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Abstract 

Fibre reinforced polymer (FRP) composites have been used in maritime engineering for more 

than 50 years, however, many facts such as aqueous corrosion, UV aging and tidal movements 

deteriorate the performance of composites and limit the applications under marine environment. 

Recently, the demands of more reliable, economy, environment friendly composites have 

prompted an industry-wide investigation of advanced materials. Nanotechnology is an advanced 

medium to improve the properties and expand the applications of composites. The benefits 

include enhancing mechanical behaviours: such as Young’s modulus, toughness, impaction and 

fatigue, and enabling multifunctional behaviours: such as thermal conductivities, electrical 

conductivities and electromagnetic wave absorb. Therefore, using nanoparticles is a desirable 

technology to develop cost-effective, large-scale, and durable FRP composites. This thesis aims 

to use feasible methods by using nanoparticles (such as functionalised nanosilica, halloysite 

nanotubes, so-gel nanosilica) to reinforce FRP composites to extenuate harsh environment 

effects with the large scale manufacturing possibilities. 

The first part of the thesis focuses on investigation concentration effects of nanoparticles 

(halloysite nanotubes, nanosilica) on the mechanical performance, especially on fracture 

toughness and processibility, particularly on viscosities of nanoparticle filled matrices. In 

addition, the toughen mechanisms of two kinds of functionalised nanosilica/ epoxy composites 

have been studied and revealed that nanosilica can reduce the corrosion rate and fraction 

coefficient under marine environment, thus providing a new pathway to improve the marine 

composite performance. 

The second part of thesis reports that the bio-material, i.e. dopamine acting as a sizing and 

polymerising on carbon fibre surfaces to form polydopamine. The new method to reinforce the 

interlaminar shear strength of CFRP composites has been explored. Furthermore, combining 

coupling agent and halloysite nanotubes to develop synergistic effects on enhancing the 

mechanical properties of GFRP composite under simulated marine environment was studied.  
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The third part of thesis aims to design a new strategy to reinforce composites by two ways, i.e., 

using the so-gel nanosilica to reinforce the matrix and using polydopamine to enhance the 

interfaces of carbon fibres and matrix. Excellent performances have been achieved, especially 

under the simulated marine environment. The proposed enhancement mechanism has also been 

proposed.  

In conclusion, this thesis tries to explore nanoparticle enhanced fibre reinforced composites used 

in marine environment, and aims to fabricate low-cost, large-scale and durable nanoparticle 

reinforced composites as an alternative choice for maritime engineering applications. 
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Chapter 1: Introduction 

1.1 Significance of the project 

The market of marine composite was worth 900 million US dollars in 2011 and expected reach 

to $ 1500 million US dollars in 2018, with a 7% annual growth rate [1]. The safety, recycling, 

new resin and fibre, and multi-functionality are the future trends of the marine composite [2]. 

However, the innate characters of FRPs such as brittleness of the matrix or poor adhesive 

between fibre and matrix, determined the limitations of composites applications. In addition, 

composites used in the marine environment have more challenges such as deteriorate 

performance by aqueous corrosion, degradation, moisture uptake, etc.[3-6] Meanwhile, the large-

scale fabrication nanocomposites for industrial application, especially in maritime engineering 

fields is also a challenge [7- 18]. For these reasons, it is momentous but challenging to develop 

cost-effective, reliable and multifunctional marine composite as metal alternatives to promote the 

sustainable marine applications. 

 

1.2 Research objectives 

The major goals of this thesis are to explore and understand nanoparticle enhanced fibre 

reinforced polymer composites used in marine environment, and aim to develop low-cost, large-

scale and durable nanoparticle reinforced composites as an alternative for the metal parts. 

Specifically, the objectives of this thesis are: 

 Investigating commercial nanoparticles ( halloysite nanotubes, nanosilica ) concentration 

effects on mechanical and machinability of diverse epoxy nanocomposites; 

 Understanding the role of functional groups toughen the interface between nanoparticles 

and epoxy by study two kinds of functionalised nanosilica/ epoxy composites; 

 Revealing the salt water deteriorate mechanical properties of composite with time, the 

nanosilica effects on reducing the corrosion rate and friction coefficient of epoxy under 

marine environment, and thus providing a new pathway to improve the marine composite 

performances; 
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 Tuning dopamine as sizing by in situ polymerization on carbon fibre surface to enhance 

interfaces between fibre and matrix, providing a new convenient method to further toughing 

the FRPs composites;  

 Combining matrix toughening by nanoparticles (such as halloysite nanotubes, nanosilica) 

and interface enhancing by introduction of polydopamine to develop synergistic effects on 

enhancing the mechanical performances of composites used in simulated marine 

environment. 

1.3 Thesis outline 

This thesis is the outcomes of my PhD research presented in the form of journal publications. 

