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Summary 

As ecosystems are exposed to rapidly changing climates, impacts may depend not only on magnitudes 

of change, but on organisms’ existing physiologies, plastic capacities, and their potential for 

evolutionary adaptation. These factors are likely to vary among environments, and in accordance with 

local or regional biogeographic influences. Tropical regions, and particularly freshwater environments, 

remain understudied relative to their temperate counterparts, and disputes exist about evolutionary 

mechanisms in these hyper-diverse landscapes. We therefore aimed to clarify how hydroclimatic 

selection and landscape structure shape intraspecies adaptive diversity and evolution of an Australian 

tropical-endemic rainbowfish, Melanotaenia splendida splendida, as well as resilience under rapid 

climatic change.  

 

Our first two data chapters employed a comparative riverscape-based approach, integrating genomic, 

phenotypic, and environmental datasets (14,540 filtered SNPs, 18 morphometric landmarks, and eight 

hydrological attributes, respectively) for 381 individuals from 17 sampling sites across rainforest and 

savannah biomes. Environmental associations both within and among these contrasting and 

heterogeneous habitats allowed us to test contributions of adaptive and non-adaptive influences on 

intraspecies diversity. Strong ecotype-specific environmental associations provided evidence for 

divergent adaptations to hydroclimate. Moreover, environment was a better predictor of genetic and 

morphological variation than neutral or spatial factors. This was particularly evident for body shape, 

which was relatively poorly explained by neutral population structure. Given that similar trait 

divergence has been associated with heritable hydrodynamic-related variation in congeneric species, 

this may reflect important functional consequences of body shape variation. Additional combined 

associations between genotype, phenotype, and environment supported the tentative inference of 

evolved adaptive differences. Weaker adaptive signals in the more connected savannah ecotype were 

consistent with a homogenising effect of gene flow on local adaptation.  
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In our third data chapter, we used experiments to compare short-term responses to climate warming 

among rainforest and savannah ecotypes, as well as in relation to previously studied temperate, desert, 

and subtropical rainbowfish ecotypes. Specifically, we assessed rapid acclimation capacity via tests of 

critical thermal maxima, as well as transcriptional responses to projected 2070 summer temperatures 

using differential expression analysis. We identified 189 DE genes as candidates for future thermal 

responses, including hub genes related to heat shock and lipid metabolism. We found a strong positive 

relationship between induced transcriptional responses and upper thermal tolerance, both of which were 

greater in the savannah ecotype. Meanwhile, the rainforest ecotype’s more limited plastic capacity may 

reflect greater specialisation of thermal responses suited to its more temporally stable native 

environment. 

 

Our work suggests that both contemporary hydroclimatic variation and drainage connectivity have 

shaped regional diversity in this species, with possible trade-offs between system-wide and locally 

specialised adaptations among rainforest and savannah ecotypes. We expect that alteration of current 

climates will necessitate substantial evolutionary responses for in situ population persistence, and that 

these may be more constrained in the climatically stable rainforest biome. Overall, the findings 

contribute to broader discussions about mechanisms promoting and maintaining patterns of tropical 

diversity, and highlight the utility of integrating diverse biological datasets to better disentangle 

complex evolutionary processes.  
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Chapter 1: Introduction 

Adaptation and persistence in changing climates 

Ecological structure and function are unequivocally influenced by the surrounding environment, and in 

an era of global change, understanding the dynamics of these relationships is necessary for effective 

biodiversity management. Evolutionary pressures may influence not only organisms’ capacity to 

respond to existing environmental conditions, but their adaptive potential in the face of novel challenges 

(Somero 2010, Chen et al. 2018c, Buckley and Kingsolver 2021). In tropical regions, relatively stable 

long-term climatic conditions have been linked to high richness, endemism, and specialisation of 

inhabitant species (Fjeldsaå et al. 1997, Weir and Schluter 2007, Salisbury et al. 2012, Furness et al. 

2021). However, it has also been suggested that this same stability could predispose vulnerability to 

disturbance from anthropogenic climate change (Addo-Bediako et al. 2000, Kellermann et al. 2009, 

Brown et al. 2020). Therefore, contextualising both adaptive and non-adaptive evolutionary processes 

across tropical landscapes is a prerequisite to identifying patterns of vulnerability and resilience to 

future change (Moritz 2002, Moritz and McDonald 2005).  

 

If magnitudes of environmental change exceed organisms’ physiological tolerance, possible outcomes 

include range shifts, adaptation via genetic changes, persistence via phenotypic plasticity, or local 

extinction (Parmesan 2006, Bernatchez 2016). Dispersal is often limited by the fragmented nature of 

modern landscapes, particularly in constrained habitats such as freshwater (Fuller et al. 2015, Grummer 

et al. 2019). Because of this, adaptive and plastic capacities may be last lines of defence against 

extinction, making them key areas of research interest (Fensham et al. 2011, Erős et al. 2015). While 

there are still many challenges to identifying climatic adaptation in natural populations, correlations 

between biological and climatic gradients are an integral first line of evidence (Endler 1982, Sork et al. 

2016). Moreover, DNA sequencing techniques and analytical methods are developing rapidly, with 

analytical integration of next generation sequencing (NGS) with physiological and environmental data 
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offering unprecedented power for studying evolutionary divergence across landscapes (Stapley et al. 

2010, Andrew et al. 2013, Joost et al. 2013, Balkenhol et al. 2017, Li et al. 2017).  

 

A Tropical context for adaptation research 

Climate change and habitat fragmentation represent major risks for tropical ecosystems (Hilbert 2008, 

Gibson et al. 2013, Barlow et al. 2018). These biomes are the most diverse and species rich in the world, 

with rainforests alone estimated to contain around two thirds of all vascular plant species and perhaps 

more than half of total species (Turner 2001, Primack and Corlett 2005, Barlow et al. 2018). Despite 

predicted magnitudes of temperature change being less than that of temperate regions (Solomon 2007), 

tropical ecosystems may be vulnerable due to the narrower tolerance ranges of their biotas, and smaller 

resulting thermal safety margins (Deutsch et al. 2008, Huey et al. 2009, Eguiguren-Velepucha et al. 

2016). Tropical regions are also likely to be subjected to some of the most extreme weather events, such 

as more frequent and intense tropical cyclones (Knutson et al. 2010). This high level of diversity 

combined with high projected extinction risks makes tropical ecosystems an urgent research priority 

(Myers et al. 2000, Wilson et al. 2016). Yet, publication rates in conservation and ecological 

diversification are comparatively sparse in tropical regions (Beheregaray et al. 2015, Wilson et al. 2016, 

Clarke et al. 2017).  

 

Relevant to both conservation and theoretical developments, there is ongoing debate about the 

contribution of ecological and vicariant processes in explaining biodiversity in the terrestrial tropics 

(Endler 1982, Mayr and O'Hara 1986, Haffer 1997, Smith et al. 1997, Moritz et al. 2000). Many 

pioneering studies in tropical diversification have emphasised the role of physical and genetic isolation 

on patterns of divergence (Wallace 1854, Haffer 1969, Vuilleumier 1971, Mayr and O'Hara 1986, Ayres 

and Clutton-Brock 1992, Dias et al. 2013). Indeed, differentiation via both neutral and adaptive 

mechanisms may be expediated by barries to gene flow (Nosil and Funk 2008). However, adaptive 

processes have classically been difficult to differentiate from confounding influences of demography, 
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and this has likely contributed to downplaying and even scepticism towards the importance of ecology 

in tropical diversification (Schluter 2001, Nosil and Funk 2008, Nosil 2012, Beheregaray et al. 2015). 

Moreover, a growing number of tropical studies that explicitly assessed neutral and adaptive processes 

found that both mechanisms are important for explaining genetic and physiological trait diversity 

(Freedman et al. 2010, Smith et al. 2011, Cooke et al. 2014, Brousseau et al. 2015, Benham and Witt 

2016, Maestri et al. 2016, Termignoni‐García et al. 2017, Zhen et al. 2017, Gallego‐García et al. 2019, 

Morgan et al. 2020), highlighting the need for nuanced assessments of tropical diversification.  

 

Transitions between contrasting biomes provide a very useful spatial context for studying climatic 

adaptation and resilience (Smith et al. 1997). Rainforest and savannah are major biomes in the terrestrial 

tropics, and their ubiquity and stark variation in a range of climatic variables (Andersen et al. 2008, 

Murphy and Bowman 2012, Oliveras and Malhi 2016) provides opportunities for exploring associations 

with environmental heterogeneity. Tropical rainforests are typically characterised by high rainfall, 

dense tree cover, and low seasonality (Murphy and Bowman 2012). Meanwhile, savannahs often 

maintain open tree layers, grassy groundcover, highly seasonal climates, and frequent fire activity 

(Grace et al. 2006, Murphy and Bowman 2012). Their relative distributions are thought to be influenced 

by precipitation feedback loops; these have been related to disturbance, with incidences of fire or tree 

felling likely to promote savannah cover; and to topographic complexity, with greater complexity and 

rugosity promoting rainforest cover (Ash 1988, Murphy and Bowman 2012, Ondei et al. 2017). 

Adaptive differences between rainforest and savannah are therefore not only likely to have been 

influenced by magnitudinal differences in relevant environmental variables, but also by differences in 

stability and complexity, potentially influencing specialisation and resilience to climate (Hau 2001, 

Cadena et al. 2012, Ciemer et al. 2019).  

 

These features offer the opportunity for testing hypotheses of geographical variation in adaptive 

resilience, based on assumptions that organisms are adapted to, or have the ability to acclimate to, the 
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conditions normally encountered in their habitat range (Ghalambor et al. 2006). For instance, the 

‘climatic variability hypothesis’ predicts a greater range of thermal tolerance and acclimation capacity 

for organisms that evolved in variable climates compared to those adapted to more stable climates 

(Janzen 1967, Ghalambor et al. 2006, Aguilar-Kirigin and Naya 2013). Under this premise, it is 

expected that savannah-adapted organisms will be more resilient to climatic changes than those adapted 

to rainforest environments. Evidence for habitat-specific physiological adaptation are available for 

several studies of rainforest-ecotone and rainforest-savannah transitions, for example in birds 

(Andropadus virens, Smith et al. (2005); Cyanomitra olivacea, Smith et al. (2011)), lizards (Scincidae, 

Moritz et al. (2012); Kentropyx calcarata, (Pontes-da-Silva et al. 2018)), insects (Bicyclus dorothea, 

Dongmo et al. (2021); Termitidae, Woon et al. (2021)), and mammals (Praomys misonnei, Morgan et 

al. (2020)). However, assessments that integrate data from ecological traits and genome-wide signals 

of selection remain rare in non-model tropical organisms, and are only beginning to address 

implications for resilience (Miller et al. 2020, Morgan et al. 2020). 

 

Integrated approaches for detecting adaptation across landscapes 

Molecular technologies, from genomics to transcriptomics, are revolutionising the study of landscape 

ecology (Andrew et al. 2013). Landscape genomics has arisen as a framework to identify associations 

between genomic variation and the environment, candidate genes under natural selection, and 

geographic variables shaping biological variation (Schwartz et al. 2010, Balkenhol et al. 2017, Li et al. 

2017, Luikart et al. 2018). The approach stems from earlier studies of landscape genetics (sensu Manel 

et al. (2003)), but takes advantage of many thousands of markers along genomes, such as single 

nucleotide polymorphisms (SNPs) (Salojärvi 2018). This not only increases statistical power, but also 

provides a sample of both neutral and adaptive genetic variation to enable explicit tests of how 

landscape heterogeneity influences patterns of gene flow and natural selection (Storfer et al. 2007, 

Holderegger and Wagner 2008, Bragg et al. 2015).  
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Prevalent analytical methods include those that identify extreme allele frequency divergence among 

populations, for example outlier tests (Lewontin and Krakauer 1973, Luikart et al. 2003, Foll and 

Gaggiotti 2008), and those that identify associations between allele frequencies and environmental 

gradients, for example genotype environment associations (GEAs) (Joost et al. 2007, Coop et al. 2010, 

Fitzpatrick and Keller 2015, Rellstab et al. 2015). Both work under the premise that genetic 

differentiation between populations is not equal across the genome, and that greater differentiation 

between populations generally accumulates at regions of the genome that are under selection (Nosil 

2012). GEAs are in their relative infancy, but provide great sensitivity for detecting polygenic 

adaptation, a process by which adaptive traits are controlled by many genes of individual low effect 

size (Orr 2005). Moreover, methods currently exist to accommodate a range of association types and 

sampling strategies, and can often incorporate and control for confounding variables such as neutral 

genetic structure or spatial proxies (reviewed by Rellstab et al. (2015), Forester et al. (2018), Balkenhol 

et al. (2017)).  

 

Landscape genomics does not explicitly require the inclusion of phenotypic data about the adaptive 

traits of interest (Manel et al. 2010). Rather, identifying even indirect genotypic associations with 

climate can inform about sources of adaptive variation (Blois et al. 2013). However, without an 

understanding of physiological or fitness-related traits, the relevance of specific environmental factors 

and organismal responses can remain murky (Rellstab et al. 2015). Association analyses linking 

phenotype with either spatial or allelic variation may therefore strengthen inferences of selection, and 

inform about the likely adaptive relevance of candidate adaptive genotypes (Rellstab et al. 2015, Talbot 

et al. 2017). Traits such as body shape, physiological capability, or behaviour are useful inclusions. This 

is particularly relevant where ecological relevance has already been demonstrated, such as in the 

relationship between habitat type and fin position of Australian rainbowfishes (McGuigan et al. 2003, 

McGuigan et al. 2005, Smith et al. 2020), topical to this thesis. Multivariate morphological datasets can 

be created by identifying homologous landmarks on an animal’s body to extract geometric 

morphometric coordinates (Claude 2008, Zelditch et al. 2012). Similar to GEA methods, phenotype-
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environment associations (PEAs) can identify ecologically adaptive phenotypes, and can also include 

controls for confounding influences such as demographic history (Zelditch et al. 2012, Maestri et al. 

2016). Moreover, although uncommon, even clearer interpretations can be drawn from integrative 

genotype-phenotype-environment (GxPxE) associations (Talbot et al. 2017). In these types of 

approaches, associations between candidate adaptive genotypes and significant phenotypic 

polymorphisms can help clarify the role of environment, as well as putative genetic functions 

underlying ecological adaptations (Talbot et al. 2017, Hu et al. 2020, Smith et al. 2020, Carvalho et al. 

2021).  

 

Another phenotypic angle for studying adaptation and resilience to environmental change is the 

regulation of gene expression. For many genes, expression regulation occurs primarily at the level of 

transcription, whether through quantitative changes in expression levels, or through processes such as 

alternative splicing (Marden 2008, De Wit et al. 2012). This makes studies of transcriptional variation, 

using methods such as RNA-seq (i.e. RNA sequencing via NGS), extremely useful for understanding 

both the potential for and mechanistic basis of short- and long-term adaptive responses (Wellband and 

Heath 2017). Studies of expression in experimental conditions can inform about the regions and 

pathways responsible for physiological responses to specific environmental variables (De Wit et al. 

2012). Expression regulation may also represent an important adaptive mechanism, enabling genotypes 

to express different phenotypes under different environmental challenges (Merilä 2015, Xu et al. 2016). 

The resulting phenotypic plasticity can act as both a buffer against selective pressures such as climatic 

variation, and may even facilitate diversification at the genetic level (Pfennig et al. 2010, Wund 2012, 

Bailey et al. 2021). For example, it has been found that populations with high levels of phenotypic 

plasticity may be more likely to colonise new areas, with the plasticity providing a broader basis for 

adaptive radiation (Muschick et al. 2011, Stein and Bell 2019). Finally, there is increasing evidence that 

greater tolerance to challenges such as thermal stress may be reflected by responses in a greater number 

of relevant genes and with greater magnitudes of expression difference (Garvin et al. 2015, Narum and 

Campbell 2015, Sandoval-Castillo et al. 2020, Komoroske et al. 2021). Although mechanistic links are 
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not yet established, such measures of plasticity may improve predictions of resilience to environmental 

change, and help to explain the physiological basis for performance differences.  

 

Australian rainbowfish study system 

In this thesis, we focus on the eastern rainbowfish Melanotaenia splendida splendida (Teleostei: 

Melanotaeniidae; Peters 1866), a tropical member of the “Australis” clade of small-bodied Australian 

rainbowfishes (Unmack et al. 2013). The group is currently of great interest in climatic adaptation 

research in freshwater ecosystems (Smith et al. 2013, McCairns et al. 2016, Gates et al. 2017, Brauer et 

al. 2018, Sandoval-Castillo et al. 2020, Smith et al. 2020). Not only do species ranges correspond 

closely to the boundaries of major Australian climatic ecoregions (McGuigan et al. 2000, Unmack et 

al. 2013), but previous studies of the congeneric M. duboulayi, M. eachamensis, M. fluviatilis, and M. 

s. tatei have identified genotypic and phenotypic traits of adaptive significance for both thermal and 

hydrological responses (McGuigan et al. 2003, McGuigan et al. 2005, Smith et al. 2013, McCairns et 

al. 2016, Sandoval-Castillo et al. 2020, Smith et al. 2020). Early morphological work on rainbowfishes 

found evidence of environmentally driven, heritable body shape divergence in relation to 

hydrodynamics (McGuigan et al. 2003, McGuigan et al. 2005). In these studies, divergence in fin 

position was associated with contrasting flow regimes, a key attribute in the context of climate change 

(Döll and Zhang 2010). More recent landscape genomics approaches in the Molecular Ecology Lab at 

Flinders University (MELFU) have inferred GEA signals in response to seasonal hydroclimatic 

variation (Brauer et al. 2018, Smith et al. 2020), and linked morphological differences to climate-

associated genes (Smith et al. 2020). Additionally, experimental work testing gene expression responses 

to projected changes in climate has described highly plastic thermal responses (Smith et al. 2013), 

heritability of plastic response capacities (McCairns et al. 2016), and evidence for adaptive divergence 

of plastic capacities among divergent climatic ecotypes (Sandoval-Castillo et al. 2020). Together, these 

studies indicate that physiological variation in rainbowfishes has been strongly influenced by 

hydroclimate, and suggests the importance of both genomic adaptation and phenotypic plasticity for 
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responses to future changes. However, such studies are yet to include a tropical representative species 

of rainbowfish. 

 

Melanotaenia splendida splendida (Peters 1866) are endemic to tropical north-eastern Australia (Figure 

1.1) (McGuigan et al. 2000, Unmack et al. 2013). They are distributed among river systems of bordering 

rainforest and savannah biomes, which include the Wet Tropics of Queensland UNESCO World 

Heritage Area, as well as drier central regions of Cape York Peninsula (ALA 2020). Like many 

Australian rainbowfishes, M. s. splendida exhibit extensive phenotypic variation across their range; 

morphological, meristic, and colour variations have been observed between populations, drainages, and 

even contrasting habitats within drainages (Pusey et al. 2004). This has led to suggestions of locally 

divergent genetic variation or highly plastic phenotypes in the species (Pusey et al. 2004). However, 

the contribution of these influences, and any associated adaptive benefits, are yet to be explored through 

genomic studies. Topographic heterogeneity across M. s. splendida’s distribution also includes variation 

in the size and connectivity of river drainages, providing a further avenue of exploration in relation to 

adaptation and divergence. While large rivers are regularly connected by monsoonal flows in lowland 

savannah areas (Howley et al. 2013), the more mountainous terrain of Queensland’s wet tropical 

rainforests comprise many small but distinct drainages, creating a naturally fragmented freshwater 

habitat structure (Nott 2005, Pearson et al. 2015). River network architecture is almost invariably 

associated with population structure in freshwater fishes, and is therefore expected to affect 

evolutionary dynamics among tropical ecoregions (Jiménez-Cisneros et al. 2014, Thomaz et al. 2016, 

Davis et al. 2018). The above features, when combined with ease of captive rearing, relative ecological 

importance, and relative abundance of M. s. splendida (up to 7.23 fish per square metre) (Pusey et al. 

2004), make the species an ideal target for wild and laboratory studies of adaptation. We suspect that 

environmental gradients, and climatic gradients in particular, have contributed to their evolutionary 

diversity across tropical ecosystems. 
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Figure 1.1 Melanotaenia splendida splendida species range in tropical north-eastern Australia, based on records 

from the Atlas of Living Australia (ALA 2020). 

 

Significance and justification 

Biodiversity management in the Anthropocene is limited by resource allocation and conflicting political 

interests (Seddon et al. 2016). Therefore, conservation efforts will be maximised where management is 

informed by sound knowledge of adaptive patterns affecting vulnerability and resilience in natural 

populations (Summers et al. 2012, Faleiro et al. 2013, Bernatchez 2016, Seddon et al. 2016). Despite 

strong theoretical underpinnings, interpreting eco-evolutionary processes in natural systems is 

complicated by interactions across multiple levels of biological organisation and surrounding abiotic 

environments (Hansen et al. 2012, Andrew et al. 2013, Merilä and Hendry 2014). Moreover, diverse, 

and potentially vulnerable ecosystems such as tropical rainforests and savannahs remain understudied 

compared to temperate systems, remaining an urgent priority for empirical research (Beheregaray et al. 
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2015, Barlow et al. 2018). This project takes advantage of relatively recent advances in high resolution 

molecular data generation and prioritises interdisciplinary integration of environmental and biological 

datasets. We explore intraspecies variation of genotypes, gene expression profiles, morphological 

phenotypes, and physiological tolerances of an endemic rainbowfish (Melanotaenia splendida 

splendida) across freshwater systems of tropical rainforest and savannah (see framework in Figure 1.2). 

By assessing evolutionary and plastic signals of divergences across bioregions, we begin to elucidate 

influences of hydroclimate and catchment structure on adaptive diversity and resilience in tropical 

riverscapes. 

 

This work forms part of a larger long-term research program on Comparative Evolutionary Genomics 

of Australian Rainbowfishes within the MELFU (Australian Research Council grants DP110101207 

and DP150102903; LB Beheregaray & L Bernatchez), which, as discussed above, has made strides in 

clarifying climatic and spatial correlates of adaptation in temperate, desert, and subtropical Australian 

river systems. That broader work has highlighted plastic and evolutionary adaptation in Australian 

rainbowfishes, and has provided data relevant for conservation planning over large portions of the 

continent. However, this thesis represents the first tropical component of this growing body of research. 

Furthermore, the contained chapters will stand alone in informing about adaptive and non-adaptive 

drivers of evolution in tropical freshwater, as well as factors influencing resilience of rainforest and 

savannah fish populations in a changing climate. 
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Figure 1.2 The framework implemented in this PhD thesis maps genetic diversity, population structure, signatures 

of selection and morphological variation of Melanotaenia splendida splendida across the climatically 

heterogeneous landscape of tropical north-eastern Australia (rainforest and savannah ecoregions) to test 

associations between putative adaptive variation and environment. We also contrast physiological and gene 

expression responses to thermal stress between rainforest and savannah populations using experimental 

temperature manipulation to determine potential for the role of phenotypic plasticity in climatic adaptation. We 

combine the above information to identify genomic regions underlying phenotypic adaptation to climate, and 

assess differences in adaptive resilience to rapid climatic change between these two key tropical ecotypes. 

 

Thesis outline 

This thesis comprises five chapters. Chapter 1 provides a general introduction to the research subject 

and study system. The chapter is intentionally presented in a concise format to reduce repetition with 

the data chapters. Chapters 2, 3 and 4 are data chapters, each intended as stand-alone publications. 

Chapter 5 is a concluding chapter, providing critical discussion of our major results and their broader 

theoretical and practical implications. 
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Chapter 2: Environmental selection, rather than neutral processes, best explain patterns of diversity in 

a tropical rainforest fish 

This data chapter investigates ecological influences on intraspecies variation of M. s. splendida within 

its wet tropical rainforest distribution. Integrative landscape genomics methods were combined with 

morphological (geometric morphometric) phenotyping to identify selection gradients and terrain 

features contributing to spatial patterns of diversity. We found evidence for adaptive divergence in 

response to hydrological and thermal gradients. Moreover, ecological variables were better able to 

predict intraspecies variation than putative neutral structure. 

 

Chapter 3: Divergence among and within tropical biomes: adaptation, specialisation, and resilience 

This chapter expands upon the rainforest-specific focus of Chapter 2, to present a comparative 

assessment of adaptive divergence across rainforest and savannah ecosystems. We tested contributions 

of environmental and neutral influences among and within ecoregions, using genotype-environment, 

phenotype-environment, and genotype-phenotype-environment associations. Further, we explored the 

influence of terrain connectivity on strength and variation of local adaptive signals. In addition to 

evidence for divergent hydroclimatic adaptation among ecoregions, we found weaker associations 

among genotype, phenotype, and environment in the highly connected savannah region. We propose a 

homogenising effect of gene flow on local genomic adaptation, as well as a potentially greater reliance 

on plasticity for phenotypic variation among savannah localities. 

 

Chapter 4: Comparative transcriptomics and resilience to future climates of rainforest and savannah 

rainbowfish 

We use common-garden experiments to compare short-term adaptive responses to climate warming 

among rainforest and savannah populations, as well as in relation to temperate, desert, and subtropical 
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rainbowfishes previously studied at MELFU. We assessed rapid acclimation capacity via tests of critical 

thermal maximum, and compared plastic responses to projected 2070 summer temperatures using gene 

expression analyses. We found both the greatest thermal tolerance and the greatest transcriptional 

flexibility in the savannah ecotype, which may assist plastic responses to the hot and variable conditions 

of its native environment. 

 

Chapter 4: Conclusion 

This chapter concludes the study by summarising our main research findings in relation to our aims. 

We discuss the contributions of hydroclimatic selection and landscape structure to patterns of genomic 

and physiological diversity in the tropical rainbowfish M. s. splendida. We discuss further implications 

for resilience between rainforest and savannah biomes in a rapidly changing climate, as well as 

highlighting limitations and future directions for this work. 

 

During the PhD candidature, I also made a significant contribution to the research and writing of a 

publication (full version, Appendix 4) which was directly linked to this project but not a part of the 

PhD: 

- Sandoval-Castillo, J., Gates, K., Brauer, C. J., Smith, S., Bernatchez, L., & Beheregaray, L. B. 

(2020). Adaptation of plasticity to projected maximum temperatures and across climatically 

defined bioregions. Proceedings of the National Academy of Sciences, 117(29), 17112-17121.  
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Chapter 2: Environmental selection, rather than neutral processes, best 

explain patterns of diversity in a tropical rainforest fish  

Abstract 

To conserve the high functional and genetic variation in hotspots such as tropical rainforests, it is 

essential to understand the forces driving and maintaining biodiversity. We asked to what extent 

environmental gradients and terrain structure affect morphological and genomic variation across the 

wet tropical distribution of an Australian rainbowfish, Melanotaenia splendida splendida. We used an 

integrative riverscape genomics and morphometrics framework to assess the influence of these factors 

on both putative adaptive and non-adaptive spatial divergence. We found that neutral genetic population 

structure was largely explainable by restricted gene flow among drainages. However, environmental 

associations revealed that ecological variables had a similar power to explain overall genetic variation, 

and greater power to explain body shape variation, than the included neutral covariables. Hydrological 

and thermal variables were the best environmental predictors and were correlated with traits previously 

linked to heritable habitat-associated dimorphism in rainbowfishes. Additionally, climate-associated 

genetic variation was significantly associated with morphology, supporting heritability of shape 

variation. These results support the inference of evolved functional differences among localities, and 

the importance of hydroclimate in early stages of diversification. We expect that substantial 

evolutionary responses will be required in tropical rainforest endemics to mitigate local fitness losses 

due to changing climates.   
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Introduction 

Empirical studies are fundamental to the advancement of evolutionary theory, and they increase in 

relevance as we grapple with the novel selective forces of anthropomorphic environmental change. Both 

adaptive and non-adaptive processes contribute to the proliferation of biodiversity, but there remains 

much to explore about their relative roles (Bernatchez 2016, Wellenreuther and Hansson 2016, Luikart 

et al. 2018). At a landscape scale, environment is expected to modulate interactions between 

evolutionary mechanisms, namely natural selection, genetic drift, and gene flow (Haldane 1948, Slatkin 

1987, Manel et al. 2003, Storfer et al. 2007). However, we are only now developing frameworks to 

untangle coexisting signatures of these processes in natural populations. Such studies are particularly 

sparse in biodiversity hotspots such as tropical rainforests, where there has not only been substantial 

debate about diversifying processes (Endler 1982, Mayr and O'Hara 1986, Moritz et al. 2000), but also 

suggestions of a high risk to adaptive diversity from human influences (Moritz 2002, Barlow et al. 2018, 

França et al. 2020).  

 

As some of the world’s most biodiverse and temporally continuous ecosystems, tropical environments 

merit a central place in eco-evolutionary research. Tropical rainforests alone may contain more than 

half the world’s species (Turner 2001, Primack and Corlett 2005), and are among the greatest terrestrial 

providers of ecosystem services (Brandon 2014). Attributes such as localised endemism, high niche 

specificity and a history of relative stability may increase threats to diversity under environmental 

change (Reed 1992, Barlow et al. 2018, Hoffmann et al. 2019). However, there is an inherent logistical 

difficulty of studying such diverse and often remote ecological communities (Beheregaray 2008, 

Beheregaray et al. 2015, Clarke et al. 2017), and both terrestrial and freshwater tropics remain 

remarkably understudied relative to temperate ecosystems (Beheregaray et al. 2015, Wilson et al. 2016). 

There has also been a long history of contention about the processes generating and sustaining tropical 

rainforest biodiversity (Endler 1982, Mayr and O'Hara 1986, Haffer 1997, Smith et al. 1997). 

Biogeographic and palaeoecological research has debated factors permitting both the accumulation of 

species and the preconditions for divergence; while strong evidence suggests that stability of rainforest 
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refugia through glacial maxima has helped sustain high species richness (Weir and Schluter 2007, 

Weber et al. 2014, Cattin et al. 2016), the factors precipitating diversification remain less clear. 

Arguments for vicariant influences such as refugial isolation and landscape breaks (Wallace 1854, 

Haffer 1969, Vuilleumier 1971, Mayr and O'Hara 1986, Ayres and Clutton-Brock 1992, Dias et al. 

2013) have been increasingly contested with evidence for parapatric and sympatric divergence across 

ecotones (Endler 1982, Smith et al. 1997, Kirschel et al. 2011, Cooke et al. 2012a, Cooke et al. 2012b, 

Cooke et al. 2014, Morgan et al. 2020).  

 

While providing important geographical context, the polarised nature of early research has sometimes 

obscured the complexity and continuity of evolutionary processes in rainforest taxa (Butlin et al. 2008, 

Jardim de Queiroz et al. 2017). For example, the difficulty of inferring adaptation in isolated populations 

against a neutral ‘null hypothesis’ may have encouraged the view that allopatric divergences were 

largely drift-driven, despite evidence that local selection can often be more effective in a low gene flow 

context (Schluter 2001, Nosil 2012, Beheregaray et al. 2015). Moreover, while species-level 

diversification has received great emphasis, increased intraspecific research provides a granular 

approach for identifying evolutionary processes such as drift and adaptation (Moritz et al. 2000, Moritz 

2002). In tropical studies explicitly assessing neutral and adaptive patterns, both have been found to 

contribute to genetic or physiological diversity (Freedman et al. 2010, Smith et al. 2011, Cooke et al. 

2014, Brousseau et al. 2015, Benham and Witt 2016, Maestri et al. 2016, Termignoni‐García et al. 2017, 

Zhen et al. 2017, Gallego‐García et al. 2019, Morgan et al. 2020). However, only a few tropical studies 

have so far addressed these questions with the aid of large and integrated datasets, which will be 

invaluable for more nuanced assessments of evolutionary processes (Moritz et al. 2000, Moritz 2002, 

Beheregaray et al. 2015).  

 

The field of landscape genomics has exploited rapidly advancing genomic and geospatial toolsets to 

detect ecological adaptation (Manel and Holderegger 2013, Hoffmann et al. 2015, Li et al. 2017), 
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including in aquatic ecosystems (Grummer et al. 2019). Genotype-environment association (GEA) 

analyses have proven to be a powerful means to identify loci under selection by specific environmental 

factors (Rellstab et al. 2015, Waldvogel et al. 2020), even for relatively weak allele frequency shifts   

(Bourret et al. 2014, Laporte et al. 2016, Forester et al. 2018). Similarly, phenotype-environment 

associations (PEAs) can allow identification of ecologically adaptive phenotypes, benefited by 

multivariate approaches like geometric morphometrics (Zelditch et al. 2012, Maestri et al. 2016). 

Detection of adaptation is complicated by the expectation of additional random, and potentially neutral, 

divergences, so statistical methods correcting for shared population history can benefit these approaches 

(Gautier 2015, Rellstab et al. 2015). For PEAs, it is also important to consider that plastic responses to 

environement, rather than evolved differences, can produce divergent physical characteristics (Merilä 

and Hendry 2014). Therefore, clearer interpretations can be made where it is possible to relate 

ecologically adaptive genotypes to significant phenotypic polymorphisms (Hu et al. 2020). Such 

integrative genotype-phenotype-environment (GxPxE) associations increase the opportunity for teasing 

apart eco-evolutionary mechanisms, and may strengthen inferences about candidate genes underlying 

ecological adaptations (Smith et al. 2020, Carvalho et al. 2021).  

 

Landscape heterogeneity places unique constraints on the biodiversity structure of taxa with restricted 

niches, including freshwater obligates. In tropical rainforests, high year-round precipitation makes 

freshwater habitats ubiquitous, and their biotic interactions inextricable from those of the broader forest 

(Lo et al. 2020). However, available habitats and opportunities for gene flow in freshwater are typically 

restricted to dendritic, hierarchical, island-like, or ephemeral water features (Lévêque 1997, Grummer 

et al. 2019). The architecture of river networks and the strength and direction of flows can profoundly 

influence evolutionary dynamics (Thomaz et al. 2016, Brauer et al. 2018), as well as vulnerability to 

fragmentation (Jiménez-Cisneros et al. 2014, Davis et al. 2018, Brauer and Beheregaray 2020). These 

factors make understanding the spatial distribution of aquatic diversity important but complicated, and 

few riverscape genomic studies have been attempted in tropical freshwater (but see Barreto et al. (2020); 

Gallego‐García et al. (2019)).  
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We therefore capitalise on growing knowledge of eco-evolutionary processes in Australian 

rainbowfishes (Melanotaenia spp; family Melanotaeniidae) (e.g. McGuigan et al. (2003), McGuigan et 

al. (2005), Smith et al. (2013), McCairns et al. (2016), Gates et al. (2017), Brauer et al. (2018), Lisney 

et al. (2020), Sandoval-Castillo et al. (2020), Smith et al. (2020)). In this genus, previous work has 

indicated not only the likely importance of hydroclimate as a driver of diversity, but the utility of 

integrative methods for assessing aquatic adaptation. Early work found heritable and potentially 

convergent body shape variation in association with streamflow (M. duboulayi; M. eachamensis) 

(McGuigan et al. 2003, McGuigan et al. 2005). More recently, experimental assessments of gene 

expression have detected selection for plasticity of thermal response mechanisms (M. duboulayi, M. 

fluviatilis, and M. s. tatei) (Smith et al. 2013, McCairns et al. 2016, Sandoval-Castillo et al. 2020). 

Riverscape GEAs have also supported intraspecies ecological divergence related to hydroclimate for 

M. fluviatilis (Brauer et al. 2018) and M. duboulayi (Smith et al. 2020), with the latter including 

evidence of GxPxE links. 

 

Despite these advances, genome-wide research has not yet been presented for a tropical representative 

of the clade. Hence, we focus this study on Melanotaenia splendida splendida (eastern rainbowfish), 

endemic to tropical north-eastern Australia. The species is abundant throughout its distribution, 

including several river systems in the complex rainforest landscape of the Wet Tropics of Queensland 

World Heritage Area (Pusey et al. 1995, Russell et al. 2003, Hilbert 2008). It inhabits a variety of 

freshwater environments, and is also known for its high morphological diversity, even within connected 

drainages (Pusey et al. 2004). Although the ecological relevance of this diversity has not yet been tested, 

the low to moderate dispersal tendency of Melanotaenia spp (Brauer et al. 2018, Smith et al. 2020) 

makes localised adaptation a plausible contributor. Moreover, the rugged terrain of the Great Dividing 

Range provides diverse conditions and possible selective influences across the sampled habitat (Nott 

2005, Pearson et al. 2015). In that region, temperature, precipitation and streamflow vary with latitude, 

elevation, terrain structure, and proximity to the coast (Metcalfe and Ford 2009, Stein 2011), and human 



 

33 
 

impacts according to land use (Pert et al. 2010). This environmental and climatic heterogeneity, 

combined with the recognised biodiversity values, make the Wet Tropics of Queensland an ideal 

location for testing hypotheses about evolutionary dynamics in tropical freshwaters. 

 

The broad aims of this study were to develop understanding about the adaptive and non-adaptive drivers 

of variation in tropical rainforest freshwater ecosystems. This was approached using landscape 

genomics to characterise spatial patterns of genetic and morphological diversity, identify links between 

genotype, phenotype and environment, and test the impacts of adaptive and non-adaptive forces on 

divergence across a variable rainforest hydroclimate. Based on previous evidence for climatic factors 

promoting adaptive diversity among higher latitude rainbowfishes (Brauer et al. 2018, Sandoval-

Castillo et al. 2020, Smith et al. 2020), we tested the hypothesis that hydroclimate would also play a 

strong role in driving intra-species diversity within a tropical ecotype. The following questions were 

addressed: First, to what extent does hydroclimate predict genetic and morphological diversity beyond 

that explained by alternative hypotheses such as neutral genetic structure? Second, if such relationships 

exist, can further associations be drawn to suggest a genetic (heritable) adaptive component to the 

relevant morphology? Third, to what extent does catchment structure in this rugged terrain contribute 

to patterns of divergence? These factors have implications not only for understanding contemporary 

evolutionary processes in rainforest ecosystems, but also for interpretation of adaptive resilience to 

environmental change. 

 

Methods 

Sample collection 

During March 2017, wild Melanotaenia splendida splendida (eastern rainbowfish) were sampled from 

nine rainforest creek sites across five drainages in the Wet Tropics of Queensland, north-eastern 

Australia (Figure 2.1; Supplementary Table A1). Live fish were captured by seine netting and 

transported by road in closed containers fitted with battery-running air pumps to a mobile fieldwork 
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station. Here, 267 fish were euthanised, one at a time, via an overdose of anaesthetic sedative (AQUI-

S®: 175mg/L, 20 minutes). Of these, 208 individuals (avg. 23, min. 19 per sampling site; Table A1) 

were photographed immediately after death for morphometric data collection (details in Supplemental 

Methods A1). Fin clips from all 267 individuals were preserved in 99% ethanol and stored at -80°, of 

which 210 high quality samples were selected for the final DNA dataset (avg. 23, min. 20 per site; Table 

A1). For 180 individuals (avg. 20, min. 15 per site), both genomic and morphometric datasets were of 

high quality, allowing direct comparisons in later GxPxE analyses. 

 

Figure 2.1 Sampling location map of Melanotaenia splendida splendida collected from the Wet Tropics of 

Queensland. Point colours correspond to river drainage of origin. Navy lines highlight only the sampled creeks 

and major rivers of each represented drainage system. Inset: extent indicator of main map relative to the Australian 

continent. 
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DNA extraction, library preparation and sequencing 

We extracted DNA from fin clips using a salting-out protocol modified from Sunnucks and Hales (1996) 

(A2). DNA was assessed for quality using a NanoDrop spectrophotometer (Thermo Scientific), for 

integrity using gel electrophoresis (agarose, 2%), and for quantity using a Qubit fluorometer (Life 

Technologies). High-quality samples from 212 individuals were used to produce double-digest 

restriction site-associated DNA (ddRAD) libraries in-house following Peterson et al. (2012) with 

modifications according to Sandoval‐Castillo et al. (2018) (A3), which have demonstrated efficacy for 

rainbowfishes (e.g. Brauer et al. (2018)). Samples were randomly assigned across sequencing lanes with 

an average of six replicates per lane for quality control. Four lanes were sequenced at the South 

Australian Health and Medical Research Institute Genomics Facility on an Illumina HiSeq25000 

(single-ended), and one lane at Novogene Hong Kong on an Illumina HiSeq4000 (paired-ended). 

 

Bioinformatics: read trimming, alignment to genome, variant calling and filtering  

We used TRIMMOMATIC 0.39 as part of the DDOCENT 2.2.19 pipeline (Puritz et al. 2014) to 

demultiplex and trim adaptors from raw sequences, as well as leading and trailing low quality bases 

(Phred < 20). Individuals with < 700,000 reads were considered poorly sequenced and were removed 

from the dataset. Sequences were mapped to a reference genome of the closely related M. duboulayi 

(Beheregaray et al. unpublished data; Supplemental Table A4) following the GATK 3.7 pipeline (Van 

der Auwera and D O’Connor 2020). Briefly, we used BOWTIE 2 2.3.4 (Langmead and Salzberg 2012) 

to generate a FASTA file reference index and sequence dictionary from the genome and align individual 

sequences to the reference. After sorting and converting SAM files to BAM format, potential mapping 

errors and alignment inconsistencies were corrected using a local realignment around indels. Finally, 

variants were called from the mapped reads using BCFTOOLS 1.9 (Li 2011). To target high quality 

SNPs, we used VCFTOOLS 0.1.15 (Danecek et al. 2011) to filter poorly sequenced reads, non-

biologically informative artefacts (sensu O'Leary et al. (2018), variants other than SNPs (e.g. indels), 

and sites with high likelihood of linkage disequilibrium (full details A4). 
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Differentiating putatively neutral versus outlier loci 

Conformity of loci to neutral expectations was assessed using BAYESCAN 2.1 (Foll and Gaggiotti 

2008), which identifies outlier loci under selection based on allele frequency distributions. Because the 

model relies on FST, it requires prior specification of population membership. We therefore ran an  

analysis using FASTSTRUCTURE 1.0 (Raj et al. 2014) for the full filtered dataset (details A5). We 

then ran BAYESCAN using default settings for all filtered loci, with individuals assigned to putative 

populations based on the best K selected by FASTSTRUCTURE. A putatively neutral dataset was 

inferred using a false discovery rate < 0.05. Such an approach is usually considered appropriate for 

minimally-biased assessments of demographic parameters (Luikart et al. 2003, Luikart et al. 2018). The 

resulting dataset (14,479 loci, 210 individuals) was used for subsequent analyses of neutral genetic 

diversity and population structure except where otherwise specified. 

 

Genetic diversity and inference of population structure 

We estimated neutral genomic diversity for each sampling site using ARLEQUIN 3.5 (Excoffier and 

Lischer 2010), including mean expected heterozygosity (He), mean nucleotide diversity (π), and 

proportion of polymorphic loci (PP). We also calculated Wright’s fixation indices (F-statistics) in R 

(RC Team 2019) using HIERFSTAT 0.04-22 (Goudet 2005) for the entire sampling region. The same 

package was used to calculate pairwise FST and site-specific FST among sampling localities. To produce 

an overview of phylogenetic relationships among individuals, a Neighbour-Joining tree was constructed 

in PAUP* 4.0 (Swofford and Sullivan 2003b) using TN93 distances (Tamura and Nei 1993). We also 

produced a scaled covariance matrix of population allele frequencies (Ω) using BAYPASS 2.2 (Gautier 

2015) core model, based on the full SNP dataset rather than the neutral subset. We further interrogated 

population structure using clustering approaches, including FASTSTRUCTURE, and Discriminant 

Analysis of Principal Components (DAPC) in R (RC Team 2019) package ADEGENET 2.0.0 (Jombart 
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2008, Jombart and Ahmed 2011). Full details of above analyses, including preparation of input files, 

are in Supplemental Methods (A6). 

