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                              ABSTRACT 
 

FLINDERS UNIVERSITY, COLLEGE OF SCIENCE AND ENGINEERING 
MEDICAL DEVICES RESEARCH INSTITUTE 

 
DOCTOR OF PHILOSOPHY  

 
CALCULATION OF FEMORAL STRAIN DURING NORMAL ACTIVITIES USING EFFICIENT 

COMPUTATIONAL METHODS 
 
 

HAMED ZIAEI POOR 

Efficient calculation of femoral strain is important for various biomechanical applications, such as 
predicting femoral strains over multiple physical activities; improving the design of implantable 
devices; and assessing the risk of femoral fracture. The finite-element method has been used largely 
for the calculation of femoral strain. However, generating and solving the models using common 
image-based procedures make it practically impossible, particularly for large studies of bone which 
need to run the thousands of simulations to explore the interdependence between femur anatomy, 
bone quality, strain, and motor task using lots of point data, meaning that FE models are extensively 
large and computationally too expensive to run. Surrogate modelling techniques are used 
successfully for various applications in biomechanics however the characteristics of these methods 
need to be investigated further. 

This thesis proposes a novel technique for the efficient calculation of femoral strain over multiple 
activities and individuals. This is achieved by taking three different steps: (I) assessing the ability of 
Multivariate Linear Regression (MLR) to predict the femoral strain field in a single participant while 
executing different normal activities; (II) developing a training-free method based on the 
Superposition Principle Method (SPM) and comparing its performance against that of three popular 
surrogate models; and (III) evaluating the feasibility of using Principle of superposition for prediction 
of femoral strain within a cohort of patients. To achieve this, Superposition Principle Method needs 
to be integrated with an Active Shape and Appearance Model, allowing to predict femoral strain by 
capturing the variation in femur geometry, bone distribution, and thereby enabling population-based 
studies into multiple subjects and motor tasks. 

The MLR model provided a viable solution for the rapid calculation of full femoral strain fields by 
estimating femoral strain for a full activity cycle in 13 seconds compared with 55 minutes for FEM, 
enabling large statistical analyses. The SPM method provided the lowest error (RMSE = 40 me), the 
fastest model construction time (3.2 h) and the second-fastest prediction time per activity (36 s) after 
the MLR method. Finally, the integration of SPM combined with statistical shape and appearance 
models enabled efficacy in the prediction of femoral strain for an arbitrarily selected instance within 
the population and motor task. The peak error was 1.4 – 4.9%, in agreement with the error (i.e., 4.2 
– 8.3% of peak strain) in current FE technologies based on CT images for predicting femoral strain. 
When the performance of the model was examined for three randomly selected participants which 
were not used previously for building the model, a good correlation was observed between the FE 
and SPM2 strain calculations (RMSE < 10% of peak strain, R2 > 0.86). This was in agreement with 
previous studies (RMSE 11 – 15 % of peak strain, R2 > 0.88). The major source of error was related 
to the reconstruction of three independent femurs from the Active Appearance Model (RMSE = 
488με, R2 = 0.95) compared with the error originated from Active Shape Model (RMSE = 261με, R2 
= 0.97). In conclusion, the combination of the Superposition principle and Principal component 
analysis is an effective solution for a running population-based simulation of femoral mechanics 
during activity. However, active appearance models need further improvement to be used for large 
biomechanical analysis of intact or implanted bone.  
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Introduction 

Efficient calculation of femoral strain is important for various biomechanical applications, 

such as estimation of femoral strain for multiple activities (Martelli et al., 2014b), where 

muscle and joint forces are assumed to be stochastic, rather than deterministic variables 

(Martelli et al., 2015a; Martelli et al., 2015b), or in large biomechanical analyses of bone. 

The Finite Element (FE) method has been used extensively for decades as a powerful 

computational tool for calculation of femoral strain (Taylor and Prendergast, 2015). While 

the computational costs of the FE method for single-subject conditions (Polgar et al., 2003), 

or single-subject studies of bone (Noda et al., 2018; Taylor and Prendergast, 2015) is not a 

major computational issue. However, the adoption of the FE method into clinical practice, 

and also for solving large-scale studies of bone (e.g. population-based studies) is still a 

computational barrier. For example, to generate FE models for multiple-subject studies, a 

level technical competences, and a lengthy process is needed: obtaining patient anatomic 

geometries of bone from CT or MRI images via segmentation process  (Rathnayaka et al., 

2011); obtaining the material properties of bone via calibration and mapping the density 

distribution (Taddei et al., 2004); defining the loading and boundary conditions in FE models 

(Keyak et al., 2001), and then solving the FE models using FE solvers. This process may 

take varying lengths of time, between minutes and several days, depending on the scale 

and the complexity of the model (e.g. contact modelling, or linear-elastic models). Therefore, 

there is a growing interest to decrease the current computational costs needed for 

generating and solving FE models.   

        Several different research groups have attempted to reduce the computational costs 

associated with building FE models by taking various approaches, such as partially or fully 

automating the image segmentation to eliminate manual intervention and its laborious 
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processes (Almeida et al., 2016; Carballido-Gamio et al., 2015; Pauchard et al., 2016), or 

by building statistical shape and appearance models of bone as a resource for running large 

scale FE studies; such as assessing the risk of fracture in a population with 1000s of femur 

samples (Bryan et al., 2010; Grassi et al., 2017; Taghizadeh et al., 2015; Vaananen et al., 

2012). However, there are still some limitations. For example, to calculate femoral strain in 

large statistical models, the FE model needs to be generated for each patient individually, 

and by changing the loading condition, the FE models needs to be solved, requiring a time-

consuming and labour-intensive process. This computational barrier could prohibit the 

application of bone biomechanical analysis becoming commonplace in clinics (Martelli et al., 

2015a; Martelli et al., 2015b). In fact, if the strain could be calculated in a fraction of the time 

– a few seconds or minutes, rather than hours or days – then it would be feasible to calculate 

femoral strain for different clinical applications (Pizzolato et al., 2017b), such as providing 

biofeedback to patients and clinicians during exercise (Pizzolato et al., 2017b), and 

assessing the performance of implantable devices by considering various surgical and 

patient variabilities (Bieger et al., 2012; Helwig et al., 2009).   

Surrogate modelling techniques are used as a viable solution to reduce the 

computational costs needed for solving expensive FE models. The basis of the technique 

lies in fitting a function into a set of training data sets consisting of inputs (e.g. forces) and 

outputs (e.g. strain/stress) to represent the response of the system by finding the causal 

relationship between inputs and outputs (Taylor et al., 2017). Although there is an upfront 

computational cost for training the surrogate model, once constructed, the model can be 

used for rapid prediction of femoral strain. The capability of surrogate modelling techniques 

has been explored for various orthopaedic biomechanics applications, such as assessing 

the effect of implant positioning on the primary stability of a total hip replacement (Bah et al., 
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2011), or the estimation of micromotion between bone and implant during a complete gait 

cycle (Fitzpatrick et al., 2014). Although these surrogate models are able to improve the 

speed of computation for biomechanical applications significantly, there are still some 

limitations with these approaches. For example, the performance of a surrogate model 

depends on the type of application. For instance, while a linear-based surrogate model could 

be suitable for linear-elastic FE models (Fitzpatrick et al., 2014), it may be unsuitable for 

highly non-linear systems, such as modelling the pattern of wear on an implantable knee 

(Lin et al., 2009). Further to this, the way that the surrogate model is trained can affect its 

performance. For example, a surrogate model developed based on a set of training data 

obtained from normal walking may not be capable of predicting other types of activities, such 

as jumping, with a higher degree of accuracy. In addition, a surrogate model developed for 

a single patient is only usable for that specific patient, because of differences in terms of 

shape, material properties, and physiological loading conditions. Therefore, more 

generalised techniques need to be explored, so that strain predictions can be performed for 

multiple subjects and activities, without these limitations.   

Objectives and outline           

The overall aim of this PhD thesis is focused on developing and testing the performance of 

potential computational methods for rapid prediction of femoral strain. While there are 

studies that used maximum principal stress and strain criteria for various clinically-relevant 

scenarios, like bone failure mechanism (Keyak and Rossi, 2000; Kheirollahi and Luo, 2015), 

the current research uses equivalent von Mises strain as a compact indicator of both 

compressive and tensile strain states. In the first stage, this research will explore the 

performance of Multi-Linear Regression (MLR) for predicting femoral strain fields during a 

series of daily activities. To build the model, the original training datasets, consisting of 
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muscle, joint reaction forces and femoral strain fields for 1000 frames of motion will be 

computed using a previously developed musculoskeletal and finite-element model (Martelli 

et al., 2015b). This work will provide an insight into the efficacy and accuracy of such a 

linear-based surrogate model when strain calculation was compared with FE results. In the 

second stage, by leveraging the linearity of elastic FE models of bone, the superposition of 

principle method (SPM) will be used to calculate full femoral strain during normal physical 

activites. The outcome of SPM method would be a tensor of strain, allowing to examin to 

examine any strain metric without having to train a new model, a limitation of other surrogate 

modelling techniques. 

The performance of this method will then be compared with three popular surrogate models: 

Multi-Linear Regression (MLR), Multivariate Adaptive Regression Splines (MARS), and 

Gaussian Process (GP). The training datasets required for building the surrogate models 

will be created using Latin Hypercube (LH) sampling and Design of experiments (DOE). The 

performance of the investigated methods will be examined by measuring the strain error 

observed between the calculated strain fields and FE results, and the CPU time needed for 

both construction and solution phases.   

The ultimate aim of this work is to test the applicability of Superposition principle 

method for estimating femoral strain in a population-based study by incorporating both 

geometry and the material property distribution of bones using a PCA-based statistical 

model. To fit the PCA model into training datasets, all femurs will be registered via an 

established procedure (Bryan et al., 2010) to make a point-to-point correspondence between 

each member of the training dataset. To make sure that the developed statistical model is 

able to reproduce the femurs accurately, a leave-one-out approach will be used and the 

reconstructed error associated with shape and modulus of femurs will be analysed. The 
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accuracy of the Superposition principle method then will be examined for synthetic 

population derived from a statistical model, and unseen femurs during a replicated random 

frame of motions. The obtained results will be compared with the corresponding FE 

calculations as the reference.  

Structure of thesis 

The literature review is split into three chapters. Chapter 2 provides an introduction to the 

musculoskeletal system of the lower limb with the main focus on the anatomy and 

biomechanics of the femur during motion. Chapter 3 discusses the relevant literature about 

the development of musculoskeletal-FE models and population-based studies of bone. 

Chapter 4 reviews the application of popular surrogate modelling techniques in orthopaedic 

biomechanics and provides an overview of the characteristics of each technique. Chapter 5 

explores the capability of Multi-Linear Regression (MLR) for rapid prediction of femoral 

strain. Chapter 6 explains the development process of Superposition of principles and 

compares its performance with three popular surrogate models by measuring the time and 

strain error. Chapter 7 evaluates the applicability of Superposition of principles integrated 

with a PCA-based statistical model for rapid prediction of femoral strain during locomotion 

in the population. Finally, Chapter 8 discusses the significant findings of this thesis, as well 

as its limitations, applications and potential future improvements. 
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Structure, function and mechanical properties of bone  

Bone is a living, growing and rigid tissue with a complex structure that performs both 

mechanical and metabolic functions. The primary mechanical role of bone is to provide 

support, structure, and locomotion through interaction with muscles and ligaments. The 

second mechanical role of bone is to provide protection for other organs and maintain the 

shape of the body. The main metabolic function of bone is to store nutrients, minerals, and 

lipids and produce blood cells that nourish the body and protect the body against infection.  

