rpθ
),

S∗h5θ =
δh +mm

αmhκmh

Now (4.20c) gives

I∗m5θ
=

δh
αmhκmh

[Rmh − (1 + rphθ)] .

where rphθ is defined by (5.32)

rphθ =
αphκphηp

ηh (δp +mp)

(
1− 1

Rpθ

)
.

Therefore for I∗m5θ
> 0 it is necessary that Rmh > 1 + rphθ. Finally (4.20d) and (4.20e)

give

I∗a5θ =
γηhrph

(δh +ma)Rmh
> 0

and

I∗b5θ =
(1− γ)ηhrph

(δh +mb)Rmh
.

The condition Rpθ > 1 and Rmh > 1+rph guarantees that I∗p5θ > 0, I∗a5θ > 0, I∗b5θ > 0

and I∗m5θ
> 0.

Theorem 5.6. If Rpθ > 1, Rpθ ≤ 2Rp and Rmh > max{Rsh, 1 + rph} then Z∗5θ =

(Z∗5t, Z
∗
5t) is LAS.

Proof. At Z̄∗5θ the Jacobian matrix (5.26) becomes

J5θ = J (Z̄∗5θ) =


J5θ1 O1 O1

J4 J5θ2 O3

J5 O3 J5θ3

 .

The first key Jacobian matrix is given by (5.33)

J5θ1 =

 A B

B A


Results from the last section show that at E∗⊕ the key Jacobian matrix J5θ1 is stable
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when Rpθ ≤ 2Rp. and

J4θ2 = J4θ3 =



j3,3 j3,4 0 0 j3,7

0 j4,4 0 0 0

j5,3 j5,4 j5,5 0 0

j6,3 0 0 j6,6 0

j7,3 j7,4 0 0 j77


fork = 1, . . . , 4

where j1,1 = (−1)δp(αpκpI
∗
p5θ

), j1,2 = −αpκpS∗p5θ , j2,1 = αpκpI
∗
p5θ
− (δp + mp),

j2,2 = αpκpS
∗
p5 − (δp + mp), j3,3 = (−1)(δh + αphκphI

∗
p5 + αmhκmhI

∗
m5θ

), j3,4 =

(−1)αshκshS
∗
h5θ

, j3,7 = (−1)αmhκmhS
∗
h5θ

, j4,4 = (−1)αshκshS
∗
h5θ
− (δh + ms),

j5,3 = γαphκphI
∗
p5θ

, j5,4 = (−1)µαsaκsaI
∗
a5θ

, j5,5 = (−1)(δh + ma), j6,3 = (1 −
γ)αphκphI

∗
p5θ

, j6,6 = (−1)(δh + mb), j7,3 = αmhκmhI
∗
m5θ

, j7,4 = µαsaκsaI
∗
a5θ

,

j7,7 = αmhκmhS
∗
h5θ

+ (δh +mm).

A result from Sub-section 5.6.4 show that the key jacobian matrix J4θ1 is stable

at E∗⊕ when Rpθ ≤ 2Rp. Hence, the key jacobian matrix J5θ1 is stable at E∗⊕) when

Rpθ ≤ 2Rp.

Next for the other key Jacobian matrix, J5θ2. Results from Sub-section 4.5.6 show

that

|λI − J5θ2| = |λI − J5θ3| =
[
Π7
k=3 (λ− jk,k)

]
[λ2 + bλ+ c] = 0

where

b =
αmhκmhηh

δh +mm
> 0

and

c = αmhκmhI
∗
m5
αmhκmhS

∗
h5 > 0

If I(S∗h5θ , t) > 0 then I(S∗h5θ , t) ↓ 0 as t ↑ ∞. Hence this is effectively a stability

condition for the coordinate I∗s5θ = 0. Since

αshκshS
∗
h5θ
− (δh +ms) < 0⇔ αshκsh

(δh +mm)

αmhκmh
− (δh +ms) < 0⇔ Rsh < Rmh,

Therefore, Z∗5θ is well-defined and stable if Rp > 1 and Rmh > max{Rsh, 1 + rphθ}.

A small transmission rate βp is harmful to disease eradication since Rpθ > Rp for

βp > 0. The following stability analysis is for disease state equilibria when Rpθ > 1 that

leads to an endemic situation in both regions. If infected birds can travel and there is
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transport-related infection such that Rpθ > 1 and Rpθ ≤ 2Rp, then the endemic steady

state appears in two regions and becomes stable.

5.7 Simulation

Theorems 5.2, 5.3, 5.4, 5.5 and 5.6 show that the disease dynamics of (5.5a)-(5.5n) is

dependent on the values of reproduction numbers Rpθ, Rsh and Rmh.

Similar to sensitivity analysis in Section 4.7,

• Rpθ is most sensitive to the change of αp, κp, βp,κp,

• Rsh is most sensitive to the change of αsh, κsh,

• Rmh is most sensitive to the change of αmh, κmh.

The effect of disease transmission during transport due to bird trading is analyzed.

In relation with avian flu, Central Java, West Java, Jakarta, Banten and Lampung

are five most prominent provinces in Indonesia [197]. Chickens from Central Java are

transported by trucks to West Java, Jakarta and banten. Some chickens in Jakarta

markets are re-transported to Lampung in Sumatra which is separated from Java by

Sunda strait. All destination can be reached in a day except Lampung.

Figure 5.2 shows that the outbreak starts in Central Java then West Java, Jakarta,

Banten and Lampung, respectively. Jakarta has the most infected birds due to the

fact that Jakarta is the biggest consumer of poultry birds and the transport of birds is

focused on supplying Jakarta.

The proportion of infected birds in Central Java and West Java increased in the

beginning then decreasing in the end. Meanwhile the proportion of infected birds in

Jakarta and Banten are increasing even though these regions initially have a very small

proportion of infected birds.

The sum of all the infectious birds over the five provinces Central Java, West Java,

Jakarta, Banten and Lampung clearly reflects the timing and magnitude of the con-

tributions from each province (Fig. 5.3). The initial increase is the contribution from

Central Java. By Fig. 5.2(a), the maximum is reached in the first day but the sum now

increases slowly due to the initial contributions from West Java, Jakarta and Banten.

The combined increase is then very rapid as the outbreak takes hold strongly in these

provinces and starts to diminish at about day 3. However the outbreak in Lampung

then dominates to push the sum to its final maximum at around day 4.

The proportion of human cases of avian flu in each provinces follows the trend of the

proportion of infected birds in the provinces. Fig. 5.4 shows that West Java, Jakarta

and Banten have higher proportion of infected humans with mutant-avian flu. This is

confirmed in Table 1.2. The mutant-avian flu outbreak in each region appears later

than avian flu but has a greater proportional magnitude than avian flu (Fig. 5.5)
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Fig. 5.2: The proportion of infected birds in the provinces. The horizontal axis is time
in days. (a), (b), (c), (d) and (e) are the proportion of infected birds in Central
Java, West Java, Jakarta, Banten and Lampung respectively.

5.8 Discussion

Equation (5.8) shows that even a small transmission rate βp > 0 is harmful to disease

eradication since Rpθ > Rp for 0 < βp ≤ 1. On the contrary, the transmission rate

βp > 1 leads to an endemic situation in both regions. In fact, if βp = 0 and Rp < 1

holds, then the infectious diseases should disappear in both regions.

The following are all possible combination values of Rp, Rpθ and their implication

to avian flu dynamics among birds in both regions.

• If Rpθ < 1, Rp < 1 then birds in both regions eventually become free of avian flu.

• If Rpθ > 1 but Rp < 1 then birds remain free of avian flu when both regions are

isolated. However, transport-related infection will lead to the disease becoming

endemic at both regions.
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Fig. 5.3: Sum of proportions of infected birds in the provinces of Central Java, West
Java, Jakarta, Banten and Lampung.

• If Rpθ > 1 and Rp > 1 then avian flu will be endemic among birds even if both

regions are isolated. Transport-related infection will increase the magnitude of

avian flu endemic if the regions are not isolated.

Bird transport is a significant factor for the spread of the diseases not only in the

bird world but also in the human world. Bird transport may cause epidemics among

birds and humans even in a region which is initially disease free. If avian flu is already

endemic among birds in both regions, then bird trading will intensify the spread of the

diseases among bird and humans.

Consider the disease state Z∗4β as a function of βp.

S∗p⊗ → S∗p⊕ and I∗p⊗ → I∗p⊕ as βp → 0.

Since
∂S∗

p⊗
∂βp

< 0 and
∂I∗p⊗
∂βp

> 0, hence

S∗p⊗ < Sp⊕ , I
∗
p⊗ > Ip⊕ when βp > 0,

S∗p⊗ = Sp⊕ , Ip⊗ = Ip⊕ when βp = 0.

This implies that at a steady state, the total proportion of susceptible birds in the

both regions decreases with the increase of βp, while the proportion of infected birds

increases with increases of βp. Furthermore

∂

∂βp
(Sp⊗ + Ip⊗) < 0 when mp > δp

and

Sp⊗ + Ip⊗ ≤ Sp⊕ + Ip⊕ .
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Fig. 5.4: The proportion of human cases (infected humans with avian flu) in the five
provinces. The horizontal axis is time in days. (a), (b), (c), (d) and (e) are
the proportion of human case in Central Java, West Java, Jakarta, Banten and
Lampung respectively.

Hence the final size of bird populations decreases with the increase of βp. Finally,

∂

∂βp
(

I∗p⊗
Sp⊗ + Ip⊗

) > 0,

the proportion of the infected birds increases with the increase of βp. On the contrary,

the proportion of the susceptible birds decreases with the increase of βp. Increasing

I∗p⊗ (the proportion of infected birds) will decrease S∗h4 (the proportion of susceptible

humans) and increase I∗a4 and I∗b4 (the proportions of infected humans having avian

flu without symptom and with symptom, respectively). Similar analysis of Z∗5θ shows

that increasing βp will decrease the proportion of susceptible humans and increase the

proportion of infected humans with avian flu and mutant-avian flu. This suggests that

infection due to bird transport increases the potential of epidemics among birds and
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Fig. 5.5: The proportion of infected human with Mutant avian-flu in the provinces. The
horizontal axis is time in days. (a), (b), (c), (d) and (e) are the proportion of
infectious humans with Mutant avian-flu in Central Java, West Java, Jakarta,
Banten and Lampung respectively.

therefore increases the spread of the disease among humans.

On the contrary, the transmission rate β leads to an endemic situation in both cities.

In fact, if β = 0 and Rp < 1 hold then infectious disease should disappear in both cities

from (5.8). Further, if infected birds can travel and there is transport-related infection

such that Rpθ > 1 and Rpθ ≤ 2Rp then the endemic steady state Z∗ appears in two

cities become stable.



6. BORDER SCREENING

Border screening and subsequent culling of diseased birds is an attractive option for

managing avian flu in Indonesia. This conclusion results from four important consid-

erations developed in this thesis.

First, avian flu does not seem to spread between humans. This was discussed in

Section 2.2.2. Thus preventing outbreaks or mitigating outbreaks requires reducing the

effective contacts between infected poultry and humans.

Second, culling birds generally is unacceptable because so many poor Indonesian

families rely heavily on raising a few chickens or other poultry. Large scale treatment of

infected birds is impractical and much too expensive. Large scale screening programs

applied to family poultry flocks across the nation are also impractical and too expensive.

These cultural and economic aspects were described in Chapter 1.

Third, the analysis in Section 4.7 shows that the effective rates of transmission are

important to the spread of the diseases.

Fourth, the results in Chapter 5 indicate that transporting poultry contributes

substantially to the rate of transmission of avian flu among birds and subsequently to

humans and hence to the likelihood of mutations causing possible highly virulent and

contagious mutant-avian flu in humans.

Border screening of poultry focuses screening to a limited number of major trans-

portation arteries and so becomes practical to install. Sick birds could be culled without

severe impact on the family poultry stock. Since this takes place in a few specific loca-

tions, setting up proper infrastructure for disposing of culled birds is also feasible.

This chapter develops models for analyzing and interpreting the effect of border

screening and the culling of infected birds to the spread and control of the diseases

among humans.

This chapter is organized as follows. Section 6.1 describes modeling choices and

assumptions taken. Section 6.2 formulates a general border screening model. The

model is described and analyzed with regard to the effect of border screening and

culling of infected birds to the dynamics of the diseases. For the special case of two

identical regions, analysis on the effect of border screening to the dynamics of diseases

among birds and humans are given in Section 6.3. Numerical simulations for n ≥ 2

regions are given in Section 6.7. Section 6.8 discusses the analytical and numerical

results and draws some conclusions.
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6.1 Modeling choices and assumptions

The modeling choices and assumptions of Chapter 5 are adopted here. The same

notation is used for compartments and epidemic parameters. In addition, it is assumed

that screening procedures are taken after the transported birds arrive at the destination

region i. Let σi denote the probability of successful border screening at region i. It is

assumed that the screening processes never falsely identify a susceptible individual as

being infected (no false positives) but some sick birds are not detected (false negatives).