 

Characterising environmental variation 

Environmental variables used to evaluate environmental and morphological variation were obtained 

from the National Environmental Stream Attributes v1.1.3, a supplementary product of the Australian 

Hydrological Geospatial Fabric (Geoscience Australia 2011; Stein (2011)). From >400 available 

attributes, we selected only those which varied among sampling sites, were uncorrelated, were measured 

at a relevant scale, and were considered to have broad ecological relevance for freshwater organisms 

(further details A7). The six selected variables were: stream segment aspect (ASPECT), river 

disturbance index (RDI), average summer mean runoff (RUNSUMMERMEAN), average annual mean 

rainfall (STRANNRAIN), average annual mean temperature (STRANNTEMP), and total length of 

upstream segments calculated for the segment pour-point (STRDENSITY) (Figure A7). These were 

used as a basis for the subsequent analyses of genotype-environment associations (GEA), phenotype 

environment associations (PEA) and GxPxE associations. 

 

Genotype-environment associations 

We used GEAs to assess the effect of environment on genotype of M. s. splendida within the 

climatically heterogeneous Daintree rainforest. We chose to use analytical approaches with different 

advantages, including a Bayesian hierarchical model (BAYPASS 2.2 auxiliary covariate model (Gautier 

2015)), and constrained ordination (redundancy analysis; RDA) performed in R package VEGAN 2.5-

6 (Oksanen et al. 2019). For both methods, we tested associations between the full SNP dataset (14,478) 

and the six scaled, uncorrelated environmental variables (see above) while controlling for putatively 

neutral genetic variation. The algorithm used by BAYPASS is well suited to study systems involving 

hierarchical population structure (Gautier 2015), which is particularly common in dendritic habitats 

such as freshwater (Thomaz et al. 2016). We tested for GEA associations accounting for assumed 
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population demographic structure (scaled population allelic covariance; Ω), previously identified using 

the software’s core model (details in supplemental methods A8). Meanwhile, RDAs have been shown 

to have both a low rate of false positives and high rate of true positives under a range of demographic 

histories, sampling designs, and selection intensities when compared with other popular GEA methods 

(Forester et al. 2018). We first ran a global RDA using the full SNP dataset as the multivariate response 

matrix, and the six environmental variables (Figure A7), centred and scaled, as the explanatory matrix. 

Then, to control for demographic structure, partial RDAs (pRDAs) were used to model relationships 

between alternative (neutral) explanatory variables and genotypic responses, ordinating only the 

residual genotypic responses against environmental explanatory variables. To this end, two pRDAs 

were performed to include different neutral covariable matrices, 1) significant principal components 

(PCs) of scaled population allelic covariance (Ω), and 2) significant PCs of pairwise FST. For both, we 

used the full set of SNP genotypes as a response matrix, and an explanatory matrix containing only 

environmental variables previously associated with genotype (p < 0.1) in the global RDA (full details 

A8). 

 

Geometric morphometric characterisation and analyses 

Eighteen landmarks were positioned on digital images of M. s. splendida collected during field sampling 

using TPSDIG2 2.31 (Rohlf 2017). Landmarks (Figure 2.2) were selected to maximise anatomical 

homology, repeatability, and representation of potentially ecologically relevant characteristics, based 

on recommendations by Zelditch et al. (2012) and Farré et al. (2016). The majority represent 

intersections of fins or other skeletal structures, ensuring homology and providing a thorough 

representation of overall body shape and fin positioning. The only notable exceptions to homology are 

the front and rear margins of the maximum eye width (landmarks 3 and 4). However, these were 

included on the basis that the eye is an important sensory organ and might reflect ecologically relevant 

differences, and identification is relatively repeatable (Zelditch et al. 2012). The landmarks were also 

chosen to include those with ecological relevance in previous studies of rainbowfish morphology 

(McGuigan et al. 2003, McGuigan et al. 2005a). 
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Figure 2.2 The 18 landmarks used for geometric morphometric analysis of the eastern rainbowfish Melanotaenia 

splendida splendida. 1: Anterior tip of head, where premaxillary bones articulate at midline; 2: Posterior tip of 

maxilla; 3: Anterior margin in maximum eye width; 4: Posterior margin in maximum eye width; 5: Dorsal margin 

of head at beginning of scales; 6: Ventral margin in the end of the head; 7: Dorsal insertion of pectoral fin; 8: 

Anterior insertion of the pelvic fin; 9: Anterior insertion of the anal fin; 10: Anterior insertion of the first dorsal 

fin; 11: Posterior insertion of the first dorsal fin; 12: Anterior insertion of the second dorsal fin; 13: Posterior 

insertion of the second dorsal fin; 14: Posterior insertion of the anal fin; 15: Dorsal insertion of the caudal fin; 16: 

Posterior margin of the caudal peduncle (at tip of lateral line); 17: Ventral insertion of the caudal fin; 18: Posterior 

margin of the caudal fin between dorsal and ventral lobes. 

 

Digitised TPS files were imported into MORPHOJ 1.07a (Klingenberg 2011) for exploratory analyses. 

Individual landmark configurations were subjected to Procrustes superimposition, that is, a scaling of 

homologous coordinates by size, rotation and placement in space. The dataset was checked for outliers 

to ensure correct order and location of landmarks, and a covariance matrix was generated for the full 

dataset of individual Procrustes fits. To characterise major features of shape variation, a PCA was 

performed on the resulting covariance matrix. Due to size variation among individuals, an allometric 
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regression was used to test association between size (log centroid) and shape (Procrustes coordinates), 

pooled within population-based subgroups earlier identified by neutral genetic analyses. Due to a strong 

relationship between size and shape (Supplementary Figure A9), residuals from this regression were 

used for the subsequent canonical variate analyses (CVAs), also performed in MORPHOJ. To test for 

relationships between body shape and locality of origin, we ran CVAs of Procrustes distances against 

sampling site and against catchment. This method calculates total of variation among groups, scaling 

for relative within-group variation. Statistical significance was assessed using 1000 permutation rounds.  

 

Phenotype-environment associations 

To assess the effect of environmental gradients on body shape of M. s. splendida within the Daintree 

rainforest, we adapted the RDA approach used for the GEAs (described above) to implement 

phenotype-environment analyses (PEAs). We used the same set of environmental explanatory variables 

(above), this time testing body shapes (PCs of individual Procrustes distances determined significant 

by Broken-Stick method) as response variables. We again controlled for putatively neutral genetic 

structure (allelic covariance Ω; pairwise FST), plus the additional covariable of body size (log centroid 

size). Inputs for the body shape response variable and size covariable were created in R, using functions 

developed by Claude (2008) (full details in A10).  

 

Genotype-phenotype-environment analysis 

If environmental selection for a particular phenotype has promoted evolutionary adaption, then the 

relevant phenotypic divergence should be accompanied by a genotypic response. We therefore tested 

whether any of the putative adaptive (environmentally associated) genetic variation could be attributed 

to environmentally associated morphological variation throughout the study region. This could indicate 

both a heritable component to the associated body shape traits (as opposed to the alternative hypothesis 

of phenotypic plasticity), as well as providing further support for their adaptive advantages. In R, we 

ran a global RDA using the four significant PCs of individual Procrustes distances as explanatory 
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variables, and 864 putative adaptive alleles (identified in the genotype-environment RDA controlling 

for Ω) as the multivariate response. The analysis was then repeated as a partial RDA using individual 

body size (log centroid) as a covariable (details A11), the results of which isolated only the genotype-

phenotype interactions best explained by environmental selection. 

 

Results 

Genome-wide SNP data, diversity, and population structure 

Sequencing produced ~550 million ddRAD reads for 242 M. s. splendida individuals (including 

replicates). After variant filtering and removal of lower quality samples, we retained 14,540 putatively 

unlinked SNPs (Table B1), of which 14,478 could be considered neutral for the purposes of population 

genomic analyses (Figure B1). The final dataset comprised 210 high quality individuals across nine 

sampling sites. Neutral genomic diversity (Table 2.1) was moderately high for most sites, with expected 

heterozygosity (HE) ranging from 0.278 to 0.321 (mean = 0.293), and proportion of polymorphic loci 

(PP) ranging from 0.252 to 0.391 (mean = 0.329). Population subdivision accounted for a substantial 

proportion of the neutral variation, with global FST = 0.165, and FIT = 0.205. None of the site-specific 

FIS values (Table 2.1) were significant. Pairwise FST comparisons (Figure 2.3a; Table B2) indicated 

relatively little differentiation between localities within the same drainage (0.017 - 0.029; mean = 0.024) 

compared with localities in different drainages (0.071 - 0.208; mean = 0.120), consistent with a 

segregating effect of drainage boundaries. Similarly, greater correlations in allelic covariance (Figure 

2.3b) were observed among, rather than within drainages. Both pairwise and site-specific FST values 

indicated that the most neutrally divergent sampling localities were the northernmost McClean Creek 

(Hutchinson Drainage), followed by the centrally located Saltwater Creek (Saltwater Creek Drainage). 

In addition to being the smallest drainage systems sampled, both are located along the coastal boundary 

of the species distribution (Figure 2.1). 
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Table 2.1. Genetic diversity measures for the eastern rainbowfish Melanotaenia splendida splendida at nine 

rainforest localities, based on 14,478 putatively neutral loci (n = sample size for final DNA dataset; HE = expected 

heterozygosity; HO = observed heterozygosity; PP = proportion of polymorphic loci; FIS = site-specific inbreeding 

coefficient; FST = site-specific FST . 

Location Site Code Drainage system n HE HO PP FIS FST 

Little Mulgrave Creek LM Mulgrave 23 0.283 0.271 0.323 0.018 0.204 

Cassowary Creek CA Mossman 23 0.297 0.295 0.314 -0.011 0.177 

Marrs Creek MA Mossman 20 0.307 0.293 0.305 0.019 0.178 

Saltwater Creek SA Saltwater Creek 24 0.321 0.307 0.264 0.019 0.261 

Stewart Creek ST Daintree 25 0.278 0.259 0.391 0.031 0.065 

Douglas Creek DO Daintree 24 0.289 0.272 0.376 0.038 0.060 

Doyle Creek DY Daintree 24 0.294 0.280 0.358 0.030 0.095 

Forest Creek AN Daintree 22 0.289 0.268 0.377 0.054 0.059 

McClean Creek MC Hutchinson 25 0.279 0.271 0.252 0.009 0.382 
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Figure 2.3. Genomic differentiation and population structuring among nine rainforest sampling localities for the 

eastern rainbowfish Melanotaenia splendida splendida, represented by (A) Heatmap of pairwise FST based on 

14,478 putatively neutral SNPs; (B) Correlation map for BAYPASS core model scaled covariance matrix Ω based 

on allele frequencies of the full dataset of 14,540 SNPs; and (C) Cluster plot based on FASTSTRUCTURE 

analysis of 14,478 putatively neutral SNPs, where colours represent inferred ancestral populations of individuals 

based on an optimal K of five. Large type refers to drainage systems, which are separated by thicker black lines. 

Small type refers to sampling localities, separated by thinner black lines. Locality abbreviations follow Table 2.1.  

 

Low differentiation within drainages and high differentiation between drainages was also reflected by 

clustering analyses. Both FASTSTRUCTURE (Figure 2.3c) and DAPC (Figure B3) grouped 

individuals by their drainage system of origin, resulting in an optimal K of five for both analyses. Pairs 
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of drainages in relatively close geographic proximity (i.e., Daintree and Hutchinson; Saltwater and 

Mossman) grouped more closely in the DAPC, indicating similarities in genetic variation which may 

result from a more recent shared history. Consistently, the neighbour-joining tree (Figure B4), 

representing putative individual-level evolutionary relationships, presented each drainage system as 

reciprocally monophyletic, and supported a hierarchical pattern of spatial connectivity. 

 

Genotype-environment associations 

Without considering neutral influences, global redundancy analyses (RDAs) found six environmental 

variables associated with 23% of the observed genetic variation among individuals (p = <0.001; Figure 

B5). After controlling for locality-specific neutral variation, GEAs remained highly significant (p = 

<0.001). Controlling for scaled allelic covariance Ω (Figure 2.5a; Figure 2.B5), associations with five 

environmental variables accounted for 16.6% of total SNP variation, from which 864 loci were 

identified as candidates for environmental selection (p ≤ 0.0027; Figure B7). The environmental 

explanatory variables STRANNRAIN and STRANNTEMP were the most influential in the model. 

When controlling for the alternative neutral covariable of pairwise FST (Figure B8), associations with 

six environmental variables accounted for 12.1% of total SNP variation, with STRANNRAIN and 

STRANNTEMP likewise emerging as the most influential. These environmental variables were once 

again the most important in BAYPASS GEA approach (auxiliary covariate model; Figure B9), which 

identified a more conservative 176 loci as candidates. Of these, 88 were uniquely associated with 

STRANNRAIN, 56 with STRANNTEMP, 12 with ASPECT, ten with RDI, nine with STRDESITY, 

and one with RUNSUMMERMEAN. Twenty percent of these candidates (36 loci) were shared with 

the pRDA approach. 

 

Morphological variation among localities and environmental gradients 

Across the sampled range of rainforest M. s. splendida, four PCs of body shape (Figure 2.4; Figure B10)  

were identified as significant by Broken-Stick modelling. Major shape changes along these axes 
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included differences in body depth (PCs 1 and 4), dorsal and ventral curvature (PCs 2 and 3), fin length 

and position (PCs 3 and 4), and upturn of head and mouth (PCs 2 and 3). Despite some overlap of 

individual variation among localities, CVAs revealed significant differences (p < 0.05) in Procrustes 

distances among most sampling sites, and among all drainages/populations (Figure B11, Table B11). 

Interestingly, the sites for which shape difference could not be significantly distinguished (Forest Creek, 

Daintree drainage; and McClean Creek, Hutchinson drainage) were not within the same drainage system 

(or neutrally inferred population grouping), but were the closest sites in geographical proximity. The 

most shape-divergent localities were Little Mulgrave (Mulgrave drainage) and Doyle Creek (Daintree 

drainage). 

 

Figure 2.4. Wireframe graphical representation of significant principal components of body shape variation based 

on 18 landmarks for 207 Melanotaenia splendida splendida individuals sampled across nine rainforest sampling 

localities in the Wet Tropics of Queensland. Dark and light blue frames respectively represent body shape at high 

and low extremes of each significant axis (scale factor = 0.75). 

 

Global RDAs found that approximately 24% of body shape variation (based on four significant shape 

PCs) was associated with environment (p = <0.001) (Figure B5). After controlling for possible 

allometric (log centroid size) and neutral genetic (locality-specific allelic covariance Ω) influences 

using pRDA, 14% of body shape variation remained significantly associated with four environmental 
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variables, with STRANNTEMP and STRDENSITY the most influential (p = <0.001; Figure 5b). The 

body shape components most strongly associated with environment were PC2, relating to dorsal 

flattening, ventral curvature, and upturn of head; and PC4, relating to width and position of first and 

second dorsal fins and anal fin, body depth, and length of caudal peduncle (see Figure 2.4 for graphical 

representation).  

 

Associations among genotype, phenotype and environment 

The GxPxE analysis using global RDA revealed that 6.8% of putatively environment-adaptive genetic 

variation was also associated with the observed morphological variation throughout the study region (p 

= <0.001). After controlling for possible allometric effects (centroid size) using pRDA, this figure was 

only slightly reduced to 6.5% (Figure 2.5c). The PCs of body shape that had the strongest influence on 

the model were PC2, followed by PC4. Based on these associations, we identified 61 candidate loci for 

climate-adaptive morphological variation with p = <0.0455 (Figure B12). In other words, these loci are 

predicted to confer a heritable selective advantage under localized environmental conditions based on 

their association with body shape. 
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Figure 2.5. Ordination plots summarising the first two axes of partial redundancy analyses (pRDAs) for 

Melanotaenia splendida splendida individuals sampled across nine rainforest sampling localities in the Wet 

Tropics of Queensland. (A) Genomic variation (based on 14,540 SNPs) explained by five associated 

environmental variables, after partialing out the locality-specific effect of Ω (allelic covariance). Environmental 

predictors accounted for 16.6% of total variation (p = <0.001). (B) Body shape variation (based on 18 

morphometric landmarks) explained by four associated environmental variables, after partialing out the locality-

specific effect of Ω (allelic covariance) and the individual effect of body size (log centroid). Environmental 

predictors accounted for 14% of total variation (p = <0.001). (C) Genomic variation (based on 864 putative 

climate-adaptive alleles) explained by four associated principal components of body shape, after partialing out the 

individual effect of body size (log centroid). Body shape accounted for 6.5% of climate-associated genetic 

variation (p = <0.001). For all plots, large points represent individual-level responses, and are coloured by drainage 

system of origin. Small purple points represent SNP-level responses. Vectors represent the magnitude and 

direction of relationships with explanatory variables. 
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Discussion 

As some of the most diverse, iconic, and potentially vulnerable ecosystems in the world, the tropical 

rainforests remain remarkably understudied. Their complex and often inaccessible nature has created 

ongoing challenges to identifying the processes which drive and maintain biodiversity. Here, we 

contribute insight into these questions on an intraspecies level, by addressing major influences on 

genetic and morphological variation across the rainforest range of an Australian tropical fish 

(Melanotaenia splendida splendida). A clear association was found between both genetic and 

morphological variation and the drainage divisions of this mountainous and hierarchically structured 

catchment system, indicating an important role of gene flow limitations on population divergence. 

Despite this, a larger component of divergence could be better explained by local environmental 

conditions, and especially by variables relating to hydroclimate. This pattern was particularly 

pronounced for the morphological component of diversity, providing further evidence for its functional 

relevance. Meanwhile, GxPxE associations identified highly significant relationships between major 

components of body shape divergence and ecologically associated genetic variants. Based on these 

consistencies, we propose that local evolutionary adaptation is a favourable contributor to the high 

phenotypic diversity of rainforest M. s. splendida. We also infer that hydroclimatic adaptation has been 

a central mechanism for local divergence in this species, posing future challenges under rapid climatic 

change. 

 

Environmental selection as a driver of rainforest freshwater diversity 

Although there has been substantial historical emphasis on vicariant drivers of tropical rainforest 

diversity, an increasing number of genomic studies have revealed a dominant influence of contemporary 

environment (Ntie et al. 2017, Termignoni‐García et al. 2017, Zhen et al. 2017, Lam et al. 2018, Jaffé 

et al. 2019, Miller et al. 2020, Morgan et al. 2020). Most of these works have focussed on terrestrial 

species, finding strong associations with either temperature or precipitation. In the Wet Tropics of 

Queensland, local variation dependent on latitude, elevation, terrain, and human impacts (Metcalfe and 

Ford 2009, Terrain NRM 2016) means that hydroclimatic selection could be expected to contribute to 
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geographic patterns of diversity in freshwaters. Consistent with this hypothesis, we found strong 

evidence for the influence of environment on both genetic and body shape divergence of M. s. splendida, 

even after accounting for approximations of neutral demographic structure. We also found tentative 

support for the role of environmentally modulated genomic variation in shaping the observed 

morphological diversity. Highly significant genotype-environment associations (GEAs) were supported 

by both RDA and BAYPASS analytical approaches. Depending on the covariables included, partial 

RDAs attributed ~12 - 17% of allelic variation to associations with key environmental variables, in 

contrast to the ~10 - 15% of variation which could be equally well or better explained by neutral 

conditional variables. Although it is difficult to draw direct comparisons, such strong GEAs support, 

and even exceed, those previously described for related temperate and subtropical Australian 

rainbowfishes (M. fluviatilis, Brauer et al. (2018); M. duboulayi, Smith et al. (2020)).  

 

Large associations with environment were also found between body shape and environment in 

phenotype-environment associations (PEAs), with greater overlap among sites indicating that 

morphology may be more conserved than genotype. Environment accounted for ~7 - 14% of body shape 

variation in partial RDAs after accounting for conditional variables of neutral genetic structure and 

centroid size. These conditional variables accounted for a much larger 44 - 50% of shape variation, but 

intriguingly, most of this related to a large effect of size rather than of neutral genetic structure, which 

could only explain ~4 % of shape variation alone. In contrast to the relatively large contribution of 

neutral structure in the GEAs, this pattern was surprising, yet plausible, under the premise of greater 

functional constraints on morphology than on genome-wide variation. While many genomic changes 

may have little functional functional relevance (e.g. synonymous substitutions, pseudogenes, noncoding 

sequences), it has been suggested that the effects of random drift on phenotypes, and particularly on 

morphology, are less likely to be truly neutral ((Ho et al. 2017, Zhang 2018); but see Wideman et al. 

(2019)). That is, if a physiological trait is subject to strong selection (directional or otherwise), it is 

unlikely to conform to neutral patterns unless genetic drift is also extremely strong (McKay et al. 2001, 

Clegg et al. 2002). Considering that body shape variation in teleosts has well-established roles related 
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to swimming biomechanics, sensory ability, sexual behaviour, and various life history traits (Hanson 

and Cooke 2009, Langerhans and Reznick 2010, Killen et al. 2016), it is congruous that only a small 

proportion of variation would be explained by demography.  

 

Few studies in the tropics have so far attempted to link signals of local genetic adaptation with patterns 

of phenotypic divergence. However, notable overlaps in genetic and morphological associations with 

environment have been detected by Morgan et al. (2020) for the rodent Praomys misonnei in relation 

to precipitation and vegetation structure, and by Miller et al. (2020) for the frog Phrynobatrachus 

auritus in relation to seasonality of precipitation. Here, we found a strong association among 6.5% of 

environmentally associated genetic loci and of body shape PCs. While the relationship between these 

variables remains putative, a plausible explanation is that genes linked to the 61 implicated loci are 

contributing to body shape differences among sampled sites. Such a scenario would imply a heritable 

component of the high phenotypic diversity of M. s. splendida, which is also congruent with previous 

evidence for heritability of rainbowfishes’ hydrodynamic body morphology (M. eachamensis; 

McGuigan et al. (2003)) and transgenerational heritability of transcriptional plasticity (M. duboulayi, 

McCairns et al. (2016)). In the former example, similar phenotypic differences linked to hydrology were 

maintained by offspring produced in a common garden environment, providing evidence for evolved 

functional differences. The association of these signals thus adds an additional layer of support for the 

influence of local environment on evolutionary trajectories in the Wet Tropics. This level of integration 

has so far been uncommon in environmental association studies (Smith et al. 2020, Carvalho et al. 

2021), and we would therefore recommend a similar strategy where both genomic and phenotypic data 

are available to improve inferences about candidate genes and potential biological relevance. 

 

In considering which environmental variables may have been the most influential in shaping diversity, 

repeated associations with thermal and hydrological variables indicated a strong role for hydroclimate. 

Average annual rainfall, followed by average annual temperature, were the best environmental 
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predictors of genotype regardless of the GEA software, statistical approach, or neutral covariable used. 

The PEAs also emphasised the role of hydroclimate, with average annual temperature and stream 

density explaining the greatest shape variation. As with the GEAs, average annual rainfall was strongly 

associated with body shape in global RDA modelling. However, its covariation with body size meant 

effects could not be reliably separated from the alternative hypothesis of allometric shape change. 

Regardless, both GEA and PEA results accord with globally applicable expectations for climate as a 

driver of functional diversity (Hawkins et al. 2003, Siepielski et al. 2017), and emerging evidence for 

its importance in terrestrial tropical adaptation. Their prominence here in a freshwater context supports 

the broad evolutionary relevance of climatic variance to wet tropical diversity, a key finding in light of 

the ‘ecology vs isolation’ debate. 

 

Putative trait adaptation to local environment 

Body shape may be one of the best indicators of a fish’s inhabited niche (Gatz Jr 1979, Wainwright 

1996, Shuai et al. 2018), and shape changes with important associations in this system match several 

well-described physiological adaptations in other teleosts, including rainbowfishes (McGuigan et al. 

2003, McGuigan et al. 2005, Smith et al. 2020). Here, shape PCs 4 and 2 had the strongest relationship 

with environmentally associated alleles, making them among the most likely to have a heritable 

adaptive relevance. Interestingly, PC4 was mostly characterised by a change in fin positions, with some 

striking similarities to those described by McGuigan et al. (2003) and McGuigan et al. (2005) for 

congeneric M. duboulayi and M. eachamensis. These studies found that across lineages, streamflow 

conditions were consistently associated with insertion points of first dorsal and pelvic fins, as well as 

the width of the second dorsal fin base. Here, changes on PC4 similarly included insertion of the first 

dorsal fin, and width of the second dorsal fin base. The associated precipitation and stream density 

variables can be related directly to the stream flow (Carlston 1963), which may therefore be contributing 

to adaptive diversity of fin position in M. s. splendida. 
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Shape change on PC2 was not only relevant in the GxPxE analyses but was also the most important 

shape variable directly associated with environment (PEAs). Positive values coincided with a more 

upturned head, smaller eye, reduced dorsal hump, and distended pelvic region. Much of this divergence 

appeared latitudinally, with upturned shape extremes more common in the higher rainfall northerly 

catchments of Hutchinson, Daintree and Saltwater. In a variety of teleost species, an upturned head and 

flattened dorsal region has been associated with a tendency for surface dwelling and feeding (Wootton 

2012), surface breathing in oxygen-deficient waters (Lewis Jr 1970, Kramer and McClure 1982), and 

predation intensity (Langerhans et al. 2004, Eklöv and Svanbäck 2006). While an arching body shape 

has also been associated with rigor mortis in fishes (Hooker et al. 2016), the immediate imaging of 

individuals at the time of death, consistent among sampling sites, is likely to have prevented locality-

specific differences in rigor induced shape change. Moreover, M. s. splendida are known for an 

omnivorous feeding strategy, sometimes including floating material such as invertebrates (Pusey et al. 

2004). Notably, the surface feeding tendency of the related M. duboulayi has been associated with 

differences in vegetative cover, possibly due to thermoregulatory influences or predator density (Hattori 

and Warburton 2003). Therefore, while this component of shape variation could be explained by a 

variety of factors, promising hypotheses include local selective differences due to relative abundance 

of food sources, predator presence, or vegetation structure. Such examples would involve an indirect 

role for the measured environmental variables, with thermal and hydrodynamic influences being 

particularly relevant.  

 

In addition to the described adaptive signals occurring throughout the region, our results suggested an 

important effect of drainage structure in demographic divergence. Specifically, both neutral genetic 

clustering and environmental association analyses provided evidence that contemporary drainage 

boundaries are creating barriers to gene flow, delineating populations and affecting broader patterns of 

diversity. All clustering methods grouped individuals by their drainage system of origin and provided 

minimal evidence of recent gene flow, while measures of neutral genetic diversity were more similar 

within drainages than between. Some additional, shallow substructure was detected among sampling 
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sites within drainages, possibly resulting from isolation by distance or other resistance within the stream 

network. Similar hierarchical configurations have been previously described for subtropical and 

temperate rainbowfishes (M. fluviatilis, Brauer et al. (2018); M. duboulayi, Smith et al. (2020)), 

reflecting a recognised pattern of connectivity in lotic environments (Grummer et al. 2019). We 

therefore propose that, in addition to hydroclimatic factors, the geographic arrangement and relative 

size of individual watersheds has modulated evolutionary trajectories, with likely implications for 

genetic variability, rates of divergence and even vulnerability to environmental change (Lévêque 1997). 

Gene flow barriers such as the drainage divisions in this system not only contribute to neutral genetic 

structuring, but are also expected to prevent flow of adaptive traits and alleles (Yeaman and Otto 2011). 

This may increase adaptive divergence among populations in contrasting selective environments, but 

also prevent the entrance of novel beneficial genotypes (Nosil et al. 2019). Such an effect may promote 

diversity in robust systems, but detriment small populations or those under novel selective pressures 

such as a warming climate (Yeaman and Otto 2011, Nosil 2012).  

 

Considerations for the ongoing maintenance of adaptive diversity in tropical rainforests 

Both the strong effects of hydroclimate on intraspecies diversity, and the geographical confinement 

created by catchment structure, indicate that climate warming could place strong selective pressure on 

rainforest populations of M. s. splendida. If a large component of local diversity has developed in either 

direct or indirect response to climate, we can expect that alteration of current environmental conditions 

will necessitate an adaptive response (Fitzpatrick and Keller 2015, Bay et al. 2017). It is notable that 

signals of adaptive divergence were directionally similar for genotype and morphology, and significant 

overlaps were revealed by GxPxE results. But as previously discussed, there were also some differences 

among associated environmental variables, their respective contributions, and the relative influences of 

neutral processes. These factors suggest similar but non-identical ecological dynamics are contributing 

to genetic and morphological diversity across the studied riverscapes. It therefore seems likely that 

while management strategies informed by either component of diversity should produce common 

benefits, a knowledge of both components would benefit more comprehensive management. 
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Melanotaenia splendida splendida is one of most abundant fishes in the Queensland Wet Tropics (Pusey 

et al. 2004), and our results indicated relatively high genetic variation in most populations. Moreover, 

the total species range extends beyond rainforest limits (ALA 2020). Considering these factors, we do 

not see reason for current concern about the survival of this species and would only anticipate imminent 

risk for populations confined to the smallest drainages, that is Hutchinson and Saltwater. More 

concerning are implications for already vulnerable tropical freshwater species, especially those with 

narrow distributions. Species with small effective population sizes and low genetic diversity are likely 

to have less standing variation available for selection (Frankham 2015, Ralls et al. 2018), and 

opportunities for future adaptation have greater chance of being outweighed by random genetic drift 

(Perrier et al. 2017). While not all tropical rainforests exhibit as structured terrain as the Queensland 

Wet Tropics, mountainous features are common to most continental tropics. Moreover, rainforests are 

becoming globally affected by less predictable flow dynamics (Jiménez-Cisneros et al. 2014) and 

accumulating human modifications (Davis et al. 2018). In the context of dendritic systems, even 

relatively small structural changes can divide the habitat area over which gene flow can occur (Davis 

et al. 2018). We therefore suggest that the maintenance of existing connectivity should be prioritised in 

tropical rainforest river networks, and support a proactive strategy of evolutionary rescue for 

particularly vulnerable taxa (sensu Ralls et al. (2018)). These recommendations should not be limited 

to tropical regions; however, the empirical evidence for a large climatic influence on intraspecies 

diversity, combined with documented narrow environmental tolerance ranges of tropical taxa (Deutsch 

et al. 2008, Huey et al. 2009, Eguiguren-Velepucha et al. 2016) should be considered cause for 

immediate action. 

 

Conclusion 

Our work indicates that interplay between contemporary hydroclimatic variation and drainage 

connectivity has helped shape regional diversity in the tropical rainforest fish M. s. splendida. Thermal 

and hydrological gradients are inferred to have had a dominant influence on local adaptation, whether 
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due to direct or indirect effects to the species’ selective environment. Moreover, both genomic and 

morphological divergence appeared to be relevant, including several body shape traits previously found 

to be both heritable and hydrologically associated in related rainbowfishes. Heritability of adaptive 

shape variation is also very likely for this species, an idea which was bolstered by three-way associations 

detected among genotype, phenotype, and environment. Empirical evidence for the role of temperature 

and precipitation driving phenotypic divergence has been mounting in tropical rainforest research, 

however this is likely the first freshwater example to benefit from a high-resolution genomic dataset. 

Given the substantial impacts to freshwater hydroclimates projected under climate warming, this is a 

critical step towards understanding and mitigating threats to tropical freshwater diversity. This is even 

more pertinent in complex terrain such as the Queensland Wet Tropics World Heritage Area, which, in 

addition to dendritic riverine structure, comprises multiple small catchments that limit gene flow and 

migratory potential. While more than a century of research has progressed our understanding of how 

biodiversity has been maintained in the tropics, we are only now beginning to uncover the evolutionary 

mechanisms which continue to diversify these ancient and enigmatic ecosystems. Future work should 

continue to integrate environmental, genomic and phenotypic datasets to disentangle evolutionary 

processes applicable to both conservation and theoretical development.  
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Chapter 3: Evolutionary divergence among and within tropical 

rainforest and savannah biomes: adaptation, specialisation, and 

resilience 

 

Abstract 

Biodiversity management in a changing climate will rely on an understanding of the factors shaping 

adaptive diversity and resilience across landscapes. However, untangling interactions between selective 

and demographic processes is particularly challenging in spatially complex habitats. Here, we integrated 

landscape-based approaches to investigate adaptive variation and climatic resilience in the freshwater 

fish Melanotaenia splendida splendida. The species range spans tropical biomes of rainforest and 

savannah, which contrast markedly in both hydroclimate and catchment structure. We tested 

contributions of environmental and neutral influences among and within ecoregions using genotype-

environment, phenotype-environment, and genotype-phenotype-environment associations. 

Additionally, we compared strength and variation of adaptive signals across terrains with varying 

connectivity to assess the potential influence of gene flow in homogenising adaptation in tropical 

lowlands. We found ecoregional differences in environmental associations, suggestive of divergent 

hydroclimatic adaptation. As in the previous rainforest-specific chapter, environment better predicted 

intraspecies variation than neutral factors, particularly for morphology. This included environmentally 

associated body shape variation known to be linked to swimming biomechanics and flow dynamics in 

teleosts. Finally, we found that genomic associations with environment were weaker and varied less 

across space in the well-connected savannah habitat, supporting our hypothesis of a homogenising 

effect of gene flow on local adaptation. Remarkably, this result was not mirrored by morphological 

patterns, which maintained strong environmental associations in the face of gene flow. Combined with 

a decoupling of genotypic and phenotypic associations in the savannah region, we hypothesise a greater 

reliance on phenotypic plasticity when connectivity is high across heterogeneous selective pressures. In 

contrast, the narrower set of conditions experienced in the more stable and naturally fragmented 
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rainforest habitat may have permitted more locally specialised evolutionary adaptations. Overall, our 

results point to trade-offs between system-wide resilience and local hydroclimatic specialisation among 

rainforest and savannah populations.  
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Introduction 

Understanding relationships between adaptive diversity and environment will be a prerequisite for 

accurately anticipating and managing ecological responses to climate change in coming decades. The 

importance of climate as a selective force is becoming well established (Franks and Hoffmann 2012, 

Anderson and Song 2020), and where migratory opportunities are limited, such as for freshwater 

organisms, patterns of standing adaptive diversity are likely to be an important determinant of local 

resilience (Sgrò et al. 2011). Such adaptive patterns are influenced by the selective environment in 

which a species evolved (Holderegger et al. 2006, Whitlock 2014), and may therefore vary widely in 

accordance with local or regional conditions (Moritz et al. 2012), in addition to demographic and life 

history traits (Clarke 1979). Consequently, it is expected that broader patterns of resilience are also 

likely to vary geographically, influenced by factors such as local and regional climatic variability, and 

the strength of ecological gradients (Deutsch et al. 2008, Tewksbury et al. 2008). It has been suggested 

that tropical regions may be more vulnerable to changing climates because of organisms’ narrow 

thermal niches (Huey et al. 2009, Sunday et al. 2011). This may be particularly apparent for ectotherms 

such as fishes due to their limited internal thermoregulatory capacities (Rohr and Palmer 2013). 

However, very little is known about the extent that ecological adaptation contributes to tropical diversity 

or about the adaptive relevance of climatic variation across different tropical habitats. 

 

Transition zones such as the interface between rainforest and savannah are particularly promising arenas 

for the study of climatic adaptation and resilience (Smith et al. 1997). Rainforest and savannah are the 

most dominant biomes in the terrestrial tropics, varying not only climatically, but in the structural and 

functional complexity of their biotic communities (Bond and Parr 2010, Murphy et al. 2016). Although 

rainforest and savannah often occur adjacently, most species distributions are non-overlapping, 

reflecting conflicting habitat requirements (Fensham 1995, Azihou et al. 2013). While both are highly 

biodiverse, rainforests are typically taxonomically richer (Ter Steege et al. 2000, Kier et al. 2005) and 

include a greater proportion of obligate associations (Fensham 1995, Ibanez et al. 2013). A history of 

climatic fluctuations and frequent fire activity has contributed to greater temporal variability of 
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savannah communities (Staver et al. 2011b, Kutt et al. 2012, Vasconcellos et al. 2019). In contrast, 

many rainforest regions have experienced long-term climatic continuity, maintaining a proliferation of 

ancient lineages. This stability is one factor thought to have promoted the accumulation of tropical 

diversity and specialisation (Gaston and Blackburn 1996, Kooyman et al. 2013). However, landscape 

and environmental heterogeneity must also be considered if we are to adequately explain diversification 

in tropical bioregions (Moritz and McDonald 2005, Dagallier et al. 2020, Furness et al. 2021).  

 

To formulate hypotheses about likely adaptive influences across rainforest and savannah, we can 

consider the bioclimatic interactions that are consistently associated with bioregion boundaries. 

Savannah communities are typically more dominant where annual rainfall is less than ~1,000 mm, and 

rainforest where more than ~2,000 mm (Hirota et al. 2011, Staver et al. 2011a). Meanwhile, rainfall, 

fire activity, and substrate may be subsequently influenced by forest density, producing feedback loops 

which help to sustain distributions (Hirota et al. 2011, Oliveras and Malhi 2016, Wu et al. 2016). These 

factors have broader implications for organisms’ exposure to annual, seasonal, and diurnal climatic 

extremes, whereby savannah organisms are subjected to more variable but greater intensities of most 

climatic variables than in the rainforest. Notably, regional bioclimatic dynamics also appear to be 

influenced by topography, with rainforest biotas more often occurring in rugged and complex terrain 

(Murphy and Bowman 2012, Ondei et al. 2017). This could in some cases contribute to greater 

microhabitat structure and less landscape connectivity in rainforests (Svenning 1999), affecting the 

spatial scale over which both neutral and adaptive divergences may occur (Nosil et al. 2019). It is 

therefore possible that rainforest and savannah organisms may differ not only in response to regional 

climatic influences, but in the extent of locally specific adaptation within biomes, both with likely flow-

on effects to resilience in changing conditions.  

 

Disentangling environmental influences on adaptive and non-adaptive variation in wild populations is 

greatly assisted by large genomic datasets, which are expected to encompass loci varying both neutrally 
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and in response to selective pressures (Holderegger et al. 2006, Schwartz et al. 2010). Moreover, if 

ecotypic adaptations are a result of heritable evolutionary changes, then relevant associations with 

environment are likely to be reflected by both genomic and physiological divergence (Santure and 

Garant 2018). Landscape genomics approaches are increasingly seeking to identify overlap between 

genotype-environmental associations and divergence in fitness-related traits (Balkenhol et al. 2017). 

However, a limited number of studies have so far explicitly tested genotype-phenotype-environment 

associations in natural populations (Vangestel et al. 2018, Smith et al. 2020). This may not only provide 

a more holistic approach for assessing relevant environmental influences, but also improve inferences 

about candidate genes underlying environmental and climatic resilience (Carvalho et al. 2021). 

Additionally, large discrepancies in morphological and genetic patterns may highlight a reliance on 

plasticity for physiological changes, while strong overlaps can further support evolutionary responses 

to selection (Merilä and Hendry 2014). 

 

As discussed in previous chapters, Australian rainbowfishes of the genus Melanotaenia are currently of 

great interest in climatic adaptation research in freshwater ecosystems (McCairns et al. 2016, Gates et 

al. 2017, Brauer et al. 2018, Sandoval-Castillo et al. 2020, Smith et al. 2020). Existing studies suggest 

that physiological variation has been strongly influenced by hydroclimate, and may be at least partially 

influenced by genomic adaptation (McGuigan et al. 2003, McGuigan et al. 2005, Sandoval-Castillo et 

al. 2020). Furthermore, systematics work has suggested relatively recent divergence of species and 

subspecies across ecological transitions (McGuigan et al. 2000, Hurwood and Hughes 2001, Unmack 

et al. 2013). In a tropical context, where ancient lineages proliferate, this creates an opportunity for 

comparative evolutionary studies assessing ongoing mechanisms of divergence (Moritz et al. 2000). 

Like many Australian rainbowfishes, tropical-endemic Melanotania splendida splendida exhibits 

extensive phenotypic variation across their range, which includes both rainforest and savannah 

ecoregions. Morphological, meristic and colour variations have been observed between populations, 

drainages (i.e. river catchments), and even contrasting habitats within drainages (Pusey et al. 2004). 



 

61 
 

This has led to suggestions of substantial within-species genetic diversity and/or a highly variable and 

plastic phenotype (Pusey et al. 2004).  

 

In Chapter 2, evidence was provided for hydroclimate-associated genomic and morphological variation 

within the species’ rainforest distribution. Moreover, these environmental influences could account for 

a greater proportion of biological variation than measures of neutral divergence. This suggests local 

adaptation has been highly relevant to the intraspecies diversity, with implications for additional 

adaptation required to withstand climatic changes. The addition of savannah representatives is therefore 

desirable for assessing broader patterns of trait divergence in tropical landscapes, which is expected to 

be influenced by both local and regional adaptation. The species’ rainforest distribution is relatively 

rugged and topographically complex, being to a large extent determined by the presence of the 

highlands of the Great Dividing Range (Nott 2005). Rainforest drainage networks are ancient, densely 

packed, and mostly perennial (Nott 2005, Pearson 2005, Pearson et al. 2015). In contrast, streams across 

the lowland drainage systems of Cape York’s savannah regions are often ephemeral, but connect at 

greater spatial scales due to branching between major tributaries during high volume monsoonal runoff 

(Howley et al. 2013). This comparative scenario provides the opportunity to assess influences of both 

the hydroclimate and terrain structure on adaptive variation.  

 

To this end, we used a landscape genomics approach to test environmental associations with genotype, 

phenotype, and genotype-phenotype interactions in M. s. splendida, both between and within tropical 

biomes. Given the striking climatic and ecological differences between ecoregions, we hypothesised 

that the greatest intraspecies divergence may also occur across the rainforest-savannah interface. 

Moreover, based on the strong explanatory power of hydroclimatic variation in Chapter 2, we predicted 

that environmental associations could be better at explaining biological variation than neutral factors, 

especially for body shape variation which was inferred to have important functional relevance. Within 

ecoregions, we also interrogated the effects of terrain connectivity on spatial patterns of adaptation, 
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asking whether gene flow may act to strengthen or homogenise local signals of genetic and 

morphological adaptation, sensu Haldane (1930), Fisher (1950), Slatkin (1987) and others. Addressing 

these questions is important for understanding the dynamics of evolution in tropical freshwaters and 

may inform prioritisation of management strategies under rapid climatic change. 

 

Methods 

Field sampling 

We collected wild Melanotaenia splendida splendida (eastern rainbowfish) from seventeen sites in 

tropical north-eastern Australia in March 2017. Localities included nine rainforest creek sites across 

five drainages, and eight savannah creek sites across one drainage (Figure 3.1; Supplementary Table 

A1). A total of 510 individuals were captured using seine nets and were euthanised on the day of capture 

via overdose of anaesthetic sedative (AQUI-S®: 175mg/L, 20 minutes) at mobile fieldwork stations. 

