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ABSTRACT 

Microbial ecosystems are intricate networks of bacteria, viruses, fungi, and archaea that influence 

ecosystem health. However, uncovering these interactions remains challenging due to the limited 

genomic frameworks and the complexity of community interactions within microbial ecosystems. In 

this thesis, I focus on deciphering phage-bacteria and bacteria-host interactions. I identify the 

genetic factors using genome-resolved bioinformatic approaches.  

While bacterial genomics has made significant strides, phage biology remains relatively 

underexplored, especially regarding host interactions. As interest in phage therapy to combat 

antimicrobial-resistant infections grows, the need for standardised frameworks to name, classify, 

and annotate phage genomes becomes critical. To address this, I begin with a review of phage 

biology and bioinformatic methods used to sequence and characterise phage genomes. Building 

on this review, I introduce Sphae, an automated, reproducible bioinformatics toolkit that can 

seamlessly assemble, annotate, and classify phages. Sphae incorporates advanced tools to 

rapidly detect genomic features, such as integrases, toxins, and antimicrobial resistance genes —

elements that may disqualify phage candidates from therapeutic applications. While Sphae’s 

primary use case lies in the clinical evaluation of phages, it can also broadly characterise phages 

in other contexts and inform the current gaps in phage biology. 

Building on this foundation, I characterised novel phages and explored their interactions with 

bacterial hosts, illustrating the kinds of questions Sphae is designed to facilitate. I focused on 

Crassvirales phages that infect Bacteroides, both key players in the human gut microbiome. In this 

work, I characterise 14 novel Crassvirales isolates, which were assigned to three genera across 

two families, despite infecting the same host, Bacteroides cellulosilyticus. Comparative genomics 

revealed a conserved tail spike protein across these phages, suggesting a role in host recognition. 

Using structural modelling and protein-protein interaction predictions, we demonstrate that this 

protein may interact with TonB-dependent receptors, suggesting convergent host attachment. 

These findings advance our understanding of phage-mediated modulation of gut microbiomes and 

highlight the potential of such phages in microbiome-based interventions. 

Recognising that microbial ecosystems extend beyond simple phage-bacteria dynamics, I explored 

more complex interactions by investigating the tripartite relationship between the symbiont 

bacterium Xenorhabdus bovienii with its nematode host, Steinernema, and their joint parasitism of 

insect hosts. Analyses of 42 X. bovienii genomes revealed clustering not only by host species but 

also geography, underscoring the influence of ecological niches on bacterial population structure. 

Further, signatures of selective sweeps in genes associated with colonisation and interbacterial 

competition highlight host-specific and spatial drivers of microbial evolution in multipartite systems. 
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Together, this work elucidates how selective pressures shape microbial interactions across diverse 

contexts—from phage-bacteria dynamics in the gut to bacterial-eukaryote mutualisms. Through 

genome-resolved pipelines and structural modelling, this thesis provides both conceptual 

frameworks and tools to decode microbial interactions. These approaches advance our 

understanding of microbial community assembly and stability, while also informing future efforts to 

manipulate microbes or entire communities for therapeutic benefit.  
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1.1 Introduction  

Microbes are the unseen engineers of life, orchestrating essential processes that sustain 

ecosystems, drive biogeochemical cycles and influence the health of living organisms and 

ecosystems. Microbial communities, comprising archaea, bacteria, fungi, and viruses, are 

collectively termed as the microbiome (Lederberg & Mccray, 2001). Although the term microbiome 

was initially coined to describe the diverse, heterogeneous microbes inhabiting the human body, it 

is widely recognised that microbiomes are not exclusive to humans(Integrative HMP (iHMP) 

Research Network Consortium, 2019). Complex microbial systems have also been described in 

association with other animals, such as corals(Lima et al., 2020), kelp(Minich et al., 2018; Morris et 

al., 2016), and sharks(Doane et al., 2020, 2023; Goodman et al., 2022; Hesse et al., 2022; Kerr et 

al., 2023), as well as entire ecosystems(Dinsdale et al., 2008; Gilbert et al., 2018; Sunagawa et al., 

2020). Reflecting on this broader perspective, Berg et al. (2020) redefined the microbiome in more 

comprehensive and ecologically meaningful terms, as microbial community together with their 

“theatre of activity”. This term now encompasses structural elements, metabolites, mobile genetic 

elements, and interactions within their habitat. This modern definition acknowledges microbiomes 

as integrated ecological entities, shaping and shaped by their environments across scales from 

individual hosts to global ecosystems. 

These microbial systems involve dynamic interactions among their members that are pivotal in 

driving their evolution, structuring populations, and maintaining the stability of microbial 

ecosystems. In many studies to date, the bacterial component of microbial communities is 

relatively well characterised, whereas viruses, particularly bacteriophages, remain comparatively 

unexplored. Most research tends to focus either on bacterial–bacterial interactions or solely on the 

virome, with limited attention given to how these microbial components interact and influence each 

other within shared environments. 

1.2 Knowledge gap and rationale  

These intricate interactions between bacterial populations, their phages, and eukaryotic hosts play 

fundamental roles in determining the host range, resistance mechanisms, and the broader co-

evolutionary dynamics that underpin microbial ecosystems. They exemplify core evolutionary 

concepts, such as the Red Queen hypothesis(Van Valen, 1973), where continual adaptation is 

essential to maintain relative fitness amid biotic pressure(Brockhurst et al., 2014). In bacteria, 

processes such as horizontal gene transfer and selective sweeps drive diversification and 

ecological partitioning, enabling communities to rapidly shift their functional potential and 

restructure themselves in response to changing environments(Arevalo et al., 2019; VanInsberghe 

et al., 2020). In phages, their host interactions are studied by transferring their host range 

information to networks to illuminate the underlying coevolutionary processes to inform host 

breadth and specificity(Kauffman et al., 2022; Weitz et al., 2013). Understanding these dynamics is 
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essential not only for elucidating patterns of microbial diversity and stability but also for informing 

strategies to manipulate microbiomes for the benefit of their hosts and the environment. 

Yet despite these advances, predicting how cross-taxa interactions drive mechanistic insights, 

structure populations, and impact ecosystems remains limited. This shortfall is compounded by a 

lack of reproducible and scalable genomic frameworks, which restricts our capacity to compare 

findings across studies robustly or to trace the evolutionary forces shaping microbial populations. 

Disentangling these complexities within naturally heterogeneous microbiomes poses significant 

challenges. This thesis addresses these knowledge gaps by isolating and studying host–microbe 

and microbe–microbe interactions, focusing on individual isolate genomes to enable fine-scale 

analysis of genomic and evolutionary mechanisms. While single-isolate approaches necessarily 

simplify the intricate context of whole communities, they provide critical mechanistic insights that 

are often obscured in metagenomic studies. By coupling this with the development of automated, 

reproducible bioinformatics workflows, this work not only advances our understanding of these 

foundational interactions but also establishes methodological standards that enable rigorous, 

cross-system comparisons in microbial ecology and evolution. 

1.3 Research aims  

To answer these questions, this thesis is structured around three research aims which have been 

addressed as chapters in this thesis: 

Aim 1: Develop a reproducible and scalable genomic framework  
Phages were selected as the focus for this aim because they are abundant and ecologically 

significant in shaping microbial community dynamics and show promise as alternatives to combat 

antibiotic-resistant infections. However, they are understudied, and there are currently no 

workflows available to assemble and characterise these genomes quickly. To address this gap, I 

first reviewed the current literature on existing methods for study phage genomes analysis 

(Chapter 2). Building on this foundation, I then developed an integrated, user-friendly pipeline for 

characterising phages in chapter 3 of this thesis.  

Aim 2: Investigate the genomic markers underlying bacteriophage interactions with their 
bacterial hosts 
Understanding how phages interact with their bacterial hosts is crucial for deciphering the selective 

forces that shape microbial genomes, influence host specificity, and drive ecosystem-level 

functional dynamics. Yet, despite the ecological prominence of phage–bacteria interactions, the 

genomic determinants of these relationships remain poorly understood, especially in systems like 

the human gut, where phage diversity is high but experimental isolates are scarce. To address this, 

I focus on characterising phage isolates using genomic data to identify key host-interaction genes, 

assess the conservation and selection pressures acting on these proteins, and model their 

interactions with bacterial surface receptors. This work is presented in Chapter 4 of this thesis. 
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Through this approach, this aim provides mechanistic insights into how phages influence bacterial 

adaptations and uncovers how phage diversity contributes to the structure and function of gut 

microbial communities. 

Aim 3: Investigate the population structuring of bacterial symbionts in multipartite 
interactions 
Although bacterial symbionts play a vital role in host health, we still lack a clear understanding of 

how their populations are structured across host species and environments, particularly in 

complex, multipartite interactions involving hosts and diverse microbial communities. In this aim, I 

use bacterial symbionts as a model system to explore how gene flow, recombination, and selection 

shape population structure and adaptation within these multipartite networks. This work is 

presented in chapter 5 of this thesis. By applying comparative genomic analyses to symbionts 

sampled across host taxa and geographic gradients, tracing patterns that underpin population 

cohesion and diversification. This work provides a framework for understanding how microbial 

communities interact and evolve within host-associated ecosystems. 

Together, these aims provide a multi-scale perspective on the processes that structure microbial 

communities, advancing our understanding of community ecology and strategies to harness 

microbial interactions for therapeutic and ecological applications. 

1.4 Thesis structure  

This thesis is organised to gradually build from a broad conceptual and methodological foundation, 

leading to detailed studies of specific microbial systems. It begins with a literature review on 

bacteriophages in Chapter 2. This thesis begins with a focus on phages due to their crucial roles 

as modulators of microbial communities and their potential as tools against antibiotic-resistant 

infections. The review covers their biology, and the bioinformatics methods used to sequence and 

characterise phage genomes. It also discusses the need for improved annotation tools that 

accurately assign gene functions, along with standardised nomenclature for effective classification 
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and communication. The chapter concludes with an evaluation of phages for therapeutic 

applications.  

 

Figure 1.1: Conceptual framework of this thesis. Highlights the phage–bacteria interactions (Aim 2, Chapter 
4) and the tripartite interactions among nematodes, bacterial symbionts, and their broader environment (Aim 
3, Chapter 5). 

 

Next, in Chapter 3, I address Aim 1. I start with a brief overview on why scalable bioinformatic 

workflows matter, they lower the entry barrier, analyses reproducible, and put powerful tools in the 

hands of the whole phage-research community. As no dedicated pipelines existed for phage 

characterisation, beginning with sequencing data to naming and functional annotations. I 

developed Sphae, an automated bioinformatics toolkit designed to analyse phage genomes 

quickly. Recognising that the major application of tis workflow would be towards phage therapy, I 

incorporated tools to detect genomic markers such as antimicrobial resistance and virulence 

genes, directly addressing the demand for scalable and reproducible computational solutions. This 

workflow has already been peer-reviewed and published in Bioinformatics Advances, and is 

available through GitHub, PyPI, conda and Docker package managers. This chapter walks through 

Sphae’s architecture and demonstrates how its end-to-end design enables the discovery of 

therapeutic phage candidates to be truly scalable and reproducible. The toolkit is also modular, 

allowing users to flexibly run only the state-of-the-art tools they need, making it adaptable to a 

range of workflows and expertise levels. 

In Chapter 4, I address Aim 2, through applying the phage characterisation workflow developed in 

Chapter 3 to investigate the dominant gut phages belonging to the order Crassvirales, which infect 

Bacteroides, key microbes involved in digestion, immune modulation, and disease susceptibility. 

Despite their abundance, they remain largely uncharacterised, with few available isolates for 

experiments to study mechanisms of host interactions. In this chapter, I characterise novel 

Crassvirales isolates, exploring their genomic features and the evolutionary relationships of genes 

involved in host specificity and interaction through comparative genomics. I also employed 
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structural modelling to examine key proteins involved in host specificity, providing insights into the 

mechanisms by which phages interact with and adapt to their bacterial hosts. The work in this 

chapter has been published in Microbial Genomics and demonstrates a mechanism of phage-host 

interaction in the gut microbiome.  

In Chapter 5, I address Aim 3 by investigating the factors that shape population structure in 

bacterial symbionts engaged in multipartite interactions with phages and other partners. In this 

chapter, I shift my focus from phages to bacterial symbionts that are not only interacting with each 

other but also their hosts. I focus on the system, Xenorhabdus bovienii, a mutualistic bacterium 

associated with nematodes, which together are parasitic to insect hosts. I employ comparative 

genomic analyses across host species and geographic gradients to investigate how X. bovienii 

populations navigate these evolutionary forces. This work was published in MBio. These findings 

highlight how microbial populations structure in multipartite environments, supporting a broader 

understanding of how host–microbe associations and ecological interactions drive the assembly, 

resilience, and functional capabilities of microbiomes.  

Finally, in Chapter 6, I bring together the findings from each chapter into a unified discussion. I 

connect the development of scalable workflows, insights into phage–bacteria interactions, and 

patterns of bacterial symbiont population structure back to the original aims, highlighting how each 

contributes to addressing key knowledge gaps in the field. The discussion connects fine-scale 

genomic processes to broader ecological and evolutionary dynamics, offering new insights into 

how microbe-host interactions collectively influence the assembly, resilience, and functional 

potential of microbiomes. It also outlines future research directions to build on this work, 

addressing remaining gaps in our understanding of the forces that govern microbial community 

diversity and stability.  
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CHAPTER 2  
LITERATURE REVIEW 

 

 

 

 

 

This chapter is based on the published literature review Grigson, S. R., Giles, S. K., Edwards, R. 

A., & Papudeshi, B. (2023). Knowing and naming: phage annotation and nomenclature for phage 

therapy. Clinical Infectious Diseases, 77(Supplement_5), S352-S359. 

https://doi.org/10.1093/cid/ciad539. This article is reproduced in full under the terms of the Creative 

Commons Attribution License (CC BY 4.0). © The Author(s) 2023. Published by Oxford University 

Press on behalf of the Infectious Diseases Society of America. 

This publication has been expanded and restructured with additional sections and updates to 

better align with the broader scope of this thesis. 
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This chapter is based on the review article titled “Knowing and Naming: Phage Annotation and 

Nomenclature for Phage Therapy,” which I co-authored as part of this thesis. This paper was 

written to address fundamental challenges in characterising phages for phage therapy, for the 

audience of Clinical Infectious Diseases Journal. The article critically examined current practices 

and bioinformatic tools in phage genome annotation and naming, emphasising the urgent need for 

rigorous, standardised, genome-informed approaches that align with modern sequencing and 

comparative genomics capabilities. As the last author on this publication, I played a key role in 

shaping its scope, identifying main themes, and synthesising literature on phage taxonomy, 

annotation tools, and therapeutic considerations.  

Since its publication, this article has been cited in 18 other publications, demonstrating its 

relevance to the rapidly evolving field of phage therapeutics and annotation standards. In this 

thesis, I have built on the content from the review article, restructuring and expanding the work to 

align with the narrative of this thesis. I have added sections focusing on phage diversity and 

biology relevant to understanding phage-bacteria interactions in Chapter 4. Moreover, where 

relevant, the bioinformatics tools have also been updated to include those published since 2023, to 

ensure this literature review is up to date.  

This chapter provides a comprehensive foundation for the next two chapters, establishing the 

biological, ecological, and computational contexts necessary to understand the challenges and 

opportunities in phage research, thereby directly motivating the methodological developments and 

comparative analyses presented in the following chapters.  

Statement of authorship 

As the last author on this work, I played a senior leadership role in shaping the paper’s direction 

and scope. I was instrumental in identifying the key themes that needed to be addressed, curating 

and synthesising relevant literature, and framing the central arguments regarding phage taxonomy, 

gene annotation, and therapeutic suitability. My contribution included substantial input into the 

conceptual framing, critical analysis of existing tools and standards, and guidance on the tone and 

structure of the manuscript to ensure it was both accessible and rigorous.  

Below is a breakdown of the author's contributions: 

Author Contribution 

Susanna 

Grigson 

Writing the annotation section and editing the manuscript 
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Sarah K. Giles Writing the first section, including experimental techniques to isolate phages, 

and editing of the manuscript 

Robert A. 

Edwards 

Structuring and editing of the manuscript 

Bhavya 

Papudeshi 

Writing the naming a phage section, structuring, and editing of the manuscript 

 

The contributions of each co-author have been explicitly stated, and their permission to include 

these works has been obtained as per Flinders University’s Authorship of Research Output 

Procedures (Appendix A) 
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All the world’s a phage 

Abstract 

Bacteriophages, or phages, are the most abundant biological entities on the planet and play central 

roles in microbial ecology through their diverse infection strategies and genomic architectures. 

They influence nutrient cycling, microbial population dynamics, and horizontal gene transfer, 

positioning them as key drivers of microbial evolution. This chapter provides an overview of phage 

diversity and infection dynamics, focusing on the modular and mosaic nature of phage genomes 

that complicates functional prediction. It reviews current approaches for genome annotation, the 

identification of key genomic features, and the assignment of functional labels to protein-coding 

sequences—essential steps to avoid the inadvertent inclusion of undesirable genes in therapeutic 

applications. The chapter also highlights the role of the International Committee on Taxonomy of 

Viruses (ICTV) in standardising phage classification and nomenclature. With growing interest in 

phages as therapeutic agents to combat antibiotic resistance, understanding phage biology is 

increasingly important. Lytic phages are preferred in therapy due to their bacteria-killing abilities, 

while temperate phages are often avoided because of their potential to transfer resistance or toxin 

genes. Selecting suitable phage candidates relies heavily on plaque morphology and genome 

sequencing, underscoring the need for robust annotation tools and a deep understanding of phage 

life cycles. Altogether, accurate annotation and consistent classification enhance our 

understanding of phage–host interactions, replication strategies, and evolution, advancing both 

basic research and the safe development of phage-based therapies. 

2.1 Introduction 

Bacteriophages, also known as phages, are viruses that infect bacteria. They influence microbial 

evolution, modulate microbial communities, and drive biogeochemical cycles(Chevallereau et al., 

2022; Suttle, 2007), and maintain ecosystem stability. Their interactions with bacteria underpin 

critical ecological processes and have far-reaching implications for understanding microbial 

community dynamics across diverse environments.  In their seminal work, Hendrix et al., (1999) 

described the extensive diversity and evolutionary relationships among bacteriophages and 

prophages, aptly titling their paper "All the World’s a Phage." This metaphor highlights the 

pervasive presence and influence of phages on microbial life, serving as the title of this chapter.  

Viral diversity is staggering, with a single gram of soil estimated to contain >1 billion 

virions(Williamson et al., 2017) and an estimated 1031 total virions on Earth(Hendrix et al., 1999). 

Despite this staggering abundance, only a fraction of viral diversity is formally recognized: as of the 

2024 International Committee on Taxonomy of Viruses (ICTV) release, ~16,215 viral species are 

classified across all viruses. For pahges specifically, genomic resources are expanding rapidly, 

with 26,048 complete phage genomes and ~28,468 isolated phages reported as of September 

2023 (Cook et al., 2021), still only a sliver of the vast, uncharted phage diversity. They exhibit 
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variations in morphology, replication strategies, genetic composition, and host specificity. Despite 

their ubiquity and ecological significance, the broader study and application of phages continue to 

face substantial challenges. Inconsistencies in phage taxonomy and classification, along with 

shortcomings in genome annotation(Shen & Millard, 2021; Turner et al., 2021), where the majority 

of predicted phage genes remain labelled as hypothetical. This limits our ability to compare phages 

across studies, understand their roles in microbial communities, or fully harness their potential as 

tools in biotechnology and medicine. These knowledge gaps hinder not only fundamental insights 

into phage–bacteria interactions but also practical efforts to leverage phages in areas ranging from 

microbiome engineering to therapeutic interventions. 

This chapter provides a comprehensive overview of the biological and genomic characteristics of 

phages, forming a foundational framework for the thesis. It examines phage diversity and explores 

the modular, mosaic architecture of phage genomes. The chapter also reviews current approaches 

to genome annotation and standardised classification, drawing on insights from our published 

review and incorporating additional perspectives needed to contextualise the original research 

presented in the subsequent chapters. 

2.2 Phage biology 

Their staggering genetic variability is one of the challenges in studying these entities. Unlike 

bacteria and eukaryotes, phages lack universal marker genes, such as 18S rRNA genes, and often 

have genomes dominated by hypothetical proteins with no known homologues in databases. Their 

biology is unique, as they are obligate parasites that rely entirely on host cellular machinery for 

replication. Their evolutionary trajectories are shaped by rapid genetic turnover, modular genome 

architectures, and intense evolutionary pressures. These characteristics highlight why phages 

cannot be fully understood through frameworks developed for other cellular life, underscoring the 

need for specialised tools and models to understand their roles in microbial ecosystems. 

2.2.1 Morphological diversity 
Phage morphology(Figure 2.1A) was historically used for classification and mainly classified as 

tailed and non-tailed phages. Most known phages belong to the Class: Caudoviricetes, 

characterised by their tail morphology:  

• Myovirus-like morphology, which possess long contractile tails,  

•  Siphovirus-like morphology, which possess long non-contractile tails, and  

• Podovirus-like morphology, which possess short, non-contractile tails.  

Phage tail structures can offer insights into their interactions with their bacterial hosts. These tails, 

comprising long or short tail fibres, spikes, baseplates, and contractile sheaths, serve as the 

sensory and mechanical interface between phages and bacteria. Tail fibres and spikes mediate 

highly specific, reversible binding to cell-surface receptors such as lipopolysaccharides, membrane 
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proteins, pili, or flagella, establishing host range and initiating infection(Nobrega et al., 2018). 

These tail components evolve rapidly in response to host resistance mechanisms, driving co-

evolution and influencing phage specificity and fitness.  

In contrast, non-tailed phage morphology is classified into: 

• Inoviridae, filamentous or rod-shaped phages,  

• Plasmavirinae, which includes membrane-enveloped phages exhibiting variable, 

pleomorphic shapes(Krupovic & ICTV Report Consortium, 2018),  

• Icosahedral phages comprise icosahedral capsids that lack tail structures(Dion et al., 

2020). These phages can be further grouped into  

o Microviridae, small ssDNA phages 

o Leviviricetes, ssRNA phages 

o Cystoviridae, segmented dsRNA genomes with lipid envelope around the capsid,  

Tectiviridae, Corticoviridae, Sphaerolipoviridae, linear dsDNA with lipid membrane containing 

phages. Non-tailed phages rely on alternative structures such as coat or envelope proteins—like 

pIII in filamentous Inoviridae (Knezevic et al., 2021), capsid spikes in Microviridae (Cherwa & Fane, 

2011), or envelope proteins in Plasmaviridae to recognise and bind to their hosts (Krupovic & ICTV 

Report Consortium, 2018). 

2.2.2 Infection strategies  
Phages are also classified based on infection strategies (Figure 2.1B). They primarily fall into one 

of two categories. The lytic cycle involves hijacking the bacterial machinery to produce progeny 

and ultimately lysing the host cell. In contrast, the lysogenic lifecycle involves phages that integrate 

into the bacterial genome and replicate with the bacteria as prophages. In this cycle, rather than 

producing new viral particles immediately, they remain as prophages, within the host lineage. 

These prophages are a driving force of bacterial ecology and evolution within the bacterial 

populations, offering advantages such as superinfection exclusion (Barr et al., 2013; Bondy-

Denomy et al., 2016) and contribute to metabolic functions (Bondy-Denomy & Davidson, 2014).  

Other variants of infection strategies include pseudolysogeny, which describes a stalled phage 

infection that neither proceeds to full genome replication (as in the lytic cycle) nor integrates into 

the host genome (as in the lysogenic cycle). During this stage, the phage genome remains inside 

the host cell largely dormant and unreplicated, awaiting more favourable conditions to either initiate 

replication or integration(Correa et al., 2021; Łoś & Węgrzyn, 2012). In the case of P22, this 

pseudolysogenic state often occurs after DNA injection, when the phage has entered the cell. 

However, the infection process is paused due to stressors like nutrient limitation. In the other 

strategy, the chronic infection cycle, the phage enters the host, replicates and new virions are 

released continuously without host cell lysis. This lifecycle is generally observed in filamentous 
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phage (Inoviridae). For example, CTXΦ filamentous phage carries the cholera toxin in Vibrio 

cholerae(Waldor & Mekalanos, 1996), and Pf4 phages increase biofilm production in 

Pseudomonas aeruginosa(Gavric & Knezevic, 2022). At the population level, this can contribute to 

a carrier state, where the bacteria and phages coexist stably over time. Here, a subpopulation of 

cells undergoes  productive, lytic infections (releasing phage progeny), while other cells either 

resist infections or maintain the phage genome non-productively. This balance enables phages to 

persist long-term within a bacterial culture, contributing to ongoing gene transfer and infection 

dynamics. Interestingly, Long-term persistence is also observed for abundant gut phages 

belonging to the Order: Crassvirales (Cortés-Martín et al., 2025; Shkoporov, Khokhlova, et al., 

2021). However, these phages are obligately lytic, their persistence is thought to arise form host–

phage ecological dynamics (e.g., resistant subpopulations, spatial structure, and turnover), rather 

than a true carrier state. Finally, some temperate phages adopt to plasmid lifecycle, where the 

phage genome is stably maintained as an extrachromosomal plasmid (e.g., P1, N15) (Pfeifer et al., 

2022, 2021; Ravin, 2011). This represents a plasmid form of lysogeny distinct from both 

chromosomal integration and transient pseudolysogeny, further demonstrating that phage 

lifecycles do not fit neatly into rigid categories. Instead, they span a spectrum of strategies that blur 

traditional definitions, highlighting ongoing novelty in how phages interact with their hosts.  

2.2.3 Lysogeny to lytic conversion switch based on microbial density 
Environmental factors, particularly density-dependent microbial concentrations, have been shown 

to influence phage life cycle decision(Silveira et al., 2021). For example, in nutrient-depleted 

environments such as deep oceans, phages often favour lysogeny, consistent with the Piggyback-

the-Loser (Refugium) model, where integration provides stability when the hosts are metabolically 

limited.  They favour a lysogenic state when the bacterial host is in more favourable 

conditions(Felipe H. Coutinho et al., 2017).On the other hand, in high-density environments, such 

as the human gut, lysogeny prevails (M.-S. Kim & Bae, 2018). The Piggyback-the-Winner model 

suggests that lysogeny also becomes more prevalent at high bacterial densities, whereas the Kill-

the-Winner model predicts that lytic phages dominate at intermediate densities (Knowles et al., 

2016). The models illustrate how bacterial and phage densities influence the balance between lytic 

and lysogenic cycles, allowing them to access different ecosystems(Silveira et al., 2021).  

2.2.4 Modularity and plasticity of phage genomes  
These infection strategies, involving shifts between lytic and lysogenic modes in response to 

environmental cues and host densities, are governed by finely tuned regulatory networks encoded 

within phage genomes(Benler & Koonin, 2020; Feiner et al., 2015). More broadly, the architecture 

of phage genomes, shaped by horizontal gene transfer and recombination, equips phages with the 

evolutionary flexibility needed to adapt to diverse ecological niches(Botstein, 1980; Hatfull & 

Hendrix, 2011; Pedulla et al., 2003). Phages have a conserved architecture, organised into 

functional modules: host takeover genes (early), phage replication genes (middle), and structural 
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virion genes (late). Genomic mosaicism refers to the composition of genomes from 

interchangeable, semi-independent functional modules, often acquired from unrelated phages or 

bacterial hosts(Botstein, 1980; Westmoreland et al., 1969). This modularity facilitates the 

adaptation to new environments and host species, especially in key genes such as receptor-

binding proteins on tail spikes or tail fibres, and endolysins (Figure 2.1C). To demonstrate genomic 

mosaicism, phage specificity was swapped using host-recognition modules, which not only reflects 

evolutionary history but can be harnessed as a tool for engineering phage function(Dunne et al., 

2019; Latka et al., 2021; Smug et al., 2023). 

Recombination does not occur solely within closely related phages; it can also cross significant 

taxonomic distances, especially in phages enriched with recombinases and transposases. In a 

study by Moura de Sousa et al.,(2021) showed that while phage family and host phylum can act as 

barriers, gene exchange still occurs, including between temperate and virulent phages. Notably, 

some virulent phages with large genomes contribute genes related to cell energetics, nucleotide 

metabolism, DNA packaging, and injection, which enhance infection efficiency and may influence 

host physiology. 

While the genomic mosaicism paradigm has been influential in shaping our understanding of 

phage evolution, it likely overemphasises the role of horizontal gene transfer. More recent 

phylogenomic analyses indicate that vertical inheritance is the dominant evolutionary force in many 

phage taxa, with horizontal gene exchange contributing mainly at specific loci involved in host 

interactions and niche adaptation(Rohwer & Edwards, 2002). Thus, modular organisation and 

recombination remain important for local innovation, but the broader evolutionary trajectories of 

phages are best explained by stable vertical lineages rather than a purely mosaic framework.This 

perspective is reflected in current classification frameworks by International Consortium of 

Taxonomy of Viruses (ICTV), which rely on terL (the large terminase subunit) as a conserved 

phylogenetic marker across dsDNA phages, underscoring its reliable vertical signal (Lefkowitz et 

al., 2018).While certain regions like tail fibre genes remain hotspots for recombination and mosaic 

exchange, core genes like terminase (and structural virion genes) often maintain coherent vertical 

lineage relationships. Thus, the use of terL in taxonomy underscores the dominance of vertical 

evolutionary signal in delineating phage relationships. 
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Figure 2. 1: Phage diversity A) Phage host morphology showing both tailed and non-tailed phages, and B) 
viral infection strategies. This image is adapted from(Valencia-Toxqui & Ramsey, 2024). Blue represents the 
lytic lifecycle, and grey represents the lysogenic lifecycle of the phages. This image is adapted from Correa 
et al., (2021). C) Genomic modularity showing how genes within the phage genomes are interchangeable 
and can serve in host specificity 

2.2.5 Phage packaging influences horizontal gene transfer  
Once the phage injects its genome into the host cell, it hijacks the bacterial machinery to replicate 

its DNA and synthesise new virion components. The last step of synthesising new components 

includes genome packaging, which plays a key role in shaping how phages interact with bacterial 

hosts and influence microbial communities. The mechanism by which a phage packages its 

genome into new viral particles can influence its potential for horizontal gene transfer (HGT), a 

crucial evolutionary force in microbial ecosystems. 
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Two of the best studied dsDNA strategies are cos and pac systems. In the cos site packaging 

model, as exemplified by phage λ, a concatemeric DNA molecule is cleaved precisely between two 

specific cos recognition sites by the terminase complex, resulting in genome-length precision with 

cohesive ends(Catalano & Morais, 2021; Dennehy & Abedon, 2020). Cohesive (cos) packaging 

ensures exact genome size, facilitating efficient circularisation and replication upon infection. The 

pac or headful packaging mechanism, common in phages like T4, SPP1, and P22, involves 

cleavage of a concatemeric substrate at a single pac site followed by translocation of DNA into the 

procapsid until it reaches capacity (“headful”). Termination is then signalled by the filled capsid, 

resulting in genomes that frequently exceed unit length and generate terminal 

redundancies(Wolput et al., 2024). These extra terminal repeats can promote circularisation, 

recombination, and exchange of host or phage genes, contributing to genetic diversity and lateral 

transduction events. Understanding these mechanistic differences is essential, cos-type phages 

tend to avoid generalised transduction because they require two specific cleavage sites, whereas 

pac-type phages can mobilise larger segments of host DNA due to their headful packaging 

strategy(Wolput et al., 2024).  

Beyond these two well-studied dsDNA packaging mechanisms that describe how the terminase 

recognises, cleaves and initiates packaging, in other phages other mechanisms of recognising 

genome termini are defined. For instance, in cos-type phages, genome termini are precisely 

defined by cleavage at specific cos recognition sites, whereas in pac-type phages, termini are 

determined by headful packaging capacity, resulting in variable ends with terminal redundancy. 

Other phages define their ends differently, through replication generated repeats, terminal proteins, 

and nucleic acid structures which in turn shape their packaging outcomes(Casjens & Gilcrease, 

2009). T7 like phages generate short terminal repeats during replication, which are recognised and 

cut at these fixed distances, yielding precisely terminally repeated genomes (Chung et al., 1990). 

T5-like phages instead pre-form long terminal redundancies during replication which are packaged 

without the need for concatemeric cleavage(Rhoades & Rhoades, 1972). Bacillus phage Ф29-like 

phages use a protein-primed system, in which the genome termini are defined by covalently 

attached terminal proteins that act as recognition signals for packaging initiation(Ito, 1978; Salas et 

al., 1978). In addition, ssDNA phages such as Microviridae package complete unit-length circular 

genomes generated via rolling-circle replication(Martin et al., 2011), while ssRNA phages (e.g., 

MS2, family Leviviricetes) rely on specific RNA secondary structures that interact with coat proteins 

to ensure selective encapsidation of full-length RNA genomes(Tars, 2020). 