The skeletal system is approximately composed of 260 bones and the shape of each 

influences its function. For example, flat bones (e.g. skull and sternum) can mainly play a 

protecting role, while long bones (e.g. femur and humerus) primarily enables the body to 

have different ranges of locomotion. A typical long bone can be divided into three main 

regions, consisting of the central cylindrical shaft, known as the diaphysis, and two rounded 

and broader ends, known as the epiphyses (Figure 2.1). The metaphysis with a conical 

shape connects the diaphysis with each epiphysis. The epiphyseal and metaphyseal regions 

are wider, resulting in the provision of greater support to articular cartilage (Cowin, 2001). 
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Figure 2.1: Anterior (left) and posterior (right) views of left femur, "The figure was reproduced with 

permission from https://www.skullsunlimited.com". 

 

A bone structure comprises two parts, (i) the inner volume which is made up of 

cancellous bone and bone marrow, and (ii) the outer later which is composed of cortical 

bone. The cortical bone primarily forms the diaphysis area, while cancellous bone forms the 

inner metaphysis and epiphysis (Cowin, 2001). Cortical bone is a dense structure, which 

provides greater strength compared to cancellous bone, a suitable load bearing capability 

during motion, and provides the required attachment site for the surrounding muscles and 

ligaments (Cowin, 2001). At the microscopic level, the diaphyseal cortical bone consists of 

two distinct types of bone: haversian bone, which forms the bulk of the diaphyseal volume, 

https://www.skullsunlimited.com/
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and laminar bone, which covers the endosteum and periosteal surfaces (Cowin, 2001). At 

the microscopic level, both haversian and laminar bones can be considered as composite 

structures (Figure 2.2).  The laminar bone is composed of concentrically arranged lamellae, 

with a typical thickness of 200 μm, and a network of blood vessels to supply nutrients to the 

surrounding bone. Each lamella comprises of five sublayers (Weiner et al., 1999), and each 

sublayer is an array of aligned mineralised collagen fibrils of different orientations. The 

osteon is approximately 200 μm in diameter and 20 μm in length (Figure 2.2). The haversian 

canals enable blood vessels and nerves through the Osteon.  

 

Figure 2.2: Microscopic structure of compact bone  (Nakano, 2015), "Reprinted by permission 

from Springer Series in Biomaterials Science and Engineering: Advances in Metallic Biomaterials, 

Springer-Verlag GmbH Berlin Heidelberg, by Takayoshi Nakano, Copyright (2015)". 

 

Cancellous bone, also known as spongy or trabecular bone, is a complex three-

dimensional porous structure which forms approximately 20% of the human skeleton, and 

the surface area per unit volume is approximately eight times bigger than that in the cortical 

bone. Cancellous bone is made of plates and bars (trabeculae bone) adjacent to small, 
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irregular cavities that contain most of the body's red bone marrow, which produces blood 

cells (Cowin, 2001). In addition to providing structural stability, cancellous bones also 

contain many stem cells which are precursors of osteoblast and osteoclast responsible for  

bone regeneration. Furthermore, while apparent density, which is defined as the mass of 

the sample divided by the total sample volume, including porosity (Oftadeh et al., 2015) is 

an important parameter in the determination of the mechanical properties of bone, bone 

response to loads is not just dependent on apparent density. The apparent density itself is 

reported primarily in two different forms: apparent wet density which refers to the wet tissue 

mas divided by the total specimen volume, and apparent ash density which is the ash mass 

divided by the total specimen volume (Oftadeh et al., 2015). It has been discussed that both 

cancellous and cortical bones are made of similar composition, and the difference in their 

mechanical properties is primarily due to their difference in apparent density (Carter and 

Spengler, 1978). Cortical bone has an apparent density ranging from 1.5 to 2.0 g/cm
-3

, while 

cancellous bone has a lower density changing from 0.05 to 1.1 g/cm
-3

(Carter and Spengler, 

1978; Martin, 1991).  

Bone composition 

From a material science point of view, bone is a composite material with a complex 

cellular architecture, which changes throughout the life of an individual (Webster and Ahn, 

2007). As a dynamic tissue, bone continually remodels itself with the addition or removal of 

material in response to its mechanical environment and loading condition. Within a bone, 

osteoblasts are mainly involved in the formation and mineralisation of bone. Osteocytes play 

a crucial, central role in regulating the dynamic nature of bone by sensing the mechanical 

loading of bone and regulating the onset of both bone formation and resorption (Schaffler 

and Kennedy, 2012); Osteocytes regulate local mineral deposition and chemistry at the bone 

https://en.wikipedia.org/wiki/Osteoblast
https://en.wikipedia.org/wiki/Mineralization_(biology)
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matrix level, and they also function as endocrine cells producing factors that target distant 

organs such as the kidney to regulate phosphate transport. Osteocytes appear to be the 

major local orchestrator of many bone functions. 

The mineralised organic matrix of bone is primarily collagen (35%), which provides its 

toughness; the mineral phase is carbonated hydroxyapatite (65%) for structural stiffness 

and active proteins to regulate cellular functions (Henkel et al., 2013; Martin, 1991; Martin, 

1998). The entire volume of trabecular bone is replaced every 3 – 4 years, and around 5 – 

7% of cortical bone changes weekly (Marieb, 2004). The rate of bone modelling is higher 

during the bone growth and this drops when the skeletal system becomes more mature 

(Frost, 1990).  

Mechanical properties of cortical bone 

Young’s modulus and the ultimate strength of bone are most commonly used for reporting 

the material properties of bone by using two techniques, including mechanical tests (Choi 

and Goldstein, 1992; Rho et al., 1999), ultrasonic measurements (Grant et al., 2014; Rho et 

al., 1993) and nanoindentation tests (Wang et al., 2006b). The advantage of the ultrasonic 

method over mechanical tests is that this non-destructive method allows testing of 

specimens with more complex geometries from macro to microstructure levels (Oftadeh et 

al., 2015).  

Measurement of the mechanical properties of bone using the above mechanical tests 

showed that cortical bone is transversally isotropic and is 1.5 – 2 times stronger in the 

longitudinal direction compared with radial and circumferential directions (Ashman et al., 

1984; Wang et al., 2006b). Young’s Modulus of bovine cortical measured by a 

nanoindentation test was shown to be 24.7 ± 2.5 GPa for osteons and 30.1∓ 2.4 GPa for 
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interstitial lamellae longitudinally. The average elastic modulus of bovine cortical was 

reported to be 19.8 ∓ 1.6 GPa in the transversal direction (Wang et al., 2006b), which was 

in agreement with the values of previous studies reported for osteons (22.5 GPa) and 

interstitial lamellae (25.8 GPa) by Rho et al. 1997. The ultrasound assessment of elastic 

moduli of cortical bone was shown to be between 20 – 22 GPa longitudinally, and 12 – 14 

GPa transversally (Ashman et al., 1984). These findings were comparable with previous 

studies obtained from the mechanical tests ranging from 14-20 GPa (Reilly and Burstein, 

1974). The differences in these studies was likely due to the viscoelastic nature of bones 

and the rate of the applied loads, since the mechanical loading demonstrates a quasi-static 

load case whereas the acoustic analysis represents a higher load rate, and hence can create 

higher strain rates (Oftadeh et al., 2015).  

Mechanical properties of cancellous bone 

Cancellous bone has a highly anisotropic behaviour, and its strength and density depends 

upon the direction of the applied loads, and can be largely effective for particular bones and 

regions. For example, in the femoral head, the main trabecular structure aligns with the 

direction of the hip force to provide greater strength. However, for bones under largely 

uniaxial loads (e.g. vertebrae), trabecular bone often has a columnar structure with 

cylindrical symmetry, to provide a greater strength in the direction of load, while having a 

lower strength in the transversal direction (Gibson, 1985).  

The mechanical testing of Young’s Modulus of cancellous bone has been shown to 

range as low as 12 MPa (Martens et al., 1983) to as high as 3350 MPa (Kaneko et al., 2004) 

as a function of its density, and varies marginally from compression to tension and is also 

dependent on the anatomical site (Morgan et al., 2003). As can be seen from Table 2-1, the 
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highest elastic modulus was observed for the femoral neck with approximately 3 GPa 

(Morgan and Keaveny, 2001). Furthermore, it has been shown that yield strains vary 

between sites by at most 20%, depending on various parameters such as, hard tissue 

material properties, trabecular architecture, or a combination of these two factors. This 

finding was also observed in an earlier (Hildebrand et al., 1999; Kopperdahl and Keaveny, 

1998) by presenting a ‘‘rod-like’’ structure for trabecular bone from the human vertebra, 

which is more susceptible to large deformations (e.g. bending and rotation), compared with 

‘‘plate-like’’ structure from femoral head and neck.   

 

Table 2-1: Mechanical properties of cancellous bone classified based on anatomic 

sites and modes of loading.  

Anatomic site–Loading 

mode 

Apparent 

density 

(g/cm3) 

Modulus 

(MPa) 

Yield Strain 

(%) 

Yield Stress 

(MPa) 

 

Vertebra 

Compression 

 

0.18 ± 0.05 344 ± 148 0.77 ± 0.06 2.02 ± 0.92 

Tension 

 

0.19 ± 0.004 349 ± 133 0.70 ± 0.05 1.72 ± 0.64 

 

Proximal 

Tibia 

Compression 0.23 ± 0.06 1091±634 0.73 ± 0.06 5.83 ± 3.42 

Tension 0.23 ± 0.10 1068± 840 0.65 ± 0.05 4.50 ± 3.14 

 

Greater 

Trochanter 

Compression 0.22 ± 0.05 622 ± 302 0.70 ± 0.05 3.21 ± 1.83 

Tension 0.22 ± 0.04 597 ± 330 0.61 ± 0.05 2.44 ± 1.26 

Femoral 

Neck 

Compression 0.58 ± 0.11 3230± 936 0.85 ± 0.10 17.45 ± 6.15 

Tension 0.54 ± 0.12 2700± 772 0.61 ± 0.03 10.93 ± 3.08 
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Keaveny and Morgan (2001) evaluated the relationship between the trabecular bone 

strength and the anatomic site. They discovered that the yield strain/stress was dependent 

on the anatomical sites both for compressive and tensile loading (Table 2-1). The yield strain 

was higher in compression than tension, regardless of the anatomical sites. The average 

tensile yield strain ranged from 0.61 ± 0.03% for the femoral neck and the trochanter to 0.70 

± 0.05% for the vertebra. The average compressive yield strains ranged from 0.70 ± 0.05% 

strain for the trochanter to 0.85 ± 0.10% strain for the femoral neck (Table 2-1). A similar 

behaviour was noted when the relationship between stress and the apparent density was 

analysed. For example, for an apparent density of 0.30 g/cm3, the yield stress (in 

compression) between vertebra to proximal tibia was differed by 31%.  