The chapters in this thesis are presented in the following sequence: 

 Chapter 1 introduces the significance of the thesis and outlines the objectives and key 

contributions to the field of research; 

 Chapter 2 reviews the literatures to overview various nanofillers enhance mechanical and 

multifunctional behaviours of carbon fibre reinforce polymer (CFRP) composites; 

 Chapter 3 presents halloysite nanotube concentration effects on fracture toughness of 

diverse epoxy nanocomposites; 

 Chapter 4 investigates two kind of functionalised nanosilica/epoxy nanocomposites with 

enhanced fracture toughness; 

 Chapter 5 investigates fracture toughness and wear properties of nanosilica/epoxy 

composites under marine environment; 

 Chapter 6 develops polydopamine as sizing on carbon fibre surfaces for enhancement of 

epoxy laminated composites;  

 Chapter 7 designs and fabricates coupling agent and nano halloysite synergistic enhancing 

glass fibre/ polystyrene laminates under harsh environment applications; 

 Chapter 8 devotes to hybrid enhancement by polydopamine and nanosilica on carbon fibre 

reinforced polymer laminates under marine environment; 

 Chapter 9 presents conclusions and perspectives for future work; 
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1.4 Logical arrangement of the subsequent research chapters diagram 

This section explains the logic structure of the thesis. First, the literature review gives a general 

idea of the nanoparticles used in the fibre reinforced polymer composites (FRPs) and the 

environmental impacts on the FRPs. Second, explains my research in details. Third, concludes 

my current study and prospects the further work. A diagram of overall flow and logical 

arrangement of the subsequent research chapters shown in Fig. 1.  

 

Fig. 1. Overall flow and logical arrangement of the subsequent research chapters 
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Chapter 2: Literature review 

2.1 Introduction 

This chapter gives a concise appraisal on nanofillers enhanced fibre reinforced polymer (FRP) 

laminates, including mechanical properties, electrical conductivity, and thermomechanical 

properties. Especially, the mechanical properties have been reviewed in details in section 2.2, 

such as interlaminar fracture toughness, compression-after-impact strength and interlaminar 

shear strength toughed by different nanofillers, such as carbon nanotubes, nanofibers, organoclay, 

nanosilica and/or rubber, et al.  

In addition, FRP laminates suffer environmental impacts when those parts are exposed to 

harsh environments for the period of service. Particularly in the marine environment, the 

mechanical performances of laminates degrade due to cyclic variation of temperature and 

hygrothermal conditions – creating the high risk of accidentally creating fracture. In section 2.3 

reviews some current research carried on environmental impacts on FRP composites, such as 

thermal fatigue, moisture and hygrothermal impacts. 

2.2 Carbon fibre-reinforced polymer laminates with nanofiller-enhanced multifunctionality 

This section is included as it appears as a book chapter published by Wei Han, Youhong Tang, 

Lin Ye. Chapter 8: Carbon fiber-reinforced polymer laminates with nanofiller-enhanced 

multifunctionality. In: Beaumont PWR et al, editors. The structural integrity of carbon fibre 

composites. Switzerland: Springer, 2017, 171-189. It provides an overview of with various nano-

fillers to (1) enhance mechanical behaviours the structural materials, including interlaminar 

strength and toughness, impaction, fatigue performances, and (2) enable/enhance multifunctional 

behaviours, including thermal conductivities, electrical conductivities, and other performances. 

Overall, this discussion gives a broad overview and technical viable routes to obtain a particular 

combination of various mechanical and functional behaviours of CFRP with nano-fillers 

included.  
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2.3 The marine environmental impact on the fibre reinforced polymers 

2.3.1 Introduction 

The superior properties of FRPs such as excellent strength, lightweight, chemical resistance, and 

good mechanical performance supported they are widely used in many fields. Their applications 

include various components in automobiles, aerospace, navigation, offshore platforms and also 

in structures [1]. Those parts are exposed to the environment for the period of service. The 

environmental impacts include temperatures, humidity, and UV light exposure. Especially in the 

marine condition, the cyclic variation of hygrothermal environment may degrade the properties 

and performances of FRP composites – making the high possibility of accidentally generating 

fracture. Bastioli et al. reported water aging may strongly affect the matrix behaviour, by 

producing changes in its chemical and physical nature by itself or in conjunction with other 

chemical or physical agents such as heat and ultraviolet light [2, 3]. In additional, a hydrolysis 

reaction can degraded interface of the fibre/matrix caused by unsaturated groups within the 

matrix of FRP composites in the marine environment.  

FRP laminated composites are vulnerable to suffer impact in the environment. The 

performances of the composites are determined by the adhesion strength of the interface between 

the fibre and matrix. However, in the high temperature condition the thermal expansion of matrix 

and fibre are different which can affect the interface in result of detriment interlaminar shear 

strength of the laminators. On the other hand, at low temperature most polymers become brittle 

and more vulnerable to the stress concentration or relaxation of residual stresses. Moisture is 

very common in our environment. However, the FRP laminated composites absorb moisture that 

can reduce the interfacial adhesion strength at the interface. Despite FRP composites having lots 
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of outstanding performance as structures and components, they still need reinforcement to 

against the harsh environment. 