These diverse systems illustrate that genome termini can be defined in multiple ways. Distinction of  

these mechanisms is crucial not only for interpreting phage evolution but also for guiding safe 

therapeutic phage selection and genome assembly in comparative genomics studies. 

2.3 Knowing phage genetic potential 
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Phage biology can be inferred directly from their genome content: the presence, absence, or 

variants of specific phage genes reflects infection strategies, replication mechanisms, structural 

components, and interactions with hosts. Here, we outline the key steps and tools used in phage 

isolation and detection, followed by genome assembly and the structural and functional annotation 

of phage genomes (Figure 2.2). Each of these processes is described in detail below, providing a 

comprehensive overview of how phages are recovered, sequenced, and characterised from both 

experimental and computational perspectives. 

 
Figure 2. 2: Overview of the steps in phage isolation and characterisation. A) Experimental methods: the 
double overlay method facilitates plaque formation, helping isolate and select lytic phages from an 
environmental source. Transmission electron microscopy helps visualise the isolated phages to determine 
the broad taxonomic grouping. Concurrently, the process involves extracting the isolated phage’s DNA and 
sequencing it. B) Bioinformatics methods: assembly of sequence reads allows for the recovery of complete 
genomes, accurate annotation, and phylogenetic classification.  

Abbreviations: LYS, lysine; MET, methionine 

2.3.1 Finding phages 
Typically, phages are isolated from environmental samples rich in bacteria, such as soil, water, or 

sewage, to isolate phages. The process begins with enrichment and filtration steps to concentrate 

phages within a sample(Luong et al., 2020). Enrichment is achieved by co-culturing bacterial 

strains with environmental samples, which amplifies the population of environmental phages and 

results in higher plaque counts. The widely used double overlay methods(Stachurska et al., 2021) 

enables the visualisation, isolation, and purification of phages through plaque formation, permitting 

the identification of diverse morphologies. Single plaques are picked and cultured to separate 

distinct phage species from environmental samples. A second round of plaquing allows us to 
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distinguish between large (>3 mm diameter) and small (1 mm in diameter) plaque sizes (Figure 2.3 

A). Other morphological features include halos around the plaque, indicating depolymerase or 

endolysin activity (Figure 2.3A). Interestingly, infection by a lytic phage can induce resident 

prophages within the same bacterial cell. These mixed infections can result in plaques where both 

lytic and lysogenic phage phenotypes co-occur producing complex plaque morphologies on a 

single, double overlay plate. Transparent plaques indicate lytic phages, while cloudy plaques 

indicate the lysogenic phages (Shymialevich et al., 2023; Zheng et al., 2020).  

 

 

Figure 2. 3: Distinct plaque morphologies using the double overlay method. Plaques from an environmental 
sample display a halo and are of variable sizes, large (>3 mm in diameter) or small (1 mm in diameter), 
denoting different phage species.  

 

After successive rounds of purification, phages are enumerated by serial dilution and titration. We 

visualise the phage by transmission electron microscopy, which reveals the structural details 

critical for classifying them into broad morphological groups. Subsequently, we grow phages in 

large quantities to extract DNA for sequencing. Although short-read sequencing technologies are 

more commonly used to sequence phage genomes, there has been a growing interest in using 

long-read sequencing. A recent study showed that long-read assemblies generated higher-quality, 

complete genome assemblies; however, they required polishing with short-read sequencing to 

correct frameshift errors (Papudeshi, Vega, et al., 2023). Recent advances in long‑read platforms, 

especially PacBio’s high‑fidelity (HiFi) circular consensus sequencing (CCS), have dramatically 

reduced raw read error rates to below 1%(van Dijk et al., 2023). As a result, modern long‑read 

assemblies now achieve both high completeness and accuracy, making them increasingly reliable 

for phage genomics and structural annotation efforts. Nonetheless, regardless of platform, 

achieving the right coverage depth is crucial: too low, and assemblies fragment; too high, and 

assembly algorithms struggle with excessive single‑nucleotide polymorphisms (SNPs), leading to 
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misassemblies or failures. For this reason, the optimal range is typically 25× to 100× coverage, 

which balances completeness with assembly robustness—higher coverage can actually increase 

assembly errors due to overrepresented SNPs in the dataset(Turner et al., 2021).  

Post-sequencing, the first step is to filter and trim the DNA sequences through quality 

control(Cantu et al., 2019; S. Chen et al., 2018; Tully, 2016; Wick, 2018) before assembling them 

to recover complete phage genomes(Antipov et al., 2020, 2022; D. Li et al., 2016). Phage 

genomes must be evaluated for quality because low-quality assemblies can significantly hinder 

accurate annotation and downstream analyses. To evaluate genome quality, reads can be mapped 

back to the assembled genome using MMseqs2(Steinegger & Söding, 2017). Key metrics 

assessed include the distance between paired ends, the mapping orientation of reads, and the 

evenness of read coverage across the genome (Shen & Millard, 2021; Turner et al., 2021). 

Genome completeness is further assessed using tools such as CheckV(Nayfach et al., 2021). 

Although the presence of direct terminal repeats (DTRs) can indicate terminal redundancy 

(Casjens & Gilcrease, 2009; Garneau et al., 2017), these signals are often obscured during the 

assembly process. Long-read assemblies, when combined with short-read assemblies, can help 

resolve phage DTRs more accurately(Elek et al., 2023). Alternatively, the Phables algorithm 

identifies and corrects terminal redundancy by exploring assembly graph structures(V. 

Mallawaarachchi et al., 2023). 

After assembly, computational methods that include genome information are used to anticipate 

whether a phage has a virulent or temperate lifestyle. These methods encompass sequence 

similarity–based random forest classifiers(McNair et al., 2012), the presence of specific protein 

domains(Mavrich & Hatfull, 2017), and a hybrid approach that utilises both types of 

information(Hockenberry & Wilke, 2021).  

2.3.2 Finding phage genomes from metagenomic sequencing datasets 
Whole genome sequencing metagenomic datasets generated or obtained from public databases, 

such as the NCBI Sequence Read Archive (SRA), can be utilised to extract phages (Benler & 

Koonin, 2021; Levi et al., 2018). Metagenomics analysis has led to most of the phage genomes 

identified to date (Benler et al., 2021; Camarillo-Guerrero et al., 2021; Yutin et al., 2021). Tools like 

Hecatomb (M. Roach et al., 2022), VirFinder (Ren et al., 2017) and vCONTACT2(Bin Jang et al., 

2019; Bolduc et al., 2017) identify viral-like sequences from metagenomes by searching for 

similarities against other known viral genomes.  

In bacterial metagenomes, assembled contigs are clustered based on genomic signatures like GC 

content and read coverage, creating metagenome-assembled genomes (MAGs)(Papudeshi et al., 

2017). Although traditional methods rely on clustering, recent tools like GraphBin(V. G. 

Mallawaarachchi et al., 2020; V. Mallawaarachchi et al., 2020) and MetaCoAG(V. G. 

Mallawaarachchi & Lin, 2022) have successfully utilised assembly graphs to generate high-quality 
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MAGs that retain information about how the reads are connected to form contigs. These steps can 

be transferred to viral metagenomes or viromes. Since phage genomes are small, complete phage 

genomes can be assembled after assembly, and the use of assembly graph information using 

Phables(V. Mallawaarachchi et al., 2023)) or the use of co-abundance and k-mer profile(Johansen 

et al., 2022; Nissen et al., 2021) can also be applied. These steps successfully resolve several 

phage genomes from metagenomic datasets. 

Having successfully isolated, sequenced, and assembled a phage genome, or identified phage 

genomes from metagenomes, we start by characterising the structural features to unpack their 

functional properties.  

2.3.3 Structural annotation 
The first step involves identifying open reading frames (ORFs), which encode proteins and detect 

other elements such as tRNAs, noncoding RNAs, promoters, and transposons. Gene-calling 

algorithms use codon usage, GC content, start/stop codons, Shine–Dalgarno sequences, and 

short nucleotide sequences that bind to ribosomes during protein translation to identify open-

reading frames(Hyatt et al., 2010; Larralde, 2022; McNair et al., 2019). The unique characteristics 

of phage genomes, including higher coding capacity, shorter intergenic regions, and more overlaps 

between coding domain sequences than bacterial genomes, require phage-specific tools(Akhter et 

al., 2012; Kang et al., 2017). Phage prediction tool, PHANOTATE, exploits these idiosyncrasies 

and improves phage gene identification(McNair et al., 2019). Beyond canonical gene structure, 

phages employ a range of strategies to expand their coding capacity. One such mechanism is 

programmed ribosomal frameshifting, which allows a single sequence to encode multiple protein 

products by shifting between reading frames(McNair et al., 2023). This not only increases coding 

density but also supports dynamic regulation of protein expression during infection. 

In addition to protein-coding genes, phage genomes often carry RNA-encoding elements, such as 

transfer RNAs (tRNAs). Identifying these features requires a combination of sequence similarity 

and structural predictions. Tools like tRNAscan-SE(Chan et al., 2021; Chan & Lowe, 2019) and 

ARAGORN(Laslett & Canback, 2004) are commonly used to detect tRNA genes, often prior to 

ORF calling. Notably, some phages have evolved to reassign canonical stop codons, thereby 

encoding amino acids and modulating translational termination. This strategy can help regulate 

gene expression and delay host cell lysis(J. H. Campbell et al., 2013; Cook, Telatin, et al., 2023; 

Ivanova et al., 2014; Pfennig et al., 2023; Yuqian Zhang et al., 2023).  

Phage genomes also exhibit chemical innovations beyond the sequence level. Many encode 

heavily modified or alternative nucleotides, which can help phages evade host defence systems or 

manipulate host metabolism for efficient replication(Bryson et al., 2015). Long-read sequencing 

platforms offer a distinct advantage here: both PacBio SMRT and Oxford Nanopore Technologies 
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are capable of detecting DNA modifications directly, providing insights into epigenetic features of 

phage genomes that are missed by short-read platforms(Nielsen et al., 2023). 

2.3.4 Functional annotation 
After identifying the protein- and RNA-encoding regions, the next step is to assign biological 

functions to each gene. Despite the fact that phages have smaller genomes than bacteria, it 

remains challenging to ascribe functions, as 65% of viral protein sequences lack known biological 

function(Susanna Grigson & Edwards, 2023). 

Phage genes typically encode proteins in one of several categories of functions as follows: First, 

structural and packaging proteins include capsid, baseplate, and tail fibre proteins. These proteins 

form the outer capsid of the free phage. Second, phage integration, excision, and maintenance of 

the integrated state, including recombination and DNA binding proteins. Third, DNA replication 

proteins, including DNA polymerases and single-stranded binding proteins. Fourth, accessory 

metabolic genes often provide temporary metabolic boosts to the cell, increasing energy 

production while the phage is replicating. Finally, morons and genes of unknown function(Juhala et 

al., 2000). 

Three popular databases target those clusters. PHROGs (prokaryotic virus remote homologous 

groups)(Terzian et al., 2021), VOGs (viral orthologous groups), and pVOGs (prokaryotic virus 

orthologous groups)(Grazziotin et al., 2017) build clusters of orthologous genes with shared 

functions. Orthologous genes have arisen through speciation (vertical transmission), and these 

databases attempt to disambiguate orthologs from proteins that evolved through duplication 

(paralogs) and thus may have similar but distinct functions. The PHROGs database is unique 

because it assigns each orthologous group to one of nine categories, allowing two levels of 

annotation. While phage genes are assigned an orthologous group, many have unknown functions; 

for example, 87% (33,747 out of 38,880 orthologous groups) of PHROGs lack a function. Most 

phage annotation pipelines use homology searches (e.g., with MMSeqs2 (Steinegger & Söding, 

2017), HMMER(Eddy, 2009, 2011; Finn et al., 2011), or HHpred(Söding et al., 2005) to search 

each coding domain sequence with these databases. 

Among the protein categories, structural proteins receive more annotations than the others due to 

their prominent role in the phage life cycle and direct involvement in host interactions and the 

external environment. Efforts to distinguish these structural proteins from those that serve 

alternative functions have involved various approaches, including using classifiers built with 

support vector machines(Charoenkwan et al., 2020; Fang et al., 2022; Manavalan et al., 2018). We 

further expanded on these methodologies by training an artificial neural network to discern 10 

distinct classes of proteins, including primary and minor capsid proteins, based on their sequence 

composition(Cantu et al., 2020). Recent advancements in artificial intelligence have introduced 

large language models that take PHROG cluster sequences as input and derive protein functional 
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properties from the embedded amino acid sequences to improve protein annotations(Heinzinger et 

al., 2024; Kelly et al., 2023). Another approach to improve annotations has been through the 

prediction of the 3-dimensional protein structures and structure-based predictions(Jumper et al., 

2021; Mirdita et al., 2022; Varadi et al., 2022). For instance, Say et al (2023) used Colabfold 

(Mirdita et al., 2022) to predict structures and used Foldseek(van Kempen et al., 2022) (van 

Kempen et al., 2022) to search a database. These emerging strategies improve functional 

annotations and deepen their biological and practical context. 

Table 2. 1: Summary of the bioinformatics tools used for phage assembly and annotation described in this 
chapter 

Category Name Brief Overview Github Reference 

Quality 

control 

Prinseq++ Quality control steps of 

sequenced reads 

https://github.com/Ad

rian-

Cantu/PRINSEQ-

plus-plus 

(Cantu et 

al., 2019; 

Schmieder 

& Edwards, 

2011) 

Filtlong Quality control steps of 

Nanopore sequenced 

reads 

https://github.com/rr

wick/Filtlong 

(Wick, 

2018) 

Fastp Quality control  https://github.com/O

penGene/fastp  

(S. Chen et 

al., 2018) 

Assembly MetaViralSPAdes Assembling viral 

sequences 

https://github.com/ab

lab/spades 

(Antipov et 

al., 2020) 

MEGAHIT Assembling prokaryotic 

sequences 

https://github.com/vo

utcn/megahit  

(D. Li et al., 

2015) 

ViralFlye Assembling viral 

sequences 

https://github.com/D

mitry-

Antipov/viralFlye 

(Antipov et 

al., 2022) 

Phage 

quality 

assessment 

CheckV Phage genome 

completeness 

https://bitbucket.org/

berkeleylab/checkv/s

rc/master/ 

(Nayfach et 

al., 2021) 

https://github.com/Adrian-Cantu/PRINSEQ-plus-plus
https://github.com/Adrian-Cantu/PRINSEQ-plus-plus
https://github.com/Adrian-Cantu/PRINSEQ-plus-plus
https://github.com/Adrian-Cantu/PRINSEQ-plus-plus
https://github.com/rrwick/Filtlong
https://github.com/rrwick/Filtlong
https://github.com/OpenGene/fastp
https://github.com/OpenGene/fastp
https://github.com/ablab/spades
https://github.com/ablab/spades
https://github.com/voutcn/megahit
https://github.com/voutcn/megahit
https://github.com/Dmitry-Antipov/viralFlye
https://github.com/Dmitry-Antipov/viralFlye
https://github.com/Dmitry-Antipov/viralFlye
https://bitbucket.org/berkeleylab/checkv/src/master/
https://bitbucket.org/berkeleylab/checkv/src/master/
https://bitbucket.org/berkeleylab/checkv/src/master/
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Viralverify Identify the viral 

sequences in the 

assembled contigs 

https://github.com/ab

lab/viralVerify  

(Raiko, 

2021) 

Virsorter2 Detect virus genomes  https://github.com/jia

rong/VirSorter2  

(Guo et al., 

2021; Roux 

et al., 2015) 

viralComplete Phage genome 

completeness 

https://github.com/ab

lab/viralComplete 

 

MMSeqs2 Map the reads to the 

phage genome, to 

determine even genome 

coverage 

https://github.com/so

edinglab/MMseqs2 

(Steinegger 

& Söding, 

2017) 

Phages 

from 

metagenom

es 

Phables Identify genome termini 

signals from assembly 

graphs 

https://github.com/Vi

ni2/phables 

(V. 

Mallawaara

chchi et al., 

2023) 

Hecatomb Identify viral portion of 

the metagenomes 

https://github.com/sh

andley/hecatomb 

(M. Roach 

et al., 2022) 

vCONTACT2 Cluster viral genomes 

based on gene similarity 

https://bitbucket.org/

MAVERICLab/vcont

act2  

(Bin Jang 

et al., 2019) 

virFinder Identify viral sequences 

from metagenomes 

https://github.com/je

ssieren/VirFinder  

 

Phage 

structural 

annotation 

PHANOTATE Gene identification in 

phage genomes 

https://github.com/de

prekate/PHANOTAT

E 

(McNair et 

al., 2019) 

https://github.com/ablab/viralVerify
https://github.com/ablab/viralVerify
https://github.com/jiarong/VirSorter2
https://github.com/jiarong/VirSorter2
https://github.com/ablab/viralComplete
https://github.com/ablab/viralComplete
https://github.com/soedinglab/MMseqs2
https://github.com/soedinglab/MMseqs2
https://github.com/Vini2/phables
https://github.com/Vini2/phables
https://github.com/shandley/hecatomb
https://github.com/shandley/hecatomb
https://bitbucket.org/MAVERICLab/vcontact2
https://bitbucket.org/MAVERICLab/vcontact2
https://bitbucket.org/MAVERICLab/vcontact2
https://github.com/jessieren/VirFinder
https://github.com/jessieren/VirFinder
https://github.com/deprekate/PHANOTATE
https://github.com/deprekate/PHANOTATE
https://github.com/deprekate/PHANOTATE
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Prodigal Gene identification in 

prokaryotic genomes 

https://github.com/hy

attpd/Prodigal 

(Hyatt et 

al., 2010) 

PRFect Predict ribosomal 

frameshifting 

https://github.com/de

prekate/prfect 

(McNair et 

al., 2023) 

tRNAscanSE Detection and functional 

classification of transfer 

RNA genes 

http://lowelab.ucsc.e

du/tRNAscan-SE/ 

(Chan et 

al., 2021; 

Chan & 

Lowe, 

2019) 

ARAGORN Detection of mRNA and 

tRNA genes 

http://www.ansikte.s

e/ARAGORN/ 

 

Mgcod Accurate annotation 

considering stop codon 

reassignment 

https://github.com/ga

tech-

genemark/Mgcod 

(Pfennig et 

al., 2023) 

pyrodigal Gene identification in 

prokaryotic genomes and 

stop codon reassignment 

https://github.com/alt

honos/pyrodigal  

(Larralde, 

2022) 

Phage 

orthologous 

cluster gene 

database 

PHROGs Prokaryotic virus proteins 

database 

https://phrogs.lmge.u

ca.fr/ 

(Terzian et 

al., 2021) 

pVOGs Prokaryotic virus 

orthologous groups 

database 

ftp://ftp.ncbi.nlm.nih.

gov/pub/kristensen/p

VOGs/home.html 

(Grazziotin 

et al., 2017) 

Phage 

functional 

annotation 

mmseqs2 Map the proteins to a 

phage protein database 

https://github.com/so

edinglab/MMseqs2 

(Steinegger 

& Söding, 

2017) 

https://github.com/hyattpd/Prodigal
https://github.com/hyattpd/Prodigal
https://github.com/deprekate/prfect
https://github.com/deprekate/prfect
http://lowelab.ucsc.edu/tRNAscan-SE/
http://lowelab.ucsc.edu/tRNAscan-SE/
http://www.ansikte.se/ARAGORN/
http://www.ansikte.se/ARAGORN/
https://github.com/gatech-genemark/Mgcod
https://github.com/gatech-genemark/Mgcod
https://github.com/gatech-genemark/Mgcod
https://github.com/althonos/pyrodigal
https://github.com/althonos/pyrodigal
https://phrogs.lmge.uca.fr/
https://phrogs.lmge.uca.fr/
https://ftp.ncbi.nlm.nih.gov/pub/kristensen/pVOGs/home.html
https://ftp.ncbi.nlm.nih.gov/pub/kristensen/pVOGs/home.html
https://ftp.ncbi.nlm.nih.gov/pub/kristensen/pVOGs/home.html
https://github.com/soedinglab/MMseqs2
https://github.com/soedinglab/MMseqs2
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HMMER Probabilistic models to 

predict the phage protein 

annotation 

https://github.com/Ed

dyRivasLab/hmmer 

(Eddy, 

2011) 

PVP-SVM Prediction of phage 

virion proteins 

www.thegleelab.org/

PVP-SVM/PVP-

SVM.html 

(Manavalan 

et al., 2018) 

DeePVP Classification of phage 

structural proteins 

https://github.com/fa

ngzcbio/DeePVP 

(Fang et 

al., 2022) 

PVPred-SCM Prediction of phage 

virion proteins 

https://github.com/Sh

oombuatong/PVPred

-SCM 

(Charoenk

wan et al., 

2020) 

VirionFinder Prediction of phage 

virion proteins 

https://github.com/zh

enchengfang/VirionF

inder 

(Fang & 

Zhou, 

2021a, 

2021b) 

PhANNs Classification of phage 

structural proteins 

https://github.com/Ad

rian-Cantu/PhANNs 

(Cantu et 

al., 2020) 

Phynteny_transfor

mer 

Uses phage genome 

architecture, using 

synteny to predict 

function of hypothetical 

proteins 

https://github.com/su

siegriggo/Phynteny_t

ransformer  

 

AlphaFold Protein structure 

prediction 

https://github.com/de

epmind/alphafold 

(Jumper et 

al., 2021) 

ColabFold Protein structure 

prediction 

https://github.com/so

krypton/ColabFold 

(Mirdita et 

al., 2022) 

https://github.com/EddyRivasLab/hmmer
https://github.com/EddyRivasLab/hmmer
http://www.thegleelab.org/PVP-SVM/PVP-SVM.html
http://www.thegleelab.org/PVP-SVM/PVP-SVM.html
http://www.thegleelab.org/PVP-SVM/PVP-SVM.html
https://github.com/fangzcbio/DeePVP
https://github.com/fangzcbio/DeePVP
https://github.com/Shoombuatong/PVPred-SCM
https://github.com/Shoombuatong/PVPred-SCM
https://github.com/Shoombuatong/PVPred-SCM
https://github.com/zhenchengfang/VirionFinder
https://github.com/zhenchengfang/VirionFinder
https://github.com/zhenchengfang/VirionFinder
https://github.com/Adrian-Cantu/PhANNs
https://github.com/Adrian-Cantu/PhANNs
https://github.com/susiegriggo/Phynteny_transformer
https://github.com/susiegriggo/Phynteny_transformer
https://github.com/susiegriggo/Phynteny_transformer
https://github.com/deepmind/alphafold
https://github.com/deepmind/alphafold
https://github.com/sokrypton/ColabFold
https://github.com/sokrypton/ColabFold
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FoldSeek Protein structure search https://github.com/st

eineggerlab/foldseek 

(van 

Kempen et 

al., 2022) 

AMRFinderPlus Antimicrobial resistance 

gene search 

https://github.com/nc

bi/amr 

(Feldgarde

n et al., 

2021) 

CARD Antimicrobial resistance 

gene search 

https://card.mcmaste

r.ca/ 

(Alcock et 

al., 2023, 

2020) 

VFDB Virulence factor 

database search 

http://www.mgc.ac.c

n/VFs/ 

(L. Chen et 

al., 2005, 

2016; Liu et 

al., 2022) 

BACPHLIP Bacteriophage lifestyle 

prediction 

https://github.com/ad

amhockenberry/bacp

hlip 

(Hockenber

ry & Wilke, 

2021) 

PHACTS Bacteriophage lifestyle 

prediction 

https://github.com/de

prekate/PHACTS 

(McNair et 

al., 2012) 

RaFAH Host prediction https://sourceforge.n

et/projects/rafah/ 

(Felipe 

Hernandes 

Coutinho et 

al., 2021) 

Pharokka Phage annotation 

pipeline 

https://github.com/gb

ouras13/pharokka 

(Bouras, 

Nepal, et 

al., 2023) 

MultiPhaTE2 Phage annotation and 

comparative analyses 

https://github.com/ca

rolzhou/multiPhATE2 

(Ecale 

Zhou et al., 

2021) 

PHOLD Phage annotation using 

protein structures 

https://github.com/gb

ouras13/phold 

 

2.3.5 Genome annotation and comparison workflows  

https://github.com/steineggerlab/foldseek
https://github.com/steineggerlab/foldseek
https://github.com/ncbi/amr
https://github.com/ncbi/amr
https://card.mcmaster.ca/
https://card.mcmaster.ca/
http://www.mgc.ac.cn/VFs/
http://www.mgc.ac.cn/VFs/
https://github.com/adamhockenberry/bacphlip
https://github.com/adamhockenberry/bacphlip
https://github.com/adamhockenberry/bacphlip
https://github.com/deprekate/PHACTS
https://github.com/deprekate/PHACTS
https://sourceforge.net/projects/rafah/
https://sourceforge.net/projects/rafah/
https://github.com/gbouras13/pharokka
https://github.com/gbouras13/pharokka
https://github.com/carolzhou/multiPhATE2
https://github.com/carolzhou/multiPhATE2
https://github.com/gbouras13/phold
https://github.com/gbouras13/phold
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Bioinformatics workflows include the multistep process described above to annotate phages. 

Pharokka(Bouras, Nepal, et al., 2023) layers the annotations, beginning with phage gene 

prediction, followed by similarity searches against large databases. Pharokka generates the files 

required to submit a new genome sequence to GenBank but also creates visualisations and 

provides output formats suitable for comparing genomes. In contrast, another workflow, 

MultiPhaTE2 can handle multiple phage genomes and perform comparative analyses(Ecale Zhou 

et al., 2021) in order to understand phage diversity and dynamics. 

2.4 Naming a phage 

2.4.1 Phage nomenclature 
Most biological organisms are named using a binomial nomenclature and a standard taxonomic 

hierarchy. Phages were initially characterised based on the physical characteristics of the virion, 

including the capsid size, structure, genome size, and type of nucleic acid (double-stranded or 

single-stranded; DNA or RNA). This method received criticism as the genomic and proteomic 

information was not considered. As sequencing has become more affordable, more genomes are 

being sequenced and assembled to complete the genomes, allowing genomic information to be 

considered. Another challenge was that, unlike bacteria, which include conserved 16S rRNA gene 

sequences, phages do not have similar markers. Therefore, measuring phage biodiversity and 

taxonomic classification has had limited success. However, in 2002, Rohwer and Edwards 

proposed a phage proteome tree that is constructed by clustering the phage genomes based on 

overall protein similarity across the genomes (Rohwer & Edwards, 2002). Another approach 

suggested is based on the comparative genomics of the structural gene module as these genes 

have been observed to exhibit sequence relatedness(Asare et al., 2015; Proux et al., 2002). Other 

proposed methods include phage network clusters that classify phages based on gene content. 

Phage-phage similarities are represented as networks with each node representing a phage and 

the edges showing their shared similarity. Graph topology is then applied to distinguish their 

phylogenetic clusters and evolutionary cohesive units (Lima-Mendez et al., 2008). K-mer-based 

methods have also been applied where viral nucleotide usage is used to determine the ancestral 

relationships(Pride et al., 2006). 

The first global attempt to classify viruses took place at the 1966 International Congress of 

Microbiology in Moscow, which established the ICTV to develop a universal taxonomic system for 

viruses. The International Committee on the Taxonomy of Viruses (ICTV) is the authoritative 

committee for classifying viruses. It delineates that classification into 15 taxonomic ranks between 

realm and species(Krupovic & ICTV Report Consortium, 2018). The ICTV ratifies viral 

nomenclature, and the Bacterial and Archaeal Viruses Subcommittee (BAVS) is responsible for 

phage nomenclature. The primary requirement for ratifying a new phage is depositing a complete 

genome sequence in 1 of the 3 International Nucleotide Sequence Database Collaboration 

(INSDC) member databases(Cochrane et al., 2016). By 2024, the ICTV had ratified 7 realms, 11 
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kingdoms, 22 phyla, 4 subphyla, 49 classes, 93 orders, 12 suborders, 368 families, 213 

subfamilies, 3769 genera, 86 subgenera, and 16,215 species (https://ictv.global/taxonomy, as of 

May 2025). 

2.4.2 Naming guidelines 
The first step in naming a phage is to invent a novel name for the isolate. There are several 

guidelines for prescribing phages (e.g., the SEA-PHAGES program has a set of rules, 

https://phagesdb.org/namerules/, and members of the ICTV BAVS published an informal guide to 

choosing a name(Adriaenssens & Brister, 2017). The guidelines are similar: do not use an existing 

phage name or one like a current name, keep the name short (about 5 to 15 characters), and do 

not start with a number. 

The next step is to determine its novelty in comparison to known phage sequences. We usually 

compare the phage’s genome sequence to the phage genomes that are in existing databases. The 

Millard Lab maintains and regularly updates a list of complete phage genomes 

(https://millardlab.org/). The ICTV guidelines suggest that novel species are more than 5% different 

from existing species at the nucleotide level. In comparison, novel genera are more than 50% 

distinct from existing genera at the nucleotide level. Unique characteristics distinguish unknown 

taxonomic groups, including genome length, number of coding sequences, and phylogenetic 

clustering of marker genes such as portal protein, large terminase, and significant capsid genes. 

While electron micrographs remain useful to describe phage morphology and support taxonomic 

proposals, high-level classifications (eg, subfamily or family) is now entirely based on genome-

based analyses, following the abolition of morphology based families (Turner et al., 2023). 

When identifying a new phage, one should determine the highest possible taxonomic classification 

based on sequence similarity and explore additional characteristics to assign a proper name. For 

example, we recently described three new phages that infect Bacteroides cellulosilyticus (ICTV 

application in Appendix C). The phage’s genome lengths and podovirus-like morphologies 

suggested they belonged to the Crassvirales order, and their sequence similarity to other crAss-

like phages further supported this(Papudeshi, Vega, et al., 2023). Phylogenetic clustering and 

nucleotide similarity searches confirmed that 2 genomes belonged to known genera but were 

distinct enough to be considered new species. The third phage was unlike any known crAss-like 

phages, so we proposed it as a new genus using the templates on the ICTV website 

(https://ictv.global/taxonomy/templates). A complete list of guidelines for naming phages is 

available on the ICTV website (https://ictv.global/about/code). If the isolated phage does not fit the 

current known taxonomic groups genomically or morphologically, the ICTV will help define a new 

category. 

2.5 Phages in a therapeutic context 

https://ictv.global/taxonomy
https://phagesdb.org/namerules/
https://millardlab.org/
https://ictv.global/taxonomy/templates
https://ictv.global/about/code
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Given their ability to specifically infect and lyse bacterial hosts, often harnessing diverse genetic 

machinery to enhance infection, phages have long been explored as therapeutic agents. Phages 

were first isolated to target pathogens and widely used to treat bacterial infections in the early 

twentieth century. However, in the post-war era, antibiotics’ broad-spectrum activity displaced 

phages, and interest in them waned. In the early twenty-first century, the rampant spread of 

antibiotic-resistant microbes that abrogate the effects of antibiotics has led to renewed interest in 

using phages as therapeutic agents(Dedrick et al., 2023; Gordillo Altamirano et al., 2022; M. I. 

Kutateladze et al., 2009; Nir-Paz et al., 2024; Schooley et al., 2017; Teney et al., 2024).  

However, not all phages are suitable for therapeutic use. Ideal candidates must have a strictly lytic 

lifecycle, a well-defined host range, restricted to the target bacterial species (but broad enough to 

cover multiple strains within that species), and lack genes encoding antimicrobial resistance or 

virulence factors. Temperate phages are unsuitable for phage therapy due to their potential to 

transfer antibiotic resistance, virulence genes, or pathogenicity islands to other bacteria(Ghequire 

& De Mot, 2015; Hyman, 2019; Waldor & Mekalanos, 1996). Conversely, virulent phages use lytic 

replication that induces the host cell’s death post-infection. Therefore, obligate lytic phages are 

preferred for phage therapy, as they pose reduced susceptibility to confer phage resistance. 

Isolated phages are first screened based on plaque morphology, aiming to select lytic phages that 

display distinct, clear plaques. Subsequently, these phages are sequenced to decipher their 

genetic makeup and identify their genes (Figure 2.2). These annotations are pivotal in determining 

phage interactions, replication, evolutionary dynamics, and host range. Accurate genome 

annotation also ensures that phages do not transfer unwanted genes, such as antimicrobial 

resistance genes and toxins, to new environments. Simultaneously, this process allows for 

selecting genomes with depolymerases that provide antimicrobial and antibiofilm activities(Calero-

Cáceres et al., 2019; Colavecchio et al., 2017; Debroas & Siguret, 2019); anti–clustered, regularly 

interspaced, short palindromic repeats (CRISPRs); and antitoxin genes that help phages overcome 

bacterial immune systems(Azam & Tanji, 2019). To comprehensively assess phages’ therapeutic 

potential and diversity, we classify them into a suitable taxonomy to place the phage in an 

evolutionary context.  