When an incoming infected bird is identified, it will be isolated. Let Ci denotes the

isolated poultry birds in region i. The quarantine birds are treated with recovery rate

rp and some are culled and disposed with a rate of cp. The dynamics of the disease

state among birds is described by

S′pi(t) =ηpi − (δpi +
∑
j 6=i

θij)Spi − αpiκpiIpiSpi

+
∑
j 6=i

θji(1− βpjiκpjiIpj )Spj + rcCpi

I ′pi(t) =αpiκpiIpiSpi − (δpi +mpi +
∑
j 6=i

θij)Ipi +
∑
j 6=i

(1− σi)θji

× (1 + βpjiκpjiSpj ) Ipj ,

C ′pi(t) =
∑
j 6=i

σiθji(1 + βpjiκpjiSpj ) Ipj − (rp +mc)Cpi (6.1)

As in Chapter 5, it is assumed that the movement of humans between regions is

negligible. The dynamics of the disease states among humans is described by (5.2),

S′hi(t) = ηhi − δhiShi − αphiκphiIpiShi − αshiκshiIsiShi − αmhiκmhiImiShi ,

I ′si(t) = αshiκshiIsiShi − (δhi +msi) Isi ,

I ′ai(t) = γiαphiκphiIpiShi − µiαsaiκsaiIsiIai − (δhi +mai) Iai ,

I ′bi(t) = (1− γi)αphiκphiIpiShi − (δhi +mbi) Ibi ,

I ′mi(t) = µiαsaiκsaiIsiIai + αmhiκmhiImiShi − (δhi +mmi) Imi . (6.2)

The disease dynamics among birds in any region is independent of the disease dynamics

among humans. However, the disease dynamics among humans is dependent to disease

dynamics in the bird world.
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6.2 Border screening: the full model

The set of disease parameters becomes ∈ Qnσ ⊆ R32n
+ for the full system becomes

Qnσ = {q = (qi)| qi = ηpi , ηhi , δpi , δhi , αpi , rpi ,mci , αshi , αphi , αsai , αmhi , κpi , κshi , κphi ,

κsai , κmhi , µi,m− pi,mai ,mbi ,msi ,mmi , γi, θij , σi, βpij ,κpij , i = 1, . . . , n}.

Let Z(t) ∈ Ωn ⊆ R8n
+ be the set of all disease states

Ωnσ ={Z(t) = (Zi(t)) : Zi(t) = (Spi(t), Ipi(t), Cpi(t), Shi(t), Isi(t), Iai(t), Ibi(t),

Imi(t)), i = 1, . . . , n}.

For a given set of epidemic parameters q ∈ Qnσ, the dynamics of the disease state Z(t)

is described by the IVP

S′pi(t) = ηpi − (δpi +
∑
j 6=i

θij)Spi − αpiκpiIpiSpi +
∑
j 6=i

θji(1− βpjiκpjiIpj )Spj

+ rpCpi , (6.3a)

I ′pi(t) =αpiκpiIpiSpi − (δpi +mpi +
∑
j 6=i

θij)Ipi

+
∑
j 6=i

(1− σi)θji(1 + βpjiκpjiSpj ) Ipj , (6.3b)

C ′pi(t) =
∑
j 6=i

σiθji(1 + βpjiκpjiSpj ) Ipj − (rp +mc)Cpi , (6.3c)

S′hi(t) =ηhi − δhiSpi − (pai + pbi)αphiκphiIpiShi − αshiκshiIsiShi

− αmhiκmhiImiShi , (6.3d)

I ′si(t) =αshiκshiIsiShi − (δhi +msi) Isi , (6.3e)

I ′ai(t) =paiαphiκphiIpiShi − µiαsaiκsaiIsiIai − (δhi +mai) Iai , (6.3f)

I ′bi (t) =(1− γi)αphiκphiIpiShi − (δhi +mbi) Ibi , (6.3g)

I ′mi(t) =µiαsaiκsaiIsiIai + αmhiκmhiImiShi − (δhi +mmi) Imi , (6.3h)

Z(0) =Z0, Z0 ∈ Ωnσ. (6.3i)

If σi = 0 for all i = 1, . . . , n, then (6.3a)-(6.3i) becomes (5.3a)-(5.3h) and Ωnσ

becomes Ωn. Therefore, the IVP (6.3a)-(6.3i) becomes (5.3a)-(5.3h).

The existence of a unique solution for IVP (6.3a)-(6.3i) is guaranteed by the follow-

ing theorem.

Theorem 6.1. For any nonnegative initial condition Z0 ∈ Ωnσ, (6.3a)-(6.3h) has a

unique and bounded solution satisfying the initial condition (6.3i).

Proof. Comparing between (6.3a)-(6.3i) and (5.3a)-(5.3h), σ is the only additional pa-
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rameter and Ci are the additional disease states. The state of all disease states Ωnσ

and its subspace of disease free states are positively invariant under f , the vector field

(right hand side) of the system of differential equations (6.3a)-(6.3h). Therefore, the

uniqueness of the solution is guaranteed by Theorem 3.4 in Section 3.2.

6.3 Disease dynamics in two identical regions: the effect of border screening

Avian flu dynamics among birds is independent of the dynamics of diseases among

humans. For an initial disease state W0 ∈ Ω2B, the dynamics of avian flu among birds

in two identical regions is

S′p1 (t) =ηp − (δp + θ)Sp1 − αpκpIp1Sp1 + θ(1− βpκpIp2)Sp2 + rpCp1 , (6.4a)

I ′p1 (t) =αpκpIp1Sp1 − (δp +mp + θ) Ip1 + (1− σ)θ(1 + βpκpSp2) Ip2 , (6.4b)

C ′p1(t) =σθ(1 + βpκpSp2) Ip2 − (rp +mc)Cp1 , (6.4c)

S′p2 (t) =ηp − (δp + θ)Sp2 − αpκpIp2Sp2 + θ(1− βpκpIp1)Sp1 + rpCp2 , (6.4d)

I ′p2 (t) =αpκpIp2Sp2 − (δp +mp + θ) Ip2 + (1− σ)θ(1 + βpκpSp1)Ip1 , (6.4e)

C ′p2(t) =σθ(1 + βpκpSp1) Ip1 − (rp +mc)Cp2 , (6.4f)

W (0) =W0, Z0 ∈ Ω2B, (6.4g)

where

Ω2B = {W = (W1,W2) : W1 = (Sp1 , Ip1 , Cp1),W2 = (Sp2 , Ip2 , Cp2)}.

The full system (6.3a), (6.3i) is reduced to

S′p1 (t) =ηp − (δp + θ)Sp1 − αpκpIp1Sp1 + rpCp1 + θ(1− βpκpIp2)Sp2 , (6.5a)

I ′p1 (t) =αpκpIp1Sp1 − (δp +mp + θ) Ip1 + (1− σ)θ(1 + βpκpSp2) Ip2 , (6.5b)

C ′p1(t) =σθ(1 + βpκpSp2) Ip2 − (rp +mc)Cp1 , (6.5c)

S′h1 (t) =ηh − δhShp − (pa + pb)αphκphIp1Sh1 − αshκshIs1Sh1

− αmhκmhIm1Sh1 , (6.5d)

I ′s1 (t) =αshκshIs1Sh1 − (δh +ms) Is1 , (6.5e)

I ′a1 (t) =paαphκphIp1Sh1 − µαsaκsaIs1Ia1 − (δh +ma) Ia1 , (6.5f)

I ′b1 (t) =pbαphκphIp1Sh1 − (δh +mb) Ib1 , (6.5g)

I ′m1
(t) =µαsaκsaIs1Ia1 + αmhκmhIm1Shp − (δh +mm) Im1 , (6.5h)

S′p2 (t) =ηp − (δp + θ)Sp2 − αpκpIp2Sp2 + rpCp2 + θ(1− βpκpIp1)Sp1 , (6.5i)

I ′p2 (t) =αpκpIp2Sp2 − (δp +mp + θ) Ip2 + (1− σ)θ(1 + βpκpSp1)Ip1 , (6.5j)
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C ′p2(t) =σθ(1 + βpκpSp1) Ip1 − (rp +mc)Cp2 , (6.5k)

S′h2 (t) =ηh − δhShs − (pa + pb)αphκphIp2Sh2 − αshκshIs2Sh2

− αmhκmhIm2Sh2 , (6.5l)

I ′s2 (t) =αshκshIs2Sh2 − (δh +ms) Is2 , (6.5m)

I ′a2 (t) =paαphκphIp2Sh2 − µαsaκsaIs2Ia2 − (δh +ma) Ia2 , (6.5n)

I ′b2 (t) =pbαphκphIp2Sh2 − (δh +mb) Ib2 , (6.5o)

I ′m2
(t) =µαsaκsaIs2Ia2 + αmhκmhIm2Sh2 − (δh +mm) Im2 (6.5p)

Z(0) =Z0, Z0 ∈ Ω2, (6.5q)

where Z0 ∈ Ω2 is an initial disease state and

Ω2 = {Z = (Zi) : Zi = (Spi , Ipi , Cpi , Shi , Isi , Iai , Ibi , Imi), i = 1, 2}.

6.4 Reproduction numbers

The following basic reproduction numbers for the spread of the diseases in two identical

regions are defined by using procedures similar to those in Sections 4.3 and 5.3.

F̂1 =



ηpαpκp
δp

0 (1− σ)
ηpθβpκp

δp
0

0 0 σ
ηpθβpκp

δp
0

(1− σ)
ηpθβpκp

δp
0 ηhαshκsh

δh
0

ηpσβpκp
δp

0 0 0


and

F̆1 =



(δp +mp) + θ 0 −(1− σ)θ 0

0 rp + cp −σθ 0

−(1− σ)θ 0 (δp +mp) + θ 0

−σθ 0 0 rp + cp


respectively. The next generation matrix F̂1 · F̆−1

1 (where F̆−1
1 is the inverse matrix of

F̆1). The characteristic polynomial of the matrix is

C1 = λ3

(
λ− ηp (αpκp + (1− σ)θβpκp)

δp (δp +mp + σθ)

)
. (6.6)

Therefore the basic reproduction number for the avian flu transmission among birds is
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The basic reproduction number for the spread of avian flu among birds is

Rpθσ =
ηp (αpκp + (1− σ)θβpκp)

δp (δp +mp + σθ)
, (6.7)

In the case of σ = 0 (there is no border screening), the basic reproduction number in

(6.7) becomes (5.10)

Rpθ = Rp +Rpβ, (6.8)

where Rpβ is the basic reproduction number during transport which is defined by (5.10),

Rpβ =
ηp θβpκp

δp (δp +mp)
. (6.9)

and Rp is the basic reproduction number for “local” avian flu transmission among birds

in an isolated region which is defined by (4.6)

Rp =
ηp αpκp

δp (δp +mp)
. (6.10)

Comparing (6.7) and (6.8), Rpθσ = Rpθ when σ = 0. Furthermore, since
∂Rpθσ
∂σ < 0,

entry screening σ for 0 < σ ≤ 1 decreases the basic reproduction number. Therefore

culling is beneficial for disease eradication.

Since a human is infected avian flu virus by local infectious chickens only and

is infected swine flu and mutant-avian flu viruses by local infectious humans only,

the reproduction for swine flu transmission among humans and the reproduction for

mutant-avian flu transmission among humans remain the same as for an isolated region

discussed in Chapter 4. Recall from (4.7)

Rsh =
ηh αshκsh
δh (δh +ms)

(6.11)

and from (4.8)

Rmh =
ηh αmhκmh

δh (δh +mm)
(6.12)

respectively.
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6.5 Disease state equilibria

6.5.1 Disease state equilibria among birds

Consider first a situation when there is no infected poultry at both regions Ip1 = Ip2 = 0.

For an equilibrium it is required that S′pi = C ′pi = 0 i = 1, 2, such that

S′p1 = 0 ⇔ ηp − (δp + θ)Sp1 + rpCp1 + θSp2 = 0, (6.13a)

C ′p1(t) = 0 ⇔ −(rp +mc)Cp1 = 0, (6.13b)

S′p2 = 0 ⇔ ηp − (δp + θ)Sp2 + rpCp2 + θSp1 = 0, (6.13c)

C ′p2(t) = 0 ⇔ −(rp +mc)Cp2 = 0, (6.13d)

(6.13e)

Since (rp +mc) 6= 0 then Cp1 = Cp2 = 0, adding equations (6.13a) and (6.13c) results

2ηp − δp(S∗p1 + S∗p2) = 0 ⇔ (S∗p1 + S∗p2) = 2
ηp
δp
⇔ S∗pi =

ηp
δp
, i = 1, 2.

therefore

S∗pi = S∗p0 =
ηp
δp
, i = 1, 2.

E∗0 = (S∗p0 , 0, 0, S
∗
p0 , 0, 0) (6.14)

is referred to as the disease free state of bird world.

In endemic situation Ipi 6= 0, i = 1, 2. For endemic equilibrium, it is required

S′p1 = 0 ⇔ ηp − (δp + θ)Sp1 − αpκpIp1Sp1 + θ(1− βpκpIp2)Sp2 + rpCp1 , (6.15a)

I ′p1 = 0 ⇔ αpκpIp1Sp1 − (δp +mp + θ) Ip1 + (1− σ)θ(1 + βpκpSp2) Ip2 = 0,

(6.15b)

C ′p1 = 0 ⇔ σθ(1 + βpκpSp2) Ip2 − (rp +mc)Cp1 = 0, (6.15c)

S′p1 = 0 ⇔ ηp − (δp + θ)Sp2 − αpκpIp2Sp2 + θ(1− βpκpIp1)Sp1 + rpCp2 = 0,

(6.15d)

I ′p2 = 0 ⇔ αpκpIp2Sp2 − (δp +mp + θ) Ip2 + (1− σ)θ(1 + βpκpSp1)Ip1 = 0,

(6.15e)

C ′p2 = 0 ⇔ σθ(1 + βpκpSp1) Ip1 − (rp +mc)Cp2 = 0, . (6.15f)
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Adding equations (6.15b) and (6.15e) results in

(αpκp + θβpκpI∗p1)S∗p1 + (αpκp + (1− σ)θβpκpI∗p2)S∗p2

− (δp +mp)(I
∗
p1 + I∗p2) = 0.