This review highlights the environmental impact on the FRP laminated composites. Discussed 

the deleterious effects on the matrix and the interfacial strength of fibre and matrix caused the 

different environmental conditions. Reveal the degradation in the interface between fibre and 

matrix may occur to a significant variation in the property and performance of FRPs. 

2.3.2 Thermal fatigue impact on the FRP composites 

FRP laminated composites suffer temperature variations. This kind cyclic variation of 

temperature induces thermal stresses in composites because of the different thermal expansion 

coefficients between the fibres and resins [4]. This kind of reciprocating stress variation in the 

composites is considered as a fatigue and which can induce various types of damage, like matrix 

fracture, debonding and delamination. Moreover, Hiemstra observed micro-cracks at the 

interface between fibre and polymer due to the temperature variations [4]. In an oxidative 

environment, the temperature variations may cause resins oxidation. Some researches on found 

that the oxidation in epoxy resin can cause mass loss and volume shrink of the epoxy resin, 

which may result of composites delamination [5–6].  

2.3.3 Exposure to moisture impact on FRP composites 

When FRPs laminated composites exposure in the wet environment, the moisture can be 

absorbed into the composites. The moisture diffusion observes in the composites as a result of 

capillary action reported by Scheirs. In the study, water wicking is principal in the composites as 

defective wetting of the fibre [7]. Other researches on moisture transport behaviour report that 

voids in the matrix and the interface of fibre-matrix have a significant effect on the diffusivity of 
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FRPs laminated composites [8, 9]. Moreover, moisture can cause matrix plasticization, chemical 

degradation and mechanical degradation when moisture long time situated in a FRP laminated 

composite [10]. Weitsman and Morii report water diffusion may in form of interfacial micro-

cracks in FRP composites [11, 12]. Furthermore, the moisture exposure time also significantly 

affects the performance of the FRP composites. For example, uncoated fibre/polylactide 

composites in saturated water vapour condition at 70 °C for 24 h, the tensile strength decreases 

15 % compared with that without ageing specimens. And in the same condition after 72 h, it 

decreases 30% compared with that without ageing specimens [13]. Long-term moisture 

immersion can cause the detrimental effects of mechanical performances of the composites 

which can potentially decrease the service period [14–17]. Phifer et al. study E-glass/vinyl ester 

lamented composites, the reduction of stiffness and strength are 10 % and 60 % after 24 months 

immersed in water, respectively [15]. Yang et al. reported glass fibre modified by coating nano-

silica can be slow the moisture uptake and enhanced the mechanical performances of GF/pCBT 

composites [18]. 

2.3.4 Hygrothermal impact on FRP composites  

    Hygrothermal ageing is most common conditions in the marine environment, and it is the 

synergetic effects in the temperature and moisture environment which has the deleterious effects 

on the polymer [19]. Moreover, Ray et al. reported that temperature can further accelerate the 

diffusion of moisture in FRPs [20]. Some researchers have studied the FRP composites in a 

hygrothermal environment [21–24]. For example, Aditya et al. studied the symmetric and 

antisymmetric GFRP laminates in hygrothermal condition, and they reported reduction rates in 

flexural stiffness were 54% and 27% respectively in the condition of a saturation humid 

condition for 2000 h [25]. A study of unidirectional glass fibre/epoxy composite degraded by 
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humidity absorption / desorption is shown by [26], reduction rates of the static bearing strength 

were at a range of 8% to 22% for woven laminates. Li et al. studied three kinds of sizing on 

carbon fibre (T300, CF-1, CF-2), the interfacial fracture engineer decreased after 3days 

hygrothermal treated by 45%, 69% and 40%, respectively. They said the sizing play an important 

role in the mechanical performances of CFRP composites in the hygrothermal conditions [27]. 

Buehler et al. studied moisture sorption and desorption on solvent treated glass fibre and carbon 

fibre reinforced composite laminates. The final moisture uptake rate was 4–5 wt % at 70 °C for 

1200 h moisture exposure and the moisture uptake rates was 3 wt% after 450 h dry out [28]. The 

moisture in composites can degrade the interfacial adhesion and the matrix in that way detriment 

the properties and performances. 

2.3.4 Conclusions 

Applications of FRP laminated composites have developed rapidly during the last few decades. 

A rising concern on the environmental impact affects the bonded and durable interfaces of FRPs. 