Mathematical relationships between density, Young’s modulus and 
strength 

The mechanical properties of bones can be estimated from Computed tomography (CT) 

scans. Computed tomography is a non-invasive diagnostic imaging procedure that uses 

computer and a rotating x-ray beam to produce images of the body. The CT scans of bones 

can define the density of each point using pixel greyscale values. Image segmentation, 

which is the process of partitioning a digital image into multiple segments, provides the 

material properties and geometry of bone. An accurate segmentation of bone is of 

importance for the 3D reconstruction of bone and can be effective on the accuracy of the 

geometry and material of bone used for developing the computer-based models (Mouloodi 

et al., 2019a). It has been shown that through a segmentation process that Young’s Modulus 

of a single femur varies from 77 – 1,835 MPa within the trabecular bone, and changes from 

1,850 – 16,737 MPa for cortical bone (Wagner et al., 2010).  
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Different approaches were used for generating the segments from CT scan images, 

such as manual, semi-automatic and automatic segmentations. Each procedure has its pros 

and cons.  Users can take a manual segmentation approach, but this can be a time-

consuming process, particularly when a high number of slices of CT images are required. 

Semi-automatic segmentation requires user interaction as they need to provide a small 

amount of input data to improve the accuracy of segmentation. Automatic segmentation is 

the fastest procedure which does not need user involvement, but the accuracy can be 

compromised. However, for segmentation of a large number of CT images, automatic 

segmentation is the only feasible approach and several commercially computer packages 

are available for this.    

The correlation between Young’s modulus and apparent density has been determined 

by defining different forms of equations, including linear, power or exponential ones. 

However, the modulus-density relationship is well-reported generally in the form of a power 

law, in which A and B are constants: 

                                                  𝐸 = 𝐴 𝜌𝐵                                                               

 

Morgan et al. (2003) evaluated the relationship between elastic modulus and density 

for trabecular bone by collecting 142 specimens from 61 donors for different anatomical 

locations and under different loading conditions (Morgan et al., 2003). They found a large 

variability across different anatomical sites, which was mainly due to the health status and 

ethnicity of the studied population. According to their research, values for constant of A 

varied from 3000 – 30000, and ranged from 1.14 to 3.2 for constant of B. This study 

highlighted the importance of defining an ideal representation of the Young’s modulus 
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(Table 2-2). The below table shows other equations relating the Young’s modulus and 

density of bone at different anatomical sites and range of ages.  

 

Table 2-2: Modulus – density relationships for different bone anatomical sites and range of ages 

  
Study (reference) 

 
Cadavers 

(No.) 

 
Type of Bone 

 

Young’s modulus (E, GPa) Age 
(years) 

Strength (𝜎, MPa) 

 
(Lotz et al., 1991b) 

 
123 

Femoral 
metaphysis 
(Cortical) 

 
𝐸 = −13.43 + 14.261𝜌 

 
23 – 90 

(Keller, 1994)  
5 

Femur (Cortical 
and Trabecular) 

𝐸 = 10.5𝜌2.29  
46 – 84 

(Morgan et al., 
2003) 

61 Femur 
(Trabecular) 

𝐸 = 6.850𝜌 1.49 
 

67 ±15 

(Kaneko et al., 
2004) 

10 Femur 
(Trabecular) 

𝐸 = 10.88𝜌 1.61 45 – 67 

(Lotz et al., 1990) 4 Femur 
(Trabecular) 

𝜎 = 25.0 𝜌1.80 
 

25 – 82 

(Mosekilde et al., 
1987) 

42 Lumbar spine 
(Trabecular) 

𝜎 = 24.9 𝜌1.8 
 

15 – 87 

(Kopperdahl and 
Keaveny, 1998) 

11 Lumbar spine 
(Trabecular) 

𝜎 = 33.2 𝜌1.53 
 

32 – 65 

 

The anatomy and function of the femur  

The femur is one of the most prominent bones in the human body. The main component of 

a femur is the femoral head, femoral neck, the greater trochanter and lesser trochanter. The 

hip is a unique load-bearing joint surrounded by powerful and well-balanced muscles, 

enabling a series of different motions while providing suitable stability. The hip joint can be 

represented by a ball (femoral head) and socket joint (acetabulum) which has translation 

stability and rotational mobility. Therefore, a healthy hip can perform a diverse range of 
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movements, including flexion – extension, medial rotation and lateral rotation – externally 

rotate, and abduction – adduction.  

Articular cartilage covers approximately 60 to 70% of the hip joint (Byrne et al., 2010). 

The hip joint also has a synovial membrane, which generates and contains synovial fluid to 

lubricate the joint and to decrease the frictional forces between surfaces within the joint.  

Cartilage is an avascular material and hence relies on the synovial fluid to provide nutrients 

as well as remove waste products. The femoral head is connected to the femoral shaft by 

the femoral neck. The femoral neck has a cylindrical shape and has an angle of 120-135 

degrees with the femoral shaft, known as the neck-shaft angle. The femoral neck 

anteversion (FNA) is the angle between the longitudinal axis of the neck and the axis passing 

horisontally through femoral condyle and can be varied depending on foetal development, 

heredity, mechanical forces, and intrauterine position (Guidera et al., 1994). For example, 

the FNA angle at birth is about 40 degrees and decreases gradually to approximately 8 – 15 

degrees in adulthood (Fabeck et al., 2002). The FNA angle higher than 20 degrees is 

considered excessive, whereas an angle of less than 10 degrees is considered femoral 

retroversion (Tonnis and Heinecke, 1999; Tonnis and Skamel, 2003). The femur is often 

described as being slightly curved in the sagittal plane (Harper and Carson, 1987) and may 

vary by ethnicity.  

Muscles around the hip joint       

The hip is a load bearing joint which is surrounded by large muscles and ligaments. The 21 

muscles that cross the hip provide both triplanar movement and stability between the femur 

and acetabulum (Neumann, 2010; Schache et al., 1999). The principal muscles driving the 

different movements of the hip joint are listed below (Figure 2.3):   
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 Flexion: rectus femoris, iliopsoas, sartorius, and pectineus. 

 Extension: gluteus maximus and hamstring muscles, including semimembranosus, 

semitendinosus and biceps femoris. 

 Abduction: gluteus minimus, gluteus medius, piriformis and tensor fascia latae. 

 Adduction: adductors longus, brevis and magnus, pectineus and gracilis. 

 Lateral rotation: biceps femoris, gluteus maximus, piriformis, assisted by the obturators, 

gemelli and quadratus femoris. 

 Medial rotation: anterior fibres of gluteus medius and minimus, and tensor fascia latae. 

 

The primary hip flexor and hip extensor muscles are iliopsoas and gluteus maximus 

respectively, however there are other muscles which are also involved with this movements, 

such as psoas, iliacus, rectus femoris, tensor fasciae latae, biceps femoris, and 

semitendinosus. The tensor fascia latae and gluteus medius and minimus are known as 

primary hip abductor muscles, while adductor longus, adductor brevis, and adductor magnus 

are more involved with hip abduction. Finally, the gluteus medius, gluteus minimus, and the 

tensor fascia latae are the main internal rotators of the hip joint.  
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Figure 2.3: Deep (right) and superficial (left) muscles around the hip (Retchford et al., 2013), "with 

permission from http://www.ismni.org/jmni/ ". 

 

Each of the above motions has some limitations during locomotion; for example, the 

maximum degree of rotation for the flexion is about 120, and this rotation is restricted by the 

contact between the abdominal wall and the thigh. The extension of the hip is variable 

between individuals, but it is around 20 degreesThe maximum value of hip rotation in the 

case of combining lateral rotation and medial rotation is about 90Theabduction and 

adduction have a rotational degree of 45  

Muscles can only contract and apply tensional loading at their insertion. Besides, some 

muscle is wrapped around the femur, resulting in a contribution to bending, torsion and also 

shear loading of the bone. Another point to note is that the attachment sites of different 

muscles can also be important in terms of their functional tasks. For example, the rectus 

http://www.ismni.org/jmni/
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femoris originates on the anterior inferior iliac spine, passes across the hip joint, down the 

shaft of the femur superficially, and lastly  attaches to the tendons around the knee. This 

muscle has some actions on the flexion as it crosses two major joints in the lower extremity, 

hence it has some actions on the flexion and extension of hips and knees, and it is also an 

active muscle during walking. 

Ligaments around the hip 

Hip ligaments have two different functions (Figure 2.4).  The first function of ligaments is to 

guide the motion of the joint by providing the required flexibility and stability for the femoral 

head to move within the acetabulum during motion. The second task is providing a 

supportive role for the surrounding muscles to prevent excessive motion and injury 

(O'Donnell et al., 2018). The most notable ligaments in the hip joint and their specific tasks 

are listed as below (Bowman Jr, 2010; Ranawat et al., 2009):  

Iliofemoral is one of the strongest ligaments with a ‘Y’ shaped appearance, which helps 

to provide stability of the body during the standing position. This ligament also keeps 

the femoral head pressed into the acetabulum to provide a safe constraint, limiting the risk 

of joint dislocation.   

Ischiofemoral is the longest ligament in the body, which twists around the femoral head 

and extends into the femoral neck. This ligament has different tasks, such as limiting hip’s 

extension, adduction and abduction while allowing the maintenance of the upright posture 

by reducing the need for muscle contractions. 

https://en.wikipedia.org/wiki/Femur_head
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Pubofemoral is a ligament on the inferior side of the hip joint which attaches the most 

forward part of the pelvis to the femur. This ligament, which has a triangular shape, prevents 

excessive extension and abduction of the hip.  

 

Figure 2.4: The extracapsular ligaments of the hip joint; pubofemoral, ischiofemoral and ileofemoral  

ligaments, "with permission from https://teachmeanatomy.info". 

 

Kinematics and kinetics of the hip 

Lower-limb motions are very important for investigating various daily activities, such as 

walking, sitting down, ascending and descending stairs, sit to stand to sit, and deep knee 

bends. Among daily activities, walking in the most common daily and physical activity which 

has been investigated, by largely using motion analysis of the lower limb. Walking is a 

complex movement which requires a body to be in perfect harmony inside.  

https://en.wikipedia.org/wiki/Hip
https://teachmeanatomy.info/
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Studying the static and dynamic behaviours of the body during motion requires some 

information about the position of the body during motion and finding the force applied on the 

hip. To gain such an understanding, gait cycle has been suggested as a standard loading 

condition (Figure 2.5). Gait is a sequence of movements occurring between two consecutive 

heel strikes of the same foot and contains two main phases: stance and swing. In other 

words, a gait is a sequence of motions from the initial heel strike to the next heel strike of 

the same leg. The stance phase makes up 60% of the gait cycle, while the swing phase 

forms the other 40%. The main phases are sub-divided into separate sub-phases. The body 

has double limb support at the initial contact and the terminal swing. During normal gait 

cycle, the hip rotates approximately 40o in the sagittal plane with a maximum hip flexion of 

30-35 degrees occurring in the late swing phase, and 10 degrees of hip extension near toe-

off.  In the frontal plane, the hip has 10 degrees’ adduction at initial contact and has 5-10 

degrees of hip abduction in the early swing phase.  The total of internal/external rotation 

along the pelvic is approximately 15 degrees. It has been reported that the maximum internal 

rotation occurs near mid-stance and the hip externally rotates during the swing phase (Krebs 

et al., 1998). 