The search for lytic phages is the same steps as phage isolation described above. Additional steps 

are added including plate-based methods such as cross-streaking(Hanna et al., 2012) and 

detecting spontaneous phage release using spot and immunity assay techniques(Gordillo 

Altamirano & Barr, 2021) can assist in identifying temperate phenotypes. 

2.5.1 Examining phage suitability from their genomic information 
In the context of phage therapy, specific genes are pivotal in determining if the phage is a potential 

candidate for phage therapy. For instance, “integrase” annotated genes are not preferred as they 

are markers for temperate lifestyles. While specific gene functions may confer phage therapy 



 

30 

advantages, this includes phage-encoded depolymerase genes, which degrade specific 

components of a bacterial surface, including extracellular polysaccharides and biofilm 

matrices(Knecht et al., 2019). Depolymerase activity can present as a halo around the plaques 

(Figure 2.3 A), and this gene activity makes the bacteria more susceptible to host infection, 

improving access to bacterial surfaces and reducing antibiotic dependence. Annotation pipelines 

may label these genes as “depolymerase,” “host-interaction protein,” “capsule degrading enzyme,” 

“biofilm matrix-degrading enzyme,” or similar (Hsieh et al., 2017; Shahed-Al-Mahmud et al., 2021; 

Wu et al., 2019). 

Additionally, tail spike and tail fibre proteins include phage receptor binding proteins (RBPs), which 

are crucial for host interactions and indicative of host specificity. Often, the annotations list these 

proteins as “receptor-binding protein,” “receptor-recognising protein,” or similar 

variations(Boeckaerts et al., 2021, 2022, 2024). Tools such as PhageRBP have developed models 

based on detected RBP sequences and protein domains to visualise these proteins in the phage 

isolated. Experimentally, techniques such as the efficiency of plating, which quantifies plaque-

forming efficiency and burst size, representing the number of progeny virions released per infected 

host cell, also characterise phage–host interactions(Ellis & Delbrück, 1939). 

Other relevant genes include anti-host systems that phages develop to counter bacterial defence 

mechanisms against phage infections. Phages adapt by mutating RBPs at a high frequency in an 

order that is mediated by the activity of diversity-generating retroelements(Benler et al., 2018; 

Sharifi & Ye, 2019) to recognise the bacterial host. To bypass the restriction-modification systems 

in the bacterial hosts, phages alter their restriction sites using nucleotide modifications or 

reorientation(Egido et al., 2022). In response to bacterial immunity mechanisms, abortive infection 

mechanisms, which involve toxin–antitoxin action, phages inhibit the antitoxin degradation or 

produce antitoxin analogues to defend themselves. Finally, to evade clustered, regularly 

interspaced, short palindromic repeats (CRISPR/Cas), phages modify palindrome repeats or use 

anti-CRISPRs (Acr) proteins that hinder the system’s activity. Programs such as minCED identify 

CRISPR spaces in the phage genome(Bland et al., 2007; Huang et al., 2021; J. Wang et al., 2020). 

Interestingly, phage resistance can develop quickly in vitro, but the results are variable in 

vivo(Egido et al., 2022). Unfortunately, while we can identify and examine the phage for known 

anti-host defence systems, several mechanisms still need to be identified. Mechanisms that 

underlie phage resistance are seldom studied; instead, there is more focus on clinical outcomes on 

phage cocktails or combination therapy (antibiotics with phages) to overcome phage resistance. 

Moreover, the potential for phages to routinely transfer antibiotic resistance genes in the 

environment requires further clarification. Studies exhibit varying outcomes; some indicate 

increased antibiotic resistance gene transfer(Colavecchio et al., 2017; Modi et al., 2013), while 

others present opposing results(Enault et al., 2017). Similarly, many phages are known to carry 



 

31 

toxins, so we use virulence factor databases to identify gene products that might be involved in 

pathogenesis, including toxins(L. Chen et al., 2005, 2016; Liu et al., 2022). Therefore, aligning 

phage genes against boutique databases with highly accurate, manually curated data such as the 

National Centre for Biotechnology Information (NCBI) AMRFinderPlus(Feldgarden et al., 2021) and 

comprehensive antibiotic resistance database (CARD), virulence factor databases(L. Chen et al., 

2005, 2016; Liu et al., 2022) is necessary. 

2.6 Sharing phages 

Making the bacteriophage genomes available through one of the three public INSDC repositories 

(National Centre for Biotechnology Information [NCBI], DNA Data Bank of Japan [DDBJ], or 

European Nucleotide Archive [ENA]) is good practice. It is required when publishing the work in 

any peer-reviewed journal. Each of the three databases has an online portal where complete, 

annotated genome sequences can be submitted. 

Depositing the phage isolates to specialised repositories such as the American Type Culture 

Collection, National Collection of Industrial, Food, and Marine Bacteria, and Phage Australia 

facilitates access to these phages. Alternatively, local collections such as Phage Australia provide 

a platform for making phage information and their characteristics publicly accessible. 

2.7 Conclusions 

Bacteriophages stand out as some of the most diverse and ecologically influential entities on Earth, 

playing pivotal roles in shaping microbial evolution, structuring communities, and maintaining 

ecosystem function. Yet their diversity, mosaic genomic architectures, and dynamic interactions 

with bacterial hosts present unique challenges for systematic study. Accurate annotations are 

essential to navigating this complexity; they underpin our ability to precisely identify and compare 

phages, uncover their ecological roles, and understand the mechanisms driving their interactions 

and evolutionary trajectories. Concurrently, standardised nomenclature approaches not only 

facilitate clear communication and data integration across studies but also provide a critical 

foundation for advancing applied efforts, from safe and effective phage therapies to microbiome 

manipulation. In this way, careful genome characterisation and classification directly address the 

knowledge gaps, enabling us to better appreciate and harness the extraordinary biology and 

ecological significance of phages. 
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CHAPTER 3  
PHAGE BIOINFORMATICS TOOLKIT 

 

 

This chapter is based on the published article — Papudeshi, B., Roach, M. J., Mallawaarachchi, 

V., Bouras, G., Grigson, S. R., Giles, S. K., ... & Edwards, R. A. (2025). Sphae: an automated 

toolkit for predicting phage therapy candidates from sequencing data. Bioinformatics Advances, 

5(1), vbaf004. https://doi.org/10.1093/bioadv/vbaf004. This article is reproduced in full under the 

terms of the Creative Commons Attribution License (CC BY 4.0). © The Author(s) 2025. Published 

by Oxford University Press. 

 

Statement on the Use of Generative Artificial Intelligence (AI): Generative AI tools—including 

ChatGPT by OpenAI and Grammarly—were used during the preparation of this chapter for 

language editing purposes, such as enhancing sentence clarity, grammar, and structure. 

Additionally, Microsoft Copilot was employed to assist in identifying and resolving coding errors 

during the development of the Sphae workflow described in this chapter. These tools were not 

used to generate original scientific content, perform data analysis, or contribute to the interpretation 

of research findings. All intellectual, analytical, and conceptual contributions presented herein are 

my own, in full accordance with Flinders University’s policy on the responsible use of generative AI 

in research. 
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Preface 

This chapter is based on the published article, “Sphae: an automated toolkit for predicting phage 

therapy candidates from sequencing data,” for which I am the first author. The work was published 

in Bioinformatics Advances in January 2025 and addresses the lack of reproducible, domain-

specific workflows for genome assembly, annotation, and evaluation of phages, particularly in the 

context of phage therapy. I tailored both the tool and the original publication to highlight therapeutic 

screening, recognising that one of the major applications of such a tool would be in supporting 

phage therapy research. This workflow has been downloaded 20,000 times, underscoring its 

impact and adoption within the phage research community. 

In developing Sphae, multiple tools were integrated into a streamlined pipeline capable of rapidly 

characterising phages and identifying key genomic markers. For this thesis, I have adapted and 

expanded the content to align with my broader research aims. The content of this chapter is 

adapted from the original publication, which details the development and capabilities of the Sphae 

toolkit. I have added a “Conclusion” section to better align this work with the broader research aims 

and to tie it into the overall thesis structure. 

Overall, this chapter establishes the methodological foundation for the thesis. Sphae is not limited 

to therapeutic phages; its modular steps can equally be applied to other phages, including 

temperate types, making it broadly useful for diverse ecological and evolutionary studies. By 

providing a robust framework for phage genome characterisation, it directly supports the 

comparative analyses and investigations of phage–bacteria interactions explored in the 

subsequent chapter, ultimately advancing our understanding of microbe–host dynamics. 

Statement of authorship 

As the primary author of this chapter, I led the design, development, and validation of the Sphae 

bioinformatics workflow. I was responsible for conceptualising the toolkit architecture, integrating 

multiple open-source tools, and ensuring the pipeline was scalable, reproducible, and accessible to 

the broader research community. In developing this workflow, I sought feedback from domain 

experts in phage genomics and workflow engineering to refine tool selection and usability, while 

maintaining the codebase and documentation. I also led the manuscript writing, figure generation, 

and benchmarking analyses, ensuring clear presentation of both the technical aspects and 

biological relevance of the workflow. Although this project involved collaborative input—particularly 

around test datasets, comparative evaluation, and end-user testing—the work reflects my 

leadership in developing computational solutions tailored to the challenges of phage genome 

analysis. Below is a breakdown of the author's contributions: 

Author Contribution 
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Bhavya Papudeshi Conceptualised and developed the Sphae workflow, performed data 

analysis, wrote the manuscript, and contributed to its editing 

Michael J. Roach Assisted in computational development, workflow optimisation, and 

data analysis. 

Vijini Mallawaarachchi Assisted in computational development, workflow optimisation, and 

data analysis. 

George Bouras  Contributed to data analysis and manuscript editing. 

Susanna R. Grigson Contributed to data analysis and manuscript editing. 

Sarah K. Giles Assisted with data collection and validation. 

Clarice M. Harker Assisted with data collection and validation. 

Abbey L. K. Hutton Assisted with data collection and validation. 

Anita Tarasenko Assisted with data collection and validation. 

Laura K. Inglis Assisted with data collection and validation. 

Alejandro A. Vega Assisted with data collection and validation. 

Cole Souza Assisted with data collection and validation. 

Lance Boling Assisted with data collection and validation. 

Hamza Hajama Assisted with data collection and validation. 

Ana Georgina Cobián 

Güemes 

Provided insights into phage therapy applications and validation. 

Anca M. Segall Provided research supervision, guided project development, and 

contributed to manuscript editing 

Elizabeth A. Dinsdale Provided research supervision, guided project development, and 

contributed to manuscript editing 

Robert A. Edwards Provided research supervision, guided project development, and 

contributed to manuscript editing 
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The contributions of each co-author have been explicitly stated, and their permission to include 

these works has been obtained as per Flinders University’s Authorship of Research Output 

Procedures (Appendix A). I also affirm that, while this research was strengthened through these 

collaborations, all overarching hypotheses, research aims, analyses, and interpretations presented 

in this thesis are my own. The coordination of interdisciplinary methods, the synthesis of findings 

across chapters, and the articulation of their broader significance reflect my independent 

intellectual contributions. 
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Sphae: an automated toolkit for predicting phage therapy 
candidates from sequencing data 

Abstract 

Phage therapy presents a viable alternative for treating bacterial infections amid growing concerns 

about antimicrobial resistance. Its success relies on selecting safe and effective phage candidates 

that require comprehensive genomic screening to identify potential risks. However, this process is 

often labour-intensive and time-consuming, hindering rapid clinical deployment. We therefore 

developed Sphae, an automated bioinformatics pipeline designed to streamline the assessment of 

the therapeutic potential of a phage in under 10 minutes. Using Snakemake workflow manager, 

Sphae integrates tools for quality control, assembly, genome assessment, and annotation tailored 

specifically for phage biology. Sphae automates the detection of key genomic markers, including 

virulence factors, antimicrobial resistance genes, and lysogeny indicators such as integrase, 

recombinase, and transposase, which could preclude therapeutic use. Among the 65 phage 

sequences analysed, 28 showed therapeutic potential, 8 failed due to low sequencing depth, 22 

contained prophage or virulent markers, and 23 had multiple phage genomes. This workflow 

generates a report to quickly assess phage safety and suitability for therapy. Sphae is scalable and 

portable, facilitating efficient deployment across most high-performance computing and cloud 

platforms, accelerating the genomic evaluation process. Sphae source code is freely available at 

https://github.com/linsalrob/sphae, with installation supported on Conda, PyPi, Docker containers. 

3.1 Introduction 

With the escalating global challenge of antimicrobial resistance (AMR) comes an increasing 

demand for alternative treatments against bacterial infections. Bacteriophages, also known as 

phages, are viruses that infect bacteria and are ubiquitous in the environment. The use of phages 

to treat bacterial infections is being explored worldwide as an alternative to antimicrobials. In the 

USA, Australia, and parts of Europe, this treatment option is typically administered as a last-resort 

care for severely ill patients under compassionate use (J. Singh et al., 2023; Y. Wang et al., 2022). 

For phage therapy to be most effective, thorough safety assessments of the phage isolates must 

be performed before treatment. This includes experimental testing to confirm that the phage is a 

pure isolate and can infect the targeted pathogen variant. While phages can be co-isolated with 

satellites or other phages, these complex systems are more challenging to characterise and 

regulate, and therefore a pure isolate is generally preferred as the starting point for therapeutic 

development, before combining phages into cocktails. Additionally, phages are screened to 

specifically select lytic phages that infect, replicate, and quickly kill the bacterial host over 

temperate or lysogenic phages that integrate into the host genome during infection and remain 

stable(Bondy-Denomy et al., 2016; Gordillo Altamirano & Barr, 2019). Temperate phages are not 

preferred as they can protect the host by improving its fitness and may confer phage resistance 

through repressor-mediated immunity and/or superinfection exclusion (Bondy-Denomy et al., 2016; 

https://github.com/linsalrob/sphae


 

37 

Samson et al., 2013). Additionally, phages are screened for large burst sizes and short latent 

periods to ensure quick and sustained infectivity and high adsorption rates to ensure effectiveness 

at low concentrations. The presence of these qualities is essential for high virulence to overwhelm 

the bacteria quickly(Rohde et al., 2018). 

Phages and bacteria often engage in evolutionary arms race where bacterial defence mechanisms 

like CRISPR-Cas systems co-evolve with phage countermeasures and can propagate throughout 

bacterial populations(Fineran et al., 2009; Sorek et al., 2008; Yirmiya et al., 2024). Interestingly, it 

has been shown that the development of phage resistance by the host often coincides with a loss 

of antibiotic resistance(Oromí-Bosch et al., 2023), allowing antibiotics to augment phage therapy 

by eliminating bacteria as they switch from an antibiotic- to a phage-resistant state. This synergy 

can be enhanced by using phage cocktails consisting of a range of phages with a combined 

specificity for a broad host range to further reduce the evolution of phage resistance within a 

bacterial infection. Especially if the cocktail includes phages with distinct mechanisms of host 

recognition and/or host factors, so that resistance to one phage does not confer resistance to all 

phages(Altamirano & Barr, 2021; Torres-Barceló et al., 2022; Wandro et al., 2022). Consequently, 

phage therapy has significant potential to be an effective treatment strategy for combating 

antibiotic resistance. 

Efforts have been renewed to isolate phages for antibiotic-resistant bacterial pathogens in Europe, 

the USA, and Australia. The use of bacteriophages as therapeutic applications is subject to 

stringent regulatory oversight, particularly concerning toxin production and AMR genes. Ideally, 

phage isolates are sequenced during screening to predict their genetic potential for safety and 

efficacy(Cobián Güemes et al., 2023; S. R. Grigson et al., 2023; Luong et al., 2020)Bioinformatics 

analysis is now an indispensable component of this approach, ensuring that sequencing data is 

processed efficiently to guide decision-making. For time-sensitive applications, rapid and scalable 

computational tools are essential, especially for large-scale screening initiatives. However, current 

analysis workflows can be time-consuming and require manual intervention, which limits their 

throughput and scalability. 

Phage genomes are typically small, with a median size of about 40 kb, and can usually be 

assembled easily into complete genomes. However, the assembly process using default assembly 

tools obfuscates genome termini signals(S. R. Grigson et al., 2023). The recently published 

Phables algorithm (V. Mallawaarachchi et al., 2023) uses the assembly graph and read coverage 

to identify and correctly resolve genome termini. Alternatively, the HYbrid and Poly-polish Phage 

Assembly method utilises long-read assemblies in combination with short-read sequencing(Elek et 

al., 2023). Phage genome sequences can also be contaminated with contigs from the bacterial 

host due to contamination during DNA extraction or the induction of host prophages, resulting in 

mixed phage lysates (Cobián Güemes et al., 2023). Tools such as ViralVerify(Raiko, 2021) identify 
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and remove putative host contigs. Additionally, phage assemblies may be split over multiple 

contigs. Therefore, it is important to utilise tools such as CheckV(Nayfach et al., 2021) to determine 

if the assembly represents a single complete phage genome, and in identification of direct terminal 

repeats (DTRs). In some cases, even a single phage lysate can yield multiple phage genomes, 

making such tools indispensable for accurate phage identification(Gendre et al., 2022). 

Once assembled, genome annotation tools like Pharokka(Bouras, Nepal, et al., 2023) predict 

genes and assign biological functions using database searches against genes with known 

functions. However, assigning biological functions remains challenging, as 65% of viral proteins 

lack sequence homology to a protein with a known function(Susanna Grigson & Edwards, 2023). 

Nonetheless, specific genes that serve as markers for temperate lifestyle (such as integrase 

genes) or confer phage resistance, including a search for toxin, virulence factors, or AMR, are 

screened for. The acquisition of such genes by bacteria through infection is considered phage 

conversion and poses risks for therapeutic application due to the potential propagation of 

resistance or virulence within bacterial populations. These genes are exclusionary criteria for 

phage therapeutic use; however, in cases where lytic phages are unavailable, engineered phages 

with disabled integrase and repressor functions have been demonstrated as an option(Dedrick et 

al., 2019; Strathdee et al., 2023). Meanwhile, anti-CRIPSR (Acr) proteins against their host and 

depolymerase genes are preferred as they can be advantageous in infection(S. R. Grigson et al., 

2023). However, running all these tools sequentially is time-consuming and resource intensive. 

Previous studies describe step-by-step tutorials and guidelines for assembling high-quality phage 

genomes and best practices for predicting and annotating their genes(S. R. Grigson et al., 2023; 

Shen & Millard, 2021; Turner et al., 2021). The steps listed above can be intimidating for novices, 

so workflow managers can run all these steps under one command to make it easier. 

In this chapter, I have developed Sphae, a Snakemake-powered rapid phage characterisation 

workflow, designed to streamline the selection of phage therapy candidates. This name is derived 

from “spae” which means “to foretell” with a modified spelling (s-ph-ae) denoting its specific focus 

on predicting a phage’s suitability for therapeutic use. This workflow enables the rapid selection of 

phage therapy candidates based on their genomic potential, leading to faster medical interventions 

and improved patient survival outcomes. We developed this workflow to ensure reproducibility and 

consistency in the outputs, as using different databases and software versions can influence the 

results. This workflow is easy to install and run, generating a final summary text file with phage 

characteristics that anyone can examine to determine the therapeutic potential of a phage. 

3.2 Methods  

3.2.1 Workflow input 
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Sphae requires sequencing reads in fastq format, either paired-end short reads from Illumina or 

MGI sequencing platforms or unpaired long reads from Oxford Nanopore sequencing platforms. 

Oxford Nanopore raw sequencing output is in fast5 or pod5 format, which must be basecalled 

using Guppy or Dorado to convert the reads to fastq format before running this workflow. 

3.2.2 Snakemake workflow manager 
We utilised the Snakemake workflow manager(Köster & Rahmann, 2012), which facilitates the 

automated installation of packages and dependencies. We also utilised Snaketool, which provides 

a user-friendly command line interface for Sphae to make running the pipeline as easy as 

possible(M. J. Roach et al., 2022). Workflow managers such as Snakemake provide scalability, 

reproducibility, and re-entrancy(Welivita et al., 2018), parallel processing of multiple samples, and 

integration for running commands and various steps on high-performance computing (HPC) 

systems and cloud-based environments. Therefore, we employed this template to leverage the 

capabilities of the Snakemake workflow manager in developing our pipeline for carrying out quality 

control, genome assembly, and annotation (Figure 3.1). 

 

Figure 3. 1: Sphae workflow overview. The workflow processes sequencing reads from short- and/or long-
read data in fastq format. The command sphae run, starts with quality control, filtering out low-quality reads 
and adaptor sequences. Processed reads are assembled, and the resulting assemblies are processed to 
confirm complete phage genomes in each sample. The phage genomes are annotated to identify the genes 
and assign biological functions. The final output folder contains the assembled genome (fasta format), 



 

40 

annotations (GenBank format), a Circos plot (PNG format), and a summary text file detailing phage 
characteristic. 

3.2.3 Steps in workflow 
1. Quality control: Fastp(S. Chen et al., 2018) and Filtlong(Wick, 2018) are run to remove low-

quality reads and trim adaptor sequences to ensure only high-quality reads are retained for 

downstream analysis. 

2. Read subsampling: Rasusa(Hall, 2022) is run to subsample up to 10 million base pairs per 

sample to keep an ideal 25× to 100× genome coverage for phage assembly(S. R. Grigson 

et al., 2023). 

3. Assembly process: Paired-end short reads are assembled using MEGAHIT(D. Li et al., 

2015, 2016), while long-read assemblies are conducted using Flye(Kolmogorov et al., 

2019). Although recent advances in Nanopore sequencing chemistry have reduced the 

need for long-read polishing(Bouras, Houtak, et al., 2024), Medaka(Nanoporetech 

Consortium, 2022) is used to correct older, more error-prone reads. 

4. Completeness assessment: Assembled contigs are classified using: 

a. ViralVerify(Raiko, 2021) to identify viral, plasmid, or bacteria origin using gene 

content, 

b. CheckV(Nayfach et al., 2021) to determine the completeness of the viral contigs by 

comparing the genomes against a database of viral genomes and identifying the 

conserved gene markers and regions, 

c. Custom Python script to assess contig connectivity within the assembly graph(V. 

Mallawaarachchi et al., 2023), and 

d. Overall, only contigs classified as viral by ViralVerify (longer than 1000 base pairs 

and having a completeness score of over 70%) are selected for further analysis. In 

cases where a sample contains multiple genomes, each genome is saved as a 

separate phage genome. 

5. Gene annotation is performed using Pharokka(Bouras, Nepal, et al., 2023). Gene prediction 

is conducted using PHANOTATE(McNair et al., 2019)  or Pyrodigal(Larralde, 2022), 

followed by functional annotation through comparison with the PHROGs database(Terzian 

et al., 2021). In addition, genes are also run against: 

a. AMR gene databases: CARD(Alcock et al., 2023), 

b. Virulence factor database; VFDB (Liu et al., 2022), 

c. CRISPR recognition tool; MinCED(Bland et al., 2007), 

d. anti-CRISPR (Acr) gene detection using AcrDB(Huang et al., 2021), 

e. anti-phage systems using DefenseFinder(Tesson et al., 2022), and 

f. tRNA genes using tRNAscanSE(Chan et al., 2021) and tmRNA using 

ARAGORN(Laslett & Canback, 2004). 

6. Taxonomic assignment is performed within Pharokka, via MASH(Ondov et al., 2016) that 

compares the genome against the phage INPHARED database(Cook et al., 2021). 
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7. Hypothetical gene analysis: To address the prevalence of remaining hypothetical genes, 

Sphae uses: 

a. Phold applies the ProstT5(Heinzinger et al., 2024) protein language model to 

generate a structural representation for each gene. These are compared against a 

database of predicted phage protein structures using FoldSeek(van Kempen et al., 

2022) to assign potential functions. 

b. The resulting GenBank files are further processed through Phynteny(Susie Grigson 

& Mallawaarachchi, 2023), which utilises a long short-term memory model trained 

with phage synteny to refine gene function predictions. 

8. Phage therapy suitability: The annotated genome is systematically analysed for key 

markers, including integrase, recombinase, transposase, toxins, AMR, and virulence genes. 

3.2.4 Workflow output 
Each workflow step yields a set of files, not all of which are directly pertinent to deciding the 

therapeutic potential of the phage. Sphae workflow produces a “FINAL” directory containing 

essential summary files to streamline the output. These files include: 

• assembled phage genome (.fasta) 

• phage annotations (.gbk) 

• genome plot (.png) 

• summary table (.tsv): annotations from the three tools, tracking which tool assigned a 

function to the gene 

• summary (.txt): phage characteristics described in Table 3.1 

Table 3. 1: Phage characteristics and annotations for sample Bc01 

Phage 
characteristic 

Value Explanation 

Sample name Bc01 Sample name 

Total length of reads 
after QC and 
subsampling 

5 363 156 bp Total length of reads used for assembly to help 
calculate genome coverage 

Length 100 743 Length of the phage genome assembled 
Circular False Was the genome assembled to be circular, 

according to the information provided in the 
assembly graph? For more information, you can 
visualise the file ending in .gfa with Bandage 
(Wick et al., 2015). 

https://paperpile.com/c/UXXgJv/DQmZ
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Graph connections 0 If the assembly generated fragmented contigs 
due to low coverage, the graph shows potential 
connections, offering clues for identifying 
terminal repeats and low-complexity regions. 
Visualise the file ending in .gfa with Bandage 
(Wick et al., 2015). 

Direct terminal 
repeat (DTR) found 

– Is DTR detected by CheckV (Nayfach et al., 
2021) in the phage contig 

Completeness 100.0 Phage completeness score from CheckV 

Contamination 0.0 Contamination score from CheckV 

Taxon description Kehishuvirus sp.tikkala Assigned taxon name from Pharokka (Bouras, 
Nepal, et al., 2023) output, comparing the 
phage genome against the INPHARED 
database (Cook et al., 2021) using Mash 
(Ondov et al., 2016) 

Taxa result: 
matching hashes 

972/1000 How close the phage isolated is to the assigned 
taxon. Results from Pharokka Mash sketch 
against the INPHARED database 

Lowest taxon 
classification 

Kehishuvirus The lowest taxon rank assigned 

Isolation host of the 
described taxa 

Bacteroides 
cellulosilyticus 

Bacterial host of the assigned taxa from the 
INPHARED database 

Number of CDS 154 Number of genes identified in the genome from 
Pharokka results 

Total number of 
CDS annotated as 
“hypothetical 
protein” 

91 Counting only the genes annotated as 
hypothetical, which have not been assigned a 
biological function or have ambiguous 
descriptions in Phynteny output 

GC content 
(proportion) 

0.35 GC content from Pharokka result 

Percent coding 
density 

91.3 Phages generally have high coding capacity, so 
if the density is low, it could indicate issues with 
gene calling for this phage 

Prophage or 
temperate lifestyle 
markers 

No integrases, 
recombinases, or 
transposases found 

These genes indicate the phage can have a 
temperate lifestyle, which would most likely 
exclude it from use in therapy. Results from 
Pharokka, Phold, and Phynteny searches 

Toxin genes No toxins found Search for genes with “toxins” in the gene 
description from the final Phynteny output and 
from VFDB search 

https://paperpile.com/c/UXXgJv/DQmZ
https://paperpile.com/c/UXXgJv/GYQ1T
https://paperpile.com/c/UXXgJv/GYQ1T
https://paperpile.com/c/UXXgJv/zIRJD
https://paperpile.com/c/UXXgJv/zIRJD
https://paperpile.com/c/UXXgJv/Ko5NR
https://paperpile.com/c/UXXgJv/phZy
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Virulence genes No antimicrobial 
resistance (AMR) 
genes found; no 
virulence factors found 

Search against the CARD (Alcock et al., 
2023)and VFDB (Liu et al., 2022) databases 
using Pharokka and Phold results 

Defence genes No anti-CRISPR or 
spacers found, no 
defence genes found 

Pharokka and Phold search the genes against 
ACR (Huang et al., 2021) and DefenseFinder 
(Tesson et al., 2022) databases 

3.2.5 Phage sampling and sequencing  
Escherichia coli strain CoGEN001851 (BEI Resources: Catalogue number NR-4359) was received 

as a glycerol stock from BEI Resources. The strain was plated on Brain-Heart Infusion medium, 

supplemented with 1.5% agar (w/v), MgSO4, and MgCl2 to final concentrations of 10 mM and 

2 mM, respectively. The culture plates were incubated at 37°C for 24 h. The phages were isolated 

from untreated sewage water (influent) collected from the waste treatment plant in Cardiff, 

California, as described in Papudeshi et al. (2023). An isolated plaque was selected from each 

plate and purified further. Phage DNA was then extracted, and E.coli phages were sequenced 

using Oxford Nanopore MinION sequencing according to the manufacturer’s instructions, using 

Oxford Nanopore Rapid Barcoding Sequencing Kit (SQK-RBK0004) and sequenced on Flowcell 

R9.4.1 (FLO-MIN106) as described in Papudeshi et al. (2023). The sequencing data were 

deposited to the Sequence Read Archive (SRA) in BioProject PRJNA737576. The resulting fast5 

reads were run through Guppy v6.0.1 with model dna_r9.4.1_450bps_hac for the Nanopore 

sequenced isolates. The resulting fastq reads were then run through the Sphae workflow. 

3.2.6 Datasets  
The workflow was tested on phages isolated from the above commercially available E. coli strains, 

as well as with publicly available sequence reads or genomes for Klebsiella, Salmonella, and 

Achromobacter phages (Table 3.2 and Table S3.1). Additionally, we included one dataset with five 

samples that included mixed Caudovirictes phages from multiple bacterial hosts to demonstrate 

the potential of Sphae workflow in assembling and separating each phage (Table 3.2 and Table 

S3.1). The reads were downloaded from SRA using sra-tools in fastq format as input for Sphae. 

Table 3. 2: Phage study summary 

Study 

Number 
of 
phage 
samples 

Sequencing 
platform Bacterial host Bioproject Reference 

https://paperpile.com/c/UXXgJv/QVye
https://paperpile.com/c/UXXgJv/QVye
https://paperpile.com/c/UXXgJv/r73B
https://paperpile.com/c/UXXgJv/jraC
https://paperpile.com/c/UXXgJv/SrMI
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E.coli phages 14 MinION E.coli strain 
CoGEN001851 
(BEI Resources: 
Catalogue 
number, NR-
4359) 

PRJNA737576 This study 

Klebsiella 
phages 

20 MinION, 
Illumina 
NextSeq 

Klebsiella 
michiganensis, 
Klebsiella 
oxytoca, 
Klebsiella 
quasipneumoniae, 
Klebsiella 
variicola 

PRJNA914245 (Elek et 
al., 2023) 

Salmonella 
phages 

11 Illumina 
MiSeq 

Salmonella 
entericasubsp. 
enterica serovar 
Typhimurium 
(ATCC 14028S) 

PRJNA914245 (Gendre et 
al., 2022) 

Achromobacter 
phages 

15 Illumina 
MiSeq 

Achromobacter 
xylosoxidans 
strain 19–32 

PRJEB33638 (Cobián 
Güemes 
et al., 
2023) 

Mixed 
Caudovirictes 
phages 

5 Illumina 
MiSeq 

 
PRJNA222858 NA 

 

3.2.7 Benchmarking 
We benchmarked Sphae’s performance on five published datasets with 65 samples (Table 3.2) to 

compare its functionality and performance. These datasets include known phages in each sample 

as they were experimentally isolated, assembled, and annotated to serve as reliable references. 

Previous studies have described guidelines(S. R. Grigson et al., 2023; Shen & Millard, 2021; 

Turner et al., 2021) for assembling high-quality phage genomes and annotating their genes; we 

have used these tutorials as a framework to develop Sphae. All programs and dependency 

versions used for benchmarking are listed in Table 3.3. This adaptable workflow is designed with 

versatility, ensuring compatibility with future updates and new software. As there are no 

comparable workflows, we assessed workflow performance using datasets with varying 

complexities, different sample numbers, and different sequencing platforms, including samples with 

single or multiple phages. 
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Table 3. 3: Programs and dependency versions used for benchmarking Sphae on the five projects 

Steps  Sequencing Tools  version  

Quality control 

paired-end Fastp v0.23.4 

paired-end rasusa v2.0.0 

longread Filtlong v0.2.1 

Assembly 

paired-end MEGAHIT v1.2.9 

longread Flye v2.9 

longread medaka v1.11.3 

Assembly checks 
paired-end, longread ViralVerify v1.1 

paired-end, longread CheckV v1.0.1 

Annotation 

paired-end, longread Pharokka v1.7.1 

paired-end, longread Phold v0.1.4 

paired-end, longread Phynteny v0.1.13 
 

Running the workflow in parallel mode processes each phage genome as an individual job, thus 

speeding the output time. This can be set up on HPC systems using a user-provided profile. 