The delamination has been known as the most harmful phenomenon on the mechanical 

performances of FRPs. The marine environments, such as cyclic variation of temperature and 

hygrothermal, are having detrimental effects on fibre-matrix interface of FRPs. The nano 

technology and sizing techniques are efficiently methods to reduce the detrimental effects by the 

harsh environment. However, currently little research has been carried out to study the hybrid 

enhancement of FRP in harsh environments by nanoparticles and sizing. This present review 

highlights the interfacial vulnerability to environmental impacts and the damaging effects on 

interfaces between fibre and matrix. The micro degradation at the interface between fibre and 

matrix may occur to a significant variation in the property and performance of FRPs. 

Reference 



17 
 

[1] Hollaway LC. A review of the present and future utilization of FRP composites in the civil 

infrastructure with reinforce to their important in-service properties. Constr Build Mater 2010; 

24:2419-2445. 

[2] Bastioli C, Casciola M and Romano G. Role of the interface in composite materials during 

water ageing. In: Proceedings of the third international conference on composite interfaces, 

Cleveland, OH, 21–24 May 1990, pp. 569–581. 

[3] Blaga A. Water sorption characteristics of GRP composite: effect of outdoor weathering. 

Polym Compos 1981; 2(1): 13–17. 

[4] Hiemstra DL, Sottos NR. Thermally induced interfacial micro-cracking in polymer matrix 

composites. J Compos Mater 1993; 27:1030-1051. 

[5] Lafarie-Frenot MC and Rouquie S. Influence of oxidative environments on damage in 

c/epoxy laminates subjected to thermal cycling. Compos Sci Technol 2004; 64:1725-1735. 

[6] Madhukar MS, Bowles K, Papadopoulos DS. Thermo-oxidative stability and fiber surface 

modification effects on the inplane shear properties of graphite/PMR-15 composites. J Compos 

Mater 1997; 31: 596-618. 

[7] Scheirs J. Compositional and failure analysis of polymers — a practical approach. New York: 

Wiley; 2000. 

[8] Miettinen VM, Narva KK, Vallittu PK. Water sorption, solubility and effect of post-curing of 

glass fibre reinforced polymers. Biomaterials 1999; 20:1187-1194. 

[9] Woo M, Piggott MR. Water absorption of resins and composites: IV. Water transport in fiber 

reinforced plastics. J Compos Technol Res 1988; 10:20-24. 

[10] Shen C-H, Springer GS. Environmental effects in the elastic moduli of composite materials. 

J Compos Mater 1977; 11: 250-264. 

[11] Weitsman YJ, Guo Y-J. A correlation between fluid-induced damage and anomalous fluid 

sorption in polymeric composites. Compos Sci Technol 2002; 62: 889-908. 



18 
 

[12] Morii T, Ikuta N, Kiyosumi K, Hamada H. Weight-change analysis of the interphase in 

hygrothermally aged FRP: Consideration of debonding. Compos Sci Technol 1997; 57: 985-990. 

[13] Hu RH, Sun MY, Lim JK. Moisture absorption, tensile strength and microstructure 

evolution of short jute fiber/polylactide composite in hygrothermal environment. Mater Des 2010; 

31: 3167-3173. 

[14] Roy S, Xu WX, Park SJ, Liechti KM. Anomalous Moisture Diffusion in Viscoelastic 

Polymers: Modeling and Testing. J Appl Mech 2000; 67: 391-396. 

[15] Phifer SP. Hygrothermal evaluation of pultruded polymer composite laminates — 

experimentation, analysis, and prediction. Blacksburg: VA: Virginia Tech; 2003. 

[16] Doxsee LE, Janssens W, Verpoest I, Demeester P. Strength of Aramid-Epoxy Composites 

during Moisture Absorption. J Reinf Plast Compos 1991; 10: 645-655. 

[17] Shen CH, Springer GS. Moisture absorption and desorption of composite materials, 

environmental effects on composite materials. Westport, CT: Technomic Publishing Company; 

1981. 

[18]. Yang B, Zhang J, Zhou L, Lu M, et al. Effect of fiber surface modification on water 

absorption and hydrothermal aging behavious of GF/pCBT composites. Compos B 2015; 82: 84-

91. 

[19] Davies P, Mazeas F, Casari P. Sea Water Aging of Glass Reinforced Composites: Shear 

Behaviour and Damage Modelling, J Compos Mater 2001; 35: 1343-1372. 

[20] Ray BC. Temperature effect during humid ageing on interfaces of glass and carbon fibers 

reinforced epoxy composites. J Colloid Interface Sci 2006; 298: 111-117. 

[21] Pauchard V, Grosjean F, Campion-Boulharts H, Chateauminois A. Application of a stress-

corrosion-cracking model to an analysis of the durability of glass/epoxy composites in wet 

environments. Compos Sci Technol 2002; 62: 493-498. 



19 
 

[22] Whitaker G, Darby MI, Wostenholm GH, Yates B, Collins MH, et al. Influence of 

temperature and hydrostatic pressure on moisture absorption in polymer resins. Mater Sci 1991; 

26:49-55. 

[23] Neumann S, Marom G. Prediction of Moisture Diffusion Parameters in Composite Materials 

Under Stress. J Compos Mater 1987; 21:68-80. 