 

Figure 2.5: Different phases of a gait cycle (Moltedo et al., 2018), "with permission from 

https://jneuroengrehab.biomedcentral.com".  

https://jneuroengrehab.biomedcentral.com/
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While most muscles are active in the beginning and end of the swing and stance phase 

(Gate et al., 2009), some muscles are active in particular phases to perform a specific tasks. 

The hamstrings and gluteus maximus are active to aid hip extension at the initial contact 

phase. The abductors provide stability of the pelvis during the mid-stance phase.  Gluteus 

medius and minimus remain active in terminal stance to provide a stability for lateral pelvic. 

The adductor longus is the most persistent hip flexor. In terminal swing, the hamstrings and 

gluteus maximus are strongly active to decelerate knee extension and hip flexion (Krebs et 

al., 1998). 

In order to understand the mechanical behaviour of the femur, it is essential to gain an 

understanding about the forces that act upon it.  During motion two types of forces are 

generated, which are muscle forces and joint reaction force. Research shows that no one 

has measured the muscle forces which work together to generate hip joint contact force.  A 

possible solution is to use the musculoskeletal to estimate muscle forces and this will be 

discussed later in the next chapter.  

Forces acting on implanted femoral components were measured directly for the first 

time in 1966 for a relatively few patients and time points shortly after implantation (Rydell, 

1966). While the implants were permanent, the sensors and wires were used temporary and 

were designed to be removed after early postoperative data collection. In the mid to late 

70s, passive telemetry (wireless) systems were used to measure metalon-cartilage 

pressures in a hemiarthroplasty (Carlson et al., 1974a; Carlson et al., 1974b). Battery-

powered telemetry has also been used to measure forces in a total hip arthroplasty femoral 

component (English and Kilvington, 1979). 
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Advances in electronics has enabled the measurement of activity-dependent 

magnitudes and directions of hip contact forces with multiple instrumented total hip implants 

with multiple patients and activities monitored over several years after surgery (Bergmann 

et al., 2001; Graichen and Bergmann, 1991). Investigating the instrumented prostheses 

implanted in seven patients showed the highest joint reaction forces for ‘uncontrolled’ 

stumbling that exceeded by far those measured for any other activity. In this case, the 

maximum resultant force was reported to be approximately 400% of body weight (BW) 

during normal walking, and rose to 870% of BW during stumbling (Bergmann et al., 2004). 

A list of routine activities and the range of the joint reaction forces on the hip joint are 

collected and compared in Table 2-3.  

Another important feature was generated joint reaction force varied between different 

patients, activities and even among various trials. Considering the joint reaction force for two 

patients while performing stair climbing (Bergmann et al., 1995) revealed that the peak hip 

contact force reached to 3.5 body weight (BW) for one patient, and in another patient was 

5.5 body weight (BW), thus it can be concluded  that this value may vary between different 

patients.  
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Table 2-3: Joint reaction force for daily activities. 

Activity Joint reaction force (BW%) Reference 

Walking 280–480 (Bergmann et al., 1993) 

Walking 238–427 (Heller et al., 2005) 

Walking 200–400 (Stansfield et al., 2003) 

Walking 300-360 (Li et al., 2014) 

Jogging 550 (Bergmann et al., 1993) 

Stair climbing 251–556 (Heller et al., 2005) 

Stair climbing 350–550 (Bergmann et al., 1995) 

Standing up 181–220  

 

(Bergmann et al., 2001) 

Sitting down 149–176 

Knee bend 117–177 

2-1-2 stance 223–253 

2-1-2 stance 250–350 (Stansfield et al., 2003) 

2-1-2 stance 250–300 (Li et al., 2014) 

Sit to stand 200 (Stansfield et al., 2003) 

 
 
 
 
 
 
 

 



 

 

                                                               32 

 : MODELLING FEMORAL 
MECHANICS DURING NORMAL 
PHYSICAL ACTIVITY 
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Introduction 

Computing femoral strain distribution during normal physical activity is important for 

simulating bone tissue adaptation (Adams et al., 1997; Geraldes and Phillips, 2014),  for 

diagnosing individuals most at risk of femoral fracture (Bessho et al., 2009; Lotz et al., 

1991a), and for optimising biomechanical behaviour of implantable devices (Chanda et al., 

2015; Helwig et al., 2009). To gain an understanding about the generated femoral strain 

during locomotion, the forces that are applied to the femur need to be identified, namely the 

joint contact and the muscle forces.  Since the direct measurement of muscle forces in vivo 

is not possible, ground reaction force and joint kinematic data obtained through motion 

analysis are often used in conjunction with musculoskeletal and finite-element modelling to 

estimate muscle and joint forces and the respective elastic response of the femur. 

 
Human motion analysis based on stereophotogrammetry         

The aim of human motion analysis is to provide a 3D realistic representation of the 

movement of the musculoskeletal system during motor task performance. This can be 

achieved by collecting informative data about the mechanics of the musculoskeletal system 

of the whole body during the execution of a physical activity. This collected information can 

include various parameters such as the relative movement of adjacent bones; kinematics of 

joints; centre of mass; forces exchanged with the environment, and the loads transmitted 

between body segments and tissue, such as muscles, tendons, ligaments. This information 

can be provided during motion. The 3D model of the musculoskeletal system requires 

following information to be collected: 

 Positions of skin-mounted markers (e.g. marker trajectories) using 

stereophotogrammetry (motion capture). 
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 External forces typically measured by dynamometers, such as force plate. 

 Electrical activity of muscles using Electromyography. 

 

The Stereophotogrammetry system determines the location of the markers using 

multiple video cameras installed at different sides of a room.  The position of markers in 2D 

coordinates are used to determine the 3D coordinates of markers by matching views 

captured by different cameras from their locations. Stereophotogrammetry systems are 

typically two types, which are marker-based and marker-less systems. Marker-based 

systems either use passive markers, typically coated by a reflective paint to reflect the light, 

or active light-emitting markers (Davis et al., 1991; Dorn et al., 2012). Marker-less systems 

use a pattern of near-infrared light to determine the location of markers. Marker-less motion 

capture systems can provide a reduction in preparation time of the subjects for motion data 

recording, and the absence of markers that can modify the naturalness of a subject’s 

movement. However, setting up the cameras and tools in a marker-less motion capture 

system is technically challenging, especially for systems (e.g. optical systems) which are 

sensitive to lighting. In contrast, marker-based motion capture systems suffer from 

disadvantages; for example, it can cause some artefacts due to moving the markers on a 

person’s skin or clothing. However, marker-based approaches have been used widely as 

the preferred method for collecting motion data (Ceseracciu et al., 2014; Georgios et al., 

2015; Martelli et al., 2015c; Yunardi and Winarno, 2017), since this method is easier to use 

and cheaper compared to marker-less systems.  

Measurements of force magnitude and centre of pressure (COP) location during 

human locomotion is an important step during motion analysis. This data can be collected 

by placing force plate on the ground of laboratories. Typical force plates are equipped with 
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sensors to measure the magnitude of the force components (𝐹𝑥 , 𝐹𝑦, 𝐹𝑧) in the form of an 

electrical output, which is proportional to the force applied on the plate. Other approaches 

use strain gauge technology (AMTI, Advanced Medical Technology Inc.), or piezoelectric 

technology (Kistler, Zurich Switzerland) to improve the accuracy and capability of methods 

by capturing a wide range of forces.  

A small change in the origin and magnitude of the ground reaction force can lead to a 

considerable change in calculated joint moments. Hence, the error which occurs during 

collection of the motion data needs to be evaluated. The error committed during 

quantification of centre of pressure (COP) can be determined by comparing the data 

obtained from force platforms and those obtained from a motion capture system (Holden et 

al., 2003; Rabuffetti et al., 2001). Furthermore, a pole that is instrumented with a load cell 

has been used for testing the measurements of forces plates by taking two approaches: full 

calibrations (Gill and O'Connor, 1997; Hall et al., 1996)  and spot checks (Holden et al., 

2003; Lewis et al., 2007). Full calibration is a thorough testing regime, performing a more 

controlled and systematic testing for a large volume of the surface of the force plate. 

However, this is generally time consuming, and henceforth not suitable for daily use. Spot 

checks can be performed using a pole with a simple design and with using a minimal number 

of markers attached to it. This method affects the accuracy of measurement by performing 

the tests for some spots on the surface of the force plate, but is quicker and suitable for 

frequent routine use. It has been shown that a typical force plate can predict the centre of 

pressure (COP) with an average RMSE of 2.4 to 6.6 cm (Karatsidis et al., 2016), and 

the ground reaction forces with a normalised average RMSE, ranging from 14.6% 

(Karatsidis et al., 2016) to 17.7% (Fluit et al., 2014) of body weight.   
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Another important part of motion analysis is related to assessing muscle activation. 

Electromyography (EMG) is a method which provides information about muscle electrical 

activity and activation time (onset and offset). EMG is frequently measured by electrodes 

placed on the skin (known as surface EMG), according to previous placement guidelines 

(Forman et al., 2019; Holmes et al., 2015). During recording of the data, EMG produces a 

real-time analogue signal in millivolts (mV), so that a greater level of voltage shows a higher 

level of muscle contraction.  

Musculoskeletal modelling  

Musculoskeletal modelling is a computational technique that provides a non-invasive 

estimate of the internal joint loads and muscle forces used for activities in daily living (Correa 

et al., 2010; Schellenberg et al., 2015). The first musculoskeletal models of the hip were 

generated by John Paul (1967) who investigated the effect of 21 muscles on the hip joint 

contact force, which were represented by grouping muscle forces into different functional 

groups. Since then, musculoskeletal models have become more sophisticated by adding 

more muscle forces, and modelling the whole leg from the hip to ankle; in addition, extension 

to the forefoot has been considered with all fifty muscles in each leg which perform various 

functions. The main challenge for simulating such a complex model is that, for example, 

there are twenty-one muscles at the hip with three force components in (X, Y, and Z), leading 

to the formation of a multi-body system with a complex mechanical linkage along the chains. 

Thus, as each joint is spanned by several muscles, a net joint moment can be defined by an 

infinite number of muscle recruitment solutions.  

Two main approaches can be used to compute muscle and joint forces during motion: 

Inverse dynamics and Forward dynamics. Inverse dynamics relies on the collected motion 
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data (e.g. ground reaction force and the experimental joint kinematics) and uses them to 

estimate forces and the moments about each joint that are necessary to produce motion. 