3.2.8 Runtime performance comparison 
To evaluate Sphae’s runtime, we measured the wall-clock runtime on a RedHat Linux release 8.10 

machine with an AMD EPYC 7551 CPU @ 2.55 GHz. We analysed sequencing data for a 

Klebsiella phage Amrap using both paired-end and long-read sequencing methods with default 

settings in Sphae. The analysis was conducted on six or eight threads and 32 GB of memory to 

mimic commonly available consumer hardware. Each paired-end, long-read with polishing, long-

read without polishing, and annotate modes were executed five times with the same command, 

and the median wall-clock times with 8 and 16 threads were recorded. 

3.2.9 Data availability 
All raw data used to assess Sphae are publicly available through the NCBI Sequence Read 

Archive (SRA), with SRA accession numbers listed in Table S3.1. The Sphae workflow code is 

openly accessible on GitHub at https://github.com/linsalrob/sphae. 

3.3 Results 

3.3.1 Determining complete genomes from assembly 

https://github.com/linsalrob/sphae


 

46 

Depending on the complexity and genome coverage of the phage, assembly steps can result in 

different results (Figure 3.2). Ideally, the phage genomes are completely assembled into circular or 

linear genomes (Figures 3.2A and 3.2 B). In other cases, the DTR that plays a role in packaging 

cannot be resolved due to its low complexity during assembly; in this case, the code considers the 

longer contig as a final genome representation (Figure 3.2C). Similarly, the DTR regions can cause 

multiple genomes to be tangled in an assembly graph (Figure 3.2D). In this case, all the contigs 

identified as complete phage genomes by CheckV are considered separate phage genomes from 

a sample. In the final case, the assembly generates fragmented phage genomes; if the contigs are 

long enough to determine if they are components of a phage genome (Figure 3.2E), or they may 

be too fragmented, making it challenging to determine if they are viral (Figure 3.2F). In both the 

latter cases, the poor quality of the assembly can lead to poor annotation and, therefore, they are 

not considered further in the workflow. 

 

Figure 3. 2: Assembly graphs visualised using Bandage: A) complete circular phage genome, B) complete 
linear phage genome, C) near-complete phage genome, with terminal repeats hard to assemble, D) multiple 
phage genomes in one assembly, E) fragmented phage genome, likely due to low genome coverage, and F) 
multiple phage genomes in one assembly—in this case, there are three phages in the sample. 

3.3.2 Assembly summary 
We assembled 65 samples across the five datasets, described in Table 3.1, using Sphae v1.4.3 

with the tools and their versions listed in Table 3.3, which resulted in the assembly of 84 phages. In 

the summary output (Table S3.1), we indicate if the assemblies have failed, if the assembly itself 

has not produced contigs, or if the assembled contigs were fragmented. This could occur due to 

issues with the quality of the sample or biological properties on of the phage genome.   

In the E.coli dataset, some sequences lacked sufficient genome coverage, resulting in 

unassembled phage genomes (Figure S3.1). Seven of the 14 samples were assembled, four 

generated fragmented assemblies, and three failed during assembly (Figure S3.1B). This dataset 

highlighted how Sphae captures the presence of poorly sequenced samples, suggesting to the 

user that further sequencing data is required to generate suitable genomes for these phages. 
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In the case of Klebsiella phages, short- and long-read sequences were assembled separately, 

revealing differences between the two sequencing platforms. Paired-end reads generated 

complete, circular assemblies with assembly graphs, including one sample featuring one region 

with multiple contigs tangled together (Figures 3.2C and S3.2). Conversely, Nanopore read 

assemblies resulted in complete, linear phage genomes (Figures 3.2B and S3.3), lacking the DTR 

region (Table S3.2). With the Salmonella and Achromobacter phage datasets, complexity arose 

from samples containing multiple phage genomes. While Sphae was able to assemble phage 

genomes for each sample (Figures S3.4 and S3.5), two samples (Se_F6 and Salfasec_13) 

contained two assembled phage genomes (Figure S3.4B and S3.4J), and two samples (Se_F3 

and Se_F1) contained three phage genomes (Figure S4C and E). This observation aligns with the 

genome characteristics outlined in the original publication(Gendre et al., 2022), confirming the 

presence of multiple phages in specific samples. However, three of the 11 samples were 

potentially contaminated with E. coli  φX174, likely introduced during the sequencing process. 

Many Illumina sequences contain φX174 contamination, as it is used as a spike-in during 16S 

rRNA sequencing. Similarly, the Achromobacter phage dataset contained multiple samples with 

two phage genomes per isolate, with 11 out of the 15 phages having genome lengths of either 30, 

40, or 70 kb. The assembly graph illustrates a structure similar to Figure 3.2D, with two phages 

connected by the DTR region (Figure S3.5). 

We further ran Sphae on a dataset comprising five mixed Caudoviricetes samples (SRR8788475, 

SRR8869231, SRR8869234, SRR8869239, and SRR8869241), demonstrating Sphae’s capacity to 

accurately resolve and separate multiple phages within each sample. For instance, sample 

SRR8788475 included four phages, and Sphae assembled all four phages (Figure S3.6B, Table 

S3.2); similarly, two phages in SRR8869231 were assembled (Figure S3.6C), three phages from 

SRR8869239 (Figure S3.6E) and SRR8869241 (Figure S3.6F). Interestingly, sample SRR8869234 

was listed to include two phages, but Sphae assembled three phages, Staphylococcus, Klebsiella, 

and Enterobacter phage (Figure S3.6D). Importantly, the resulting assembly graphs across all 

samples were connected by short sequence fragments (Figure 3.2D), reflecting the complexity of 

resolving multiple phages. 
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Figure 3. 3: Overview of phage genome characteristics across datasets. A) Proportions of genes in each 
PHROG function category are represented by dot sizes, with larger dots indicating higher proportions. Each 
row corresponds to a dataset, including Achromobacter, E. coli, Klebsiella (long-read and short-read), mixed 
phages, and Salmonella. B) Stacked bars display the proportion of genes annotated by three types: 
Pharokka annotations, Phold annotations, and hypothetical proteins, indicated by distinct fill patterns. C) 
Presence or absence of specific marker genes such as integrases, transposases, recombinases, toxin 
genes, and AMR genes is shown as filled or unfilled squares, these annotations were predicted using phage 
specific and specialised databases. D) The determination of phage therapy candidates is shown in the last 
column, where a filled square indicates a candidate, and an unfilled square indicates non-candidacy. 

 

To identify specific genes of interest for screening these phages for potential therapeutic use, we 

started with the presence of integrases, which were found in 15 phages from the Salmonella 

dataset, 13 from the Achromobacter dataset, and 3 (Serratia, Staphylococcus, Escherichia) 

phages from the mixed phage dataset (Figure 3.3C). The presence of an integrase suggests that 

these phages are temperate and can persist using the lysogenic cycle. They may protect their host 

against other phages or express genes altering host functions. Additionally, 10 Salmonella phages 

contained recombinase genes, four phages (Enterobacter, 2 Klebsiella, and Staphylococcus) from 

the mixed phage dataset contained recombinases. In two cases (Klebsiella and Escherichia 

phage), we also detected genes annotated Phd-like antitoxin and Doc-like toxin, that represent a 

module involved in plasmid/phage maintenance system. While none of the assembled phage 

genomes encoded antimicrobial genes, four phages contained virulence factors. Specifically, a 

phage from the Salmonella dataset and three phages (two Serratia phages and an Acinetobacter 

phage) from the mixed phage dataset were identified as encoding immune-modulating virulence 

genes. While the specific functions of these gene products remain unknown, their presence raises 

concerns and would disqualify these phages from consideration for therapeutic use. Overall, these 

31 phages exhibit markers indicative of a prophage lifestyle or the presence of virulence factors, 

suggesting they may not be suitable candidates for phage therapy (Figure 3.3D). 

Among the remaining 48 phages, 12 encoded anti-CRISPR proteins: six from E.coli, a Salmonella 

phage, and five from Achromobacter phages. An Escherichia phage from a mixed dataset 

contained defence genes (Figure 3.3C). However, 19 of the 48 potential phage therapy candidates 

came from samples containing multiple phages, necessitating re-isolation to ensure pure cultures. 

This reduces the viable candidates for phage therapy to 28 phages: 7 against E.coli, 19 against 

Klebsiella, two against Achromobacter, and one against Pseudomonas (Figure 3.3D). No pure 

candidates were identified from the Salmonella dataset. 

3.3.4 Sphae runtime performance 
Sphae was executed five times on Klebsiella phage Amrap across various sequencing modes and 

thread counts to assess differences in median runtime performance. This repetition allowed for 

robust comparisons, highlighting the variations in efficiency between configurations. Sphae paired-

end sequencing mode took a median of 42 minutes on 8 threads but dropped significantly to a 
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median of 9 minutes and 43 seconds on 16 threads. In long-read mode, the workflow was 

completed in a median of 14 minutes on 8 threads and 7 minutes and 24 seconds on 16 threads. 

Additionally, when Medaka polishing was omitted during the long-read mode, the median runtime 

increased to 17 minutes and 9 seconds on 8 threads. However, it similarly dropped to 8 minutes 

and 28 seconds on 16 threads. The sphae annotate command runs only the annotation steps of 

the workflow, taking a median of 6 minutes and 13 seconds on 8 threads, compared to 6 minutes 

and 31 seconds on 16 threads (Table 3.4). Increasing thread count significantly reduces runtime 

for assembly-related tasks but does not always benefit annotation steps. 

Table 3. 4: Sphae runtime performance 

Dataset Program 
Wall time with 8 threads 
(h:mm:ss) 

Wall time with16 threads 
(h:mm:ss) 

SRR22972379 
sphae run –sequencing 
longreads 

Median=0:14:12 
Minimum=0:13:11 
Maximum=0:17:06 

Median=0:07:24 
Minimum=0:07:12 
Maximum=0:09:47 

SRR22972379 
sphae run –sequencing 
longreads –no_medaka 

Median=0:17:09 
Minimum=0:15:49 
Maximum=0:17:23 

Median=0:08:28 
Minimum=0:08:21 
Maximum=0:09:15 

SRR22972371 
sphae run –sequencing 
paired 

Median=0:42:46 
Minimum=0:35:22 
Maximum=1:25:29 

Median=0:09:43 
Minimum=0:09:33 
Maximum=0:09:51 

OQ579031 sphae annotate 

Median=0:06:13 
Minimum=0:06:12 
Maximum=0:06:13 

Median=0:06:31 
Minimum=0:06:24 
Maximum=0:06:40 

 

3.4 Discussion 

Sphae is a reproducible workflow that automates the fundamental bioinformatics steps used in 

phage therapy to identify candidates for therapeutic use. By integrating 12 bioinformatics tools and 

nine Python scripts into a unified workflow, Sphae enables seamless execution using a single 

command. This workflow addresses key challenges in phage therapy by detecting induced 

prophages, multiple phage species in a sample, and DTRs that could influence HGT. Leveraging 

Snakemake’s parallelisation capabilities, Sphae can process multiple phages simultaneously, often 

within 10 minutes on 16 threads per phage sample. This makes Sphae a user-friendly solution for 

clinical applications, allowing for the rapid detection of phages with therapeutic potential. 



 

51 

We analysed five datasets, including 65 samples, to benchmark Sphae. These datasets included 

both short-read and long-read sequencing data, which were used to assemble 84 phage genomes, 

of which 28 phages could be utilised for therapy (Figure 3.4). We found that phage samples can 

contain multiple phages, and Sphae reports the characteristics of these phages, making it easier to 

identify potential candidates for phage therapy that could be further purified if a therapeutic phage 

candidate is identified. In some instances, contaminants such as E. coli ϕX174 in Illumina 

sequencing or phage λ in Nanopore sequencing were detected, as they are used as sequencing 

controls. In other cases, induced prophages may be present, identifiable by the presence of the 

same or highly similar sequences across all samples, as demonstrated in the Achromobacter 

dataset in this study. Finally, in cases where the phage fails, Sphae reports at which step the 

sample failed, if it was during assembly or if the assembly was fragmented, as demonstrated with 

the E.coli dataset. These findings underscore the importance of thorough characterisation and 

identification of phages for their potential therapeutic use. 

 

Figure 3. 4: Flowchart summarising the analysis of 65 phage samples across five datasets, detailing the 
number of assembled phages, therapeutic candidates, failed assemblies, impure cultures, and phages 
containing prophage or virulence gene markers. Diagram generated using SankeyMATIC. 

3.4.1 Sphae analysis reveals genomic insights into phage biology 
Phage isolation is challenging because a plaque can contain multiple phages from the 

environment, induced prophages, or other contaminants within a single sample. Bacterial isolates 

frequently contain prophages, and it has been reported that the average prophage density is 

2.4%(Inglis et al., 2024; McKerral et al., 2023). The excised prophage can contaminate the 

therapeutic phage lysate, increasing the risk of HGT, including unwanted AMR and virulence 

genes(Botelho et al., 2023; Pfeifer et al., 2022). Here, we demonstrate that Sphae effectively 

captures prophage contamination cases and informs the user when the sample may require further 

purification, as shown with the Achromobacter dataset, allowing for the detection and exclusion of 

phages that could be therapeutically problematic. 

In some instances, assemblies failed or produced fragmented contigs. These outcomes are more 

likely attributable to upstream factors such as low DNA yield, degraded input material, or phage-



 

52 

specific DNA modifications that interfere with sequencing and library preparation, rather than 

limitations of Sphae itself. Such technical and biological challenges are well recognised in phage 

genomics and highlight the importance of careful sample preparation to maximise assembly 

success. 

Sphae not only assembles and annotates phage genomes from various bacterial hosts but also 

identifies integrases, and recombinases—key enzymes involved in the integration and 

recombination of phage and bacterial DNA(S. R. Grigson et al., 2023; Turner et al., 2021). These 

enzymes are central to HGT, particularly in facilitating the movement of genes between phages 

and hosts, which has implications for phage therapy. In the 84 phages analysed, integrases were 

detected in 17 phages, recombinases in 14 phages (Figure 3.3C). While these three genes are 

associated with the temperate lifecycle, recombinases are also part of recombination systems 

within lytic phages, helping with DNA repair and enabling the formation of concatemers during 

genome packaging. Therefore, the presence of recombinase genes is not a clear indication of a 

temperate lifecycle; further investigation is required. 

Another critical aspect of phage biology is phage genome packaging. Phage packaging 

mechanisms, such as cos and pac packaging, can influence the likelihood of HGT 

events(Borodovich et al., 2022; Catalano & Morais, 2021). For instance, cos site phages are less 

likely to carry out generalised transduction, while pac site or headful packaging wherein the 

bacterial DNA is mistakenly packaged into the phage capsids, facilitating gene transfer between 

the bacteria(Borodovich et al., 2022). Sphae addresses this by identifying the low-complexity DTR 

in genomes, typically associated with headful packaging, providing insights into the packaging 

processes. Sphae detected DTRs in 57 of the 84 phages. However, DTRs were detected in 

83.82% of Illumina-sequenced phage genomes, while none were detected in the Nanopore 

assemblies. The Klebsiella dataset included 10 phages on both platforms, and DTRs were 

detected only on Illumina sequences, as noted in the original publication(Elek et al., 2023). This 

finding highlights two key points:(1) low-complexity regions such as DTRs are more reliable in 

short-read sequencing data, and (2) sequencing platforms influence the detection of packaging 

signals and completeness of the assembly. However, current bioinformatic tools cannot easily 

differentiate between the different packaging mechanisms or detect the correct copy number of 

repeats, as this influences completeness, which also depends on the type of phage it 

is(Borodovich et al., 2022). 

These mechanisms are relevant for determining whether AMR genes and virulence factors in the 

phage can be transferred to bacterial hosts or introduced into the bacterial population. Sphae, 

therefore, also searches for AMR genes and virulence factors. In the datasets tested, none of the 

phages encoded AMR, but four genomes included virulence factors. Overall, the identification of 

these genes and their reporting in the summary file aim to enhance the effectiveness of detecting 
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phage therapy candidates. As more phages are sequenced, Sphae could serve as a valuable tool 

not only for identifying therapy candidates but also for advancing studies on phage evolution and 

host interaction dynamics. 

3.4.2 Sphae follows FAIR principles 
This workflow promotes adherence to the Findable, Accessible, Interoperable, Reusable, and 

Reproducible (FAIR) principles(Wilkinson et al., 2016). While developing this workflow, we 

addressed several challenges commonly associated with such workflows. This included creating 

comprehensive documentation with test datasets and structured output, making it easier to 

navigate and interpret results. While we provide the users with only pertinent outputs in the 

“RESULTS” directory, the intermediate files are retained so researchers can adapt their approach 

to resolve assembly complexities. 

In instances of assembly failures, Sphae retains intermediate files that outline the steps where the 

breakdown occurred. For example, poor assemblies resulting from insufficient genome coverage 

can prompt more sequencing of the sample, if feasible. Additional adjustments, such as altering 

the subsampled reads or switching to alternative assemblers, could also be considered. Alternative 

assembler options include SPAdes(Bankevich et al., 2012), which handles a full spectrum of k-

mers; Canu(Koren et al., 2017), which utilises Overlap-Layout-Consensus assemblers, or hybrid 

assemblies with tools like Unicycler(Wick et al., 2017) or Plassembler(Bouras, Sheppard, et al., 

2023), which may be necessary to resolve assembly complexities. Cases of fragmented 

assemblies connected in an assembly graph can be resolved using Phables. This ensures that 

even when complete assemblies are not immediately achievable, researchers can refine their 

approach to resolve assembly complexities, especially in time-sensitive cases. 

Sphae workflow also tracks the versions of the software tools used, enhancing reproducibility. We 

also emphasise the pre-processing steps to ensure standard execution and minimise human error 

while providing users with readable errors. The challenges and solutions are presented in Table 

3.5. 

Table 3. 5: Challenges and solutions in workflow development. 

Challenges Solution 

Variability in tools and 
programming languages 

Snakemake workflow manager allows the integration of tools 
written in multiple languages. 

Lack of version, 
parameters documentation, 
and installation of multiple 
programs 

Snakemake allows logging each step, keeping track of the tool 
version and the command run with the default parameters listed. 
Each software is automatically downloaded to its separate conda 
environment with dependencies or via a pre-built 
Docker/Singularity container. 



 

54 

Portability of the workflow The workflow is available through conda, pip, pre-built 
containers, and source installation in GitHub or via a pre-built 
Docker/Singularity container. 

Hardware and software 
dependencies 

The workflow’s configuration file includes resource information 
that the user can update for the system on which the workflow is 
running. Additionally, a pipeline can be configured to interact with 
job schedulers on high-performance computing (HPC) systems. 

Error handling Provide detailed logs with information identifying the step at 
which the error occurred for each rule and an overall Snakemake 
.log file. 

Addition of new tools New tools can be quickly added as a new rule to the workflow. 
This critical feature allows new and improved tools to be 
integrated as they are developed. 

 

3.4.3 Sphae is a modular workflow solution 
The tools were chosen based on best practices in phage genome characterisation(S. R. Grigson et 

al., 2023; Shen & Millard, 2021; Turner et al., 2021). The focus was on achieving high accuracy 

and benchmarking for low runtime results. Workflow managers offer the advantage of isolating 

each software in its own environment(Köster & Rahmann, 2012; M. J. Roach et al., 2022). This 

means that as the software is improved or new tools are published, they can be quickly added and 

replace outdated modules. Additionally, more samples can be added to each dataset, and the 

workflow will run only the new samples, with previously used tool versions if the conda 

environments were kept. The complete workflow, along with the individual modules, supports re-

entrancy, allowing steps to be resumed in case they were interrupted. 

In Sphae, we have added the option, sphae run, to run the entire workflow beginning with 

sequencing reads to generate final annotations and a summary report. However, the sphae 

annotate module has been included to allow end-users to run only the annotation steps on pre-

assembled phage genomes, leveraging Sphae’s approach to improving the number of annotated 

genes. This module was added for two reasons: first, the assembled genomes can be re-

circularised to start from the large terminase subunit (terL) or other user-selected genes using tools 

like Dnaapler(Bouras, Grigson, et al., 2024) and visualised with Clinker(Gilchrist & Chooi, 2021), 

pyGenomeViz and Lovis4u(Egorov & Atkinson, 2025). Second, phages sometimes reassign stop 

codons by using alternative genetic codes(Borges et al., 2021; Cook, Telatin, et al., 2023; Peters et 

al., 2022; Pfennig et al., 2023) end-users can change the config file to run pyrodigal-gv(Larralde, 

2022)  for gene prediction in Pharokka instead of the default PHANOTATE(McNair et al., 2019). 

The need for changing tools can be predicted from the coding density reported in the summary.txt 

file. Phages generally have high coding density to minimise non-coding regions; low-density coding 
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regions suggest that the annotation tools may have incompletely annotated the phage 

genome(McNair et al., 2019). 

3.4.4 Ongoing Development and Version Updates 
The Sphae toolkit is actively maintained to ensure continued relevance and compatibility with 

evolving bioinformatic methods. Version 1.4.3 was released alongside the original publication of 

this work. Since then, the toolkit has undergone several updates, including adjustments to 

underlying tool versions, improvements to assembly and annotation modules, and the integration 

of a phylogeny module to facilitate comparative genomic analyses. The most recent release, 

Sphae v1.5.3, incorporates all changes described in this thesis. 

To maintain transparency and reproducibility, a complete record of updates is provided through the 

Changes.md file available in the public GitHub repository (https://github.com/linsalrob/sphae). This 

changelog documents incremental improvements such as bug fixes, parameter refinements, and 

the incorporation of new functionalities. 

The inclusion of this section highlights that Sphae is not a static toolkit but a continuously evolving 

resource. By maintaining an open versioning system and linking development milestones to a 

publicly accessible repository, this work ensures that users can both reproduce the analyses 

presented here and benefit from ongoing enhancements. 

3.4.5 Future improvements 
The ongoing isolation and analysis of phages continue to enhance our grasp of phage biology, 

evolution and phage-host interactions. Although short-read platforms have traditionally been used 

for sequencing most phages, there is a growing adoption of long-read sequencing methods such 

as Oxford Nanopore and PacBio sequencing. An advantage of long-read sequencing is its ability to 

detect phage DNA modifications, like methylation(Simpson et al., 2017; Sun et al., 2023), which 

may play a role in phage resistance and adaptability to microbial communities. While over 2,000 

phage sequences are available in the SRA from Illumina platforms, fewer than 300 phages have 

been sequenced using long-read technologies, such as PacBio and Nanopore platforms (source: 

https://www.ncbi.nlm.nih.gov/sra). With the increasing availability of long-read sequencing data and 

the development of automated tools for identifying methylation in phage genomes with minimal 

manual intervention, we anticipate the integration of this feature into the workflow as a distinct 

module. Additionally, alternate codon reassignment, recently identified in phage genomes (Borges 

et al., 2021; Larralde, 2022; Peters et al., 2022), is now included in Sphae, offering users insights 

into unique coding adaptations and insights into coding adaptations relevant to host specificity. 

Tools like Prfect that predict programmed ribosomal frameshifts producing longer proteins(McNair 

et al., 2023) also present an exciting future integration. These enhancements will enable end-users 

to explore this specialised genome feature, as our understanding of phage biology and evolution 

improves. The tools and modules within Sphae will be regularly updated to accommodate these 

https://github.com/linsalrob/sphae
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advancements, including useful summary reports, ensuring users can easily access and interpret 

the latest developments in a user-friendly manner. 

3.5 Conclusions 

This chapter addresses the need for an end-to-end phage toolkit by presenting the development 

and implementation of Sphae—a dedicated bioinformatics workflow designed to rapidly assemble, 

annotate, and characterise phage genomes from sequencing data. The workflow is modular and 

user-friendly, leveraging workflow managers and explicit database configurations to ensure 

analyses are reproducible, scalable, and easily adaptable. This lowers the entry barrier to powerful 

tools and promotes wider adoption. 

Building on the knowledge gaps identified in the previous chapter, this work tackles a key technical 

limitation in phage research by enabling more accurate and accessible characterisation of their 

roles in microbial systems. Understanding how phages function as both predators and vectors of 

gene transfer is fundamental to deciphering the forces that shape microbial adaptability and 

ecosystem stability. Sphae lays the groundwork for future investigations into phage–host 

interactions that influence host fitness and broader community dynamics. In doing so, this chapter 

provides essential infrastructure to support the systematic exploration of phages within complex 

microbial ecosystems. 
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3.6 Supplementary Files 

 

Fig S3. 1: A) Sequencing depth evaluation of E. coli datasets. Samples with high sequencing depth 
(E.coli_17, E.coli_27, E.coli_29, E.coli_31, E.coli_32, E.coli_34, E.coli_36, and E.coli_37) successfully 
assembled into complete phage genomes. In contrast, samples with low sequencing depth (E.coli_26, 
E.coli_28, E.coli_33, E.coli_33_1, E.coli_35, and E.coli_39) produced either no contigs or fragmented 
contigs during assembly. B-L) Bandage plots of 10 E. coli phages, showing assembly results for B) 
E.coli_17, C) E.coli_27, D)  E.coli_28, E) E.coli_29, F) E.coli_31, G) E.coli_32, H) E.coli_33 (fragmented), I) 
E.coli_34, J) E.coli_35 (fragmented), K) E.coli_36, L) E.coli_37 (fragmented). Three samples, E.coli_33_1, 
E.coli_39, and E.coli_26, failed to assemble. 
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Fig S3. 2: A) Sequencing depth evaluation of Klebsiella short-read datasets. B-L) Bandage plot of the 10 
phages; each included only one phage per sample, B) Kleb-SR_Whistle, C) Kleb-SR_Amrap, D) Kleb-
SR_Emom, E) Kleb-SR_Saitama, F) Kleb-SR_Tokugawa, G) Kleb-SR_Cornelius, H) Kleb-SR_Speegle, I) 
Kleb-SR_Mera, J) Kleb-SR_Toyotomi, K) Kleb-SR_Oda. The width of the lines in the bandage plots is 
random and does not reflect genome lengths.  
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Fig S3. 3: A) Sequencing depth evaluation of Klebsiella long-read datasets. B-L) Bandage plot of the 10 
phages; each included only one phage per sample, B) Kleb-SR_Whistle, C) Kleb-SR_Amrap, D) Kleb-
SR_Emom, E) Kleb-SR_Saitama, F) Kleb-SR_Tokugawa, G) Kleb-SR_Cornelius, H) Kleb-SR_Speegle, I) 
Kleb-SR_Mera, J) Kleb-SR_Toyotomi, K) Kleb-SR_Oda.  
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Fig S3. 4: A) Sequencing depth evaluation of Salmonella short-read datasets. B-L) Bandage plot of the 11 
Salmonella phages with most samples including a single phage, except two samples, B) SAL_Se_F6 (two 
phages), C) SAL_Se_F3 (three phage), D) SAL_Se_F2, E) SAL_Se_F1 (three phages), F) SAL_Se_ML1, G) 
SAL_Se_EM4, H) SAL_Se_EM3, I) SAL_Se_EM2, J) SAL_Salfasec_13 (two phages), K) SAL_Se_EM1, L) 
SAL_Se_AO1. The width of the lines in the bandage plots is random and does not reflect genome lengths.  
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Fig S3. 5. A) Sequencing depth evaluation of 15 Achromobacter short-read datasets. B-M) Bandage plots of 
12 of the 15 assembled Achromobacter phages: B) Achrom_Axy06 (one phage), C) Achrom_Axy09 (two 
phages), D) Achrom_Axy24 (two phages), E) Achrom_Axy23 (two phages), F) Achrom_Axy10 (two phages), 
G) Achrom_Axy12 (one phage), H) Achrom_Axy13 (two phages), I) Achrom_Axy21 (two phages), J) 
Achrom_Axy16 (one phage), K) Achrom_Axy19 (two phages), L) Achrom_Axy18 (two phages), and M) 
Achrom_Axy22 (two phages). Three samples are not shown, as their bandage plots were too large for 
display. Line widths in the bandage plots are arbitrarily scaled and do not represent actual genome lengths. 
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Fig S3. 6: A) Sequencing depth evaluation of the five mixed dataset phages. B-F) Bandage plots, B) 
SRR8788475 includes four phages, C) SRR8869231 includes two, D) SRR8869234 includes three phages, 
E) SRR8869239 includes three phages, F) SRR8869241 includes three phages. 
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Supplementary Tables available here, 10.5281/zenodo.17254792 
 

Table S3 1: Overview of the phages analysed from different studies in this chapter 

Table S3. 2: Sphae results for the 65 phages  

 

https://doi.org/10.5281/zenodo.17254792
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PHAGE-BACTERIA INTERACTIONS 

 

 

 

 

 

This chapter is based on the published article— Papudeshi, B., Vega, A. A., Souza, C., Giles, S. K., 

Mallawaarachchi, V., Roach, M. J., ... & Edwards, R. A. (2023). Host interactions of novel Crassvirales 

species belonging to multiple families infecting bacterial host, Bacteroides cellulosilyticus WH2. Microbial 

Genomics, 9(9), 001100. https://doi.org/10.1099/mgen.0.001100. This article is reproduced in full under the 

terms of the Creative Commons Attribution License (CC BY 4.0). © The Author(s) 2023. Published by 

Microbiology Society.  

 

Statement on the Use of Generative Artificial Intelligence (AI): Generative AI tools, specifically 

Grammarly was used during the preparation of this chapter for language editing purposes, such as 

improving sentence clarity, grammar, and structure.  
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Preface 

This chapter is based on my published research, which investigated novel Crassvirales phages infecting 

Bacteroides cellulosilyticus WH2, a project I led as part of this thesis. The study was motivated by the 

ecological significance of Crassvirales, which are among the most abundant viruses in the human gut. They 

primarily infect Bacteroides, a key genus within the gut microbiome. Despite their prevalence, only four 

Crassvirales isolates have been successfully cultured to date, limiting our understanding of their biology. In 

this work, I addressed this gap by isolating and characterising 14 new Crassvirales phages, substantially 

expanding the known diversity of this important viral group and providing one of the first detailed genomic 

comparisons of multiple Crassvirales species infecting the same bacterial host. As first author on this 

publication, I was responsible for designing and performing the genomic analyses, interpreting the findings, 

and drafting the manuscript. For this thesis, I have made minor adaptations, including relocating a few 

supplementary files to the main manuscript to enhance the interpretation of the data, and adding a 

conclusion section to this chapter to align this work with the broader research aims of understanding 

phage–host interactions.  

Since publication, the paper has been cited in 11 other peer-reviewed articles investigating gut phage 

ecology, virus–host co-evolution, and the annotation of uncultured viral genomes, indicating its growing 

relevance in both applied and theoretical virology. In addition to its academic impact, this work gained 

media attention, highlighting its significance in advancing our understanding of phage–host interactions and 

gut viral diversity. This broader dissemination underscores the relevance of the work to both scientific and 

public audiences.  

Statement of authorship 

As the primary author of this chapter, I led the research to completion. Throughout the chapter, I actively 

sought input from specialists in the field, ensuring the robustness of the research while maintaining primary 

authorship over this work. My role extended beyond analysis, as I also led the manuscript writing, figure 

preparation, and critical discussion of results. This included integrating feedback from co-authors, ensuring 

clarity in communicating complex genomic findings, and positioning the study within the broader scientific 

discourse. While this project involved many collaborators, this was primarily due to the interdisciplinary 

nature of the work, which required expertise in phage isolation, comparative genomics, structural modelling, 

and evolutionary analysis. I coordinated these efforts to strengthen the study’s impact and ensure a 

rigorous interpretation of the results. 

Below is a breakdown of the author's contributions: 

Author Contribution 

Bhavya Papudeshi Performed data analysis, writing, and editing the manuscript 
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Alejandro A. Vega Research design, data collection and sequencing 

Cole Souza Data collection and sequencing 

Sarah K. Giles Sequencing, microscopy, editing of the manuscript 

Vijini Mallawaarachchi Data analysis 

Michael J. Roach Data analysis 

Michelle An Data collection 

Nicole Jacobson Data collection 

Katelyn McNair Data analysis 

Maria Fernanda Mora Sequencing 

Karina Pastrana Sequencing 

Lance Boling Research design and data collection 

Christopher Leigh Microscopy 

Clarice Harker Data collection and sequencing 

Will S. Plewa Data collection and sequencing 

Susanna R. Grigson Data analysis 

George Bouras Data analysis 

Przemyslaw Decewicz Data analysis 

Antoni Luque Data analysis 

Lindsay Droit Sequencing 

Scott A. Handley Research design, data analysis and editing of the manuscript 

David Wang Research design, data analysis and editing of the manuscript 

Anca M. Segall Research design, data analysis and editing of the manuscript 

Elizabeth A. Dinsdale Research design, data analysis and editing of the manuscript 
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Robert A. Edwards Research design, data analysis and editing of the manuscript 

 

The contributions of each co-author have been explicitly stated, and their permission to include these works 

has been obtained as per Flinders University’s Authorship of Research Output Procedures (Appendix A). I 

also affirm that, while this research was strengthened through these collaborations, all overarching 

hypotheses, research aims, analyses, and interpretations presented in this thesis are my own. The 

coordination of interdisciplinary methods, the synthesis of findings across chapters, and the articulation of 

their broader significance reflect my independent intellectual contributions. 
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Host interactions of novel Crassvirales species belonging to multiple families 
infecting the bacterial host, Bacteroides cellulosilyticus WH2 

Abstract 

Bacteroides, the prominent bacteria in the human gut, play a crucial role in degrading complex 

polysaccharides. Their abundance is influenced by phages belonging to the Crassvirales order. Despite 

identifying over 600 Crassvirales genomes computationally, only a few have been successfully isolated. 