[24] Wan YZ, WangYL HuangY, He BM, Han KY. Hygrothermal aging behaviour of 

VARTMed three-dimensional braided carbon-epoxy composites under external stresses. Compos 

A 2005; 36:1102-1109. 

[25] Aditya PK, Sinha PK. Diffusion Coefficients of Polymeric Composites Subjected to 

Periodic Hygrothermal Exposure. J Reinf Plast Compos 1992; 11: 1035-1047. 

[26] Chateauminois A, Vincent L, Chabert B, Soulier JP. Study of the interfacial degradation of 

a glass-epoxy composite during hygrothermal ageing using water diffusion measurements and 

dynamic mechanical thermal analysis. Polymer 1994; 35: 4766-4774. 

[27] M. Li, H. Liu, Y. Gu, Y. Li and Z. Zhang, Effects of carbon fiber surface characteristics on 

interfacial bonding ofepoxy resin composite subjected to hygrothermal treatments. Appl Surf Sci 

2014; 288: 666-672. 

[28] Buehler FU, Seferis JC. Effect of reinforcement and solvent content on moisture absorption 

in epoxy composite materials. Compos A 2000; 31: 741-748. 

  



20 
 

Chapter 3: Nano-halloysite concentration effects on fracture toughness of 

diverse epoxy nanocomposites 

3.1 Introduction and significance 

In this chapter, we reported the concentration effects of halloysite nanotubes (HNTs) on thermal 

and mechanical properties of as-received and phenylphosphonic-acid (PPA)-treated HNTs 

prepared by mechanical mixing or ball-milling homogenization. It was found that with HNTs 

added in the region of 0.0–10.0 wt. %, significantly reinforced fracture toughness of the epoxy 

composites. The highlights in this work include: 

1. We have firstly reported that ball-milling homogenization has much more uniform HNTs size 

and dispersion in epoxy matrix than those prepared by simple mechanical mixing.  

2. We have the first time investigated the morphology of (PPA)-treated HNTs changing from 

nanotubes to nanoplatelets; as a result, with a substantial increase in the total contact areas 

between HNTs and epoxy, enhanced fracture toughness of epoxy composites has been reported. 

3. Higher HNTs concentration, higher fracture toughness was achieved for various epoxy 

composites. However, the optimal concentration of HNTs was 5.0 wt. % in this study. The 

addition of further HNTs achieved only marginal fracture toughness enhancement and more 

negative effects appear, such as HNTs concentration gradient in cured epoxy composites, high 

potential decrease in glass transition temperature (Tg), and potential immature tensile failure.  

 

This section is included as it appears as a journal paper published by Wei Han, Yang Yu, 

Youhong Tang, Karl Sammut. Nano-halloysite concentration effects on fracture toughness of 

diverse epoxy nanocomposites, ASTM Mater Performance Charact 2014, 3(3): 506-518.  

 

3.2 Nano-halloysite concentration effects on fracture toughness of diverse epoxy 

nanocomposites 
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Chapter 4: Functionalised silica/epoxy nanocomposites with enhanced 

fracture toughness for large-scale applications 

4.1 Introduction and significance 

In this chapter, we reported that nanosilica with amino and epoxide groups (RNS-A and RNS-E) 

can enhance fracture toughness of epoxy by mechanical mixing homogenization. It was found 

that the functional groups in nanosilica provided better resin-wettability, suppress nanosilica 

aggregation. The highlights in this work include: 

1. We have reported that with 2 wt% of amino and epoxide functionalised nanosilica significant 

enhanced the fracture toughness of epoxy by 25.0% and 35.9%, respectively.  

2. We found that the viscosity of those functional groups modified nanosilica/epoxy was similar 

with that of pure epoxy, which means no change needed for processing and fabrication. 

3. We found that the specific surface area (SSA) of RNS-E was 4.5 times higher than that of 

RNS-A, which improved the interfaces between nanosilica and epoxy, then enhanced the fracture 

toughness of epoxy composites. 

 

This section is included as it appears as a journal paper published by Wei Han, Yang Yu, 

Liming Fang, Martin Johnston, Youhong Tang. Functionalized silica/epoxy nanocomposites with 

enhanced fracture toughness for large-scale applications. J Compos Mater 2015; 49(12):1439-47.  

 

4.2 Functionalised silica/epoxy nanocomposites with enhanced fracture toughness for large-

scale applications 
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Chapter 5: Fracture toughness and wear properties of nanosilica/epoxy 

composites under marine environment 

5.1 Introduction and significance 

In this chapter, we reported that commercially available nanosilica (Nanopox-F400) with 2 wt% 

concentration can enhance fracture toughness and wear properties of epoxy composites under 

marine environment. It was found that fracture toughness was weakened with salt water 

immersion. However, the fracture toughness of nanosilica reinforced composite after immersion 

was comparable to that of the neat epoxy without immersion. The highlights in this work include: 

1. We reported that the friction coefficient of neat epoxy increased with salt water immersion 

time and rotation speed increasing. By contrast, the friction coefficient of nanosilica reinforced 

epoxy decreased with salt water immersion time increasing. 