Static optimisation can then be used to solve the muscle-moment redundancy problem each 

time instantly by minimising a given performance criterion, such as the sum of squares of 

muscle activations (Anderson and Pandy, 2001b). In contrast, Forward dynamics computes 

joint torques/forces to estimate the resultant motions by imitating the function of the human 

body. In this case, the equations representing muscle contraction dynamics, body-

segmental dynamics, and muscle activation dynamics are combined simultaneously to 

estimate the resulting joint motion. Forward dynamics is a more computationally demanding 

process as it must solve an entire trial at once unlike the inverse dynamics which solve the 

equations for each frame individually (Lin et al., 2012; Pandy, 2001). Other approaches such 

as Neuro Musculoskeletal Tracking (NMT) (Seth and Pandy, 2007) and Computed Muscle 

Control (CMC) (Thelen et al., 2003) have been developed to use forward dynamics methods 

much more efficiently. These algorithms use feedback control theory to produce forward 

dynamics simulations including muscle activation dynamics, adopting two different 

approaches to solve the muscle load sharing problem: NMT, which uses a time-dependent 

performance criterion over the entire task period, and CMC which uses static optimisation 

at each time step. However, it has been shown (Lin et al., 2012) that static optimisation, 

NMT and CMC techniques do not produce significant different muscle force. The patterns 

of muscle loading predicted by the three methods were similar for both walking and running 

with a coefficient of correlation between any two sets of muscle-force solutions ranging from 

0.46 to 0.99 (𝜌 < 0.001) for all muscles. This means the robustness and efficiency of static 

optimisation make it the most attractive method for estimating muscle forces in human 

locomotion, and suggesting that more time-consuming dynamic optimisation approach is 

less justifiable. 
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Recent numerical advances in dynamics and kinematic studies of human locomotion 

have been implemented in numerous software packages. LifeMod, AnyBody, and Opensim 

are example of packages created for a wide variety of biomechanical and clinical purposes. 

In this thesis, OpenSim has been used to compute the muscle forces and joint reaction 

force. Therefore, the focus of the following section is on OpenSim familiarise the reader with 

the main characteristics of this helpful biomechanical tool. 

Musculoskeletal modelling: OpenSim 

OpenSim is a popular biomechanical system which has been established based on a 

multibody dynamics engine  known as  ‘Simbody’ (Delp et al., 2007). OpenSim can create 

a dynamic simulation using its available library of models, which consist of a variety of 

musculoskeletal structures, such as joints, bones, contact components and ligaments 

(Sherman et al., 2011). A Hill-type model is used in OpenSim to reproduce muscle behaviour 

by describing the relationship between muscle force, length, activation and contraction 

velocity (Delp et al., 2007). OpenSim uses inverse kinematics to match the experimental 

marker trajectories collected from the motion capture system and the virtual markers 

available in Opensim library, by providing the joint angles, or generalised coordinates (Setha 

et al., 2011),  for each frame of motion. Inverse dynamics tool determines the generalised 

forces (i.e., net joint forces and torques) that cause particular motions. To determine the 

internal moments and forces, OpenSim solves the equations of motion by using the input of 

joint angles and external forces (e.g., ground reactions forces) to the model, and calculating 

the output of the net joint moments/forces. OpenSim uses an optimisation approach to 

process the motion data (e.g. muscle forces, muscle length) as input, and provide an output 

of interest (e.g., joint torques) via minimising an objective function, such as the sum of 
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squared muscle forces (Delp et al., 2007), or energy consumption (Anderson and Pandy, 

2001a). 

Adjustment of a musculoskeletal model directly from the MRI of a given subject is 

difficult. Musculoskeletal models need to be constructed based on a template (cadaver-

based) dataset, which are scaled to adjust a specific subject using relatively simplistic linear 

scaling laws that do not change joint parameters (e.g. orientations). Scaling is an important 

step in building a musculoskeletal model, since it can be effective in solving inverse 

dynamics and inverse kinematics problems. This is because these methods are sensitive to 

the accuracy of the scaling step. By scaling a model, OpenSim can adjust both the mass 

properties (mass and inertia tensor), and the dimensions of the body segments (e.g. bone 

geometry) in a patient. Patient-specific scaling uses medical images such as computed-

tomography (CT) or magnetic-resonance images (MR) for scaling the generic model. The 

MRI method provides accurate information about muscle–tendon attachment sites and 

paths, joint centre positions, and the orientations of joint rotation axes; however, this method 

is not suitable to extract the bone mineral density (BMI) as the input data for assigning elastic 

properties of bone. In contrast, despite extracting detailed anthropometric information (e.g. 

muscle–tendon attachment sites) from CT images can be complicated due to the low 

contrast in CT images. However, this method can provide more accurate data about material 

properties and geometry of bones. Hence, CT images are used as the preferred technique 

to develop musculoskeletal models (Martelli et al., 2015b; Martelli et al., 2015c; Valente et 

al., 2014).      

Modelling human movement is a complex, multistep process. Different simplifications 

can be used for building a musculoskeletal model. For example, the full-body 

musculoskeletal model can be modelled using 12-segment with 31 independent degrees-
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of-freedom actuated by 92 Hill-type muscle–tendon units (Martelli et al., 2015b). The 

muscles can be defined based on their line of actions (Hoy et al., 1990) via points, wrapping 

surfaces or 3D geometries (Arnold et al., 2000; Arnold et al., 2010; Modenese et al., 2013). 

The tendons are modeled as linear elastic (Hoy et al., 1990), or non-deformable elements 

(Carbone et al., 2015). The foot is modeled as a single segment, ingoring the motion of 

intrinsic joints (Damsgaard et al., 2006). The hip, shoulder and, lumbar joints are 

represented as perfectly spherical joints with three degrees of freedom via ball-and-socket 

joint, while the knee joint are assumed to be a translating hinge joint with a single degree of 

freedom (Martelli et al., 2014b). These simplifications and assumptions could generate some 

errors in musculoskeletal models, for example, the specification of the join centre during 

scaling can lead to an error in the subsequent kinematics and kinetics analysis of hip and 

knee joint (Kadaba et al., 1990). These errors could be reduced by taking some actions, for 

example by modelling the muscles as a complex structure, however wrapping and bending 

the muscles around other organs (e.g. joints, bones) is a challenging task. A possible 

solution to model each muscle by the use of a series of line segments (Cleather and Bull, 

2012; Valente et al., 2012). However, even for such a simple model, a number of 

considerations are required to be included such as the number of paths, the location of 

paths, and the line of action of each muscle using either ‘via points’, or ‘wrapping surfaces’, 

so that the models accurately represent the anatomy (Valente et al., 2012).  

The assumptions and simplifications used for building the musculoskeletal model lead 

to errors in the model’s output (e.g. muscle forces). To understand the level of uncertainty, 

the error needs to be reported. It has been shown that the inertial parameters derived from 

simple anatomical measurements using regression equation can lead to an error lower than 

21.3% (Durkin and Dowling, 2006). Estimation of a hip joint centre using the functional 
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method can generate an average error of 13 mm, while the error can reach as high as 30 

mm using regression equations (Leardini et al., 1999). Clinical images can be used for 

estimation of the joint centres and axes, with a peak error up to 11 degrees calculated for 

the hip rotation angle, while the error due to grouping muscle and joint forces together has 

never exceeded 0.33 BW, a value that represents the 8–10% of the peak joint forces (Martelli 

et al., 2015c). The muscle attachment sites extracted from MRI images can present an error 

lower than 6.1 mm (Scheys et al., 2009), which the geometry of bones could be extracted 

from clinical images with an error of roughly two pixels (Testi et al., 2001). The sensitivity of 

calculated skeletal forces to changes of the model parameters has been investigated by 

several authors. Valente et al. (2015) showed that specifying different anatomy-based knee 

and ankle joints presented a difference in peak loading up to 2.40 BW at the knee and 1.54 

BW at the ankle. Furthermore, changes of the muscle physiological cross section area within 

the physiological range can lead to  variation up to 11% and 100% respectively for the 

calculated hip and muscle forces (Brand et al., 1986). The sensitivity analysis of 

individual muscle forces to perturbations in muscle parameters (e.g. the number of muscle 

lines of action, maximum isometric force, optimal lengths for fibre and tendon slack) with 

changing factors within the range of a ±10%, presented a variation in the calculated muscle 

forces up to 12.8 times the magnitude of the imposed parameter perturbations (Xiao and 

Higginson, 2010). Scaling a general pelvis model on personalised anthropometric 

information created a variation up to 30 mm for hip joint centre (HJC) location, and generated 

an error in the computed hip force in the order of 0.5 BW (Lenaerts et al., 2009).  

Validity of a musculoskeletal model  

The accuracy of musculoskeletal models for estimating joint contact forces and muscle has 

been validated by comparison with the experimental in vivo data of the same subject. The 
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validation of joint reaction forces can be performed in vivo by fitting an instrumented joint 

replacement into the patient’s body (Lund et al., 2012). Fischer et al., (2018) compared the 

simulation results of a musculoskeletal model of the lower limb for patients undergoing the 

Total hip arthroplasty (THA) with the corresponding in vivo measurements from the 

OrthoLoad database (Bergmann et al., 2016) during activity for 10 subjects . The mean error 

during peak loads ranged from 8% for level walking to 12% for one-leg stance, which was 

in consistent with the earlier studies with 10% and 13% error, respectively during level 

walking and one-leg stance phase (Stansfield et al., 2003). Furthermore, the computed 

muscle forces can be validated using EMG measurements by comparing the timing of the 

onset and offset of muscle activations. However, in this case, there is inconsistency between 

different studies. A better correlation was noticed for some muscles, such as gluteus 

maximus and gluteus medius, and a lower correlation for deep muscles, such as  biceps 

femoris, caput longum and semitendinosus (Modenese et al., 2011), which could be related 

to the approach taken during EMG measurements, such as defining the location of EMG 

electrode over the muscles and the neuromuscular junction or innervation zone. Therefore, 

in order to validate the results of joint contact loads and muscle forces computed by models 

and compare them to real life conditions, accurate experimental measurements are needed. 

Musculoskeletal models and their simulation protocols offers a unique tool which can 

not only be used clinically but can also help researchers in their respective investigations to 

study a wide range of scenarios (e.g. muscle function and various loading conditions). As a 

powerful tool, the musculoskeletal model can manipulate various parameters to determine 

how outputs differ and with what magnitude, without the need to recruit specific populations 

that fit into the study.  

 



 

 

                                                               43 

Femoral strain assessment 

In order to quantify femoral strain, different approaches and tools have been used by the 

biomechanics community. Experimental studies have used different tools such as 

extensometers (Boyd et al., 2001), strain gauges (Cristofolini et al., 2009), and, more 

recently, Digital Image and Volume Correlation (Acciaioli et al., 2018; Bettamer et al., 2017). 