Isolating additional Crassvirales phages in culture can provide insights into phage-host evolution and 

infection mechanisms. We focused on wastewater samples as potential sources of phages infecting various 

Bacteroides hosts. Sequencing, assembly, and characterisation of isolated phages revealed 14 complete 

genomes belonging to three novel Crassvirales species infecting Bacteroides cellulosilyticus WH2. These 

species, Kehishuvirus sp. ‘tikkala’ strain Bc01, Kolpuevirus sp. ‘frurule’ strain Bc03, and ‘Rudgehvirus 

jaberico’ strain Bc11, spanned two families and three genera, displaying a broad range of virion production. 

Upon testing all successfully cultured Crassvirales species and their respective bacterial hosts, we 

discovered that they do not exhibit co-evolutionary patterns with their bacterial hosts. Furthermore, we 

observed variations in gene similarity, with greater shared similarity observed within genera. However, 

despite belonging to different genera, the three novel species shared a unique structural gene that encodes 

the tail spike protein. When investigating the relationship between this gene and host interaction, we 

discovered evidence of purifying selection, indicating its functional importance. Moreover, our analysis 

predicts that this tail spike protein binds to the TonB-dependent receptors present on the bacterial host 

surface. Combining these observations, our findings provide insights into phage-host interactions and 

present three Crassvirales species as an ideal system for controlled infectivity experiments on one of the 

most dominant members of the human enteric virome. 

4.1 Introduction 

The intricate relationship between gut microbiomes and human health is characterised by the diverse 

microbial communities that help with digestion, regulate the immune system, and alter brain function (Hou 

et al., 2022; Integrative HMP (iHMP) Research Network Consortium, 2019; Shamash & Maurice, 2022). 

Metagenomics, a culture-independent technique used to capture microbial diversity in a sample 

(Hugenholtz et al., 1998; Pace et al., 1986), has transformed our understanding of bacteria and the 

corresponding bacteriophages in the environment (Anthenelli et al., 2020; Hesse et al., 2022; Inglis & 

Edwards, 2022; M. Roach et al., 2022). These metagenomic datasets have revealed a correlation between 

bacterial and bacteriophage populations, which suggests bacteriophages play a role in modulating bacterial 

populations (Chevallereau et al., 2022; Knowles et al., 2016). In particular, the human gut microbiome 

exhibits varying bacterial densities, including a high abundance of Bacteroidota (formerly Bacteroidetes) 

(HMP Consortium, 2012; Pargin et al., 2022; Qin et al., 2010), whose populations are thought to be 

influenced by phages, with Crassvirales being a particularly abundant group in the gut virome. These 

dsDNA bacteriophages have a podovirus-like morphology, genomes ranging between 100 and 200 kb, and 

conserved gene order (Edwards et al., 2019; Rossi et al., 2020; Yutin et al., 2021). They are widespread, 
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constituting a stable component of an individual’s microbiome, and do not appear to be associated with 

human health or disease states (Edwards et al., 2019; Norman et al., 2015).  

The first phage within Crassvirales order was computationally discovered by cross-assembly of DNA 

sequence reads from human gut microbiome samples(Dutilh, Cassman, et al., 2014). Since nearly 600 

Crassvirales genomes have been identified computationally, leading to the International Committee of 

Taxonomy of Viruses (ICTV) formally classifying the Crassvirales order into four families, ten subfamilies, 

42 new genera, and 72 new species (Rossi et al., 2020; Shkoporov, Stockdale, et al., 2021). The 

classification relied on phylogenetic analysis of conserved structural genes, including the major capsid 

protein (MCP), terminase large subunit (terL), and portal protein (portal). Additionally, the average 

nucleotide identity (ANI) species cutoff was set to 95% identity over 85% genome coverage.  

The identification of numerous Crassvirales genomes has advanced our understanding of this viral order. 

Similar to other phages, these genomes contain three discernible regions encoding for 1) structural proteins 

involved in producing the capsid and tail genes, 2) transcription proteins and 3) replication proteins crucial 

for successful phage replication in different infection stages(Yutin et al., 2021). Gene homology analysis 

showed that many of the genes are highly variable when compared with other genomes from this order. 

Comparative genomics further displayed the unique biological characteristics of Crassvirales species(Dutilh 

et al., 2021; Walker et al., 2022), including switching DNA polymerases, alternative coding 

strategies(Borges et al., 2021; Crisci et al., 2021; Ivanova et al., 2014; Peters et al., 2022), and the variable 

intron density across lineages(Peters et al., 2022; Yutin et al., 2021). Overall, the functional annotation of 

Crassvirales genomes remains challenging, with many genes annotated as hypothetical proteins lacking a 

known biological function and exhibiting little to no similarity to sequences in reference databases. These 

challenges can be addressed through experimental approaches that can help elucidate the functions of 

these uncharacterised genes or proteins.  

The first step in experimental approaches is phage isolation, which requires knowledge of their host 

species and the ability to culture them. This has led to only four successful isolates obtained so far, 

including  Kehishuvirus primarius (crAss001) infecting Bacteroides intestinalis APC919/174(Shkoporov et 

al., 2018), Wulfhauvirus bangladeshii DAC15 and DAC17 from wastewater effluent infecting Bacteroides 

thetaiotaomicron VPI-5482(Hryckowian et al., 2020), and  Jahgtovirus secundus (crAss002) infecting 

Bacteroides xylanisolvens APCS1/XY(Guerin et al., 2021). All these isolates exhibited host specialist 

morphotypes that can be maintained in continuous host culture, but none possess lysogeny-related 

genes(Shkoporov et al., 2018; Shkoporov, Khokhlova, et al., 2021). The proposed mechanism of 

persistence involves the bacterial host cycling between sensitive and resistant states by altering the genes 

encoding surface transporters and capsular polysaccharide structures (CPS) on the bacterial surface(N. T. 

Porter et al., 2020; Shkoporov, Khokhlova, et al., 2021). Further to improve the annotations, cryogenic-

electron microscopy of K. primarius provided functional assignments to the virion proteins and an insight 

into the infection mechanism, revealing how the capsid and tail store cargo proteins aid in initial host 



 

70 

infection(Bayfield et al., 2023). Continued efforts to isolate more Crassvirales genomes can provide insights 

into phage-host evolution, comprehensive protein annotation, and elucidation of infection mechanisms.  

Here, we present the successful isolation of 14 Crassvirales isolates from wastewater, which include three 

novel species belonging to the families Steigviridae and Intestiviridae.  Remarkably, all these isolates infect 

the same host, Bacteroides cellulosilyticus WH2. We investigate the genes playing a role in host 

interaction, providing insights into the evolution of these dominant phages and how their interactions shape 

the gut microbiome.  

4.2 Methods 

4.2.1 Phage sampling  

Untreated sewage water (influent) was collected from a waste treatment plant in Cardiff, CA in 1L Nalgene 

bottles. An aliquot of 30 mL influent was centrifuged at 5,000 × g for 5 min to pellet the debris. The 

supernatant was decanted and passed through a 0.22 μm pore size Sterivex filter. The filtrate was used as 

a phage source and stored between 2 to 8 ℃.  

4.2.2 Host bacteria cultivation 

Bacterial species, B. cellulosilyticus WH2 received as glycerol stocks from Washington University, St. 

Louis, B. fragilis NCTC 9343 (ATCC 25285), B. stercoris CC31F (ATCC 43183), and B. uniformis ATCC 

8492 were received as glycerol stocks from BEI resources were used as bacterial hosts. All the bacteria 

were grown in brain-heart infusion media supplemented with 2 mM MgSO4, and 10 mM MgCl2 we denote as 

BHISMg. Culture plates were supplemented with 1.5 % w/v agar and incubated at 37 ℃ for 48 hrs under 

anaerobic conditions with 5 % H2, 5 % CO2, and 90 % N2. Following incubation, an isolated colony was 

transferred into a 12 hrs deoxygenated BHISMg broth. Following anaerobic incubation at 37 ℃ for 24 hrs 

the liquid cultures were further sub-cultured into another BHISMg broth and incubated overnight.  

4.2.3 Plaque assays 

BHISMg plates were deoxygenated for 12 hrs in the anaerobic chamber and pre-warmed before use. For 

top agar plates were prepared by adding cooled molten BHISMg with 0.7 % w/v agar was inoculated with 

500 µl of bacteria, and between 2 µl and 50 µl of processed phage influent. The plates were cooled for 15 

min before incubating at 37 °C for up to five days. Plates were assessed daily for the development of 

plaques.  

4.2.4 Lysate preparation  

Plaque from each plate was inoculated into 200 µl of SM buffer and homogenised to diffuse the phage from 

the agar to the buffer. A 200 µl aliquot of the phage was added to B. cellulosilyticus WH2 bacteria in the 

log-growth phase and grown at 37 °C anaerobically, overnight. The tubes containing the bacteria and 

phage were manually shaken every 30 min for the first three hours of incubation. Post incubation, tubes 
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were centrifuged at 4500 x g for 5 min, and the supernatant was collected and concentrated using a 50,000 

kDa MWCO Vivaspin ultrafiltration unit (Sartorius). Phage lysate was stored at 4 °C.  

4.2.5 Phage tittering enumeration 

Phage titres were enumerated using the molten agar overlay method described above. A 200 µl aliquot of 

the lysate was diluted 10-fold in sterile SM buffer, and 10 µl was spotted onto a BHISMg plate. The plates 

were incubated for 24-48 hrs at 37 °C. After incubation, the plates were analysed by counting the plaques 

obtained to determine the titre.  

4.2.6 Viral DNA extraction and sequencing 

Phage DNA was extracted using a Phage DNA isolation kit (Norgen) as per the manufacturer's instructions. 

In short, 1 ml of phage lysate was DNase I-treated, lysed, and treated with Proteinase K. The sample was 

added to a spin column and washed three times. DNA was eluted in 75 µl of the elution buffer. The second 

elution recommended by the kit was not performed. The DNA obtained was quantified using a Qubit 1x 

dsDNA High-Sensitivity Assay Kit (Invitrogen, Life Technologies) according to the manufacturer’s 

instructions. Oxford Nanopore MinION sequencing was undertaken according to the manufacturer’s 

instructions. In short, a maximum of 400 ng of sample DNA was used for library preparation using Oxford 

Nanopore Rapid Barcoding Sequencing Kit (SQK-RBK0004); samples were barcoded, pooled and cleaned. 

The pooled samples were loaded and run on a Flowcell R9.4.1 (FLO-MIN106) following the manufacturer's 

instructions. The Illumina sequencing libraries were prepared by extracting the total nucleic acid (RNA and 

DNA) using the COBAS AmpliPrep instrument (Roche), with NEBNext library construction and sequenced 

on Illumina MiSeq using the paired-end 2x250 bp protocol as described in (A. H. Kim et al., 2022). The 

sequencing data were deposited in the Sequence Read Archive in BioProject, PRJNA737576.  

For the Nanopore sequenced isolates, basecalling was performed with Guppy v6.0.1 with model 

dna_r9.4.1_450bps_hac. The reads were then processed with Filtlong v0.2.20 (Wick, 2018) to remove 

reads less than 1,000 bp in length and exclude 5% of the lowest-quality reads. Similarly, Illumina 

sequences were processed with prinseq++ v.0.20.4 (Cantu et al., 2019), filtering reads less than 60 bp in 

length, reads with quality scores less than 25, and exact duplicates.  

4.2.7 Genome assembly  

To assemble the genomes, a pipeline based on Snakemake using Snaketool was employed. Nanopore 

reads were assembled using Flye v2.9(Kolmogorov et al., 2019), while Illumina reads were assembled 

using MEGAHIT v1.2.9(D. Li et al., 2016). These assemblers were selected as they provide assembly 

graphs, which are useful for completing fragmented genome assemblies(Bruce et al., n.d.; V. G. 

Mallawaarachchi & Lin, 2022; V. G. Mallawaarachchi et al., 2020; V. Mallawaarachchi et al., 2020; Wick et 

al., 2015).  

To evaluate assembly quality, the resulting contigs were processed with ViralVerify v1.1 to detect viral 

contigs(Raiko, 2021), read coverage was calculated using CoverM v0.6.1, and the assembly graph was 
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examined. The assembly graph provides information on connecting unitigs (high-quality contigs) 

representing the longest non-branching paths joined together to form contigs.    

From each assembly, unitigs meeting specific criteria were selected as complete phage genomes. These 

unitigs had a length greater than 90 kb, were identified as viral, exhibited the highest read coverage and 

were classified as complete using CheckV v1.0.1. To ensure representation, one unitig per sample was 

selected as the complete phage assembly. In the end, the assemblies were polished with high-coverage 

Illumina reads using Polca to reduce sequencing-related errors.  

Among the 41 phage genomes, 14 phages infecting B. cellulosilyticus were identified as belonging to the 

Crassvirales order. These genomes were approximately 90 to 120 kbp in length and aligned against known 

Crassvirales genomes. Among these phages, eight samples were sequenced on both Nanopore and 

Illumina sequencing platforms (Bc01 to Bc03, Bc05 to Bc08), while four were sequenced only on the 

Nanopore platform (Bc09 to Bc11), and the remaining four were sequenced only on the Illumina platform 

(Bc04, Bc12 to Bc14). 

4.2.8 Taxonomic and functional annotation 

The isolates in this study were processed with CrassUS (https://github.com/dcarrillox/CrassUS), a 

specialised tool for annotating Crassvirales genomes, providing taxonomic and functional annotation along 

with direct terminal repeats (DTR), and average nucleotide identities (ANI) of similar reference genomes. 

Taxonomic annotations from CrassUS followed ICTV criteria for Crassvirales order demarcation. 

Phylogenetic trees were constructed using conserved genes (MCP, portal, terL) with MAFFT 

v7.49(Nakamura et al., 2018) for alignment, followed by trimal v1.4.1 for trimming, and FastTree 

v.2.1.10(Price et al., 2010) for inference. Trees were built using the JTT model with CAT approximation and 

20 rate categories, and visualised using iTol. 

To compare the predicted genes and their arrangement across species, clinker plots(Gilchrist & Chooi, 

2021) were used after re-circularising the genes to start at the terL. This allowed for the examination of 

synteny across genomes. Additionally, tRNA genes encoded by the phages, which evade host translation 

machinery, were predicted with tRNA-scanSE (Chan & Lowe, 2019).  

4.2.9 Phage-host co-phylogenetic analysis  

To determine if the phage co-evolves with bacterial hosts, we performed a cophylogenetic analysis using 

Parafit(Legendre et al., 2002) via the ape R package. The distance matrix of the trimmed multiple sequence 

alignment (MSA) using MAFFT v.7.520 and trimal v1.4.1 of the seven Crassvirales species ('K. tikkala’ 

Bc01, ‘K.frurule’ Bc03, ‘R.jaberico’ Bc11, K. primarius, J. secundus, W. bangladeshii DAC15, W. 

bangladeshii DAC17) portal gene, was generated using EMBOSS distmat v6.6.0. These steps were 

repeated for the associated bacterial hosts, B. cellulosilyticus, B. intestinalis, B. thetaiotomicron and B. 

xylanisolvens. The two distance matrices were compared using Parafit with 1000 permutations, and Cailliez 

https://github.com/dcarrillox/CrassUS
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eigenvalue correction. The trimmed MSA was used to generate the two phylogenetic trees using FastTree 

v.2.1.10 using JTT model, CAT approximation with 20 rate categories, and visualised using iTol. 

4.2.10 Transmission electron microscopy imaging  

Crassvirales phages were grown using the phage overlay method described above. To prepare the phage 

lysates, they were diluted 1:10, and 5 μL of the diluted phage lysate was applied to a plasma-cleaned grid 

for two minutes at room temperature. The grids used were formvar and carbon coated 200 mesh grids, and 

they were plasma cleaned using the Gatan (Solarus) Advanced plasma system for 30 sec prior to use. The 

excess phage lysate sample was wicked off with Whatman filter paper and the grid was washed with 5 μL 

of water. The sample was negatively stained with 5 μL of the 2 % w/v uranyl acetate for 1 minute. The 

excess stain was wicked off with filter paper to dry the sample on the grid. The grid was then imaged using 

a Tecnai G2 Spirit TEM operated at 120kV at a magnification of 49,000x and the images were recorded on 

an AMT Nanosprint 15 digital camera using software v7.0.1.  

Phage measurements were conducted using the ImageJ software. The capsid diameter was calculated by 

measuring the diameter of the circle circumscribing the capsid, such that the more distant vertices of the 

projected capsid contacted the circle (Figure 4.1). The length of the tail was calculated from the base of the 

capsid to the end of the visible tail, including the collar section of the phage structure. Tail fibres or 

appendages were calculated (Figure 4.1). Average measurements from 5 phages were calculated and 

reported. The TEM image was further edited for publication using the GNU Image Manipulation Program 

(GIMP).  

 

Figure 4. 1: TEM phage measurements were taken for A) Capsid diameter, by drawing a circle around the polygon 
with the edges within the circle. The diameter of this circle was measured and represented as the capsid diameter. B) 
For tail length, a line was drawn from the base of the capsid to the visible edge of the tail fibres. This was repeated 
over five phases of the same sample, and an average with standard deviation was calculated across all of them. 

The packing genome density was predicted by correcting the measured radius from the expected capsid 

thickness and calculating the internal volume assuming an icosahedral model inferred from prior tailed 
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phage capsid studies(D. Y. Lee et al., 2022; Luque et al., 2020). The results can be reproduced using the 

Colab notebook available at the link, https://shorturl.at/enAKS.  

4.2.11 Evolutionary analyses  

The 14 Crassvirales isolated and assembled genomes in this study and the four reference pure culture 

isolates, K. primarius, J. secundus, W. bangladeshii DAC15 and DAC17 were assessed together for this 

analysis. Orthologous genes were identified from genes predicted from the above 18 genomes, using 

Orthofinder v2.5.4 default settings to determine signatures for host interactions. The default settings utilise 

diamond for sequence search, MAFFT for alignment, FastTree for tree inference, and the STAG species 

tree method. Orthogroups that included genes present only in phages from the host B. cellulosilyticus WH2 

were examined further.  

These orthogroups were aligned using Muscle codon-based multiple sequence alignment in MEGA11. To 

test for codon-based positive selection, we calculated the probability of rejecting the null hypothesis of strict 

neutrality (dN = dS) in favour of the alternative hypothesis (dN > dS). The dN/dS values were calculated from 

the MSA using MEGA v.11.0, with the Li-Wu-Luo method. The variance of the difference was computed 

using bootstraps, set to 100 replicates. As this analysis can be misleading in the presence of recombination 

breakpoints, orthogroups were run through Genetic Algorithm for Recombination Detection (GARD) 

analysis (Kosakovsky Pond et al., 2006), with default settings. This method utilises a combination of 

phylogenetic and statistical approaches to detect recombination signals.  

4.2.12 Predicting proteins 3D structure and docking 

The  3D structures of the proteins from ‘K. tikkala’ strain Bc01, ‘K. frurule’ strain Bc03, and ‘R. jaberico’ 

strain Bc11 were predicted using Colabfold version 1.4.0(Mirdita et al., 2022) on the Gadi server at the 

National Computational Infrastructure (NCI). To determine structural similarity, the protein structures were 

run through pairwise structure alignment using the Flexible Structure Alignment by Chaining Aligned 

fragment pairs allowing Twists (FATCAT), which allows for flexible protein structure comparison(Z. Li et al., 

2020; Ye & Godzik, 2003).   

To predict the phage protein interaction with the bacterial host, the previously predicted 3D protein 

structures of all the proteins for B. cellulosilyticus WH2 were downloaded from the AlphaFold Protein 

Structure Database via the Google Cloud Platform(Varadi et al., 2022).  All protein pairs were docked using 

hdock-lite v1.1 on the Gadi server. The results from hdock were sorted based on the binding score (hdock-

scores) in the output file to identify the highest-quality binding predictions for each phage protein. In 

general, lower HDock-scores are indicative of more favourable or stronger protein-protein interactions, 

suggesting a higher likelihood of stable complex formation. Higher HDock-scores, on the other hand, may 

suggest weaker or less favourable interactions. The 3D structure of the proteins was visualised using 

Chimera.  

4.3.14 Data availability 

https://shorturl.at/enAKS
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The genomes used in this research are available on the Sequence Read Archive (SRA) within the project, 

PRJNA737576. Bacteroides cellulosilyticus WH2, Kehishuvirus sp. ‘tikkala’ strain Bc01, Kolpuevirus sp. 

‘frurule’ strain Bc03, and ‘Rudgehvirus jaberico’ strain Bc11 are all available on GenBank with accessions 

NZ_CP072251.1 (B. cellulosilyticus WH2), OQ198717.1 (Bc01), OQ198718.1 (Bc03), and OQ198719.1 

(Bc11), and we are working on making the strains available through ATCC. The 3D protein structures for 

the three Crassvirales genomes are available to download at doi.org/10.25451/flinders.21946034. 

4.3 Results 

4.3.1 Search for Crassvirales phages 

We obtained a total of 41 phages from wastewater infecting four different Bacteroides species, B. 

cellulosilyticus WH2, B. fragilis NCTC 9343, B. stercoris CC31F, and B. uniformis ATCC 8492. The phages 

were sequenced using Oxford Nanopore or Illumina MiSeq platforms, and the resulting sequences were 

assembled. We performed BLASTN searches of the assembled phages against the non-redundant (nr/nt) 

NCBI database for taxonomic assignment. As a result, we identified 14 phages infecting B. cellulosilyticus 

WH2 that belong to the Crassvirales order. Each of these phages was labelled with a code ranging from 

Bc01 to Bc14. 

4.3.2 Isolation and taxonomic classification of Crassvirales isolates   

Crassvirales isolates formed distinct clear circular plaques with a uniform diameter of 1 mm on soft agar 

overlays. We performed shotgun sequencing on the 14 isolates of phages, with Bc01 to Bc03, Bc05 to 

Bc11 sequenced on the Oxford Nanopore platform, and Bc01 to Bc08, Bc12 to Bc14 sequenced on the 

Illumina platform. The assemblies produced multiple contigs, and our selection criteria to identify complete 

phage genomes were based on presence of viral genes, highest read coverage and unitigs (high-quality 

contig) size of approximately 100 kb (Table 4.1). This resulted in complete genomes for each of the 14 

phages, which were polished with Illumina reads correcting for substitution, insertion, and deletion errors. 

Table 4. 1: Taxonomic classification of the 14 Crassvirales genomes isolated from wastewater infecting Bacteroides 

cellulosilyticus WH2 

Phage 
isolate 

Sequencing 
platform 

Genome length 
(bp) 

Taxonomy Biosample ID 

Bc01 MinION, MiSeq 100,722 Kehishuvirus sp. ‘tikkala’ 

strain Bc01 

SAMN20326212 

Bc02 MinION, MiSeq 98,905 Kolpuevirus sp. ‘frurule’ strain 

Bc02 

SAMN20326213 

http://doi.org/10.25451/flinders.21946034
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Bc03 MinION, MiSeq 99, 379 Kolpuevirus sp. ‘frurule’ strain 

Bc03 

SAMN20326214 

Bc04 MiSeq 99,033 Kolpuevirus sp. ‘frurule’ strain 

Bc04 

SAMN29929441 

Bc05 MinION, MiSeq 97, 832 Kolpuevirus sp. ‘frurule’ strain 

Bc05 

SAMN20326216 

Bc06 MinION, MiSeq 99, 845 Kolpuevirus sp. ‘frurule’ strain 

Bc06 

SAMN20326217 

Bc07 MinION, MiSeq 98, 518 Kolpuevirus sp. ‘frurule’ strain 

Bc07 

SAMN20326218 

Bc08 MinION, MiSeq 98,067 Kolpuevirus sp. ‘frurule’ strain 

Bc08 

SAMN20326219 

Bc09 MinION 98,788 Kolpuevirus sp. ‘frurule’ strain 

Bc09 

SAMN20326220 

Bc10 MinION 96, 329 Kolpuevirus sp. ‘frurule’ strain 

Bc10 

SAMN20326221 

Bc11 MinION 90, 458 ‘Rudgehvirus jaberico’ strain 

Bc11 

SAMN20326222 

Bc12 MiSeq 96,952 Kolpuevirus sp. ‘frurule’ strain 

Bc12 

SAMN29929442 

Bc13 MiSeq 90,716 ‘Rudgehvirus jaberico’ strain 

Bc13 

SAMN29929443 

Bc14 MiSeq 98,803 Kehishuvirus sp. ‘tikkala’ 

strain Bc14 

SAMN29929444 

 

For taxonomic classification of these isolates, we applied the ICTV report guidelines for defining taxonomy 

within Crassvirales order. Phylogenetic clustering of the conserved portal gene and average nucleotide 

identity (ANI) species cutoff (95% identity over 85% genome coverage) identified three distinct clusters 

(Figure 4.2A). We selected the highest confidence genomes: Bc01, Bc03, and Bc11 from each cluster. 

These three isolates were compared against all known Crassvirales genomes through phylogenetic 
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clustering of conserved genes, major capsid protein (MCP), portal, terminase large subunits (terL) genes to 

determine that Bc01 and Bc03 clusters belong to the Steigviridae family, and Bc11 to the Intestiviridae 

family (Figure 4.2B, Figure S4.1). Confirmation of the genus assignment was obtained through ANI and 

shared protein information, which identified Bc01 to Kehishuvirus, Bc03 to Kolpuevirus, and Bc11 to a novel 

genus group that we propose to name ‘Rudgehvirus’.  

 

Figure 4. 2: Phylogenetic tree constructed using the portal protein using JTT model, CAT approximation with 20 rate 
categories and outgroup set to Cellulophaga phage phi13:2 A) Phylogenetic tree of the 14 Crassvirales isolates with 
the branches colour-coded to represent the three species, Kehishuvirus in light green, Kolpuevirus in purple, and 
‘Rudgehvirus’ in brown. B) Clustering of all known Crassvirales genomes confirming that isolate Kehishuvirus sp. 
‘tikkala’ strain Bc01 and Kolpuevirus sp. ‘frurule’ strain Bc03 belong to the family Steigviridae (cyan), and ‘Rudgehvirus 
jaberico’ strain Bc11 to Intestiviridae (red). 
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All three isolates represent novel species exhibiting less than 95% identity and 85% coverage to any known 

Crassvirales genomes. Bc01 is most similar to the reference genome Kehishuvirus primarius (Genbank ID: 

MH675552) with 95.5% identity across 79.1% genome coverage. Bc03 aligns with Kolpuevirus hominis 

(Genbank ID: MT774391) with 82.8% identified across 53.73% query coverage. Bc11 aligns with the 

reference genome Jahgtovirus intestinalis (Genbank ID: OGOL01000109) with 74.7% identity across only 

9.9% query coverage. We proposed names for these novel species as Kehishuvirus sp. ‘tikkala’ strain 

Bc01, Kolpuevirus sp ‘frurule’ strain Bc03, and ‘Rudgehvirus jaberico’ strain Bc11.  

4.3.3 Genome characteristics of the novel Crassvirales species 

Kehishuvirus sp. ‘tikkala’ strain Bc01 is 100,841 bp, with 104 proteins, 24 tRNAs and GC content of 35.09 

% (Table 4.2), which is lower than the bacterial host GC content of 42.8 %. These isolates formed clear, 

uniform circular spot plaques approximately 1 mm in diameter, forming 9.3*109 PFU/mL (Figure 4.3A). 

Transmission electron microscopy (TEM) revealed they have podovirus-like morphology, displaying 

polyhedral capsids with a diameter of 94 ± 3 nm, tails with collar structures that were 34 ± 3 nm, with tail 

fibres of variable lengths (Figure 4.3B). From the calculated capsid size and genome length, we see that 

this phage packages its DNA at a density of 0.54 bp/nm3. This genome lacks direct terminal repeat 

sequences, stop-codon reassignment, and lysogeny-related genes (Table S4.1).  

Table 4. 2: Genome characteristics of the three novel Crassvirales species 

Genome Length 
(bp) 

GC 
% 

Coding 
density 

no. of 
CDS 

Unknown 
function 

tRNA DTR 

Kehishuvirus sp. ‘tikkala’ 

strain Bc01 

100,841 35.09 91.84 104 58 24 False 

Kolpuevirus sp. ‘frurule’ 

strain Bc03 

99,523 33.00 92.06 108 63 5 False 

‘Rudgehvirus jaberico’ 

strain Bc11 

90,575 29.15 87.45 84 48 0 False 

 

Kolpuevirus sp. ‘frurule’ strain Bc03 shares the Steigviridae family with ‘K. tikkala’ strain Bc01. This genome 

is 99,523 bp long with GC content of 33%, 108 genes and four tRNA genes encoding arginine, asparagine, 

and tyrosine (Table 4.2). Similar to ‘K. tikkala’ strain Bc01, this phage also formed clear, uniform circular 

spot plaques, but formed 2.3*109 PFU/mL (Figure 4.3A). Displaying a podovirus morphology, the virion was 

slightly larger than K. tikkala’ strain Bc01, with capsids of diameter 97 ± 3 nm, a tail with collar structures of 

33 ± 3 nm (Figure 4.3B), and packaging its DNA at a lower density of 0.48 bp/nm3. Annotation of genes 
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confirmed the absence of direct terminal repeats, stop-codon reassignments, and lysogeny-related genes 

(Table S4.2). This is the first isolate within its genus.  

‘Rudgehvirus jaberico’ strain Bc11 belongs to Intestiviridae family in a novel genus. This genome is 90,575 

bp long, with a 29.15% GC content, and encodes 84 genes, lacking tRNA genes (Table 4.2). Unlike the 

above two species, this isolate formed plaques with a circular halo, indicating depolymerase activity, 

forming 3.75 x103 PFU/mL (Figure 4.3A). This isolate’s virion was relatively smaller in size compared to the 

other two isolates, with tails measuring 25 ± 4 nm (Figure 4.3B). Despite the smaller capsid size and 

genome, this phage packages its DNA at a density of 0.56 bp/nm3, comparable to ‘K. tikkala’ strain Bc01. 

Similar to the other two genomes, direct terminal repeats, stop-codon reassignments, and lysogeny-related 

genes (Table S4.3) were absent.  
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Figure 4. 3 A) Plaque morphology of three species, ‘K. tikkala’ strain Bc01, ‘K. frurule’ strain Bc03, and ‘R. jaberico’ 
strain Bc11 B) Transmission electron microscopy images negatively stained with uranyl acetate of the three isolates 
C) Gene arrangement and functional annotation of the three genomes colour-coded based on their functional modules 
and hypothetical genes represented in white. The direction of the arrows represents the direction of the gene read 
from the genome, and the arrows themselves represent individual genes. The links connecting the genes indicate 
amino acid sequence identity, ranging from 30% (grey) to 100% (black). 

Comparative analysis across the three isolates shows that ‘K. tikkala’ strain Bc01 and ‘K. frurule’ strain 

Bc03, belonging to the same family (Steigviridae) exhibits higher gene similarity with each other. In 

contrast, ‘R. jaberico’ strain Bc11 from Intestiviridae family displays distinct gene arrangements (Figure 

4.3C). Notably, all three genomes share two structural genes encoding tail spike proteins, which include a 

domain that encodes polysaccharide-degrading enzymes, such as glycoside hydrolases. Structural protein 

1 encompassing the ‘K. tikkala’ strain Bc01 protein (WEU69744.1) shared 97 % sequence similarity with 

the ‘K. frurule’ strain Bc03 protein (WEY17522.1), while collectively these sequences share greater than 39 

% similarity with ‘R. jaberico’ strain Bc11 protein (WEU69859.1) (Figure S4.2). Similarly, structural protein 2 

encompasses ‘K. tikkala’ strain Bc01 protein (WEU69745.1) shared 59 % sequence similarity with ‘K. 
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frurule’ strain Bc03 protein (WEY17523.1) and together share more than 46% similarity with ‘R. jaberico’ 

strain Bc11 protein (WEU69857.1) Figure S4.3).  