Only balanced equilibria are reported in this study. They are well behaved and

asymptotically stable. So their impact to the spread of the diseases in human world is

measurable. Therefore, it is assumed here that S∗p1 = S∗p1 = S∗p⊗ , I∗p1 = I∗p1 = I∗p⊗ and

C∗p1 = C∗p1 = C∗p⊗ . At a disease state equilibria

E∗⊗ = (S∗p⊗ , I
∗
p⊗ , C

∗
p⊗ , S

∗
p⊗ , I

∗
p⊗ , C

∗
p⊗),

it is required that

(αpκp + (1− σ)θβpκp)S∗p⊗I
∗
p⊗ − (δp +mp)I

∗
p⊗ = 0.

Since I∗p⊗ 6= 0, hence

(αpκp + (1− σ)θβpκp)S∗p⊗ − (δp +mp) = 0

⇔ .S∗p⊗ =
(δp +mp)

(αpκp + (1− σ)θβpκp)

Therefore, by using the definition of the basic reproduction number Rpθσ in (6.7)

S∗pi = S∗p⊗ =
(δp +mp)

(αpκp + (1− σ)θβpκp)
=
ηp
δp

1

Rpθσ
, i = 1, 2.

Given ηp(αpκp + (1− σ)θβpκp)− δp (δp +mp) > 0,

I∗pi = I∗p⊗ =
ηp(αpκp + (1− σ)θβpκp)− δp (δp +mp)

(αpκp + (1− σ)θβpκp) (δp +mp)
,

=
ηp

δp +mp
− δp

(αpκp + (1− σ)θβpκp)

=
ηp

δp +mp

[
1− δp(δp +mp)

ηp(αpκp + (1− σ)θβpκp)

]
=

ηp
δp +mp

(1− 1

Rpθσ
), i = 1, 2.
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Substituting S∗pi and I∗pi into (6.15c) or (6.15f) results in

Cpi =
σθ(1 + βpκpSpi) Ipi

(rp +mc)
,

=
σθ(1 + βpκp ηpδp

1
Rpθσ

)
ηp

δp+mp
(1− 1

Rpθσ
)

(rp +mc)
,

=
σθ

(rp +mc)
+

ηp
(rp +mc)

Rpβ
Rpθσ

(1− 1

Rpθσ
),

The system dynamic (6.4a) - (6.4f) has an endemic state

E∗⊗ = (S∗p⊗ , I
∗
p⊗ , C

∗
p⊗ , S

∗
p⊗ , I

∗
p⊗ , C

∗
p⊗), (6.16)

where

S∗p⊗ =
ηp
δp

1

Rpθσ
,

I∗p⊗ =
ηp

δp +mp
(1− 1

Rpθσ
)

C∗p⊗ ==
σθ

(rp +mc)
+

ηp
(rp +mc)

Rpβ
Rpθσ

(1− 1

Rpθσ
)

where Rpθσ is given in (6.7),

Rpθσ =
ηp (αpκp + (1− σ)θβpκp)

δp (δp +mp + σθ)
.

and Rpβ is given in (6.9)

Rpβ =
ηp θβpκp

δp (δp +mp)
.

6.5.2 Disease state equilibria for the full system

The disease dynamic (6.5a)-(6.27n) has five disease steady states equilibria

Z∗iθσ = (Z∗is, Z
∗
is)

where

Z∗is = (S∗piσ , I
∗
piσ , C

∗
piσ , S

∗
hiσ
, I∗siσ , I

∗
aiσ , I

∗
biσ
, I∗miσ), i = 1, . . . 5,

of which three happen when there is a disease free bird world I∗piσ = 0, 1, 2 and the

other two happen when there is disease endemic among birds, I∗piσ 6= 0, 1, 2. First,

the disease free equilibrium in which there are no epidemics among birds or humans in
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either regions

Z∗1σ = (Z∗1s, Z
∗
1s) (6.17)

where Z∗1s is the disease free equilibrium in each region. Z∗1s is given by

Z∗1s = (S∗p1σ , 0, 0, S
∗
h1σ , 0, 0, 0, 0),

where

S∗p1σ = S∗p0 =
ηp
δp
,

S∗h1σ = S∗h1
ηh
δh
.

Second, the swine flu epidemic equilibrium

Z∗2σ = (Z∗2s, Z
∗
2s) (6.18)

where

Z∗2s = (S∗p2σ , 0, 0, S
∗
h2σ , I

∗
s2σ , 0, 0, 0), (6.19)

is the swine flu epidemic equilibrium in each region. Here

S∗p2σ = S∗p0 =
ηp
δp

S∗h2σ =
ηh
δh

1

Rshσ
,

I∗s2σ =
ηh

δh +ms
(1− 1

Rsh
).

Third, the mutant-avian flu epidemic equilibrium

Z∗3σ = (Z∗3s, Z
∗
3s) (6.20)

where

Z∗3s = (S∗p3σ , 0, 0, S
∗
h3σ , 0, 0, 0, I

∗
m3σ

) (6.21)

is the mutant-avian flu epidemic equilibrium in each region. Here

S∗p3σ = S∗p0 =
ηp
δp

S∗h3σ =
ηh
δh

1

Rmh
,

I∗m3σ
=

ηh
δh +mm

(1− 1

Rmh
).
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When Rpθσ > 1 (avian flu epidemic is epidemic among birds) there are two disease

state equilibria, Z∗4σ and Z∗5σ.

Z∗4σ = (Z∗4s, Z
∗
4s) (6.22)

where

Z∗4s = (S∗p4σ , I
∗
p4σ , C

∗
p4σ , S

∗
h4σ , 0, I

∗
a4σ , I

∗
b4σ , 0), (6.23)

is the disease equilibrium state of each region when there are avian flu epidemics among

birds and humans. Here

S∗p4σ = S∗p⊗ =
ηp
δp

1

Rpθσ
,

I∗p4σ = I∗p⊗ =
ηp

δp +mp
(1− 1

Rpθσ
),

C∗p4σ = C∗p⊗ =
σθ

(rp +mc)
+

ηp
(rp +mc)

Rpβ
Rpθσ

(1− 1

Rpθσ
),

S∗h4σ =
ηh

δh + αphκphI∗p4σ
=

=
ηh

δh + αphκph
ηp

δp+mp

(
1− 1

Rpθσ

)
=

ηh
δh

1 +
αphκphηp
ηh (δp+mp)

(
1− 1

Rpθσ

)
=

ηh
δh

1 + rpθσ

where rpθσ is defined as

rpθσ =
αphκphηp

ηh (δp +mp)

(
1− 1

Rpθσ

)
. (6.24)

I∗a4σ =
γαphκphI

∗
p4S
∗
h4σ

δh +ma

=
γ

δh +ma
(ηh − δhS∗h4σ)

=
γηh

δh +ma

(
1− 1

1 + rph

)
> 0
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and

I∗b4σ =
(1− γ)αphκphI

∗
p4σS

∗
h4σ

δh +mb

=
(1− γ)

δh +mb
(ηh − δhS∗h4)

I∗b4σ =
(1− γ)ηh
δh +mb

(
1− 1

1 + rph

)
> 0

The condition Rpθσ > 1 means rpθσ > 0 and hence guarantees that I∗p4σ > 0, S∗h4σ >

0, I∗a4σ > 0 and I∗b4σ > 0.

The fifth,

Z∗5σ = (Z∗5s, Z
∗
5s) (6.25)

where

Z∗5s = (S∗p5σ , I
∗
p5σ , S

∗
h5σ , 0, I

∗
a5σ , I

∗
b5σ , I

∗
m5σ

), (6.26)

is the disease state equilibrium of each region when there are avian flu epidemics among

birds and humans and also an epidemic of mutant-avian flu among humans. Here

S∗p5σ = S∗p⊗ =
ηp
δp

1

Rpθσ
,

I∗p5σ = I∗p⊗ =
ηp

δp +mp
(1− 1

Rpθσ
),

C∗p4σ = C∗p⊗ =
σθ

(rp +mc)
+

ηp
(rp +mc)

Rpβ
Rpθσ

(1− 1

Rpθσ
),

S∗p5σ =
δp +mp

αpκp
=
ηp
δp

1

Rpθσ
> 0.

From (4.20a) it follows that

I∗p5σ =
ηp

δp +mp
− δp
αpκp

=
ηp

δp +mp

[
1− δp(δp +mp)

ηpαpκp

]
=

ηp
δp +mp

(1− 1

Rpθσ
)

Hence for I∗p5σ > 0 it is required that Rpθσ > 1. It follows from (4.20f)

S∗h5σ =
δh +mm

αmhκmh
> 0.
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Now (4.20c) gives

I∗m5σ
=
ηh −

(
δh + αphκphI

∗
p5σ

)
S∗h5σ

αmhκmhS
∗
h5σ

=
ηh −

[
δh + αphκph

ηp
δh+mm

(1− 1
Rpθσ

)
]
δh+mm
αmhκmh

δh +mm

=
δh

αmhκmh

[
αmhκmhηh
δh(δp +mm)

− 1−
αphκphηh
δh(δp +mp)

(1− 1

Rpθσ
)

]
=

δh
αmhκmh

[Rmh − (1 + rph)] .

where rpθσ is defined by (4.38)

rpθσ =
αphκphηp

ηh (δp +mp)

(
1− 1

Rpθσ

)
.

Therefore for I∗m5σ
> 0 it is necessary that Rmh > 1 + rpθσ. Finally (4.20d) and (4.20e)

give

I∗a5σ =
γαphκphI

∗
p5σS

∗
h5σ

δh +ma

=
γαphκph

ηp
δp+mp

(1− 1
Rpθσ

) δh+mm
αmhκmh

δh +ma

=
γηhrph

(δh +ma)Rmh
> 0

and

I∗b5σ =
(1− γ)αphκphI

∗
p5σS

∗
h5σ

δh +mb

=
(1− γ)αphκph

ηp
δp+mp

(1− 1
Rpθσ

) δh+mm
αmhκmh

δh +mb

=
(1− γ)ηhrph

(δh +mb)Rmh
> 0

6.6 Stability analysis of disease state equilibria

Let reorder disease state variables

Z = (Sp1 , Ip1 , Cp1 , Sh1 , Is1 , Ia1 , Ib1 , Im1 , Sp2 , Ip2 , Cp2 , Sh2 , Is2 , Ia2 , Ib2 , Im2)

into

Z̄ = (Sp1 , Ip1 , Cp1 , Sp2 , Ip2 , Cp2 , Sh1 , Is1 , Ia1 , Ib1 , Im1 , Sh2 , Is2 , Ia2 , Ib2 , Im2).
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In this new variable, (6.5a)-(6.27p) becomes

S′p1 (t) =ηp − (δp + θ)Sp1 − αpκpIp1Sp1 + rpCp1 + θ(1− βpκpIp2)Sp2 , (6.27a)

I ′p1 (t) =αpκpIp1Sp1 − (δp +mp + θ) Ip1 + (1− σ)θ(1 + βpκpSp2) Ip2 , (6.27b)

C ′p1(t) =σθ(1 + βpκpSp2) Ip2 − (rp +mc)Cp1 , (6.27c)

S′p2 (t) =ηp − (δp + θ)Sp2 − αpκpIp2Sp2 + rpCp2 + θ(1− βpκpIp1)Sp1 , (6.27d)

I ′p2 (t) =αpκpIp2Sp2 − (δp +mp + θ) Ip2 + (1− σ)θ(1 + βpκpSp1)Ip1 , (6.27e)

C ′p2(t) =σθ(1 + βpκpSp1) Ip1 − (rp +mc)Cp2 , (6.27f)

S′h1 (t) =ηh − δhShp − (pa + pb)αphκphIp1Sh1 − αshκshIs1Sh1

− αmhκmhIm1Sh1 , (6.27g)

I ′s1 (t) =αshκshIs1Sh1 − (δh +ms) Is1 , (6.27h)

I ′a1 (t) =paαphκphIp1Sh1 − µαsaκsaIs1Ia1 − (δh +ma) Ia1 , (6.27i)

I ′b1 (t) =pbαphκphIp1Sh1 − (δh +mb) Ib1 , (6.27j)

I ′m1
(t) =µαsaκsaIs1Ia1 + αmhκmhIm1Shp − (δh +mm) Im1 , (6.27k)

S′h2 (t) =ηh − δhShs − (pa + pb)αphκphIp2Sh2 − αshκshIs2Sh2

− αmhκmhIm2Sh2 , (6.27l)

I ′s2 (t) =αshκshIs2Sh2 − (δh +ms) Is2 , (6.27m)

I ′a2 (t) =paαphκphIp2Sh2 − µαsaκsaIs2Ia2 − (δh +ma) Ia2 , (6.27n)

I ′b2 (t) =pbαphκphIp2Sh2 − (δh +mb) Ib2 , (6.27o)

I ′m2
(t) =µαsaκsaIs2Ia2 + αmhκmhIm2Sh2 − (δh +mm) Im2 . (6.27p)

The Jacobian matrix of (5.25a)-(5.25n) at Z̄iθ∀i = 1, . . . , 5 is given by

Jiθ =


Jiθ1 O1 O1

J4 Jiθ2 O3

J5 O3 Jiθ3

 fori = 1, . . . , 5. (6.28)

Jiθ1 =



j1,1 j1,2 j1,3 j1,4 j1,5 0

j2,1 j2,2 0 j2,4 j2,5 0

0 0 j3,3 j3,4 j3,5 0

j4,1 j4,2 0 j4,4 j4,5 j4,6

j5,1 j5,2 0 j5,4 j5,5 0

j6,1 j6,2 0 0 0 j6,6


, (6.29)
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where j1,1 = −δp− θ−αpκpIpiσ , j1,2 = −αpκpSpiσ , j1,3 = rp, j1,4 = θ(1− βpκpIpiσ),

j1,5 = −θβpκpSpiσ , j2,1 = αpκpIpiσ , j2,2 = αpκpSpiσ − (δp + mp) − θ, j2,4 =

(1 − σ)θβpκpIpiσ , j2,5 = (1 − σ)θ(1 + βpκpSpiσ), j3,3 = −(rp + mc), j3,4 =

σθβpκpIpiσ , j3,5 = σθ(1+βpκpSpiσ), j4,1 = θ(1−βpκpIpiσ), j4,2 = −θβpκpSpiσ , j4,4 =

−δp − θ − αpκpIpiσ , j4,5 = −αpκpSpiσ , j4,6 = rp, j5,1 = (1 − σ)θβpκpIpiσ ,

j5,2 = (1 − σ)θ(1 + βpκpSpiσ), j5,4 = αpκpIpiσ , j5,5 = −(δp + mp + θ), j6,1 =

σθβpκpIp2 , j6,2 = σθ(1 + βpκpSpiσ), j6,6 = −(rp +mc).