2. We found that fracture toughness of the neat epoxy and the nanosilica reinforced epoxy were 

both deleteriously affected by salt water immersion. However, increment of the fracture 

toughness by nanosilica adding was able to complement the fracture toughness loss due to salt 

water immersion. 

This section is included as it appears as a journal paper published by Wei Han, Sheng Chen, 

Jonathan Campbell, Xiaojun Zhang and Youhong Tang. Nanosilica enhanced fracture toughness 

and wear properties of epoxy under marine environment. Mater Chem Phy 2016; 177: 147-155. 

 

5.2 Fracture toughness and wear properties of nanosilica/epoxy composites under marine 

environment 
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Chapter 6: Polydopamine as sizing on carbon fibre surfaces for enhancement 

of epoxy laminated composites 

6.1 Introduction and significance 

In this chapter, we reported that dopamine polymerization on carbon fibre (CF) surface can be a 

new sizing method to increase the adhesion ability of carbon fibre and epoxy. So, significantly 

reinforced interfacial fracture toughness and impact strength was reported for the CFRP 

laminates. The highlights in this work include: 

1. We reported that polydopamine (PDA) can increase the stability of crack growth as sizing on 

CF surfaces. The crack propagation behaviour changed from a saw-tooth-shaped curve in 

neat CFRP laminates to a relative smooth trending curve in PDA-CFRP laminates. 

2. We found that the fracture micro-mechanism in neat CFRP was primarily interfacial 

debonding, however, in PDA-CFRP, it was the combination of fibre/epoxy debonding, 

epoxy/epoxy debonding and fibre pull-out. 

3. We found that the PDA sizing enhanced the interfacial layer by single fibre pull-out test, 

which improved the load transfer ability between epoxy and CF surfaces. 

 

This section is included as it appears as a journal paper published by Wei Han, Hongping Zhang, 

Javad Tavakoli, Jonathan Campbell and Youhong Tang. Polydopamine as sizing on carbon fibre 

surfaces for enhancement of epoxy laminated composites. Compos Part A 2018; 107:626-632. 

 

6.2 Polydopamine as sizing on carbon fibre surfaces for enhancement of epoxy laminated 

composites 
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Chapter 7: Synergistic effects of coupling agent and nanoparticle on 

enhancing glass fibre/ polystyrene laminates for harsh environment 

applications 

7.1 Introduction and significance 

In this chapter, we reported the synergistic effects of halloysite nanotubes (HNTs) and industrial-

used coupling agent (APTES) enhanced mechanical properties of the glass fibre/polystyrene 

laminates. It was found that impact, interlaminar shear strength and interlaminar fracture 

toughness of the reinforced laminates significantly decreased under marine environments. The 

highlights in this work include: 

1. We have studied different concentration of HNTs and APTES reinforced polystyrene 

composites and found the best concentration was 1 wt% HNTs combination 1 wt% APTES in 

polystyrene laminate in this study. 

2. We found that in the optimised concentrations of HNTs and APTES, the interlaminar shear 

strength and mode 1 interlaminar fracture toughness increased by 26.5% and 11.5%. 

3. We found that APTES acted as a barrier that reduced the permeability of the laminates and 

significantly decreased deterioration effects under marine environment. With the synergistic 

effects of HNTs and APTES in the laminates, the interlaminar shear strength and mode 1 

interlaminar fracture toughness decreased by 13.9% and 6.4% after 3 weeks salt water 

immersion. However, 24.8% and 12.3% decreasing was reported in the same time for the 

unmodified laminates. 

This section is included as it submitted and under review as a journal paper by Wei Han, Nazila 

Dehbari, Sheng Chen, Tom Jung, Karl Sammut and Youhong Tang. Synergistic effects of 

coupling agent and nanoparticle on enhancing glass fibre/ polystyrene laminates for harsh 

environment applications, Appl Compos Mater 2017 (Under review). 

 

7.2 Synergistic effects of coupling agent and nanoparticle on enhancing glass fibre/ 

polystyrene laminates for harsh environment applications 
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Chapter 8: Hybrid enhancements by polydopamine and nanosilica on carbon 

fibre reinforced polymer laminates under marine environment 

8.1 Introduction and significance 

In this chapter, we reported a new method of hybrid enhancement with nanosilica (Nanopox 

F400) for matrix toughening and PDA sizing for laminate interface enhancement. The Mode 1 

interlaminar fracture toughness and interlaminar shear strength were significantly increased in 

modified CFRP laminates and the enhancement mechanism was proposed here. Meanwhile, we 

found that the nanosilica and PDA enhanced laminates successfully offset the deterioration by 

salt water in the simulated marine environment. The highlights in this work include: 

1. We studied that with 2 wt% nanosilica modified CFRP, the Mode 1 fracture toughness 

increased by 17% and interlaminar shear strength increased by 8%, compared with the neat 

CFRP. With 2 wt% nanosilica and 3 wt% PDA, the Mode 1 fracture toughness increased by 

39% and interlaminar shear strength increased by 22%, compares to the neat CFRP. 