According to methods described in Chapter 2, this was performed one individual at a time, followed by 

immediate digital photographing for morphometric data collection (final photographic dataset of 366 

individuals, avg. 22, min. 13 per sampling site; Table 3.1). Fin clips from all collected samples were 

preserved in 99% ethanol and stored at -80°C. Of these, 381 high quality samples were chosen for the 

final DNA dataset (avg. 22, min. 15 per site; Table 3.1). For 302 individuals (avg. 18, min. 11 per site), 

final genomic and morphometric datasets overlapped, enabling direct contrasts in later association tests 

among genotype, phenotype, and environment. 
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Figure 3.1. Sampling location map of Melanotaenia splendida splendida collected from eight savannah (shown 

in yellow) and nine rainforest locations (other colours) in north-eastern Australia. Point colours correspond to 

river drainages of origin; all savannah locations were sampled in the Normanby River drainage. Navy lines 

highlight only the sampled creeks and major river channels of each represented drainage system. Inset: extent 

indicator of main map relative to the Australian continent. 
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Table 3.1.  Localities and sample sizes (n) of Melanotaenia splendida splendida collected from rainforest and 

savannah biomes of tropical north-eastern Australia for genomic and morphometric data. 

Location Site 
Code River Drainage Latitude Longitude Ecotype Total 

collected n 
Final n 
(DNA) 

Final n 
(Morpho) 

Final n 
(GxPxE) 

Little Mulgrave Creek LM Mulgrave -17.13 145.7 Rainforest 30 23 20 17 

Cassowary Creek CA Mossman -16.51 145.41 Rainforest 30 23 30 23 

Marrs Creek MA Mossman -16.47 145.36 Rainforest 24 20 19 15 

Saltwater Creek SA Saltwater Creek -16.42 145.36 Rainforest 30 24 21 19 

Stewart Creek ST Daintree -16.32 145.32 Rainforest 30 25 22 20 

Douglas Creek DO Daintree -16.28 145.3 Rainforest 30 24 29 21 

Doyle Creek DY Daintree -16.26 145.45 Rainforest 30 24 23 22 

Forest Creek AN Daintree -16.25 145.39 Rainforest 31 22 21 18 

McClean Creek MC Hutchinson -16.23 145.42 Rainforest 32 25 22 22 

Famechon Creek FA Normanby -15.95 144.83 Savannah 30 25 19 17 

West Normanby River WN Normanby -15.77 144.97 Savannah 30 21 20 18 

East Normanby River EN Normanby -15.76 145.02 Savannah 30 19 13 11 

Laura River LA Normanby -15.56 144.44 Savannah 33 23 22 11 

Kennedy River KE Normanby -15.42 144.18 Savannah 30 21 20 16 

North Kennedy River NK Normanby -15.28 143.99 Savannah 30 15 20 15 

Hann River HA Normanby -15.19 143.87 Savannah 30 24 23 18 

Morehead River MO Normanby -15.02 143.66 Savannah 30 23 22 19 

 

 

 

Genomic data collection 

DNA was extracted from fin clips by salting-out, using a protocol modified from Sunnucks and Hales 

(1996) described in Chapter 2. We then assessed DNA quality, quantity, and integrity using NanoDrop 

(Thermo Scientific), Qubit (Life Technologies), and gel electrophoresis (agarose, 2%) respectively. We 

produced double-digest restriction site-associated DNA (ddRAD) libraries in-house following Peterson 

et al. (2012) with modifications according to Sandoval‐Castillo et al. (2018) for 420  individuals 

(including replicates and those later removed during filtering). We assigned samples randomly over five 

sequencing lanes (~six replicates per lane), of which four were sequenced by the South Australian 

Health and Medical Research Institute Genomics Facility (Illumina HiSeq25000; single-ended), and 

one by Novogene Hong Kong (Illumina HiSeq4000; paired-ended). 
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Raw sequences were demultiplexed and trimmed of adaptors and leading/trailing low quality bases 

(Phred < 20) using TRIMMOMATIC 0.39 within the DDOCENT 2.2.19 pipeline (Puritz et al. 2014). 

Poorly sequenced individuals (< 700,000 reads) were removed from the dataset. Sequences were 

mapped to a rainbowfish reference genome (M. duboulayi; Beheregaray et al. unpublished data; 

Supplemental Table A4) using the GATK 3.7 pipeline (Van der Auwera and D O’Connor 2020), fully 

described in Chapter 2. The SNP variants were called from the mapped reads using BCFTOOLS 1.9 

(Li 2011), and filtered using VCFTOOLS 0.1.15 (Danecek et al. 2011) to remove poorly sequenced 

reads, non-biologically informative artefacts (sensu O'Leary et al. (2018)), complex variants, and sites 

with high likelihood of linkage. For the full filtered dataset, we used BAYESCAN 2.1 (Foll and 

Gaggiotti 2008) to assess locus-specific conformity to neutral expectations based on allele frequency 

distributions across populations (with population membership first inferred by preliminary 

FASTSTRUCTURE 1.0 (Raj et al. 2014) analysis detailed in Chapter 2). We used BAYESCAN default 

settings and a false discovery rate of < 0.05, producing a putatively neutral dataset of 14,479 SNPs for 

subsequent analyses of neutral genetic diversity and population structure. 

 

Genomic diversity and inferences of population structure 

Locality-specific neutral genomic diversity was assessed using ARLEQUIN 3.5 (Excoffier and Lischer 

2010) to determine mean expected heterozygosity (He), mean nucleotide diversity (π), and proportion 

of polymorphic loci (PP). Pairwise FST, site-specific FST, and global F-statistics were calculated in R 

(RC Team 2019) using HIERFSTAT 0.04-22 (Goudet 2005). The latter were calculated for all 

individuals (‘between-systems’), as well as independently within each ecoregion (‘savannah-specific’ 

and ‘rainforest-specific). Additionally, we produced a scaled covariance matrix of population allele 

frequencies (Ω) using BAYPASS 2.2 (Gautier 2015) core model, based on all SNPs rather than the 

neutral subset, which is implicitly estimated. This hierarchical Bayesian model provides an informative 

basis for demographic inference by accounting for structure resulting from shared history. The method 

follows from the BayEnv model proposed by (Coop et al. 2010, Günther and Coop 2013), but with 

several extensions to improve accuracy by estimation of prior distributions. These were plotted in R 
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using BAYPASS’s included utility functions. We further interrogated population structure using a 

FASTSTRUCTURE clustering approach, also repeated both between and within ecoregions. Full 

details of above analyses, including preparation of input files, were further described in Chapter 2. 

 

Characterising environmental variation 

To characterise environmental heterogeneity across the study region, we accessed National 

Environmental Stream Attributes v1.1.3 from the Australian Hydrological Geospatial Fabric 

(Geoscience Australia 2011; Stein (2011). The same six attributes previously used in rainforest-specific 

analyses were also used here to enable regional comparisons. However, given that covariation among 

variables differed depending on region and on spatial scale, we were able to include two additional 

variables in between-systems analyses, and were required to use one fewer in savannah-specific 

analyses. For between-systems analyses, we included stream segment aspect (ASPECT), river 

disturbance index (RDI), mean summer runoff (RUNSUMMERMEAN), mean winter runoff 

(RUNWINTERMEAN), mean annual rainfall (STRANNRAIN), mean annual temperature 

(STRANNTEMP), total length of upstream segments calculated for the segment pour-point 

(STRDENSITY), and stream segment slope (VALLEYSLOPE) (Supplemental Figure A1). Rainforest-

specific analyses excluded RUNWINTERMEAN and VALLEYSLOPE, while savannah-specific 

analyses excluded ASPECT, STRANNRAIN and VALLEYSLOPE. Environmental variables were 

used as a basis for genotype-environment associations (GEA), phenotype-environment associations 

(PEA) and genotype-phenotype-environment (GxPxE) associations, as described below. 

 

Geometric morphometric characterisation and analyses 

We used TPSDIG2 2.31 (Rohlf, 2017) to position eighteen landmarks on the field-collected digital 

photographs of M. s. splendida. These landmarks (Chapter 2; Supplemental Figure A2) were chosen to 

maximise homology, repeatability, and putative ecological relevance. In MORPHOJ 1.07a 

(Klingenberg 2011), digitised TPS files were compiled and subjected to Procrustes superimposition, 
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screened for outliers representing landmarking errors, and used to produce Procrustes covariance 

matrices for ‘between-systems’, ‘rainforest-specific’ and ‘savannah-specific’ subsets. To characterise 

major features of shape variation, PCAs were performed on resulting matrices. Allometric regressions, 

pooled within populations identified in neutral genetic analyses, were used to determine a positive 

association between size (log centroid) and shape (Procrustes coordinates). Regression residuals were 

therefore used to test for relationships between body shape and locality. To for test ecoregional 

differences in the ‘between-systems’ dataset, we used a discriminant function analysis classifying by 

rainforest and savannah origin, with 1000 permutation rounds. Additionally, we used a canonical variate 

analysis (CVA) to determine variation among sampling sites, scaling for relative within-group variation. 

We again used 1000 permutations to test significance. 

 

Detecting selection between and within ecoregions 

To test for environmental adaptation and divergence both between and within rainforest and savannah 

ecoregions, we used a combination of GEA, PEA, and GxPxE approaches. In all instances, we used 

highly adaptable constrained ordinations (partial redundancy analyses; pRDAs) performed in the R 

package VEGAN 2.5-6 (Oksanen et al. 2019). For GEAs only, we also incorporated a Bayesian 

hierarchical model (BAYPASS 2.2 (Gautier 2015)), which is tailored to genetic analysis and is well 

suited to study systems with hierarchical population structure (Gautier 2015). 

 

For the GEAs, we first ran a global RDA using the full dataset (14,478 SNPs) for all individuals as a 

multivariate response matrix, and the eight  ‘between-systems’ environmental variables described above 

as an explanatory matrix, which was first centred and scaled. Then, using only the environmental 

explanatory variables found to be associated in the global model (p = <0.1), and again using the full set 

of SNP genotypes as a response matrix, we repeated the analysis using three partial RDAs to control 

for putative neutral influences. In each, we included a different neutral (or neutral proxy) covariable 

matrix: 1) significant principal components (PCs) of scaled population allelic covariance (Ω), 2) 
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significant PCs of pairwise FST, and 3) scaled river distances. Further details of input file creation for 

all datasets can be found in Chapter 2, with the exception of the river distances covariable, for which 

pairwise distances among connected sites were calculated in ARCMAP 10.3 (ESRI 2011), and distances 

between unconnected sites (i.e. different drainages) were imputed with distances an order of magnitude 

higher than the average. Starting from the global RDA, these steps were then repeated for ‘savannah-

specific’ and ‘rainforest-specific’ analyses, including individuals and covariables specific to the region. 

Finally, we used the alternative method of BAYPASS 2.2 to produce ‘savannah-specific’, ‘rainforest-

specific’ and ‘between-systems’ GEA analyses, using the auxiliary covariate model with default 

settings and the same sets of scaled environmental explanatory variables as for the pRDAs. Here, we 

accounted for assumed population demographic structure via the scaled covariance matrix of population 

allele frequencies (Ω) resulting from the core model. 

 

For the PEAs, we adapted the same pRDA approach, with the same environmental explanatory datasets, 

to test for signals of selection in the observed morphological variation. Here, the response matrix 

comprised PCs of individual Procrustes distances determined significant by Broken-Stick modelling, 

again controlled for putatively neutral genetic structure (allelic covariance Ω; pairwise FST; river 

distances), plus the additional covariable of body size (log centroid size). Inputs for the body shape 

response variable and size covariable were created in R, using functions developed by Claude (2008), 

and further described in Chapter 2. Although sexual dimorphism may produce an additional 

confounding effect on body shape variation, we found that equal sex ratios were present between 

sampling regions (11:14 m:f, Chi-Square p value = 0.987) and we therefore did not include sex as a 

covariable. As with GEAs, PEA analyses were repeated for ‘between-systems’, ‘rainforest-specific’ 

and ‘savannah-specific’ datasets.  
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Genotype-phenotype-environment analysis 

We used a GxPxE approach to test whether environmentally associated genetic variation could be 

attributed to morphological adaptation between and within ecoregions. Using R, we ran a global RDA 

using significant PCs of individual Procrustes distances as explanatory variables, and putative adaptive 

alleles (candidates combined from genotype-environment RDAs controlling for Ω and BAYPASS 2.2 

auxiliary covariate model, described above) as the multivariate responses. The analysis was then 

repeated as a partial RDA using individual body size (log centroid) as a covariable. This enabled 

isolation of only the genotype-phenotype associations best explained by environmental selection, and 

with the potential to underlie heritable body shape variation. 

 

 

Results 

Sequencing, bioinformatics, genetic diversity and population structure 

Filtering of genome-mapped sequencing reads from rainforest and savannah individuals produced a 

high-quality unlinked dataset of 14,540 SNPs, of which 14,478 could be considered neutral for the 

purposes of population genomic analyses. The full and neutral datasets for this Chapter comprised 381 

individuals for population and landscape genomic analyses across nine sampling sites. We found 

moderately high neutral genomic diversity across the entire study region (Table 3.2) with expected 

heterozygosity (HE) among sites ranging from 0.278 to 0.321 (mean = 0.289), and proportion of 

polymorphic loci (PP) ranging from 0.252 to 0.395 (mean = 0.349). Site-specific averages were similar 

between rainforest and savannah systems, with HE slightly higher in the rainforest (rainforest mean = 

0.293; savannah mean = 0.284), and PP slightly higher in the savannah (rainforest mean = 0.329; 

savannah mean = 0.372). However, ranges of variation for all diversity measures were greater among 

rainforest sites. 
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Levels of genetic variation were much higher within the rainforest than the savannah, evidenced by 

differences in global FST values (rainforest-specific = 0.148; savannah-specific = 0.025; between-

systems = 0.173). Site-specific (Table 3.2) and pairwise FST values (Figure 3.2a; Supplemental Table 

B1) indicated that much of this divergence could be attributed to inter-drainage rather than intra-

drainage differences. This was also reflected by the stronger correlations in allelic covariance within 

river drainages, detected by BAYPASS (Figure 3.2b). Overall, this equated a pattern of little population 

differentiation within the savannah (single drainage) in contrast to comparatively strong subdivisions 

within the rainforest (five drainages), and between rainforest and savannah. Interestingly, global FIS 

was slightly higher in the savannah (0.0741) than the rainforest (0.0490), however site-specific values 

were not significant, with the exception of Kennedy River (Table 3.2). 
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Table 3.2. Genetic diversity measures for the eastern rainbowfish Melanotaenia splendida splendida at nine 

rainforest and eight savannah localities, based on 14,478 putatively neutral loci (n = sample size for final DNA 

dataset; HE = expected heterozygosity; HO = observed heterozygosity; PP = proportion of polymorphic loci; FIS 

= site-specific inbreeding coefficient (values with p = < 0.05 indicated by *); FST = site-specific FST). 

Location Ecoregion Site Code Drainage system n HE HO PP FIS FST 

Morehead River Savannah MO Normanby 23 0.278 0.262 0.395 0.042 0.108 

Hann River Savannah HA Normanby 24 0.279 0.258 0.388 0.042 0.118 

North Kennedy River Savannah NK Normanby 15 0.295 0.271 0.36 0.045 0.137 

Kennedy River Savannah KE Normanby 21 0.283 0.255 0.374 0.062* 0.142 

Laura River Savannah LA Normanby 23 0.281 0.261 0.379 0.019 0.136 

East Normanby River Savannah EN Normanby 19 0.286 0.268 0.353 0.034 0.179 

West Normanby River Savannah WN Normanby 21 0.287 0.269 0.363 0.042 0.156 

Famechon Creek Savannah FA Normanby 25 0.283 0.262 0.367 0.045 0.154 

McClean Creek Rainforest MC Hutchinson 25 0.279 0.271 0.252 0.009 0.423 

Forest Creek Rainforest AN Daintree 22 0.289 0.268 0.377 0.054 0.122 

Doyle Creek Rainforest DY Daintree 24 0.294 0.28 0.358 0.03 0.155 

Douglas Creek Rainforest DO Daintree 24 0.289 0.272 0.376 0.038 0.123 

Stewart Creek Rainforest ST Daintree 25 0.278 0.259 0.391 0.031 0.127 

Saltwater Creek Rainforest SA Saltwater Creek 24 0.321 0.307 0.264 0.019 0.31 

Marrs Creek Rainforest MA Mossman 20 0.307 0.293 0.305 0.019 0.233 

Cassowary Creek Rainforest CA Mossman 23 0.297 0.295 0.314 -0.011 0.232 

Little Mulgrave Creek Rainforest LM Mulgrave 23 0.283 0.271 0.323 0.018 0.257 
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Figure 3.2. Genomic differentiation and population structuring among rainforest and savannah sampling localities 

for the eastern rainbowfish Melanotaenia splendida splendida, represented by (A) Heatmap of pairwise FST based 

on 14,478 putatively neutral SNPs; (B) Correlation map for BAYPASS core model scaled covariance matrix Ω 

based on allele frequencies of the full dataset of 14,540 SNPs. Locality abbreviations follow Table 3.1, with 

colouration reflecting drainage of origin as in Figure 3.1. 

A

B
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Clustering analyses also indicated that the main neutral genetic differentiations occurred among river 

drainages. In between-systems FASTSTRUCTURE analysis (Figure 3.3a), individuals were grouped 

by drainage with exception of those from Saltwater; these were grouped together with those from the 

neighbouring Mossman drainage, under a best K of five. However, in ecoregion-specific analyses 

(Figure 3.3b), rainforest alone was found to have an optimal K of five. Very little admixture was visible 

between Saltwater and Mossman, indicating hierarchical substructure may have obscured 

differentiation in the combined-systems analysis. An optimal K of one was found in the savannah-

specific analysis of the single Normanby drainage, however Figure 3.3c displays K = 2, to demonstrate 

regional substructure. Overall, despite hierarchical differentiation, contemporary evolutionary 

processes are likely occurring relatively independently among six drainage-associated subunits, which 

we will refer to as populations. Locality-based clustering using singular value decompositions of Ω 

(Supplemental figure B2) also showed strong separation between Saltwater and Mossman, even in 

combined-systems analysis. Therefore, while delineation of populations may depend on the theoretical 

or management context at hand, contemporary evolutionary processes are likely occurring relatively 

independently among six drainage-associated subunits, which we will refer to as populations. 
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Figure 3.3. Cluster plots based on FASTSTRUCTURE analysis of 14,478 putatively neutral SNPs, where colours 

represent inferred ancestral populations of individuals based on A) all sampled individuals, showing optimal K = 

5; B) only rainforest individuals, showing optimal K = 5; C) only savannah individuals, showing K = 2 to inform 

about regional substructure within the drainage system (actual inferred optimal K = 1). Large type refers to 
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drainage systems, which are separated by thicker black lines. Small type refers to sampling localities, separated 

by thinner black lines. Locality abbreviations follow Table 3.1. 

 

Morphological divergence between ecoregions and sampling localities 

Principal component analysis of body shape of all M. s. splendida individuals produced four significant 

PCs under broken stick modelling (Supplemental Figure B3). Major aspects of variation included body 

depth (PC1), dorsal height and head orientation (PC2), length of caudal fork and caudal peduncle (PC3), 

width and position of fin bases (PCs 3 & 4), and size of eye (PC4). Site-specific CVAs found significant 

differences in mean body shape among most localities after controlling for size (p < 0.05), but with 

substantial overlap among individuals from different localities (Supplementary Figure B4; Table B). 

However, strong separation between rainforest and savannah was evident on the first axis. Congruently, 

discriminant function analysis between rainforest and savannah individuals found that body shape could 

reliably classify individuals to ecoregion of origin in 96.5% of cases (94.3% in cross-validation; p = 

<0.0001; Supplemental Figure B5; Supplemental Table B3). Rainforest fish were larger on average than 

savannah fish (mean centroid size 10.20 cm (SD = 2.88 cm) in rainforest versus 6.93 cm (SD = 2.06 

cm) in savannah), however they were also dorsoventrally narrower. Even after controlling for allometric 

differences, body depth was the most notable component of shape divergence between ecoregions 

(Figure 3.4). 
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Figure 3.4. Morphological differences between Melanotaenia splendida splendida of rainforest and savannah 

origin. Photographs show examples of similarly sized males collected from rainforest (top left; Saltwater Creek 

(SA13); centroid size 12.55cm) and savannah (top right; Morehead Creek (MO01); centroid size 12.24 cm) in 

March, 2017. Wireframe diagram shows group mean shape change between rainforest and savannah individuals, 

based on discriminant function analysis of size regression residuals (18 landmarks, n = 367). Scale factor = 2. 

Green = rainforest. Yellow = savannah.  

 

Genomic and morphological associations with environment 

The pRDA analyses found strong genomic and morphological associations with environment (Figure 

3.5a-f; Supplementary Table B), which consistently explained more of the observed biological variation 

than neutral or spatial factors (including FST distance, allelic covariance & river distance; Figure 3.6). 

On average, environment best explained 3.3 times more genomic variation and 10.5 time more 

morphological variation than other covariables (Supplemental Table B5). For between-systems 

analyses, the most important environmental explanatory variables for both genomic and morphological 

variation were average annual rainfall (STRANNRAIN) and summer mean runoff 

(RUNSUMMERMEAN). These were also the best explanatory variables identified by the alternative 
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GEA approach of BAYPASS  (auxiliary covariate model; Supplemental Figure B6). In rainforest-

specific analyses (described further in Chapter 2), STRANNRAIN and average annual temperature 

(STRANNTEMP) were the best explanatory variables for both genomic and morphological variation. 

However, within the savannah, winter mean runoff (RUNWINTERMEAN) and STRANNTEMP best 

explained genetic variation, in contrast to morphological variation, which was best explained by 

RUNSUMMERMEAN and stream density (STRDENSITY). Both pRDAs and BAYPASS approaches 

produced suites of candidate genes for environmental adaptation, totalling 1,284 in between-systems 

analyses (1,119 pRDA, 233 BAYPASS, 68 shared), 1,004 in rainforest-specific analyses (864 pRDA, 

176 BAYPASS, 36 shared), and 987 in savannah-specific analyses (880 pRDA, 145 BAYPASS, 38 

shared). Although slightly more candidates were detected by pRDAs in the savannah compared to the 

rainforest, we found that locus-specific selective signals were weaker, with an average correlation of 

0.249 in the savannah compared to 0.371 in the rainforest (Figure 3.7). 

 

Finally, pRDA associations among genotype, phenotype, and environment (Figure 3.5g-i) revealed 

significant relationships both between and within ecoregions (p = <0.001), even after controlling for 

size. Between-systems, 7.2% of environment-associated genetic variation could be explained by the 

first three PCs of body shape variation, revealing 212 SNPs as candidates for climate-adaptive 

morphological variation. Within the rainforest, 61 candidates were identified in association with the 

first four body shape PCs, while within the savannah, 72 candidates were identified in association with 

PCs 1, 2 and 4.  
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Figure 3.5. Ordination plots summarising the first two axes of partial redundancy analyses (pRDAs) for 

Melanotaenia splendida splendida individuals sampled in tropical north-eastern Australia from 17 sampling 

localities (‘Between-systems’), including nine within the rainforest (‘rainforest-specific’) and eight within the 

savannah (‘savannah-specific’). Figures a-c represent genotype-environment associations (GEA) controlling for 

allelic covariance, d-f represent phenotype-environment associations (PEA) controlling for allelic covariance and 

body size, and g-i represent genotype-phenotype-environement associations (GxPxE) controlling for body size. 

Large points represent individual-level responses, and are coloured by drainage system of origin in ‘Between-

systems’ plots, and by sampling site in ecoregion-specific plots. Small purple points represent SNP-level 

responses. Grey triangles represent morphological responses. Vectors represent the magnitude and direction of 

relationships with explanatory PCs.  
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Figure 3.6. Percentage stacked column graph representing variance partitioning of pRDA response variables 

(genomic variation or morphological variation of Melanotaenia splendida splendida) between environmental 

explanatory variables and neutral covariables (allelic covariance (Ω); FST distances (FST); river distances (river 

dist)). Colours correspond to proportion of variation best explained by: environmental variables = “Environment”; 

by neutral variables = “Neutral”; or by environmental or neutral variables equally = “Overlapping”.  
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Figure 3.7. Frequency distribution of locus-specific correlations with environment for candidate adaptive SNPs 

for Melanotaenia splendida splendida detected for rainforest (864 SNPs) and savannah (880 SNPs) populations, 

associated with environment after controlling for putative neutral variation (allelic covariance (Ω)). Data are based 

on ecoregion-specific pRDAs using a full dataset of 14,540 SNPs. 
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phenotypic plasticity. Broadly, this study suggests that differences in habitat variability and complexity 

can substantially affect evolutionary trajectories of tropical organisms, which we discuss in the context 

of resilience to a rapidly changing climate. 

 

Environmental and neutral contributions to intraspecies divergence 

Despite their proximity, the major biomes of Australia’s north-eastern tropics maintain stark bioclimatic 

differences (Ash 1988). The wet tropical rainforests experience moderate and relatively aseasonal 

conditions compared to the wet-dry savannah, which is prone to thermal and hydrological extremes 

(Ash 1988, Bowman et al. 2010). Within the two biomes, climatic gradients are more subtle but still 

substantial (Supplementary Figure A1). Despite the rainforest’s relative stability, a similar amount of 

environmental variation occurred among the sampled localities, even considering that this sampling 

covered a narrower geographic range than our sampling region in the savannah (Supplemental Figure 

A1). Consistent with our first hypothesis, the greatest biological differences among sampled M. s. 

splendida individuals were observed between ecoregions, with both genomic and morphological 

environmental associations exceeding neutral expectations. Moreover, significant environmental 

associations were also found within rainforest and savannah, suggesting the relevance of ecological 

adaptation at both local and regional scales.  

 

Our Chapter 2 results (Gates et al. 2021, under submission) indicated that environmental adaptation 

may be even more important than neutral factors in explaining patterns of intraspecies diversity within 

rainforest populations. In this chapter, the results of multiple environmental association analyses 

supported this finding at a much broader scale. Environmental predictors explained patterns of genomic 

and morphological variation better than approximations of neutral structure in both rainforest and 

savannah-specific analyses, as well as those across combined systems. The trend was repeated among 

pRDAs using a range of neutral covariables, including allelic covariance (Ω), FST, and river distances. 

For morphology in particular, the hypothesised adaptive relevance was supported not only by strong 
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environmental associations, but the extent to which environment exceeded the explanatory power of 

neutral covariables. Based on average results from all pRDAs, environment best explained 

approximately ten times more phenotypic variation than did neutral structure, versus only three times 

more genetic variation. This apparent resistance of phenotypes to neutral influences, especially relative 

to genomic patterns, is consistent with the hypothesis that body shape has been more constrained by 

functional requirements than has genomic variation. Finally, the large proportion of variation not 

explained by any of the included explanatory variables is common to the approach, and may reflect 

inter-individual variation within sampling localities, in addition to stochastic influences not 

encompassed by the demographic model. 

 

While we considered that stronger genomic associations with neutral patterns could have been biased 

by use of the same ddRAD dataset for estimation of both neutral and overall genomic variation, analyses 

using the independent neutral proxy of river distance produced the same trend, suggesting a genuine 

difference in relative influences. This result may reflect the fact that, even under divergent selective 

environments, we generally assume a substantial proportion of genomic loci will vary neutrally, ‘nearly-

neutrally’, or at least with limited detectable influence on physiology and fitness (Ohta 2002, Luikart et 

al. 2018). The same assumption may not apply to more integrative components of physiology (Ho et al. 

2017, Zhang 2018). For instance, it has been hypothesised that the relative prevalence of adaptive 

changes may depend on hierarchy of biological organisation, with complex organismal traits such as 

body shape necessarily interacting not just with the surrounding environment, but with lower level 

components such as cells, tissues and organs (Zhang 2018). Strong selection may therefore be acting to 

inhibit the effect of drift on morphological adaptation in rainbowfishes which, given the significant 

GxPxE associations, we propose to be at least partially heritable. In addition, phenotypic plasticity may 

be responding to environment to further enhance associated variation (e.g. Kelly (2019)). 
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Many factors are necessary to explain patterns of tropical diversity, not limited to local and regional 

climates, geographies, biotic interactions, and historical events (Moritz and McDonald 2005, Ricklefs 

2005). However, the role of ecological divergence is becoming increasingly recognised (Moritz et al. 

2000, Beheregaray et al. 2015). When considering the local and regional environmental divergence 

observed for M. s. splendida alongside broader climatic determinants of tropical transition zones (e.g. 

Hirota et al. (2011), Oliveras and Malhi (2016), Wu et al. (2016)), we can expect that climate change 

will have significant repercussions for distributions of tropical diversity. Further, where a large 

proportion of variation has probably evolved in response to local selection as found here, a large 

evolutionary turnover may similarly be required to maintain fitness under changing conditions 

(Fitzpatrick and Keller 2015, Bay et al. 2017).  

 

Putative selective influences and outcomes 

Although relatively few studies of natural selection in wild populations have occurred in tropical 

landscapes (Siepielski et al. 2017), recent publications have highlighted hydrological, thermal, and 

vegetation gradients as primary selective influences in terrestrial fauna (Ntie et al. 2017, Zhen et al. 

2017, Miller et al. 2020, Morgan et al. 2020, Bennett et al. 2021b). Here, and perhaps unsurprisingly 

for an aquatic obligate (e.g. Cooke et al. (2012a);Cooke et al. (2012b); Cooke et al. (2014)), we found 

that species-wide adaptive signals were most strongly associated with hydrological variables. For all 

between-systems environmental association analyses, including pRDA and BAYPASS approaches, the 

best environmental explanatory variable for both genomic and morphological variation was average 

annual rainfall, followed in most analyses by summer mean runoff. These variables corresponded 

closely to the first axes of the pRDA plots, as did the divergences between rainforest and savannah 

individuals’ genetic and morphological variation.  

 

While hydroclimatic variation was similarly important in within-systems association analyses, annual 

variables (average annual rainfall; average annual temperature) better explained variation among 
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rainforest sites, while seasonal variables (winter mean runoff; summer mean runoff) were more 

important among savannah sites. In contrast to the relatively aseasonal conditions of the rainforest 

sampling sites, this finding may reflect the importance of monsoonal fluctuations to the composition 

and phenological characteristics of savannah localities (Ma et al. 2013). This is consistent with results 

of a meta-analysis of climate-predicted selection (Siepielski et al. 2017), which found that precipitation-

related variation was one of the most important explanations for global patterns of selection. Moreover, 

considering that results can sometimes differ among environmental association methods (Forester et al. 

2018), the consistency among both RDA and BAYPASS analyses provide support for the reliability of 

these associations.  

 

The most notable body shape differences between rainforest and savannah individuals were relative 

depths of body and caudal peduncle. Despite being larger, rainforest fish were comparatively 

streamlined, with dorsoventral flattening and narrower peduncles. Savannah fish were stouter, with 

pronounced dorsal humps. Aside from possible sex-specific and allometric influences accounted for in 

the study design, depth of body and peduncle depth have established relevance to swimming 

biomechanics in teleost fishes (Gatz 1979). In general, more slender, fusiform shapes in fishes are 

associated with swimming speed over longer distances (steady locomotion), as well as habitation of 

higher velocity environments (Gatz 1979, Leavy and Bonner 2009, Langerhans and Reznick 2010). 

Conversely, deep and compressiform shapes have been associated with manoeuvrability and burst 

swimming (unsteady locomotion), lower water velocities (Gatz 1979, Leavy and Bonner 2009, 

Langerhans and Reznick 2010), and in several instances, with greater temporal variability of flows 

(Scarnecchia 1988, Alexandre et al. 2014, Kern and Langerhans 2018, Pease et al. 2018).  

 

Consistent with hydrological associations in PEAs, the nature of these shape changes suggest that 

greater interseasonal and interannual flow variability in the savannah could have contributed to 

selection for deeper bodies, which may provide biomechanical advantages to unsteady locomotion for 
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foraging and predator evasion (Langerhans et al. 2004, Langerhans 2008), especially during relatively 

stagnant winter periods. Meanwhile, fusiform body shapes in rainforest fish could help reduce drag and 

increase thrust propulsion during sustained swimming (Langerhans 2008), a likely advantage in year-

round high flows. There has, however, been conflicting evidence for body depth adaptation in 

congeneric rainbowfishes (McGuigan et al. 2003, Lostrom et al. 2015, Kelley et al. 2017). Although 

associations have been found among habitat and body depth, trends have been inconsistent among 

species, sexes, and developmental conditions (McGuigan et al. 2003, Kelley et al. 2017). Therefore, 

while we expect that the major morphological divergences between rainforest and savannah M. s. 

splendida are accommodating hydrological adaptations, the precise mechanisms at this stage remain 

putative. 

 

Adaptive dynamics under contrasting terrain structure 

In addition to differences in climatic variability across Australia’s north-eastern tropical biomes, the 

rainforest and savannah regions are delineated by contrasting geomorphology, providing the 

opportunity to assess the effects of connectivity structure on patterns of neutral and adaptive divergence. 

As reported in Chapter 2, M. s. splendida from the five sampled rainforest drainages corresponded to 

five distinct populations, with some milder intra-drainage structure typical of moderately dispersing 

fishes (sensu Brauer et al. (2018)). While drainage networks in this region may have maintained similar 

terrain structure for tens of millions of years (Nott 2005), connectivity among the sampled drainages is 

thought to be more recent, for example via coastal floodplain exposure during glacial periods (Pusey 

and Kennard 1996, Cook and Hughes 2010). This is likely reflected by the only moderate pairwise FST 

values among drainages. However, despite closer clustering among neighbouring systems, there was 

minimal evidence of recent admixture, as may be expected if substantial gene flow was occurring during 

cyclonic rainfall events (e.g. Pearson (2005)) or via human translocations. In contrast, all individuals 

from savannah localities could be attributed to a single population, consistent with expectations of 

comparatively high gene flow due to river connectivity across the lowland terrain. As in the rainforest, 
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some intra-drainage substructure was detected, which could result from low winter flows, IBD across 

the large drainage area, and representation of multiple headwaters. 

 

The connectivity differences between rainforest and savannah regions are likely to have wide-ranging 

impacts on freshwater inhabitants. In fishes, drainage connectivity is already well established as an 

influence on species distributions, taxonomic richness, and genetic diversity (Pusey and Kennard 1996, 

Unmack 2001, Wong et al. 2004, Carvajal-Quintero et al. 2019). Moreover, gene flow across 

heterogeneous landscapes can have significant effects on adaptive evolution (Garant et al. 2007, Nosil 

2012, Tigano and Friesen 2016). Here, we found that signals of locally adaptive genetic divergence 

were weaker in the savannah for both ecoregion-specific and combined-systems GEAs, despite 

equivalent magnitudes of regional environmental variation captured by our sampling coverage. This 

was indicated by the savannah-specific pRDA models’ lower overall variance, weaker local clustering 

of individual adaptive variation, and weaker locus-specific environmental associations than in 

rainforest-specific analyses. Although the latter effect might alternatively be attributed to selection 

across a greater number of loci of smaller effect size (e.g., Pritchard and Di Rienzo (2010)), we also 

found that the combined magnitude of candidate associations remained lower. Moreover, the alternate 

GEA method of BAYPASS, dependent on Bayesian likelihoods rather than model loadings used in 

RDAs, detected fewer candidates for local adaptation within savannah. Finally, GxPxE pRDAs 

similarly explained less variance and displayed weaker local clustering within savannah than within 

rainforest.  

 

Together, these results support our hypothesis that the greater drainage connectivity in the savannah has 

promoted homogenisation of adaptive variation, contributing to a pattern of more region-wide, rather 

than locally specific genomic adaptation. In contrast, natural fragmentation in the rainforest system 

appears to have permitted relatively independent adaptation of demes in response to local selective 

pressures. These results are in accordance with what is perhaps a widely held expectation of gene flow’s 
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influence on local adaptation, as theorised by Haldane (1930), Fisher (1950), Slatkin (1987), and others, 

by which divergence at individual localities is dampened by inflow of genetic variation from 

neighbouring sites. However, homogenisation is only one of gene flow’s several possible effects, which 

antithetically include facilitation of local adaptation (Tigano and Friesen 2016, Nosil et al. 2019). This 

can occur through the spread of novel beneficial mutations, and the build-up of standing diversity across 

landscapes (Haldane 1948, Hendry and Taylor 2004, Nosil et al. 2019). That homogenisation appears 

to be the dominant effect may indicate that gene flow in the savannah is too high for local selection to 

completely counteract swamping of adaptive alleles (sensu Storfer and Sih (1998)). Alternatively, it is 

possible that the likely large populations of M. s. splendida present in both regions (Pusey et al. 2004) 

have helped to maintain sufficient standing diversity for efficient adaptation without external input 

(sensu Jensen and Bachtrog (2011)), even among isolated rainforest drainages.  

 

These differences in adaptive dynamics are likely to affect evolutionary trajectories under changing 

climates, although the nature will be dependent on both spatial and temporal turnover of conditions. For 

instance, Nosil et al. (2019) has suggested that in well-connected systems such as the savannah, local 

shifts are likely to be inhibited unless the system as a whole is driven to a selective ‘tipping point’. At 

this point however, gene flow can act to facilitate rapid and widespread adaptive change. Meanwhile, 

poorly connected systems may produce steadier evolutionary responses to locally-specific selective 

pressures, with the constraint that new adaptive variation must arise locally and independently within 

each deme (Tigano and Friesen 2016, Nosil et al. 2019). The later may become particularly problematic 

under rapid and unprecedented change (e.g. Brauer and Beheregaray (2020)). In the context of these 

expectations, we propose that trade-offs exist between local specialisation and system-wide resilience 

between rainforest and savannah populations. Considering the strong evidence for climatic divergence 

within M. s. splendia and a growing number of other tropical species (Ntie et al. 2017, Zhen et al. 2017, 

Miller et al. 2020, Morgan et al. 2020, Bennett et al. 2021b), such trade-offs are likely to be particularly 

pertinent to long term persistence.  
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A possible role for plasticity 

Despite evidence for homogenisation of genomic patterns in the savannah, it was intriguing to find that 

morphological associations with environment were no weaker in this high gene flow system than in the 

poorly connected rainforest. Rather, PEA models were consistently stronger, suggestive of locally 

adaptive body shape variation. Although unexpected, this result was not necessarily incongruous with 

homogenising gene flow, with phenotypic plasticity being a particularly favourable explanation. While 

the GxPxE associations in this study suggested heritability of at least some body shape variation across 

both ecoregions, the weaker associations in the savannah support a relative decoupling of genotype and 

morphology, as could be expected under plastic divergence (Schmid and Guillaume 2017). Moreover, 

previous common garden experiments with congeneric rainbowfishes found that morphological 

plasticity could similarly explain a subset of overall shape variation (McGuigan et al. 2003, McGuigan 

et al. 2005, Kelley et al. 2017). For instance, divergence in M. australis was inducible by flow 

manipulation during development (Kelley et al. 2017), which is particularly relevant given associations 

in this study with flow-related variables. 

 

Without further experimental work, it cannot be assumed that plastic capacity differs between 

ecoregions, and alternative factors (e.g., covariance relationships between genotypic and environmental 

influences (Conover and Schultz 1995)) could account for the observed discrepancies. However, it is 

notable that theoretical models do predict selection for increased phenotypic plasticity in systems with 

both high gene flow and environmentally heterogeneous environments (Sultan and Spencer 2002, 

Crispo 2008). Under such a scenario, the savannah’s high connectivity could have promoted system-

wide adaptation of greater plasticity to compensate for a relative shortage of locally specialised genetic 

variation. Analogously, it has been argued that if populations expressing divergent locally adaptive 

phenotypes become isolated, then these plastic traits may become genetically assimilated via selection 

for developmental efficiency (Pigliucci et al. 2006, Fitzpatrick 2012). This latter scenario is plausible 

for populations in the naturally fragmented rainforest, and could have contributed to the stronger 

associations between genotype, phenotype, and environment in rainforest localities. Finally, it’s 
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possible that selection on plastic capacity could result from not only spatial, but also temporal dynamics. 

For instance, greater plasticity could provide wider margins of tolerance to accommodate fluctuating 

environmental conditions (Hendry 2015), as expected under the climatic variability hypothesis (Janzen 

1967). In the absence of clear inferences, these results provide seeds for future hypothesis testing, which 

may be applicable not only to body shape but to other physiological adaptations across rainforest and 

savannah ecosystems. 

 

Conclusion 

The tropical rainforest and savannah ecosystems of north-eastern Australia are marked by conditions of 

ecological stability and habitat complexity in the former, and of temporal variability and terrain 

connectivity in the latter. Accordingly, we found that rainforest and savannah fish diverged not only in 

their responses to regional hydroclimatic variation, but in the extent of locally specific adaptation within 

biomes. While the natural structure of rainforest landscapes appears to support diversification and 

specialisation of inhabitants, these same characteristics may require large adaptive turnover and 

promote spatially disparate responses under rapid environmental change. Meanwhile, savannah fish 

appear to face homogenisation of genomic adaptation in a highly connected landscape, but display 

remarkable flexibility in their physiological responses to environment. These differences genomic and 

phenotypic relationships with environmental and neutral patterns highlight the benefits of integrating 

multiple biological datasets in studies of selection. Such findings are not only important from a 

theoretical perspective, but may become critical for appropriate management in the context of 

anthropogenic habitat alteration. 
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Chapter 4: Comparative transcriptomics and resilience to future 

climates of rainforest and savannah rainbowfish 

 

Abstract 

Thermal response capacity will be a key factor determining persistence under global warming, and may 

be affected not only by static traits, but by the plasticity of regulatory mechanisms. Transcriptional 

plasticity may be an important mechanism for survival under warming stress, however little is so far 

known about local adaptation of plastic resilience. Here, we investigate bioregional intraspecies 

variation in the tropical rainbowfish Melanotaenia splendida splendida, hypothesising a positive 

relationship between upper thermal tolerance and gene expression plasticity in different climatic 

ecotypes. We used common-garden experiments to compare short-term responses to climate warming 

among rainforest and savannah ecotypes, as well as in relation to previously studied temperate, desert, 

and subtropical rainbowfish ecotypes. We assessed rapid acclimation capacity within and between 

ecotypes via tests of critical thermal maxima. We then compared plastic transcriptional responses to 

projected 2070 summer temperatures using differential gene expression analysis. We identified 189 

differentially expressed (DE) genes as candidates for response to future thermal conditions, including 

eight hub genes related to heat shock and lipid metabolism central to induced expression networks. We 

found both the greatest thermal tolerance and transcriptional flexibility (139 DE genes) in the savannah 

ecotype, which may assist in plastic responses to the hot and variable conditions of its native 

environment. However, despite high thermal tolerance, plasticity of the rainforest ecotype was limited 

to 88 DE genes, which may be reflective of greater specialisation of thermal responses. When compared 

with the three higher latitude rainbowfishes, we found a strong positive relationship between induced 

transcriptional responses and upper thermal tolerance, both of which were greater in warm-adapted 

species. These findings support our hypothesis that transcriptional plasticity to future climates varies 

biogeographically and might facilitate thermal resilience in Australian rainbowfishes, with implications 

for patterns of population persistence under climate change. 
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Introduction 

As climate change exposes organisms to thermal conditions outside their expected ranges, impacts will 

depend not only on the magnitudes of warming, but on populations’ existing physiological traits, the 

plasticity of those traits, and the capacity for evolutionary adaptation to new norms (Stillman 2003, 

Hoffmann and Sgro 2011, Catullo et al. 2015). These factors are likely to be influenced by the 

environment in which an organism evolved, leading to the hypothesis that resilience will vary among 

geographic bioregions (Thomas et al. 2004, Tewksbury et al. 2008, Sunday et al. 2012). In this context, 

an obvious research priority is characterising spatial patterns in thermal limits, as well as the 

evolutionary mechanisms governing divergent responses (Pörtner et al. 2006, Bennett et al. 2021a). 