However, the loads transferred to the bone through the joints and the very complex muscle 

structure are difficult to replicate experimentally (Acciaioli et al., 2018; Cristofolini et al., 

2009). Furthermore, strain gauges provide measurements limited to only a few superficial 

locations (Cristofolini et al., 2009; D'Lima et al., 2013), while more advanced methods such 

as Digital Image Correlation is restricted to the entire surface. Digital Volume Correlation is 

able to compute the femoral strain for the entire volume, however, the acquisition time 

required to analyse the structure of bone is expensive (Acciaioli et al., 2018; Bettamer et al., 

2017). Numerical methods can potentially provide the strain field over the entire volume and 

arbitrary complex loading condition. Early FE models were applied in computational 

biomechanics in the 1970s for the development of an idealised two dimensional model of 

skeletal parts (Brekelmans et al., 1972). Over time, more complex linear and non-linear 

models were developed and used in different engineering fields from mechanical 

engineering (Ghorbani Menghari et al., 2014; Ziaeipoor et al., 2014; 2010; 2013) to 

orthopaedic biomechanics (Taylor and Prendergast, 2015). 

One of the applications of the FE method in orthopaedic biomechanics is to compute 

bone stress-strain fields under defined loading conditions. The FE results then can be 

compared with experimental measurements to compute the difference. In  the case of 

human femurs under the loading case of single leg stance, studies have reported a strain 

prediction accuracy with a coefficient of determination ranging from 0.95 – 0.97 (Schileo et 
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al., 2008; Yosibash et al., 2007), whereas other studies performing femoral fracture 

assessment reported a coefficient of determination between 0.75 (Munckhof and Zadpoor, 

2014) and 0.96 (Imai et al., 2006). Furthermore, a good correlation (R2 = 0.95) was observed 

when the computed femoral strain was compared with the experimental measurements of a 

publicly available in vivo study (www.OrthoLoad.com, (Bergmann et al., 2016). This 

evidence presented a unique consistency of models in either topological or geometrical 

terms and showed that the available models can be used to study the typical patterns of 

physiological strain in elderly people ranging from 51-76 years of age.  

The next step toward the determination of femoral strain in vivo is to couple models of 

femoral mechanics with models of muscle and joint forces (Martelli et al., 2014b), which can 

be archived by integration of musculoskeletal-FE pipelines (Figure 3.1) at two different 

levels: single and multiple subject studies. The single-subject studies provide information 

about the biomechanical response of a single femur under various physiological loading 

conditions (e.g. motor tasks), like  assessing the femoral strain which may between the 

articular cartilage (Abrahamsen et al., 2009) and the femur shaft (Martelli et al., 2014b). 

However, the application of these single- studies requires the construct of a model for each 

patient and the entire model construction procedure needs to be repeated. Multiple-subject 

studies have the advantage of providing wider insight into the variation of femoral strain 

(Martelli et al., 2014b) and the risk of femoral fracture across a population (Qasim et al., 

2016). Furthermore, larger studies can be used to determine how anatomical and functional 

variations across individuals affect femoral strains (Martelli et al., 2015b). 

http://www.orthoload.com/
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Figure 3.1: A pipeline to compute the femoral strain during an intermediate frame of simulated stair 
ascent (c), which were developed by collecting the motion data (b), and coupling the 
musculoskeletal-FE models  (Martelli et al., 2014b). "Reprinted from ‘Clinical Biomechanics’, 29(8), 
Saulo Martelli, Peter Pivonka, Peter R. Ebeling; Femoral shaft strains during daily activities: 
Implications for atypical femoral fractures, 869 – 876, Copyright (2014), with permission from 
Elsevier". 

 
Validity of FE models of bone  

The prediction of femoral strain using FE models depends on several factors such as 

geometry, the material property of bone derived from CT scans, mesh generation procedure 

as well as the applied loading and boundary conditions (Taylor and Prendergast, 2015; 

Wagner et al., 2010). Therefore, reviewing these parameters would be helpful to gain an 

understanding about the critical aspects of building FE models of a femur.  

       The geometry and material properties of bone are key parameters for development of 

FE models and can be obtained from computed tomography (CT). Due to the presence of 

calcium in bone structure, a higher x-ray energy is absorbed by bone compared with the 
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surrounding tissue, resulting in well-contrasted edges (Winder and Bibb, 2005). The 3D 

bone geometry can be retrieved from the CT medical images via a process called bone 

segmentation, which requires labelling the region of interest (ROI) corresponding to bone in 

each CT slice using a partial or fully automatic process (Messmer et al., 2007). As a result 

of this process, the femur geometry is collected and converted into CAD format, and a 3D 

mesh can be generated using the available software (e.g. Simpleware) to subdivide the 

domain into a set of finite elements (Figure 3.2). 

The material properties of bone need to be extracted and mapped into the generated 

volumetric mesh (Figure 3.2). To extract the bone density, the CT images need to be 

calibrated via determining the relationship between the grayscale intensity values in the 

images and corresponding bone mineral density values. To achieve this, Hounsfield units, 

which are a standard unit of x-ray CT density can be related with a wide range of known 

phantom densities to form a linear calibration curve (Ciarelli et al., 1991; Rho et al., 1995). 

The density of the bone can then be converted into Young’s Modulus via the empirical 

relationships which are established experimentally (Keller, 1994; Morgan et al., 2003). To 

map the material properties of bone into the generated volumetric mesh two main 

approaches are used. First, assigning the density of each element directly from the CT 

sampling grid is done by finding the nearest point (Charras and Guldberg, 2000). Although 

this method is very simple to use, the accuracy of the mapped data can be affected when 

the element size is significantly larger that the CT grid (Charras and Guldberg, 2000; 

Weinans et al., 2000). The second approach uses all CT sampling points as a scalar field 

that fall inside the element volume, and assigns the average values to the elements, leading 

to grouping elements into groups of similar properties. However, this technique may not give 

satisfactory results when, the dimension of elements are of comparable measurement, or 
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smaller than the voxel size (Keyak, 2001; Ota et al., 1999; Taddei et al., 2004). As a result 

of calibration and material mapping, bone can be described as an isotropic (Geraldes and 

Phillips, 2014), anisotropic (Stolk et al., 2004), or orthotropic material (Geraldes and Phillips, 

2014). However, most FE studies assume that bone is a linear-elastic, isotropic, 

inhomogeneous material, enabling consistency in the prediction of cortical bone with a good 

correlation greater than 0.9 (Fitzpatrick et al., 2014; Martelli et al., 2015b; Taylor et al., 2017).   

 

Figure 3.2: Constructing the 3D model of a femur by assigning the material properties and geometry  

(Cilla et al., 2017), "With permission from PLOS ONE as an open access article with no changes, 

available from: https://doi.org/10.1371/journal.pone.0183755".   

    

The segmentation of bone has been characterised as a challenging part of developing 

a finite element model (Wang et al., 2006a). Manual segmentation of bone requires an 

extensive manual interaction, hence numerous approaches are used to speed up the bone 

reconstruction process such as contour extraction, thresholding (with morphological 

operations), the active shape based method (Pauchard et al., 2016; Wang et al., 2006a), 

and more recently, the active shape modelling technique (Yokota et al., 2013). For example, 

Pauchard et al. (2016) used an interactive graph cut segmentation method for rapid creation 

of FE femur models from clinical CT data for a population of bones, and compared the 
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obtained results to corresponding manual segmentation of the bone, and satisfactory 

agreement was observed with the average surface-to-surface differences of 0.22 mm and a 

high correlation for bone stiffness (R2 = 0.95), while reducing the user interaction time from 

20 to 35 min (manual) to 2–5 min. Furthermore, it has been accepted that more accurate 

geometry can be obtained using semi-automatic segmentation, supported by manual 

correction of the threshold provided by the operator, which employs sensitive edge detection 

filters to distinguish the apparent tissue types (Rathnayaka et al., 2011). However, the result 

of a threshold-based segmentation may vary depending on the threshold chosen (Testi et 

al., 2001). In addition, the accuracy of 3D bone geometry can be influenced by the resolution 

of CT scans and has been improved over time from a slice thickness of 5mm to clinical 

scans at 0.6mm voxel size (Taddei et al., 2006b). 

Another critical aspect is related to generating a volumetric mesh with a sufficient 

number of elements. Typically, three approaches have been used for mesh generation: 

structured, non-structured and voxel-based mesh. Structured mesh can generate more 

complex mesh (typically large hexahedral mesh) with accurate mapping of the material 

properties of different bone tissues, due to its advantage in defining the facets of the 

elements, and identification of the boundaries of bone tissues.  When the mesh is non-

structured, the mesh and the density distribution are perfectly registered in space, but the 

facets of the elements are not aligned with the CT axes nor with the boundaries between 

bone tissues, making the manual mapping of the material properties onto the finite elements 

complicated. In the voxel-based mesh generation technique, a pre-defined voxel from the 

CT scanning constitutes the elements, and there are no surface or solid bodies, and the 

mesh is directly defined from the CT voxel. Thus, the voxel-based mesh technique makes 

the process of mesh generation easier, since there is no need to process the images, but it 
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needs a mask for labelling the voxel. As well as this, generating the bone mesh using the 

voxel-based mesh technique is likely to introduce errors in the FE results as all surfaces 

present sharp edges (discontinuities) in stress concentration regions (Marks and Gardner, 

1993).  Furthermore, to evaluate the effect of mesh density on the corresponding FE results, 

Keyak and Skinner (1992) segmented the bone CT scans with the size of 1.38 mm and 

slices of 3 mm, and the FE model was meshed using the cubic elements with constant sizes 

of 4.8, 3.8 and 3.1 mm. They concluded that a consistency in the FE results was achieved 

when the minimum element size was in the order of 3mm.  In contrast, a poor convergence 

in the material property distribution was obtained when the element size was significantly 

larger than the pixel size of the source CT data (Perillo-Marcone et al., 2003). Furthermore, 

in order to have a convergence in the FE results, the bone was meshed typically using 

approximately 100,000’s first, or second order tetrahedral elements. While fine mesh is 

needed for the bone’s region with a thin cortex (e.g. femoral neck), the mesh size can be 

larger in the diaphysis with the cortex in the range of 2-3 mm (Martelli et al., 2014b; Taylor 

et al., 2017).           

Loading and boundary conditions  

Femoral loads are determined by a complex muscle activity driven by the sensorimotor 

control system, which determines muscle synergies in response to a variable motor demand. 

The early FE models applied simplified loading cases, for example, using joint reaction force 

along with a few muscle forces, to explore the distribution of stress-strain within the femur 

(Rohlmann et al., 1983; Taylor et al., 1998). This idealised model provided  good consistency 

in the stress-strain values in the proximal neck compared to distal diaphysis, but  errors 

increased to 100% distally (Polgar et al., 2003). Later, the models became physiologically 

more realistic by adding more muscle forces, leading to a reduction on the overall bending 
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movement, and consequently reduced the generated stress-strain values in the diaphysis 

femur (Munih et al., 1992; Simoes et al., 2000). However, there was still considerable 

uncertainty in selection and simplification of a loading configuration that ensured realistic 

predictions from pre-clinical tests. An illustration of this is when the neglect  of certain muscle 

forces happens, such as glutei, which can significantly change the internal forces within the 

femur (Duda et al., 1997), and correspondingly, the stress and strain distributions of the 

femur (Duda et al., 1998; Polgar et al., 2003). Furthermore, while some studies only 

considered a reduced set of loading conditions typically associated with particular loading 

such as stance phase of gait (Taylor et al., 2012; Taylor and Prendergast, 2015; Van et al., 

2011), others investigated the biomechanical response of bone under various loading forces 

during multiple activities and multiple trials, such as  normal walking, fast-walking, stair 

ascent/descent and chair rise (Martelli et al., 2014b). Other studies investigated the 

biomechanical response of a bone under the load conditions taken from other individuals, 

leading to uncertainty in the computed strain field due to the variation in the applied forces, 

such as joint reaction force which can differ by 2-4 BW.  