2. The salt spray test results indicated that the salt water weakened the ability of rigid silica 

particles to deflect cracking paths, but salt water did not show significant damage on the 

PDA layer in this study. 

 

This section is included as it submitted and under review as a journal paper by Wei Han, 

Hongping Zhang, Xin Xu and Youhong Tang. Hybrid enhancement by polydomamine and 

nanosilica on carbon fibre reinforced polymer laminates under marine environment, Compos 

Part A 2018; 112: 283-289. 

 

8.2 Hybrid enhancements by polydopamine and nanosilica on carbon fibre reinforced 

polymer laminates under marine environment 
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Chapter 9: Conclusions and perspectives 

9.1 Conclusions 

Mechanical properties of marine composites have been significantly deteriorated in marine 

environment, therefore, reinforcing mechanical properties of marine composites is necessary and 

urgent. This thesis is devoted to study a variety of nanoparticles and sizing enhanced FRP 

composites to offset the marine environment deterioration effects, especial salt spray effects. 

This study commences with discovering concentration and functional groups of nanoparticles 

(HNTs and nanosilica) effects on the mechanical and thermal properties of polymer matrix. 

Following by a discussion about mechanisms of salt water effect on composites, meanwhile it is 

found that nanosilica enhancement can complement the loss due to the salt water immersion. 

Then, a study of synergistic effects of HNTs and APTES on toughening the mechanical 

properties of glass fibre reinforced polystyrene has been conducted along with studying effect of 

reinforcement in the marine environment. At last, a study of a feasible method by using 

polydopamine to enhance the interface of epoxy resin and carbon fibre surfaces, and then hybrid 

enhancements with nanosilica to fabricate a low-cost, large-scale and durable nanoparticle 

reinforced composite has been explored to provide an alternative choice for maritime 

engineering applications. Based on the research in this thesis, the following conclusions can be 

drawn: 

1) The morphology of (PPA)-treated HNTs changed from nanotubes to nanoplatelets, therefore 

increased the contact surface between the HNTs and epoxy resin. Fracture toughness of epoxy 

matrices increased with HNTs concentration going up in the composites. However, there was an 

optimised concentration (5 wt% in this study), the addition of further HNTs achieves only 

marginal fracture toughness enhancement and more negative effects appeared, such as HNTs 

concentration gradient in cured epoxy composites, potentially significant decrease in glass 

transition temperature (Tg) and potential immature tensile failure.  

2) Amino and epoxide functional groups modified nanosilica significant enhanced the fracture 

toughness of epoxy composites at a low concentration. The interface between the nanosilica and 

the epoxy became stronger due to the chemical bonding. Meanwhile, the epoxide modified 

nanosilica has more specific surface area compared to amino modified nanosilica.   
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3) Synergistic effects of HNTs and 3-aminopropyltriethoxysilane (APTES) on glass fibre 

reinforced composite has been studied. The interlaminate shear strength and Model I 

interlaminar fracture toughness of modified composite increased as well as significantly 

decreased the deterioration of the mechanical properties of the composite under marine 

environments. 

4) A new method was developed using polydopamine (PDA) as sizing on the surface of carbon 

fibre (CF) fabric. The crack propagation behaviour changed from a saw-tooth shaped curve in 

neat CFRP laminate to a relatively smooth trending curve in a PDA modified CFRP laminate. 

Moreover, the Mode I interlaminar fracture toughness, impact strength and interlaminar shear 

strength of PDA coated CFRP laminates was also increased. 

5) A hybrid toughening method by using nanosilica to toughen the matrix and polydopamine 

sizing to enhance the fibre and matrix interfaces was studied. The Mode I interlaminar fracture 

toughness, impact strength and interlaminar shear strength of modified CFRP laminates was 

significantly enhanced. Meanwhile, the deterioration of the mechanical properties of the 

modified CFRP laminates under marine environments was offset by the improvement of the 

hybrid matrix and interface toughened effects. 

9.2 Perspectives 

Although significant progress for nanoparticles enhanced fibre reinforced polymer composites 

used in the marine environment has been made in this thesis, there are still some challenges in 

the future research. 

1) The enhanced properties by nanoparticles can complement the loss of deterioration of 

composite due to salt water immersion, other facts such as temperature, biodeterioration and 

ultraviolet also great affect the various degradation for marine composites. It is highly desirable 

to combine those effects to find out whether nanoparticles enhancement still can complement the 

loss of deterioration of those effects. 