Jiθ2 =



j7,7 j7,8 0 0 j7,11

j8,7 j8,8 0 0 0

j9,7 j9,8 j9,9 0 0

j10,7 0 0 j10,10 0

j11,7 j11,8 j11,9 0 j11,11


, (6.30)

Jiθ3 =



j12,12 j12,13 0 0 j12,16

j13,12 j13,13 0 0 0

j14,12 j14,13 j14,14 0 0

j15,12 0 0 j15,15 0

j16,12 j16,13 j16,14 0 j16,16


, (6.31)

where j7,7 = j12,12 = −δh − αphκphIpiσ − αshκshIs − αmhκmhImiσ , j7,8 = j12,13 =

−αshκshSh1 , j7,11 = j12,16 = −αmhκmhShiσ , j8,7 = j13,12 = −αshκshIsiσ , j8,8 =

j13,13 = αshκshShiσ − (δh + ms), j9,7 = j14,12 = γaαphκphIp1 , j9,8 = j14,13 =

−µαsaκsaIa, j9,9 = j14,14 = −µαsaκsaIsiσ − (δh + ma), j10,7 = j15,12 = (1 −
γa)αyhκphIpiσ , j10,10 = j15,15 = −(δh + mb), j11,17 = j16,12 = αmhκmhImiσ , j11,8 =

j16,13 = µαsaκsaIaiσ , j11,9 = j16,14 = µαsaκsaIsiσ , j11,11 = j16,16 = αmhκmhSh1 −
(δh +mm).

J4 =



0 j7,2 0 0 0 0

0 0 0 0 0 0

0 j9,2 0 0 0 0

0 j10,2 0 0 0 0

0 0 0 0 0 0


, J5 =



0 0 0 0 j12,5 0

0 0 0 0 0 0

0 0 0 0 j14,5 0

0 0 0 0 j15,5 0

0 0 0 0 0 0


,
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where j7,2 = j12,5 = −αphκphSh1 , j9,2 = j14,5 = γaαphκphSh1 , j10,2 = j15,5 = (1 −
γa)αyhκphSh1 . O1, O2 and O3 are zero matrices

O1 =



0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0


, O2 =



0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0


.

J1, J2 and J3 are the key Jacobian matrices or principal minors of the Jacobian matrix

J given in (5.26). The Jacobian matrix is stable at an equilibrium point Z∗iθ, i = 1, . . . 6

if and only if the key Jacobian matrices are stable at Z∗iθ (by Corollary 3.26).

6.6.1 Stability analysis of the disease free equilibrium

The first disease equilibrium (i = 1) is the disease free equilibrium, Z∗1σ = (Z∗1s, Z
∗
1s)

where Z∗1s = (
ηp
δp
, 0, ηhδh , 0, 0, 0, 0). Stability analysis of Z∗1σ = (Z∗1s, Z

∗
1s) is given as

follows.

Theorem 6.2. If Rpθσ < 1, Rsh ≤ 1, Rmh ≤ 1, rph ≤ 1, then Z∗1σ is LAS.

Proof. At Z̄∗1σ the Jacobian matrix (5.26) becomes

J1σ = J (Z̄∗1σ) =


J1σ1 O1 O1

J4 J1σ2 O3

J5 O3 J1σ3

 . (6.32)

At E∗0 = (
ηp
δp
, 0, 0,

ηp
δp
, 0, 0), first key Jacobian matrix is

J1θ1 =



j1,1 j1,2 j1,3 j1,4 j1,5 0

0 j2,2 0 0 j2,5 0

0 0 j3,3 0 j3,5 0

0 j4,2 0 j4,4 j4,5 j4,6

0 j5,2 0 0 j5,5 0

0 j6,2 0 0 0 j6,6


, (6.33)

where j1,1 = −δp − θ, j1,2 = −αpκp ηpδp , j1,3 = rp, j1,4 = θ, j1,5 = −θβpκp ηpδp ,

j2,2 = αpκp
ηp
δp
− (δp + mp) − θ, j2,5 = (1 − σ)θ(1 + βpκp ηpδp ), j3,3 = −(rp + mc),

j3,5 = σθ(1 + βpκp ηpδp ), j4,2 = −θβpκp ηpδp , j4,4 = −δp − θ, j4,5 = −αpκp ηpδp , j4,6 = rp,
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j5,2 = (1 − σ)θ(1 + βpκp ηpδp ), j5,5 = −(δp + mp + θ), j6,2 = σθ(1 + βpκp ηpδp ), j6,6 =

−(rp +mc).

The characteristic polynomial of J1σ1 is

C1σ = (λ−mp(R0 − 1)2 (λ+ δp)(λ+ (δp + 2θ))

Hence, the key Jacobian matrix J1σ1 is stable if R0σ < 1. The key Jacobian matrix

J1σ2 and J1σ3 are the same as the key Jacobian matrix (12 Ch4),

J1σ2 = J1σ2 = J12 =



j3,3 j3,4 0 0 j3,7

0 j4,4 0 0 0

0 0 j5,5 0 0

0 0 0 j6,6 0

0 0 0 0 j7,7


,

where j3,3 = −δh, j3,4 = (−1)αshκshS
∗
h1σ
, j3,7 = (−1)αmhκmhS

∗
h1σ
, j4,4 = αshκshS

∗
h1σ
−

(δh+ms), j5,5 = (−1)(δh−ma), j6,6 = (−1)(δh−mb), j7,7 = αmhκmhS
∗
h1σ
−(δh+mm),

j8,1 = −δp, j8,2 = − (δp +mp) Rpθσ, j9,2 = j9,9 = (δp +mp) (Rpθσ − 1) Recall some re-

sults from Sub-section 4.5.3 that J11 is proven to be stable if Rp ≤ 1 and J12 is proven

to be stable if Rsh ≤ 1 and Rmh ≤ 1. Since J1σ1 = J11 and Rp ≤ Rpθσ, therefore

J1σ1 is stable if Rpθσ ≤. Since J1σ2 = J1σ2 = J12 therefore J1σ2 = J1σ2 are stable if

Rsh ≤ 1 and Rmh ≤ 1. Therefore Z∗1σ is well defined and stable if Rp < 1, Rsh ≤ 1 and

Rmh ≤ 1.

This result means that disease eradication is possible for a sufficient small parameter

βp when the both regions are disease free without traveling (that is, Rpθσ for small

βp when Rp < 1). From 5.8, if βp = 0 and Rp < 1 holds, then infectious diseases

should disappear in both regions. However, the disease free state among birds does not

guarantee a disease free state among humans. The following are three possible disease

equilibria.

6.6.2 Stability analysis of swine flu epidemic equilibrium in both regions

The swine flu epidemic equilibrium is (5.17)

Z∗2σ = (Z∗2t, Z
∗
2t)

where

Z∗2t = (S∗p2σ , 0, 0, S
∗
h2σ , I

∗
s2σ , 0, 0, 0, 0),
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is the swine flu epidemic equilibrium in each region. Here

S∗p2σ = S∗p0 =
ηp
δp
,

S∗h2σ =
ηh
δh

1

Rsh
,

I∗s2σ =
ηh

δh +ms
(1− 1

Rsh
).

Theorem 6.3. If Rpθσ < 1 and Rsh > max{Rmh, 1} then the swine flu epidemic

equilibrium Z∗2σ is LAS.

Proof. At Z̄∗2σ the Jacobian matrix (6.32) becomes

J2σ = J (Z̄∗2σ) =


J2σ1 O1 O1

J4 J2σ2 O3

J5 O3 J2σ3

 .
J2σ1 = J1σ1, so from the last Sub-section, J2σ1 is table if and only if Rpθσ < 1.

The second and third key Jacobian matrices J2σ2 = J2σ3, are the same as the key

Jacobian matrix given in (4.31)

J2σ2 = J2σ3 = J12 =



j3,3 j3,4 0 0 j3,7

j4,3 0 0 0 0

0 0 j5,5 0 0

0 0 0 j6,6 0

0 0 j7,5 0 j7,7


where j3,3 = (−1)(δh + αshκshI

∗
s2σ), j3,4 = (−1)αshκshS

∗
h2σ

, j37 = (−1)αmhκmhS
∗
h2σ

,

j4,3 = (−1)αshκshI
∗
s2σ , j5,5 = (−1)

[
µαshκshI

∗
s2σ + (δh +ma)

]
, j6,6 = (−1)(δh +mb),

j7,5 = (−1)[µαsaκsaI
∗
s2σ , j7,7 = αmhκmhS

∗
h2σ

+ (δh +mm).

Recall some results from Sub-section 4.5.4 that J21 is proven to be stable if Rp ≤ 1

and J12 is proven to be stable if Rsh > max{Rmh, 1}. Since J2σ1 = J21 and Rp ≤ Rpθσ,
then J2σ1 is stable if Rpθσ ≤ 1 Since J2σ2 = J1σ3 = J22 therefore J2σ2 = J1σ3 are stable

if Rsh > max{Rmh, 1}.

6.6.3 Stabilty analysis of mutant-avian flu epidemic equilibrium

The mutant avian flu epidemic equilibrium, Z∗3β, corresponds to the situation in which

there are no birds or humans infected by avian flu and no humans infected by swine

flu but there are humans infected by mutant-avian flu. By using the definitions of the
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basic reproduction numbers in Section 4.3,

Z∗3σ = (Z∗3t, Z
∗
3t), (6.34)

with

Z∗3t = (S∗p3 , 0, 0, S
∗
h3 , 0, 0, 0, I

∗
m3

),

where

S∗p3σ = S∗p0 =
ηp
δp

S∗h3σ =
ηh
δh

1

Rmh
,

I∗m3σ
=

ηh
δh +mm

(1− 1

Rmh
).

Theorem 6.4. If Rpθσ < 1 and Rmh > max{Rsh, 1} then Z∗3σ is LAS.

Proof. At Z̄∗2σ the Jacobian matrix (5.26) becomes

J3σ = J (Z̄∗3σ) =


J3σ1 O1 O1

J4 J3σ2 O3

J5 O3 J3σ3

 .
J3σ1 = J1σ1, so J3σ1 is table if and only if Rpθσ < 1.

The second and third key Jacobian matrices J3σ2 = J3σ3, are the same as J32, the

key Jacobian matrix given in (4.40),

J3σ2 = J3σ3 = J32 =



j3,3 j3,4 0 0 j3,7

0 j4,4 0 0 0

0 0 j5,5 0 0

0 0 0 j6,6 0

j7,5 0 0 0 j7,7


, for k = 1, . . . , 4,

where j1,1 = (−1)δp, j1,2 = −αpκpS∗p3σ j2,2 = −αpκpS∗p3σ − (δp + mp), j3,3 =

(−1)(δh + αmhκmhI
∗
m3σ

), j3,4 = (−1)αshκshS
∗
h3σ
, j3,7 = (−1)αmhκmhS

∗
h3σ

, j4,4 =

(−1)αshκshS
∗
h3σ
− (δh + ms), j5,5 = (−1)(δh + ma), j6,6 = (−1)(δh + mb), j7,3 =

(−1)αmhκmhI
∗
m3σ

, j7,7 = αmhκmhS
∗
h3σ
− (δh +mm).

Recall some results from Sub-section 6.6.3 that J31 is proven to be stable if Rpθσ1

and J32 is proven to be stable if Rmh > max{Rsh, 1}. Since J3σ1 and Rp ≤ Rpθσ < 1

therefore J3σ1 are stable if Rpθσ < 1. Since J3σ2 = J3σ3 = J32 therefore J3σ2 and J3σ3
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are stable if Rmh > max{Rsh, 1}.

6.6.4 Stability analysis of avian-flu epidemic equilibrium.

The disease state when there are avian flu epidemics among birds and humans, Z∗4σ, is

Z∗4σ = (Z∗4t, Z
∗
4t) (6.35)

with

Z∗4t = (S∗p4σ , I
∗
p4σ , C

∗
p4σ , S

∗
h4σ , 0, I

∗
a4σ , I

∗
b4σ , 0),

where

S∗p4σ = S∗p⊗ =
ηp
δp

1

Rpθσ
> 0

I∗p4σ = I∗p⊗ =
ηp

δp +mp
(1− 1

Rpθσ
) > 0

C∗p4σ = C∗p⊗ ==
σθ

(rp +mc)
+

ηp
(rp +mc)

Rpβ
Rpθσ

(1− 1

Rpθσ
)

S∗h4 =

ηh
δh

1 + rpθσ

where rph is defined as (4.38),

rpθσ =
αphκphηp

ηh (δp +mp)

(
1− 1

Rpθσ

)
. (6.36)

I∗a4σ =
γηh

δh +ma

(
1− 1

1 + rpθσ

)
,

and

I∗b4σ =
(1− γ)ηh
δh +mb

(
1− 1

1 + rpθσ

)
.