Despite the great advancement in fidelity of the bone FE models, the models were still 

not used for a large scale studies of bone, with the majority of studies using either a single 

(Martelli et al., 2014b; Simoes et al., 2000; Taddei et al., 2006a) or small set of bone models 

(Martelli et al., 2015b), and extrapolating the results for the population as a whole. 

Furthermore, current models are not able to incorporate the large geometric and material 

quality variation that exists between individuals influenced by gender, age, ethnicity, 

underlying pathologies and their type of daily activities (Peacock et al., 1998; Theobald et 

al., 1998). Hence, it is essential to increase the size of FE models from single subjects to at 

least large cohorts to populations. 
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Population-based studies 

Several FE studies have been conducted to quantify the femoral strain during motion for 

multiple subjects. At early stages, larger FE models was started by looking at 10’s of bone 

models. For example, Lengsfeld et al. (2005) compared the strain values between implanted 

and intact contralateral hips by performing FE models for 11 subjects. Radcliffe and Taylor 

(2007)  used an FE model consisting of 16 proximal femurs to investigate the effect of 

cement mantle thickness in femoral resurfacing. Martelli et al. (2015) applied a coupled 

musculoskeletal-FE model for 10 participants under six weight-bearing tasks to understand 

how scaling a scaled-generic musculoskeletal model to a participant's anatomy propagate 

to participant-specific (intra participant) femoral strains, and average (inter-participant) 

femoral strains within a cohort. Kersh et al. (2018) quantified the strains at the proximal 

femur for 20 postmenopausal women to identify specific muscle loading during jumping and 

stair usage to exploring the parameters affecting fracture risk, such as bone loss and bone 

formation (Kersh et al., 2018). These population-based studies were limited to about 20 

subjects, but from a clinical point of view, studies with a large number of subjects are needed 

to provide a better understanding of biomechanical variation across individuals for particular 

clinical applications (Bryan et al., 2009). A major barrier in running multi-subject studies of 

bone as a commonplace practice is associated with the task of creating and running models 

from CT scans which will be time-consuming and labour-intensive tasks unless automated 

generation techniques are available. A viable solution is to use the statistical models of bone 

as a source for FE models.         

The two main types of statistical models are the active shape model (ASM) and the 

active  appearance model (AAM) which respectively describe the average shape and density 

distribution together with the main modes of variation within a population (Sarkalkan et al., 
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2014b). SSMs and SAMs are built using a set of training datasets which provides a-priori 

information about existing variation in the shape and density of population (Bryan et al., 

2010). To build a statistical model the training datasets need to be registered to establish a 

correspondence between two shapes, so that the registered training data is provided in the 

same coordinate axis (x, y, and z) with an equal number of points, which are relatively 

located in a close area of the model.  To perform such a registration, two techniques can be 

used: Rigid or non-rigid registration. Rigid registration assumes the objects being 

transformed and matched are rigid, allowing them to be translated and rotated with 6 

degrees of freedom. The Iterative Closest Point (ICP) algorithm is a common registration 

technique which has been used for rigid registration of objects (Vos et al., 2004). ICP uses 

a cloud of points for matching the surfaces of objects with the advantage of not requiring a 

predefined relationship between points. However, rigid registration techniques do not 

account for deformation/shape changes. In these cases, non-rigid registration techniques 

such as elastic registration can be used as a deformable mesh registration tool for alignment 

of a pair of surface meshes (Bryan et al., 2010 and 2012). This non-rigid surface registration 

technique uses an elastic matching algorithm iteratively to deform the baseline surface 

vertices, as the reference, to capture the geometry of the target bones by matching the given 

surfaces. The outcome of the surface registration technique is a three-dimensional 

correspondence between the baseline femur and target femurs. In a  subsequent step, a 

volumetric meshing approach is applied to use the baseline mesh as the template for all the 

target mesh while tracking the moving/perturbed surfaces of the target femurs, which results 

in generating a unique mesh with the same number of nodes and elements for the entire 

bones (Bryan et al., 2012). Such a non-rigid registration scheme was successfully applied 

earlier by Bryan et al., (2010 and 2012) for building a statistical model based on principal 

component analysis (PCA). Bryan et al. (2010) developed a combined active shape and 
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appearance based on the PCA method using a training set of 46 femurs. The model 

performed well when 35 or more modes of variation of shape and density were used. The 

developed model was able to produce 400 synthetic femurs which were required for building 

FE simulations. It was highlighted that the registration scheme must be able to accurately 

capture the complex variable shape and material distribution of the femur. 

The performance of PCA can be effected by the quality of image segmentation 

(Sarkalkan et al., 2014b) and by the number of samples (e.g. bones) chosen to represent 

the population (Grassi et al., 2014). In terms of errors associated with image segmentation, 

the reported mean segmentation errors of normal vertebrae varied from 0.47 mm (Iglesias 

and de Bruijne, 2007) to 0.82 mm (Roberts et al., 2012)  and for semi-automatic 

segmentation errors ranged from 0.73mm (Mysling et al., 2013) to 0.93 mm (Roberts et al., 

2009) and for automatic segmentation increased to 2.27 mm (Roberts et al., 2009) for the 

automatic segmentation of fractured vertebrae. Moreover, the number of bones which were 

used to represent the variation in density and geometry could affect the performance of PCA 

models (Zheng et al., 2009). According to one of the biggest active shape models developed 

from 115 femurs, the mean geometrical error can be as low as 0.5 mm, while the peak error 

can reach 5 mm in the condyles region (Grassi et al., 2014). It was concluded that the main 

source of error was due to the insufficient number of specimens to fully reproduce the 

anatomical and deterministic variability of the reference population (Grassi et al., 2014). 

Hence, the main challenge during building a statistical model of bone using PCA models 

can be associated with the number of bones used for generating the training datasets. Keyak 

et al. (2001) explored the application of PCA models for computational-experimental work 

using a relatively small number of femurs, 18, and noted that a good agreement can be 

achieved between the experiments and results of statistical models if the statistical models 



 

 

                                                               54 

can replicate the experiments accurately using a sufficient number of femurs representing 

different bone morphologies (Keyak et al., 2001; Sarkalkan et al., 2014b). Furthermore, PCA 

methods have been used successfully for various applications in bone-related research, 

such as assessing the risk of femoral neck fracture (Bryan et al., 2009) and investigating the 

effect of femoral head resurfacing on the bone-prosthesis load transfer (Bryan et al., 2012). 

Therefore, statistical models provide a potential source for large scale studies of FE models 

of bone (Bryan et al., 2009) with thousands of simulations. This could potentially, in the long 

term, provide an efficient computational tool for particular clinical applications such as 

designing implantable devices for a specific patient (Low et al., 2000). 

 
Conclusion 

In conclusion, FE models have the potential to be of clinical benefit, although building the 

models, generating a solution, and interpreting the results are time and labour-intensive. 

There are several bottlenecks in the process, including generating the model from clinical 

images through to the solution phase. Various groups are exploring methods to rapidly 

segment and generate the finite element models from CT scans. The next major issue is the 

solution phase, which needs to be faster so that it can be used for clinical applications which 

require quick diagnosis and treatment planning. If predictions could be made in seconds or 

minutes this could promote the development of clinical applications and large-scale studies 

of femoral strain.  
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Rapid prediction of femoral strain 

Computing the femoral strain in real or near real-time is important for various biomechanical 

applications, such as predicting femoral strains at different regions of interests (e.g. neck 

and shaft) during multiple activities and trials, allowing to examine the risk of femoral fracture 

(Martelli et al., 2014a; Martelli et al., 2014b), and studying large scale statistical models of 

femur mechanics with 100’s (Martelli et al., 2015c) to 1000’s (Martelli et al., 2015a) of loading 

cases during activity (Martelli et al., 2015a). Rapid estimation of femoral strain can also be 

applied for implanted femurs, either to study the influence of surgical variability in implant 

positioning on the primary stability of them (Al-Dirini et al., 2019), or to improve the design 

of implants by computing the level of micro-strain between bone and implants (Bieger et al., 

2012). Furthermore, quantifying femoral strain efficiently can be useful for specific clinical 

applications, such as providing biofeedback to patients and  clinicians during rehabilitation 

(Pizzolato et al., 2017b).  

As mentioned in the previous chapter, The Finite Element method has been used for 

decades extensively as a powerful and invasive computational tool (Taylor and Prendergast, 

2015). However, the current workflow for building and solving an FE model is a time 

consuming, labour intensive, and a lengthy process, requiring different steps: obtaining 

patient anatomic geometries using images (e.g. CT scans and MRI images) segmentation 

(Rathnayaka et al., 2011), extracting the material properties of bone via calibration and 

mapping the density distribution (Taddei et al., 2004) specifying the loading and boundary 

condition in the FE model (Keyak et al., 2001), and submitting the FE model to an FE solver 

(e.g. explicit or implicitly) to obtain the FE results. The entire process may take anywhere 

from hours to days depending on the complexity of the model and the power of the computer 

in terms of the number of CPUs and RAM capacity. Therefore, the adoption of the FE 
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method in clinical applications has been hampered by its complex workflow, which requires 

intensive computational costs and clinicians with high technical competency. Various groups 

have begun to speed up the process of building FE models, for example by automating the 

image segmentation process and creating FE models from CT scans (Carballido-Gamio et 

al., 2015; Pauchard et al., 2016). Therefore, difficulty remains in increasing the speed of the 

solution phase. If the solution phase can be reduced to seconds or minutes, it  means that 

predictions could be conducted in clinics and can be used for rapidly estimating the femoral 

strain field in large-scale studies with 100s to 1000s of simulations (Martelli et al., 2015a).  

A viable alternative approach is to approximate and replace the expensive finite 

element model with cheaper-to-run surrogate models, which can be trained using finite-

element calculations of femoral strain for a limited number of training sets and then used to 

rapidly provide femoral strain estimates for an arbitrary frame of motion or an entire activity. 

The performance of such a surrogate model can be evaluated by assessing efficiency and 

efficacy (Wang et al., 2014). Efficiency refers to the time required for performing a prediction, 

and efficacy refers to the errors which happen in predicting a set of target measurements. 

Constructing a surrogate model is comprised of three key steps: generating the samples 

from the original data by implementing suitable sampling methods; training the surrogate 

models by fitting an analytical equation to determine the relationship between variables, and 

predicting the outcome for unseen data (Taylor et al., 2017).  