2) Multifunctional is very valued property for advanced materials. Nanoparticles can provide 

such as electrical conductivity, thermal conductivity, magnetic and UV block characters which 

are not original owned in normal marine composite materials. However, introducing such 

characters may affect the mechanical property or machinability of the composite. Therefore, it is 
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a big challenge to make multifunctional composite which still maintain their original 

performances. 

3) The purpose of this thesis is to fabricate a durable nanoparticle reinforced composite to 

provide an alternative option for maritime engineering. Although the material has been made in 

the laboratory, it is necessary to develop the composite structures which can be large-scale 

production and commercialization. 

We believe that further explorations in nanoparticle enhanced fiber reinforced composite area 

will contribute to maritime engineering with all the above problems solved. 

 

  



94 
 

Appendix: Publications during Ph.D 

Refereed book chapter publication 

(1) W. Han, Y. H. Tang, L. Ye. (2016) Carbon fiber-reinforced polymer laminates with 

nanofiller-enhanced multifunctionality in the structural integrity of carbon fiber composites: In: 

Fifty years of progress and achievement of the science, development, and applications 1st ed., PP. 

171-198, Springer, UK. 

 

Refereed journal publications 

(1) W. Han, Y. Tang. Water-swelling rubber containing small amount of nanofillers with 

enhanced water swelling durability. Adv Mater Res 2013; 774-776: 544-547. 

(2) S. Chen, J. J. Duan, W. Han, S. Z. Qiao. Graphene-MnO2 framework as a new generation of 

three-dimensional oxygen evolution promoter. Chem Commun 2013; 50: 207-209.  

(3) W. Han, Y. Yu, Y. Tang, K. Sammut. Nano-halloysite concentration effects on fracture 

toughness of diverse epoxy nanocomposites. ASTM Mater Performance Charact 2014; 3: 1-13. 

(4) H.Wu, S. Chiang, W. Han, Y. Tang, F. Kang, C. Yang. A simple and efficient protocol to 

improve the isotropic thermal conductivity of silver-epoxy pastes. Compos Sci Technol 2014; 99: 

109-116.  

(5) W. Han, Y. Yu, L. M. Fang, M. R. Johnston, Y. Tang. Functionalized silica/epoxy 

nanocomposites with enhanced fracture toughness for large-scale applications. J Compos Mater 

2015; 49(12):1439-1447. 

(6) J. C. Zhao, N. Dehbari, W. Han, L. P. Huang, Y. Tang. Electrospun multi-scale hybrid 

nanofiber/net with enhanced water swelling ability in rubber composites. Mater Des 2015; 

86:14-21. 

(7) W. Han, S. Chen, J. Campbell, X. J. Zhang, Y. Tang. Nanosilica enhanced fracture 

toughness and wear properties of epoxy under marine environment. Mater Chem Phy 2016; 

177:147-155. 
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(8) W. Han, N. Dehbari, S. Chen, T. Jung, K. Sammut, Y. Tang. Synergistic effects of coupling 

agent and nanoparticle on enhancing glass fiber/polystyrene laminates for harsh environment 

applications. Appl Compos Mater 2017 (under review). 

(9) W. Han, H. P. Zhang, J. Tavakoli, J. Campbell, Y. Tang. Polydopamine as sizing on carbon 

fibre surfaces for enhancement of epoxy laminated composites. Compos Part A 2018; 107:626-

632. 

(10) H. P. Zhang, W. Han, J. Tavakoli, Y. Zhang, X. Lin, X. Lu, Y. Tang. Understanding 

interfacial interactions of polydopamine and glass fiber and their enhancement mechanisms in 

epoxy based laminates. Compos Sci Technol 2017 (under review). 

(11) W. Han, H. P. Zhang, X. Xu, Y. Tang. Hybrid enhancement by polydomamine and 

nanosilica on carbon fibre reinforced polymer laminates under marine environment. Compos Part 

B 2018; 112: 283-289. 

 

Refereed conference publications 

 (1) W. Han, J. C. Zhang, C. B. Zhao, Y. Tang. Small amount of functionalized nanosilica with 

dramatic enhanced fracture toughness of epoxy matrix for large-scale applications. In: 

Proceeding of the 6th Asia-Europe symposium on Processing and Properties of Reinforced 

Polymers, 2nd -6th June 2013, Wuhan, China. 

(2) W. Han, S. Cheng, Y. Tang. Graphene/superabsorbent composites for potential 

environmental sensor applications, In: Proceeding of 2014 International Conference Nanoscience 

and Nanotechnology (ICONN), 2014, 46-49. DOI: 10.1109 / ICONN.2014.6965258. 

(3) W. Han, Y. Tang, T. Jung. Synergistic effects of HNTs and APTES on polystyrene 

enhancement. 10th International Conference on Structural Integrity and Failure (SIF-2016).12th-

15th July 2016, Adelaide, Australia. 
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