Theorem 6.5. If Rpθσ > 1 and max{Rsh, Rmh} < 1 + rph then Z∗4σ = (Z∗4t, Z
∗
4t) is

LAS.

Proof. At Z̄∗4σ the Jacobian matrix (5.26) becomes

J4σ = J (Z̄∗4σ) =


J4σ1 O1 O1

J4 J4σ2 O3

J5 O3 J4σ3

 .
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At Z̄∗4σ the Jacobian matrix (5.26) becomes

J4σ = J (Z̄∗4σ) =


J4σ1 O1 O1

J4 J4σ2 O3

J5 O3 J4σ3

 .
From (6.37)

Jiθ1 =



j1,1 j1,2 j1,3 j1,4 j1,5 0

j2,1 j2,2 0 j2,4 j2,5 0

0 0 j3,3 j3,4 j3,5 0

j4,1 j4,2 0 j4,4 j4,5 j4,6

j5,1 j5,2 0 j5,4 j5,5 0

j6,1 j6,2 0 0 0 j6,6


, (6.37)

where j1,1 = −δp − θ−αpκpIp1 , j1,2 = −αpκpSp4σ , j1,3 = rp, j1,4 = θ(1− βpκpIp4σ),

j1,5 = −θβpκpSp4σ , j2,1 = αpκpIp4σ , j2,2 = αpκpSp1 − (δp + mp) − θ, j2,4 =

(1 − σ)θβpκpIp4σ , j2,5 = (1 − σ)θ(1 + βpκpSp4σ), j3,3 = −(rp + mc), j3,4 =

σθβpκpIp4σ , j3,5 = σθ(1+βpκpSp4σ), j4,1 = θ(1−βpκpIp4σ), j4,2 = −θβpκpSp4σ , j4,4 =

−δp − θ − αpκpIp4σ , j4,5 = −αpκpSp4σ , j4,6 = rp, j5,1 = (1 − σ)θβpκpIp4σ ,

j5,2 = (1 − σ)θ(1 + βpκpSp4σ), j5,4 = αpκpIp4σ , j5,5 = −(δp + mp + θ), j6,1 =

σθβpκpIp4σ , j6,2 = σθ(1 + βpκpSp2), j6,6 = −(rp +mc).

At E∗⊗ = (S∗p⊗ , I
∗
p⊗ , C

∗
p⊗ , S

∗
p⊗ , I

∗
p⊗ , C

∗
p⊗), the key Jacobian matrix J4σ1 can be written as

J4σ1 =

 A B

B A

 (6.38)

where

A =


a1,1 a1,2 rp

a2,1 a2,2 0

0 0 a3,3

 , B =


b1,1 b1,2 0

b2,1 b2,2 0

b3,1 b3,2 0


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where

a1,1 = −δp − θ − αpκpI∗p4 = −δp − θ − αpκp
ηp

δp +mp
(1− 1

Rpθσ
)

a1,2 = −αpκpS∗p4 = −αpκp
ηp
δp

1

Rpθσ

a1,3 = rp

a2,1 = αpκpI
∗
p4 = αpκp

ηp
δp +mp

(1− 1

Rpθσ
)

a2,2 = αpκpS
∗
p4 − (δp +mp)− θ = αpκp

ηp
δp

1

Rpθσ
− (δp +mp)− θ

a3,3 = −(rp +mc)

b1,1 = θ(1− βpκpI∗p4) = θ(1− βpκp
ηp

δp +mp
(1− 1

Rpθσ
)

b1,2 = −θβpκpS∗p4 = −θβpκp
ηp
δp

1

Rpθσ

b2,1 = (1− σ)θβpκpI∗p4 = (1− σ)θβpκp
ηp

δp +mp
(1− 1

Rpθσ
)

b2,2 = (1− σ)θ(1 + βpκpS∗p4) = (1− σ)θ(1 + βpκp
ηp
δp

1

Rpθσ

b3,1 = σθβpκpI∗p4 = σθβpκp
ηp

δp +mp
(1− 1

Rpθσ
)

b3,2 = σθ

(
1 + βpκpS∗p4) = σθ(1 + βpκp

ηp
δp

1

Rpθσ

)

At E∗×, the eigen-values of matrix J4σ1 is identical to those C = A+B and D = A−B

C =


c1,1 c1,2 c1,3

c2,1 c2,2 0

a3,1 a3,2 a3,3

 , D =


d1,1 d1,2 d1,3

d2,1 d2,2 0

d3,1 d3,2 d3,3


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where

c1,1 = −δp − θ − αpκp
ηp

δp +mp
(1− 1

Rpθσ
) + θ

(
1− βpκp

ηp
δp +mp

(1− 1

Rpθσ
)

)
= −δp −

Rpθ
δP

(1− 1

Rpθσ
),

c1,2 = −αpκp
ηp
δp

1

Rpθσ
− θβpκp

ηp
δp

1

Rpθσ
=

Rpθ
(δP +mp)

1

Rpθσ
,

c1,3 = rp,

c2,1 = αpκp
ηp

δp +mp
(1− 1

Rpθσ
) + (1− σ)θβpκp

ηp
δp +mp

(
1− 1

Rpθσ

)
,

=
1

δp
(Rp −Rpβ)(1− 1

Rpθσ
),

c2,2 = αpκp
ηp
δp

1

Rpθσ
− (δp +mp)− θ + (1− σ)θ

(
1 + βpκp

ηp
δp

1

Rpθσ

)

c3,1 = σθβpκp
ηp

δp +mp
(1− 1

Rpθσ
) = σ

Rpβ
δp

(
1− 1

Rpθσ

)
,

c3,2 = σθ

(
1 + βpκp

ηp
δp

1

Rpθσ

)
= σ

(
θ +

Rpβ
δp +mp

1

Rpθσ

)
c3,3 = −(rp +mc)
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and

d1,1 = −δp − θ − αpκp
ηp

δp +mp
(1− 1

Rpθσ
)− θ

(
1− βpκp

ηp
δp +mp

(1− 1

Rpθσ
)

)
= −δp − 2θ − 1

δp
(Rp −Rpβ)(1− 1

Rpθσ
),

d1,2 = −αpκp
ηp
δp

1

Rpθσ
+ θβpκp

ηp
δp

1

Rpθσ

= − 1

(δp +mp)
(Rp −Rpβ)(1− 1

Rpθσ
),

d1,3 = rp

d2,1 = αpκp
ηp

δp +mp
(1− 1

Rpθσ
)− (1− σ)θβpκp

ηp
δp +mp

(
1− 1

Rpθσ

)
= − 1

δp
(σRpθ −Rpβ)(1− 1

Rpθσ
),

d2,2 = αpκp
ηp
δp

1

Rpθσ
− (δp +mp)− θ − (1− σ)θ

(
1 + βpκp

ηp
δp

1

Rpθσ

)
= θ(σ − 2)

1

(δp +mp)
(Rpθ −Rpβ)

1

Rpθσ
,

d3,1 = −σθβpκp
ηp

δp +mp

(
1− 1

Rpθσ

)
= −σ

Rpβ
δp

(
1− 1

Rpθσ

)
,

d3,2 = −σθ
(

1 + βpκp
ηp
δp

1

Rpθσ

)
= −σ

(
θ +

Rpβ
δp +mp

1

Rpθσ

)
d3,3 = −(rp +mc).

Note that matrices A and B have the same form as following

M =


m1,1 m1,2 m1,3

m2,1 m2,2 0

m3,1 m3,2 m3,3

 .

For this kind of matrix, the following Routh-Hurwitz theorem is stated as follows,

Theorem 6.6. Routh-Hurwitz. Let χ1 = −tr(M), χ2 = M1 + M2 + M3 and χ3 =

det(M), where M1 = m1,1m2,2 − m2,1m1,2, M2 = m1,1m3,3 − m3,1m1,3 and M1 =

m2,2m3,3. Then M is stable (i.e each of eigen value of M has negative real part) if and

only if the following conditions hold:

(i) χ1 > 0,

(ii) χ3 > 0,

(iii) χ1χ2 − χ3 > 0.
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Here det(M) is the determinant of matrix M and tr(M) is the trace of matrix M ,

it is the sum of the diagonal elements of M .

First, consider the matrix C = A + B. It is required to show that χ1 = tr(C) >

0. Given 0 ≤ θ ≤ 1, Rpθσ > 1. It is obvious that the diagonal elements are all

negative. C1,1 = −δp −
Rpθ
δP

(1 − 1
Rpθσ

) < 0, c2,2 = αpκp
ηp
δp

1
Rpθσ

− (δp + mp) − θ +

(1 − σ)θ
(

1 + βpκp ηpδp
1

Rpθσ

)
< 0 and c3,3 = −(rp + mc) < 0. Hence, tr(M) = C1,1 +

C2,2 + C3,3 < 0 and χ1 = −tr(M) > 0. c2,1 > 0, c3,2 ≥ 0, c1,3 > 0. It is ease to

show that Mi > 0 for all i = 1, 2, 3. Therefore, by Theorem 6.6, matrix C = A + B

is stable. Similarly, it is ease to proof that matrix D = A − B is stable. Hence, at

E∗4σ = (S∗p4σ, I
∗
p4σ, S

∗
p4σ, I

∗
p4σ) the key Jacobian matrix J4θ1 is stable.

The second and third key Jacobian matrices

J4σ2 = J4σ3 =



j3,3 j3,4 0 0 j3,7

0 j4,4 0 0 0

j5,3 j5,4 j5,5 0 0

j6,3 0 0 j6,6 0

0 j7,4 0 0 j7,7


for k = 1, . . . 4

where j1,1 = (−1)δp(αpκpI
∗
p4σ), j1,2 = −αpκpS∗p4σ , j2,1 = αpκpI

∗
pσ − (δp + mp),

j2,2 = αpκpS
∗
p4σ − (δp+mp) = 0, j3,3 = (−1)(δh+αphκphI

∗
p4σ), j3,4 = (−1)αshκshS

∗
h4

,

j3,7 = (−1)αmhκmhS
∗
h4

, j4,4 = (−1)αshκshS
∗
h4σ
− (δh + ms), j5,3 = γαphκphI

∗
p4σ ,

j5,4 = (−1)µαsaκsaI
∗
a4σ , j5,5 = (−1)(δh + ma), j6,3 = (1 − γ)αphκphI

∗
p4σ , j6,6 =

(−1)(δh +mb), j7,4 = µαsaκsaI
∗
a4σ , j7,7 = αmhκmhS

∗
h4σ

+ (δh +mm).

Next for the other key Jacobian matrices, B4k, k = 1, . . . , 4. Results from Sub-

section 4.5.6 show that

|λI − J4σ2| = |λI − J4σ3| = Π7
k=3 (λ− jk,k) = 0

with jk,k, i = 1, . . . 7 are all real negatives. Furthermore, the matrix J4σ2 and J4σ3

stable if

αshκsh

ηh
δh

1 + rpθσ
− (δh −ms) < 0⇔ ηhαshκsh

δh(δh −ms)
< 1 + rpθσ

⇔ Rsh < 1 + rpθσ

and

αmhκsh

ηh
δh

1 + rpθσ
− (δh −mm) < 0⇔ ηhαmhκmh

δh(δh −mm)
< 1 + rpθσ

⇔ Rmh < 1 + rpθσ
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Therefore Z∗4σ well-defined and stable if Rpθσ > 1 and max{Rsh, Rmh} < 1 + rpθσ.

Therefore Z∗4σ is LAS.

6.6.5 Stability analysis of avian flu epidemic among birds and humans combined

with mutant avian flu epidemic among humans

The disease state equilibrium point Z∗5 corresponds to the situation in which there are

avian flu epidemic among birds and humans combined with mutant avian flu epidemic

among humans,

Z∗5σ = (Z∗5t, Z
∗
5t) (6.39)

with

Z∗5t = (S∗p5σ , I
∗
p5σ , C

∗
p5σ , S

∗
h5σ , 0, I

∗
a5σ , I

∗
b5σ , I

∗
m5σ

),

where

S∗p5σ = S∗p⊗ =
ηp
δp

1

Rpθσ
> 0

I∗p5σ = I∗p⊗ =
ηp

δp +mp
(1− 1

Rpθσ
) > 0

C∗p5σ = C∗p⊗ ==
σθ

(rp +mc)
+

ηp
(rp +mc)

Rpβ
Rpθσ

(1− 1

Rpθσ
)

S∗p5σ =
δp +mp

αpκp
=
ηp
δp

1

Rpθσ

Now (4.20c) gives

I∗m5σ
=

δh
αmhκmh

[Rmh − (1 + rpθσ)] .

where rpθσ is defined by (5.32)

rph =
αphκphηp

ηh (δp +mp)

(
1− 1

Rpθσ

)
.

Therefore for I∗m5
> 0 it is necessary that Rmh > 1 + rph. Finally (4.20d) and (4.20e)

give

I∗a5σ =
γηhrph

(δh +ma)Rmh
> 0
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and

I∗b5σ =
(1− γ)ηhrph

(δh +mb)Rmh
.

Theorem 6.7. If Rpθσ > 1 and Rmh > max{Rsh, 1 + rph} then Z∗5σ = (Z∗5t, Z
∗
5t) is

LAS.