Organisms that evolved in stable climates may develop specialised thermal physiologies, yet their 

breadth and flexibility of tolerance are more often limited than those which adapted under variable 

conditions (Janzen 1967, Payne and Smith 2017, Bennett et al. 2021a). This raises concern for tropical 

species, which are not only reported as living closer to their critical thermal maxima (CTMAX), but may 

have less acclimation capacity, and opportunity for behavioural avoidance, than those of higher latitudes 

(Ghalambor et al. 2006, Deutsch et al. 2008, Tewksbury et al. 2008, Huey et al. 2009). There is likely 

to be additional variation in climatic adaptation among regional tropical bioclimates, for example 

between rainforest and savanna; however, we have not yet developed a strong understanding of 

mechanisms for thermal resilience at this scale (Moritz et al. 2012, Polato et al. 2018). 

 

Thermal adaptation is challenging to study because of the pervasiveness of temperature in biological 

functioning (Angilletta Jr 2009). In ectotherms, body temperature affects almost all major components 

of physiology and behaviour (Angilletta et al. 2002, Hochachka and Somero 2002, Huey et al. 2009). 

Moreover, thermal tolerance itself may be influenced by a range of extraneous environmental factors 

(Beitinger 1990, Pörtner et al. 2017). Climate change is also expected to increase both the averages and 

the variability of environmental temperatures (IPCC 2014), each of which may select for slightly 

different thermal response traits (Gilchrist 1995, Angilletta Jr 2009). A potentially important 

mechanism for warming responses is phenotypic plasticity, that is, the ability of a single genotype to 
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produce multiple phenotypes as a function of environmental exposure (Scheiner 1993, Pigliucci 2001, 

Kelly et al. 2011, Sultan 2021). Plasticity may broaden individuals’ thermal performance capacities, 

not only buffering against short term stress response, but potentially facilitating long-term adaptation 

to novel conditions (Pfennig et al. 2010, Wund 2012, Logan and Cox 2020, Bailey et al. 2021, Levis 

and Pfennig 2021). Plasticity may effectively ‘buy time’ until genomic adaptation can take place 

(Diamond and Martin 2021), or contribute to evolutionary feedback loops which accelerate adaptive 

evolution (Fusco and Minelli 2010, Bailey et al. 2021). Plastic traits might be particularly important for 

climate adaptation in dispersal-restricted taxa (e.g., freshwater obligates), which have limited ability to 

translocate, and receive little inflow of novel genetic variation (Muñoz et al. 2016, Brauer et al. 2017).  

 

Plasticity itself is a trait which may evolve in response to selection, being in many cases heritable 

(McCairns and Bernatchez 2012, McCairns et al. 2016, Goldstein and Ehrenreich 2021), and varying 

among taxa and environmental conditions as to the extent of fitness costs or benefits (DeWitt et al. 

1998, Snell-Rood and Ehlman 2021). Like patterns of genetic variation, these factors permit the 

possibility of geographic variation in adaptive plasticity (Richards et al. 2006, Crispo 2008). Selection 

for plasticity predicted in a range of scenarios, but especially where individuals are likely to be exposed 

to variable environmental extremes, whether across time or space (Van Kleunen and Fischer 2001, 

Baythavong 2011, Snell-Rood and Ehlman 2021). Although high plasticity can sometimes inhibit 

genetic adaptation (Oostra et al. 2018, Fox et al. 2019), plasticity has also frequently been reported as 

co-gradient to directional selection, potentially providing additive or facultative effects (Robinson and 

Wilson 1996, Gilchrist and Huey 2004, Gonzalo‐Turpin and Hazard 2009, Jasienski 2009). Fitness costs 

of phenotypic plasticity have been reported relatively rarely, however formerly plastic traits may be lost 

via the process of genetic assimilation. This is hypothesised to be likely in stable environments where 

specialisation is favoured over generalist traits (Kelly et al. 2017, Kelly 2019, Scheiner and Levis 2021). 
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One of the most important mechanisms for plasticity is gene expression modification, which can 

facilitate acclimation to a range of ambient conditions (Schlichting and Smith 2002, López-Maury et 

al. 2008, Logan and Cox 2020, Rivera et al. 2021). Occurring primarily at the level of transcription, this 

may occur via quantitative changes in gene expression levels, or through processes such as alternative 

splicing (Marden 2008, De Wit et al. 2012, Nonaka et al. 2015). Studies of gene expression can inform 

about the precise biochemical pathways being regulated during responses to environmental stimulus, as 

well as identifying possible targets of selection under long-term change (Alvarez et al. 2015, Gerken et 

al. 2015, Logan and Cox 2020). This is important for traits like thermal response, where regulatory 

processes may be obscure, and adaptive phenotypes unapparent in advance of an environmental 

transition (Schlichting 2008). Comparisons of gene expression patterns among populations or across 

environmental gradients can also provide insight about local reaction norms, which alongside 

physiological indicators such as tolerance, may help to elucidate patterns of adaptive plasticity 

(McCairns and Bernatchez 2010, Whitehead 2012, Rivera et al. 2021). 

 

High-throughput transcriptome profiling using RNA sequencing (RNA-seq) allows both discovery and 

quantification of mRNA transcripts within a cell at the time of sampling, allowing comparison among 

individuals and environmental treatments (Wang et al. 2009, Alvarez et al. 2015, Conesa et al. 2016). 

Expression plasticity can therefore be assessed by comparing the magnitudes of expression differences, 

as well as the numbers and identities of responsive genes (McCairns and Bernatchez 2010, Alvarez et 

al. 2015). Transcriptional flexibility may be an important determinant of physiological stress resilience 

(Ghalambor et al. 2015, Bay et al. 2017, Kelly 2019), and positive correlations between thermal 

tolerance and expression plasticity have been described for teleost fishes (Garvin et al. 2015, Narum 

and Campbell 2015, Wellband and Heath 2017, Sandoval-Castillo et al. 2020, Komoroske et al. 2021). 

In Australian rainbowfishes (Melanotaenia spp.; Sandoval-Castillo et al. (2020)), these responses also 

diverged across climatic bioregions, with a greater number of thermally responsive genes and higher 

thermal tolerances demonstrated in warmer, lower-latitude ecotypes. Despite these strong trends, it may 

be context-dependent as to whether a superior regulatory response will be characterised by plasticity of 
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a larger number of specialised genes, or by a streamlined response requiring fewer regulatory changes 

(Logan and Cox 2020). Moreover, geographic studies of gene expression plasticity are so far uncommon 

(Logan and Buckley 2015, King et al. 2018), making it difficult to extrapolate inferences to other species 

and bioregions. This makes predictions even more difficult for tropical organisms, where warmer 

temperatures may demand greater thermal response capacities, but stable conditions may promote 

greater specialisation or assimilation of those responses (Gilchrist 1995, Tewksbury et al. 2008, Kelly 

2019).  

 

In this chapter, we return to a comparative approach between rainforest and savannah populations of 

the tropical-endemic eastern rainbowfish (Melanotaenia splendida splendida), investigating 

physiological resilience and molecular responses to climate warming. Chapter 3 provided genetic and 

morphological evidence for distinct hydroclimatic adaptation among individuals from neighbouring 

rainforest and savannah biomes, which we therefore suggest may be referred to as climatic ‘ecotypes’, 

sensu Engelhard et al. (2010). Among their native bioregions, the savannah ecotype experiences both 

greater average temperatures and greater temporal variation in thermal extremes, in contrast to milder 

and more stable rainforest conditions (Supplemental Figure 1). Given the apparent importance of 

climatic adaptation on other aspects of rainbowfish biology, we expect that ecotype-specific patterns 

may also exist for thermal plasticity and upper thermal tolerance.  

 

We use an integrated experimental approach, specifically comparing CTMAX and global gene expression 

profiles in response to temperatures projected for summer 2070 in a high emissions scenario. For 

simplicity, and for consistency with previous rainbowfish work, this addresses only what may be 

referred to as ‘activational plasticity’: expression changes which may be induced, and often reversed, 

in response to environmental fluctuations within an individual’s lifetime (Novoplansky 2002, Snell-

Rood and Ehlman 2021). We ask whether thermal tolerance differs among climatic regions, and if so, 

whether it covaries with plasticity of transcriptional responses. Based on previous rainbowfish findings, 
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we expect to find greater thermal resilience, and a greater number of thermally responsive genes, in the 

warmer-adapted savannah ecotype. Meanwhile, due to milder temperatures and lower variability of 

rainforest conditions, we expect a less flexible response consistent with genetic assimilation in the 

rainforest ecotype. Further to these objectives, we build upon previous work in Australian rainbowfishes 

by contrasting thermal tolerance and plastic capacity with that of subtropical, desert, and temperate 

congeners, interrogating broader biogeographic patterns of response to future climates. We hypothesise 

that transcriptional plasticity may be facilitating thermal resilience and will therefore be reflected by a 

positive relationship between upper thermal limits and the number of genes differentially expressed 

under warming.  

 

 

Methods 

Sample collection 

During March 2017, wild eastern rainbowfish (M. s. splendida) individuals were sampled from a 

rainforest site, Cassowary Creek; and a savannah site, Laura River; located respectively in the 

Normanby and Mossman River catchments in Cape York Peninsula in north-eastern Australia (Figure 

4.1; Supplementary Table A1). Fish from these localities are considered as separate populations based 

on SNP-based population genomic evidence in Chapter 3. Live fish were captured by seine netting and 

transported by road in closed containers fitted with battery-running air pumps, before transferral to the 

Flinders University Animal House Facility in Adelaide by air freight. There, they were acclimatised at 

21°C for at least 60 days prior to warming experiments. This was done in aquaria (~20 fish/ 100L) while 

exposed to 12 h light/12 h dark. They were fed once per day with a combination of blood worms and 

fish pellets.  
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Figure  4.1. Sampling locations of rainforest (Cassowary Creek, Mossman drainage; green icon) and savannah 

(Laura River, Normanby drainage; yellow icon) Melanotaenia splendida splendida collected in March 2017 in 

north-eastern Australia. Navy lines highlight the creeks and major river channels sampled in throughout this thesis. 

Inset: extent indicator of main map relative to the Australian continent. 

 

Characterising critical thermal maxima 

We determined the upper thermal limits for organised locomotory activity (CTMAX) for each ecotype, 

based on methods described by Becker and Genoway (1979) that were used in previous rainbowfish 

studies (McCairns et al. 2016, Sandoval-Castillo et al. 2020). We used ten similarly sized adult females 

from each of the 21°C acclimated rainforest and savannah populations. Fish were placed individually 

in a 5 L glass beaker containing 3.5 L of aquarium water, which was partially submerged in a digital 

water bath SWBD (Stuart®). The water bath was used to increase the temperature in the beaker by 

approximately 1°C every three minutes (0.33°C/min) until CTMAX was reached  (Becker and Genoway 

1979). CTMAX was determined by a ‘loss of righting response’, in which fish were unable to maintain 
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normal dorsal-ventral orientation for at least one minute, as described by Monirian et al. (2010). This 

endpoint was chosen because it represents a scenario in which the animal is no longer able to maintain 

essential functions nor a means of escape (Becker and Genoway 1979, Monirian et al. 2010). Once a 

loss of righting response was reached, the time and temperature were recorded, and fish were placed in 

a recovery tank of aerated, acclimation-temperature water. Fish were monitored in the 24 hours 

following the experiment for behavioural abnormalities or death. The CTMAX for a given ecotype was 

obtained by taking an average of the 10 independent replicates. We tested significance of differences 

between ecotypes using two-sample t-Tests assuming equal variances. 

 

Temperature trial for projected future climates 

To assess short-term responses to contemporary (21ᵒC) and 2070-projected (33ᵒC) average summer 

temperatures, individuals of each ecotype (similarly sized adult males) were randomly assigned to a 

treatment or a control group (n = 6 per group, per ecotype). The treatment temperature (33°C) reflects 

a projected average summer temperature for eastern Australia in 2070 in a high emission scenario 

(RCP8.5) estimated by the International Panel on Climate Change, to be directly comparable with that 

used in previous warming experiments using Australian rainbowfishes (Smith et al. 2013, Sandoval-

Castillo et al. 2020). Temperatures in climate change treatment tanks were increased by 2°C per day 

over a six-day period, towards the 33°C target, and were subsequently maintained for 14 days. Control 

groups were maintained at 21°C throughout the experiment. Then, between 9:00 am and 11:00 am, fish 

from both treatment and control groups were euthanised using an overdose of anaesthetic sedative 

(AQUI-S®: 175mg/L, 20 minutes) following the Australian Code of Practice for the Care and Use of 

Animals for Scientific Purpose 2013. Upon death, individuals were immediately dissected to extract the 

liver. We focused on liver due to its established relevance in metabolic conditioning during heat stress 

responses and because it contains a relatively homogeneous distribution of cell types (Rabergh et al. 

2000, Smith et al. 2013). Liver tissue was placed in RNAlater (Ambion), and incubated at 4°C for 12 

hours before transferral to -80°C. 
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RNA extraction, library preparation and sequencing 

Total RNA was extracted from preserved liver samples of the 24 M. s. splendida individuals using 

MagMAX™-96 Total RNA Isolation Kit (Ambion) following the manufacturer’s protocol. This 

involved homogenisation of liver tissues with a lysis/binding solution to solubilise cellular membranes 

and inactivate nucleases. Nucleic acids were then purified through the magnetic capture of RNA using 

nucleic acid binding beads and washed to remove proteins and cell debris. Finally, the RNA was treated 

with DNase to cleave DNA contaminants and purified from the reaction mixture for resuspension in a 

low salt buffer. Extractions were assessed for quantity and quality using a Bioanalyzer 2100 (Agilent 

Technologies) according to protocol from the Agilent RNA 6000 Nano Kit Quick Start guide.  

 

Total RNA was converted into complementary DNA (cDNA) libraries for sequencing, following 

TruSeq RNA™ Sample Preparation Low Throughput (LT) Protocol (Illumina, 2010). In the first step 

of library preparation, poly-A containing messenger RNA (mRNA) molecules were purified using 

magnetic beads. Two rounds of purification were performed, in which RNA was also fragmented and 

primed for cDNA synthesis with random hexamers. First-strand cDNA were then synthesised using 

reverse transcriptase and random primers, while second-strand synthesis involved the removal of RNA 

templates and the generation of double stranded cDNA using Second Strand Master Mix. End-repair 

was performed by removing 3’overhangs and filling in 5’overhangs resulting from fragmentation. 

Adenlyation of 3’ ends was performed to prevent chimera forming during ligation. Unique indexing 

adaptors (Illumina MID tags 2, 4–7, 12–16, 18, 19) were ligated to each sample to allow identification 

of individual samples despite pooled sequencing. The only modification of protocols was during the 

PCR clean-up of the enrichment step, in which the ratio of beads was reduced from 1: to 4:5 to minimise 

concentration of short fragments (>200 bp). Concentrations of RNA in individual samples was 

normalised by dilution, and pooled in groups of 12 individuals per lane following successful work by 

Smith et al. (2013). Sequencing was performed on a HiSeq2500 (Illumina) genomic platform located 

at the Novogene, Hong Kong, to produce paired-end, 100 base reads. 
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Bioinformatics: quality trimming, genome-guided assembly, and quality assessment 

We used TRIMMOMATIC V0.36 to trim sequences with low-quality (Q<20) bases, as well as adapter 

sequences, and reads shorter than 45 bp. Reads were then mapped to the Melanotaenia transcriptome 

assembled by Sandoval-Castillo et al. (2020), and based on this alignment, a transcriptome was 

assembled for M. s. splendida using TRINITY V2.5.1. The assembly was evaluated using read content 

statistics (% raw reads present), contig length distribution (N50), annotation-based metrics (% full 

length transcripts). Candidate protein coding regions were obtained using TRANSDECODER V3.0, 

which identified and extracted all open reading frames (ORFs) of length ≥ 100 peptides. Where two or 

more transcripts showed 80% or higher similarity, only the longest transcripts were retained to produce 

a non-redundant set of transcripts, referred to as ‘unigenes’. These were queried against the UniprotKB 

database using BLASTX against Danio rerio, with a 1 x 10-2 e-value cut-off (UniProt-Consortium). 

Transcripts with 50% or higher similarity to bacterial, fungal, or viral genes were removed from the 

dataset. 

 

Differential expression and network analyses 

To test differential expression between experimental groups and among ecotypes, reads for each 

sampled individual were mapped back to the M. s. splendida predicted protein coding regions using 

BOWTIE2 V2.2.7, before estimating gene-level abundance using RSEM V1.2.19. We then normalised 

read counts by cross-sample normalisation using trimmed mean of M values, which were then used as 

input for the DE analysis, performed using DESeq2 V1.10.1 (89). We used a conventional threshold to 

define DE genes following Sandoval-Castillo et al. (2020), whereby transcript expression showed ≥ 

log2 fold-change (5% FDR) between any two groups (i.e., experimental vs. control, rainforest vs. 

savannah). To test for relationships between expression plasticity and upper thermal tolerance, we used 

a linear regression to compare the number of DE genes identified between experiment and control for 

each ecotype. This analysis incorporated the results of DE genes and thermal tolerance previously 

characterised for subtropical M. duboulayi, desert M. s. tatei, and temperate M. fluviatilis rainbowfishes 

(Sandoval-Castillo et al. 2020) with values of CTMAX.. 
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To explore system-level functionality among thermally induced genes, and to identify those central to 

expression responses, we conducted a network analysis used CYTOSCAPE V3.7 (Rakshit et al. 2014). 

We first constructed protein interaction networks using thermally DE genes specific to rainforest, 

savannah, and combined datasets, respectively. This involved creating ‘edges’ between genes listed in 

the STRING database (Szklarczyk et al. 2016) reported to have physical or functional interactions in 

zebrafish (Danio rerio). We evaluated relative importance of proteins by their connectivity in the 

network which was calculated by node degrees. Following Rakshit et al. (2014) and Sandoval-Castillo 

et al. (2020), we identified highly connected genes with node degrees ≥ the mean plus 2SD of the node 

degree distribution, considering these as ‘hubs’ for interactivity within the thermal response networks. 

 

 

Results 

Gene expression differences among temperature treatments and ecotypes 

All but one individual survived until the culmination of the projected future climate experiment, 

allowing us to obtain high quality transcriptomic datasets from 12 rainforest and 11 savannah 

individuals. The non-surviving savannah individual was part of the 33°C treatment group but was 

removed from the experiment after acclimation to only 26°C, close to the annual mean temperature in 

its natural habitat (Supplemental Figure 4.1). Therefore, we suggest that an underlying condition, and 

not the temperature increase, was likely responsible.  

 

Illumina HiSeq sequencing produced ~1.4 billion paired end reads (2 x 100 bp), of which ~912 million 

(~65%) were retained after quality trimming (Supplemental Table 1). The M. s. splendida transcriptome 

assembly comprised 320,364 contigs and 284,807 ‘Trinity genes’, of which 51,091 were identified as 

ORFs. A final subset of 30,874 ‘unigenes’ were found to be non-redundant and used for subsequent DE 
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analyses. We found that of these unigenes, 26,705 (91.5%) were present in both tropical M. s. splendida 

ecotypes, and 23,604 (86.5%) were shared with the previously studied  subtropical M. duboulayi, desert 

M. s. tatei, and temperate M. fluviatilis (Sandoval-Castillo et al. 2020) (Figure 4.2a). 

 

Pairwise comparisons of gene expression profiles among M. s. splendida individuals revealed the 

strongest clustering among experimental and control groups for future climate warming. On the other 

hand, the expression profiles among individuals in the same thermal treatment group clustered by 

lineage (Figures 4.3, 4.4). In other words, while thermal response was the most important factor driving 

pairwise gene expression differences among individuals, lineage-specific responses drove expression 

differences within treatments. 

 

 

Figure 4.2: Venn diagram of unigenes shared among the five Melanotaenia ecotypes, based on A) all 34,815 

identified Melanotaenia unigenes, and B) unigenes differentially expressed between control (21°C) and projected 

2070 summer treatment (33°C) groups (blank segments indicate no shared responses). 

 

Comparisons among thermal treatment groups for all M. s. splendida revealed 189 significantly DE 

unigenes as candidates for warming response, displaying plasticity of expression induced by projected 

A B
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future thermal conditions. Warming treatments invoked shared DE responses between rainforest and 

savannah ecotypes in 38 unigenes. However, the savannah ecotype regulated a greater total number of 

genes in response to temperature, with 139 thermal candidates identified in comparison to only 88 

identified for rainforest (Figure 4.2b, Figure 4.5). In the context of previous experimental results from 

temperate, desert and subtropical ecotypes, savannah individuals exhibited the most flexible 

transcriptional response to warming. The rainforest ecotype’s plasticity, on the other hand, was limited 

to fewer genes than either subtropical or desert ecotypes. The rainforest ecotype only exceeded the 

plastic response of the temperate ecotype, which showed 39 DE genes (Figure 4.5). 
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Figure 4.3. Correlation matrix for pairwise log2 gene expression profiles among rainforest and savannah 

Melanotaenia splendida splendida. Coloured bars under sample dendrograms represent ecotypes and 

experimental treatments: dark green = rainforest experimental group, light green = rainforest control group, dark 

gold = savannah experimental group, light gold = savannah control group. 
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Figure 4.4. Hierarchical clusters of all DE transcripts according to similarity of expression, with columns 

representing sampled Melanotaenia splendida splendida individuals and rows representing transcripts. The 

coloured bars represent ecotypes and experimental groups: dark green = rainforest experimental group, light green 

= rainforest control group, dark gold = savannah experimental group, light gold = savannah control group. 

 

Upper thermal tolerance 

Critical thermal maximums among individuals ranged from 37.5°C to 39.0°C and were on average 

higher in the savannah (38.4°C, SD = 0.3°C) than in the rainforest (38.2°C, SD = 0.5°C) (Supplemental 
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Table 2). Although this difference was not significant (two-sample t-test p = 0.209), the mean upper 

thermal tolerance of tropical M. s. splendida overall (38.3°C, SD = 0.4°C) was significantly higher (p 

< 0.05), than that of subtropical (38.0°C, SD = 0.4°C), desert (37.2°C, SD = 0.5°C), or temperate 

(34.9°C, SD = 1.2°C) rainbowfishes (Supplemental Tables 5, 6). Among the five ecotypes, a significant 

linear relationship was detected between CTMAX and the number of genes DE between contemporary 

and future climate treatments (r = 0.909, Figure 4.5, Supplemental Table 3). 
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Figure 4.5. Associations between CTMAX and the number of unigenes differentially expressed between control 

(21°C) and projected 2070 summer treatment (33°C) groups among five Australian Melanotaenia ecotypes (r = 

0.909). The box plots display the upper and lower quartiles, whiskers represent 95th and 5th percentiles, and their 

intersections represent the median. Orange = savannah Melanotaenia splendida splendida, and dark green = 

rainforest M. s. splendida, light green = subtropical M. duboulayi, yellow = desert M. s. tatei, and light blue = 

temperate M. fluviatilis.  

 

 

Functional annotation and network analysis 

Transcript annotation produced 24,276 protein hits, 23,596 (97.2%) of which were assigned to 293,876 

gene ontology (GO) terms (Supplemental Table 4). For the subset of unigenes DE under warming 

treatments, we received 77 protein hits corresponding to 1,226 GO terms for the rainforest, and 131 

protein hits corresponding to 1,633 GO terms for the savannah. Protein networks for annotated DE 

genes were able to be constructed without requiring additional interactions, including for both 

rainforest- and savannah-specific subsets. From the network analyses, we identified eight hub genes for 

warming responses across the two ecotypes, defined by high degrees of interaction within protein 

networks. Of these, four were thermally induced in both ecotypes (FASN, ACLY, SCD, and FADS2; 

see Supplemental Figure 2), while three genes were DE only in savannah individuals (HAPA5, 

HMGCS1, and HYOU1; Figure 4.7), and one was DE only in rainforest individuals (ELOVL6; Figure 

4.6).  
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Figure 4.6. Protein interaction network for climate warming responses in tropical rainforest Melanotaenia 

splendida splendida, based on 88 unigenes differentially expressed between control (21°C) and projected 2070 

summer treatment (33°C) groups. Node sizes are proportional to centrality in the network (betweenness 

centrality), while shading indicates the relative number of direct interaction (neighbourhood connectivity; blue = 

fewer interactions, orange = more interactions). 

 

acaca idh1
IDH2

elovl6

htra1b

slc13a2

aclya

sec61a1

dnajc3

alg5

srprb

manf

copz2

lrrfip2 tor3a
hsp90ab1

cyp1a

irf1b

cyp7a1a

hsp90aa1.1

acsbg2

tsg101a

mapk6

dnaja1

apoa4

fos

map3k8

fabp3

scd

fads2

acsl4a

zgc:194314

PNPLA2

elovl5

pck1

fasn

gck

enpep



 

108 
 

 

Figure 4.7. Protein interaction network for climate warming responses in tropical savannah Melanotaenia 

splendida splendida, based on 139 unigenes differentially expressed between control (21°C) and projected 2070 

summer treatment (33°C) groups. Node sizes are proportional to centrality in the network (betweenness 

centrality), while shading indicates the relative number of direct interaction (neighbourhood connectivity; green 

= fewer interactions, orange = more interactions). 
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Discussion 

Regional bioclimatic differences can produce substantial evolutionary variation in organismal 

physiology, including that of thermal tolerance (Cohet et al. 1980, Compton et al. 2007, Sunday et al. 

2019). As such, adaptive resilience to climate change is expected to vary geographically (Thomas et al. 

2004, Román-Palacios and Wiens 2020, Trisos et al. 2020). While phenotypic plasticity is likely to be 

important in facilitating thermal performance, the involved molecular mechanisms and their covariance 

with environment are not well understood (Oomen and Hutchings 2017, Logan and Cox 2020, Rivera 

et al. 2021). Here, we found gene expression plasticity in response to projected summer temperatures 

in rainbowfish M. s. splendida from both tropical rainforest and savannah biomes. However, we found 

much greater capacity for transcriptional response in the savannah ecotype, in addition to slightly 

superior thermal performance, both of which may provide advantage under warm and variable 

conditions. Meanwhile, we propose that the more limited plasticity in the rainforest ecotype could 

reflect greater specialisation of thermal responses due to milder and more temporally stable conditions. 

When comparing with previous results for three higher latitude rainbowfish ecotypes, we found broad 

support for our hypothesis that transcriptional plasticity is facilitating thermal resilience in Australian 

rainbowfishes. In fact, there was a strong positive relationship between thermally induced 

transcriptional responses and thermal tolerance among the five ecotypes. These results have 

implications for understanding how adaptation of plastic responses may differ among climatic 

bioregions and informing about mechanisms shaping resilience under warming climates. 

 

Plastic capacity and thermal resilience 

High survivorship during acclimation and the two-week exposure period to projected 2070 summer 

temperatures suggest that both ecotypes are preadapted to withstand short-term exposure to these 

magnitudes of warming, if other ecological factors are amenable. This could even be described as a 

hidden reaction norm (sensu Schlichting and Smith (2002)) in the rainforest ecotype, which is unlikely 

to encounter such high thermal extremes in its contemporary habitat (Supplemental Figure 1). Despite 

this, the greatest differences in individual gene expression occurred between thermal treatment and 
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control groups, consistent with large transcriptional responses common during thermal warming stress 

in ectotherms (López-Maury et al. 2008, Smith et al. 2013, Porcelli et al. 2015, Oomen and Hutchings 

2017, Logan and Cox 2020). Moreover, all hub genes identified for shared (across-ecotype) responses 

to warming were related to lipid biosynthesis and metabolism, a long recognised component of heat 

shock response in eukaryotes, and necessary for maintaining cellular membrane integrity and function 

during thermal stress (Vigh et al. 1998, Mejía et al. 1999, Balogh et al. 2013). Being central in both 

rainforest and savannah thermal expression networks, these hub genes were closely connected to heat 

shock proteins, which are highly conserved mitigators of cellular damage during environmental stress 

(Chen et al. 2018a). Together, these results suggest that in both rainforest and savannah wild 

populations, a substantial divergence of physiological baselines will be necessary for maintaining 

normal cellular functions in future climates, either via evolutionary adaptation (e.g. Kelly et al. (2017)) 

or by continued use of flexible mechanisms for thermal response (e.g. Kingsolver and Buckley (2017)). 

 

Despite these common heat stress indicators, thermal expression responses were shared among 

rainforest and savannah ecotypes in only 38 (~20%) of the 189 identified thermally DE unigenes (DE 

≥ log2 fold-change). Almost half of the 88 unigenes DE in rainforest thermal responses were also DE 

in the savannah fish; however, a much greater 139 unigenes were DE in savannah, making 66% of these 

uniquely responsive. This contrasts with the fact that the majority of sequenced unigenes (91.5%) were 

detected in both ecotypes. This suggests that constitutive expression may have been more highly 

conserved between rainforest and savannah, while either selective or demographic influences could 

have contributed to thermally induced expression profiles specific to each ecotype (Whitehead and 

Crawford 2006a, b). Selection may theoretically influence plasticity via changes to the number and 

identity of expressed genes, in addition to the magnitude of gene expression differences (Schlichting 

and Smith 2002, Komoroske et al. 2021). However, our previous work in Australian rainbowfishes 

found that the higher thermal maxima of warmer-climate ecotypes was particularly associated with 

greater numbers of thermally responsive unigenes (Sandoval-Castillo et al. 2020). This led to our 

expectation that the savannah ecotype, from a warmer contemporary habitat, would show plastic 
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responses to warming in a greater number of genes than the milder-climate rainforest ecotype. This was 

supported by the 157% more DE unigenes in the savannah compared to the rainforest, alongside a 

slightly higher average CTMAX. 

 

Ecotype-specific responses were also reflected by protein network differences. With fewer induced 

genes in the rainforest, the constructed network was smaller and therefore received lower connectivity 

values. Only one of its central hub genes (ELOVL6, another membrane protein responsible for lipid 

biosynthesis (Chen et al. 2018b, Xie et al. 2021)) was uniquely induced in this ecotype. Meanwhile, 

three uniquely induced genes were identified as hubs within the savannah network, including the heat 

shock protein HSPA5, the lipid synthesising HMGCS1, and the hypoxia up-regulated protein HYOU1. 

From this, we infer that different thermal response pathways have been induced by rainforest and 

savannah, with the greater diversity of molecular functions observable in the savannah ecotype’s 

responses. Given that genetic diversity was found to be similar in rainforest and savannah in Chapter 3, 

rainforest responses seem unlikely to have been constrained by an unavailability of standing genetic 

variation. Overall, these results suggest that both the number and identity of expressed unigenes are 

contributing to physiological phenotypic differences in thermal responses between ecotypes. To further 

explore possible relationships between plasticity and thermal response capacity, we compared these 

results with experimental data from the congeneric subtropical, desert, and temperate rainbowfishes 

(Sandoval-Castillo et al. 2020). In the context of all five ecotypes (including the two tropical 

representatives), we found a strong positive relationship between the number of DE genes and an 

ecotype’s average CTMAX, with the savannah ecotype emerging as both the most thermally tolerant, and 

as having the most flexible transcriptional response to projected future climates. Although we cannot 

infer direct causation, this is consistent with our hypothesis that transcriptional plasticity could facilitate 

greater thermal performance in warmer-climate rainbowfishes. 
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It is becoming well-established that trait plasticity may evolve via ecological selection, as a phenotypic 

trait in its own right (Scheiner 1993, Pigliucci 2001, Chevin and Lande 2015, Bailey et al. 2021, Bond 

et al. 2021). Because it can facilitate acclimation to a greater range of conditions, plasticity is expected 

to be particularly advantageous under variable or novel environments (Scheiner 1993, Fusco and 

Minelli 2010, Snell-Rood and Ehlman 2021). However, plasticity can also evolve as a by-product of 

directional selection regardless of levels of environmental variation (Harshman et al. 1991, Garland Jr 

and Kelly 2006, Snell-Rood and Ehlman 2021), and may provide additive or even facultative roles to 

concurrent genomic adaptation (Chevin and Lande 2011, Bailey et al. 2021). Similar to the trend in this 

study, positive associations between gene expression plasticity and ecologically adaptive thermal 

tolerance have been reported in teleosts (Oncorhynchus mykiss gairdneri ecotypes, Narum and 

Campbell (2015); Neogobius melanostomus versus Proterorhinus semilunaris, Wellband and Heath 

(2017), Menidia beryllina versus Hypomesus transpacificus, Komoroske et al. (2021)), and oysters 

(Crassostrea angulate versus Crassostrea gigas, Li et al. (2021)). 

 

To complicate matters however, there may sometimes be fitness costs to maintaining plasticity 

(Callahan et al. 2008, Scheiner et al. 2020). Even where plastic traits may have facilitated environmental 

adaptation, they can eventually be lost through processes of genetic assimilation or canalisation (Kelly 

2019, Scheiner and Levis 2021). For instance, Kelly et al. (2017) experimentally selected for heat 

tolerance in the copepod Tigriopus californicus, finding that transcriptional plasticity decreased as 

generations became better adapted to the consistently high thermal stimulus. This phenomenon is 

thought to be especially likely where environmental fluctuations are minimal, emphasising the idea that 

environmental variability, and not just the magnitude of environmental challenges, may contribute to 

adaptation of plastic responses (Scheiner 1993, Scheiner and Levis 2021, Snell-Rood and Ehlman 

2021). This may help to explain the fact that the tropical rainforest ecotype in this study exhibited 

relatively low expression plasticity despite its high thermal tolerance. While its average CTMAX was 

second only to the savannah ecotype, the number of thermally DE genes were lower than that of both 

the subtropical and desert ecotypes. It is therefore possible that thermal responses are more genetically 
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assimilated in the rainforest, which experiences the most climatically stable conditions and may 

therefore benefit from the efficiency of a more standardised, or specialised, genetic response. It is also 

important to consider that different genes can have different effect sizes on resultant physiology and 

fitness, or may even be expressed maladaptively (Ghalambor et al. 2007, Logan and Cox 2020). For 

these reasons, we should still consider it possible that even linear relationships between expression 

plasticity and thermal resilience may mask multifaceted evolutionary mechanisms. 

 

Biogeographic implications for future climates 

Given the assumption that populations are adapted to the environments they experience, Janzen (1967) 

predicted that the low variability of tropical climates would produce thermal specialisation of endemic 

organisms, while thermal generalists would be more likely to proliferate in temperate climates. This 

framework has since been extensively tested in latitudinal studies, supporting the generalisation that 

low latitude (tropical) organisms tend to exhibit higher thermal maxima but tolerate smaller ranges of 

temperature fluctuation than high latitude (temperate) organisms (Addo-Bediako et al. 2000, 

Ghalambor et al. 2006, Deutsch et al. 2008, Sunday et al. 2011, Sunday et al. 2019). Meanwhile, within 

tropical latitudes, several regionally focussed studies have found higher thermal maxima in ectotherms 

from ecotone or savannah habitats compared to rainforest centres, despite the greater variability of 

conditions (Moritz et al. 2012, Frishkoff et al. 2015, Nowakowski et al. 2017, Dongmo et al. 2021). The 

latter trend was supported here among our tropical ecotypes by a 0.2°C higher average CTMAX in the 

savannah compared to the rainforest. The difference was not statistically significant; however, we 

suggest this may be a product of sample size. Following CTMAX experiments in previous rainbowfish 

work (Sandoval-Castillo et al. 2020), we included only ten individuals per treatment, which potentially 

limited power for detecting differences at this narrower geographic scale.  

 

Further, and more analogous to the abovementioned latitudinal studies, we found that the average 

CTMAX of the tropical ecotypes was significantly higher than those of other rainbowfishes, whose 
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thermal tolerance decreased with distance from the equator. These differences in thermal adaptation are 

probably not attributed to phylogenetic constraints; while the tropical (M. s. splendida) and desert (M. 

s. tatei) ecotypes are both splendida subspecies, the desert has a surprisingly low CTMAX. Moreover, the 

relatively warm-tolerant subtropical ecotype (M. duboulayi) is closely related to the temperate congener 

(M. fluviatilis) (Unmack et al. 2013, Sandoval-Castillo et al. 2020)), which was the least tolerant of all 

ecotypes. This again lends favourability to the hypothesis of climatic adaptation; yet, as with gene 

expression plasticity, interpretation appears to require consideration of both the average conditions and 

the variability of local climates.  

 

It has been theorised that adaptation to highly variable climates may produce trade-offs limiting upper 

thermal performance (Pörtner et al. 2006, Payne and Smith 2017). This could have contributed to the 

observed latitudinal patterns in rainbowfishes’ CTMAX, as discussed by Sandoval-Castillo et al. (2020) 

in relation to the desert ecotype’s low thermal resilience. By the same rationale, the savannah’s variable 

habitat conditions could pose a trade-off for maximum tolerance relative to conditions in the rainforest. 

However, although savannah’s warm thermal extremes are substantially higher (~2.2°C), cold extremes 

are only slightly lower (~0.4°C; Supplemental Figure 1), minimising potential selective pressures for 

accommodation of cold extremes. Savannah organisms would therefore be likely to benefit more 

generally from warm adaptation than the rainforest ecotype, as is likely reflected by their greater thermal 

tolerance and associated expression plasticity. Flexibility of thermal responses may be a key factor for 

persistence under warmer and more variable future climates (Logan and Buckley 2015, Diamond and 

Martin 2021), suggesting that the savannah ecotype may have the greatest preadapted resilience of 

ecotypes so far studied. The rainforest ecotype also has relatively high thermal tolerance; yet given 

evidence for climatic specialisation here and in previous chapters, it may be more restricted in its 

versatility of responses to conditions outside the expected range.  
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Realised patterns of vulnerability will depend not only on existing adaptations, but also on the extent 

of local environmental change (Huntley et al. 1995, Sykes et al. 1996), so future studies should benefit 

from distribution modelling under projected future climates. Our results highlight stark differences in 

plastic capacity and thermal tolerance among closely related rainbowfish lineages, warning against the 

common practice in distribution forecasts of treating species as single homogeneous units (Pearman et 

al. 2010, Reed et al. 2011, King et al. 2019). Notably, even with the finer scale mechanistic data 

presented here, there remain many challenges to inferring future adaptive potential from contemporary 

patterns. For instance, different responses may be advantageous under acute thermal stress conditions 

compared to warmer long-term averages (Gerken et al. 2015), both of which are anticipated under 

climate change modelling (IPCC 2014, O'Neill et al. 2017). Despite this, acute periods of warming such 

as heat waves may produce the strongest selective effects, relying on accuracy of heat stress responses. 

Both heat shock and lipid metabolic processes have therefore been suggested as determinants of 

resilience, as well as targets of selection, under rapid climatic change (Logan and Cox 2020, Zhang and 

Dong 2021). We therefore consider the DE genes identified here as candidates for rainbowfishes’ future 

climate adaptation, particularly those central to expression networks. In that regard, a promising 

framework to test if divergent selection has influenced the evolution of expression variation in these 

candidate genes is the comparative phylogenetic Expression Variance and Evolution (EVE) model 

(Rohlfs and Nielsen 2015). The EVE framework uses a phylogenetic tree to model gene expression as 

a quantitative trait across a phylogeny. It estimates the ratio of among-lineage expression divergence to 

within-lineage expression diversity, and in this way detects gene responses subjected to ecotype-

specific directional selection (Rohlfs and Nielsen 2015). This framework has been applied for 

Australian freshwater fishes in transcriptomic studies of wild populations found across hydroclimatic 

gradients (Brauer et al. 2017) and in our comparative experimental study of rainbowfish ecotypes 

(Sandoval-Castillo et al. 2020). It is anticipated that the EVE framework will be incorporated into the 

work reported in this chapter prior to its journal submission, enabling us to asses the contribution of 

divergent selection on gene expression to the adaptive evolution of climatically defined ecotypes. 
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Linking molecular mechanisms and physiological responses to warming is a key step for predicting and 

mitigating biodiversity loss in future climates. A comprehensive understanding of the role of plasticity 

in climate change responses should include a broader range of co-distributed taxa, as well as 

experiments using a greater range of sublethal temperatures under both laboratory and wild conditions. 

Nonetheless, the strong biogeographic pattern in both warming tolerance and expression plasticity in 

Australian rainbowfishes provides support for ecological adaptation of thermal plasticity in this group. 

These results may signify greater flexibility in the savannah ecotype compared to the rainforest ecotype 

in response to future climates, in line with established concerns for the future of tropical rainforest 

organisms under warmer and more unpredictable conditions. Overall, our study suggests an important 

role for plasticity in rapid climatic adaptation, which is expected to influence distributions and resilience 

in coming decades. 
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Chapter 5: Conclusions and perspectives 

Climate is well established as a selective force in natural populations (Franks and Hoffmann 2012, 

Anderson and Song 2020), and regional bioclimatic variation is expected to influence contemporary 

adaptive diversity, as well as future climatic responses (Somero 2010, Chen et al. 2018c, Buckley and 

Kingsolver 2021). Tropical organisms are known for their narrow thermal niches, and as such have 

been hypothesised to be particularly vulnerable to changing climates (Tewksbury et al. 2008, Huey et 

al. 2009, Sunday et al. 2011). However, not enough is currently known about how climatic variation in 

tropical ecosystems is likely to affect patterns of adaptation, plasticity, and persistence of local 

populations.  

 

The objectives of this thesis were to evaluate how hydroclimatic selection and landscape structure 

influence adaptation and evolution in the tropical-endemic rainbowfish, Melanotaenia splendida 

splendida. We also aimed to inform about factors influencing resilience of freshwater organisms in 

rainforest and savannah in a rapidly changing climate. Across the north-eastern Australian study region, 

we found significant intraspecies divergence among 17 sampled localities, but particularly between 

rainforest and savannah regions, where genetic, morphological, and gene expression variation were 

sufficient to distinguish local ecotypes. Some of this was attributable to neutral processes, particularly 

among drainage divides. However, integrative approaches based on landscape genomics and 

morphometrics identified strong signals of thermal and hydrological adaptation, with local variation 

better explained by environment than by estimations of neutral genetic structure. Further mechanistic 

experiments found greater gene expression plasticity, and slightly greater thermal tolerance, in the 

savannah compared to the rainforest ecotype, echoing positive associations previously suggested to 

facilitate thermal responses in warm-adapted rainbowfish ecotypes (Sandoval-Castillo et al. 2020). Our 

results support the influence of both contemporary climates and population connectivity on 

environmentally relevant traits, suggesting several implications for resilience to climate change among 

regional tropical ecotypes. In this final chapter, we provide a broad overview of the findings in relation 
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to our aims, as well as in relation to their broader contribution to conservation and evolutionary research. 

We also review the limitations of our work, and outline opportunities to expand upon this research. 