4.3.4 Synteny across all seven Crassvirales species successfully isolated 

The comparison of the three novel species from this study that infect the same bacterial host with the four 

isolate Crassvirales genomes that infect other Bacteroides hosts showed expected gene similarity based 

on their taxonomic assignment. Among the Steigviridae genomes, ‘K. tikkala’ strain Bc01 was most similar 

to K. primarius, sharing 76 of 106 genes, and the two genomes from Wulfhauvirus genus (strains DAC15 

and DAC17) shared 115 of the 121 genes with greater than 30% similarity. ‘K. frurule’ strain Bc03 

belonging to a unique genus, Kolpuevirus exhibited intermediate similarity, sharing 68 genes with 

Kehishuvirus and 71 genes with Wulfhauvirus genus (Figure 4.4A). Within the Intestiviridae family, ‘R. 

jaberico’ strain Bc11 was compared to the J. secundus, and they shared 37 genes, including 11 structural 

genes, three transcription genes, and 23 replication-related genes (Figure 4.4B).  

The exception to the taxa-based similarity was the two structural genes, encoding tail spike proteins that 

were shared only among isolates infecting the same host, ‘K. tikkala’ strain Bc01, ‘K. frurule’ strain Bc03, 

‘R. jaberico’ strain Bc11 despite belonging to different genera (Figure 4.4C).  

 

Figure 4. 4: Gene synteny across seven pure culture isolates across two Crassvirales families A) Steigviridae family 
comprising five isolates spanning across three genera B) Intestiviridae family comprising two isolates from two genera. 
Genes are represented as arrows, with their direction indicating the gene's direction, and their colour indicating the 
cluster group. Grey-coloured arrows represent unique genes that did not form any clusters. Finally, the links 
connecting the genes are colour-coded based on sequence similarity, ranging from grey (30%) to black (100%). The 
tail proteins shared among the three isolates from this study are highlighted in a red box. A dot is added next to each 
of the phage to represent the bacterial host, B. thetaiotaomicron in pink, B. xylanisolvens in orange, B. cellulosilyticus 
in purple, and B. intestinalis in pink C) Viral host-tree constructed using the portal gene for Crassvirales species and 
16S rRNA gene for the bacterial hosts, with unique colours connecting the phage to its bacterial host. 

As there were multiple Crassvirales species infecting multiple bacterial hosts (Figure 4.4C), we performed a 

coevolutionary test using Parafit(Legendre et al., 2002) that supported random association between 

Crassvirales phages with their bacterial hosts (Parafit Global = 3.33, p values >0.05).  
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4.3.5 Structural proteins playing a role in host interaction 

To investigate the phage genes involved in host interaction, we compared all 1,887 genes across the 18 

Crassvirales genomes, including 14 from this study that infect the bacterial host B. cellulosilyticus WH2, 

and the four Crassvirales isolates that infect four different bacterial hosts: B. intestinalis, B. xylanisolvens, 

and B. thetaiotaomicron. Together, from 18 Crassvirales isolates 1,766 genes were categorised into 383 

orthologous groups (Figure 4.5), while the remaining 121 genes remained singletons. To reinforce the 

validity of this analysis, we corroborated that the species tree inferred from orthogroups (Figure 4.5) 

exhibits the same species-level clustering as observed in the phylogenetic tree (Figure 4.2A). There was 

one exception, J. secundus, which belongs to Intestiviridae family, was grouped with the Steigviridae 

isolates instead of its relative ‘R. jaberico’ strains, due to gene duplication or recombination events in this 

genome.  

Following the species-level clustering, we identified 64 orthogroups (193 genes) that were specific to 

Kehishuvirus, 55 orthogroups (564 genes) specific to Kolpuevirus, 89 orthogroups (187 genes) specific to 

Wulfhauvirus, 73 orthogroups (148 genes) specific to ‘Rudgehvirus’, and 5 orthogroups (10 genes) specific 

to Jahgtovirus genera (Figure 4.5). Within these groups, only two orthogroups–OG000000 (including Bc01: 

WEU69745.1, Bc03: WEY17523.1, Bc11: WEU69858.1) and OG000008 (including Bc01: WEU69744.1, 

Bc03: WEY17522.1, Bc11: WEU69859.1) included genes only from the 14 Crassvirales isolates that infect 

the same bacterial host, B. cellulosilyticus WH2. However, in orthogroup OG000000, four gene duplication 

events occurred with at least 50% of the descendant species having retained both the gene duplicates; 

therefore, this orthogroup was not investigated further. Conversely, no gene duplication events were 

observed within OG000008.   
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Figure 4. 5 A) Orthologous groups identified across the 18 Crassvirales isolates highlighted the two orthogroups that 
are present within the 14 Crassvirales isolates from this study, infecting the same bacterial host. B) Highlighting the 
two orthogroups (in green) that were identified to be undergoing selection pressure.  

To determine if the genes in OG000008 are undergoing selection pressure, we calculated the number of 

synonymous (dS) and non-synonymous (dN) mutations occurring (dN/dS <1). Averaging all the sequence 

pairs, we used the codon-based z-test to identify genes under selection and found that OG000008 rejected 

the null hypothesis (z-score=0.56, p-value<0.001), suggesting that these genes are under purifying 



 

84 

selection. As recombination can impact this analysis, we ran Genetic Algorithm for Recombination 

Detection (GARD) to detect recombination, which identified five recombination breakpoints, none of which 

were significant to be detected by the genetic algorithm. We therefore investigated the tail spike protein 

structure and role in host interaction.     

4.3.6 Tail spike protein interacts with TonB-dependent receptors 

To identify the potential host interactions, we predicted the structure of all 103 proteins from ‘K. tikkala’ 

strain Bc01, 109 proteins from ‘K. frurule’ strain Bc03, and 83 proteins ‘R. jaberico’ strain Bc11 were 

generated using Colabfold(Mirdita et al., 2022) (Protein structures available at 

doi.org/10.25451/flinders.21946034). Specifically, we compared the folded structures of tail spike proteins 

belonging to orthogroup OG000008 (Bc01: WEU69744.1, Bc03: WEY17522.1, Bc11: WEU69859.1) using 

Flexible Structure Alignment by Chaining Aligned fragment pairs allowing Twists (FATCAT-rigid) method to 

show ‘K. tikkala’ strain Bc01 is similar to ‘K. frurule’ strain Bc03 with root-mean square deviation (RMSD) of 

5.86 Å  and 74 % of paired residues in the structural alignment (Figure 4.6A). On the other hand, the tail 

spike protein of ‘K. tikkala’ strain Bc01 exhibited an RMSD of 6.61 Å and 60 % identity when compared to 

‘R. jaberico’ strain Bc11 (Figure 4.6B).  

Each of the tail spike protein structures was individually docked against all 3,223 predictions from the B. 

cellulosilyticus WH2 proteome available in the AlphaFold database using hdock-lite (Table S4.4). ‘K. tikkala’ 

strain Bc01 tail spike protein (WEU69744.1) (Figure 4.6C) interacted best with TonB-dependent receptors 

(UniProt ID: A0A0P0GGA2, hdock-score =-700) (Figure 4.6D), ‘K. frurule’ strain Bc03 protein 

(WEY17522.1) with another TonB-dependent receptor (UniProt ID: A0A0P0GR14, hdock-score= -694), and 

‘R. jaberico’ strain Bc11 protein (WEU69859.1) with a different TonB-dependent receptor (UniProt ID: 

A0A0P0FZA4, hdock-score= -574). 
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Figure 4. 6: 3D structure of tail spike proteins visualised using Chimera. A) Structural alignment of tail spike protein 
Kehishuvirus sp. ‘tikkala’ strain Bc01 (WEU69744.1 in green) with Kolpuevirus sp ‘frurule’ strain Bc03 (WEY17522.1 in 
purple). B) Structural alignment of tail spike protein Kehishuvirus sp. ‘tikkala’ strain Bc01 (WEU69744.1 in green) with 
‘Rudgehvirus jaberico’ strain Bc11 (WEU69859.1 in brown). C) 3D Structure of Kehishuvirus sp. ‘tikkala’ strain Bc01 
(WEU69744.1 in green) D) Kehishuvirus sp. ‘tikkala’ strain Bc01 (WEU69744.1 in green) docked with Bacteroides 
cellulosilyticus WH2 TonB-dependent receptor (A0A0P0GGA2 in pink). 

4.4 Discussion   

The role of Crassvirales genomes in the human gut is enigmatic, hindered by the limited number of cultured 

Crassvirales phages. Here, we address this gap by successfully isolating three novel Crassvirales species 

infecting Bacteroides cellulosilyticus WH2, belonging to different genera and families. This observation 

suggests that the phages are not co-evolving with their bacterial hosts; rather, they have a shared ability to 

exploit similar features in their bacterial hosts. Notably, we identified a unique tail spike protein shared 

among isolates infecting the same bacterial host, undergoing purifying selection and interacting with the 

TonB-dependent receptors on the bacterial surface.  

The Crassvirales order is currently comprised of a vast and diverse collection of genomes. Despite this, the 

study of these phages has been limited due to the scarcity of pure isolates. The challenge associated with 

successful isolation highlights the difficulty in identifying and predicting the bacterial hosts associated with 

these organisms. In our study, we addressed this challenge through focusing on wastewater samples, a 

source for phages infecting different Bacteroides hosts. Employing this approach, we successfully isolated 

14 novel Crassvirales isolates specifically infecting B. cellulosilyticus WH2. These isolates were sequenced 
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on different sequencing platforms, including Oxford Nanopore, Illumina Miseq or a combination of both. 

Nanopore assemblies provided high-quality and complete assemblies, however required polishing the 

assembly with Illumina reads to correct for frameshift errors that can fragment genes(Arumugam et al., 

2019; Cook, Brown, et al., 2023; Nanoporetech Consortium, 2022). As a result, the 14 complete genomes 

were classified at the family and genus levels, denoted as three novel species (Figure 4.2A), while the 

remaining isolates were grouped as strains of the same species (Table 4.1). The highest confidence isolate 

was selected for each species, Kehishuvirus sp. ‘tikkala’ strain Bc01, Kolpuevirus sp, ‘frurule’ strain Bc03 

and ‘Rudgehvirus jaberico’ strain Bc11 and examined further.  

Taxonomic assignment of the three novel species showed they belong to two families. Kehishuvirus sp. 

‘tikkala’ strain Bc01 and Kolpuevirus sp, ‘frurule’ strain Bc03 were assigned to the Steigviridae family. This 

family also comprised of three other Crassvirales phages, Kehishuvirus primarius, Wulfhauvirus 

bangladeshii DAC15, and Wulfhauvirus bangladeshii DAC17 infecting other Bacteroides hosts. Notably, the 

two novel isolates exhibited clear, uniform circular spot morphology distinct from the turbid plaques 

observed in K. primarius, despite their close relationship within the same family. The third novel species, 

‘Rudgehvirus jaberico’ strain Bc11 belonged to Intestivirdae family, along with other Crassvirales species, 

Jahgtovirus secundus. ‘R. jaberico’ strain Bc11 presented plaques with a circular halo surrounding the 

cleared spot, indicating depolymerase activity to break down the polysaccharides found on the bacterial cell 

wall.  

Furthermore, comparing the three novel species, we found that their virion production, estimated from the 

number of plaques formed, was correlated with the number of tRNA genes within the genome(Delesalle et 

al., 2016). However, it is possible there are other factors such as gene regulation and host immune 

responses that could also be influencing virion production. Additionally, we conducted genome density 

analysis in association with capsid sizes and genome lengths, revealing inconsistencies with prior studies 

on isolated K. primarius and J. secundus species. The capsid diameters of the new three novel 

Crassvirales species of virions (90 to 97 nm) were apparently 20% larger in size than those reported for K. 

primarius and J. secundus virions (77 nm) (Guerin et al., 2021; Shkoporov et al., 2018). However, 

considering that the reported values for K. primarius and J. secundus corresponded to the inscribed rather 

than the circumscribed diameters, a geometric correction of 22% that brought the genome density near 0.5 

bp/nm3. This correction aligned with a larger diameter measured in the recently published cryo-EM 

reconstruction of K. primarius (Bayfield et al., 2023). The finding highlights the importance of accurately 

assessing virion dimensions and genome density to ensure consistency in the classification of Crassvirales 

phages.  

The addition of the three novel Crassvirales species spanning multiple families infecting one bacterial host, 

B. cellulosilyticus WH2 indicated these species may not be co-evolving with their bacterial hosts. We 

therefore tested all the successfully cultured Crassvirales species and their respective bacterial hosts to 

discover that they do not exhibit co-evolutionary patterns but rather support random association. These 

findings imply that the phage-host association within Crassvirales group are shaped by the environment 
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and host interactions(Legendre et al., 2002; Papudeshi, Rusch, et al., 2023). Additionally, genome 

comparison of the known Crassvirales species showed greater shared similarity within genera. However, 

the three Crassvirales species, despite belonging to three different genera, shared two unique structural 

genes.  Evolutionary analysis confirmed one of the two structural genes, encoding tail spike protein 

(comprising Bc01: WEU69744.1, Bc03: WEY17522.1, Bc11: WEU69859.1) formed an orthologous group, 

and is undergoing purifying selection pressure. Tail spike proteins have been shown to play a crucial role in 

binding to specific membrane receptors on the bacteria in tailed bacteriophage(Nobrega et al., 2018). 

Therefore, through preserving this gene function, the phage can successfully infect and replicate within the 

host.  

We found the tail spike proteins of the three novel Crassvirales species to interact with different TonB-

dependent receptors on the bacterial surface, providing significant insights into the mechanism of phage-

host interactions. The bacterial host, B. cellulosilyticus WH2 possesses a substantial repertoire of up to 112 

TonB-receptors on its surface. Bacteroides typically use these receptors to take up starches(Pollet et al., 

2021) and have been associated with phage sensitivity (N. T. Porter et al., 2020; Shkoporov, Khokhlova, et 

al., 2021). The tail spike protein also encodes for polysaccharide-degrading enzymes, such as glycoside 

hydrolase domains, that target the capsular polysaccharides on the bacterial surface, allowing for phage-

host interaction and leading to infection. This interaction therefore ensures successful propagation, 

highlighting the evolutionary adaptation between the Crassvirales phage and their bacterial hosts.  

Overall, our study on the three novel Crassvirales species infecting Bacteroides cellulosilyticus WH2 

revealed critical insights into their evolutionary dynamics and interactions with the bacterial host. The novel 

phages belonging to different genera but infecting the same host provide a valuable model system for 

studying the interactions that occur within one of the dominant members of the gut microbiome. 

4.5 Conclusions 

Phages are increasingly recognised as key ecological players in the gut microbiome, where their ability to 

modulate bacterial populations can influence host health, microbial stability, and resilience. Despite their 

abundance, particularly of groups like Crassvirales, the specific interaction profiles between gut phages and 

their bacterial hosts remain poorly understood. This gap has limited our mechanistic understanding of how 

phages shape microbial ecosystems, beyond what metagenomics can infer. Addressing this, the work 

presented in this chapter provides one of the first experimental investigations of multiple Crassvirales 

families infecting a single gut bacterium, Bacteroides cellulosilyticus. 

We identify a conserved tail spike protein used by these phages for host recognition, revealing a common 

mechanism of infection despite broad genomic divergence. Importantly, we also show that Crassvirales 

phages are not co-evolving with their hosts, suggesting alternative strategies for persistence in the densely 

populated and competitive gut environment. These findings significantly expand the known genomic 

diversity of this viral order and offer a functional framework for understanding phage–host specificity in 

complex ecosystems. 



 

88 

By linking genomic features to ecological function, this work provides a blueprint for studying host 

interactions in other phage groups and lays a foundation for integrating viral dynamics into broader models 

of gut microbiome structure and stability. Ultimately, this chapter highlights the need to move beyond one-

to-one phage–host studies toward examining multipartite interactions, where phages, bacteria, and their 

surrounding community co-shape ecosystem outcomes. 
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4.6 Supplementary Files 

 

 

Figure S4.1: Showing the taxa classification of the three novel species remains consistent across the three conserved 
proteins A) portal gene, B) Major capsid protein (MCP), and C) terminase large subunit (terL). The outgroup across all 
three trees set to Cellulophaga phage phi13:2. The placement of the three novel species are highlighted on the tree, 
Bc01 belonging to Kehishuvirus genera (light green), Bc03 belonging to Kolpuevirus genera (purple), and Bc11 
belonging to a novel genus named ‘Rudgehvirus’ (brown). 



 

90 

 

Figure S4. 2: Multiple sequence alignment of shared structural protein 1 from Figure 4.3C including K. tikkala’ strain 
Bc01 protein, WEU69744.1, ‘K. frurule’ strain Bc03 protein, WEY17522.1, and ‘R. jaberico’ strain Bc11 WEU69859.1 
(reference sequence), showcasing the sequence identity with amino acids that were not shared in grey, and the rest in 
a different colour, based on the amino acid group.  
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Figure S4. 3: Multiple sequence alignment of shared structural protein 2 from Figure 4.3C including ‘K. tikkala’ strain 
Bc01 protein, WEU69745.1, ‘K. frurule’ strain Bc03 WEY17523.1, and ‘R. jaberico’ strain Bc11 WEU69857.1 
(reference sequence), showcasing the sequence identity with amino acids that were not shared in grey, and the rest in 
different colour, based on the amino acid group.  
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Figure S4.4. Species tree inferred from orthogroups using OrthoFinder and rooted to ‘Rudgehvirus jaberico’ strain 
Bc13 using the STRIDE algorithm. The 14 Crassvirales isolates are colour coded based on their species classification, 
‘Rudgehvirus jaberico’ strains in brown, Kehishuvirus sp. ‘tikkala’ strains in dark blue, and Kolpuevirus sp. ‘frurule’ 
strains in light blue. The four Crassvirales genomes from other studies are colour coded in black. Further, to denote 
the family level classification, we added red dots next to Intestiviridae family members, and cyan dots next to 
Steigviridae family members. 

Table S4.1: Provided as Supplementary File 1,  
https://www.microbiologyresearch.org/content/journal/mgen/10.1099/mgen.0.001100#supplementary_data  

Table S4.2: Provided as Supplementary File 2, 
https://www.microbiologyresearch.org/content/journal/mgen/10.1099/mgen.0.001100#supplementary_data 

Table S4.3: Provided as Supplementary File 3, 
https://www.microbiologyresearch.org/content/journal/mgen/10.1099/mgen.0.001100#supplementary_data 

Table S4.4: Provided as Supplementary File 4, 
https://www.microbiologyresearch.org/content/journal/mgen/10.1099/mgen.0.001100#supplementary_data 

https://www.microbiologyresearch.org/content/journal/mgen/10.1099/mgen.0.001100#supplementary_data
https://www.microbiologyresearch.org/content/journal/mgen/10.1099/mgen.0.001100#supplementary_data
https://www.microbiologyresearch.org/content/journal/mgen/10.1099/mgen.0.001100#supplementary_data
https://www.microbiologyresearch.org/content/journal/mgen/10.1099/mgen.0.001100#supplementary_data


 

93 

 

CHAPTER 5  
BACTERIAL SYMBIONTS HOST ASSOCIATION 

 

 

 

 

 

 

 

 

This chapter is based on the published article— Papudeshi, B., Rusch, D. B., VanInsberghe, D., Lively, C. 
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Preface 
This chapter is based on the published research article titled “Host association and spatial proximity shape 

but do not constrain population structure in the mutualistic symbiont Xenorhabdus bovienii,” which I led as 

first author and forms a foundational part of this thesis. The study, published in mBio in 2023, explores how 

mutualistic bacteria evolve within host-associated environments while maintaining genetic diversity across 

populations. Using Xenorhabdus bovienii, a bacterial symbiont of Steinernema nematodes, we tested how 

host association, spatial proximity, and dispersal shape bacterial population structure and evolutionary 

trajectories. This research was motivated by fundamental questions in microbial ecology: how do symbionts 

adapt to their hosts without losing genetic variability, and how do physical and ecological constraints shape 

their population dynamics? While strict vertical transmission is often assumed in mutualistic systems, our 

findings challenge that assumption, revealing evidence of horizontal transmission and genetic 

recombination among lineages even within tightly host-associated contexts. 

As first author, I was responsible for conceptualising the study, formulating the research questions, and 

designing the analytical framework. I performed population genomic analyses, integrated spatial data, 

conducted comparative genomics, and carried out statistical modelling to assess host-specific structuring in 

X. bovienii. I also led the interpretation of findings, manuscript writing, and figure preparation.  

In the context of this thesis, this chapter presents essential evidence on how host association can drive, but 

not strictly determine, population structuring. It complements earlier chapters on phage-bacteria 

interactions by extending the theme of host influence to bacterial symbionts and sets up the comparative 

exploration of microbial specificity, co-evolution, and selective sweeps that continues throughout the thesis. 

Authorship statement 
As the first author of this study, I led the project from research design through to publication. I 

conceptualised the research questions, designed the analytical pipeline, conducted all core genomic and 

statistical analyses, and wrote the manuscript. I also coordinated the contributions of co-authors, integrating 

ecological and evolutionary perspectives into the final interpretation of results. Below is a breakdown of the 

author's contributions: 

Author Contribution 

Bhavya Papudeshi Research design, data analysis, writing and editing the manuscript 

Douglas B. Rusch Research design and data analysis 

David VanInsberghe Data analysis 
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Curtis M. Lively Research design, data collection and editing of the manuscript 

Robert A. Edwards Data analysis and editing of the manuscript 

Farrah Bashey Research design, data collection, analysis, writing and editing of the manuscript 

 

The contributions of each co-author have been explicitly stated, and their permission to include these works 

has been obtained as per Flinders University’s Authorship of Research Output Procedures (Appendix A) 
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Host association and spatial proximity shape but do not constrain population structure in 
the mutualistic symbiont Xenorhabdus bovienii 

Abstract  

To what extent are generalist species cohesive evolutionary units rather than a compilation of recently 

diverged lineages? We examine this question in the context of host specificity and geographic structure in 

the insect pathogen and nematode mutualist Xenorhabdus bovienii. This bacterial species partners with 

multiple nematode species across two clades in the genus Steinernema. We sequenced the genomes of 42 

X. bovienii strains isolated from four different nematode species and three field sites within a 240-km2 

region and compared them to globally available reference genomes. We hypothesised that X. bovienii 

would comprise several host-specific lineages, such that bacterial and nematode phylogenies would be 

largely congruent. Alternatively, we hypothesised that spatial proximity might be a dominant signal, as 

increasing geographic distance might lower shared selective pressures and opportunities for gene flow. We 

found partial support for both hypotheses. Isolates clustered largely by nematode host species but did not 

strictly match the nematode phylogeny, indicating that shifts in symbiont associations across nematode 

species and clades have occurred. Furthermore, both genetic similarity and gene flow decreased with 

geographic distance across nematode species, suggesting differentiation and constraints on gene flow 

across both factors, although no absolute barriers to gene flow were observed across the regional isolates. 

Several genes associated with biotic interactions were found to be undergoing selective sweeps within this 

regional population. The interactions included several insect toxins and genes implicated in microbial 

competition. Thus, gene flow maintains cohesiveness across host associations in this symbiont and may 

facilitate adaptive responses to a multipartite selective environment. 

5.1 Introduction 

Microbes live in complex and abstract microenvironments, obscuring our ability to determine what 

evolutionary forces structure the diversity we observe. Additionally, it is challenging to predict a priori the 

extent to which closely related isolates sampled from a specific region or habitat reflect a cohesive unit, 

distinct from other such units. As in macroorganisms, genetic distance can increase with geographic 

distance within microbial species(Chase et al., 2019; Cho & Tiedje, 2000; Edwards et al., 2019; Oda et al., 

2003) and be correlated with distinct habitats(K. M. Campbell et al., 2017; McArthur et al., 1988), indicating 

that homogenising forces (i.e., selection, drift, and gene flow) are more likely to operate with physical and 

ecological proximity. However, diverse population structures are observed across bacterial species. For 

instance, nearly identical isolates of Staphylococcus aureus and Vibrio cholerae have been found 

globally(Dutilh, Thompson, et al., 2014; McAdam et al., 2012; Mutreja et al., 2011), while in other species, 

sympatric isolates are found to be genetically differentiated and nonrecombining(Cadillo-Quiroz et al., 2012; 

Chase et al., 2019; Shapiro et al., 2012), demonstrating that divergence can arise and be maintained at a 

small spatial scale. A key goal remains to link geographic patterns to the evolutionary forces shaping 

microbial populations. 
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Work on host-associated microbes has examined the role of hosts in governing the population structures of 

their symbionts. Some host specialist pathogens, such as Mycobacterium tuberculosis, display a long 

history of coevolution that can be seen by congruent phylogenies between the pathogens and their human 

host populations(Comas et al., 2013), while others, such as Helicobacter pylori, reflect more recent human 

migrations(Thorell et al., 2017). In contrast, host generalists, such as Campylobacter species and 

Escherichia coli, show little signature of host species association(Dearlove et al., 2016) and are found to be 

structured more by geography than host phylogeny(Matthews et al., 2015; Strachan et al., 2015). However, 

within some host generalist species, lineages can be found that are host specific and contain niche-

adaptive genes(E. J. Richardson et al., 2018; Sheppard et al., 2010, 2013). While most research examining 

population structure has been done on pathogen species of human health or economic concern, it is 

important to study diverse species to better understand the processes shaping microbial evolution(Rocha, 

2018). 

Among beneficial symbionts, a range of population structures has also been observed. The well-studied 

mutualist Vibrio fisheri, associated with Hawaiian bobtail squid, shows little geographic structure or 

specificity to genetically distinct host populations(Bongrand et al., 2016). In contrast, vertically transmitted 

symbionts like Buchnerna aphidocola show structuring across aphid species and with host geography(Yang 

Zhang et al., 2018). Symbiont population structure can also be affected by host ecology(Lima et al., 2020). 

For example, the ant mutualist Pseudonocardia actinobacteria shows kilometre-scale geographic 

structuring within a single ant species that is correlated with its ability to inhibit a virulent fungal pathogen of 

its host(Caldera et al., 2019). Here, we examine the population structure of Xenorhabdus bovienii, a 

mutualistic symbiont of nematodes and a virulent insect pathogen, in a region where multiple nematode 

species occur in sympatry. 

The bacterial genus Xenorhabdus is exclusively found associated with nematodes in the genus 

Steinernema. These nematodes depend on Xenorhabdus for successful colonisation and reproduction 

within insect hosts (Figure 5.1), while Xenorhabdus relies on the nematodes for survival and access to 

insects(S. Patricia Stock & Blair, 2008). Across the genera, there is a partial congruence between the host 

and symbiont phylogenies, with both co-speciation and host switching observed(M.-M. Lee & Stock, 2010). 

X. bovienii is noted within the genus for its ability to associate with multiple nematode species across two 

distinct clades of Steinernema nematodes (M.-M. Lee & Stock, 2010). Despite this broad host range, partial 

co-cladogenesis between X. bovienii and its nematode partners suggests specialisation (Murfin, Lee, et al., 

2015). Furthermore, experimental pairings demonstrate that the fitness of both partners declines with 

phylogenetic distance from native association(Chapuis et al., 2009; Dinges et al., 2022b; McMullen et al., 

2017; Murfin, Lee, et al., 2015). So, while on one hand there is evidence that X. bovienii can coevolve to 

form specialised partnerships, on the other hand, there is evidence that this species can be considered a 

host generalist(M.-M. Lee & Stock, 2010; Murfin, Lee, et al., 2015). To reconcile these findings, we 

sequenced genomes of X. bovienii isolated from four nematode host species across three study sites and 

compared them to all available genomes of this species. We hypothesised that this host generalist 
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symbiont would comprise multiple, largely host-specific lineages and sought to identify genetic markers of 

such specificity. Additionally, we hypothesised that spatial proximity would facilitate genetic similarity via 

shared selective pressures, neutral processes, and gene flow. Thus, we tested for evidence of recent gene 

flow among the isolates and whether gene flow and genetic similarity were limited by host species or 

geographic distance. 

 

Figure 5. 1: Representation of the Xenorhabdus-Steinernema life cycle. Nematodes carrying different Xenorhabdus 
symbionts co-occur in the soil and coinfect an insect host. Inside the insect, nematodes release their symbionts, which 
replicate and produce toxins, killing the insect. The nematodes also replicate for one or more generations, producing 
offspring that do not carry the symbionts. When resources within the insect are depleted, nematode offspring 
reassociate with their cognate symbionts and nematode-symbiont pairings emerge into the soil. This image was 
generated using BioRender.  

5.2 Materials and Methods 

5.3.1 Study design 
Forty-two X. bovienii isolates associated with four distinct nematode host species were collected from three 

Indiana University Research and Training Preserve sites in Indiana, USA (Figure 5.2). At each site, soil 

samples were collected and baited separately with insect hosts in the laboratory. Nematodes emerging 

from each soil-exposed insect were surface sterilised and crushed with a pestle to isolate their symbionts. 

The resulting supernatant was then plated onto NBTA (nutrient agar with 0.0025% bromothymol blue and 

0.004% triphenyl tetrazolium chloride), and bacterial colonies were streaked for isolation to create freezer 

stocks as previously described(Hawlena, Bashey, & Lively, 2010). Prior work showed slight variation 

among bacterial symbionts within a nematode stock(Hawlena, Bashey, Mendes‐Soares, et al., 2010), and 

therefore, only one bacterial strain was selected per nematode stock for sequencing, with one exception, 

LD27A and LD27B, which were isolated from the same stock. Nematode species were identified using 28S 

and internal transcribed spacer (ITS) genes(S. P. Stock et al., 2001). 
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Figure 5. 2: Sample distribution of Xenorhabdus bovienii genomes. A) Newly sequenced isolates were collected from 
Indiana, USA, as depicted with a green star, while reference genomes from other studies deposited to NCBI and 
downloaded for this paper are represented in stars, colour-coded based on the nematode host and collection. B) 
Indiana isolates analysed in this paper were collected from three Indiana University Research and Teaching Preserve 
sites within a 240-km2 region. Pie charts depict the relative numbers of isolates collected at each site and their 
nematode host associations. See Table S5.1 and NCBI BioProject accession number PRJNA700777 for information 
on each genome. Map outline and snapshot from Google Maps.  

5.3.2 Genome sequencing, assembly and annotation  
Each X. bovienii isolate from a freezer stock was plated on NBTA, and a single colony picked for overnight 

culturing in LB medium (Difco). DNA extraction was performed following the DNeasy blood and tissue kit 
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protocol for Gram-negative bacteria (Qiagen). Libraries with approximately 400-bp inserts were generated 

for each isolate and sequenced to generate paired-end reads on the Illumina NextSeq 500 platform using a 

300-cycle kit. The reads were assembled with SPAdes assembler(Bankevich et al., 2012), and the contig 

statistics were assessed using QUAST v5.0.2(Gurevich et al., 2013). Additionally, 11 X. bovienii genomes 

(Figure 5.2), four X. nematophila genomes, and four Photorhabdus genomes were downloaded from NCBI 

(Appendix D, Table S1). All 61 genomes were clustered by average nucleotide identity (ANI) using 

FastANI(Jain et al., 2018). The ANI results were plotted in R using the ggplot2 and Heatmap packages. 

Next, the protein-coding genes were predicted in all 61 genomes using prodigal v2.6.3(Hyatt et al., 2010), 

and the resulting genes were annotated using Prokka v1.14.6(Seemann, 2014) against the Xenorhabdus 

gene database built from GenBank. 

5.3.3 Phylogenetic analysis 
Phylogenies were built from core regions. First, the assembled genomes were aligned using Mugsy 

v1r2.3(Angiuoli & Salzberg, 2011). The core genome was defined as regions found in all 61 genomes that 

were greater than 3,000 bp in length and with less than 50% gaps(Arevalo et al., 2019). Trees were 

constructed using RAxML v8.2.12(Stamatakis, 2014) using the general time reversible gamma 

(GTRGAMMA) model, with 100 bootstraps. Photorhabdus genomes were selected as the outgroup, and the 

resulting Newick tree was plotted using iTOL(Letunic & Bork, 2019). These steps were repeated for just the 

53 X. bovienii isolates, with X. bovienii CS03 as the reference genome. We repeated the analysis for just 

the 42 regional isolates, with MC081 as the reference genome to ensure that the order of the genes was 

represented with a local sample. To detect and account for recombination across X. bovienii isolates, which 

can bias phylogenetic inference, the core gene alignment and initial phylogenetic tree were further 

analysed with ClonalFrameML v1.12(Didelot & Wilson, 2015). ClonalFrameML calculates the effect of 

recombination on the data set and generates a recombination-aware phylogenetic tree with adjusted 

branch lengths. 