Proof. At Z̄∗5σ the Jacobian matrix (6.32) becomes

J5σ = J (Z̄∗5σ) =


J5σ1 O1 O1

J4 J5σ2 O3

J5 O3 J5σ3

 .

The first key Jacobian matrix is given by (6.38)

J5σ1 =

 A B

B A


Result from the last section show that at E∗⊕ the key Jacobian matrix J5σ1 is stable.

and

J5σ2 = J4σ3 =



j3,3 j3,4 0 0 j3,7

0 j4,4 0 0 0

j5,3 j5,4 j5,5 0 0

j6,3 0 0 j6,6 0

j7,3 j7,4 0 0 j77


fork = 1, . . . , 4

where j1,1 = (−1)δp(αpκpI
∗
p5σ), j1,2 = −αpκpS∗p5σ , j2,1 = αpκpI

∗
p5σ − (δp + mp),

j2,2 = αpκpS
∗
p5σ − (δp + mp), j3,3 = (−1)(δh + αphκphI

∗
p5σ + αmhκmhI

∗
m5σ

), j3,4 =

(−1)αshκshS
∗
h5σ

, j3,7 = (−1)αmhκmhS
∗
h5σ

, j4,4 = (−1)αshκshS
∗
h5σ
− (δh + ms),

j5,3 = γαphκphI
∗
p5σ , j5,4 = (−1)µαsaκsaI

∗
a5σ , j5,5 = (−1)(δh + ma), j6,3 = (1 −

γ)αphκphI
∗
p5σ , j6,6 = (−1)(δh + mb), j7,3 = αmhκmhI

∗
m5σ

, j7,4 = µαsaκsaI
∗
a5σ ,

j7,7 = αmhκmhS
∗
h5σ

+ (δh +mm).

A result from Sub-section 5.6.4, the key jacobian matrices c is stable at E∗⊗). Hence,

the key jacobian matrix J5σ1 is stable at E∗⊗).

Results from Sub-section 4.5.6 show that

|λI − J5σ2| = |λI − J5σ3| =
[
Π7
k=3 (λ− jk,k)

]
[λ2 + bλ+ c] = 0
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where

b =
αmhκmhηh

δh +mm
> 0

and

c = αmhκmhI
∗
m5
αmhκmhS

∗
h5 > 0

If I(S∗h5σ , t) > 0 then I(S∗h5σ , t) ↓ 0 as t ↑ ∞. Hence this is effectively a stability

condition for the coordinate I∗s5σ = 0. Since

αshκshS
∗
h5 − (δh +ms) < 0⇔ αshκsh

(δh +mm)

αmhκmh
− (δh +ms) < 0

⇔ Rsh < Rmh.

Therefore, Z∗5σ is well-defined and stable if Rp > 1 and Rmh > max{Rsh, 1 + rph}.

6.7 Simulation

The estimated values of the epidemiological parameters and the population parameters

used in the numerical simulation are adopted from Chapters 4 and 5. The variation

on screening probability represent the commitment of each region on preventing the

spread of disease from outside. When an infected bird is identified, it will be culled

and disposed. As expected, the probability of successful border screening affects the

proportion culled birds. Increasing the probability of successful border screening that

is implemented at the entry point of a region i, σi, will increase the proportion of culled

birds at the region i.

Following the scenario was developed in Chapter 4, poultry chickens from Central

Java are transported to West Java and Jakarta. Some chicken in Jakarta markets are re-

transported to Banten and then to Lampung in Sumatra. To see the effect of screening

and subsequent culling policies, it is assumed that the set of policies is implemented in

the entry points to Jakarta to prevent the spread of avian flu from Central and West

Java.

In the simulation, the probability of successful border screening at east entry points

of Jakarta is assumed to be 0.5, σ3 = 0.5. Fig. 6.1 shows the dynamics of culled birds

in the provinces. Since the set of policies is implemented at the east border of Jakarta

only, there are no culled birds in Central Java, West Java, Banten and Lampung except

Jakarta. The policy implemented at the East border of Jakarta affects the proportion

of infected birds outside Jakarta, Banten and Lampung. Figure 6.1 shows that the

policies do not affect the disease dynamics in Central and West Java, but it does

affect the disease dynamics in Jakarta, Banten and Lampung. In these provinces, the
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Fig. 6.1: The proportion of culled birds in the provinces as a result of the implementation
of screening and subsequent culling policies with σ3 = 0.5 at east borders of
Jakarta. The horizontal axis is time in days. (a), (b), (c), (d) and (e) are the
proportion of infected birds in Central Java, West Java, Jakarta, Banten and
Lampung respectively.

proportion of infected birds are reduced.

The policy implemented at the East border of Jakarta also affects the dynamics of

diseases of humans in Jakarta, Banten and Lampung. Variations in σ3 have no effect to

the dynamics of human diseases in Central Java and West Java. It has significant effects

on the spread of diseases among humans in Jakarta, Banten and Lampung (Figures 6.3

- 4.4).

6.8 Discussion

Implementing entry screening policies for infectious birds entering a region is effective

in reducing the spread of disease among birds and humans in the region. Increasing the

probability of successful screening of birds entering a region will decrease the magnitude

of disease among birds and humans in the region at the expense of increased costs of

screening and culling.
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Fig. 6.2: The proportion of infectious birds in the provinces as a result of the implemen-
tation of screening and subsequent culling policies with σ3 = 0.5 at the East
borders of Jakarta. The horizontal axis is time in days. (a), (b), (c), (d) and
(e) are the proportion of infected birds in Central Java, West Java, Jakarta,
Banten and Lampung respectively.

By Theorem 5.2 disease eradication among birds and humans in both regions is

possible. Theorems 5.3, 5.4, 5.5 and 5.6 however, show that the disease free states

among birds does not guarantee disease free states among humans.

In the case of Rpσσ > 1 avian flu is endemic among birds in both regions. In this case

there are two possible endemic states; avian flu is endemic among birds and humans

or avian flu is endemic among birds and humans but with mutant-avian flu present in

humans. The disease will be endemic among birds and humans in both regions in the

sense of permanence, which means that the number of infected birds and humans will

be bounded below by positive constants which are independent of initial values.
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Fig. 6.3: The proportion of human cases in the five provinces as a result of the imple-
mentation of screening and subsequent culling policies with σ3 = 0.5 at the
East borders of Jakarta. The horizontal axis is time in days. (a), (b), (c), (d)
and (e) are the proportion of human case in Central Java, West Java, Jakarta,
Banten and Lampung respectively.
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Fig. 6.4: The proportion of infected human with Mutant avian-flu in the five provinces
as a result of the implementation of screening and subsequent culling policies
with σ3 = 0.5 at the East borders of Jakarta. The horizontal axis is time in
days. (a), (b), (c), (d) and (e) are the proportion of infectious humans with
Mutant avian-flu in Central Java, West Java, Jakarta, Banten and Lampung
respectively.



7. CONTROLLING THE SPREAD OF DISEASE

Studies of uncontrolled systems in Chapter 4 showed that, even if there are disease

free equilibria, it usually takes a long time for the disease to disappear. Therefore, the

disease may cause a large number of casualties among birds and humans.

Results in Chapter 6 show that implementing screening policies for infectious birds

entering a region is effective for reducing the spread of disease among birds and humans

in the region. Increasing the probability of successful screening of birds entering a

region will decrease the impact of the disease among birds and humans in the region

at the expense of increased costs of screening and culling. This indicates some trade-

off is required between the level of screening and the impact of the disease. This is

particularly important in Indonesia where resources for screening and culling programs

and other forms in intervention are limited. Therefore, it is of interest to devise disease

control policies such that the disease can be contained in a relatively short period of

time possibly with some economic trade-off.

This chapter develops models for analyzing and interpreting the effect of the imple-

mentation of control policies in order to develop a strategy that is optimal subject to

limited resources.

The screening of birds discussed in Chapter 6 is a control measure but was presented

as a fixed program over time and and was not optimized in any way. The control

measures discussed in this chapter are time dependent. The key question is given

limited resources for implementing a control measure, what should the level of control

be, viewed as a function of time, so as to maximize the effect of the control measure.

Section 7.3 outlines a disease control problem. The necessary condition for the

existence of an optimal control is given in Section 7.4. Finally, Section 7.6 discusses

some results of the study. Section 7.5 outlines an indirect method algorithm for solving

the optimal disease control problem (ODCP) in the simulation study.

7.1 Uncontrolled system

Recall from Chapter 4 that the disease dynamics in a single region is governed by the

initial value problem (IVP) (4.3a)-(4.3h)

S′p = ηp − δp Sp − αpκpIpSp (7.1a)
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I ′p = αpκpIpSp − (δp +mp) Ip (7.1b)

S′h = ηh − δh Sh − αphκphIpSh − αshκshIsSh − αmhκmhImSh (7.1c)

I ′s = αshκshIsSh − (δh +ms) Is (7.1d)

I ′a = γαphκphIpSh − µαsaκsaIsIa − (δh +ma) Ia (7.1e)

I ′b = (1− γ)αphκphIpSh − (δh +mb) Ib (7.1f)

I ′m = µαsaκsaIsIa + αmhκmhImSh − (δh +mm) Im, (7.1g)

Z(0) = Z0, Z0 ∈ [0, T ]× R7. (7.1h)

Where the set of epidemic parameters Q1 ⊆ R21
+

Q1 = { ηp, ηh, δp, δh, αp , αsh , αph , µ, αsa , αmh , κp , κsh , κph , κsa , κmh ,

mp,ma,mb,ms,mm, γ}

are defined in Section 4.1. The basic reproduction numbers of avian flu transmission

in the bird world is given by (4.6) as

Rp =
ηp αpκp

δp (δp +mp)
. (7.2)

The basic reproduction number of swine flu transmission among humans is given by

(4.7) as

Rsh =
ηh αshκsh
δh (δh +ms)

. (7.3)

the basic reproduction number of mutant-avian flu transmission among humans is given

by (4.8) as

Rmh =
ηh αmhκmh

δh (δh +mm)
(7.4)

7.2 Designing the disease controls

The sensitivity analysis of the basic reproduction numbers Rp, Rsh and Rmh in Section

4.7.2 shows that Rp is the most sensitive to κp, Rsh is the most sensitive to κsh and Rmh

is the most sensitive to κmh. These results show that the contact intensities between

infected and susceptible individuals, κp, κsh and κmh are the most feasible parameters

to be controlled for reducing the transmission of the diseases.

Let ϕp(t) be the disease control function that aims to reduce the transmission of

avian flu among birds. In principle, the control functions could have been defined

to target different control strategies. For example ϕp(t) could been chosen to target

farming methods that influence the level of contact between families and their poultry

and the control measures ϕsh(t) and ϕmh(t) could have been defined to target social
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distancing programs. These were not developed further in light of the discussions at

the beginning or this chapter and the beginning of the previous chapter.

The disease control functions ϕp(t) is implemented into the system in such a way

that the rates of change of infected humans are modeled using relatively simple ex-

tensions of the uncontrolled system (7.1a)-(7.1g). In order to increase the number of

susceptible birds, (7.1a) is modified into

S′p = ηp − δp Sp − αpκp(1− ϕp)IpSp,

In order to decrease the number of infected birds, (7.1b) is modified into

I ′p = αpκp(1− ϕp)IpSp − (δp +mp) Ip,

. ϕsh(t), ϕph(t) and ϕmh(t) are implanted into the system in a similar way.

7.3 Optimal disease control problem

The problem of designing optimal disease control policies is equivalent to the problem

of finding optimal policies ϕ∗(t) = (ϕ∗p(t), ϕ
∗
sh(t), ϕ∗mh(t)) such that

J∗(ϕ) = min
ϕ∈Φ

J(ϕ) (7.5)

where

J(ϕ) =

∫ tF

a

(
Cp
2
ϕ2
p +

Csh
2
ϕ2
sh +

Cmh
2

ϕ2
mh − Sp(t)− Sh(t)

)
dt. (7.6)

subject to the disease state constraints

S′p = ηp − δp Sp − αpκp(1− ϕp)IpSp, (7.7a)

I ′p = αpκp(1− ϕp)IpSp − (δp +mp) Ip, (7.7b)

S′h = ηh − δh Sh − αphκphIpSh − αshκsh(1− ϕsh)IsSh (7.7c)

− αmhκmh(1− ϕmh)ImSh, (7.7d)

I ′s = αshκsh(1− ϕsh)IsSh − (δh +ms) Is, (7.7e)

I ′a = γαphκphIpSh − µαsaκsaIsIa − (δh +ma) Ia, (7.7f)

I ′b = (1− γ)αphκphIpSh − (δh +mb) Ib (7.7g)

I ′m = µαsaκsaIsIa + αmhκmh(1− ϕmh)ImSh − (δh +mm) Im (7.7h)
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and the control constraints

0 ≤ ϕp ≤ ϕUp ≤ 1, (7.8a)

0 ≤ ϕsh ≤ ϕUsh ≤ 1, (7.8b)

0 ≤ ϕmh ≤ ϕUmh ≤ 1. (7.8c)

The problem of finding an optimal policy ϕ∗(t) = (ϕ∗p(t), ϕ
∗
sh(t), ϕ∗mh(t)) is referred to

as optimal disease control problem (ODCP).