 

Hydroclimatic adaptation and response capacity 

The role of ecological adaptation in local divergence has implications for understanding the processes 

generating and sustaining tropical biodiversity, as well for identifying areas of vulnerability and 

resilience under rapid change. In the rainforest-focused Chapter 2, we found that despite being able to 

link strong hierarchical demographic structure to the five sampled drainage divisions, RDA modelling 

of both genotype-environment associations (GEAs) and phenotype-environment associations (PEAs) 

revealed a greater proportion of overall genomic and morphological divergence associated with the 

included ecological variables. This pattern was reiterated in Chapter 3, where ecological variables again 

had a high power to explain intraspecies variation, despite there being less overall divergence within 

the well-connected system. Between systems, the overall greatest genetic and morphological 

divergences occurred across the rainforest-savannah boundary, and were similarly associated more 

closely to environment than to measures of neutral genetic structure. In both Chapters 2 and 3, we found 

surprising differences in the extent to which genetic and morphological variation could be explained by 

environment relative to neutral explanatory variables. Across all sampling localities, environment best 

explained approximately ten times more body shape variation than did neutral structure, versus only 

three times more genetic variation. This relative resistance of phenotypes to neutral influences, 

especially relative to genomic patterns, suggests there may be functional constraints on body shape 

variation (e.g., McKay et al. (2001), Clegg et al. (2002)). 

 

Supporting the hypothesised role of hydroclimate in local adaptation, we found that in all GEAs and 

PEAs, the top environmental explanatory variables related to hydrological or thermal variables, and 

were most often identical among RDA and BAYPASS approaches. Between rainforest and savannah 

ecotypes, we found both genomic and morphological selective signals most strongly associated with 
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average annual rainfall and summer mean runoff. This differed slightly at a regional level, with annual 

means (rainfall and temperature) most associated within the rainforest, and seasonal means (runoff) 

more prominent in savannah analyses. The GEAs provided a suite of loci as candidates for local 

adaptation, including 1,004 within rainforest, 987 within savannah and 1,284 across systems. Further, 

using genotype x phenotype x environment (GxPxE) associations, we identified a small yet significant 

subset of loci which were closely associated with morphological variation, to be considered as 

candidates for heritable phenotypic adaptation. PEAs revealed that the main climate-associated 

morphological differences between rainforest and savannah individuals were relative body and caudal 

peduncle depths, which have established relevance to swimming biomechanics in teleosts (Gatz 1979, 

Leavy and Bonner 2009, Langerhans and Reznick 2010).We investigated morphology at a finer scale 

within the rainforest in Chapter 2, finding hydrology-associated variation in fin position similar to that 

attributed to streamflow adaptations in congeneric M. duboulayi and M. eachamensis (McGuigan et al. 

2003, McGuigan et al. 2005), which further supported inferences of hydrological relevance. 

 

While Chapters 2 and 3 explored biological variation along climatic gradients, Chapter 4 allowed us to 

test differences in physiological mechanisms for climatic response across ecotypes. In response to 

exposure to projected summer temperatures for eastern Australia in 2070, we found greater plasticity 

of gene expression in the savannah compared to the rainbowfish ecotype, with 139 and 88 warming-

induced genes, respectively. As we found in previous transcriptomic work with rainbowfishes from 

higher latitudes (Sandoval-Castillo et al. 2020), the more plastic ecotype had slightly higher thermal 

tolerance, which may be advantageous in warmer savannah conditions. Meanwhile, stable conditions 

have long been suggested to favour thermal specialisation (Devictor et al. 2008, Afonso Silva et al. 

2017), which may help to explain the rainforest ecotype’s less flexible transcriptional response. When 

patterns were assessed alongside earlier datasets from subtropical, desert, and temperate ecotypes (from 

Sandoval-Castillo et al. (2020)), we found a strong positive relationship between expression plasticity 

and thermal tolerance, supporting our hypothesis that transcriptional plasticity is facilitating thermal 

responses among Australian rainbowfish ecotypes. 
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Influences of terrain structure on neutral and adaptive diversity 

In addition to assessing climatic influences on divergence across rainforest and savannah ecotypes, we 

also investigated the role of river system connectivity, which has previously been established as an 

influence on wide-ranging aspects of freshwater biology (Pusey and Kennard 1996, Unmack 2001, 

Wong et al. 2004, Carvajal-Quintero et al. 2019). Here, our results suggested an important influence of 

contemporary drainage networks on patterns of intraspecies divergence. In Chapter 2, both neutral 

genetic clustering and environmental associations found divergences among drainages, providing 

evidence that gene flow barriers have helped to define broader patterns of diversity. Clustering methods 

typically grouped individuals by their drainage system of origin, suggesting hierarchical patterns of 

population structure common in lotic environments (Brauer et al. 2018, Grummer et al. 2019, Smith et 

al. 2020). In Chapter 3, we subsequently found that differences in drainage structure produced distinct 

patterns of population connectivity among ecotypes; while individuals from the hydrologically 

connected savannah system comprised a single population, five populations were ascribed among 

sampled drainages in the mountainous rainforest environment.  

 

Considering that connectivity can affect not only neutral genetic structuring, but the flow of adaptive 

traits and alleles across heterogeneous landscapes (Garant et al. 2007, Yeaman and Otto 2011, Nosil 

2012, Tigano and Friesen 2016), we further considered that drainage structure may have divergent 

effects on adaptive evolution within each bioregion. Supporting this hypothesis, we found that signals 

of locally adaptive genetic divergence were weaker in the more connected savannah region in both 

ecoregion-specific and combined-systems GEAs, despite similar magnitudes of environmental 

variation among sampling localities in each region. This was indicated by the savannah-specific pRDA 

models’ lower overall variance, weaker local clustering of individual adaptive variation, and weaker 

locus-specific environmental associations than in rainforest-specific analyses. Furthermore, we found a 

relative decoupling of genomic and morphological associations, with GxPxEs explaining less variance 

and displaying weaker local clustering in the savannah compared to the rainforest ecotype. Together, 
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these results suggested that greater drainage connectivity in the savannah may have a homogenising 

influence on adaptive variation, in contrast to relatively independent adaptative responses to local 

selection in the naturally fragmented rainforest system.  

 

Interestingly, despite this evidence for genetic homogenisation, we found that morphological 

associations with environment were just as strong, or even stronger, in the higher gene flow system. 

This highlighted a tentative role for plasticity in local body shape adaptation in the savannah ecotype, 

which has been suggested for systems with both high gene flow and environmental heterogeneity 

(Sultan and Spencer 2002, Crispo 2008). Although it was outside the scope of this project to further test 

the proposition, it is worth reiterating the result from Chapter 4 that thermally responsive expression 

plasticity was greater in the savannah ecotype than in the rainforest. In the context of broader 

biogeographic patterns in rainbowfishes, we considered this most likely to result from warm adaptation 

and a more temporally variable climate; however, within our current dataset we cannot extricate the 

possibility that gene flow differences among systems may also contribute to this plastic divergence and 

associated differences in thermal tolerance. 

 

Resilience in future climates 

As discussed above, environmental heterogeneity has the power to affect both neutral and adaptive 

evolutionary process across landscapes. This is expected to shape not only organisms’ capacity to 

respond to existing environmental pressures, but their adaptive potential under novel challenges 

(Somero 2010, Chen et al. 2018c, Buckley and Kingsolver 2021). In general, where a large proportion 

of biological variation has evolved in response to local selection, a similarly large evolutionary turnover 

could be necessary to prevent fitness loss in changing conditions (Fitzpatrick and Keller 2015, Bay et 

al. 2017). Given the large proportion of adaptation associated with local hydroclimates in both rainforest 

and savannah rainbowfishes, and similarly identified in an increasing number of tropical taxa (Ntie et 

al. 2017, Termignoni‐García et al. 2017, Zhen et al. 2017, Lam et al. 2018, Jaffé et al. 2019, Miller et 

al. 2020, Morgan et al. 2020), we expect that climate change may have substantial detrimental effects 
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across both of these tropical bioregions. Furthermore, although the extent of local impacts will depend 

on the magnitudes and rates of change, the rainforest ecotype in particular displays stronger local 

evolutionary divergence apparent in GEAs. This may highlight the potential for greater vulnerability, 

especially in the context of their more limited opportunity to translocate to favourable conditions 

(Atkins and Travis 2010, Thomas et al. 2017, Aguirre-Liguori et al. 2021). 

 

More broadly, the connectivity differences among rainforest and savannah may pose trade-offs between 

local specialisation and system-wide resilience. From a genomic perspective, fragmented systems such 

as the rainforest may produce steadier evolutionary responses to local selective pressures, but will be 

constrained by the requirement for novel adaptive variation to arise independently within each deme 

(Tigano and Friesen 2016, Nosil et al. 2019). Meanwhile, well-connected systems such as the savannah 

may not experience locally adaptive shifts unless the wider system is driven to a selective ‘tipping 

point’, but in this event, gene flow is likely to benefit fitness by facilitating rapid and widespread 

adaptation (Nosil et al. 2019). From the perspective of phenotypic plasticity, similar trade-offs may 

exist between generalist and specialist tendencies (Pörtner et al. 2006, Olazcuaga et al. 2019, Snell-

Rood and Ehlman 2021). For instance, if lower thermal expression plasticity in the rainforest ecotype 

has resulted from adaptation to a narrow range of conditions, it may enable more precise and efficient 

responses within the current range. On the other hand, the savannah’s plasticity of thermal responses 

may be less specialised, yet the more flexible response capacity may be valuable in increasingly 

unpredictable climates.  

 

Limitations, future directions, and concluding remarks 

Some of the main limitations of this work are the same as those inherent in the study of natural 

populations more generally (useful reviews include Joost et al. (2013), Rellstab et al. (2015), Luikart et 

al. (2018) regarding landscape genomics; De Wit et al. (2012), Conesa et al. (2016) regarding gene 

expression analyses). Centrally, we seek to address patterns and processes occurring in complex and 
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uncontrollable ecological systems. Experimental frameworks therefore contain an exploratory element, 

and are unable to account for all possible confounding variables. In environmental association studies, 

some false positive signals of selections are generally expected to be found among genuine signals due 

to stochastic influences, genomic regions with low recombination rates, or untested environmental 

influences (Rellstab et al. 2015, Luikart et al. 2018). Moreover, the power for detecting genomic 

selection, as well as genotype-phenotype interactions, is limited to the subset of the genome sampled 

by the reduced representation sequencing (ddRADseq) strategy. Whole genome population 

resequencing data would have provided a high-resolution record of variants across the genome and 

information about causative genes, rather than information about markers as provided by ddRADseq 

and related methods. Despite these factors, the analytical methods used for environmental associations 

(RDA, BAYPASS) were chosen to suit the hierarchical population structure present in the study system, 

and due to the relative abundance and genetic diversity of wild M. s. splendia, we expect most false 

positives to add noise rather than large biases to reported patterns. Moreover, reduced representation 

sequencing is considered to provided sufficient marker density to study selection in many natural 

populations, and remains a powerful approach when linkage disequilibrium and other demographic 

influences are appropriately addressed (Catchen et al. 2017) 

 

Uncontrollable aspects are potentially even greater for transcriptomics, entering the project not only at 

a population level, but during the lifespan of the individuals sampled (De Wit et al. 2012, Conesa et al. 

2016). Given that rainforest and savannah populations were sampled within the same week, handled 

consistently, and were sequenced in the same Illumina lanes, these biases have been reduced as much 

as possible for comparisons among rainforest and savannah ecotypes. Early developmental influences 

resulting from the season and year of sampling could be further minimised by comparisons of lab raised 

F1s, however, this may ultimately reduce applicability of inferences to natural populations, given the 

introduction of new and different biases resulting from captive breeding and adaptation to captivity. 

The nature of all these approaches mean that inferences must be made with caution, which we have 

attempted to do in all three chapters. However, this should not discount their ability to uncover real 
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biological patterns in otherwise intractable systems (Catchen et al. 2017, Luikart et al. 2018). Given the 

urgency presented by rapid climate change, such approaches are not only valuable but are likely 

necessary for effective conservation management, and are already being implemented successfully in 

informing conservation decisions (Garner et al. 2016, Grummer et al. 2019) 

 

A further limitation is the duration of a PhD project, and even with the confines of the existing datasets 

as there is much left to explore. At the time of writing, the manuscript from Chapter 2 is under 

consideration in Heredity. However, there are areas that we expect to address and improve in Chapters 

3 and 4 prior to their submission for journal publication. Already mentioned was the intention to 

annotate candidate genes identified in landscape genomics approaches. There is also additional 

opportunity to compare those identified as candidates for adaptation with those identified in 

transcriptomics work in response to thermal stress. Further to identifying overlaps between thermal 

responses and adaptive signals, we intend to extend upon Chapter 4 results using the comparative 

phylogenetic Expression Variance and Evolution model (Rohlfs and Nielsen 2015). This will enable us 

to test whether divergent selection has influenced the evolution of expression variation in thermally 

induced genes. Additionally, both Chapters 3 and 4 can benefit from distribution modelling under future 

climates, as previously achieved in our study of higher latitudes rainbowfishes (Sandoval-Castillo et al. 

(2020). The existing resolution of the landscape genomic datasets will enable us to model projected 

turnover of loci and genomic vulnerability across landscapes (sensu Fitzpatrick and Keller (2015), 

rather than focusing on species-level modelling as has so far been more common. This is particularly 

important given the extent of intraspecific climate associated differences, even within connected 

populations of M. s. splendida, characterised throughout this thesis.  

 

The combined results of these data chapters contribute towards broader understanding of contemporary 

environmental influences shaping tropical intraspecies variation at local and bioregional scales. 

Chapters 2 and 3 found genetic and morphological associations with hydroclimate across the rainforest 
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and savannah ranges of M. s. splendida, establishing the contained populations as distinct climatic 

ecotypes. Chapter 4 enabled us to characterise differences in physiological tolerance and plasticity 

among ecotypes, providing greater understanding of existing potential for responses to future climate 

change. We highlighted trade-offs between generalist and specialist adaptations among these regions, 

and the potential for greater risks within the rainforest compared to savannah ecotype. Future studies of 

genomic vulnerability and plastic adaptation in these, as well as co-distributed species, will increase the 

breadth of inferences for tropical resilience in future climates. 
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Appendices 

1. Supplemental materials for Chapter 2  

Part A: Supplemental Methods; Part B: Supplemental Results 

 

A. Supplemental Methods 

A1. Sample collection  

Melanotaenia splendida splendida (eastern rainbowfish) were sampled from nine rainforest creek sites 

across five drainages in the Wet Tropics of Queensland, north-eastern Australia. To photograph 

individuals for morphometric data collection, each was positioned on a polystyrene tray immediately 

after death, submerged in a shallow layer of water to prevent distortion of shape by bending. Dissection 

pins were used to display the fish in a standard orientation (right-side-down) and to fix fins into their 

expanded state. Specimens were photographed using a Canon EOS 6D DSLR (EF-S 35mm f2/2.8 macro 

lens) attached to a horizontal mount positioned 45 cm directly above the specimens, and a ruler was 

included in each photograph for scaling. 

 

Table A1.  Localities and sample sizes (n) of Melanotaenia splendida splendida collected from the Wet Tropics 

of Queensland for genomic DNA and morphometric data. 

Location Catchment Latitude Longitude Collected n 
Final n 

(DNA) 

Final n 

(Morpho) 

Final n 

(GxPxE) 

Little Mulgrave Creek Mulgrave -17.13 145.7 30 23 20  17 

Cassowary Creek Mossman -16.51 145.41 30 23 30  23 

Marrs Creek Mossman -16.47 145.36 24 20 19  15 

Saltwater Creek Saltwater Creek -16.42 145.36 30 24 21  19 

Stewart Creek Daintree -16.32 145.32 30 25 22  20 

Douglas Creek Daintree -16.28 145.3 30 24 29  21 

Doyle Creek Daintree -16.26 145.45 30 24 23  22 
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Forest Creek Daintree -16.25 145.39 31 22 21  18 

McClean Creek Hutchinson -16.23 145.42 32 25 22  22 

 

A2. DNA extraction 

For DNA extractions by salting-out (modified from Sunnucks and Hales (1996), we placed 

approximately 5 mm2 of each fin sample (crushed) in individual 1.5 mL microfuge tubes with 600 μL 

extraction buffer TNES, 20 μL proteinase K (10 μg/μL) and 10 μL RNase (10 μg/μL). Tubes were 

incubated at 37°C for three hours before adding 70 μL ammonium acetate, shaking for 15 seconds, 

chilling at -80°C for 5 minutes and centrifuging at 14,000 rpm for 5 minutes to precipitate proteins. 

Supernatant was decanted into a new 1.5 mL tube with 1 mL 99% ethanol, chilled at -80°C for 5 

minutes, and centrifuged at 14,000 rpm for 5 minutes to precipitate DNA. Ethanol was removed and 

the DNA pellet was washed twice with 70% ethanol solution. The pellet was air-dried and resuspended 

in 17 μL of TE buffer. High-quality samples were diluted to 20 ng/μL and stored at -20°C.  

 

A3. Library preparation 

For each sample, 300 ng of genomic DNA was digested with SbfI-HF and MseI restriction enzymes 

(New England Biolabs). The cleaved fragments were ligated to adapter sequences and one of 96 unique 

6-bp barcodes designed in-house. Groups of 12 individual samples were then pooled to create 8 libraries 

per lane and purified using AMPure XP beads (Agencourt) to remove small DNA fragments and other 

contaminants. Then, DNA size-selection was performed using automated gel electrophoresis (agarose, 

1.5%) via Pippin Prep (Sage Science) to select fragments within a 250 – 800 bp range. A Qubit 

fluorometer (Life Technologies) was used to quantify library concentrations. Finally, libraries were 

amplified by polymerase chain reaction (PCR), using two 25 μL reactions per pool to minimise PCR 

clonal artefacts associated with larger volumes. Reactions were recombined, and a 2100 Bioanalyzer 

(Agilent Technologies) was used to verify that fragment size distribution was within the target range. 

Both the Qubit fluorometer (Life Technologies) and Real Time PCR were used to reconfirm quantity 
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of DNA, and each of the 8 libraries were pooled in equimolar concentrations to form five lanes of 96 

uniquely barcoded samples. 

 

A4. Bioinformatics: read trimming, alignment to genome, variant calling and filtering  

Using VCFTOOLS 0.1.15  (Danecek et al. 2011), we removed loci with >20% missing data and minor allele 

frequency <3%, with the latter being biologically feasible but commonly related to calling errors. We 

also removed loci within indels, which can arise by different mechanisms and produce different 

functional effects than SNPs. We checked frequency of missing data per individual, and from the 

original unfiltered dataset, removed individuals with >30% missing data. The above filtering steps were 

then repeated for the unfiltered dataset with low coverage individuals removed to produce a filtration 

unbiased by low quality samples.  

 

Also using VCFTOOLS, complex genotypes (e.g., multi-nucleotide polymorphisms) were decomposed and 

removed. We filtered by quality, compensating by coverage (QUAL / DP > 0.20) to prevent unrealistic 

inflation of locus quality scores (Li 2014). We removed loci with mapping quality >30, then calculated 

the mean depth of coverage and filtered by the mean +2SD to remove potentially merged paralogous 

sites. We also filtered for Hardy Weinberg Equilibrium (HWE) by sampling location, removing SNPs 

< p = 0.05 in 25% or more populations. Although large deviations from HWE are expected among 

populations due to non-random mating, these deviations can indicate erroneous variant calls when 

occurring within sampling sites.  

 

Finally, we implemented a filter for linkage disequilibrium (LD) to reduce the likelihood of non-random 

associations among loci due to proximity in the genome. We first used VCFTOOLS to calculate the 

correlation coefficient between each pair of loci. In R (RC Team 2019), we fitted a spline  to calculate 

the exponential decay of LD by physical distance (bp) and used a Tukey anomaly criteria (95% 
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probability distribution; ) to select a cut-off (189 bp) where the rate of linkage decay was no longer 

significant. Given that R2 values (and therefore LD) do not statistically decrease beyond this distance, 

most SNPs are expected to be unlinked. Where more than one of the identified SNPs occurred within 

the cut-off distance, all but one were excluded from the dataset. This left a total of 14,540 high quality 

SNPs for further analysis. 

 

Table A4: Genome assembly summaries of the draft genome of the subtropical rainbowfish Melanotaenia 

duboulayi (Beheregaray et al. unpublished)  

 Scaffold Size (bp) Number Contig Size (bp) Number 

N90 17,141 4,479 2,997 45,284 

N80 65,581 2,168 7,159 29,442 

N70 139,303 1,358 11,062 20,864 

N60 222,945 915 15,334 14,998 

N50 321,989 620 19,980 10,617 

Longest 3,014,379 -- 226,189 -- 

Total Size 785,682,952 -- 766,736,644 -- 

Total number (>=100bp) 785,682,952 187,802 766,736,644 258,080 

Total number (>=2kb) 743,062,104 9,685 705,878,805 51,681 

 

 

A5. Differentiating putatively neutral versus outlier loci 
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Prior to assessing conformity of loci to neutral expectations we ran a preliminary structure analysis 

using FASTSTRUCTURE 1.0 (Raj et al. 2014) for the full filtered dataset of 14,540 SNPs. We first converted 

the VCF file to FASTSTRUCTURE format using PGDSPIDER 2.0 (Lischer and Excoffier 2012), then ran the model 

with the default convergence criterion of 10−6, a simple prior, and ten replicate runs per a maximum of 

10 K. The number of model components best able to explain structure in the data was determined using 

the function “chooseK.py”.  

 

A6. Genetic diversity and inference of population structure 

To prepare input files for population genetic analyses, we converted the full SNP dataset and putatively 

neutral dataset from VCF to STRUCTURE (.str) format using PGDSPIDER . The same program was used 

to subsequently convert STRUCTURE files to FASTSTRUCTURE (.str), ARLEQUIN (.arl) and 

PAUP* (concatenated SNPs; phylip format) formats. For BAYPASS 2.2 (Gautier 2015), PGDSPIDER was first 

used to convert .str files to GESTE format, before using the script geste2baypass (Pina-Martins 2016) 

to create a BAYPASS (.txt) file with allele counts based on sampling locality. For packages 

implemented in R (e.g. ADEGENET, HIERFSTAT, VEGAN, and others), .str files were imported as GENIND 

objects using ADEGENET 2.0.0 (Jombart 2008). 

 

To produce an unrooted Neighbour Joining Tree, we imported the neutral SNP dataset in concatenated 

(phylip) format to PAUP* 4.0 (Swofford and Sullivan 2003a). We ran the Neighbour Joining Tree analysis 

using pairwise TN93 distances (Tamura and Nei 1993), with other settings as default. N.B. where one 

individual was identified as an extreme outlier, photographic documentation was re-examined to 

confirm species identification error. The misidentified individual, confirmed as a co-distributed but 

non-hybridising Melanotaenia maccullochi, was removed from subsequent analyses, and prior 

population genetic analyses were repeated. 
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To produce a scaled covariance matrix of population allele frequencies (Ω), we used BAYPASS 2.2 

(Gautier 2015) core model, based on the full SNP dataset. This hierarchical Bayesian model explicitly 

incorporates neutral correlation structure, providing an informative basis for demographic inference by 

accounting for structure resulting from shared history. The method follows from the BayEnv model 

proposed by (Coop et al. 2010, Günther and Coop 2013), but with several extensions to improve 

accuracy by estimation of prior distributions. The core model was executed using the command line, 

with default settings. From here, the resulting scaled covariance matrix (Ω) was visualised in R, using 

the cov2cor R function to produce a correlation matrix ∑, which was plotted as a correlation heatmap.  

 

Using the neutral dataset, we re-examined population structure using  FASTSTRUCTURE 1.0 (Raj et al. 2014), 

an algorithm for variational Bayesian inference of global ancestry. This method assesses allele 

frequency variations to find the number of clusters best approximating the log-marginal likelihood of 

parametric posterior distributions over hidden variables. We ran the model with the default convergence 

criterion of 10−6, a simple prior, and ten replicate runs per a maximum of 10 K. The most likely number 

of clusters was selected using the function chooseK, and visualised using DISTRUCT 1.1 (Rosenberg 2004). 

We then used a Discriminant Analysis of Principal Components (DAPC) in R package ADEGENET to 

independently identify and describe the optimal number of genetic clusters present. DAPC considers 

both between- and within-group variance to best describe differences between groups, while minimising 

variation within. The function find.clusters was first used to transform the data using PCA, and then to 

run a k-means algorithm with increasing values of k (up to a possible 9 k, the number of rainforest 

sampling sites) using all PCs. 

 

A7. Characterising environmental variation 

National Environmental Stream Attributes v1.1.3 were obtained Geoscience Australia (Stein 2011), a 

custodian for national surface hydrology data. The National Environmental Stream Attributes describe 

both natural and anthropogenic characteristics of the stream and catchment environment supplied by 
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state and national jurisdictions to form a comprehensive national dataset. We initially downloaded 

lookup tables for all available attributes (>400) and, using ARCMAP 10.3 (ESRI 2011), connected the 

relevant attributes for each sampling site using raster files from the associated 9 Second DEM Derived 

Stream Network. Of the available variables, we pruned those for which there was no variation between 

sampling sites, were provided at a scale larger than the distance between most sampling sites (i.e. 

catchment level as opposed to stream level), or had missing data for any of the sampling sites. After 

this, ~83 variables remained. A Pearson correlation was performed in R, and if two attributes were highly 

correlated (|r| ≥ 0.7), one was removed from the dataset. While we recognise that there is not a perfect 

way of selecting which variables to keep, particularly where variables interact with each other, we 

prioritised retention of variables considered less likely to be derived in the system, and most likely to 

be important for the biology of the species, as indicated in previous studies of Australian freshwater 

fishes (e.g. Attard et al. (2018), Brauer et al. (2018)).  

 

 

 

Figure A7. Raw climate data for each sampling locality of Melanotaenia splendida splendida. Shading represents 

relative variation among sites specific to each variable. 

 

A8. Genotype-environment associations 
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The standard covariate model of BAYPASS 2.2 (Gautier 2015) tests linear associations between each SNP 

and each of a set of given environmental variables. The auxiliary model, used here, extends upon this 

method by introducing a Bayesian auxiliary variable for each regression coefficient to indicate whether 

a SNP is associated with a given climatic variable. Posterior distributions are then evaluated to produce 

a Bayes Factor (BFmc) indicating strength of evidence for each association. The method implicitly 

corrects for multiple-testing effects, whereby an increase in the number of explanatory variables can 

increase the likelihood of false positives. First, we centred and scaled environmental variables in R (scale 

function) to standardise comparisons relative to the total variation of each factor. We then ran the 

auxiliary model with default parameters to test associations between population-specific allele count 

data (14,540 SNPs) and the scaled environmental variables, while accounting for assumed population 

demographic structure (the scaled covariance matrix of population allele frequencies (Ω) resulting from 

the core model). Finally, the Bayes Factor estimates, and the underlying regression coefficients, were 

plotted in R using the plot function. 

 

For the RDAs, we began with the same 14,540 quality-filtered and unlinked SNPs previously converted 

to a GENIND object using the R package ADEGENET. Genotypes were obtained from reference allele 

counts, then, missing data were replaced with the most common genotype for that locus. This is a 

conservative approach, in that it’s more likely to minimise than exaggerate differences between sampled 

populations. We also used the same set of centred and scaled environmental variables as for the BAYPASS 

GEA analysis. To assess potential associations between genotype and environmental variables, we used 

the R package VEGAN 2.5-6 (Oksanen et al. 2019) to perform the following functions. First, an initial 

global RDA was run using the six environmental variables as explanatory factors, and the 14,540 SNPs 

used as the multivariate response (rda function). The variance inflation factor (VIF; vif.cca) for the 

model was calculated to ensure that no instances of multicollinearity remained between explanatory 

variables, with a VIF ≤ 5 considered acceptable. Analyses of variance (ANOVAs; anova.cca) were used 

with 999 permutations to test the significance of the global model, as well as each of the constrained 

axes. The ordistep function was then used with backwards-stepwise selection to determine the best 
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combination of explanatory variables and their relative contributions to the model. Only those found to 

have a significance of p ≤ 0.1 were used in subsequent partial RDAs.  

 

While some GEA algorithms (e.g., the BAYPASS auxiliary covariate model used above) implicitly account 

for the influence of neutral demographic variation, RDA methods require the partialing out of any 

potentially confounding explanatory factors by their inclusion in the model as conditional variables. 

Referred to as a partial RDA (pRDA), this method frequently incorporates a spatial conditional variable, 

either in the form of geographic coordinates or a measure of distance suited to the study system (e.g. 

river distances, as in Brauer et al. (2016)). However, neither of these measures could be said to be an 

accurate representation of the likelihood of gene flow in the tropical rainbowfish study system, in which 

some geographically distant sampling locations are connected by the same river system, while others 

in proximity are separated by catchment boundaries. Moreover, neither of these methods can account 

for effects to connectivity due to strength, direction and perenniality of river flow, or the presence of 

artificial barriers such as dams and weirs. We therefore chose to account for distance using genetic 

measures, including fixation index (FST; earlier obtained from analysis in ADEGENET) and covariance 

among population allele frequencies (Ω; earlier obtained from analysis in BAYPASS).  

 

For each of these measures, population values were expanded to individual-level matrices. We then 

performed principal coordinate analyses (PCoA) on the respective distances (pcoa function 

implemented in R package APE 5.3 (Paradis and Schliep 2019)), retaining only the significant PCo axes. 

Partial RDAs were then performed controlling for each of the respective distance measures using 

explanatory variables identified as significant in the global model. As above, ANOVAs (999 

permutations) were used to assess significance of the final RDA models, as well as the significance of 

the RDA axes within each model. Again, ordistep was used to assess the relative contribution of each 

of the explanatory variables. Finally, a list of candidate SNPs was established for each of the final RDAs 

(controlling for Fst, Ω and river distances respectively) by identifying outliers ±3 standard deviations 
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(two-tailed p-value = 0.0027) from the mean loading (i.e. the correlation between the observed score 

and the latent score) of each significant RDA axis, following recommendations of Forester et al. (2018). 

 

A9. Geometric morphometric analysis 

 

Figure A9. Regression of individual Procrustes coordinates against log centroid size pooled by sampling site, for 

Melanotaenia splendida splendida sampled from the Wet Tropics of Queensland, with predicted 30.8% of shape 

variation explained by size (p=<0.0001). Locality codes: LM = Little Mulgrave Creek, CA = Cassowary Creek, 

MA = Marrs Creek, SA = Saltwater Creek, ST = Stewart Creek, DO = Douglas Creek, DY = Doyle Creek, AN = 

Forest Creek, MC = McClean Creek.  

 

A10. Phenotype-environment associations 

To create the shape variable inputs, we processed the raw TPS files in R using functions developed by 

Claude (2008). We used individual landmark configurations to build an array (array), which was once 

again subjected to a Procrustes superimposition (pgpa). From the resulting configurations, shape data 

was extracted using orthogonal projection (orp) to create a response matrix of individual Procrustes 

values. We then ran a PCA on the Procrustes matrix (prcomp) and used a broken stick model (screeplot) 

to determine which components of shape variation exceeded random expectations, to be retained for 

the RDA. From the Procrustes matrix, we also extracted values of individual centroid size, which were 
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scaled (scale) and used to create a data frame for later inclusion as a covariable. Like genetic variation, 

body shape can also theoretically be influenced by adaptively neutral demographic structuring 

(Mitchell-Olds et al. 2007, Ho et al. 2017). As with the GEA analyses, we chose to account for neutral 

structure using fixation index (FST; earlier obtained from analysis in ADEGENET) and covariance among 

population allele frequencies (Ω; earlier obtained from analysis in BAYPASS). For each of these measures, 

we again expanded population values to individual-level matrices, before performing PCoAs (R package 

APE, retaining only significant PCo axes. N.B. It should be noted that although M. s. splendida is sexually 

dimorphic, we did not control for sex in final model. Sex of rainbowfishes is usually determined by fin 

length and colour, both of which were observed to occur on a spectrum. This meant that confident 

identification was not possible for all individuals, and exclusion of ambiguous individuals would have 

limited analytical power due to a reduced sample size. However, for the majority which were able to be 

identified, sex ratios did not vary significantly between sampling sites (11:14 m:f, Chi-Square p value 

= 0.987) and should therefore be unlikely to bias either morphometric or PEA results. 

 

We then used the R package VEGAN to run an initial global RDA using the six environmental variables as 

explanatory factors, and the four significant PCs as the multivariate response (rda). ANOVAs 

(anova.cca) were run with 999 permutations to test the significance of the global model, as well as each 

of the constrained axes. Backwards-stepwise selection (ordistep) was used to determine the best 

combination of explanatory variables and their relative contribution. Only those with p ≤ 0.1 were used 

in subsequent pRDAs. Two pRDAs were performed using explanatory environmental variables 

identified as significant in the global model, and the four significant PCs as the multivariate response 

(rda). They each controlled for the covariable of size, plus principal components of Ω or Fst 

respectively. We assessed significance of the final models, and the RDA axes contributing to each 

model, using ANOVA (anova.cca; 999 permutations). Finally, ordistep was used to assess the relative 

contribution of each of the explanatory variables. 
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A11. Genotype-phenotype-environment analysis 

In R, we ran a global RDA using the four significant principal components of individual Procrustes 

distances as explanatory variables, and 864 putative adaptive alleles (identified in the genotype-

environment pRDA controlling for Ω) as the multivariate response; N.B., although we performed 

pRDAs controlling for both Ω and FST to confirm major patterns of environmental association, we 

chose, for simplicity, to use only adaptive candidates identified in the former analysis which has the 

advantage of model-based estimations of population covariance structure. The VIF (vif.cca) was 

calculated to ensure no multicollinearity between explanatory variables (VIF ≤ 5 considered 

acceptable). We used ANOVA (anova.cca, 999 permutations) to test significance of the global model, 

and the ordistep function to identify important explanatory variables. Those with significance of p ≤ 

0.1 were used in the subsequent pRDA. This was performed in an identical manner, but with the 

introduction of size as a covariable. We again used ANOVA (anova.cca, 999 permutations) to test 

significance of the global model, as well as the significance of the RDA axes within each model. 

Backwards stepwise selection (ordistep) was used to assess the relative contribution of each explanatory 

shape PCo. A list of candidate SNPs was established for the partial RDA by identifying outliers ±2 

standard deviations (two-tailed p-value = 0.0455) from the mean loading each significant RDA axis. 

This cut-off is less stringent than for the original GEA analysis (±3 std), allowing for the strong 

likelihood that body shape variation is polygenic in nature, and may be maintained by more subtle 

frequency shifts of individual alleles (Höllinger et al. 2019). 
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B. Supplemental Results 

 

B1. Genome-wide SNP data 

Table B1. Total number of variant sites retained after each filtering step for mapped ddRADseq reads for the 

eastern rainbowfish Melanotaenia splendida splendida. 

Filtering Step Number of SNPs 

Raw catalogue 9,827,129 

Genotyped in 80% of individuals, bi-allelic, minor allele frequency >0.03 62,277 

Indels removed 56,745 

Read quality (quality/coverage depth >0.2) 55,277 

Mapping quality score > 30 41,177 

Depth of coverage <mean+2SD 39,964 

Missing data per locality <25% 39,157 

Hardy–Weinberg equilibrium in >75% localities 37,344 

Unlinked (>189 bp separation) 14,540 

Putatively neutral (Bayescan) 14,478 
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B2. Pairwise FST 

Table B2. Pairwise FST among Melanotaenia splendida splendida from nine rainforest sampling sites based on 

14,478 putatively neutral SNPs. Locality abbreviations: LM = Little Mulgrave Creek, CA = Cassowary Creek, 

MA = Marrs Creek, SA = Saltwater Creek, ST = Stewart Creek, DO = Douglas Creek, DY = Doyle Creek, AN 

= Forest Creek, MC = McClean Creek.  

 
LM CA MA SA ST DO DY AN 

CA 0.127 
       

MA 0.126 0.026 
      

SA 0.158 0.075 0.071 
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ST 0.105 0.087 0.084 0.111 
    

DO 0.108 0.088 0.086 0.113 0.017 
   

DY 0.119 0.099 0.097 0.124 0.029 0.028 
  

AN 0.109 0.090 0.089 0.115 0.021 0.019 0.028 
 

MC 0.208 0.174 0.174 0.202 0.127 0.130 0.141 0.132 

 

 

B3. Discriminant Analysis of Principal Components 

 

Figure B3. Discriminant analysis of principal components of putatively neutral genetic variation (14,478 SNPs) 

for the eastern rainbowfish (Melanotaenia splendida splendida) individuals sampled from nine localities among 

five drainage systems in the Wet Tropics of Queensland. Colours correspond simultaneously to drainage and the 

most likely group membership inferred by the model (K = 5).   
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B4. Neighbour-joining Tree 

Figure B4. Unrooted neighbour-joining tree for individual genetic distances (TN93) based on 14,478 putatively 

neutral loci for the rainbowfish Melanotaenia splendida splendida in the Wet Tropics of Queensland. Colours 

loosely encircle individuals by drainage system of origin (Mulgrave, Mossman, Saltwater, Daintree, Hutchinson). 
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B5. Partial RDA model contributions 

 

Figure B5. Percentage stacked column graph representing variance partitioning of pRDA response variables 

(genomic variation or morphological variation of Melanotaenia splendida splendida) among environmental 

explanatory variables (Table 2, main text) and neutral covariables (allelic covariance (Ω); FST distances (FST)). 

Colours correspond to proportion of variation best explained by: environmental variables = “Environment”; by 

neutral variables = “Neutral”; by environmental or neutral variables equally = “Overlapping”; or by none of the 

variables included in the model = “unexplained”.  
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B6. Global redundancy analysis of genotype-environment associations 

 

Figure B6. Ordination plot summarising the first two axes of a global redundancy analysis for genomic variation 

(14,540 SNPs) of Melanotaenia splendida splendida individuals as explained by six significantly associated 

environmental variables (p = <0.001). Large points represent individual-level responses, and are coloured by 

drainage system of origin. Small purple points represent SNP-level responses. Vectors represent the magnitude 

and direction of relationships with explanatory variables.  
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B7. GEA candidate loci identified by partial redundancy analysis, controlling for allelic covariance 

 

Figure B71. Partial redundancy analysis (pRDA) showing variation of 14540 SNPs from Melanotaenia splendida 

splendida rainforest individuals in relation to five environmental predictor variables, after controlling for Ω (allelic 

covariance) among sampling localities. The 864 SNPs represented by coloured points were strongly and 

significantly associated with at least one environmental predictor (p ≤ 0.0027; colour key indicates best predictor 

variable), while SNPs represented by light grey points were unassociated. Vectors represent the magnitude and 

direction of relationships with explanatory variables. 
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B8. Partial redundancy analysis of genotype-environment associations, controlling for FST 

 

Figure B8. Ordination plot summarising the first two axes of a partial redundancy analysis for genomic variation 

(14,540 SNPs) of Melanotaenia splendida splendida individuals as explained by six significantly associated 

environmental variables, (p = <0.001)after controlling for pairwise FST sampling localities. Large points represent 

individual-level responses, and are coloured by drainage system of origin. Small purple points represent SNP-

level responses. Vectors represent the magnitude and direction of relationships with explanatory variables. 
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B9. Genotype environment associations using BAYPASS auxiliary covariate model 

Figure B9. Climatic association of 14,540 SNPs from Melanotaenia splendida splendida across nine rainforest 

sampling sites against six independent environmental variables using BAYPASS auxiliary covariate model. Dashed 

line indicates Bayes Factor cutoff of 21.46 dB (99.8% probability), above which 176 loci were identified as 

candidates for climatic adaptation. Inset: 36 of these candidates (20%) were also identified using partial 

redundancy analysis (RDA). 
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B10. Morphometric variation among localities 

 

Figure B10. Significant principal components of body shape variation for Melanotaenia splendida splendida 

individuals sampled across the Wet Tropics of Queensland. PCA scatterplots show relative variation among 

individuals, with colours and equal frequency ellipses (90% probability) show for drainage system of origin 

(Mulgrave, Mossman, Saltwater, Daintree, Hutchinson). 
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B11. Canonical variate analysis of body shape variation 

 

 

 

 

 

 

 

 

 

 

Figure B11. Canonical variate analysis of body shape variation of Melanotaenia splendida splendida among nine 

rainforest sampling sites. Locality codes: LM = Little Mulgrave Creek, CA = Cassowary Creek, MA = Marrs 

Creek, SA = Saltwater Creek, ST = Stewart Creek, DO = Douglas Creek, DY = Doyle Creek, AN = Forest Creek, 

MC = McClean Creek. 
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Table B11. Procrustes distances among sampling sites and among drainage systems, based on canonical variate 

analysis of body shape of Melanotaenia splendida splendida. Locality codes: LM = Little Mulgrave Creek, CA = 

Cassowary Creek, MA = Marrs Creek, SA = Saltwater Creek, ST = Stewart Creek, DO = Douglas Creek, DY = 

Doyle Creek, AN = Forest Creek, MC = McClean Creek. P-values from 10000 permutations: *** = p<0.01, ** = 

p<0.05, * = p<0.10. 

 BY SAMPLING SITE 

 AN CA DO DY LM MA MC SA 

CA 0.014***        

DO 0.015*** 0.016***       

DY 0.026*** 0.029*** 0.024***      

LM 0.033*** 0.030*** 0.035*** 0.041***     

MA 0.015*** 0.015*** 0.015*** 0.030*** 0.025***    

MC 0.008 0.016*** 0.014** 0.024*** 0.034*** 0.016***   

SA 0.024*** 0.024*** 0.016*** 0.017*** 0.040*** 0.025*** 0.021***  

ST 0.018*** 0.023*** 0.013** 0.023*** 0.043*** 0.024*** 0.015** 0.015** 

 BY DRAINAGE SYSTEM 

 Mulgrave Mossman Saltwater Daintree     

Mossman 0.027***        

Saltwater 0.040*** 0.023***       

Daintree 0.036*** 0.016*** 0.013***      

Hutchinson 0.034*** 0.014*** 0.021*** 0.012**     
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B12. GxPxE candidate loci identified by partial redundancy analysis 

 

Figure B12. Partial redundancy analysis (RDA) showing variation of 864 SNPs from Melanotaenia splendida 

splendida rainforest individuals in relation to four principal components (PCs) of body shape, after cont. The 61 

SNPs represented by coloured points were significantly associated with at least one body shape PC (p ≤ 0.0455; 

colour key indicates best predictor variable), while SNPs represented by light grey points were not. Vectors 

represent the magnitude and direction of relationships with explanatory variables. 
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2. Supplemental Material for Chapter 3 

Part A: Supplemental Methods; Part B: Supplemental Results 

 

A. Supplemental Methods 

 

Figure A1. Raw climate data for each sampling locality of Melanotaenia splendida splendida. Shading represents 

relative variation among sites specific to each variable. Locality abbreviations: refer to table A1. Compiled from 

Stein, J. L., Hutchison, M.F., Stein, J.A. . 2011. National Environmental Stream Attributes v1.1.3. Page 

http://pid.geoscience.gov.au/dataset/ga/73045   Geoscience Australia, Canberra. Accessed June 2017. 

