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ABSTRACT

Membrane-based separation is a rapidly developing technology which offers many
advantages over other separation techniques. However, existing membrane
technology requires further research into improving efficiencies which involves flux
enhancement, improved selectivity, sufficient long term stability and anti-fouling
properties. The fabrication of membrane materials capable of performing highly
controlled molecular separations can be achieved by developing nanoporous
materials with controllable structural, physical and chemical properties. Recently
there has been increased interest in the functionalisation of membrane surfaces in
order to enhance the stability and transport properties of membranes. However,
current research into the characterisation of functional layers within porous materials
is lacking. Further insight into how surface modifications may impact the transport
properties of porous membranes is essential for the development of membrane

materials.

This thesis presents an approach for tailoring porous materials with surface
functionalities and controlling pore architecture to provide controlled transport
properties. Membranes such as polycarbonate and porous alumina membranes were
used in these studies due to their ordered pore architectures. Further structural
modification of the membranes was carried out in order to reduce the pore diameter
of the membranes. Pore size reduction was achieved using two methods; electroless
deposition of gold and atomic layer deposition (ALD) of silica. The pore size of the
membranes was altered systematically by adjusting the number of ALD cycles or by

adjusting gold deposition time.

The surface properties of the membranes were tailored in order to provide controlled
molecular transport. It is important to determine how surface modifications may
impact the transport properties of porous membranes in order to devise more
efficient separation processes. Desired chemical properties were imparted to the
membranes by modifying the membrane surfaces with self assembled monolayers
(SAMs). Predominantly, hydrophobic SAMs were used as it presented a simple

technique to demonstrate changes to the transport properties of membranes due to
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introduced surface functionalities. The transport properties of fluoro-derivatised
membranes  (1H,1H,2H,2H-perfluorodecanethiol)  towards hydrophobic and
hydrophilic molecules was compared with a membrane modified with an analogous
alkanethiol; 1-decanethiol to demonstrate the influence that a slight variance in
surface modification can have on the transport properties of the membrane. The
effects of the controlled positioning of functional groups on the transport properties
of the membrane were investigated. Several hybrid membrane structures based on
polycarbonate membranes were created in which gold was deposited on different
areas on the membrane; on one of the membrane interfaces, within the pores of the
membrane and completely coating all surfaces of the membrane. Gold-thiol
chemistry was exploited in which the thiols only assembled on the gold coated
regions of the membrane thus providing controlled positioning of functional regions.
Lastly, silica coated PA  membranes were  functionalised  with
perfluorodecyldimethylchlorosilane (PFDS) to demonstrate that the transport and
selectivity properties of silica composite PA membranes can be varied by

functionalisation using silane chemistry.

The investigation of the coverage and reproducibility of SAMs within porous
matrices is of utmost importance in the design of filtration membranes and sensing
platforms. The surface enhanced Raman scattering (SERS) effect was employed to
confirm and characterise the formation of SAMs of 3-mercaptobenzoic acid

(mMBA) on the surfaces of the gold coated alumina membranes.

To explore more sophisticated surface functionalisation, stimuli responsive
membranes were produced. The transport properties of the gold nanotube membranes
were controlled through the reversible switching of adsorbed fluorinated azobenzene
layers. The fluorinated, hydrophobic end group of the azobenzene chain produces a
transition between hydrophobic and less hydrophobic surface properties when
switching from the trans to the cis state. The selective mediation of a hydrophilic

probe dye across the membrane was investigated.
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