7.4 Necessary conditions for the optimality of the disease controls

In this section the emphasis is on setting the necessary conditions for optimality of

the ODCP based on Theorem 3.30, the Pontryagins maximum principle. Consider the

Hamiltonian function

H = (−1)

[
Cp
2
ϕ2
p +

Csh
2
ϕ2
sh +

Cmh
2

ϕ2
mh − Sp(t)− Sh(t)

]
+ ζp[ηp − δpSp − αpκp(1− ϕp)IpSp] (7.9)

+ ξp[αpκp(1− ϕp)IpSp − (δp +mp)Ip]

+ ζh[ηh − δh Sh − αphκphIpSh (7.10)

− αshκsh(1− ϕsh)IsSh]

+ ξs[αshκsh(1− ϕsh)IsSh − (δh +ms) Is]

+ ξa[γαphκphIpSh − µαsaκsaIsIa − (δh +ma) Ia],

+ ξb[(1− γ)αphκphIpSh − (δh +mb) Ib]

+ ξm[µαsaκsaIsIa + αmhκmh(1− ϕmh)ImSh − (δh +mm) Im] (7.11)

where the adjoint variables ζp, ξp, ζh, ξs, ξa, ξb, ξm are defined by the linear differential

equations

ζ ′p = −1 + [δp + αpκp(1− ϕp)Ip]ζp − αpκp(1− ϕp)Ipξp, (7.12a)

ξ′p = αpκp(1− ϕp)Spζp − αpκp(1− ϕp)Spξp − γαphκphShξa

− (1− γ)αphκphShξb, (7.12b)

ζ ′h = −1 + [δh + αphκphIp + αshκsh(1− ϕsh)Is

+ αmhκmh(1− ϕmh)Im]ξh − αshκsh(1− ϕsh)Isξs,

− γαphκphIpξa − (1− γ)αphκphIpξb − αmhκmhImξm, (7.12c)

ξ′s = αshκsh(1− ϕsh)Sshζh + [−αshκsh(1− ϕsh)Is + (δh +ms)]ξs (7.12d)
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+ µαsaκsaIaξa − µαsaκsaIaξm, (7.12e)

ξ′a = [µαsaκsaIs + (δh +ma)]ξa − µαsaκsaIsξm (7.12f)

ξ′b = (δh +mb)ξb (7.12g)

ξ′m = αmhκmh(1− ϕmh)Shξh + [−αmhκmh(1− ϕmh)Sh,

+ (δh +mm)]ξm. (7.12h)

In order to maximize the Hamiltonian subject to the given control constraints.

Consider the Lagrangian function

L = H+νpϕp+ϑp(ϕ
U
p −ϕp)+νshϕsh+ϑsh(ϕUsh−ϕsh)+νmhϕmh+ϑmh(ϕUmh−ϕmh) (7.13)

where νp, ϑp, νsh, ϑsh, νmh, ϑmh are nonnegative Lagrange multipliers for the control

constraints. Set the relevant partial derivatives equal to zero and apply the Karush-

Kuhn-Tucker conditions to obtain

∂L
∂ϕp

= 0⇒ −Cpϕp + (ζp − ξp)αpκpIpSp + νp − ϑp = 0 (7.14a)

∂L
∂ϕsh

= 0⇒ −Cshϕsh + (ζsh − ξsh)αshκshIshSsh + νsh − ϑsh = 0 (7.14b)

∂L
∂ϕmh

= 0⇒ −Cmhϕmh + (ζmh − ξmh)αmhκmhImhSmh + νmh − ϑmh = 0

(7.14c)

and νpϕp = 0, ϑp(ϕ
U
p − ϕp) = 0, νshϕsh = 0, ϑsh(ϕUsh − ϕsh) = 0, νmhϕmh = 0 and

ϑmh(ϕUmh − ϕmh) = 0. It follows that

ϕp =


0 if ζp < ξp
(ζp−ξp)αpκpIpSp

Cp
if 0 ≤ (ζp−ξp)αpκpIpSp

Cp
< ϕUp

ϕUp if ϕUp ≤
(ζp−ξp)αpκpIpSp

Cp

(7.15a)

ϕsh =


0 if ζsh < ξsh
(ζsh−ξsh)αshκshIshSsh

Csh
if 0 ≤ (ζsh−ξsh)αshκshIshSsh

Csh
< ϕUsh

ϕUsh if ϕUsh ≤
(ζsh−ξsh)αshκshIshSsh

Csh

(7.15b)

ϕmh =


0 if ζmh < ξmh
(ζmh−ξmh)αmhκmhImhSmh

Cmh
if 0 ≤ (ζmh−ξmh)αmhκmhImhSmh

Cmh
< ϕUmh

ϕUmh if ϕUmh ≤
(ζmh−ξmh)αmhκmhImhSmh

Cmh

(7.15c)

Note that ϑp = 0 and νp = (ζp − ξp)αpκpIpSp > 0 when ϕp = 0 and νp = 0 and

ϑp = −CpϕUp + (ζp − ξp)αpκpIpSp > 0 when ϕp = ϕUp . Since 0 < ϕp < ϕUp , hence

νp = ϑp = 0. Similar remarks apply to the Lagrange multipliers for the other two
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control variables. The optimality conditions are given as follow

ϕ∗p(t) = min
{
max {0, φp(t)} , ϕUp

}
, t ∈ [t0, tF ], (7.16a)

ϕ∗sh(t) = min
{
max {0, φsh(t)} , ϕUsh

}
, t ∈ [t0, tF ], (7.16b)

ϕ∗nh(t) = min
{
max {0, φmh(t)} , ϕUmp

}
, t ∈ [t0, tF ]. (7.16c)

where

φp(t) =
(ζp(t)− ξp(t))αpκpIp(t)Sp(t)

Cp

=

(
ζp(t)− ξp(t)

Cp

)(
δp(δp +mp)

ηp

)
RpIp(t)Sp(t) (7.17a)

φsh(t) =
(ζsh(t)− ξsh(t))αshκshIsh(t)Ssh(t)

Csh

=

(
ζsh(t)− ξsh(t)

Csh

)(
δh(δh +ms)

ηh

)
RshIs(t)Sh(t) (7.17b)

φmh(t) =
(ζmh(t)− ξmh(t))αmhκpImh(t)Smh(t)

Cmh

=

(
ζmh(t)− ξp(sh)

Cmh

)(
δh(δh +mm)

ηh

)
RmhIm(t)Sh(t) (7.17c)

7.5 Simulation

In practice it may be convenient to assume that the controls are piecewise constant.

For each given value of the constants can be found local numerical solutions to the

state equations. Since the adjoint system is a system of linear differential equations

with variable coefficients defined in terms of the known state variables it can be found

a local analytic solution for the adjoint variables. Of course the fundamental matrix

for the adjoint system will be expressed in terms of the numerical functions found for

the state variables.

7.5.1 Algorithm

The steps for implementing control are as follow.

1. Subdivide the interval [t0, tF ] into N equal subintervals. For t ∈ [tk, tk+1] and

k = 0, 1, . . . , N − 1 assume piecewise-constant control functions

ϕ(0)
p (t) = ϕ(0)

p (tk),

ϕ
(0)
sh (t) = ϕ

(0)
sh (tk),

ϕ
(0)
mh(t) = ϕ

(0)
mh(tk).
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2. Apply the assumed controls ϕ
(i)
p , ϕ

(i)
sh and ϕ

(i)
mh to integrate the state equations

(7.7a)-(7.7h) from an initial time t0 to a final time tF with the given initial

conditions Z0 ∈ [0, T ]× R7 and store the disease state trajectory

Z(i) =
(
S(i)
p , I(i)

p , S
(i)
h , S(i), I(i)

a , I
(i)
b , I(i)

m

)
.

3. Applying ϕ
(i)
p , ϕ

(i)
sh and ϕ

(i)
mh and the disease state Z(i) to integrate co-state equa-

tions (7.12a)-(7.12h) backward, i.e., from [tF , t0]. The starting value λ
(i)
(j)(tF ) can

be obtained by the transversality conditions

ζ(i)
p

(i)(tF ) = ζp(tF ),

ξ(i)
p (tF ) = ξp(tF ),

ζ
(i)
h (tF ) = ζh(tF ),

ξ(i)
s (tF ) = ξs(tF ),

ξ(i)
a (tF ) = ξa(tF ),

ξ
(i)
b (tF ) = ξb(tF ),

ξ(i)
m (tF ) = ξm(tF ).

Store the values ζ
(i)
p , ξ

(i)
p , ζ

(i)
h , ξ

(i)
s , ξ

(i)
a , ξ

(i)
b and ξ

(i)
m

4. Let

φ(i)
p =

(
ζ

(i)
p − ξ(i)

p

Cp

)(
δp(δp +mp)

ηp

)
RpI

(i)
p (t)S(i)

p (t)

φ
(i)
sh =

(
ζ

(i)
sh − ξ

(i)
sh

Csh

)(
δh(δh +ms)

ηh

)
RshI

(i)
s (t)S

(i)
h (t)

φ
(i)
mh =

(
ζ

(i)
mh − ξ

(i)
p

Cmh

)(
δh(δh +mm)

ηh

)
RmhI

(i)
m (t)S

(i)
h (t)

5. Based on the optimality criteria (7.16a), (7.16b), (7.16c), check the values of

φ
(i)
p , φ

(i)
sh and φ

(i)
mh.

(a) Checking the value of φp

i. If φ
(i)
p > 0 then let ϕ

(i)
p = φ

(i)
p otherwise ϕ

(i)
p = 0 go to Step 7.

ii. If φ
(i)
p < ϕUp then let ϕ

(i)
p = φ

(i)
p otherwise ϕ

(i)
p = ϕUp go to Step 5.

(b) Checking the value of φsh

i. If φ
(i)
sh > 0 then let ϕ

(i)
sh = φ

(i)
sh otherwise ϕ

(i)
sh = 0 go to Step n7.

ii. If φ
(i)
sh < ϕUsh then let ϕ

(i)
sh = φ

(i)
sh otherwise ϕ

(i)
sh = ϕUsh go to Step 5.

(c) Checking the value of φmh

i. If φ
(i)
mh > 0 then let ϕ

(i)
mh = φ

(i)
mh otherwise ϕ

(i)
mh = 0 go to Step 7.
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ii. If φ
(i)
mh < ϕUp then let ϕ

(i)
mh = φ

(i)
mh otherwise ϕ

(i)
mh = ϕUmh go to Step 7.

6. Let

ϕ(∗) =
(
ϕ(∗)
p , ϕ

(∗)
sh , ϕ

(∗)
mh

)
where

ϕ(∗)
p = ϕ(i)

p ,

ϕ
(∗)
sh = ϕ

(i)
sh ,

ϕ
(∗)
mh = ϕ

(i)
mh

and

Z(∗) =
(
S(∗)
p , I(∗)

p , S
(∗)
h , I(∗)

s , I(∗)
a , I

(∗)
b , I(∗)

m

)
where

S(∗)
p = S(i)

p ,

I(∗)
p = I(i)

p ,

S
(∗)
h = S

(i)
h ,

I(∗)
s = I(i)

s ,

I(∗)
a = I(i)

a ,

I
(∗)
b = I

(i)
b ,

I(∗)
m = I(i)

m .

7. For k = 0, 1, . . . , N − 1 and a step size τ adjust the piecewise-constant control

functions by

ϕ(i+1)
p (tk) = ϕ(i)

p (tk)− τφ(i)
p (tk),

ϕ
(i+1)
sh (tk) = ϕ

(i)
sh(tk)− τφ

(i)
sh(tk),

ϕ
(i+1)
mh (tk) = ϕ

(i)
mh(tk)− τφ

(i)
mh(tk).

Let

ϕ(i)
p (tk) = ϕ(i+1)

p (tk),

ϕ
(i)
sh(tk) = ϕ

(i+1)
sh (tk),

ϕ
(i)
mh(tk) = ϕ

(i+1)
mh (tk)

and return to step 2.
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Figure 7.1 shows that the optimal control is effective in reducing the proportion of

infected birds with avian flu in the beginning. Increasing proportion of infected birds

in the end is caused by low balancing cost factor for controlling avian flu among birds.

Fig. 7.1: Proportion of infectious poultry birds. The horizontal axis is time in days.
Uncontrolled in blue, controlled in red

Figure 7.2 shows that the optimal control is effective in reducing the proportion of

infected humans with avian flu in the beginning. Figure 7.3 shows that the optimal

control is effective in reducing the proportion of infected human with avian flu.

7.5.2 Estimation of disease transmission parameters

In uncontrolled systems such as in Chapter 4, equations (4.6), (4.7) and (4.8) estimate

the basic reproduction numbers for the disease transmissions for estimated epidemio-

logical parameter values given in Section 4.7 and a given a set of population parameters.

For a controlled system however, the problem is slightly different. For a given set

of values of basic reproduction numbers and population parameters, it is necessary

to determine the rate at which the disease spreads in order to control the disease.

The population parameters (ηp, ηh, δp, δh, κp, κph, κsh, κsa, κmh) used in the numerical

simulation are adopted from Chapter 4.

Estimated basic reproduction numbers of avian influenza transmission among poul-

try birds in Indonesia during 2004-2009 vary between 1.8 to 4.00 [198], [28], [17]. There-
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fore it is reasonable to take 1.86 as the estimate of the basic reproduction of avian flu

among birds [125]. The transmission rate among birds is estimated by using the basic

reproduction number formula (4.6).

The basic reproduction number of swine flu among humans is estimated to be 1.6

[61] (Rsh = 1.6). The estimated mean infectious period of infected humans with swine

flu is about 14 days [61]. Swine flu virulence among infectious humans is 0.01 [61]

(ms = 0.01). The transmission rate of swine from humans infectious with swine flu to

susceptible humans is estimated by using the basic reproduction number formula (4.7),

1.82× 10−4 per-day (i.e. αsh = 1.82× 10−4).