 

 

 

http://pid.geoscience.gov.au/dataset/ga/73045
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Figure A2. The 18 landmarks used for geometric morphometric analysis of the eastern rainbowfish Melanotaenia 

splendida splendida. 1: Anterior tip of head, where premaxillary bones articulate at midline; 2: Posterior tip of 

maxilla; 3: Anterior margin in maximum eye width; 4: Posterior margin in maximum eye width; 5: Dorsal margin 

of head at beginning of scales; 6: Ventral margin in the end of the head; 7: Dorsal insertion of pectoral fin; 8: 

Anterior insertion of the pelvic fin; 9: Anterior insertion of the anal fin; 10: Anterior insertion of the first dorsal 

fin; 11: Posterior insertion of the first dorsal fin; 12: Anterior insertion of the second dorsal fin; 13: Posterior 

insertion of the second dorsal fin; 14: Posterior insertion of the anal fin; 15: Dorsal insertion of the caudal fin; 16: 

Posterior margin of the caudal peduncle (at tip of lateral line); 17: Ventral insertion of the caudal fin; 18: Posterior 

margin of the caudal fin between dorsal and ventral lobes. 
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B: Supplemental Results 

 

Table B1. Table B2. Pairwise FST among Melanotaenia splendida splendida from 17 sampling sites 

across in tropical north-eastern Australia, based on 14,478 putatively neutral SNPs. Locality 

abbreviations: refer to Table 1, main text. 

 

 

 

 CA MA SA ST DO DY AN MC FA WN EN LA KE NK HA MO 

CA 0.128                

MA 0.126 0.026               

SA 0.158 0.075 0.071              

ST 0.105 0.087 0.084 0.111             

DO 0.108 0.088 0.086 0.113 0.017            

DY 0.119 0.099 0.097 0.125 0.029 0.027           

AN 0.109 0.090 0.089 0.115 0.021 0.019 0.027          

MC 0.208 0.174 0.174 0.202 0.127 0.130 0.141 0.132         

FA 0.134 0.155 0.153 0.184 0.127 0.131 0.141 0.131 0.227        

WN 0.138 0.159 0.159 0.188 0.129 0.134 0.144 0.135 0.232 0.030       

EN 0.144 0.165 0.166 0.194 0.134 0.138 0.148 0.139 0.237 0.040 0.019      

LA 0.124 0.146 0.145 0.174 0.118 0.123 0.132 0.123 0.215 0.017 0.024 0.032     

KE 0.124 0.147 0.146 0.175 0.118 0.123 0.133 0.124 0.218 0.027 0.029 0.037 0.019    

NK 0.121 0.142 0.145 0.172 0.113 0.117 0.127 0.119 0.214 0.029 0.033 0.041 0.025 0.024   

HA 0.116 0.139 0.138 0.168 0.113 0.117 0.127 0.117 0.210 0.029 0.033 0.041 0.023 0.021 0.020  

MO 0.115 0.138 0.136 0.166 0.111 0.114 0.124 0.115 0.209 0.029 0.033 0.041 0.024 0.023 0.020 0.014 
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Figure B2. Eigen-decomposition of scaled covariance matrix of locality-specific allele frequencies for 

Melanotaenia splendida splendida, based on 14,540 SNPs. Points correspond to sampling sites, and are colour 

coded by drainage system of origin following Figure 1, main text. 
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Figure B3. Principal component analysis of body shape of all M. s. splendida individuals produced four significant 

PCs under broken stick modelling Wireframe graphical representation of significant principal components of body 

shape variation based on 18 landmarks for 366 Melanotaenia splendida splendida individuals sampled across 

seventeen rainforest and savannah sampling localities in tropical north-eastern Australia. Solid and dashed frames 

respectively represent body shape at high and low extremes of each significant axis (scale factor = 1). 
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Figure B4. Individual canonical body shape variation of 366 Melanotaenia splendida splendida individuals 

sampled across seventeen rainforest and savannah sampling localities in tropical north-eastern Australia. Locality 

codes follow Figure A1. 
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Table B2. Procrustes distances among sampling sites, based on canonical variate analysis of body shape of 

Melanotaenia splendida splendida across rainforest and savannah localities (For codes refer to Figure A1). 

Significant differences (p = <0.05) are indicated by bold font. 

  AN CA DO DY EN FA HA KE LA LM MA MC MO NK SA ST 

CA 0.0138                

DO 0.0142 0.0165               

DY 0.0256 0.0266 0.0204              

EN 0.0282 0.0234 0.0339 0.0403             

FA 0.0338 0.0277 0.0391 0.0441 0.0139            

HA 0.0288 0.0243 0.0346 0.0412 0.012 0.0147           

KE 0.0321 0.0275 0.0355 0.0337 0.0186 0.0202 0.0193          

LA 0.0263 0.0214 0.0304 0.0322 0.0151 0.0197 0.0152 0.0101         

LM 0.0312 0.0289 0.0351 0.0368 0.0203 0.0267 0.0224 0.0186 0.0199        

MA 0.0138 0.0148 0.0156 0.0275 0.0247 0.0324 0.0254 0.0288 0.0234 0.0243       

MC 0.008 0.014 0.012 0.0241 0.0294 0.035 0.0297 0.032 0.026 0.0313 0.0134      

MO 0.0396 0.0354 0.0446 0.0412 0.0244 0.0229 0.0248 0.0121 0.0192 0.0263 0.0383 0.0403     

NK 0.0372 0.0324 0.0415 0.0442 0.0159 0.0163 0.0176 0.0152 0.0185 0.0197 0.032 0.0379 0.0183    

SA 0.0235 0.0237 0.0151 0.0153 0.0406 0.0445 0.0408 0.0362 0.0334 0.0384 0.0238 0.0209 0.0446 0.0451   

ST 0.0184 0.0244 0.0129 0.0222 0.0424 0.0476 0.0436 0.0428 0.0378 0.0434 0.0243 0.0163 0.0508 0.0501 0.0161  

WN 0.0176 0.0175 0.0224 0.0247 0.0194 0.0244 0.0217 0.0178 0.0152 0.0221 0.0187 0.0184 0.0249 0.0254 0.026 0.0285 
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Figure B5. Frequencies of individual discriminant function (DF) scores among rainforest (n = 207) and savannah 

(n =  159) Melanotaenia splendida splendida, based on multivariate analysis of 18 morphometric landmarks, 

controlling for centroid size. 

 

Table B3. Classification/misclassification tables for discriminant function analysis of 18 morphometric landmarks 

among rainforest (n = 207) and savannah (n =  159) Melanotaenia splendida splendida, controlling for centroid 

size. Differences between means = 0.0274 Procrustes distance, 3.705 Mahalanobis distance. P-value (parametric) 

= <.0001 for 1000 permutation runs. 

Discriminant function True origin Allocated to 

  Rainforest Savannah Total 

 Rainforest 200 8 208 

 Savannah 5 154 159 

Cross-validation True origin Allocated to 

  Rainforest Savannah Total 

 Rainforest 195 13 208 

 Savannah 8 151 159 
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Table B4. Model significance for pRDAs testing genotype-environment (GEA), phentoype-environment (PEA), 

and genotyoe-phenotype-environment (GxPxE) associations for Melanotaenia spplendida splendida, based on 

ANOVA-like permutation test for Constrained Correspondence Analysis (anova.cca) using 999 permutation 

rounds. For numbers of individuals in response datasets, refer to Table 1, main text. 

Analysis Response Dataset Covariable Df Variance F 

   
Model Residual Model Residual 

 
GEA Among-ecotypes Allelic covariance 8 369 889.75 3076.13 13.341*** 

FST 8 370 357.33 3042.78 5.431*** 

river dist 8 370 376.59 3051.43 5.708*** 

Rainforest-specific Allelic covariance 5 201 625.55 2745.1 9.161*** 

FST 6 201 456.47 2745.1 5.571*** 

Savannah-specific Allelic covariance 5 163 223.88 3041.22 2.3999*** 

FST 5 163 126.18 3041.22 1.3525*** 

PEA Among-ecotypes Allelic covariance + size 6 294 0.000187 0.000397 23.03*** 

FST + size 7 294 0.000086 0.000402 8.939*** 

River distance + size 7 294 0.000086 0.000402 8.939*** 

Rainforest-specific Allelic covariance + size 4 171 0.000159 0.000486 13.969*** 

FST + size 4 172 0.000137 0.000494 11.972*** 

Savannah-specific Allelic covariance + size 3 117 0.000062 0.000385 6.2968*** 

FST + size 4 117 0.000077 0.000382 5.8896*** 

GxPxE Among-ecotypes Size 3 297 44.01 527.96 8.253*** 

Rainforest-specific Size 4 171 28.27 404.62 2.9866*** 

Savannah-specific Size 3 120 14.45 396.92 1.4563*** 
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Table B5. Proportion of variation better explained by environment versus neutral factors in patrial RDAs 

 Controlling for Genomic Morphological 

Among-ecotypes Allelic covariance 5 12 

FST 4 4 

River distance 2 9 

Rainforest-specific Allelic covariance 4 19 

FST 3 19 

Savannah-specific Allelic covariance 3 5 

FST 2 6 
 

Average 3.3 10.5 

 Standard Deviation 1.0 5.9 

 

 

Figure B6. Environmental association of 14,540 SNPs for Melanotaenia splendida splendida across seventeen sampling sites, 

against eight independent environmental variables, using BAYPASS auxiliary covariate model. Dashed line indicates Bayes 

Factor cutoff of 26 dB (99.8% probability), above which 233 loci were identified as candidates for environmental adaptation. 
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3. Supplemental Material for Chapter 4 

 

Supplemental Results 

Table 1. Summary of assembly statistics for the transcriptome of Melanotaenia splendida splendida. ORF = open 

reading frame, bp = base pairs. 

Raw read pairs 1,409,883,643 

Retained filtered read pairs 911,546,879 

Transcripts 320,364 

Trinity "Genes" 284,807 

Trinity "Genes" with ORFs 51,091 

Uni-genes 30,874 

N50 2053 

Average contig length (bp) 1015 

Assembled bases 565,956,118 

ORF genes annotated 24,971 
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Table 2. Number of unigenes differentially expressed between control (21°C) and projected 2027 summer 

treatment (33°C) groups, and critical thermal maxima (CTMAX) of five Australian Melanotaenia ecotypes versus. 

Savannah and Rainforest are Melanotaenia splendida splendida, Subtropical is M. duboulayi, Desert is M. s. tatei, 

Temperate is M. fluviatilis. 

 

 

 

 

 

 

 

Table 3. Linear regression statistics for comparisons of CTMAX versus the number of unigenes differentially 

expressed between control (21°C) and projected 2027 summer treatment (33°C) groups among five Australian 

Melanotaenia ecotypes (r = 0.909; R2 = 0.827). Savannah and Rainforest are Melanotaenia splendida splendida, 

Subtropical is M. duboulayi, Desert is M. s. tatei, Temperate is M. fluviatilis. 

Regression Statistics 

 Multiple R 0.909 

 R Square 0.827 

 Adjusted R Square 0.769 

 Standard Error 0.706 

 Observations 5 

 ANOVA df SS MS F Significance F 

 Regression 1 7.143 7.143 14.315 0.032 

 Residual 3 1.497 0.499   

 Total 4 8.640    

Ecotype Genes DE CTMAX (°C) 

Temperate 39 34.8 

Desert 98 37.2 

Subtropical 120 37.9 

Rainforest 88 38.2 

Savannah 139 38.4 
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Table 4. Gene annotations and ontology terms for unigenes differentially expressed by Melanotaenia splendida 

splendida between control (21°C) and projected 2027 summer treatments (33°C). 

Gene ID Gene Ontology Terms 

BMAL2_CHICK GO:0003700; GO:0005634; GO:0005667; GO:0005737; GO:0006351; GO:0042753; GO:0045893; GO:0046983; GO:0048511; GO:0070888 

MANF_HUMAN GO:0002576; GO:0003723; GO:0005576; GO:0005615; GO:0005634; GO:0005783; GO:0005788; GO:0005829; GO:0006986; GO:0008083; 

GO:0008289; GO:0031175; GO:0033018; GO:0071542; GO:1905897 

SCD1_TACFU GO:0004768; GO:0005789; GO:0006633; GO:0016021; GO:0046872 

IDHC_BOVIN GO:0000287; GO:0004450; GO:0005737; GO:0005829; GO:0006097; GO:0006099; GO:0006102; GO:0006103; GO:0006979; GO:0051287 

FAS_CHICK GO:0003697; GO:0004312; GO:0004313; GO:0004314; GO:0004315; GO:0004316; GO:0004320; GO:0005623; GO:0006089; GO:0006633; 

GO:0016295; GO:0016296; GO:0031177; GO:0032100; GO:0047117; GO:0047451; GO:0102131; GO:0102132 

IDHP_BOVIN GO:0000287; GO:0004450; GO:0005739; GO:0005743; GO:0005777; GO:0005829; GO:0006097; GO:0006099; GO:0006102; GO:0006103; 

GO:0051287 

RDH11_MOUSE GO:0001917; GO:0004745; GO:0005622; GO:0005789; GO:0016021; GO:0016062; GO:0016491; GO:0042572; GO:0042574; GO:0052650 

CALR_RABIT GO:0005509; GO:0006457; GO:0016529; GO:0030246; GO:0033018; GO:0050821; GO:0051082 

HYOU1_DANRE GO:0005524; GO:0005788 

JARD2_DANRE GO:0003677; GO:0003682; GO:0005634; GO:0006351; GO:0007275; GO:0016577; GO:0031061; GO:0035097; GO:0045892; GO:0048863; 

GO:0051574 

ALG5_HUMAN GO:0004576; GO:0004581; GO:0005789; GO:0006486; GO:0006487; GO:0007368; GO:0016020; GO:0016021; GO:0018279 

ACLY_MOUSE GO:0003878; GO:0005524; GO:0005654; GO:0005739; GO:0005829; GO:0005886; GO:0006084; GO:0006085; GO:0006101; GO:0006107; 

GO:0006633; GO:0008610; GO:0009346; GO:0046872; GO:0048037 

LMAN1_MOUSE GO:0000139; GO:0005537; GO:0005783; GO:0005789; GO:0005793; GO:0005794; GO:0006888; GO:0007029; GO:0007030; GO:0010638; 

GO:0015031; GO:0016021; GO:0030017; GO:0030134; GO:0033116; GO:0042802; GO:0043231; GO:0044220; GO:0046872 

COF2_MOUSE GO:0007015; GO:0007519; GO:0015629; GO:0016363; GO:0030018; GO:0030042; GO:0030043; GO:0030836; GO:0031674; GO:0045214; 

GO:0046716; GO:0051015 

ELOV5_TACFU GO:0005789; GO:0006636; GO:0009922; GO:0016021; GO:0019367; GO:0030425; GO:0034625; GO:0034626; GO:0035338; GO:0042761; 

GO:0102336; GO:0102337; GO:0102338; GO:0102756 

S61A1_DANRE GO:0005789; GO:0015031; GO:0016021; GO:0021986; GO:0039019 

FAS_CHICK GO:0003697; GO:0004312; GO:0004313; GO:0004314; GO:0004315; GO:0004316; GO:0004320; GO:0005623; GO:0006089; GO:0006633; 

GO:0016295; GO:0016296; GO:0031177; GO:0032100; GO:0047117; GO:0047451; GO:0102131; GO:0102132 

DNJC3_HUMAN GO:0004860; GO:0005576; GO:0005737; GO:0005783; GO:0005788; GO:0005790; GO:0005829; GO:0016020; GO:0019901; GO:0031205; 

GO:0035578; GO:0036494; GO:0036498; GO:0043066; GO:0043312; GO:0043687; GO:0044267; GO:0051087; GO:0051603; GO:0051607; 

GO:0051787; GO:0070062; GO:0070417; GO:1903561; GO:1903912 

ERG7_RAT GO:0000250; GO:0005789; GO:0006695; GO:0016125; GO:0043231 

SYLC_HUMAN GO:0002161; GO:0004819; GO:0004823; GO:0004832; GO:0005096; GO:0005524; GO:0005737; GO:0005764; GO:0005783; GO:0005829; 

GO:0006418; GO:0006425; GO:0006429; GO:0006438; GO:0006622; GO:0008361; GO:0010507; GO:0012505; GO:0016604; GO:0017101; 

GO:0034198; GO:0043547; GO:0071230; GO:0071233; GO:1904263; GO:1990253 

ALKMO_DANRE GO:0005506; GO:0005783; GO:0005789; GO:0006643; GO:0008610; GO:0016021; GO:0046485; GO:0050479 

FPPS_CHICK GO:0004161; GO:0004337; GO:0005737; GO:0006695; GO:0033384; GO:0045337; GO:0046872 

PELO_DANRE GO:0004519; GO:0005634; GO:0005737; GO:0006412; GO:0007049; GO:0032790; GO:0043022; GO:0046872; GO:0051301; GO:0070481; 

GO:0070651; GO:0070966; GO:0071025 

DCAM_HUMAN GO:0004014; GO:0005829; GO:0006557; GO:0006595; GO:0006597; GO:0008295; GO:0019810; GO:0046500 

CASR_PIG GO:0004930; GO:0005509; GO:0005513; GO:0005887; GO:0006874; GO:0007186; GO:0010628; GO:0016597; GO:0032781; GO:0042803; 

GO:0051924; GO:0070509 

DDX5_HUMAN GO:0000122; GO:0000380; GO:0000381; GO:0000398; GO:0000956; GO:0001837; GO:0003723; GO:0003724; GO:0003730; GO:0004004; 

GO:0005516; GO:0005524; GO:0005634; GO:0005654; GO:0005730; GO:0005737; GO:0006357; GO:0009299; GO:0010501; GO:0016020; 

GO:0019899; GO:0030509; GO:0030520; GO:0030521; GO:0035500; GO:0036002; GO:0043021; GO:0043517; GO:0045069; GO:0045445; 
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GO:0045667; GO:0046332; GO:0048306; GO:0048511; GO:0050681; GO:0060765; GO:0061614; GO:0070062; GO:0070412; GO:0070878; 

GO:0071013; GO:0072332; GO:1903800; GO:1990841; GO:1990904; GO:2001014 

AACS_DANRE GO:0005524; GO:0005829; GO:0006631; GO:0030729 

ES8L2_MOUSE GO:0001726; GO:0003779; GO:0005829; GO:0005886; GO:0007266; GO:0007605; GO:0016601; GO:0030676; GO:0032421; GO:0032426; 

GO:0032587; GO:0032991; GO:0035023; GO:0051015; GO:1900029 

FLVC2_MOUSE GO:0005886; GO:0015232; GO:0016021; GO:0020037 

C1QBP_RAT GO:0000122; GO:0001849; GO:0003714; GO:0003729; GO:0005080; GO:0005540; GO:0005615; GO:0005634; GO:0005730; GO:0005737; 

GO:0005759; GO:0005829; GO:0005886; GO:0006351; GO:0006397; GO:0006915; GO:0006955; GO:0006958; GO:0008134; GO:0008380; 

GO:0009986; GO:0014065; GO:0030449; GO:0030984; GO:0031690; GO:0032689; GO:0032695; GO:0039534; GO:0039536; GO:0042256; 

GO:0043065; GO:0045087; GO:0045785; GO:0048025; GO:0050687; GO:0051897; GO:0070131; GO:0090023; GO:0097177; GO:1900026; 

GO:1901165; GO:2000510 

FDFT_HUMAN GO:0004310; GO:0005783; GO:0005789; GO:0006694; GO:0006695; GO:0006696; GO:0008299; GO:0016021; GO:0019216; GO:0045338; 

GO:0045540; GO:0051996 

FADS2_TACFU GO:0005789; GO:0006636; GO:0016021; GO:0016213 

ACLY_HUMAN GO:0003878; GO:0005524; GO:0005576; GO:0005654; GO:0005829; GO:0005886; GO:0006085; GO:0006101; GO:0006107; GO:0006633; 

GO:0006695; GO:0008610; GO:0009346; GO:0015936; GO:0016020; GO:0031325; GO:0035578; GO:0043312; GO:0046872; GO:0046949; 

GO:0048037; GO:0070062; GO:1904813 

CREL2_DANRE GO:0005509; GO:0005576; GO:0005783 

NB5R2_DANRE GO:0001878; GO:0004128; GO:0016021; GO:0016126; GO:0016491 

TIM13_DANRE GO:0005743; GO:0008565; GO:0042719; GO:0045039; GO:0046872; GO:0072321 

QPCT_BOIIR GO:0005576; GO:0008270; GO:0016603; GO:0017186 

TXTP_RAT GO:0005743; GO:0006839; GO:0006843; GO:0015137; GO:0016021 

MVD1_DANRE GO:0004163; GO:0005524; GO:0005829; GO:0006695; GO:0019287 

DYL1_DROME GO:0000132; GO:0003774; GO:0005737; GO:0005814; GO:0005868; GO:0005874; GO:0006914; GO:0007018; GO:0007283; GO:0007290; 

GO:0007291; GO:0007476; GO:0008092; GO:0008407; GO:0010970; GO:0022416; GO:0030286; GO:0032991; GO:0034454; GO:0035071; 

GO:0035220; GO:0042623; GO:0042803; GO:0045505; GO:0048477; GO:0051017; GO:0051959; GO:0060271; GO:0097718; GO:1904801; 

GO:2000582 

ACSL4_HUMAN GO:0004467; GO:0005524; GO:0005737; GO:0005741; GO:0005778; GO:0005789; GO:0005811; GO:0006629; GO:0007584; GO:0008610; 

GO:0015908; GO:0016020; GO:0016021; GO:0019432; GO:0030307; GO:0031957; GO:0032307; GO:0035338; GO:0043025; GO:0044233; 

GO:0047676; GO:0060136; GO:0060996; GO:0070062; GO:0070672; GO:0102391 

AT2A2_MOUSE GO:0002026; GO:0005388; GO:0005509; GO:0005524; GO:0005654; GO:0005783; GO:0005789; GO:0006816; GO:0006874; GO:0006937; 

GO:0006984; GO:0006996; GO:0008022; GO:0010882; GO:0012506; GO:0014801; GO:0014883; GO:0014898; GO:0016020; GO:0016529; 

GO:0019899; GO:0031234; GO:0031775; GO:0032469; GO:0032470; GO:0032496; GO:0032991; GO:0033017; GO:0033292; GO:0034599; 

GO:0043434; GO:0044548; GO:0045822; GO:0048471; GO:0055119; GO:0070296; GO:0070588; GO:0086036; GO:0086039; GO:0090534; 

GO:0097470; GO:0098909; GO:1903233; GO:1903515; GO:1990036 

ENPL_BOVIN GO:0001666; GO:0003723; GO:0005524; GO:0005783; GO:0005788; GO:0005789; GO:0005829; GO:0005886; GO:0006457; GO:0019903; 

GO:0030433; GO:0030496; GO:0030970; GO:0031247; GO:0034663; GO:0042470; GO:0043066; GO:0043666; GO:0048471; GO:0050750; 

GO:0051082; GO:0071318 

ERG1_MOUSE GO:0004506; GO:0005783; GO:0005789; GO:0006725; GO:0008203; GO:0010033; GO:0016021; GO:0016126; GO:0031090; GO:0043231; 

GO:0050660 

EBP_HUMAN GO:0000247; GO:0001501; GO:0004769; GO:0004888; GO:0005635; GO:0005783; GO:0005789; GO:0005887; GO:0006695; GO:0008203; 

GO:0015238; GO:0030097; GO:0031410; GO:0033489; GO:0033490; GO:0047750 

6PGD_HUMAN GO:0004616; GO:0005634; GO:0005829; GO:0006098; GO:0009051; GO:0019322; GO:0019521; GO:0050661; GO:0055114; GO:0070062 

DJB11_PONAB GO:0005102; GO:0005615; GO:0005634; GO:0005788; GO:0006457; GO:0016556; GO:0050768; GO:0051082 

ACACA_HUMAN GO:0001650; GO:0001894; GO:0003989; GO:0004075; GO:0005524; GO:0005829; GO:0006084; GO:0006633; GO:0006853; GO:0015629; 

GO:0019538; GO:0031325; GO:0042802; GO:0045540; GO:0046872; GO:0046949; GO:0051289; GO:0055088; GO:0071380; GO:2001295 

DPP3_RAT GO:0005737; GO:0005829; GO:0005886; GO:0006508; GO:0008237; GO:0008239; GO:0008270; GO:0016607 

ZP1_RABIT GO:0005576; GO:0005886; GO:0007338; GO:0016021 

ASNS_CHICK GO:0004066; GO:0005524; GO:0006529; GO:0006541; GO:0042803; GO:0070981 
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GRB10_HUMAN GO:0005070; GO:0005158; GO:0005737; GO:0005829; GO:0005886; GO:0007411; GO:0008286; GO:0030178; GO:0030949; GO:0032868; 

GO:0032991; GO:0042326; GO:0042327; GO:0042802; GO:0045719; GO:0046325; GO:0046627; GO:0048009; GO:0120162 

PK1L1_ORYLA GO:0003127; GO:0005262; GO:0005929; GO:0034704; GO:0050982; GO:0060170; GO:0070986; GO:0097730 

BIP_CHICK GO:0005524; GO:0005788; GO:0005793; GO:0005886; GO:0006983; GO:0008180; GO:0009986; GO:0016887; GO:0019904; GO:0021589; 

GO:0021680; GO:0030176; GO:0030335; GO:0030496; GO:0030512; GO:0030968; GO:0031398; GO:0031625; GO:0034663; GO:0035437; 

GO:0042149; GO:0043022; GO:0043066; GO:0043209; GO:0051603; GO:0051787; GO:0071353; GO:0090074; GO:1901998; GO:1903895 

TOR3A_HUMAN GO:0005524; GO:0005783; GO:0005788; GO:0016887; GO:0070062 

EDEM1_HUMAN GO:0000139; GO:0004571; GO:0005509; GO:0005783; GO:0006491; GO:0016235; GO:0030176; GO:0030433; GO:0036498; GO:0036510; 

GO:0044322; GO:0051787; GO:0097466; GO:1904154; GO:1904382 

RL5_CHICK GO:0000027; GO:0003735; GO:0005730; GO:0006412; GO:0008097; GO:0022625 

STAR5_MOUSE GO:0005739; GO:0015485; GO:0017127; GO:0032052; GO:0070508 

SYNC_MOUSE GO:0003676; GO:0004816; GO:0005524; GO:0005739; GO:0005829; GO:0006421 

TMED3_RAT GO:0005783; GO:0005789; GO:0005793; GO:0005794; GO:0015031; GO:0016021; GO:0030126; GO:0032580; GO:0033116 

CP51A_PIG GO:0005506; GO:0005783; GO:0005789; GO:0005886; GO:0008398; GO:0016021; GO:0020037; GO:0031090; GO:0033488 

FBRL_XENLA GO:0003723; GO:0005730; GO:0006364; GO:1990258; GO:1990259 

ACBG2_XENLA GO:0004467; GO:0005524; GO:0005737; GO:0102391 

ODR4_MOUSE GO:0016021 

NPM_XENLA GO:0003723; GO:0005654; GO:0005730; GO:0005737; GO:0006281; GO:0032071; GO:0042802; GO:0060699 

NRDC_MOUSE GO:0004222; GO:0005739; GO:0008233; GO:0046872; GO:0051044; GO:0052548; GO:0120163 

ERG24_MOUSE GO:0005783; GO:0006695; GO:0016126; GO:0016627; GO:0030176; GO:0031090; GO:0043231; GO:0043235; GO:0050613; GO:0050661 

ANM1_RAT GO:0005634; GO:0005654; GO:0005829; GO:0006355; GO:0006479; GO:0008276; GO:0008284; GO:0008327; GO:0008469; GO:0008757; 

GO:0016020; GO:0016274; GO:0016275; GO:0018216; GO:0019919; GO:0030519; GO:0032991; GO:0034709; GO:0035241; GO:0035242; 

GO:0035247; GO:0042802; GO:0043985; GO:0044020; GO:0045648; GO:0045652; GO:0045653; GO:0046985; GO:0051260; GO:0097421; 

GO:1900745; GO:1904047 

PLPL2_HUMAN GO:0004465; GO:0004806; GO:0005654; GO:0005737; GO:0005788; GO:0005789; GO:0005811; GO:0005829; GO:0005886; GO:0010891; 

GO:0010898; GO:0016020; GO:0016021; GO:0016411; GO:0019433; GO:0019915; GO:0034389; GO:0036155; GO:0043687; GO:0044267; 

GO:0055088 

BIP_BOVIN GO:0005524; GO:0005788; GO:0016887; GO:0030335; GO:0035437; GO:0090074; GO:1903895 

KIME_BOVIN GO:0000287; GO:0004496; GO:0005524; GO:0005777; GO:0005829; GO:0006695; GO:0019287; GO:0042802 

SERPH_CHICK GO:0003433; GO:0004867; GO:0005518; GO:0005783; GO:0005788; GO:0005793; GO:0030199; GO:0032964; GO:0045121; GO:0051082; 

GO:0051604 

S35E3_DANRE GO:0016021 

CCD86_PONAB GO:0005634 

EI3EB_DANRE GO:0001732; GO:0003743; GO:0005634; GO:0005852; GO:0006413; GO:0016282; GO:0033290; GO:0071540 

FAS_CHICK GO:0003697; GO:0004312; GO:0004313; GO:0004314; GO:0004315; GO:0004316; GO:0004320; GO:0005623; GO:0006089; GO:0006633; 

GO:0016295; GO:0016296; GO:0031177; GO:0032100; GO:0047117; GO:0047451; GO:0102131; GO:0102132 

LPIN1_HUMAN GO:0003713; GO:0005634; GO:0005635; GO:0005654; GO:0005737; GO:0005741; GO:0005789; GO:0005829; GO:0006351; GO:0006642; 

GO:0006646; GO:0006656; GO:0007077; GO:0008195; GO:0009062; GO:0019432; GO:0031100; GO:0031965; GO:0032869; GO:0045944; 

GO:0120162 

NRDC_RAT GO:0004222; GO:0008233; GO:0046872; GO:0120163 

ACSA_HUMAN GO:0003987; GO:0005524; GO:0005654; GO:0005737; GO:0005759; GO:0005829; GO:0006069; GO:0008610; GO:0016208; GO:0019413; 

GO:0019427; GO:0019542; GO:0043231 

NCOA7_MOUSE GO:0005622; GO:0005634; GO:0006351; GO:0030374; GO:0035257; GO:0045944; GO:1900408; GO:1902083; GO:1903204 

SYWC_BOVIN GO:0004830; GO:0005524; GO:0005634; GO:0005737; GO:0005829; GO:0006436; GO:0006469; GO:0010628; GO:0010835; GO:0019210; 

GO:0019901; GO:0019904; GO:0031334; GO:0032991; GO:0042803; GO:0045765 

PRP19_BOVIN GO:0000244; GO:0000245; GO:0000349; GO:0000398; GO:0000974; GO:0001833; GO:0004842; GO:0005634; GO:0005662; GO:0005737; 

GO:0005811; GO:0005819; GO:0006303; GO:0008610; GO:0010498; GO:0016607; GO:0034450; GO:0034613; GO:0035861; GO:0042802; 

GO:0045665; GO:0048026; GO:0048711; GO:0061630; GO:0070534; GO:0071006; GO:0071007; GO:0072422 

HMCS1_CHICK GO:0004421; GO:0005737; GO:0006695; GO:0008299 
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GARS_MOUSE GO:0004081; GO:0004820; GO:0005524; GO:0005739; GO:0005829; GO:0006418; GO:0006426; GO:0015966; GO:0030141; GO:0030424; 

GO:0042802; GO:0046983; GO:0070062; GO:0070150 

DHC24_HUMAN GO:0000139; GO:0000246; GO:0005634; GO:0005783; GO:0005789; GO:0005829; GO:0005856; GO:0006695; GO:0006915; GO:0006979; 

GO:0007050; GO:0007265; GO:0008104; GO:0008285; GO:0009725; GO:0009888; GO:0016020; GO:0016021; GO:0016628; GO:0019899; 

GO:0030539; GO:0031639; GO:0033489; GO:0033490; GO:0042605; GO:0042987; GO:0043066; GO:0043154; GO:0043588; GO:0050614; 

GO:0055114; GO:0061024; GO:0071949; GO:1901214 

SYVC_TAKRU GO:0002161; GO:0004832; GO:0005524; GO:0005737; GO:0006438 

ACBP_HUMAN GO:0005788; GO:0005794; GO:0006637; GO:0008289; GO:0030156; GO:0036042; GO:0036151; GO:0046983; GO:0070062; GO:0097038 

PDIA4_HUMAN GO:0003723; GO:0003756; GO:0005615; GO:0005783; GO:0005788; GO:0006457; GO:0009306; GO:0009986; GO:0015037; GO:0034976; 

GO:0042470; GO:0045454; GO:0061077 

ABCF3_MOUSE GO:0005524; GO:0016887; GO:0051607 

TXTP_BOVIN GO:0005743; GO:0006839; GO:0006843; GO:0015137; GO:0016021 

CP27B_HUMAN GO:0004498; GO:0005506; GO:0005737; GO:0005739; GO:0005741; GO:0006766; GO:0006816; GO:0008285; GO:0010956; GO:0010980; 

GO:0020037; GO:0030282; GO:0030308; GO:0030500; GO:0032496; GO:0033280; GO:0034341; GO:0036378; GO:0042359; GO:0042369; 

GO:0043627; GO:0045618; GO:0046697; GO:0055074; GO:0070314; GO:0070564 

RASH_HUMAN GO:0000139; GO:0000165; GO:0001934; GO:0002223; GO:0003924; GO:0005525; GO:0005634; GO:0005737; GO:0005794; GO:0005829; 

GO:0005886; GO:0006897; GO:0006935; GO:0007050; GO:0007093; GO:0007165; GO:0007166; GO:0007265; GO:0008022; GO:0008283; 

GO:0008284; GO:0008285; GO:0009887; GO:0010629; GO:0010863; GO:0019003; GO:0030335; GO:0032729; GO:0034260; GO:0035900; 

GO:0042088; GO:0042832; GO:0043406; GO:0043410; GO:0043524; GO:0043547; GO:0045740; GO:0045944; GO:0046330; GO:0046579; 

GO:0048013; GO:0048169; GO:0048471; GO:0050679; GO:0050852; GO:0051291; GO:0070374; GO:0071480; GO:0090303; GO:0090314; 

GO:0090398; GO:0097193; GO:0098696; GO:0098978; GO:1900029; GO:2000251; GO:2000630 

MKNK2_HUMAN GO:0004674; GO:0004683; GO:0005516; GO:0005524; GO:0005634; GO:0005654; GO:0005737; GO:0006417; GO:0006468; GO:0007166; 

GO:0009931; GO:0016604; GO:0016605; GO:0018105; GO:0030097; GO:0035556; GO:0046777; GO:0046872; GO:0071243; GO:0097192 

LRRF2_XENTR GO:0006355; GO:0009950; GO:0016055; GO:0030275 

TBB1_GADMO GO:0003924; GO:0005200; GO:0005525; GO:0005737; GO:0005874; GO:0007017 

SYYC_DANRE GO:0000049; GO:0004831; GO:0005524; GO:0006418; GO:0006437; GO:0006974; GO:0017101; GO:0017102 

CNEPA_DANRE GO:0004721; GO:0004722; GO:0005635; GO:0005737; GO:0005789; GO:0006470; GO:0006998; GO:0010867; GO:0016021; GO:0031965; 

GO:0071595 

TMED3_RAT GO:0005783; GO:0005789; GO:0005793; GO:0005794; GO:0015031; GO:0016021; GO:0030126; GO:0032580; GO:0033116 

PPA6_HUMAN GO:0002244; GO:0003993; GO:0005737; GO:0005739; GO:0005759; GO:0006644; GO:0006654; GO:0052642; GO:2001311 

CCD43_DANRE 
 

S13A5_HUMAN GO:0005886; GO:0005887; GO:0015137; GO:0015141; GO:0015746; GO:0017153; GO:0035674 

SPB1_CHICK GO:0000453; GO:0000463; GO:0000466; GO:0005730; GO:0008650; GO:0016435; GO:0030687; GO:0030688; GO:0031167 

BIP_CHICK GO:0005524; GO:0005788; GO:0005793; GO:0005886; GO:0006983; GO:0008180; GO:0009986; GO:0016887; GO:0019904; GO:0021589; 

GO:0021680; GO:0030176; GO:0030335; GO:0030496; GO:0030512; GO:0030968; GO:0031398; GO:0031625; GO:0034663; GO:0035437; 

GO:0042149; GO:0043022; GO:0043066; GO:0043209; GO:0051603; GO:0051787; GO:0071353; GO:0090074; GO:1901998; GO:1903895 

PYRG1_DANRE GO:0003883; GO:0005524; GO:0006241; GO:0006541; GO:0044210 

TNI3K_HUMAN GO:0002027; GO:0004672; GO:0004674; GO:0005524; GO:0005634; GO:0005737; GO:0006468; GO:0008022; GO:0031013; GO:0035556; 

GO:0046872; GO:0055117; GO:0086069; GO:1903779 

ACKR4_HUMAN GO:0004950; GO:0005044; GO:0005769; GO:0005886; GO:0005887; GO:0006935; GO:0006955; GO:0007186; GO:0019956; GO:0055037 

RCC1_XENLA GO:0005085; GO:0005634; GO:0005694; GO:0005737; GO:0007049; GO:0051301 

PESC_SALSA GO:0000463; GO:0000466; GO:0005654; GO:0005730; GO:0008283; GO:0030687; GO:0043021; GO:0070545 

PPIL1_BOVIN GO:0000398; GO:0000413; GO:0003755; GO:0005634; GO:0006457; GO:0016018; GO:0071007; GO:0097718 

FABPH_ONCMY GO:0005737; GO:0008289 

S13A2_HUMAN GO:0005215; GO:0005886; GO:0005887; GO:0015361; GO:0016020; GO:0070062; GO:0098656 

TBL2_MOUSE GO:0005737; GO:0005783; GO:0019901; GO:0030968; GO:0031369; GO:0042149; GO:0051219; GO:0071456 

GNL3_DANRE GO:0000467; GO:0003407; GO:0003924; GO:0005525; GO:0005634; GO:0005730; GO:0007096; GO:0042127; GO:0045664 

DEPD5_HUMAN GO:0005096; GO:0005764; GO:0005765; GO:0005829; GO:0010506; GO:0032007; GO:0034198; GO:0035556; GO:0044877; GO:0048471; 

GO:1904262; GO:1990130 
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MKNK2_HUMAN GO:0004674; GO:0004683; GO:0005516; GO:0005524; GO:0005634; GO:0005654; GO:0005737; GO:0006417; GO:0006468; GO:0007166; 

GO:0009931; GO:0016604; GO:0016605; GO:0018105; GO:0030097; GO:0035556; GO:0046777; GO:0046872; GO:0071243; GO:0097192 

DCAM_XENLA GO:0004014; GO:0006557; GO:0006597; GO:0008295 

GPAT1_RAT GO:0004366; GO:0005739; GO:0005741; GO:0005886; GO:0009750; GO:0010867; GO:0014823; GO:0016021; GO:0016024; GO:0031667; 

GO:0031966; GO:0032869; GO:0046686; GO:0102420 

CN028_HUMAN 
 

DDX5_MOUSE GO:0000122; GO:0000380; GO:0000381; GO:0000956; GO:0001837; GO:0003712; GO:0003723; GO:0003724; GO:0003730; GO:0004004; 

GO:0005516; GO:0005524; GO:0005634; GO:0005730; GO:0005737; GO:0006357; GO:0007623; GO:0009299; GO:0010501; GO:0019899; 

GO:0030509; GO:0030520; GO:0030521; GO:0033158; GO:0035500; GO:0036002; GO:0043021; GO:0043517; GO:0045069; GO:0045445; 

GO:0045667; GO:0045893; GO:0046332; GO:0048306; GO:0050681; GO:0060765; GO:0061614; GO:0070412; GO:0070878; GO:0071013; 

GO:0072332; GO:1903800; GO:1990841; GO:1990904; GO:2001014 

PPP5_HUMAN GO:0000165; GO:0000278; GO:0001933; GO:0001965; GO:0003723; GO:0004721; GO:0004722; GO:0005524; GO:0005634; GO:0005654; 

GO:0005829; GO:0005886; GO:0006281; GO:0006351; GO:0006470; GO:0008017; GO:0008289; GO:0010288; GO:0016576; GO:0016791; 

GO:0032991; GO:0035970; GO:0042802; GO:0043123; GO:0043204; GO:0043231; GO:0043278; GO:0043531; GO:0046872; GO:0051291; 

GO:0051879; GO:0070262; GO:0070301; GO:0071276; GO:0101031; GO:1901215; GO:1904550; GO:1990635; GO:2000324 

NFM_HUMAN GO:0005200; GO:0005883; GO:0008017; GO:0030424; GO:0033693; GO:0045111; GO:0061564; GO:0097418 

MAON_HUMAN GO:0004470; GO:0004471; GO:0004473; GO:0005739; GO:0005759; GO:0006090; GO:0006099; GO:0006108; GO:0008948; GO:0009060; 

GO:0046872; GO:0048037; GO:0051287; GO:0055114; GO:0072592 

PDE8B_MOUSE GO:0001662; GO:0004115; GO:0006198; GO:0007165; GO:0008542; GO:0035106; GO:0046676; GO:0046872; GO:0050885; GO:0061179; 

GO:0090032 

ABCF3_PONAB GO:0005524; GO:0016887; GO:0051607 

PSMD2_BOVIN GO:0005634; GO:0008540; GO:0022624; GO:0030234; GO:0034515; GO:0042176; GO:0043161 

SMD3_HUMAN GO:0000243; GO:0000245; GO:0000387; GO:0000398; GO:0003723; GO:0005654; GO:0005681; GO:0005682; GO:0005683; GO:0005685; 

GO:0005686; GO:0005687; GO:0005689; GO:0005697; GO:0005829; GO:0006369; GO:0006479; GO:0008334; GO:0008380; GO:0016604; 

GO:0019899; GO:0030532; GO:0030620; GO:0034709; GO:0034715; GO:0034719; GO:0051170; GO:0070034; GO:0071007; GO:0071010; 

GO:0071011; GO:0071013; GO:0071208; GO:0071209; GO:0097526; GO:1990446 

PLPL2_RAT GO:0004806; GO:0005737; GO:0005811; GO:0005886; GO:0010891; GO:0010898; GO:0016020; GO:0016021; GO:0019433; GO:0055088 

PS11B_DANRE GO:0005198; GO:0005634; GO:0005829; GO:0006511; GO:0008541; GO:0022624; GO:0043248; GO:0048863 

TSR1_XENLA GO:0005730; GO:0042254 

PKHG7_HUMAN GO:0005089; GO:0035023 

UBP5_HUMAN GO:0004197; GO:0004843; GO:0005764; GO:0005829; GO:0006511; GO:0008270; GO:0016579; GO:0032436; GO:0036459; GO:0043130; 

GO:0071108 

FADS2_TACFU GO:0005789; GO:0006636; GO:0016021; GO:0016213 

HXK4_HUMAN GO:0001678; GO:0004340; GO:0005524; GO:0005536; GO:0005654; GO:0005739; GO:0005829; GO:0006096; GO:0006110; GO:0006739; 

GO:0032024; GO:0032869; GO:0042593; GO:0043266; GO:0044320; GO:0045721; GO:0045725; GO:0050796; GO:0051156; GO:0051594; 

GO:0061621; GO:0070509 

FAS_CHICK GO:0003697; GO:0004312; GO:0004313; GO:0004314; GO:0004315; GO:0004316; GO:0004320; GO:0005623; GO:0006089; GO:0006633; 