To compare the bacterial phylogeny to that of its nematode hosts, we used Parafit(Legendre et al., 2002) 

via the ape R package (permute = 1,000, eigen value correction = Cailliez). Pairwise distances were 

calculated from each tree using the cophenetic.phylo ape function. A maximum-likelihood nematode 

phylogeny was constructed in MEGA(Tamura et al., 2021) based on nematode 28S sequences available 

on GenBank (Table S5.1). We also conducted maximum-parsimony reconciliation via eMPRess to estimate 

host switching events(Santichaivekin et al., 2021). 

5.2.4 Pangenomic analysis 
To determine the flexible gene set across all the X. bovienii isolates, the genomes were run through a 

pangenomic analysis pipeline, Roary v3.13.0(Page et al., 2015). Roary was run with the minimum 

sequence identity set to 90%, clustering protein-coding genes from all 53 X. bovienii isolates. From the 

clustering results, the flexible and core gene sets were defined. To determine the grouping of X. bovienii 

isolates based on flexible gene sets, they were visualised using uniform manifold approximation and 

projection (UMAP) ordination plots in R. 
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5.2.5 GWAS analysis 
To determine whether genetic markers could be associated with each nematode species, 53 X. bovienii 

genomes were run through treeWAS(Collins & Didelot, 2018). The input to treeWAS was the 

recombination-aware tree from ClonalFrameML and the core gene alignment used to build phylogenetic 

trees; we used the default parameters, setting the base P value to <0.05. In addition, all the SNPs were 

identified from the core gene alignment using SNP sites(Page et al., 2016). TreeWAS was also run with the 

gene presence and absence table from pangenome analysis to identify flexible genes that were 

significantly associated with nematode hosts. The significant traits were annotated through tracing the 

location of the trait to the Prokka annotations output. To determine whether the results were dependent on 

using globally available Xenorhabdus genomes, we reran this analysis using just the 42 Indiana isolates. 

5.3.6 Gene flow analysis 
Recent gene transfer events across all X. bovienii genomes were identified using PopCOGenT(Arevalo et 

al., 2019). The assembled genomes were provided as input to PopCOGenT, which first identifies gene flow 

between each pair of genomes by identifying regions of higher-than-expected similarity (termed length bias) 

based on a null model of clonal descent(Arevalo et al., 2019). Then, genomes connected by gene flow are 

grouped into populations, and clusters within populations are defined by genomes sharing relatively higher 

gene flow between them(Arevalo et al., 2019). As this analysis showed that all of the Indiana isolates 

shared gene flow with two of the reference genomes, X. bovienii intermedium (isolated from SC, USA) and 

X. bovienii kraussei Quebec (isolated from Canada), falling into a single population group, we repeated this 

analysis for just the 42 isolates to examine gene flow events that could be potential targets of selection 

within the region. For each cluster, selection is inferred by PopCOGenT through determining events that 

share low nucleotide diversity within a cluster and have distinct mutations between clusters across both 

core and flexible regions. The resulting gene sweeps were annotated from the corresponding output from 

Prokka. 

5.3.7 Spatial analysis 
Geographic distance between isolates was based on previously established field transects(Hawlena, 

Bashey, & Lively, 2010) or calculated from coordinates. The three field sites were less than 28 km apart 

(Figure 5.2), and within each field site, the isolates were collected less than 800 m apart from each other. 

Reference isolates were collected at least 370 km away from the Indiana isolates. We tested whether 

genetic similarity (average nucleotide identity [ANI]) and estimated gene flow (log10 length bias from the 

PopCoGenT analysis) were correlated with geographic distance (in log10 meters) by using Mantel tests via 

the vegan package in R. To test whether the nematode host species affected genetic similarity and gene 

flow, we classified each pair of isolates based on whether they were isolated from the same or different 

nematode species and then tested this effect in a full mixed-model analysis of covariance (ANCOVA), with 

geographic distance (in log10 meters) as a covariate and isolate identities and study sites as random 

effects. For each analysis, we tested all 53 X. bovienii isolates and then restricted the analysis to the 42 

Indiana isolates, or to the isolates found at the MC and LD study sites. 
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5.3.8 Data availability 
The genomes in this study have been deposited in GenBank under BioProject accession number 

PRJNA700777. In addition, the bioinformatics commands and files generated during analysis are available 

on GitHub (https://github.com/npbhavya/BovGenomes-analysis). 

5.3 Results 

5.3.1. Overview of X. bovienii genomes collected from Indiana  
Genomes were obtained from 42 X. bovienii field isolates from four nematode host species across three 

study sites in a 240-km2 region of Indiana (Figure 5.2). Each genome sequenced had an average of 42x 

genome coverage and was assembled to an average of 555 contigs. The least fragmented genome was 

113 contigs (N50, 183,901 bp; total length, 4.56 Mbp), and the most fragmented was 4,329 contigs (N50, 

42,376 bp; total length, 6.35 Mbp). On average 4,151 ± 312 proteins (mean ± standard deviation) were 

identified per isolate (range, 3,687 to 5,014), with 31.11% of the proteins annotated as hypothetical 

proteins. Comparisons of these genomes with 11 X. bovienii reference genomes, four Xenorhabdus 

nematophila genomes, and four Photorhabdus genomes show that all X. bovienii genomes have high 

nucleotide similarity (>94% average nucleotide identity [ANI], Figure 5.3) and form a monophyletic group 

based on a phylogeny of the core genome (100% support), distinct from other entomopathogenic bacteria 

(Figure S5.1). 

 

Figure 5. 3: Average nucleotide identity (ANI) of the whole genomes was compared across all 61 genomes, which 
include 42 X. bovienii Indiana isolates, 11 reference X. bovienii genomes, 4 X. nematophila spp and 4 Photorhabdus 
spp, using FastANI. Hierarchical clustering was performed on the Euclidean distance tables. The heatmap shows 
genome similarity, ranging from approximately 80% ANI in blue to 100% ANI in red. This figure shows Photorhabdus 
spp are equally distant to the two Xenorhabdus species, and that X. nematophila show an average of 82% ANI with X. 
bovienii. Similarity between X. bovienii isolates ranges from 94.34–99.99%. The Indiana isolates had a minimum of 

https://github.com/npbhavya/BovGenomes-analysis
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96.9 % ANI and clustered into two distinct groups of more than 98% similarity. The first group includes 36 isolates plus 
the reference X. bovienii kraussei Quebec. The remaining six Indiana isolates were grouped with reference genome X. 
bovienii intermedium. Finally, the remaining nine reference X. bovienii genomes clustered together averaging 96.3% 
ANI.  

5.3.2 Regional X. bovienii isolates form two distinct lineages partially based on nematode hosts 
Alignment of the 53 available X. bovienii genomes (42 Indiana isolates and 11 reference genomes), results 

in a core region of 2,176,418 bp, which is 45.25% of the mean genome size. Phylogenetic analysis based 

on this alignment shows that 36 of the Indiana isolates group with reference genome X. bovienii strain 

kraussei Quebec forming lineage I (Figure 5.4A). Lineage I comprises all of the isolates associated with 

three of the nematode species: Steinernema kraussei, Steinernema texanum, and Steinernema affine. The 

remaining six Indiana isolates are all associated with Steinernema intermedium nematodes (Figure 5.4A, 

dark blue labels), and they form a monophyletic group (lineage II) with the reference X. bovienii strain 

intermedium. Thus, the bacterial phylogeny (Figure 5.4A) is not congruent with the nematode phylogeny 

(Figure 5.4B), where S. intermedium and S. affine group together, while S. kraussei and S. texanum belong 

to another clade. Notably, while all of the isolates from the Moore’s Creek (MC) site are members of lineage 

I, isolates from the other two sites are found in both lineage I and II and cluster according to the nematode 

host. 
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Figure 5. 4: A) Bacterial phylogeny with an image of X. bovienii colonies. Phylogenetic tree built using core genes from 
53 X. bovienii genomes, with the reference genomes shown in black, the 42 Indiana isolates colour coded based on 
the nematode host, and two samples in grey that were isolated from an unidentified nematode host. The circles 
represent branches with bootstrap values ranging from 80% to 100%. The tree was built using RAxML based on the 
alignment of 2.18 Mb. Branch lengths have been corrected for recombination using ClonalFrameML. The orange 
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asterisk represents bacterial isolates from two nematode species that form a monophyletic group. B) Nematode 
phylogeny with an image of a Steinernema nematode. The nematode phylogeny was built from aligning 653 bp of the 
28S rRNA gene using the general time reversible model of the maximum-likelihood method in MEGA. The nematode 
species are colour coded and named to match their corresponding symbionts across the two trees. 

Cophylogenetic analysis using Parafit shows a non-random association between nematode species and X. 

bovienii isolates (ParafitGlobal = 0.003, P value = 0.001), supporting the clustering based on nematode host 

seen in Figure 5.3A. Nevertheless, this clustering is only partial. While all of the isolates associated with S. 

affine form one distinct group (Figure 5.4A, light blue labels), the other two species in lineage I do not. 

Isolates associated with S. kraussei form two distinct, well-supported clades (Figure 5.4A, pink labels) and 

do not form a monophyletic group with either of the two reference genomes associated with S. kraussei. 

Similarly, isolates from S. texanum form three distinct, well-supported clades (Figure 5.4A, labelled in red). 

Thus, host switching likely has occurred in this mutualism, as indicated by maximum-parsimony 

reconciliation (Figure S5.3). 

Examination of the flexible gene content shows a pattern similar to that of the core phylogeny. Roary 

identified 2,147 genes as core and 15,867 genes as flexible in the X. bovienii pangenome. Clustering 

based on gene presence and absence places the X. bovienii isolates from S. intermedium (lineage II in 

Figure 5.5A, labelled in dark blue) in a distinct part of uniform manifold approximation and projection 

(UMAP) space (Figure 5.5, bottom left corner). Lineage I isolates fall along the diagonal, with S. affine-

associated isolates (Figure 5.5, light blue labels) found more centrally, while isolates from S. kraussei and 

S. texanum are more dispersed. Additionally, the isolates in the monophyletic clade associated with S. 

kraussei and S. texanum (Figure 5.5A, labelled with an asterisk) form their distinct cluster (Figure 5.5, 

labelled with an asterisk). Thus, both the core and flexible genes support partial clustering based on the 

nematode host species, with isolates associated with S. kraussei and S. texanum showing recent host shift 

or gene exchange. 
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Figure 5. 5: UMAP visualisation based on gene presence and absence in the flexible gene set, with each data point 
representing a genome that is colour coded based on the nematode host. The orange asterisk shows isolates from 
two nematode species that form a monophyletic group in the core phylogeny shown in Figure 3.4B and form a distinct 
cluster based on the flexible genome. 

5.3.3 Gene association testing across nematode hosts 
To determine if any genetic markers could predict nematode host species association, we tested the null 

model that single-nucleotide polymorphisms (SNPs) in the core genome or flexible genes are randomly 

associated with respect to nematode host species by using treeWAS on all 53 X. bovienii genomes. Only 

one host, S. texanum, showed any significant deviations from the null model, with eight significant genes 

from the flexible genome. These eight genes were annotated as a putative invasin gene, a colocalised four-

gene restriction modification system, a transposase gene, and two hypothetical protein genes. To 

determine whether this result was sensitive to genes in the global isolates, we repeated the analysis using 

only the Indiana isolates. Again, only S. texanum-associated isolates showed any significant genetic 

markers (Table S5.2). 

5.3.4 Indiana isolates share recent gene flow 
Homologous recombination among all the available X. bovienii genomes was assessed on the core 

genome using ClonalFrameML. For the 53 X. bovienii genomes, recombination rate (R) was half the 

mutation rate (θ), such that R/θ = 0.49. Although, recombination (r) had twice the effect on the core genome 

as mutation (m), as the average length of the recombination fragments was estimated as 200 bp, such that 

r/m = 2.49. Removing the global reference genomes showed similar results. Among the 42 Indiana isolates, 
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recombination was more frequent (R/θ = 0.57) but had a similar effect on the genome (r/m = 2.37), as the 

length of the recombined fragments was slightly smaller (length of recombined fragment = 167 bp). Thus, 

the relative impact of homologous recombination in X. bovienii was similar to that found in other terrestrial 

gammaproteobacteria(Vos & Didelot, 2009). 

To better understand the extent to which gene flow is impacting the evolution of X. bovienii, we employed 

the recombination-based clustering analysis tool PopCOGenT on the 53 X. bovienii isolates. In contrast to 

ClonalFrameML, which identifies recombination in only the core genes, PopCOGenT uses pairwise 

alignments to test for recent genetic exchange in both the core and flexible regions and then applies 

network analysis to group isolates that share such exchanges. Four distinct populations with no gene flow 

between them were identified (Figure 5.6). Three of these populations consisted of only reference 

genomes. Notably, the fourth population consisted of the 42 Indiana isolates along with the reference 

genomes of X. bovienii strain intermedium (isolated from South Carolina, USA) and X. bovienii kraussei 

Quebec (isolated from Canada). Thus, recent gene flow was found to connect all the Indiana isolates. 

 

 

Figure 5. 6: Connectivity among the 53 X. bovienii isolates shows that all Indiana isolates shared gene flow with each 
other and with two of the reference genomes, X. bovienii intermedium and X. bovienii kraussei Quebec, while the rest 
of the reference genomes formed three distinct populations with no gene flow among them. Within the Indiana 
population, six subclusters were identified based on relative gene flow. Nodes represent the genomes and are colour 
coded based on the nematode host (light blue, S. affine; pink, S. kraussei; dark blue, S. intermedium; and red, S. 
texanum), while edges represent the degree of gene flow, with the lighter/thinner edges having lower gene flow than 
the darker/thicker edges. Some nodes represent multiple isolates, which are identified as clonal. Furthermore, cluster 
1 is not labelled, as it was deemed to be a catchall cluster. 
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Focusing on the Indiana isolates, we found that some isolates shared more gene flow among them than 

others, such that six distinct clusters were identified (Figure 5.6). Cluster 1 is the largest cluster, including 

19 genomes with isolates from three of the nematode hosts. Cluster 2 includes 10 genomes and is 

noteworthy as it comprises isolates from two nematode hosts, S. kraussei and S. texanum. This population 

cluster is also distinct in the phylogenetic and pangenomic analyses (Figures 5.4A and 5.5, marked with an 

asterisk in each). Cluster 3 consists of six isolates, which are all the isolates associated with S. 

intermedium. This cluster is also consistent with the grouping observed in phylogenetic and pangenomic 

analyses, forming its own distinct group (Figures 5.4A and 5.5). Clusters 4, 5, and 6, each consisting of two 

or three isolates, show the highest levels of gene flow and are from the nematode host S. affine. 

5.3.5 Differential selection within Indiana population 
PopCOGenT identifies genomic regions under selection by finding distinct genetic changes across clusters 

that show low nucleotide diversity within each cluster, suggesting a recent selective benefit or gene-specific 

selective sweep(Arevalo et al., 2019). These gene sweeps may provide insights into the traits that are 

adaptive in this population. For cluster 1, only one gene sweep of 1,940 bp in length (includes two genes 

annotated as hypothetical protein and acetyltransferase genes) was identified within the core genes, and 

no flexible gene sweeps were identified. Although this cluster contains the largest number of genomes, the 

small number of genes identified as possibly under selection suggests that this is a catchall cluster. This 

cluster reflects gene flow among isolates but does not show selective divergence. On the other end of the 

spectrum, clusters 4, 5, and 6 include fewer than three genomes each, too few to infer that recently shared 

genomic regions reflect selection. 

In cluster 2, which contains isolates associated with two nematode host species, we identified 37 gene 

sweeps within the core regions, with a total length of 83.2 kb, and 34 flexible genes being swept (Table 

5.1). The genes included encoded several insect toxins, antibiotics, and non-ribosomal peptide synthetases 

(NRPS), as well as genes conferring resistance and stress tolerance and involved in motility, biosynthesis, 

and transport. Similar categories of genes were identified as showing evidence of selection in cluster 3, 

which includes all six isolates from the nematode host S. intermedium. Additionally, genes associated with 

type VI secretion systems (T6SSs), siderophore (pyochelin) biosynthesis, the Mrx fimbria region, and 

involved in iron transport were found to be sweeping through this cluster for a total of 40 sweeps with a total 

length of 117 kb in the core region and 66 flexible gene sweeps (Table 5.2). 

Table 5. 1 Summary of gene sweeps across population cluster 2, which includes 10 isolates from nematode hosts S. 
kraussei and S. texanum, within the core and flexible genes 

Function Core gene sweeps (n = 37) Flexible gene sweeps (n = 
34) 

No. of 
genes 

Gene products or functions No. of 
genes 

Gene product(s) 
or functions 
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Toxin 5 RtxA, Tc 1 Tc 

Nonribosomal 

peptide synthetase 

7   1   

Antimicrobial     4 Phenazine, 

validamycin 

Resistance 1 tellurium     

Tolerance 5 DNA repair, damage-inducible protein     

Motility 2 Fimbriae, flagella     

Regulation 5 Transcriptional, translational     

Transport proteins 2 Amino acid     

Catabolic 5 Carbohydrate, fatty acid, 

aminopeptide, protein 

3 Carbohydrate, ATP 

Biosynthesis 11 Heme, fatty acid, histidine, 

molybdopterin, phenylalanine, 

ornithine, vitamin K2, vitamin B12 

1 Vitamin B6 

Mobile element     8 Phage, IS 

Hypothetical     16   

 

Table 5. 2: Summary of gene sweeps across population cluster 3, which includes all isolates from the nematode host 
S. intermedium 

Function Core gene sweeps (n = 40) Flexible gene sweeps (n = 66) 

No. of 
genes 

Gene products or functions No. of 
genes 

Gene products or 
functions 
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Toxin 2 RtxA, Tc 1 Hemolysin 

Nonribosomal peptide 

synthetase 

3       

Antimicrobial/anti-

immune 

2 NRPS dependent, 

membrane/LPS 

18 Type VI secretion 

system 

Resistance 8 Multidrug transports, tellurium, 

bleomycin, streptomycin 

2 AMP, phage 

Tolerance 3 DNA repair, persistence, 

damage inducible protein 

4 DNA repair, stress 

response 

Motility 2 Fimbriae related, oxygen sensor 

motility response 

    

Regulation 2 Transcriptional, translational     

Transport proteins 8 Siderophore, peptide, purine, 

zinc, potassium 

6 Iron, amino acid, 

pigment 

Catabolic 6 Lipase, phenylacetic, arginine, 

glycolysis, phosphatase 

2 glycolysis 

Biosynthesis 6 Alkaloid, heme, amino acid, 

folate 

9 Siderophore, 

peptide 

Hypothetical 2   24 
 

 

Gene sweeps are by definition unique to each cluster; however, in eight cases, the same region is being 

differentially selected across clusters (Table S5.3). For instance, a 30-kb region spanning from kilobase 

680 to kilobase 720 (Figure 5.7A) encompasses three of these genes (2 NRPS genes and fnr). An 

examination of the corresponding gene trees shows that sometimes additional clusters are segregating at 

these regions as well. Specifically, an NRPS gene at kilobase 696 separates clusters 2, 3, 4, and 6 into 

monophyletic groups (Figure 5.7B), while the neighbouring gene (kilobase 701) shows that clusters 2 to 6 

are all distinct (Figure 5.7C). Other regions in the core alignment showing differential sweeps contain toxin 
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genes (Tc and rtxA), regulatory genes (hrpA and azoR), a gene conferring tellurium resistance, and a 

dihydrolipoyl dehydrogenase gene. 

 

 

Figure 5. 7: Differential gene sweeps occurring in the same region of the core genome. A) Top, genes between 680 kb 
to 720 kb in the reference genome represented with block arrows showing their orientation; bottom, sweeps identified 
in population clusters 2 and 3 are shown as boxes. The numbers in the boxes (gene sweeps) correspond to the gene 
sweep identification numbers (IDs) provided by PopCOGenT analysis (Table S3). Sweep regions are unique to each 
cluster and identified by low nucleotide diversity; they can include only part of a gene or several genes. B) Tree of the 
nonribosomal peptide synthetase region (gene sweep ID 7 in cluster 3 and gene sweep ID 12 in cluster 2) showing 
differentiation across clusters 2, 3, 4, and 6. C) Tree of another nonribosomal peptide synthetase sweep region (gene 
sweep ID 8 in cluster 3 and gene sweep ID 14 in cluster 2) showing differentiation across clusters 2 to 6. Across the 
two trees, cluster 2 is highlighted in orange, cluster 3 in dark blue, cluster 4 in light blue, cluster 5 in green, and cluster 
6 in purple. 

5.3.6. Spatial proximity and shared nematode host shape population structure 
Despite the somewhat loose association between X. bovienii and its nematode hosts shown in the above-

described analyses, mixed-model analyses of covariance (ANCOVAs) show that isolates share higher 

genetic similarity (F1,1131 = 30.33, P < 0.001) and estimated gene flow (F1,1131 = 78.20, P < 0.001) if they 

are associated with the same nematode host species (Figure 5.8, Table S5.5). Moreover, both genetic 

similarity and gene flow between isolates decline significantly with distance, which ranges from 1 cm to 800 

m for isolates collected within the same site, to 28 km across sites within Indiana, and up to 10 Mm with the 

reference sequences (Figure 5.8, Mantel tests given in Table S5.5). These findings remain significant if the 

analysis is restricted to all 42 Indiana isolates or just the MC or LD isolates (Table S5.5). 
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Figure 5. 8: A) Genetic similarity (ANI) and B) gene flow (estimated length bias from PopCoGenT) decrease with 
geographic distance (in log meters) across all 52 X. bovienii genomes. Each point represents a pair of X. bovienii 
isolates and is coded by whether they were isolated from the same nematode host species (red) or from two different 
species (blue). Correlations across all pairs are shown in the left corner of each graph and were found to be significant 
with Mantel tests (P = 0.001). Mixed-model analyses of covariance show that both genetic similarity (F1,1131 = 30.33, 
P < 0.0001) and gene flow (F1,1131 = 78.20, P < 0.0001) are significantly higher if isolates are from the same 
nematode host species than if they are from different host species. 

5.4 Discussion 
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Microbial symbionts often adapt and specialise to their hosts. And yet, numerous microbial species are 

characterised as host generalists, able to colonise and thrive in distinct host species. How do generalists 

evolve through time and space? Here, we examine the population genomics of the mutualist symbiont X. 

bovienii from a region where four nematode host species co-occur and compare them to globally available 

reference genomes. We find that, despite being associated with at least 10 nematode host species across 

the Northern hemisphere, X. bovienii forms a monophyletic group. Regionally, we found two distinct 

lineages of X. bovienii. One lineage was associated exclusively with a single nematode host species, while 

the other lineage was associated with three other nematode host species. Even though these two lineages 

were distinct and well-supported, we detected recent gene flow across these lineages and among isolates 

from all four host species. Nevertheless, gene flow was higher if isolates shared a nematode host species 

and were collected from closer sites geographically. Thus, X. bovienii in this region can be viewed as a 

metapopulation, with gene flow tying this species together evolutionarily. Moreover, several genes were 

identified as being targets of differential selection within this population. The diverse functions of these 

genes, from insect toxins to antimicrobial effectors and resistance mechanisms, speak to the complex biotic 

environment imposing selection on these symbionts. 

Xenorhabdus bacteria are specialised mutualists of nematodes, showing partial co-cladogenesis with their 

hosts(M.-M. Lee & Stock, 2010; Murfin, Lee, et al., 2015); although this prior work suggested that X. 

bovienii could shift to distinct nematode host species, this conclusion was based on 11 allopatrically 

collected isolates and so could reflect few rare events. We sampled extensively from a sympatric 

population and predicted that the population structure of X. bovienii strains would mainly reflect their 

nematode host associations. We found only partial support for this hypothesis. For instance, nematode 

phylogeny presents S. affine and S. intermedium as sister taxa, equally distant from the sister taxa S. 

kraussei and S. texanum (Figure 5.4B). However, the bacterial phylogeny based on core genes showed 

that S. affine-associated isolates were more closely related to isolates from S. kraussei and S. texanum 

than to those from S. intermedium. Furthermore, isolates associated with S. kraussei and S. texanum 

showed little structuring by nematode host in either the core or accessory genes (Fig. 3A and 4). These 

findings refute the hypothesis that S. bovienii consists of host-limited ecotypes(Sheppard et al., 2018). 

Instead, they suggest frequent host switching or recombination across isolates. 

Based on the core phylogeny (Figure 5.4A), successful host shifts have occurred in lineage 1, which 

includes isolates from three nematode hosts. For a host shift to occur, lineage 1 bacteria would be carried 

into an insect by one species of nematode and leave with another; to persist, this novel pairing would have 

to outcompete the native pairs. In non-competitive laboratory experiments, wherein aposymbiotic 

nematodes are paired with novel bacteria, S. affine nematodes were not able to accept X. bovienii bacteria 

from S. kraussei or S. texanum. In contrast, S. kraussei nematodes could accept S. affine-associated X. 

bovienii bacteria, albeit at such a severe fitness cost that the pairing would be unlikely to persist in 

nature(Dinges et al., 2022b, 2022a). In contrast, S. kraussei nematodes were found to accept S. texanum-

associated X. bovienii with no reduction in fitness. These empirical results match the conclusion inferred 
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from the phylogeny (Figure 5.4) that host shifts across nematode clades occur less frequently than those 

within. Despite these findings, we found no genes significantly associated with S. affine in our genome-wide 

association study (GWAS) analysis. In fact, we found significant associations for only one nematode host, 

S. texanum. Association mapping in microbes is difficult due to high levels of linkage disequilibrium and 

population structuring(P. E. Chen & Shapiro, 2015; Collins & Didelot, 2018), and it is possible that treeWAS 

is overly conservative, as PopCOGenT detected selective sweeps associated with S. intermedium. One 

sweep occurred in the mrx fimbria region, which is important in colonisation of the nematode host(Snyder et 

al., 2011). Additionally, the type VI secretion system genes sweeping in this cluster could be important for 

interactions with the nematode host(Logan et al., 2018; Murfin, Whooley, et al., 2015). However, within 

lineage 1, few host-specific markers exist, suggesting that specificity may be due to multiple mechanisms or 

involve epistatic interactions, and therefore not be picked up in GWAS. In fact, different X. bovienii isolates 

from S. affine have shown distinct pathologies on nonnative nematodes(Dinges et al., 2022b; Murfin et al., 

2018). 

Despite the partial structuring by nematode host species, we found no gene flow discontinuity among our 

regional isolates (Figure 5.6). In fact, high levels of gene flow were detected across some isolates 

associated with S. kraussei and S. texanum. Overall, observed recombination was higher when isolates 

shared a nematode host species and with geographic proximity (Figure 5.8B), likely reflecting increased 

opportunities for genetic exchange and shared selective pressures. Each nematode host individual likely 

harbours a clonal population of X. bovienii(Hawlena, Bashey, Mendes‐Soares, et al., 2010; Martens et al., 

2003); however, to successfully invade and reproduce, several nematodes, which may carry different 

clones, must coinfect an insect host. Thus, it is within the insect that gene flow is likely to occur as distinct 

X. bovienii strains potentially interact with each other, with other Xenorhabdus species, and with the insect 

microbiome. Most clones were isolated within a few meters of each other, although some were found 

across study sites and, for one pair of global reference genomes, across continents (Figure 5.8A). This 

pattern suggests that migration is important to the evolutionary history of X. bovienii. In most cases, 

migration will be local, driven by nematode movements, but longer-range migration could occur via erosion, 

predation of the insect host, or human agricultural activities. Regardless of the scale, migration has been 

implicated as a key factor facilitating gene sweeps through recombination(Niehus et al., 2015). 

Analysis of selective sweeps in the regional isolates of X. bovienii identified several genes (Tables 5.1 and 

5.2) that are of known importance for entomopathogens(Niehus et al., 2015). Specifically, nine toxin 

regions were found to be sweeping within the regional population. Two toxin genes were observed to be 

sweeping differentially across the clusters (Table S5.3). These sweeps may represent the ability to access 

additional insect species or to combat insect resistance(I.-H. Kim et al., 2017). Additionally, 11 NRPS 

regions (3 differentially) were also found to be undergoing selective sweeps. These regions are important in 

the production of secondary metabolites, some of which are key in competition with the insect microbiota(S. 

Singh et al., 2015). Additionally, two antibiotic-related genes were found to be sweeping in cluster 2 and 

several multidrug transports, a type VI secretion system, and a siderophore in cluster 3, further establishing 
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the dynamic competitive environment faced within the insect, as competition could come by attacking, 

resisting, or outgrowing a competitor(Murfin et al., 2018). In fact, in cluster 2, which contains isolates from 

two nematode hosts, several genes were involved in amino acid and vitamin biosynthesis, which could 

reflect adaptations to better support nematode reproduction that would be beneficial across nematode 

species. Intriguingly, the successful experimental host shifts performed between S. kraussei and S. 

texanum(Dinges et al., 2022b) involved isolates from this population cluster, which leaves open the 

question of whether the successful host shift was facilitated by these recently shared genes. Future work in 

this system could examine the adaptive role of the identified sweeps and possible mechanisms of gene 

flow. Additionally, increased sampling coupled with additional experimental host shifts could help identify 

the basis of host specificity in this system. 

Overall, our work supports the view that gene flow in both the core and flexible genomes is important for 

maintaining the cohesiveness of X. bovienii across multiple nematode hosts. While our data suggest that 

host switching has occurred, it is less frequent than gene exchange, most likely due to the low fitness of 

newly associated pairs. This pattern contrasts with that found in the extensively studied S. aureus, which 

shows low levels of recombination in the core genome and frequent host switching, facilitated by acquiring 

host-specific genes from the host microbiome(Emily J. Richardson et al., 2018). The comparatively low 

microbial diversity in the insect host, coupled with more intense competition, may limit this pathway for host 

shifts in Xenorhabdus. In contrast, gene flow among coinfecting Xenorhabdus bacteria may allow beneficial 

alleles of genes, such as insect toxins or antimicrobials, to spread in response to local selection pressures. 

Thus, our results match findings in other systems that show local adaptation despite gene flow(Pérez-

Carrascal et al., 2019; S. S. Porter et al., 2017) and differ from work that shows recombination barriers in 

sympatry(Ellegaard et al., 2013; Sheppard et al., 2014). Importantly, ours is one of only a few studies that 

examine the population structure and evolutionary history of a host-associated symbiont in a non-

agricultural or medical setting, which increasingly enables the complex selective environments faced by 

microbes to become tangible. 

5.5 Conclusions 

Multipartite interactions, where bacterial symbionts engage with multiple hosts, pose intriguing questions 

about how populations are structured and evolve. Yet, we still lack a clear understanding of the 

evolutionary mechanisms at play. To address this, Chapter 5 focuses on mutualistic symbionts of 

Xenorhabdus bovienii associated with multiple Steinernema nematode species. Building on (Arevalo et al., 

2019; VanInsberghe et al., 2020) framing, this study uses whole-genome sequencing and recombination-

aware population genomics to assess gene flow and recombination across 42 regional isolates and global 

references. We uncover that while isolates cluster by nematode host and geography, neither factor 

completely restricts gene flow, and shared alleles, including insect-toxin and competition genes, move 

between host-associated lineages. Selective sweeps further highlight adaptation to multipartite 

environments.  
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These findings demonstrate that recombination maintains population cohesion even as symbionts shift 

hosts, and that gene exchange plays a key role in niche adaptation. The framework we present, which 

combines recombination clustering, host association, and geographic signals, can be applied to other 

multipartite microbiomes to better understand how gene flow influences community dynamics. Ultimately, 

this work enhances our understanding of microbiome dynamics by showing how symbiont population 

structure, adaptability, and ecosystem function emerge from complex inter-species genetic exchange. 
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5.6 Supplementary Files

 

Figure S5.1: Phylogenetic tree based on the core genes identified from all 61 genomes including Photorhabdus spp 
(outgroup), X. nematophila, reference X. bovienii, and 42 X. bovienii Indiana isolates (in bold). The tree was built from 
an alignment of 273 kb using GTRGAMMA model in RAxML with bootstrapping, and the extended majority rule was 
used to build the above consensus tree.  
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Figure S5.2: Co-phyletic analysis between X. bovienii and its nematode hosts. A) Possible maximum parsimony 
reconciliations between the 53 X. bovienii phylogeny and its nematode hosts as estimated by eMPRess. 
Reconciliations vary depending on the relative costs of different evolutionary events. For each region of the parameter 
space, the estimated number of co-speciation, duplication, transfer and loss events are given in the inset, with the 
counts representing the number of distinct mappings giving the same outcome. All but the dark blue region of the 
parameter space suggest host shifts (transfer events). B) Analysis based on the 42 regional isolates and their four 
nematode host species. Again, host shifts are predicted over the majority of the parameter space. 
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Supplementary Tables available with publication at Zenodo: 10.5281/zenodo.17254854.  