7.6 Discussion

Analysis showed that the cost of disease controls plays the most important factor in

the optimal control strategy. The quarantine policy is better than the culling policy

during the spread of disease, even if the unit execution cost of the quarantine policy is

more than that of the culling policy. Also the change of the unit execution cost does

affect the total cumulative cost of the optimal prevention policies but does not affect

the relative frequency of each cumulative execution cost. Furthermore, it shows that

an optimal strategy to reduce the number of total infected humans might increase the

chance of containing the mutant influenza.

Controlling the contact intensity between susceptible and infectious birds is effective

in reducing the number of infected birds and humans. The execution costs committed to

the control policies affects the optimal strategy of prevention policies. The quarantine

policy is considered more important compared to the social distancing policy during the

disease spread, even if the unit execution cost of the quarantine policy is more expensive

than that of the social distancing policy. Also, the change of the unit execution cost does

affect the total cumulative cost of the optimal prevention policies but does not affect

the relative frequency of each cumulative execution cost. Furthermore, interestingly, it

shows that an optimal strategy to reduce the number of total infected humans might

increase a chance of invasion by a mutant influenza.
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Fig. 7.2: Proportion of infected human with avian flu. (a) Asymptomatic.
(b)Symptomatic. The horizontal axis is time in days. Uncontrolled in blue,
controlled in red



7. CONTROLLING THE SPREAD OF DISEASE 169

Fig. 7.3: (a) proportion of infectious humans with swine flu. (b) proportion of infectious
humans with mutant-avian flu. The horizontal axis is time in days. Uncon-
trolled in blue, controlled in red



8. CONCLUSION

This thesis has addressed some problems of modeling, analyzing and interpreting the

spread of disease and control of multi-strain influenza-A viruses (i.e. avian flu, swine

flu and mutant-avian flu) among linked populations of birds and humans in Indonesia.

Mutant-avian flu is a hypothetical mutated virus resulting from virus recombination

between of avian flu and swine flu.

The dynamics of the disease states were described as deterministic processes. Seven

disease states were considered for a single region problem and 7n disease states for the

problems of n regions. An additional disease state (culled birds) is used to address the

effect of border screening.

The dynamics of the diseases is modeled in the form of well-defined disease dynamics

problem (DDP)s and optimal disease control problems ODCPs. Models and methods

developed in this study are justified theoretically. Analytical results were presented in

theorems and corollaries. Simulations were presented to visualize the dynamic of the

diseases and the economic trade-off between the spread and control of the diseases.

8.1 Discussion

In the case of a single region, the variability of seven disease states were modeled

by the DDP (4.3a)- (4.3h). The existence of a unique solution is guaranteed Lemma

4.1. Three reproduction numbers were defined for the transmission of the diseases by

(4.6), (4.7) and (4.8). The sensitivity analysis on the reproduction numbers shows that

the reproduction numbers are most sensitive towards the effective number of contacts

of susceptible to infectious individuals. These indicate that the effective number of

contacts of susceptible to infectious individuals is the best option to be controlled.

The disease dynamic model (4.3a)-(4.3h) has five equilibria, one disease free equi-

librium and four epidemic equilibria. The four epidemic equilibria were expressed as

the functions of the reproduction numbers in (4.29), (4.33),(4.37) and (4.41). The

asymptotic analysis showed that three are globally asymptotically stable and the other

two are locally asymptotically stable. Three human epidemic equilibria namely, (4.29),

(4.33) and (4.37) happen when there is no epidemic in the bird world. The stability

analysis are given in Theorems 4.6, 4.9, 4.12, 4.13 and 4.14. Numerical analysis show

that:
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(i) The spread of avian flu in the human world appears later than that in the bird

world.

(ii) Containing avian flu in the bird world does not stop the spread of the implicated

diseases in the human world.

(iii) The spread of mutant-avian-flu has a greater magnitude than avian flu in terms

of the proportion of individuals acquiring the disease.

(iv) Reducing the contact among poultry birds will reduce the spread of avian flu but

not swine flu and mutant-avian-flu.

(v) Social distancing programs reduce the number of human casualties.

The disease dynamics problem (DDP) (4.3a)-(4.3h) is an extension of the model

proposed in [103] in some ways. Swine flu was considered as an additional source of

infection and the mutant influenza-A is considered as a recombination of avian flu and

swine flu. These model extensions are necessary to capture more accurately (for a

biological point of view ) the pandemic generation scenario that has been suggested

[84],[71].

The effect of bird trading on the dynamics of the diseases in a set of n-regions was

modeled by the DDP (5.3a)-(5.3h). For two identical regions, the model becomes (5.5a)-

(5.5o). For the two identical regions model, three reproduction numbers were defined

by (5.7), (5.11) and (5.12). These reproduction numbers are dependent on α and β (the

rates of disease transmission due to transport related infection). The analysis shows

that if Rpαβ < 1, Rpα < 1 then birds in both regions are free of avian flu. If Rpαβ > 1

but Rpα < 1 then birds remain free of avian flu when both regions are isolated. But the

transport-related infection will lead to the disease becoming endemic at both regions.

If Rpαβ > 1 and Rpα > 1 then the avian flu is endemic among birds even if both regions

are isolated. The transport-related infection will increase the magnitude of avian flu

endemic.

In addition to the ’local’ disease-state equilibria in each region there are disease state

equilibria due to transport-related infection. These disease equilibria will determine

which region will have an epidemic and which ones will not. The stability of the

disease-state equilibria corresponding to the DDP (4.3a)-(4.3h) is preserved in the DDP

(5.3a)-(5.3h). The stability analysis are given in Theorems 5.2, 5.3, 5.4, 5.5 and 5.6.

Numerical analysis shows that:

(vi) Bird trading is a significant factor for the spread of diseases not only in the bird

world but also in the human world.

(vii) Bird trading may result in an epidemic among birds and humans even in a region

which is initially disease free.
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(viii) If avian flu is already endemic among birds in both regions, then bird trading

will intensify the spread of the diseases among bird and humans.

The IVP (5.5a), (5.5o) is an extension of transport-related infection models for a

single species and single disease transmission and appeared in [138], [139], [142], [143]

in some ways namely, number of species, number of disease transmissions. The model

also extends knowledge in the sense of its ability to analyze the effect of transport-

related infection of a species to the disease dynamics of other species. The analysis

on the effects of bird trading to the disease dynamics in the bird world confirm the

similar results for a single species population considered in [142]. This study presents

results on the effects of birds trading to the dynamics of the diseases among humans.

It extends knowledge about the effects of transport related infection and screening of

a species to the dynamics of (more than one) diseases of another species.

The effect of border screening to the dynamics of the diseases was modeled by the

DDP (6.3a)-(6.3i) and (6.5a)-(6.5q). For the two identical regions model (6.5a)-(6.5q),

three reproduction numbers were defined by (6.7), (6.11) and (6.12). These reproduc-

tion numbers are dependent on α, β and σ (the probability for screening infected birds).

Analysis shows that:

(ix) Border screening has the potential to eliminate avian flu transmission during bird

transportation.

(x) Increasing the probability of successful screening of birds entering a region will

decrease the magnitude of spread of disease among birds and humans in the

region at the expense of increased costs of screening and culling. This indicates

some economic trade-off between screening policy implementation and spread of

disease.

The DDP (6.5a), (6.5q) is an extension of transport-related infection models for a

single species and single disease transmission that have appeared in [143] in some ways,

namely, the number of species and the number of disease transmissions. The model

also extends these studies in the sense of its ability to analyze the effect of transport-

related infection and border-screening of a species to the disease dynamics of other

species. The analysis on the effects of birds trading to the disease dynamics in the bird

world confirm similar results for a single species population considered in [143]. This

study presents results on the effects of border screening to the dynamics of the diseases

among humans. It extends knowledge about the effects of transport related infection

and border screening of a species to the dynamics of (more than one) diseases of another

species. The analysis on the effects of birds trading on the disease dynamics in the bird

world confirms the similar results for a single species population considered in [143]. It

extends knowledge about the effects of transport related infection and screening of a

species to the dynamics of (more than one) diseases of another species.
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The problems of modeling and analyzing the economic trade-off between spread of

disease and control was modeled by minimizing the objective function (7.6) subject to

disease state constraints (7.7a)-(7.7a) and the control constraints (7.8a)-(7.8a). The

necessary conditions for optimality of the ODCP, (7.16a)-(7.16a), were derived based

on Theorem 3.30, the Pontryagins maximum principle. Three disease controls were

aimed to reduce the effectiveness of three disease transmissions. The control functions

are defined by the equations (7.17a), (7.17b), (7.17c). An indirect algorithm for finding

optimal disease control policies is given in Sub-section 7.5.1.

Analysis showed that the cost of disease controls plays the most important factor

in the optimal control strategy. The quarantine policy is better than the culling policy

during the spread of disease, even if the unit execution cost of the quarantine policy is

more expensive than that of the culling policy. Also, the change of the unit execution

cost does affect the total cumulative cost of the optimal prevention policies but does

not affect the relative frequency of each cumulative execution cost. Furthermore, it

shows that an optimal strategy to reduce the number of total infected humans might

increase a chance of containing the mutant influenza.

The ODCP (7.5)-(7.8c) is an extension of the disease control model proposed in [146]

in some ways. This extends the previous studies for the prevention of the pandemic

influenza to evaluate the time-dependent optimal prevention policies that are associated

with culling policy and quarantine policy, considering its execution cost. The execution

cost affects the optimal strategy of prevention policies and the prevention of the spread

of disease.

8.2 Conclusion

The long range goal of this work is to provide a tool to be used by government officials

in Indonesia for making decisions concerning strategies for managing epidemics. There

was no intention of delivering such a tool in the course of this thesis study. The objective

was to provide the mathematical setting and demonstrate the feasibility of such a tool,

in principle.

The theoretical aspects of the work demonstrate that the long term behaviour of

diseases and their effects on linked populations of birds and humans may be understood

qualitatively by studying equilibria of a dynamical system. The demonstration of the

stability of these equilibria justifies numerical computations. The numerical computa-

tions provide the details of the evolution of the disease states over time that will be of

primary interest in predicting impacts on populations.

Of course, merely predicting the effects of the disease is of limited benefit. A major

feature of a future tool will be the capacity to determine optimal intervention strategies.

Should resources be used to maximum capacity at the onset of an epidemic or should
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these be spread out over time – and if so, what level of intervention, viewed as a

function of time, is optimal. This work shows that these questions may be addressed

by implementing methods from the control theory. This work also shows that the

potential benefits of optimizing interventions may be substantial.

Although the models presented here reflect the recent situation with bird flu in

Indonesia, the final tool will be designed to be more general. The theoretical aspects of

the work are already quite general and are likely to apply as is or with only minor ad-

justments. The implementation depends on knowing parameters related to the diseases

and populations involved. The final tool will allow users to redefine such parameters

as necessary in future scenarios. The tool has the potential to facilitate this step too.

Sensitivity analysis is useful in understanding which parameters of the diseases and

the populations are the most important to determine. Thus the user may use the tool

to decide if resources are better spent on carefully determining transmission rates or

effective contact rates, for example.

One important aspect of building the tool has not been addressed in this thesis,

namely the human-computer interaction aspect. The tool will be most useful if officials

with little scientific or technical knowledge are able to understand output of the model

as well the scope and limitation of the predictions. Even if the official is not the person

who actually runs the model, he or she must be able to digest the results. This will

require careful consideration of the presentation of results in terms of graphs and figures,

and text. Human-computer interaction is a separate topic and could be addressed in

the future.

This thesis has provided the core theoretical foundation for building a tool that is

useful for managing epidemics. Sensitivity analysis and the inclusion of control aspects

demonstrate that a practical tool is feasible. Numerical computations demonstrate the

potential benefit of using the model in determining strategies for intervention.

8.3 A vision and the directions for the future

Not withstanding the development of a user friendly shell for the model, the model

itself is also subject to improvement. Some directions for future work are as follow.

The models developed in this study capture the variability of disease states at the

population level, but do not capture the variability inherent at the individual level.

The mutation process was assumed to be homogeneous throughout the population and

modeled by shift evolution. One direction to improve the models is by considering a

drift evolution. Let µ(τ) be the probability of virus mutation due to virus recombination

between swine flu and avian flu, where τ is time since the virus recombination took

place. The quantity τ(µ, t) represents the density of humans developing mutant-avian



8. CONCLUSION 175

flu. The cumulative number of humans develop mutant avian flu at time t is∫ a1

a0

τ(µ, t)

In the case of an isolated region, the variability of disease states among birds and

humans is denoted by z(t) = (Sp(t), Ip(t), Sh(t), Is(t), Ia(t), Ib(t), Im(t)). The disease

dynamics in a single region is modeled by

ż(t) = f1(z(t);α, p), z(0) = z0, (8.1)

where f1 : Ω1 × Ψ1 × Q1 → <+ and z(t), z0 ∈ Ω1 ⊆ R7
+. α ∈ Ψ1 ⊂ R5

+ is the vector

of five disease transmission parameters. q ∈ Q1 ⊂ R19
+ is the vector of nineteen disease

parameters other than transmission parameters.

By introducing the additional disease state τ , the variability of disease states among

birds and humans is Z(t) = (z(t), τ(t)) and the disease dynamics become

Ż(t) = f1(Z(t);α, p), Z(0) = Z0, (8.2)

where f1 : Ω1 ×Ψ1 ×Q1 → <+ and Z(t), Z0 ∈ Ω1τ ⊂ R8
+. Comparing (8.1) and (8.2),

the former is a system of differential equations, while the later is a system of stochastic

differential equations. Analyzing the latter model will be much harder due to stochastic

differential terms in the model.
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