GO:0016295; GO:0016296; GO:0031177; GO:0032100; GO:0047117; GO:0047451; GO:0102131; GO:0102132 

SCD1_TACFU GO:0004768; GO:0005789; GO:0006633; GO:0016021; GO:0046872 

BMAL2_CHICK GO:0003700; GO:0005634; GO:0005667; GO:0005737; GO:0006351; GO:0042753; GO:0045893; GO:0046983; GO:0048511; GO:0070888 

ES8L2_MOUSE GO:0001726; GO:0003779; GO:0005829; GO:0005886; GO:0007266; GO:0007605; GO:0016601; GO:0030676; GO:0032421; GO:0032426; 

GO:0032587; GO:0032991; GO:0035023; GO:0051015; GO:1900029 

ELOV5_TACFU GO:0005789; GO:0006636; GO:0009922; GO:0016021; GO:0019367; GO:0030425; GO:0034625; GO:0034626; GO:0035338; GO:0042761; 

GO:0102336; GO:0102337; GO:0102338; GO:0102756 

FAS_CHICK GO:0003697; GO:0004312; GO:0004313; GO:0004314; GO:0004315; GO:0004316; GO:0004320; GO:0005623; GO:0006089; GO:0006633; 

GO:0016295; GO:0016296; GO:0031177; GO:0032100; GO:0047117; GO:0047451; GO:0102131; GO:0102132 

HOOK1_DANRE GO:0005737; GO:0005813; GO:0005829; GO:0005874; GO:0007032; GO:0007040; GO:0008017; GO:0008333; GO:0015031; GO:0030705; 

GO:0031122; GO:0045022; GO:0051959; GO:0070695 

CP1A1_LIZAU GO:0005506; GO:0005789; GO:0020037; GO:0031090; GO:0070330 
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ACACA_HUMAN GO:0001650; GO:0001894; GO:0003989; GO:0004075; GO:0005524; GO:0005829; GO:0006084; GO:0006633; GO:0006853; GO:0015629; 

GO:0019538; GO:0031325; GO:0042802; GO:0045540; GO:0046872; GO:0046949; GO:0051289; GO:0055088; GO:0071380; GO:2001295 

DDX5_HUMAN GO:0000122; GO:0000380; GO:0000381; GO:0000398; GO:0000956; GO:0001837; GO:0003723; GO:0003724; GO:0003730; GO:0004004; 

GO:0005516; GO:0005524; GO:0005634; GO:0005654; GO:0005730; GO:0005737; GO:0006357; GO:0009299; GO:0010501; GO:0016020; 

GO:0019899; GO:0030509; GO:0030520; GO:0030521; GO:0035500; GO:0036002; GO:0043021; GO:0043517; GO:0045069; GO:0045445; 

GO:0045667; GO:0046332; GO:0048306; GO:0048511; GO:0050681; GO:0060765; GO:0061614; GO:0070062; GO:0070412; GO:0070878; 

GO:0071013; GO:0072332; GO:1903800; GO:1990841; GO:1990904; GO:2001014 

PELO_DANRE GO:0004519; GO:0005634; GO:0005737; GO:0006412; GO:0007049; GO:0032790; GO:0043022; GO:0046872; GO:0051301; GO:0070481; 

GO:0070651; GO:0070966; GO:0071025 

ACKR4_HUMAN GO:0004950; GO:0005044; GO:0005769; GO:0005886; GO:0005887; GO:0006935; GO:0006955; GO:0007186; GO:0019956; GO:0055037 

TOR3A_HUMAN GO:0005524; GO:0005783; GO:0005788; GO:0016887; GO:0070062 

ALG5_HUMAN GO:0004576; GO:0004581; GO:0005789; GO:0006486; GO:0006487; GO:0007368; GO:0016020; GO:0016021; GO:0018279 

CASR_PIG GO:0004930; GO:0005509; GO:0005513; GO:0005887; GO:0006874; GO:0007186; GO:0010628; GO:0016597; GO:0032781; GO:0042803; 

GO:0051924; GO:0070509 

PLPL2_HUMAN GO:0004465; GO:0004806; GO:0005654; GO:0005737; GO:0005788; GO:0005789; GO:0005811; GO:0005829; GO:0005886; GO:0010891; 

GO:0010898; GO:0016020; GO:0016021; GO:0016411; GO:0019433; GO:0019915; GO:0034389; GO:0036155; GO:0043687; GO:0044267; 

GO:0055088 

IDHP_BOVIN GO:0000287; GO:0004450; GO:0005739; GO:0005743; GO:0005777; GO:0005829; GO:0006097; GO:0006099; GO:0006102; GO:0006103; 

GO:0051287 

JARD2_DANRE GO:0003677; GO:0003682; GO:0005634; GO:0006351; GO:0007275; GO:0016577; GO:0031061; GO:0035097; GO:0045892; GO:0048863; 

GO:0051574 

ELOV6_DANRE GO:0005783; GO:0006636; GO:0009922; GO:0019367; GO:0030148; GO:0030176; GO:0034625; GO:0034626; GO:0035338; GO:0042759; 

GO:0042761; GO:0102336; GO:0102337; GO:0102338; GO:0102756 

ACLY_HUMAN GO:0003878; GO:0005524; GO:0005576; GO:0005654; GO:0005829; GO:0005886; GO:0006085; GO:0006101; GO:0006107; GO:0006633; 

GO:0006695; GO:0008610; GO:0009346; GO:0015936; GO:0016020; GO:0031325; GO:0035578; GO:0043312; GO:0046872; GO:0046949; 

GO:0048037; GO:0070062; GO:1904813 

HHIP_HUMAN GO:0003824; GO:0005576; GO:0005634; GO:0005737; GO:0005887; GO:0007224; GO:0007405; GO:0008270; GO:0009953; GO:0009968; 

GO:0009986; GO:0040036; GO:0043066; GO:0045879; GO:0048705; GO:0060170; GO:0060441; GO:0097108 

NFM_HUMAN GO:0005200; GO:0005883; GO:0008017; GO:0030424; GO:0033693; GO:0045111; GO:0061564; GO:0097418 

MANF_HUMAN GO:0002576; GO:0003723; GO:0005576; GO:0005615; GO:0005634; GO:0005783; GO:0005788; GO:0005829; GO:0006986; GO:0008083; 

GO:0008289; GO:0031175; GO:0033018; GO:0071542; GO:1905897 

LAYN_CRIGR GO:0001726; GO:0009986; GO:0016021; GO:0030246 

HS90A_PIG GO:0005524; GO:0005634; GO:0005737; GO:0005886; GO:0006457; GO:0009408; GO:0009409; GO:0016887; GO:0030235; GO:0030911; 

GO:0042470; GO:0045429; GO:0046677; GO:0051082 

NDUC2_MOUSE GO:0005737; GO:0005739; GO:0005743; GO:0005747; GO:0006120; GO:0008137; GO:0010918; GO:0016021; GO:0032981; GO:0050727; 

GO:0060547; GO:1901223; GO:1903427; GO:2001171 

FOS_TAKRU GO:0003677; GO:0003700; GO:0005634; GO:0005667; GO:0006357 

COPZ2_MOUSE GO:0000139; GO:0005829; GO:0015031; GO:0016192; GO:0030126; GO:0030137; GO:0033116 

CP2CE_RABIT GO:0005506; GO:0005789; GO:0020037; GO:0031090; GO:0070330 

GA45G_BOVIN GO:0000185; GO:0005634; GO:0005737; GO:0006915; GO:0006950; GO:0007275; GO:0030154; GO:0043065; GO:0046330; GO:0051726; 

GO:1900745 

IDHC_BOVIN GO:0000287; GO:0004450; GO:0005737; GO:0005829; GO:0006097; GO:0006099; GO:0006102; GO:0006103; GO:0006979; GO:0051287 

M3K8_MOUSE GO:0000287; GO:0002376; GO:0004674; GO:0004709; GO:0005524; GO:0005737; GO:0005829; GO:0007049; GO:0007346; GO:0023014; 

GO:0031098; GO:0032147; GO:0042981 

SYLC_HUMAN GO:0002161; GO:0004819; GO:0004823; GO:0004832; GO:0005096; GO:0005524; GO:0005737; GO:0005764; GO:0005783; GO:0005829; 

GO:0006418; GO:0006425; GO:0006429; GO:0006438; GO:0006622; GO:0008361; GO:0010507; GO:0012505; GO:0016604; GO:0017101; 

GO:0034198; GO:0043547; GO:0071230; GO:0071233; GO:1904263; GO:1990253 

ANM1_RAT GO:0005634; GO:0005654; GO:0005829; GO:0006355; GO:0006479; GO:0008276; GO:0008284; GO:0008327; GO:0008469; GO:0008757; 

GO:0016020; GO:0016274; GO:0016275; GO:0018216; GO:0019919; GO:0030519; GO:0032991; GO:0034709; GO:0035241; GO:0035242; 
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GO:0035247; GO:0042802; GO:0043985; GO:0044020; GO:0045648; GO:0045652; GO:0045653; GO:0046985; GO:0051260; GO:0097421; 

GO:1900745; GO:1904047 

TSN15_MOUSE GO:0005886; GO:0005887; GO:0007166; GO:0009986; GO:0019899; GO:0031902; GO:0051604; GO:0072659; GO:0097197 

SRPRB_MOUSE GO:0005047; GO:0005525; GO:0005737; GO:0005785; GO:0005881; GO:0016020; GO:0016021; GO:0031625 

S61A1_DANRE GO:0005789; GO:0015031; GO:0016021; GO:0021986; GO:0039019 

DNJA1_HUMAN GO:0001664; GO:0001671; GO:0005524; GO:0005634; GO:0005739; GO:0005829; GO:0006457; GO:0006986; GO:0009408; GO:0015630; 

GO:0016020; GO:0030544; GO:0030957; GO:0031397; GO:0031625; GO:0043065; GO:0043066; GO:0043508; GO:0046872; GO:0048471; 

GO:0050750; GO:0051082; GO:0051087; GO:0051223; GO:0055131; GO:0070062; GO:0070585; GO:0098554; GO:1903748; GO:1905259 

HS90B_HUMAN GO:0001890; GO:0002134; GO:0002135; GO:0003723; GO:0003725; GO:0005524; GO:0005525; GO:0005576; GO:0005634; GO:0005654; 

GO:0005737; GO:0005739; GO:0005765; GO:0005829; GO:0006457; GO:0006805; GO:0006986; GO:0007004; GO:0009651; GO:0009986; 

GO:0016020; GO:0016234; GO:0016323; GO:0016324; GO:0017098; GO:0019062; GO:0019887; GO:0019900; GO:0019901; GO:0021955; 

GO:0023026; GO:0030010; GO:0030235; GO:0030511; GO:0030911; GO:0031072; GO:0031396; GO:0031526; GO:0031625; GO:0032092; 

GO:0032435; GO:0032516; GO:0032564; GO:0032991; GO:0033138; GO:0033160; GO:0034751; GO:0034774; GO:0035690; GO:0038096; 

GO:0042220; GO:0042277; GO:0042470; GO:0042623; GO:0042802; GO:0042803; GO:0042826; GO:0043008; GO:0043025; GO:0043312; 

GO:0043524; GO:0044294; GO:0044295; GO:0044325; GO:0045296; GO:0045429; GO:0045597; GO:0045793; GO:0046983; GO:0048156; 

GO:0048471; GO:0048675; GO:0050821; GO:0051082; GO:0051131; GO:0051248; GO:0051897; GO:0051973; GO:0060334; GO:0060338; 

GO:0070062; GO:0070182; GO:0071157; GO:0071353; GO:0071407; GO:0071902; GO:0097435; GO:0097718; GO:1900034; GO:1901389; 

GO:1901799; GO:1902949; GO:1903660; GO:1903827; GO:1904031; GO:1904813; GO:1905323; GO:1990226; GO:1990913; GO:1990917; 

GO:2000010 

CP2F1_HUMAN GO:0004497; GO:0005506; GO:0005789; GO:0006805; GO:0008392; GO:0008395; GO:0009636; GO:0016712; GO:0018931; GO:0018979; 

GO:0019373; GO:0019825; GO:0020037; GO:0031090; GO:0043231; GO:0070330 

S13A2_HUMAN GO:0005215; GO:0005886; GO:0005887; GO:0015361; GO:0016020; GO:0070062; GO:0098656 

G0S2_MOUSE GO:0005739; GO:0097191; GO:0120162; GO:2001238 

GRB10_HUMAN GO:0005070; GO:0005158; GO:0005737; GO:0005829; GO:0005886; GO:0007411; GO:0008286; GO:0030178; GO:0030949; GO:0032868; 

GO:0032991; GO:0042326; GO:0042327; GO:0042802; GO:0045719; GO:0046325; GO:0046627; GO:0048009; GO:0120162 

AMPE_BOVIN GO:0002003; GO:0003081; GO:0004177; GO:0005737; GO:0005886; GO:0006508; GO:0008217; GO:0008270; GO:0008283; GO:0016021; 

GO:0016477; GO:0042277; GO:0043171; GO:0070006 

TT39A_DANRE 
 

SERPH_CHICK GO:0003433; GO:0004867; GO:0005518; GO:0005783; GO:0005788; GO:0005793; GO:0030199; GO:0032964; GO:0045121; GO:0051082; 

GO:0051604 

SATL1_HUMAN GO:0004145; GO:0005829; GO:0019809; GO:0032918; GO:0046208 

CLAP1_XENTR GO:0000777; GO:0005794; GO:0005815; GO:0005828; GO:0005881; GO:0007020; GO:0007049; GO:0031023; GO:0034453; GO:0043515; 

GO:0051010; GO:0051301 

LRRF2_XENTR GO:0006355; GO:0009950; GO:0016055; GO:0030275 

FAS_CHICK GO:0003697; GO:0004312; GO:0004313; GO:0004314; GO:0004315; GO:0004316; GO:0004320; GO:0005623; GO:0006089; GO:0006633; 

GO:0016295; GO:0016296; GO:0031177; GO:0032100; GO:0047117; GO:0047451; GO:0102131; GO:0102132 

APOA4_HUMAN GO:0001523; GO:0002227; GO:0005319; GO:0005507; GO:0005576; GO:0005615; GO:0005769; GO:0005788; GO:0005829; GO:0006695; 

GO:0006869; GO:0006982; GO:0007159; GO:0008203; GO:0008289; GO:0010873; GO:0010898; GO:0015485; GO:0016042; GO:0016209; 

GO:0017127; GO:0019430; GO:0030300; GO:0031102; GO:0031210; GO:0032374; GO:0033344; GO:0033700; GO:0034361; GO:0034364; 

GO:0034371; GO:0034372; GO:0034375; GO:0034378; GO:0034380; GO:0034445; GO:0035634; GO:0042157; GO:0042627; GO:0042632; 

GO:0042744; GO:0042802; GO:0042803; GO:0043691; GO:0044267; GO:0045723; GO:0046470; GO:0051006; GO:0055088; GO:0060228; 

GO:0062023; GO:0065005; GO:0070062; GO:0070328; GO:0072562 

TS101_HUMAN GO:0000813; GO:0001558; GO:0003677; GO:0003714; GO:0005730; GO:0005737; GO:0005768; GO:0005769; GO:0005770; GO:0005771; 

GO:0005815; GO:0005829; GO:0005886; GO:0006513; GO:0006858; GO:0007050; GO:0007175; GO:0008285; GO:0008333; GO:0010008; 

GO:0015031; GO:0016197; GO:0016236; GO:0019058; GO:0030216; GO:0030374; GO:0031625; GO:0031901; GO:0031902; GO:0036258; 

GO:0039702; GO:0042059; GO:0042803; GO:0043130; GO:0043162; GO:0043405; GO:0044877; GO:0045892; GO:0046755; GO:0046790; 

GO:0048306; GO:0048524; GO:0051301; GO:0070062; GO:0090543; GO:0097352; GO:1902188; GO:1903543; GO:1903551; GO:1903772; 

GO:1903774; GO:1990182; GO:2000397 

TYSY_MOUSE GO:0000166; GO:0000900; GO:0003729; GO:0004799; GO:0005542; GO:0005634; GO:0005730; GO:0005737; GO:0005739; GO:0005743; 

GO:0005759; GO:0006231; GO:0006235; GO:0006417; GO:0007568; GO:0007623; GO:0008144; GO:0017148; GO:0019088; GO:0019860; 
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GO:0032570; GO:0033189; GO:0034097; GO:0035999; GO:0042803; GO:0045471; GO:0046078; GO:0046683; GO:0048037; GO:0048589; 

GO:0051216; GO:0051384; GO:0051593; GO:0060574; GO:0097421; GO:1990825 

SEPT7_MOUSE GO:0000281; GO:0000777; GO:0001725; GO:0005525; GO:0005634; GO:0005819; GO:0005930; GO:0005938; GO:0005940; GO:0007283; 

GO:0016020; GO:0016476; GO:0030496; GO:0030865; GO:0031105; GO:0031270; GO:0032154; GO:0032156; GO:0032160; GO:0032991; 

GO:0042802; GO:0043005; GO:0043209; GO:0043679; GO:0044297; GO:0045202; GO:0046982; GO:0048668; GO:0051291; GO:0060271; 

GO:0060997; GO:0097227; GO:0097730; GO:1902857 

SVEP1_HUMAN GO:0003682; GO:0005509; GO:0005576; GO:0005737; GO:0007155; GO:0016020 

S13A5_HUMAN GO:0005886; GO:0005887; GO:0015137; GO:0015141; GO:0015746; GO:0017153; GO:0035674 

LORF2_HUMAN GO:0003964; GO:0006310; GO:0009036; GO:0032197; GO:0032199; GO:0046872; GO:0090305 

PCKGC_CHICK GO:0003729; GO:0004550; GO:0004613; GO:0005525; GO:0005829; GO:0006089; GO:0006090; GO:0006094; GO:0006111; GO:0006522; 

GO:0006531; GO:0006536; GO:0006541; GO:0006544; GO:0006560; GO:0006735; GO:0007296; GO:0007568; GO:0007586; GO:0008343; 

GO:0008906; GO:0009069; GO:0009792; GO:0015743; GO:0016042; GO:0018991; GO:0019157; GO:0019543; GO:0019563; GO:0019953; 

GO:0030145; GO:0030703; GO:0032496; GO:0032869; GO:0033993; GO:0042149; GO:0042594; GO:0043565; GO:0043950; GO:0045722; 

GO:0045912; GO:0045913; GO:0046015; GO:0046898; GO:0047134; GO:0048562; GO:0048589; GO:0050692; GO:0050892; GO:0051379; 

GO:0051384; GO:0051591; GO:0060259; GO:0070365; GO:0070741; GO:0071300; GO:0071320; GO:0071332; GO:0071333; GO:0071347; 

GO:0071356; GO:0071361; GO:0071374; GO:0071377; GO:0071456; GO:0071549; GO:0072071; GO:1904640 

FABPH_ONCMY GO:0005737; GO:0008289 

IRF1_HUMAN GO:0000790; GO:0000978; GO:0000981; GO:0001077; GO:0002819; GO:0003677; GO:0005634; GO:0005654; GO:0005737; GO:0005829; 

GO:0006366; GO:0006915; GO:0007050; GO:0007596; GO:0008285; GO:0032481; GO:0032728; GO:0034124; GO:0035458; GO:0043374; 

GO:0045084; GO:0045088; GO:0045590; GO:0045892; GO:0045893; GO:0045944; GO:0051607; GO:0051726; GO:0060333; GO:0060337; 

GO:0071260; GO:2000564 

LIPO_RHIMB GO:0005576; GO:0036094 

MK06_CHICK GO:0004707; GO:0005524; GO:0005634; GO:0005737; GO:0005829; GO:0007049; GO:0010468; GO:0019901; GO:0032156; GO:0032991; 

GO:0046982; GO:0060999; GO:0071310 

PRI1_HUMAN GO:0000082; GO:0003697; GO:0003896; GO:0005654; GO:0005658; GO:0006269; GO:0016020; GO:0032201; GO:0046872 

ACBG2_XENLA GO:0004467; GO:0005524; GO:0005737; GO:0102391 

CLC4M_NOMCO GO:0002250; GO:0005537; GO:0006897; GO:0016021; GO:0045087; GO:0046872 

CP7A1_HUMAN GO:0005506; GO:0005789; GO:0006699; GO:0006707; GO:0008123; GO:0016125; GO:0019216; GO:0020037; GO:0031090; GO:0042632; 

GO:0043231; GO:0070857; GO:0071333; GO:0071397 

DNJC3_HUMAN GO:0004860; GO:0005576; GO:0005737; GO:0005783; GO:0005788; GO:0005790; GO:0005829; GO:0016020; GO:0019901; GO:0031205; 

GO:0035578; GO:0036494; GO:0036498; GO:0043066; GO:0043312; GO:0043687; GO:0044267; GO:0051087; GO:0051603; GO:0051607; 

GO:0051787; GO:0070062; GO:0070417; GO:1903561; GO:1903912 

TREF1_MOUSE GO:0000118; GO:0003700; GO:0005634; GO:0005654; GO:0005667; GO:0005730; GO:0005829; GO:0006351; GO:0006357; GO:0008134; 

GO:0044212; GO:0045893; GO:0046872 

FAZ1_TRYB2 GO:0000281; GO:0005856; GO:0005929; GO:0020016; GO:0031514; GO:0060271 

HS3SA_HUMAN GO:0000139; GO:0006024; GO:0008146; GO:0008467; GO:0016021; GO:0033872 

CSRN1_HUMAN GO:0000981; GO:0001228; GO:0003700; GO:0005634; GO:0006915; GO:0009791; GO:0043565; GO:0045944; GO:0048008; GO:0048705; 

GO:0060021; GO:0060325 

ACSL4_HUMAN GO:0004467; GO:0005524; GO:0005737; GO:0005741; GO:0005778; GO:0005789; GO:0005811; GO:0006629; GO:0007584; GO:0008610; 

GO:0015908; GO:0016020; GO:0016021; GO:0019432; GO:0030307; GO:0031957; GO:0032307; GO:0035338; GO:0043025; GO:0044233; 

GO:0047676; GO:0060136; GO:0060996; GO:0070062; GO:0070672; GO:0102391 

CAN5_HUMAN GO:0004198; GO:0005737; GO:0005925; GO:0006508; GO:0007165; GO:0009986; GO:0070062 

DCAM_HUMAN GO:0004014; GO:0005829; GO:0006557; GO:0006595; GO:0006597; GO:0008295; GO:0019810; GO:0046500 

SHH_XENLA GO:0005509; GO:0005615; GO:0005886; GO:0007267; GO:0007275; GO:0008233; GO:0008270; GO:0016539; GO:0045880 
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Table 5. Thermal tolerance comparisons based on critical thermal maximum (CTMAX) of five rainbowfish ecotypes 

with a single factor ANOVA. 

Species Ecotype n Max CTMAX Min CTMAX Average Variance 

Melanotaenia splendida splendida Tropical savannah 10 39.0 37.9 38.40 0.129 

Melanotaenia splendida splendida Tropical rainforest 10 38.9 37.5 38.23 0.293 

Melanotaenia duboulayi Subtropical 10 38.6 37.0 37.96 0.174 

Melanotaenia splendida tatei Desert 10 37.6 36.1 37.24 0.232 

Melanotaenia fluviatilis Temperate 10 36.5 33.1 34.88 1.633 
 

Source of Variation SS df MS F P-value F crit 
Between Groups 83.6168 4 20.9042 42.4786182 9.9E-15 2.578739184 
Within Groups 22.145 45 0.49211111    
       
Total 105.7618 49         

 

 

Table 6. Thermal tolerance comparisons based on critical thermal maximum (CTMAX) of five rainbowfish ecotypes 

using two-sample t-tests. 

  Rainforest vs Savannah Tropical vs Subtropical Tropical vs Desert Tropical vs Temperate 

 Variable 1 Variable 2 Variable 1 Variable 2 Variable 1 Variable 2 Variable 1 Variable 2 

Mean 38.230 38.400 38.315 37.960 38.315 37.240 34.880 38.315 

Variance 0.293 0.129 0.208 0.174 0.208 0.232 1.633 0.208 

Observations 10.000 10.000 20.000 10.000 20.000 10.000 10.000 20.000 

Pooled Variance 0.211  0.197  0.215    

Hypothesized Mean Difference 0.000  0.000  0.000  0.000  

df 18.000  28.000  28.000  10.000  

t Stat -0.827  2.066  5.981  -8.243  

P(T<=t) one-tail 0.209  0.024  0.000  0.000  

t Critical one-tail 1.734  1.701  1.701  1.812  

P(T<=t) two-tail 0.419  0.048  0.000  0.000  

t Critical two-tail 2.101   2.048   2.048   2.228   
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Figure 1. Overview of native thermal conditions at the sampling locality of five Melanotaenia rainbowfish 

ecotypes, based on ten contemporary BIOCLIM variables (Booth et al. 2014). 
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Figure 2. Protein interaction network for climate warming responses across rainforest and savannah Melanotaenia 

splendida splendida, based on 189 unigenes differentially expressed between control (21°C) and projected 2027 

summer treatment (33°C) groups. Node sizes are proportional to centrality in the network (betweenness 

centrality), while shading indicates the relative number of direct interaction (neighbourhood connectivity; green 

= fewer interactions, orange = more interactions). 
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4. Companion publication 

Full manuscript of Sandoval-Castillo et al. (2020), “Adaptation of plasticity to projected maximum 

temperatures and across climatically defined bioregions”, Proceedings of the National Academy of 

Sciences, 117(29), 17112-17121. 



 

175 
 



 

176 
 



 

177 
 



 

178 
 



 

179 
 



 

180 
 



 

181 
 



 

182 
 



 

183 
 



 

184 
 

 

  



 

185 
 

5. Code used in R for environmental association analyses 

 

RDA: GEA 

 

######################################################## 

###RDA: Detecting genomic adaptation within tropical rainforest ### 

######################################################## 

 

 

setwd("C:/Users/kgate/Desktop/Dryad/RDA_GEA") 

 

# load required packages 

library(vegan)      #ordination (RDA) 

library(adegenet)   #to import snp dataset 

 

 

#import predictor dataset 

rfenvunsc = read.table("env_rf_unscaled.txt", row.names = 1, header = TRUE) 

 

#Scale and check inputs 

rfenviro <- scale(rfenvunsc) 

rfenviro = as.data.frame(rfenviro) 

 

# import genotypes (counts of reference allele) which was taken from full snp dataset of all indivs RDA 

rfsnps = read.table("rfsnps.txt", row.names = 1, header = TRUE) 

rfsnps[1:10,1:10] 

 

# check total % missing data 

(sum(is.na(rfsnps)))/(dim(rfsnps)[1]*dim(rfsnps)[2])*100 

#2.549876 

 

# impute missing data with most common genotype 

rfsnps <- apply(rfsnps, 2, function(x) replace(x, is.na(x), as.numeric(names(which.max(table(x)))))) 
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# check % missing data again 

(sum(is.na(rfsnps)))/(dim(rfsnps)[1]*dim(rfsnps)[2])*100 

#[1] 0 

rfsnps[1:10,1:10] 

 

#check rownames against other inputs 

stopifnot(all(row.names(rfsnps) == row.names(rfenviro))) 

 

########################## 

#Run initial global RDA 

#RDA 

globalrda_rf=rda(rfsnps ~ RUNSUMMERMEAN 

                 +STRANNTEMP 

                 +STRANNRAIN 

                 +RDI 

                 +ASPECT 

                 +STRDENSITY, 

                 data=rfenviro) 

 

 

#double check variables are uncorrelated (vif < 5) 

vif.cca(globalrda_rf) 

#RUNSUMMERMEAN    STRANNTEMP    STRANNRAIN           RDI        ASPECT    STRDENSITY  

#2.659303      1.653336      1.402749      2.259543      1.613286      1.739524  

 

 

#Check the plots 

plot(globalrda_rf, scaling=3) 

screeplot(globalrda_rf) 

 

 

#test significanc of the model 

model.sig_rf = anova.cca(globalrda_rf, nperm=999) 

#Df                   Variance      F        Pr(>F)     

#Model      6         876.88        10.222   0.001 *** 
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#Residual 203        2902.49  

 

 

#backwards-stepwise selection to determine the best combination  

#of explanatory variables and their relative contributions to the model 

ordistep(globalrda_rf) 

#Df    AIC       F Pr(>F)    

#- ASPECT         1 1688.0  2.5093  0.005 ** 

#  - RDI            1 1688.6  3.1267  0.005 ** 

#  - RUNSUMMERMEAN  1 1694.6  9.1333  0.005 ** 

#  - STRDENSITY     1 1696.5 10.9838  0.005 ** 

#  - STRANNTEMP     1 1698.4 13.0030  0.005 ** 

#  - STRANNRAIN     1 1703.6 18.3791  0.005 ** 

#  --- 

#  Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

 

#Call: rda(formula = rfsnps ~ RUNSUMMERMEAN + STRANNTEMP + STRANNRAIN + RDI + 

#            ASPECT + STRDENSITY, data = rfenviro) 

 

#Inertia Proportion Rank 

#Total         3779.370      1.000      

#Constrained    876.878      0.232    6 

#Unconstrained 2902.492      0.768  203 

#Inertia is variance  

 

#Eigenvalues for constrained axes: 

#  RDA1  RDA2  RDA3  RDA4  RDA5  RDA6  

#328.7 233.6 200.1  47.2  40.9  26.4  

 

#Eigenvalues for unconstrained axes: 

#  PC1    PC2    PC3    PC4    PC5    PC6    PC7    PC8  

#108.50  55.77  38.96  33.68  24.21  23.00  21.74  21.47  

#(Showing 8 of 203 unconstrained eigenvalues) 

 

 

#test significance of explanatory variables 
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margin.sig_rf = anova.cca(globalrda_rf, by="margin", nperm=999) 

#  Df Variance       F Pr(>F)     

#  RUNSUMMERMEAN   1   130.59  9.1333  0.001 *** 

#  STRANNTEMP      1   185.92 13.0030  0.001 *** 

#  STRANNRAIN      1   262.78 18.3791  0.001 *** 

#  RDI             1    44.71  3.1267  0.001 *** 

#  ASPECT          1    35.88  2.5093  0.001 *** 

#  STRDENSITY      1   157.05 10.9838  0.001 *** 

#  Residual      203  2902.49                    

#--- 

#  Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

 

#Test significance of each constrained axis 

axis.sig = anova.cca(globalrda_rf, by="axis", nperm=999) 

 

 

#### Plot global RDA #### 

#by catchment 

 

#get location names 

rfloc = read.table("rfloc.txt", row.names = 1, header = TRUE) 

rfloc = as.data.frame(rfloc[1:210,]) 

stopifnot(all(row.names(rfloc) == row.names(rfenviro))) 

rfenvloc = cbind(rfenviro, rfloc) 

 

#Set catchment as factor 

factor(rfenvloc$Catchment, as.character(unique(rfenvloc$Catchment))) 

rfcat <- rfenvloc$Catchment 

 

#Set colours and legend labels 

rfleglab = c("Mulgrave", "Mossman", "Saltwater", "Daintree", "Hutchinson") 

rflegcol <- c("#FFAABB","#77AADD","#EE8866","#99DDFF","#44BB99") 

rfcatcol <- c("#99DDFF","#44BB99","#77AADD","#FFAABB", "#EE8866") 

 

#Make the plot 

plot(globalrda_rf, type="n", scaling=3) 
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points(globalrda_rf, display="sites", pch=21, cex=2, col="white", scaling=3, bg=rfcatcol[rfcat])  

points(globalrda_rf, display="species", pch=20, cex=0.7, col="#ccc3ea", scaling=3)   

text(globalrda_rf, scaling=3, display="bp", col="black", font=2, cex=1)                    

legend("topleft", legend = rfleglab, col=rflegcol, pch=21, pt.cex=2, cex=0.9, xpd=1, box.lty = 0, pt.bg=rflegcol, 
bg= "transparent") 

 

 

############################################ 

 

# partial RDA (pRDA) controlling for neutral structure (allelic covariance; omega) 

 

#import omega values (first 3 PCs) 

rfom = read.table("rfomeg.txt", row.names = 1, header = TRUE) 

stopifnot(all(row.names(rfom) == row.names(rfenviro))) 

stopifnot(all(row.names(rfom) == row.names(rfsnps))) 

 

 

#Partial RDA  

rfpartialrdaOM=rda(rfsnps ~ RUNSUMMERMEAN 

                 +STRANNTEMP 

                 +STRANNRAIN 

                 +RDI 

                 +ASPECT 

                 +STRDENSITY 

                 + Condition(rfom$Axis.1 + rfom$Axis.2 + rfom$Axis.3), 

                 data=rfenviro) 

 

plot(rfpartialrdaOM, scaling=3) 

screeplot(rfpartialrdaOM) 

 

ordistep(rfpartialrdaOM) 

#Df    AIC       F Pr(>F)    

#- ASPECT                                              1 1680.0  2.2519  0.005 ** 

#  - RDI                                                 1 1681.3  3.5229  0.005 ** 

#  - RUNSUMMERMEAN                                       1 1681.5  3.7060  0.005 ** 

#  - STRANNTEMP                                          1 1690.7 12.8449  0.005 ** 
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#  - STRANNRAIN                                          1 1697.6 19.9651  0.005 ** 

#  - Condition(rfom$Axis.1 + rfom$Axis.2 + rfom$Axis.3)  3 1696.5                   

#--- 

#  Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

 

#Call: rda(formula = rfsnps ~ RUNSUMMERMEAN + STRANNTEMP + STRANNRAIN + RDI + 

#            ASPECT + Condition(rfom$Axis.1 + rfom$Axis.2 + rfom$Axis.3), data = rfenviro) 

 

#              Inertia     Proportion  Rank 

#Total         3779.3703     1.0000      

#Conditional    408.7206     0.1081    3 

#Constrained    625.5521     0.1655    5 

#Unconstrained 2745.0976     0.7263  201 

#Inertia is variance  

 

#Eigenvalues for constrained axes: 

#  RDA1  RDA2  RDA3  RDA4  RDA5  

#318.6 213.4  43.4  27.0  23.1  

 

#Eigenvalues for unconstrained axes: 

#  PC1   PC2   PC3   PC4   PC5   PC6   PC7   PC8  

#40.48 33.86 24.21 23.02 21.83 21.48 21.27 20.95  

#(Showing 8 of 201 unconstrained eigenvalues) 

 

model.sigOMrf = anova.cca(rfpartialrdaOM, nperm=999) 

#Df Variance      F Pr(>F)     

#Model      5   625.55 9.1608  0.001 *** 

#  Residual 201  2745.10 

 

axis.sigOMRF = anova.cca(rfpartialrdaOM, by="axis", nperm=999) 

#Model: rda(formula = rfsnps ~ RUNSUMMERMEAN + STRANNTEMP + STRANNRAIN + RDI + ASPECT 
+ STRDENSITY + Condition(rfom$Axis.1 + rfom$Axis.2 + rfom$Axis.3), data = rfenviro) 

#Df Variance       F              Pr(>F) 

#  RDA1       1   318.58 23.3266  0.001 *** 

#  RDA2       1   213.43 15.6279  0.001 *** 

#  RDA3       1    43.42  3.1789  0.001 *** 
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#  RDA4       1    27.03  1.9794  0.001 *** 

#  RDA5       1    23.09  1.6910  0.001 *** 

#  Residual 201  2745.10 

 

margin.sigOMrf = anova.cca(rfpartialrdaOM, by="margin", nperm=999) 

 

 

#### Plots ########################### 

#by catchment 

 

plot(rfpartialrdaOM, type="n", scaling=3) 

points(rfpartialrdaOM, display="species", pch=20, cex=0.7, col="#ccc3ea", scaling=3)            

points(rfpartialrdaOM, display="sites", pch=21, cex=2, col="white", scaling=3, bg=rfcatcol[rfcat])  

text(rfpartialrdaOM, scaling=3, display="bp", col="black", font=2, cex=1)                    

legend("bottomright", legend = rfleglab, col=rflegcol, pch=21, pt.cex=2, cex=0.9, xpd=1, box.lty = 0, 
pt.bg=rflegcol, bg= "transparent") 

 

 

 

############################################################## 

#####Identify candidate SNPs involved in local adaptation##### 

############################################################## 

 

rfload.rda <- scores(rfpartialrdaOM, choices=c(1:5), display="species")  # Scores for the first three constrained 
axes 

 

hist(rfload.rda[,1], main="Loadings on RDA1") 

hist(rfload.rda[,2], main="Loadings on RDA2") 

hist(rfload.rda[,3], main="Loadings on RDA3")  

hist(rfload.rda[,4], main="Loadings on RDA4") 

hist(rfload.rda[,5], main="Loadings on RDA5")  

 

rfoutliers <- function(x,z){ 

  lims <- mean(x) + c(-1, 1) * z * sd(x)     # find loadings +/-z sd from mean loading      

  x[x < lims[1] | x > lims[2]]               # locus names in these tails 

} 
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rfcand1 <- rfoutliers(rfload.rda[,1],3)   

length(rfcand1) #181 

rfcand2 <- rfoutliers(rfload.rda[,2],3) 

length(rfcand2) #187 

rfcand3 <- rfoutliers(rfload.rda[,3],3)  

length(rfcand3) #172 

rfcand4 <- rfoutliers(rfload.rda[,4],3)  

length(rfcand4) #169 

rfcand5 <- rfoutliers(rfload.rda[,5],3)  

length(rfcand5) #199 

 

rfncand <- length(rfcand1) + length(rfcand2) + length(rfcand3) + length(rfcand4) + length(rfcand5) 

rfncand #908 with first 5 axes 

 

 

#Organize results by making one data frame with the axis, SNP name, loading, & correlation with each predictor: 

 

rfcand1 <- cbind.data.frame(rep(1,times=length(rfcand1)), names(rfcand1), unname(rfcand1)) 

rfcand2 <- cbind.data.frame(rep(2,times=length(rfcand2)), names(rfcand2), unname(rfcand2)) 

rfcand3 <- cbind.data.frame(rep(3,times=length(rfcand3)), names(rfcand3), unname(rfcand3)) 

rfcand4 <- cbind.data.frame(rep(4,times=length(rfcand4)), names(rfcand4), unname(rfcand4)) 

rfcand5 <- cbind.data.frame(rep(5,times=length(rfcand5)), names(rfcand5), unname(rfcand5)) 

 

colnames(rfcand1) <- colnames(rfcand2) <- colnames(rfcand3) <- colnames(rfcand4) <- colnames(rfcand5) <- 
c("axis","snp","loading") 

 

rfcand <- rbind(rfcand1, rfcand2, rfcand3, rfcand4, rfcand5) 

rfcand$snp <- as.character(rfcand$snp) 

 

 

#Add in correlations of each candidate SNP with the environmental predictors: 

#Remove uncorrelated explanatory variable and put in desired order 

write.csv(rfenviro, "rfen.csv") 

rfen = read.table("rfen5vars.txt", row.names = 1, header = TRUE) 

 

#Add in correlations of each candidate SNP with the environmental predictors: 
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rffoo <- matrix(nrow=(rfncand), ncol=5)  # 8 columns for 8 predictors 

colnames(rffoo) <- c("ASPECT", "RDI", "RUNSUMMERMEAN", "STRANNTEMP", "STRANNRAIN") 

 

for (i in 1:length(rfcand$snp)) { 

  nam <- rfcand[i,2] 

  rfsnp.gen <- rfsnps[,nam] 

  rffoo[i,] <- apply(rfen,2,function(x) cor(x,rfsnp.gen)) 

} 

 

rfcand <- cbind.data.frame(rfcand,rffoo)   

head(rfcand) 

 

#look for duplicates 

length(rfcand$snp[duplicated(rfcand$snp)])  # 44 on more than one axis 

# remove duplicate detections 

rfcand <- rfcand[!duplicated(rfcand$snp),] #[1] 0 

#How many unique SNPs then? 

length(rfcand$snp) 

# 864 

 

#Which predictor is each candidate SNP most strongly correlated with? 

for (i in 1:length(rfcand$snp)) { 

  bar <- rfcand[i,] 

  rfcand[i,9] <- names(which.max(abs(bar[4:8]))) # gives the variable 

  rfcand[i,10] <- max(abs(bar[4:8]))              # gives the correlation 

} 

 

colnames(rfcand)[9] <- "predictor" 

colnames(rfcand)[10] <- "correlation" 

 

table(rfcand$predictor)  

#ASPECT    RDI     RUNSUMMERMEAN    STRANNRAIN    STRANNTEMP  

#34        52      155              455           168  

 

 

######################################################################### 



 

194 
 

 

###PLOT THE SNPS### 

 

rfsel <- rfcand$snp 

rfen <- rfcand$predictor 

rfen[rfen=="ASPECT"] <- "#EEDD88" 

rfen[rfen=="RDI"] <- "#FFAABB" 

rfen[rfen=="RUNSUMMERMEAN"] <- "#99DDFF" 

rfen[rfen=="STRANNRAIN"] <- "#223ba1" 

rfen[rfen=="STRANNTEMP"] <- "#EE8866" 

 

 

# color by predictor: 

rfcol.pred <- rownames(rfpartialrdaOM$CCA$v) # pull the SNP names 

 

for (i in 1:length(rfsel)) {           # color code rfcandidate SNPs 

  rffoo <- match(rfsel[i],rfcol.pred) 

  rfcol.pred[rffoo] <- rfen[i] 

} 

 

rfcol.pred[grep("SNP",rfcol.pred)] <- '#f1eef6' # non-candidate SNPs 

rfempty <- rfcol.pred 

rfempty[grep("#f1eef6",rfempty)] <- rgb(0,1,0, alpha=0) # transparent 

rfempty.outline <- ifelse(rfempty=="#00FF0000","#00FF0000","white") 

rfbg <- c("#EEDD88","#FFAABB","#99DDFF","#223ba1","#EE8866") 

 

 

#Plot it 

# axes 1 & 2 

plot(rfpartialrdaOM, type="n", scaling=3, xlim=c(-1,1), ylim=c(-1,1)) 

points(rfpartialrdaOM, display="species", pch=21, cex=1.5, col="white", bg=rfcol.pred, scaling=3) 

points(rfpartialrdaOM, display="species", pch=21, cex=1.5, col=rfempty.outline, bg=rfempty, scaling=3) 

text(rfpartialrdaOM, scaling=3, display="bp", col="black", font=2, cex=1)  

legend("topleft", legend=c("ASPECT","RDI","RUNSUMMERMEAN","STRANNRAIN","STRANNTEMP"), 

       bty="n", col="white", pch=21, cex=0.9, pt.cex=2, pt.bg=rfbg) 
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# axes 3 & 4 

plot(rfpartialrdaOM, type="n", scaling=3, xlim=c(-1,1), ylim=c(-1,1), choices=c(3,4)) 

points(rfpartialrdaOM, display="species", pch=21, cex=1.5, col="white", bg=rfcol.pred, scaling=3, 
choices=c(3,4)) 

points(rfpartialrdaOM, display="species", pch=21, cex=1.5, col=rfempty.outline, bg=rfempty, scaling=3, 
choices=c(3,4)) 

text(rfpartialrdaOM, scaling=3, display="bp", col="black", font=2, cex=1, choices=c(3,4))  

legend("topleft", legend=c("ASPECT","RDI","RUNSUMMERMEAN","STRANNRAIN","STRANNTEMP"), 

       bty="n", col="white", pch=21, cex=0.9, pt.cex=2, pt.bg=rfbg) 

 

 

 

################################################################### 

##########Partial RDA (controlling for Fst)######################## 

################################################################### 

 

 

#PARTIAL RDA USING FST 

 