Table S5.1: Bacterial genomes and nematode genes along with NCBI accession numbers used in this paper.  
Table S5.2: Host-specific genetic markers for each of the four nematode hosts, listed by whether the marker is in the 
core (number of unique SNPs) or flexible (number of unique genes) genome. The first number given is from the 
analysis of 53 X. bovienii isolates, and the second number is from the analysis of only the 42 regional isolates. 
Markers that were found to be statistically significant using treeWAS (P < 0.05) are indicated with an asterisk. 

Table S5.3: Gene sweeps that are being swept through two PopCOGenT population clusters - Cluster 2 and 3. 
Highlighted rows mark the genes that are found in both clusters 

Table S5.4: Flexible gene sweeps across clusters 2 and 3 from PopCOGenT clusters. 

Table S5.5: Mixed-model analyses of variance for genetic similarity and gene flow as function of nematode host 
species and geographic distance. Along with Mantel tests of the correlation between genetic similarity and gene flow 
with distance at three spatial scales. 
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CHAPTER 6  

 

DISCUSSION 
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6.1 Overview 

Microbial systems involve dynamic interactions among their members that are pivotal in sustaining 

ecosystems and influencing the health of living organisms. This thesis explores these microbial interactions 

by dissecting the genomic mechanisms that underpin microbe–host interactions across phages and 

bacteria. I begin by focusing on phages, which are understudied in these systems but are of growing 

importance due to their therapeutic potential in combating antibiotic resistance. In Chapter 2, I review 

current knowledge of phage biology, best practices for genome annotation and classification, and highlight 

the need for reproducible and scalable genomic frameworks. 

In response to the limited standardisation in phage genomics, I developed Sphae, a scalable and 

reproducible workflow that supports characterisation of phage genomes (Chapter 3). This toolkit is 

designed to be easy to download and run, lowering the entry barrier so the broader phage research 

community can access and use current bioinformatic tools. Recognising that phage therapy related 

research may represent a major part of the user base, Sphae includes modules to search for marker genes 

that help distinguish whether a phage may have therapeutic potential. However, the toolkit is not limited to 

phage therapy applications and can be applied to any phage samples. In the next chapter, using this 

framework, I characterised phage–host interactions in gut systems, focusing on Crassvirales phages 

infecting Bacteroides cellulosilyticus. I identified a conserved tail spike protein under purifying selection, 

and structural modelling suggests it may interact with TonB-dependent receptors on bacterial surface. 

Here, I present a genomic marker that likely plays a key role in how abundant gut phages interact and 

determine their bacterial hosts. 

Extending this framework, I then focused on multipartite interactions in the mutualistic symbiont 

Xenorhabdus bovienii, collected from diverse hosts and locations. This work showed that factors such as 

gene flow and recombination shape population structure and their adaptive potential of these symbionts 

(Chapter 5). X. bovienii continues to exchange genes at a high rate, particularly those acting as insect 

toxins or antimicrobial activity, likely in response to local selective pressures. Despite forming distinct 

associations with different nematode species, host barriers do not fully constrain genetic exchange. 

However, novel host–symbiont pairings may incur fitness costs, suggesting that while host switching is 

possible, it may be limited by compatibility constraints.  

These interactions between phage-bacteria, bacteria-hosts play fundamental roles in determining their host 

range and broader co-evolutionary dynamics. These results exemplify concepts such as the Red Queen 

hypothesis, where continuous adaptation is necessary to maintain fitness under biotic pressure. In this 

thesis, these dynamics were examined through genome-resolved studies of simplified systems, however 

the findings have broader relevance for understanding microbial community structure. They provide a 

transferable framework for understanding how evolutionary pressures influence microbial diversity, 

resilience, and function in complex ecosystems.  

6.2 Bioinformatics driven advances in phage therapy 
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Genome characterisation and classification are essential for understanding phage biology, identifying areas 

that remain poorly understood, and ultimately leveraging phages therapeutic interventions. Their ability to 

selectively target pathogenic bacteria while sparing beneficial microbiota makes phages promising 

alternatives or complements to conventional antimicrobial therapies(Dedrick et al., 2023; M. Kutateladze & 

Adamia, 2008; Uyttebroek et al., 2022). However, to deem a phage safe for therapeutic use, they must 

undergo rigorous screening to ensure they exhibit strictly lytic lifecycles, have appropriate host range, and 

lack any genes associated with antimicrobial resistance (AMR), virulence, or genomic integration potential. 

These screening criteria reflect our current understanding of what constitutes a safe therapeutic phage, 

though they may evolve as we learn more about phage biology.  

Genome-based screening for therapeutic phages is now a critical step, yet the lack of standardised, 

reproducible, scalable, and user-friendly tools often hampers this progress. There is a pressing need for 

integrated computational tools that can assist researchers in quickly triaging and characterising candidate 

phages. To address this need, I developed Sphae, a modular and scalable workflow designed to streamline 

the steps to characterise and screen phage genomes (Figure 6.1). This toolkit is easy to install and 

adaptable for users with varying levels of bioinformatics expertise. Sphae supports both large-scale 

screening efforts and detailed analysis, offering a robust solution to address this gap.  

 

Figure 6. 1: Overview of Sphae workflow developed to characterise and screen phages for therapy  

 

Notably, while using this toolkit, it shed light on additional biological insights that emerged on phage 

behaviour and risk factors in therapeutic development. One such observation was the co-existence of 

multiple phages within a single sample. This can occur as prophages within the bacterial host can be 

induced during phage isolation(Cobián Güemes et al., 2023; Livny et al., 2009). Bacterial isolates 

frequently contain prophages, which may be excised as a response to being infected by another lytic phage 

(Dieppa-Colón et al., 2025; McKerral et al., 2023). These induced prophages can therefore be co-purified 
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and present in the final preparations, increasing the risk of prophage transfer to a patient(Kolenda et al., 

2022; Rohde et al., 2018). These findings highlight the importance of genome-based checks to avoid 

unintended consequences, such as the transfer of lysogenic elements or toxin genes, especially in clinical 

use. Sphae’s ability to flag such elements makes it a key part of this quality control process.  

This workflow also uncovered nuanced insights into the phage lifecycle and gene transfer mechanisms that 

require better understanding. For instance, identifying integrase and transposase genes signals temperate 

(lysogenic) potential, whereas recombinase genes require deeper contextual analysis. Recombinases can 

participate in DNA repair and resolve concatemers formed during genome replication in strictly lytic 

phages(Bobay et al., 2013). This means the presence of recombinases alone does not equate to lysogeny, 

and conversely, the absence of integrase genes does not guarantee a strictly lytic lifecycle(Altamirano & 

Barr, 2021). By flagging such genomic features, Sphae prompts for deeper analysis of the phage, either 

through further experiments or closer look at the genetic potential to determine if the phage is a suitable 

candidate. As novel mechanisms of lysogeny and horizontal gene transfer (HGT) in phages are identified, 

bioinformatic tools and checks can be quickly integrated into these workflows.  

The use of workflow managers such as Snakemake(Köster & Rahmann, 2012) allows for a modular design 

that facilitates the integration of future bioinformatic tools and enriched genomic databases. Since the 

original publication of this workflow in Jan 2025, Sphae continues to be updated and maintained to include 

new version of tools, addition of phylogenetic module, improved database handling and updating the output 

summary to add new characteristics. Collectively, these updates have significantly improved the usability, 

reproducibility, and analytical depth of the workflow, aligning it more closely with the evolving needs of 

phage genomics research. 

This toolkit supports reproducible decision-making in phage therapy. However, looking ahead, two other 

bottlenecks remain in the field. First, the establishment of phage banks containing readily accessible 

phages which is essential for enabling rapid treatment of multidrug-resistant infections. Second, a need to 

reduce the time and resources required for experimental validation by prioritising the most promising phage 

candidates. This can be achieved by bioinformatically predicting a subset of phages within the phage banks 

likely to infect a given pathogen, thereby narrowing the experimental focus. However, such predictive 

capabilities depend on robust methods for inferring host–phage interactions, highlighting a critical area for 

development. 

6.3 Uncovering genomic mechanisms of phage-host interactions in the gut ecosystem 

Phages are the most abundant and dynamic biological entities on the planet, and we know they play a role 

in modulating bacterial populations. Yet, despite their importance, the molecular mechanisms underpinning 

phage–bacteria interactions are often obscured, particularly in complex environments such as the human 

gut. Bacteroides, is a common gut microbe, with evidence of interacting with the human immune system, 

and playing a role in maintaining human health(Pargin et al., 2023; Shin et al., 2024). Crassvirales and their 

Bacteroides hosts form persistent infections, facilitated by bacterial phase-variable capsule switching, 
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which enables them to evade phages by altering capsular structures(Cortés-Martín et al., 2025; N. T. Porter 

et al., 2020; Shkoporov, Khokhlova, et al., 2021). Yet, how these phages recognise and persist with such 

dynamically changing hosts remains largely elusive.  

In this thesis, we identified conserved tail spike protein undergoing purifying selection across the 

Crassvirales isolates. These tail spikes are known to serve as specific receptors that reversibly bind to 

bacterial cell receptors (Nobrega et al., 2018). Other studies have shown that these host recognition 

modules can be swapped to infect new hosts(Dunne et al., 2019; Latka et al., 2021), enabling rapid 

adaptation to new hosts in response to selective pressures. Furthermore, phylogenetic analysis revealed 

an absence of strict co-evolution between our Crassvirales isolates and their hosts. This suggests that host 

specificity may evolve independently of long-term host–phage pairings, potentially through modular protein 

innovation in tail fibre proteins or through selective sweeps that periodically favour variants with altered host 

ranges. 

Further, in the paper we used protein docking to predict a potential interaction between the phage tail spike 

protein and the TonB-dependent receptor on the bacterial surface. These receptors are typically used by 

Bacteroides to take up starches (Pollet et al., 2021), and have been associated with phage 

sensitivity(Cortés-Martín et al., 2025; N. T. Porter et al., 2020; Shkoporov, Khokhlova, et al., 2021), offering 

a mechanistic hypothesis for host recognition While docking offers valuable insights into potential 

interaction interfaces, it is important to note that current docking algorithms have known limitations, 

including challenges with accurately scoring binding affinities(Shirali et al., 2025), inability to handle flexible 

protein regions (Harmalkar & Gray, 2020), and incorrect structural assignments. These constraints are 

active areas of research, and advances in deep learning–based structure prediction and integrative 

modelling are rapidly improving the field. Thus, while our results represent a computational hypothesis, they 

lay the groundwork for future experimental validation and more accurate modelling as these tools evolve. 

The evidence presented here supports a model in which phages maintain evolutionary fitness not through 

static co-evolutionary relationships, but through flexible, modular innovations in key interaction proteins that 

enable rapid host switching or resistance evasion. These mechanistic insights can contribute to informing 

phage-host pairings to select potential phage therapy candidates quickly. By understanding which proteins 

are under selective constraint, and how they interact with host surface structures, we can better predict 

host range and therapeutic efficacy without relying solely on trial-and-error plating methods. These insights 

can also lay a foundation for future work exploring the ecological consequences of phage–bacteria 

dynamics across diverse microbiomes. 

6.4 Population structuring of symbiotic bacteria  

In complex and diverse microbial communities, we still lack a clear understanding of how bacterial 

populations are structured. To investigate this on a more manageable scale, we focused on bacterial 

symbionts involved in multipartite interactions, examining how their genomes reflect the evolutionary 

relationships with their eukaryotic hosts. Specifically, we studied Xenorhabdus bovienii, a mutualistic 
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symbiont of Steinernema nematodes, and a virulent insect pathogen, dissecting how biological and 

environmental factors, such as host specificity and spatial proximity shape bacterial population structure at 

fine resolution. 

Population genomics analysis of Xenorhabdus bovienii revealed a model of partial but permeable 

population structure. While host species and geography contributed to population differentiation, these 

factors did not act as strict barriers to gene flow. Instead, X. bovienii populations remained genomically 

cohesive through frequent recombination and occasional host switching, supporting a model of generalist 

with flexible ecological boundaries. Recombination was particularly prominent in genes encoding insect 

toxins, antimicrobial effectors, and resistance mechanisms—suggesting strong selection pressure within 

the insect host. This points to the insect cadaver not only as a site of infection but also as a key ecological 

arena for inter-strain interaction and gene exchange. Using PopCOGenT, we also detected selective 

sweeps acting on ecologically relevant loci, such as secretion systems and multidrug transporters, 

underscoring the importance of localised adaptation. Importantly, while some host-specific structuring was 

evident, it did not align neatly with nematode phylogeny, indicating that host specificity in symbionts may be 

polygenic or context-dependent. These findings challenge models of strict co-divergence and instead 

support a more dynamic framework in which recombination, competition, and local selection jointly shape 

bacterial population structure in multipartite systems. 

This dynamic model of population structure and gene flow in X. bovienii symbionts offers a useful parallel to 

our findings in Crassvirales phages in the human gut. In both systems, host association plays a role in 

shaping microbial diversity but does not impose strict evolutionary constraints. Crassvirales phages, like X. 

bovienii, persist in environments with strong selective pressures—mediated by host immune systems, 

microbial competition, and frequent co-infections. In both cases, we observed the conservation and 

apparent modularity of host interaction genes (e.g. tail spikes in Crassvirales; toxins and secretion systems 

in X. bovienii), which may facilitate host shifts and adaptive radiation without requiring long-term co-

evolution. Methodologically, both studies leveraged comparative genomics and phylogenetics to uncover 

gene flow patterns and detect signatures of selection. Together, these findings argue for a broader 

ecological and evolutionary framework where recombination, modular gene architecture, and niche-driven 

selection, rather than strict phylogenetic coupling, govern the population structure of both bacteria and their 

phages. 

In this thesis, I present a reproducible workflow to characterise phages, followed by investigations into how 

phages identify their bacterial hosts within gut ecosystems, and how symbiotic Xenorhabdus bovienii 

populations act as cohesive units that share genes despite host and spatial constraints. Together, these 

studies demonstrate how population genomics can uncover the genetic and evolutionary forces shaping 

microbial life and provide tools and conceptual frameworks to extend these insights into complex, real-

world microbiomes. 

6.5 Broader context and implications  
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The findings presented in this thesis have broad implications spanning both applied and theoretical 

microbiology. First and foremost, this work informs the development of phage therapy and microbiome 

interventions by providing a reproducible workflow (Sphae) that enables scalable, genome-based 

characterisation and screening of phage candidates. Through identifying conserved host-interaction 

markers and integrating risk assessment tools, this research advances the field toward more predictive, 

mechanism-driven approaches to therapeutic phage selection. In parallel, this thesis contributes to 

microbial population genomics frameworks by showing that recombination, modular gene exchange, and 

local adaptation—not just phylogenetic lineage or host specificity—underpin the structure of both bacterial 

and phage populations. These insights challenge conventional models of co-divergence and support a 

more dynamic understanding of microbial evolution. Additionally, the work highlights horizontal gene 

transfer as a central adaptive mechanism in symbiotic and competitive microbial contexts, particularly in loci 

related to host interaction, antimicrobial production, and resistance. By coupling bioinformatics with 

evolutionary and ecological theory, this thesis integrates mechanistic and ecological perspectives, 

demonstrating how molecular processes translate into community-level patterns. Finally, the tools and 

conceptual models developed here lay a foundation for future systems-level microbiome studies, enabling 

deeper insights into microbial resilience, therapeutic design, and ecosystem function in increasingly 

complex environments. While this thesis often frames findings in the context of phage therapy, the broader 

implications extend into microbial ecology and evolutionary biology. The concepts of recombination, 

modularity, and niche-driven selection are equally important for understanding how microbial communities 

maintain resilience, adapt to selective pressures, and interact with their hosts across gut and symbiotic 

systems. 

6.6 Limitations and Future Directions  

While this thesis advances our understanding of host–microbe interactions and microbial genomic 

dynamics, several limitations remain that present opportunities for future research. One key limitation lies in 

the reliance on DNA sequence data alone to predict biological function and ecological roles. There are 

critical aspects of phage biology, such as epigenetic DNA modifications or protein modifications that play a 

role in defence mechanisms(Birkholz et al., 2022; Longin et al., 2024; Mayo-Muñoz et al., 2024). These 

modifications play a key role in evading bacterial restriction systems and represent an important feature of 

phage biology. Similarly, in phages novel strategies like stop codon reassignment, allowing phages to 

evade bacterial defence mechanisms(Borges et al., 2021), and hyper modification that includes 

biochemical alterations to phage DNA, protecting it from bacterial restriction-modification systems, thus 

facilitating successful phage infection and replication(Hutinet et al., 2021) as key adaptive mechanisms. 

These remain largely inaccessible without integrated multi-omics or experimental validation and highlight 

the need for expanding beyond genomics alone. 

Even with the current use of state-of-the-art phage annotation tools, phage annotations remain limited by 

the high proportion of genes categorised as "hypothetical proteins." Despite integrating structural and 

synteny-based annotations in Sphae, many genes remain uncharacterised. Continued database expansion 
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and integration of protein language models, machine learning, and functional screens will be vital to 

improving annotation accuracy. Similarly, phage packaging mechanisms are crucial as they directly 

influence horizontal gene transfer and therefore need to also be considered. 

Phage packaging mechanisms are another underexplored area with significant implications. The choice 

between cos-site, headful, and other packaging strategies directly influences the likelihood of horizontal 

gene transfer (HGT), including unintended mobilization of host DNA. Integrating packaging mechanism 

prediction into bioinformatic workflows will allow more accurate risk assessments for phage therapy 

candidates. 

Another major limitation in phage genomics is the vast proportion of “viral dark matter,” where the majority 

of predicted genes have no assigned function. Despite the use of structural modelling and comparative 

genomics, linking these genes to ecological roles or molecular mechanisms remains a challenge. 

Addressing this will require integrative approaches combining genomics with transcriptomics, proteomics, 

and experimental validation. These efforts will be essential to truly understand how phages shape microbial 

ecosystems, particularly within complex environments such as the gut or multipartite symbioses. 

6.7 Conclusions  

This thesis makes key contributions to microbial genomics, evolutionary biology, and bioinformatics by 

addressing foundational questions about how microbial populations are structured and evolve in the context 

of host–phage–microbe interactions. Through fine-scale genomic analyses of individual bacterial and 

phage isolates, it reveals the evolutionary strategies—such as generalist adaptability, recombination, and 

toxin evolution—that enable microbial resilience across dynamic environments. Importantly, this work also 

includes the development of Sphae, a reproducible and scalable toolkit designed to characterise phage 

genomes and support the safe application of phage therapy. By integrating evolutionary insight with 

computational tool development, this thesis bridges a critical gap between microbial ecology and applied 

microbiome research. The findings have broader implications for managing microbial ecosystems, guiding 

phage therapy design, and mitigating antimicrobial resistance, while also providing a framework for future 

research across complex, host-associated microbiomes. Ultimately, while genomics offers a powerful 

framework for investigating microbial interactions and phage biology, it represents only one layer of 

understanding. The integration of functional assays and multi-omics will be crucial to translate genomic 

predictions into ecological and therapeutic outcomes. 
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Appendix B : Achievements  
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Oral Presentation 

1. “Mechanisms of genetic variation in Bacteroides phages” - CERVAID (Computational and 

Experimental Resources for Virome Analysis in Inflammatory Bowel Disease), San Diego, USA, 
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2. “Mechanisms of genetic variation in Bacteroides phages” – Nanopore Day, Adelaide, Australia, June 

2022 (Chapter 4) 

3. “Host specificity of abundant bacterial virus found within the human gut”- Molecular Science and 

Technology HDR(Higher Degree Research) Conference, Adelaide, Australia, December 2022 

(Chapter 4) 

4. “Novel crAssphage isolates exhibit conserved gene order and purifying selection of the host 

specificity protein” - Phage Bites symposium, Online, March 2023 (Chapter 4) 

5. Invited speaker: “The crAssphage host specificity puzzle” - Australian Society for Microbiology, 

Perth, Australia, July 2023 (Chapter 4) 

6. “Maximising bioinformatic workflow scalability with workflow managers to study microbes” - Data 

and Information Science Research HDR Conference, Adelaide, Australia, December 2023 (Chapter 

3) 

7. “Sphae: Phage assembly and annotation workflow” – Microseq, Online, September 2024 

8. Invited speaker: “Bioinformatics and Phage Therapy” – Bioinformatics Meeting, University of 

Australia, Adelaide, Australia, June 2025 

Poster presentations 

9. Best poster award: “Sphae: Phage assembly and annotation workflow”- International Conference 

on Bacteriophage Research and Antimicrobial Resistance, Chennai, India, September 2023 

(Chapter 3) 

10. Best poster award: “Sphae: Phage assembly and annotation workflow” - MST HDR Conference, 

Adelaide, Australia, October 2023 (Chapter 3) 

11. “Sphae: Phage assembly and annotation workflow” - ABACBS (Australian Bioinformatics and 

Computational Biology Society) Conference, Brisbane, Australia, December 2023 (Chapter 3) 

12. “Sphae: Phage assembly and annotation workflow” – VoM(Viruses of Microbes) Conference, 

Cairns, Australia, July 2024 (Chapter 3) 

13. “Sphae: Phage assembly and annotation workflow” - ABACBS (Australian Bioinformatics and 

Computational Biology Society) Conference, Sydney, Australia, November 2024 (Chapter 3) 
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Successful 
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1. Cooperative Research Time in Mining Economies (CRC-TIME) PhD Top-up scholarship 

2. Flinders University of Student Association (FUSA) Development Award, 2022 

3. Flinders University Conference Travel Grant, 2022 

4. CSE Higher Degree by Research International Conference Support Scheme, 2023 

5. Australian Bioinformatics and Computational biology Society (ABACBS/COMBINE) Conference 
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6. CSE Higher Degree by Research International Conference Support Scheme, 2024 
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Unsuccessful 
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2. Taught a section in “Nextflow vs Snakemake” – South Australian Genomics Centre Workshop, 
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4. Supported hackathon on “Analysis of Cystic Fibrosis Metagenomics”, Adelaide, 2023 
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Associations and Service 

• President, COMBINE, the Australian Student Bioinformatics Society, 2024 
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2024 

• Training and Events Coordinator, COMBINE student committee, 2023 

Peer review 

Peer-reviewed journal articles for  
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• One article for BMC genomics 

• One article for Journal of virology 
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Appendix C : Phage Submissions and Naming 

Crassvirales submission to ICTV April 2023 

Copy of the submitted form  

 

 

 

Part 1: TITLE, AUTHORS, APPROVALS, etc 

Code assigned: to be assigned by ICTV officers  

Short title: Create two new species in the genus Kehishuvirus, and Kolpuevirus, and one 

new genus in order Crassvirales 

 

Author(s) and email address(es) 

Papudeshi B, Vega AA, Souza C, Giles SK, 

Mallawaarachchi V, Roach MJ, An M, 

Jacobson N, McNair K, Mora MF, Pastrana K, 

Boling L, Leigh C, Harker C, Plewa WS, 

Grigson SR, Bouras G, Decewicz P, Luque A, 

Droit L, Handley SA, Wang D, Segall AM, 

Dinsdale EA, Edwards RA 

nala0006@flinders.edu.au; 
alexvega619@gmail.com; 
colesouza017@gmail.com; 
sarah.giles@flinders.edu.au; 
mall0133@flinders.edu.au; 
michael.roach@flinders.edu.au; 
michellean92@gmail.com; 
njacobson@sdsu.edu; 
deprekate@gmail.com; 
moramariaf21@gmail.com; 
kpastrana0331@sdsu.edu; 
liquidgrey@gmail.com; 
chris.leigh@adelaide.edu.au; 
clarice.cram@flinders.edu.au; 
will.plewa@flinders.edu.au; 
p.decewicz@uw.edu.pl; 
susie.grigson@flinders.edu.au; 
george.bouras@adelaide.edu.au; 
aluque@sdsu.edu; 
ldroit@wustl.edu; 
shandley@wustl.edu; 
davewang@wustl.edu; 
asegall@sdsu.edu; 
elizabeth.dinsdale@flinders.edu.au; 
robert.edwards@flinders.edu.au  

Author(s) institutional address(es) (optional) 

Flinders University, Adelaide, Australia [BP, SKG, VM, MJR, CH, WSP, SRG, EAD, RAE] 

San Diego State University, San Diego, USA [AAV, CS, MA, NJ, KM, MFM, KP, LB, AL, 

AMS] 

University of Adelaide, Adelaide, Australia [CL, GB] 

mailto:robert.edwards@flinders.edu.au
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University of Warsaw, Warsaw, Poland [PD] 

Washington University School of Medicine, St. Louis, USA [LD, SH, DW] 

 

Corresponding author 

Robert A. Edwards, member of ICTV Crassvirales phages Study Group 

 

List the ICTV Study Group(s) that have seen this proposal 

ICTV Bacterial Viruses Subcommittee, Crassvirales phages Study Group  

 

ICTV Study Group comments and response of proposer 

 

 

 

ICTV Study Group votes on proposal 

 

Study Group Number of members 

Votes support Votes against No vote 

    

    

Authority to use the name of a living person 

Is any taxon name used here derived from that of a living person (Y/N) N 

 

Taxon name Person from whom the name 
is derived 

Permission attached (Y/N) 
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Submission dates 

Date first submitted to SC Chair May, 2023 

Date of this revision (if different to above)  

ICTV-EC comments and response of the proposer 

 

 

 

 

Part 2: NON-TAXONOMIC PROPOSAL 

Text of proposal 
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Part 3: TAXONOMIC PROPOSAL 
Name of accompanying Excel module 

2023.001B.Ud.v1.Crassvirales3Species.xlsx 

Abstract 

The isolation of Crassvirales in vitro remains a challenge with only four successful pure 

isolates since the discovery of the first Crassvirales species in 2014. However, over 600 

Crassvirales phages have been identified from metagenomes. In our study, we 

successfully isolated three novel Crassvirales phages from wastewater that infect the 

bacterial host Bacteroides cellulosilyticus WH2. Following the taxonomic demarcation and 

naming convention proposed by the ICTV for Crassvirales, we propose two novel species, 

Kehishuvirus tikkala (Bc01), Kolpuevirus frurule (Bc03), and a new genus, Rudgehvirus 

jaberico (Bc11).  

 

Text of proposal 
 

The three isolates’ phages were visualised using transmission electron microscopy (TEM) 

and their genomes were sequenced. A nucleotide BLAST search against the nr database 

of the assembled genomes confirm their closely related genomes are other crass-like 

phages. Additionally, transmission electron micrographs revealed that the three phages 

share a podovirus morphology and have a genome length of 100kb which is consistent 

with the other crass-like phages.  

To determine their taxonomic assignment, we followed the Crassvirales order 

demarcation criteria. The genera within Crassvirales were defined based on the topology 

of the protein phylogenetic trees, which showed at least 80% shared orthologous groups. 

The species demarcation criteria included 95% nucleotide sequence identity over 85% of 

the complete genome length.  

Following the above taxonomic classification, we confirmed the three crAss-like phages 

isolated represent three novel species. Here are the details of each species: 

Kehishuvirus tikkala: This genome shares 80% orthologous genes within known genera, 

specifically Kehishuvirus. At the species level, the most closely related strain to this 

genome is Kehishuvirus primarius, with a sequence identity of 95.67% across 80.98% 

genome.  
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Kolpuevirus frurule: This genome also shares 80% orthologous genes and is classified 

within the existing genus “Kolpuevirus”. However, it represents a novel species as it is 

most similar to the genome Kolpuevirus hominis, with an 82.58% sequence identity across 

55.01% of the genome. We propose to call this new species Kolpuevirus frurule.  

Rudgehvirus jaberico: This genome was classified at the family level under Intestiviridae, 

with its closest related genome being Jahgtovirus intestinalis sharing 74.75% identity 

across 9.86%. Phylogenetic classification of the three conserved genes, portal protein, 

terminase large subunit and major capsid protein - suggests that these isolate forms a 

neighbouring clade to its closely related genome. Following the ICTV Crassvirales genus 

naming convention, we propose to call this genus “Rudgehvirus” after Ridgeback dog 

breed.  

 

 

 
Supporting evidence 
History: Since discovery of one of the most abundant bacteriophages in the human gut microbiome in 

2014, crAssphage has been of interest [1]. Since there have been over 600 other crass-like phages that 

share some similarity with the crAssphage [4]. In 2021, these crass-like phages have been classified into a 

formal taxonomic system including a new order to represent all of them Crassvirales [3]. This order includes 

four new families, ten new subfamilies, 42 new genera and a total of 73 new species (Taxonomy Proposal 

2021.021B.A.Crassvirales).  

Here we are presenting the supporting evidence on how we are classifying the three novel crass-like 

phages isolated [2] into the Crassvirales order.  

Podovirus morphology 

All three phages isolated in Papudeshi et al., 2023 [2] were confirmed to have podovirus morphology when 

visualised as an electron micrograph (Figure 1). 

    A) Kehishuvirus tikkala        B) Kolpuevirus frurule  C) Rudgehvirus jaberico 
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Figure 1: TEM image of negatively stained crass-like virions, under 49,000x magnification. Image taken 

from Papudeshi et al., 2023 [2].  

Phylogenomics 

Taxonomic classification of the three phages were assigned using three signals, 1) phylogeny 2) 

orthologous genes shared 3) nucleotide identity using a CrassUS program 

(https://github.com/dcarrillox/CrassUS).  

Open reading frame (ORFs) were predicted Prodigal. In this study, a revised version of prodigal [4] was 

employed by CrassUS, to specifically detect codon reassignment within the three isolated phages. The 

genomes were annotated to predict the ORFs using both the standard codon table, and the codon table 

with TAG and TGA reassigned, as observed in some of the Crassvirales phages[4]. Upon analysing coding 

potential, the highest values were observed when using the standard codon table. These identified ORFs 

were subsequently utilised for taxonomic classification.  

1. Orthologous genes  
Orthologous genes were analysed for the three phages, after predicting the open reading frames 

(ORFs) using revised Prodigal bioinformatic tool. Amino acid sequences of the predicted ORFs 

were aligned against known Crassvirales genome protein clusters from Yutin et al [4], using 

mmseqs2 v13.45. The clustered proteins were then used to build presence/absence matrix. If the 

genome shared 80% of its proteins with a known genus, the genome is assigned a taxon (Table 1).  

 

Table 1: Taxonomic classification based on shared orthologous groups when compared against 

known Crassvirales genomes.  

Genome Reference 
shared 
proteins 

Most 
similar 
family 

Most 
similar 
subfamily 

Most 
similar 
genus 

Bc01 84.0 Steigviridae Asinivirinae Kehishuvirus 

Bc03 82.4 Steigviridae Asinivirinae Kolpuevirus 

Bc11 50.0 Intestiviridae -  -  

 

2. Nucleotide identity 
Average nucleotide identity was calculated, comparing each isolate to the known Crassvirales 

genomes using BLAST alignment. From the BLAST results, the average nucleotide identity and 

query coverage was calculated using scripts in CrassUS (https://github.com/dcarrillox/CrassUS). If 

https://github.com/dcarrillox/CrassUS
https://github.com/dcarrillox/CrassUS
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the genome shared 95% DNA sequence identity over 85% query coverage to a complete reference 

genome, to assign taxonomy to species level classification (Table 2).  

 

Table 2: Taxonomic classification based on shared nucleotide identity when compared against 

known Crassvirales genomes.  

Genome Most similar reference 
species 

Percent identity 
(pid) 

Query 
coverage 

Bc01 Kehishuvirus primarius 95.51 79.08 

Bc03 Kolpuevirus hominis 82.79 53.73 

Bc11 Jahgtovirus intestinalis 74.72 9.86 

 

 
3. Phylogeny 

Three conserved proteins, large terminase subunit, portal, and major capsid proteins from the 

genome annotations were used for phylogenetic reconstruction. These genes are then aligned 

using MAFFT v7.49, the poorly aligned regions are then trimmed using trimal v1.4.1. The resulting 

alignment was used to infer phylogenetic relationship FastTree Version 2.1.10 that generated 

maximum likelihood tree using the Jones-Taylor-Thornton (JTT) model and Continuous Rate 

Ancestral State Reconstruction (CAT) approximation with 20 rate categories to account for 

heterogeneity in substitution rates across the alignment. The resulting trees were visualised using 

iTol (Figure 2), and the outgroup is set to Cellulophaga phage phi13:2.  

 

 

Figure 2: Maximum likelihood phylogenetic tree of known Crassvirales phages with Cellulophaga phage 

phi13:2 set as the outgroup. The phylogenetic trees were plotted with three conserved genes A) portal, B) 

major capsid protein (MCP), and C) terminase large subunit (terL). The tips of the tree are colour coded 
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based on family level classification, with the three isolates highlighted in bold, along with the proposed 

names for the three phages. This figure was taken from Papudeshi et al., 2023 [2] 
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