#import fst matrix 

rf_fstmatrix <-data.matrix(read.table("rf_fstmatrix.csv", sep = ",", header = TRUE, row.names = 1)) 

 

#convert to euclidian distances  

library(ade4) 

 

rf_FstLTM2<-quasieuclid(as.dist(rf_fstmatrix)) 

rf_FstLTM2 

 

#principal coordinate analysis 

library(ape) 

#pcoa_fst$values 

rf_pcoa_fst <- pcoa(rf_FstLTM2) 

rf_pcoa_fst 

 

#determine how many pcos are relevant by plotting broken stick externally 

#(here we choose two) 
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rf_Fst_PcoaAxes <- data.frame(rf_pcoa_fst$vectors) 

rf_FST_PCOA <- rf_Fst_PcoaAxes[,c(1,2)] 

rf_FST_PCOA 

 

write.csv(rf_FST_PCOA, "rf_Fst_PCoA.csv") 

#Take these, which are pop level, and align them against individuals 

 

rffst = read.table("rf_FstDistInput.txt", row.names = 1, header = TRUE) 

stopifnot(all(row.names(rffst) == row.names(rfenviro))) 

stopifnot(all(row.names(rffst) == row.names(rfsnps))) 

 

 

####################################### 

 

#Partial RDA controlling for neutral dist (Fst) 

 

rfpartialrda_fst=rda(rfsnps ~ ASPECT 

                     +RDI 

                     +RUNSUMMERMEAN 

                     +STRANNRAIN 

                     +STRANNTEMP 

                     +STRDENSITY 

                   + Condition(rffst$Axis.1 + rffst$Axis.2), 

                   data=rfenviro) 

 

#Inertia Proportion Rank 

#Total         3779.3703     1.0000      

#Conditional    577.8066     0.1529    2 

#Constrained    456.4661     0.1208    6 

#Unconstrained 2745.0976     0.7263  201 

#Inertia is variance  

 

#Eigenvalues for constrained axes: 

#  RDA1   RDA2   RDA3   RDA4   RDA5   RDA6  

#233.09 101.99  43.26  28.64  26.42  23.07  
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#Eigenvalues for unconstrained axes: 

#  PC1   PC2   PC3   PC4   PC5   PC6   PC7   PC8  

#40.48 33.86 24.21 23.02 21.83 21.48 21.27 20.95  

#(Showing 8 of 201 unconstrained eigenvalues) 

 

plot(rfpartialrda_fst, scaling=3) 

screeplot(rfpartialrda_fst) 

 

modsig_rfpartialrda_fst = anova.cca(rfpartialrda_fst, nperm=999) 

#Df Variance      F Pr(>F)     

#Model      6   456.47 5.5705  0.001 *** 

#  Residual 201  2745.10 

 

ordistep(rfpartialrda_fst) 

#Start: rfsnps ~ ASPECT + RDI + RUNSUMMERMEAN + STRANNRAIN + STRANNTEMP +      
STRDENSITY + Condition(rffst$Axis.1 + rffst$Axis.2)  

 

#Df    AIC      F Pr(>F)    

#  - RUNSUMMERMEAN                           1 1679.9 2.1458  0.005 ** 

#  - ASPECT                                  1 1680.0 2.2515  0.005 ** 

#  - STRDENSITY                              1 1680.3 2.5684  0.005 ** 

#  - RDI                                     1 1680.4 2.6300  0.005 ** 

#  - STRANNTEMP                              1 1681.8 3.9772  0.005 ** 

#  - STRANNRAIN                              1 1685.2 7.3229  0.005 ** 

#  - Condition(rffst$Axis.1 + rffst$Axis.2)  2 1687.4                  

#--- 

#  Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

 

#Call: rda(formula = rfsnps ~ ASPECT + RDI + RUNSUMMERMEAN + STRANNRAIN + 

#            STRANNTEMP + STRDENSITY + Condition(rffst$Axis.1 + rffst$Axis.2), data = rfenviro) 

 

#Inertia Proportion Rank 

#Total         3779.3703     1.0000      

#Conditional    577.8066     0.1529    2 

#Constrained    456.4661     0.1208    6 

#Unconstrained 2745.0976     0.7263  201 
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#Inertia is variance  

 

#Eigenvalues for constrained axes: 

#  RDA1   RDA2   RDA3   RDA4   RDA5   RDA6  

#233.09 101.99  43.26  28.64  26.42  23.07  

 

#Eigenvalues for unconstrained axes: 

#  PC1   PC2   PC3   PC4   PC5   PC6   PC7   PC8  

#40.48 33.86 24.21 23.02 21.83 21.48 21.27 20.95  

#(Showing 8 of 201 unconstrained eigenvalues) 

 

 

#axis sig 

axissigrf_fst = anova.cca(rfpartialrda_fst, by="axis", nperm=999) 

##Df Variance       F Pr(>F) 

#  RDA1       1   233.09 17.0672  0.001 *** 

#  RDA2       1   101.99  7.4677  0.001 *** 

#  RDA3       1    43.26  3.1675  0.001 *** 

#  RDA4       1    28.64  2.0972  0.001 *** 

#  RDA5       1    26.42  1.9345  0.001 *** 

#  RDA6       1    23.07  1.6890  0.001 *** 

#  Residual 201  2745.10 

#--- 

#  Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

 

 

#### Plots ########################### 

#by catchment 

 

plot(rfpartialrda_fst, type="n", scaling=3) 

#with(rfenviro, text(rfpartialrda_fst, display = "sites", col = rfcatcol[rfenvloc$Catchment], scaling=3, cex=0.4, 
bg= "transparent")) 

points(rfpartialrda_fst, display="species", pch=20, cex=0.7, col="#ccc3ea", scaling=3)            

points(rfpartialrda_fst, display="sites", pch=21, cex=2, col="white", scaling=3, bg=rfcatcol[rfcat])  

text(rfpartialrda_fst, scaling=3, display="bp", col="black", font=2, cex=1)                    

legend("topleft", legend = rfleglab, col=rflegcol, pch=21, pt.cex=2, cex=0.9, xpd=1, box.lty = 0, pt.bg=rflegcol, 
bg= "transparent") 
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############################################################## 

#####Identify candidate SNPs involved in local adaptation##### 

############################################################## 

 

rffst_load.rda <- scores(rfpartialrda_fst, choices=c(1:6), display="species")  # Species scores for the first three 
constrained axes 

 

hist(rffst_load.rda[,1], main="Loadings on RDA1") 

hist(rffst_load.rda[,2], main="Loadings on RDA2") 

hist(rffst_load.rda[,3], main="Loadings on RDA3")  

hist(rffst_load.rda[,4], main="Loadings on RDA4") 

hist(rffst_load.rda[,5], main="Loadings on RDA5")  

hist(rffst_load.rda[,6], main="Loadings on RDA6") 

 

rffst_outliers <- function(x,z){ 

  lims <- mean(x) + c(-1, 1) * z * sd(x)     # find loadings +/-z sd from mean loading      

  x[x < lims[1] | x > lims[2]]               # locus names in these tails 

} 

 

rffst_cand1 <- rffst_outliers(rffst_load.rda[,1],3)   

length(rffst_cand1) #166 

rffst_cand2 <- rffst_outliers(rffst_load.rda[,2],3) 

length(rffst_cand2) #213 

rffst_cand3 <- rffst_outliers(rffst_load.rda[,3],3)  

length(rffst_cand3) #161 

rffst_cand4 <- rffst_outliers(rffst_load.rda[,4],3)  

length(rffst_cand4) #198 

rffst_cand5 <- rffst_outliers(rffst_load.rda[,5],3)  

length(rffst_cand5) #155 

rffst_cand6 <- rffst_outliers(rffst_load.rda[,6],3)  

length(rffst_cand6) #200 

 

rffst_ncand <- length(rffst_cand1) + length(rffst_cand2) + length(rffst_cand3) + length(rffst_cand4) + 
length(rffst_cand5)+ length(rffst_cand6) 
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rffst_ncand #1093 with 6 axes 

 

 

#Next, we'll organize our results by making one data frame with the axis, SNP name, loading, & correlation with 
each predictor: 

 

rffst_cand1 <- cbind.data.frame(rep(1,times=length(rffst_cand1)), names(rffst_cand1), unname(rffst_cand1)) 

rffst_cand2 <- cbind.data.frame(rep(2,times=length(rffst_cand2)), names(rffst_cand2), unname(rffst_cand2)) 

rffst_cand3 <- cbind.data.frame(rep(3,times=length(rffst_cand3)), names(rffst_cand3), unname(rffst_cand3)) 

rffst_cand4 <- cbind.data.frame(rep(4,times=length(rffst_cand4)), names(rffst_cand4), unname(rffst_cand4)) 

rffst_cand5 <- cbind.data.frame(rep(5,times=length(rffst_cand5)), names(rffst_cand5), unname(rffst_cand5)) 

rffst_cand6 <- cbind.data.frame(rep(6,times=length(rffst_cand6)), names(rffst_cand6), unname(rffst_cand6)) 

 

colnames(rffst_cand1) <- colnames(rffst_cand2) <- colnames(rffst_cand3) <- colnames(rffst_cand4) <- 
colnames(rffst_cand5)<- colnames(rffst_cand6) <- c("axis","snp","loading") 

 

rffst_cand <- rbind(rffst_cand1, rffst_cand2, rffst_cand3, rffst_cand4, rffst_cand5, rffst_cand6) 

rffst_cand$snp <- as.character(rffst_cand$snp) 

 

 

#Add in correlations of each candidate SNP with the six environmental predictors: 

write.csv(rfenviro, "rfen.csv") 

rffst_en = read.table("rfenfst.txt", row.names = 1, header = TRUE) 

 

rffst_foo <- matrix(nrow=(rffst_ncand), ncol=6)  

colnames(rffst_foo) <- c("ASPECT", "RDI", "RUNSUMMERMEAN", "STRANNTEMP", "STRANNRAIN", 
"STRDENSITY") 

 

for (i in 1:length(rffst_cand$snp)) { 

  nam <- rffst_cand[i,2] 

  rffst_snp.gen <- rfsnps[,nam] 

  rffst_foo[i,] <- apply(rffst_en,2,function(x) cor(x,rffst_snp.gen)) 

} 

 

rffst_cand <- cbind.data.frame(rffst_cand,rffst_foo)   

head(rffst_cand) 
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#look for duplicates 

length(rffst_cand$snp[duplicated(rffst_cand$snp)])  # 64 on more than one axis 

# remove duplicate detections 

rffst_cand <- rffst_cand[!duplicated(rffst_cand$snp),] #[1] 0 

#How many unique SNPs then? 

length(rffst_cand$snp) 

# 1029 

 

#Which predictor is each candidate SNP most strongly correlated with? 

for (i in 1:length(rffst_cand$snp)) { 

  rffstbar <- rffst_cand[i,] 

  rffst_cand[i,10] <- names(which.max(abs(rffstbar[4:9]))) # gives the variable 

  rffst_cand[i,11] <- max(abs(rffstbar[4:9]))              # gives the correlation 

} 

 

colnames(rffst_cand)[10] <- "predictor" 

colnames(rffst_cand)[11] <- "correlation" 

 

table(rffst_cand$predictor)  

#ASPECT   RDI RUNSUMMERMEAN    STRANNRAIN    STRANNTEMP    STRDENSITY  

#54       68       122           335           277           173  

 

 

######################################################################### 

 

###PLOT THE SNPS### 

 

rffst_sel <- rffst_cand$snp 

rffst_en <- rffst_cand$predictor 

rffst_en[rffst_en=="ASPECT"] <- "#EEDD88" 

rffst_en[rffst_en=="RDI"] <- "#FFAABB" 

rffst_en[rffst_en=="RUNSUMMERMEAN"] <- "#99DDFF" 

rffst_en[rffst_en=="STRANNRAIN"] <- "#223ba1" 

rffst_en[rffst_en=="STRANNTEMP"] <- "#EE8866" 

rffst_en[rffst_en=="STRDENSITY"] <- "#5d2e6e" 
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# color by predictor: 

rffst_col.pred <- rownames(rfpartialrda_fst$CCA$v) # pull the SNP names 

 

for (i in 1:length(rffst_sel)) {           # color code SNPs 

  rffst_foo <- match(rffst_sel[i],rffst_col.pred) 

  rffst_col.pred[rffst_foo] <- rffst_en[i] 

} 

 

rffst_col.pred[grep("SNP",rffst_col.pred)] <- '#f1eef6' # non-candidate SNPs 

rffst_empty <- rffst_col.pred 

rffst_empty[grep("#f1eef6",rffst_empty)] <- rgb(0,1,0, alpha=0) # transparent 

rffst_empty.outline <- ifelse(rffst_empty=="#00FF0000","#00FF0000","white") 

rffst_bg <- c("#EEDD88","#FFAABB","#99DDFF","#223ba1","#EE8866","#5d2e6e") 

#theirs 

#bg <- c('#1f78b44b4b4','#a6cee3','#6a3d9a','#e31a1c','#33a02c','#ffff33','#fb9a99','#b2df8a') 

 

#Plot it 

# axes 1 & 2 

plot(rfpartialrda_fst, type="n", scaling=3, xlim=c(-1,1), ylim=c(-1,1)) 

points(rfpartialrda_fst, display="species", pch=21, cex=1.5, col="white", bg=rffst_col.pred, scaling=3) 

points(rfpartialrda_fst, display="species", pch=21, cex=1.5, col=rffst_empty.outline, bg=rffst_empty, scaling=3) 

text(rfpartialrda_fst, scaling=3, display="bp", col="black", font=2, cex=1)  

legend("topleft", legend=c("ASPECT","RDI","RUNSUMMERMEAN","STRANNRAIN","STRANNTEMP", 
"STRDENSITY"), 

       bty="n", col="white", pch=21, cex=0.9, pt.cex=2, pt.bg=rffst_bg) 

 

 

# axes 3 & 4 

plot(rfpartialrda_fst, type="n", scaling=3, xlim=c(-1,1), ylim=c(-1,1), choices=c(3,4)) 

points(rfpartialrda_fst, display="species", pch=21, cex=1.5, col="white", bg=rffst_col.pred, scaling=3, 
choices=c(3,4)) 

points(rfpartialrda_fst, display="species", pch=21, cex=1.5, col=rffst_empty.outline, bg=rffst_empty, scaling=3, 
choices=c(3,4)) 

text(rfpartialrda_fst, scaling=3, display="bp", col="black", font=2, cex=1, choices=c(3,4))  

legend("topright", legend=c("ASPECT","RDI","RUNSUMMERMEAN","STRANNRAIN","STRANNTEMP"), 

       bty="n", col="white", pch=21, cex=0.9, pt.cex=2, pt.bg=rffst_bg) 
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RDA: PEA 

 

 

#RAINFOREST ONLY 

 

setwd("C:/Users/kgate/Desktop/Dryad/RDA_PEA") 

library(vegan) 

 

##import variables 

#body shape (response variables) 

FORMRF = read.table("formrf.txt") 

#Environmental variables (explanatory variables) 

unsc_predictors_RF_ind = read.table("PredictorsInputUnscaledforomeg.txt", row.names=1, header=TRUE) 

#Body size and neutral genetic varation (covariables) 

unsc_cov_RF = read.table("OmegaSizeCovar_unsc.txt") 

 

 

#Scale inputs 

covariables_RF <- scale(unsc_cov_RF) 

rainenv = scale(unsc_predictors_RF_ind) 

rfenv = as.data.frame(rainenv) 

covariables_RF = as.data.frame(covariables_RF) 

 

 

# check if all data frames have identical row names 

stopifnot(all(row.names(FORMRF) == row.names(rfenv))) 

stopifnot(all(row.names(FORMRF) == row.names(unsc_cov_RF))) 

stopifnot(all(row.names(rfenv) == row.names(unsc_cov_RF))) 

 

 

###########GLOBAL RDA ################## 

#RDA 

rda.indiv.RF1=rda(FORMRF ~ RUNSUMMERMEAN  

                  +STRANNTEMP 
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                  +STRANNRAIN 

                  +RDI 

                  +ASPECT 

                  +STRDENSITY, data=rfenv) 

 

rda.indiv.RF1 

#Inertia Proportion Rank 

#Total         0.0011518  1.0000000      

#Constrained   0.0002538  0.2203206    4 

##Unconstrained 0.0008980  0.7796794    4 

#Inertia is variance  

 

#Eigenvalues for constrained axes: 

#  RDA1      RDA2      RDA3      RDA4  

#1.228e-04 9.637e-05 2.715e-05 7.440e-06  

 

#Eigenvalues for unconstrained axes: 

#  PC1       PC2       PC3       PC4  

#0.0005328 0.0001837 0.0001034 0.0000781  

 

RsquareAdj(rda.indiv.RF1) 

#$r.squared 

#[1] 0.2203206 

 

#$adj.r.squared 

#[1] 0.1932797 

 

plot(rda.indiv.RF1) 

screeplot(rda.indiv.RF1) 

 

#test significanc of the model 

model_sig_ind_RF1 = anova.cca(rda.indiv.RF1, nperm=999) 

#Df   Variance      F Pr(>F)     

#Model      6 0.00025376 8.1477  0.001 *** 

#Residual 173 0.00089803                  
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#How much variance explained by each variable 

margin_sig_ind_RF1 = anova.cca(rda.indiv.RF1, by="margin", nperm=999) 

#Df   Variance       F Pr(>F)     

#RUNSUMMERMEAN   1 0.00005215 10.0467  0.001 *** 

#STRANNTEMP      1 0.00006196 11.9354  0.001 *** 

#STRANNRAIN      1 0.00009480 18.2629  0.001 *** 

#RDI             1 0.00004625  8.9089  0.001 *** 

#ASPECT          1 0.00001002  1.9303  0.108     

#STRDENSITY      1 0.00005559 10.7093  0.001 *** 

#Residual      173 0.00089803  

 

#How much variance explained by each constrained axis 

axis_sig_ind_RF1 = anova.cca(rda.indiv.RF1, by="axis", nperm=999) 

#Df   Variance       F Pr(>F)     

#RDA1       1 0.00012280 23.9309  0.001 *** 

#RDA2       1 0.00009637 18.7801  0.001 *** 

#RDA3       1 0.00002715  5.2910  0.085 .   

#RDA4       1 0.00000744  1.4493  0.887     

#Residual 175 0.00089803   

 

#variance inflation factor 

vif.cca(rda.indiv.RF1) 

#RUNSUMMERMEAN    STRANNTEMP    STRANNRAIN           RDI  

#2.531422      1.694709      1.435550      2.227260  

#ASPECT    STRDENSITY  

#1.597518      1.732636  

 

#backwards-stepwise selection to determine the best combination  

#of explanatory variables and their relative contributions to the model 

ordistep(rda.indiv.RF1) 

 

#Remove any predictor variables with P value >0.1 (Aspect) 

#Remove any predictor variables contributing to collinearity (VIF > 5) (N/A) 

 

########################################################################### 

############################################################################ 
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#PARTIAL RDA 

#controlling for neutral gen distance and size 

rda.indiv.RF=rda(FORMRF ~ RUNSUMMERMEAN 

                 +STRANNTEMP 

                 +STRANNRAIN 

                 +RDI 

                 +STRDENSITY 

                 + Condition(covariables_RF$Axis.1 

                             +covariables_RF$Axis.2 

                             +covariables_RF$Axis.3 

                             +covariables_RF$Size), data=rfenv) 

 

rda.indiv.RF 

#Inertia Proportion Rank 

#Total         0.0011518  1.0000000      

#Conditional   0.0005071  0.4402596    4 

#Constrained   0.0001630  0.1414907    4 

#Unconstrained 0.0004817  0.4182497    4 

#Inertia is variance  

 

#Eigenvalues for constrained axes: 

##  RDA1      RDA2      RDA3      RDA4  

#1.149e-04 3.760e-05 9.760e-06 7.000e-07  

 

#Eigenvalues for unconstrained axes: 

#  PC1        PC2        PC3        PC4  

#0.00020814 0.00011271 0.00010297 0.00005793  

 

RsquareAdj(rda.indiv.RF) 

#$r.squared 

#[1] 0.1414907 

 

#$adj.r.squared 

#[1] 0.1321421 
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plot(rda.indiv.RF) 

screeplot(rda.indiv.RF) 

 

#test significanc of the model 

model_sig_ind_RF = anova.cca(rda.indiv.RF, nperm=999) 

#Df   Variance      F Pr(>F)     

#Model      5 0.00016297 11.502  0.001 *** 

#Residual 170 0.00048174  

 

#How much variance explained by each variable 

margin_sig_ind_RF = anova.cca(rda.indiv.RF, by="margin", nperm=999) 

#Df   Variance       F Pr(>F)     

#  RUNSUMMERMEAN   1 0.00000834  2.9427  0.036 *   

#  STRANNTEMP      1 0.00004915 17.3461  0.001 *** 

#  STRANNRAIN      1 0.00000419  1.4776  0.206     

#  RDI             1 0.00001621  5.7202  0.001 *** 

#  STRDENSITY      1 0.00000981  3.4615  0.021 *   

#  Residual      170 0.00048174 

 

#How much variance explained by each constrained axis 

axis_sig_ind_RF = anova.cca(rda.indiv.RF, by="axis", nperm=999) 

#Df   Variance       F Pr(>F)     

#RDA1       1 0.00011490 40.7873  0.001 *** 

#  RDA2       1 0.00003760 13.3471  0.001 *** 

#  RDA3       1 0.00000976  3.4650  0.112     

#RDA4       1 0.00000070  0.2486  0.996     

#Residual 171 0.00048174 

 

ordistep(rda.indiv.RF) 

#F 

#- RUNSUMMERMEAN       9.5034 

#- RDI                11.6685 

#- STRDENSITY         19.9812 

#- STRANNTEMP         34.8260 
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################################################################################# 

 

#FINAL MODEL 

rda_RF=rda(FORMRF ~ RUNSUMMERMEAN 

           +STRANNTEMP 

           +RDI 

           +STRDENSITY 

           + Condition(covariables_RF$Axis.1 

                       +covariables_RF$Axis.2 

                       +covariables_RF$Axis.3 

                       +covariables_RF$Size), data=rfenv) 

 

rda_RF 

#Inertia Proportion Rank 

#Total         0.0011518  1.0000000      

#Conditional   0.0005071  0.4402596    4 

#Constrained   0.0001588  0.1378553    4 

#Unconstrained 0.0004859  0.4218851    4 

#Inertia is variance  

 

#Eigenvalues for constrained axes: 

#  RDA1       RDA2       RDA3       RDA4  

#0.00011164 0.00003758 0.00000901 0.00000055  

 

#Eigenvalues for unconstrained axes: 

#  PC1        PC2        PC3        PC4  

#0.00021057 0.00011272 0.00010330 0.00005933  

 

RsquareAdj(rda_RF) 

#$r.squared 

#[1] 0.1378553 

 

#$adj.r.squared 

#[1] 0.1309121 
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plot(rda_RF) 

screeplot(rda_RF) 

 

#test significanc of the model 

model_RF = anova.cca(rda_RF, nperm=999) 

#Df   Variance      F Pr(>F)     

#Model      4 0.00015878 13.969  0.001 *** 

#  Residual 171 0.00048592 

 

#How much variance explained by each variable 

margin_RF = anova.cca(rda_RF, by="margin", nperm=999) 

#Df   Variance       F Pr(>F)     

#  RUNSUMMERMEAN   1 0.00002701  9.5034  0.001 *** 

#  STRANNTEMP      1 0.00009896 34.8260  0.001 *** 

#  RDI             1 0.00003316 11.6685  0.001 *** 

#  STRDENSITY      1 0.00005678 19.9812  0.001 *** 

#  Residual      171 0.00048592  

 

#How much variance explained by each constrained axis 

axis_RF = anova.cca(rda_RF, by="axis", nperm=999) 

#Df   Variance       F Pr(>F)     

#RDA1       1 0.00011164 39.2872  0.001 *** 

#  RDA2       1 0.00003758 13.2232  0.001 *** 

#  RDA3       1 0.00000901  3.1706  0.075 .   

#RDA4       1 0.00000055  0.1951  0.936     

#Residual 171 0.00048592  

 

 

 

################################################################################ 

#plots 

 

locationinfo <- read.table("LocationData.txt", row.names = 1, header = TRUE) 

rfloc = as.data.frame(locationinfo[1:180,]) 

stopifnot(all(row.names(rfenv) == row.names(rfloc))) 

rfsite <- factor(as.character(rfloc$Site)) 
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rfcatch <- factor(as.character(rfloc$Catchment)) 

rfenv <- cbind(rfenv, rfsite, rfcatch) 

 

 

rflegendlab = c("Mulgrave", "Mossman", "Saltwater", "Daintree", "Hutchinson") 

rflegendcol <- c("#FFAABB","#77AADD","#EE8866","#99DDFF","#44BB99") 

rfcatchcol <- c("#99DDFF","#44BB99","#77AADD","#FFAABB","#EE8866") 

 

 

plot(rda_RF, type="n", scaling=3) 

points(rda_RF, display="sites", pch=21, cex=1.5, col="white", scaling=3, bg=rfcatchcol[rfcatch]) 

points(rda_RF, display="species", pch=17, cex=2, col="gray32", scaling=3)           

text(rda_RF, scaling=3, display="bp", col="black", font=2, cex=1)                           

legend("bottomleft", legend = rflegendlab, col=rflegendcol, pch=21, pt.cex=1, cex=0.9, xpd=1, box.lty = 0, 
pt.bg=rflegendcol, bg= "transparent") 

 

 

 

 

##################################################################### 

 

#Control for fst 

 

FstSizeUnscaled = read.table("FstSizeUnscaled.txt", row.names=1, header=TRUE) 

stopifnot(all(row.names(FORMRF) == row.names(FstSizeUnscaled))) 

covar = scale(FstSizeUnscaled) 

covar = as.data.frame(covar) 

 

#controling for neutral gen distance and size 

rda.fst=rda(FORMRF ~ RUNSUMMERMEAN 

                 +STRANNTEMP 

                 +STRANNRAIN 

                 +RDI 

                 +STRDENSITY 

                 + Condition(covar$Axis.1 

                             +covar$Axis.2 
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                             +covar$Size), data=rfenv) 

 

rda.fst 

#Inertia Proportion Rank 

#Total         0.0011518  1.0000000      

#Conditional   0.0005206  0.4519898    3 

#Constrained   0.0001429  0.1241039    4 

#Unconstrained 0.0004883  0.4239063    4 

#Inertia is variance 

 

#Eigenvalues for constrained axes: 

#  RDA1       RDA2       RDA3       RDA4  

#0.00010736 0.00002378 0.00001009 0.00000171  

 

#Eigenvalues for unconstrained axes: 

#  PC1        PC2        PC3        PC4  

#0.00020816 0.00011486 0.00010486 0.00006036 

 

RsquareAdj(rda.fst) 

#$r.squared 

#[1] 0.1241039 

 

#$adj.r.squared 

#[1] 0.1136131 

 

plot(rda.fst) 

screeplot(rda.fst) 

 

#test significanc of the model 

model_sig_ind_RF = anova.cca(rda.fst, nperm=999) 

#Df   Variance      F Pr(>F)     

#Model      5 0.00014294 10.012  0.001 *** 

#  Residual 171 0.00048825  

 

#How much variance explained by each variable 

margin_sig_ind_RF = anova.cca(rda.fst, by="margin", nperm=999) 
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#Df   Variance       F Pr(>F)     

#  RUNSUMMERMEAN   1 0.00001145  4.0094  0.012 *   

#  STRANNTEMP      1 0.00000548  1.9186  0.136     

#  STRANNRAIN      1 0.00001897  6.6444  0.002 **  

#  RDI             1 0.00002909 10.1878  0.001 *** 

#  STRDENSITY      1 0.00000901  3.1544  0.031 *   

#  Residual      171 0.00048825  

 

#How much variance explained by each constrained axis 

axis_sig_ind_RF = anova.cca(rda.fst, by="axis", nperm=999) 

#Df   Variance       F Pr(>F)     

#RDA1       1 0.00010736 37.8212  0.001 *** 

#  RDA2       1 0.00002378  8.3776  0.001 *** 

#  RDA3       1 0.00001009  3.5549  0.114     

#RDA4       1 0.00000171  0.6014  0.962     

#Residual 172 0.00048825   

 

ordistep(rda.fst) 

#Inertia Proportion Rank 

#Total         0.0011518  1.0000000      

#Conditional   0.0005206  0.4519898    3 

#Constrained   0.0001375  0.1193478    4 

#Unconstrained 0.0004937  0.4286624    4 

#Inertia is variance  

 

 

#Df     AIC       F Pr(>F)    

#  - STRDENSITY                                           1 -1355.2  2.1220  0.090 .  

#  - RUNSUMMERMEAN                                        1 -1349.3  7.9636  0.005 ** 

#  - STRANNRAIN                                           1 -1347.3  9.9646  0.005 ** 

#  - RDI                                                  1 -1345.3 11.9697  0.005 ** 

#  - Condition(covar$Axis.1 + covar$Axis.2 + covar$Size)  3 -1238.8  

 

#without STRANNTEMP 

rfpartialrda_fst=rda(FORMRF ~ RUNSUMMERMEAN 

            +STRANNRAIN 
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            +RDI 

            +STRDENSITY 

            + Condition(covar$Axis.1 

                        +covar$Axis.2 

                        +covar$Size), data=rfenv) 

 

#Inertia Proportion Rank 

#Total         0.0011518  1.0000000      

#Conditional   0.0005206  0.4519898    3 

#Constrained   0.0001375  0.1193478    4 

#Unconstrained 0.0004937  0.4286624    4 

#Inertia is variance  

 

#Eigenvalues for constrained axes: 

#  RDA1       RDA2       RDA3       RDA4  

#0.00010491 0.00002378 0.00000820 0.00000057 # 

 

#Eigenvalues for unconstrained axes: 

#  PC1        PC2        PC3        PC4  

#0.00021130 0.00011513 0.00010532 0.00006198  

 

 

RsquareAdj(rfpartialrda_fst) 

#[1] 0.1193478 

 

#$adj.r.squared 

#[1] 0.1112433 

 

plot(rfpartialrda_fst) 

screeplot(rfpartialrda_fst) 

 

#test significanc of the model 

model_sig_ind_RF = anova.cca(rfpartialrda_fst, nperm=999) 

#Df   Variance      F Pr(>F)     

#Model      4 0.00013746 11.972  0.001 *** 

#  Residual 172 0.00049373   
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#How much variance explained by each variable 

margin_sig_ind_RF = anova.cca(rfpartialrda_fst, by="margin", nperm=999) 

#Df   Variance       F Pr(>F)     

#  RUNSUMMERMEAN   1 0.00002286  7.9636  0.001 *** 

#  STRANNRAIN      1 0.00002860  9.9646  0.001 *** 

#  RDI             1 0.00003436 11.9697  0.001 *** 

#  STRDENSITY      1 0.00000609  2.1220  0.101     

#Residual      172 0.00049373   

 

#How much variance explained by each constrained axis 

axis_sig_ind_RF = anova.cca(rfpartialrda_fst, by="axis", nperm=999) 

#Df   Variance       F Pr(>F)     

#  RDA1       1 0.00010491 36.5471  0.001 *** 

#  RDA2       1 0.00002378  8.2845  0.001 *** 

#  RDA3       1 0.00000820  2.8568  0.106     

#  RDA4       1 0.00000057  0.1996  0.931     

#Residual 172 0.00049373     
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RDA: GxPxE 

 

 

################################################################### 

###RDA: GEA candidates against morphology ######################### 

################################################################### 

 

#Set working directory 

#setwd("C:/") 

 

# load required packages 

library(vegan)      #ordination (RDA) 

library(adegenet)   #import snp dataset 

 

#import predictor dataset 

formraw = read.table("formrawrf.txt", row.names = 1, header = TRUE) 

#PCA on procruste matrix 

pca_form<-prcomp(formraw) 

summary(pca_form) 

#brokenstick (identify PC with more variation than randomly expected) 

screeplot(pca_form, bstick = TRUE, type = "lines") 

#here I kept the first four  

formpcs=pca_form$x[,1:4] 

#make it a data frame 

form = as.data.frame(formpcs) 

 

 

#import genetic data (from str file) to create genind object 

gen = read.structure("CandidateSNPs.str", row.marknames=1, onerowperind=FALSE, n.ind=177, 
n.loc=864,col.lab=1,col.pop=2) 

 

# get allele counts 

alleles <- gen@tab 

alleles[1:10,1:10] 
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# get genotypes (counts of reference allele) and clean up locus names 

snps <- alleles[,seq(1,ncol(alleles),2)] 

colnames(snps) <- locNames(gen) 

snps[1:10,1:10] 

 

# check total % missing data 

(sum(is.na(snps)))/(dim(snps)[1]*dim(snps)[2])*100 

#2.549876 

 

# impute missing data with most common genotype 

snps <- apply(snps, 2, function(x) replace(x, is.na(x), as.numeric(names(which.max(table(x)))))) 

 

# check % missing data again 

(sum(is.na(snps)))/(dim(snps)[1]*dim(snps)[2])*100 

#[1] 0 

snps[1:10,1:10] 

 

 

#check rownames against other inputs 

stopifnot(all(row.names(snps) == row.names(form))) 

 

 

########################## 

#Run initial (global) RDA 

#RDA 

rda_GxPxE=rda(snps ~ PC1 

                     +PC2 

                     +PC3 

                     +PC4, 

                     data=form) 

 

#Check plots 

plot(rda_GxPxE) 

screeplot(rda_GxPxE) 

 

#Permutation test - is the model significant? 
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model.sig = anova.cca(rda_GxPxE, nperm=999) 

#Df Variance      F Pr(>F)     

#Model      4    29.78 3.1355  0.001 *** 

#  Residual 172   408.38   

 

#backwards-stepwise selection to determine the best combination  

#of explanatory variables and their relative contributions to the model 

ordistep(rda_GxPxE) 

#Start: snps ~ PC1 + PC2 + PC3 + PC4  

 

#Df    AIC      F Pr(>F)    

# - PC1  1 1073.0 1.7774  0.040 *  

#  - PC3  1 1073.1 1.9062  0.030 *  

#  - PC4  1 1074.8 3.5613  0.005 ** 

#  - PC2  1 1076.5 5.2969  0.005 ** 

#  --- 

#  Signif. codes:   

#  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

 

#Call: rda(formula = snps ~ PC1 + PC2 + PC3 + 

#            PC4, data = form) 

 

#Inertia Proportion Rank 

#Total         438.15466    1.00000      

#Constrained    29.77788    0.06796    4 

#Unconstrained 408.37678    0.93204  172 

#Inertia is variance  

 

#Eigenvalues for constrained axes: 

#  RDA1   RDA2   RDA3   RDA4  

#15.768  7.960  3.561  2.488  

 

#Eigenvalues for unconstrained axes: 

#  PC1   PC2   PC3   PC4   PC5   PC6   PC7   PC8  

#65.09 32.40 23.52  8.69  7.26  6.78  5.77  4.13  

#(Showing 8 of 172 unconstrained eigenvalues) 
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#How much variance explained by each constrained axis? 

axis.sig = anova.cca(rda_GxPxE, by="axis", nperm=999) 

#Df Variance      F Pr(>F)     

#RDA1       1    15.77 6.6411  0.001 *** 

#RDA2       1     7.96 3.3528  0.002 **  

#RDA3       1     3.56 1.4999  0.172     

#RDA4       1     2.49 1.0481  0.315     

#Residual 172   408.38  

 

 

#### Plot Global RDA ########################### 

#by catchment 

 

#Get location/catchment codes for each individual 

loc = read.table("rfloc.txt", row.names = 1, header = TRUE) 

stopifnot(all(row.names(loc) == row.names(form))) 

formloc = cbind(form, loc) 

 

factor(formloc$Catchment, as.character(unique(formloc$Catchment))) 

cat <- formloc$Catchment 

 

#Asign colours and labels for figure and legends 

leglab = c("Mulgrave", "Mossman", "Saltwater", "Daintree", "Hutchinson") 

legcol <- c("#FFAABB","#77AADD","#EE8866","#99DDFF","#44BB99") 

catcol <- c("#99DDFF","#44BB99","#77AADD","#FFAABB","#EE8866") 

 

#Plot it 

plot(rda_GxPxE, type="n", scaling=3) 

points(rda_GxPxE, display="species", pch=20, cex=0.7, col="#ccc3ea", scaling=3)  #snps 

points(rda_GxPxE, display="sites", pch=21, cex=2, col="white", scaling=3, bg=catcol[cat])  #individuals 

text(rda_GxPxE, scaling=3, display="bp", col="black", font=2, cex=1)           #bodyshape         

legend("topleft", legend = leglab, col=legcol, pch=21, pt.cex=2, cex=0.9, xpd=1, box.lty = 0, pt.bg=legcol, bg= 
"transparent") 
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############################################ 

#####CONTROL FOR SIZE USING PARTIAL RDA##### 

############################################ 

 

#import size data to control for 

sizeunsc = read.table("sizerf.txt", row.names = 1, header = TRUE) 

size = scale(sizeunsc) 

stopifnot(all(row.names(size) == row.names(form))) 

stopifnot(all(row.names(snps) == row.names(size))) 

 

#RDA 

partrda_GxPxE=rda(snps ~ PC1 

                     +PC2 

                     +PC3 

                     +PC4 

                     + Condition(size), 

                     data=form) 

 

plot(partrda_GxPxE) 

screeplot(partrda_GxPxE) 

 

partmodel.sig = anova.cca(partrda_GxPxE, nperm=999) 

#Df Variance      F Pr(>F)     

#  Model      4    28.27 2.9866  0.001 *** 

#  Residual 171   404.62  

 

ordistep(partrda_GxPxE) 

#Start: snps ~ PC1 + PC2 + PC3 + PC4 + Condition(size)  

 

#Df    AIC      F Pr(>F)    

#  - PC3              1 1073.0 1.3994  0.060 .  

#  - PC1              1 1073.2 1.6727  0.025 *  

#  - PC4              1 1074.4 2.8242  0.005 ** 

#  - PC2              1 1074.9 3.3324  0.005 ** 

#  - Condition(size)  1 1073.2                  

#--- 
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#  Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

 

#Call: rda(formula = snps ~ PC1 + PC2 + PC3 + PC4 + Condition(size), data = form) 

 

#Inertia Proportion Rank 

#Total         438.15466    1.00000      

#Conditional     5.26680    0.01202    1 

#Constrained    28.26778    0.06452    4 

#Unconstrained 404.62008    0.92346  171 

#Inertia is variance  

 

#Eigenvalues for constrained axes: 

#  RDA1   RDA2   RDA3   RDA4  

#15.471  7.576  3.359  1.861  

 

#Eigenvalues for unconstrained axes: 

#  PC1   PC2   PC3   PC4   PC5   PC6   PC7   PC8  

#64.90 30.91 23.40  8.62  7.26  6.62  5.70  4.10  

#(Showing 8 of 171 unconstrained eigenvalues) 

 

 

#How much variance explained by each constrained axis 

partaxis.sig = anova.cca(partrda_GxPxE, by="axis", nperm=999) 

#Df Variance      F Pr(>F)     

#RDA1       1    15.47 6.5384  0.001 *** 

#RDA2       1     7.58 3.2019  0.001 *** 

#RDA3       1     3.36 1.4197  0.199     

#RDA4       1     1.86 0.7865  0.863     

#Residual 171   404.62 

 

 

#### Plots ########################### 

#by catchment 

 

loc = read.table("rfloc.txt", row.names = 1, header = TRUE) 

stopifnot(all(row.names(loc) == row.names(form))) 
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formloc = cbind(form, loc) 

 

factor(formloc$Catchment, as.character(unique(formloc$Catchment))) 

cat <- formloc$Catchment 

 

leglab = c("Mulgrave", "Mossman", "Saltwater", "Daintree", "Hutchinson") 

legcol <- c("#FFAABB","#77AADD","#EE8866","#99DDFF","#44BB99") 

catcol <- c("#99DDFF","#44BB99","#77AADD","#FFAABB","#EE8866") 

 

plot(partrda_GxPxE, type="n", scaling=3) 

points(partrda_GxPxE, display="species", pch=20, cex=0.7, col="#ccc3ea", scaling=3)  #snps 

points(partrda_GxPxE, display="sites", pch=21, cex=2, col="white", scaling=3, bg=catcol[cat])  #individuals 

text(partrda_GxPxE, scaling=3, display="bp", col="black", font=2, cex=1)           #bodyshape         

legend("bottomleft", legend = leglab, col=legcol, pch=21, pt.cex=2, cex=0.9, xpd=1, box.lty = 0, pt.bg=legcol, 
bg= "transparent") 

 

 

####################################################################################### 

#####Identify GxPxE candidates from full list of climate associated SNPs ######### 

####################################################################################### 

 

load.rda <- scores(partrda_GxPxE, choices=c(1:2), display="species")  # Species scores for the first three 
constrained axes 

 

hist(load.rda[,1], main="Loadings on RDA1") 

hist(load.rda[,2], main="Loadings on RDA2") 

 

#Using 2 standard deviations 

outliers <- function(x,z){ 

  lims <- mean(x) + c(-1, 1) * 2 * sd(x)     # find loadings +/-z sd from mean loading      

  x[x < lims[1] | x > lims[2]]               # locus names in these tails 

} 

 

cand1 <- outliers(load.rda[,1],3) # 20 

cand2 <- outliers(load.rda[,2],3) # 41 

length(cand1) 

length(cand2) 
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ncand <- length(cand1) + length(cand2) 

#[1] 61 with all 2 axes 

 

 

#Organize results by making data frame with axis, SNP name, loading, & correlation with each predictor: 

cand1 <- cbind.data.frame(rep(1,times=length(cand1)), names(cand1), unname(cand1)) 

cand2 <- cbind.data.frame(rep(2,times=length(cand2)), names(cand2), unname(cand2)) 

 

colnames(cand1) <- colnames(cand2) <- c("axis","snp","loading") 

 

cand <- rbind(cand1, cand2) 

cand$snp <- as.character(cand$snp) 

 

 

formpc = as.data.frame(form) 

 

#Let's add in the correlations of each candidate SNP with the eight environmental predictors: 

foo <- matrix(nrow=(ncand), ncol=4)  # 8 columns for 8 predictors 

colnames(foo) <- c("PC1","PC2","PC3","PC4") 

 

for (i in 1:length(cand$snp)) { 

  nam <- cand[i,2] 

  snp.gen <- snps[,nam] 

  foo[i,] <- apply(formpc,2,function(x) cor(x,snp.gen)) 

} 

 

cand <- cbind.data.frame(cand,foo)   

head(cand) 

 

#look for duplicates 

length(cand$snp[duplicated(cand$snp)])  # 0 

# remove duplicate detections 

cand <- cand[!duplicated(cand$snp),] #[1] 0 

#How many unique SNPs then? 

length(cand$snp) 
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#[1] 61 

 

#Which predictor is each candidate SNP most strongly correlated with? 

for (i in 1:length(cand$snp)) { 

  bar <- cand[i,] 

  cand[i,8] <- names(which.max(abs(bar[4:7]))) # gives the variable 

  cand[i,9] <- max(abs(bar[4:7]))              # gives the correlation 

} 

 

colnames(cand)[8] <- "predictor" 

colnames(cand)[9] <- "correlation" 

 

write.csv(cand, "GxPxE_candidates.csv") 

table(cand$predictor)  

#PC2 PC3 PC4  

#26   2  33   
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