Generation of the training dataset 

The performance of a surrogate model depends on the training datasets used (Fitzpatrick 

et al., 2014; Taylor et al., 2017).  A suitable training dataset needs to be representative of 

the entire data with a minimum level of clustering, which is a problem in terms of generating 
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the same or similar samples from the data (Han and Zhang, 2012). Popular sampling 

methods used are: Monte Carlo (MC) sampling; Latin hypercube (LH) sampling and Design 

of Experiment (DOE) sampling. Monte Carlo (MC) sampling uses random sampling from the 

original data. However, MC sampling often requires a large number of samples due to 

clustering, to ensure that the surrogate model represents the original simulation model well, 

leading to an unnecessarily increase in the size of training datasets, and training 

computational costs (Han and Zhang, 2012; Laz and Browne, 2010). Latin hypercube 

sampling which was first described by McKay in 1979, is a modified form of MC sampling 

and can cover the entire data by generating fewer number of samples compared to MC 

sampling. Latin hypercube sampling uses a random basis approach to generate samples by 

partitioning the data into sub-regions to ensue that all the probability regions are covered 

(Han and Zhang, 2012). The design of the experiment generates samples which are 

randomly similar to LH sampling, but tries to avoid the problem of clustering by removing the 

samples which are generated from the same or close regions, to ensure that the samples 

are the representative of the region of the data. Hence, the DOE method can capture the 

charactersitics of the entire data by generating fewer numbers of samples (Anthony Giunta 

et al., 2001).  

Surrogate modelling techniques 

A variety of surrogate models have been used by the biomechanics community including 

Multivariate Linear Regression (Fitzpatrick et al., 2014; Taylor et al., 2017), Bayesian 

modelling (Bah et al., 2011), Artificial Neural Networks (Eskinazi and Fregly, 2015; Liang et 

al., 2018; Taylor et al., 2017), Random Forest (Donaldson et al., 2015) and Kriging (Lin et 

al., 2009; O'Rourke et al., 2016; Walter and Pandy, 2017). This is either for linear problems 

such as assessment of femoral neck fracture (Taylor et al., 2017), or for non-linear problems, 
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such as modelling the contact between bone and implants (Fitzpatrick et al., 2014). The 

majority of studies applied the surrogate models for predicting a single scalar outcome, such 

as joint moments and muscle forces (Favre et al., 2012), contact forces and contact pressure 

(Eskinazi and Fregly, 2015; Halloran et al., 2009; Lin et al., 2009, 2010a; Pizzolato et al., 

2017b; Walter and Pandy, 2017), fracture load (Taylor et al., 2017) implant micromotion 

(Bah et al., 2011), and stress shielding (Cilla et al., 2017). Other studies used surrogate 

modelling to estimate the full filed of outcome variables like the micromotion between bone 

and implants (Fitzpatrick et al., 2014). A brief overview of the characteristics of the most 

popular surrogate modelling techniques is provided in the following sections.  

Artificial neural network 

The artificial neural network (ANN) method is a computational method which was inspired 

by neural networks to process information in the human brain. This method consists of some 

basic units known as neurons. Each neuron is responsible for receiving the input data from 

other neurons or other external sources while communicating with other neurons via hidden 

layers using a system of weighted 'connections' (Figure 4.1). Once a training dataset 

including a set of inputs and the resultant outputs is fed to the network, the network ‘learns’ 

the interaction between inputs and outputs and stores the learned parameters  in the form 

of numeric weights (Mouloodi et al., 2019b). The obtained set of weights enable the model 

to estimate the output of interests for a ‘new’ set of input that have not been seen by the 

network before. 
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Figure 4.1: Different elements of a multi-layer artificial neural network. 

 

The ANN method has been used in the orthopedic biomechanics community for 

reducing the computation cost of simulation-based studies, with application in contact 

mechanics (Ardestani et al., 2015; Eskinazi and Fregly, 2015), and non-contact mechanics 

(Taylor et al., 2017). The contact based models were used, for example, for assessing the 

primary fixation of joint replacement (Bah et al., 2011), and optimising the geometry of 

commercial short stem hip prosthesis in order to reduce stress shielding effects and improve 

the performance of short-stemmed implant performance (Cilla et al., 2017), while the non-

contact based models were used for particular applications, such as estimating femur load 

fracture (Taylor et al., 2017). 

 

Eskinazi and Fregly (2015) used feed-forward ANNs to develop a surrogate contact 

model using the elastic foundation (EF) contact model of an artificial tibiofemoral joint during 

activity. The artificial netural networks were constructed using four hidden layers of 30 
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neurons each and a single linear output neuron. The joint contact condition was divided into 

seven different domains and a portion of the samples were extacted from each domain to 

generate the training datasets (100 – 300 samples). Using this model it was feasible to 

estimate the forces and torques about 1000 times faster than EF contact model. They used 

10 percent of the sample points as unseen data to evaluate the performance of the surrogate 

model and relativey low errors were observed with RMS errors  fewer than 1% of the peak 

contact force reported for walking. Furthermore, the authors noted that the performance of 

the model was bound to the quality of the distribution of samples and the number of samples 

chosen from each domain.  

Taylor et al. (2017) developed an ANN based surrogate model with a two-layer feed-

forward network using 10 hidden neurons and one linear output neuron to predict femoral 

neck strains and corresponding fracture loads. The training sets of of 50, 100, 200, 500, and 

1000 femurs were used to train the surrogate models and 100 femurs (10% of the data) 

were used as unseen data for testing. The performance of the surrogate models was shown 

to be a function of the size of training datasets by reducting the RMSE error in mean 

equivalent strain from 0.019 to 0.013% when the sample size increased from 50 to 500. A 

good corelation was nocticed between the predictions of FE-based and ANN surrogate 

models (R2 = 0.92 – 0.98); the greatest variation tended to occur at higher fracture loads 

(e.g. , above 10,000 N for the level gait). Although the ANN method is shown to be a potential 

technique for estimating the full field of femoral strain (Taylor et al., 2017), this technique 

provides an effective solution when the optimum number of artificial neurons are known, 

otherwise the model may show poor performance during prediction (Cilla et al., 2017). 

Furthermore, determination of the optimum number of neurons and layers demands an 
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iterative try-and-error approach, henceforth identifying and training an optimal form of ANN 

can be a laborious process.  

Multivariate linear regression 

The Multivariate linear regression (MLR) method is an extention to linear regression, but 

instead of relating one outcome variable to one independent variable, it relates multiple 

independent variables to the dependent outcome. The MLR model has been applied in 

orthopedic biomechanics for different purposes. Taylor et al. (2017) used the MLR method 

to identify the key variables between different variables (e.g. femur length, femoral head 

diameter, femoral neck bone mass, etc.) that made a significant contribution to the output 

metrics. The identified variables with a p-value lower than 0.05 (significance level) were then 

included to build an ANN based surrogate model. Fitzpatrick et al. (2014) sucessfully applied 

the MLR method for estimating the full field of outcome in a linear elastic model. They trained 

a MLR based surrogate model to predict the micromotion field over the entire bone-implant 

interface for six patients during motion, while the training datasets were generated using the 

Latin Hypercube (LH) sampling method. A better correlation between the predictions of MLR 

and FE simulations was observed when 200 or more samples were used for training the 

model. The RMSE error was reduced from 8.3 ± 5.5 micromotion for 50 samples to 6.4 ± 

4.2 micromotion for 200 samples, followed by a small improvement for 1000 samples 

reaching  6.2 ± 3.8 in  micromotion. In terms of efficacy, FE analysis time for a complete 

gait cycle discretised into 51 increments using four computational processing units (CPUs) 

which was 15 h compared to 30s for the MLR model, revealing the capability of the MLR 

method for rapid prediction of full field of outcomes under a set of loading conditions. 

Although the applicability of the  MLR model has been used for weak non-linear systems to 

model the full field of micromotion between bone and implants (Fitzpatrick et al., 2014), its 
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validity for predicting the outcome of interest in non-linear simulations has to be proven 

(Bevill et al., 2005; Cosmi et al., 2006). 

Multivariate adaptive regression splines 

Multivariate adaptive regression splines (MARS) are a flexible statistical method which has 

not been used in computational biomechanics, but has shown to be effective in large 

computational studies in earth science (Wang et al., 2014). This technique uses an 

automatic algorithm which involves a divide-and-conquer strategy to partition the training 

datasets into separate linear-cubic equations known as ‘basis functions’ (Kyra E. Stull, 

2014). Such a partitioning algorithm allows for improved description of  the linearity of the 

model by fitting a separate function for each portion of data (Zhang and Goh, 2016). While 

MARS showed capability for use in linear and non-linear models (Friedman and Roosen, 

1995) unlike other methods such as the ANN method, MARS does not need prior information 

for building surrogate models. However, MARS needs to go through a forward and backward 

iteration process during fitting the model over each partition of the data, which may lead to 

increased compuational costs required for building the model over traditional MLR models 

(Friedman and Roosen, 1995). 

Bayesian network 

The Bayesian network is a statistical method aimed at determining the probability 

distributions of observed variables. A Bayesian network is essentially graphical modelling, 

in which dependencies among variables are depicted in a graph, with the nodes 

representing variables, and the arrows representing statistical dependencies between 

variables (Figure 4.2). So, as an arrow from A to C indicates that by knowing the A point, it 

is feasible to predict C.  
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Figure 4.2: A graph representing the Bayesian network, including variables (circles), and statistical 
dependency between variables (black arrows). 

 

The Bayesian network has been used as a replacement for non-linear FE models to  

assess the effects of implant positioning on the initial stability of a cementless total hip 

replacement (Bah et al., 2011). It was observed that RMSE errorrs (micromotion) for the 

region of interest reached to 3.6% (Bah et al., 2011). Therfore, the bayesian network has 

shown great potential in accounting for all the probabilities of a design and can be useful for 

improving the design of implantable devices. However, the Bayesian network can be 

computationally expensive for large scale studies, such as statistical models of femurs with 

thousands of loading cases (Martelli et al., 2015a), since it needs to determine the probability 

of the observed variables. 
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Gaussian process 

The idea of  the Gaussian Process  (GP) was initially proposed as a classical statistical 

method by O’Hagan in 1978, and was used later in the 1990s as a common regression (and 

classification) technique for improving computational power for large data sets. The  

Gaussian process (GP) is a capable method to model both linear and non-linear systems. 

The main characteristic of the Gaussian process is it provides a trade-off between fitting the 

data and smoothing it out, and it can handle noisy training datasets while capturing the 

precise trend of the data (Wang and Shan, 2006). Furthermore, as the GP method is 

designed based on a probabilistic algorithm, it is feasible to use it for computing the empirical 

confidence intervals by refitting or adaptation over the given training datasets (Ackermann 

et al., 2011). 

During building a Gaussian process the user can provide a-priori knowledge and 

specifications about the shape of the model by selecting different kernel functions. The 

flexibility of the Gaussian process is that by building models using an appropriate function 

helps to model the non-linearity of the training datsets and is an advantage compared with 

other models, such as neural networks. The Gaussian process has been used successfuly 

in various engineering fields such as mechanical engineering (Xia et al., 2011) and earth 

science (Jin, 2011). The Gaussian process has shown that it is capable of estimating the 

pattern of gait kinematics by computing the joint and motion trajectory with error in the order 

of 0.1 to 7 degrees (Yun et al., 2014). It was shown that Gaussian process can be used as 

a nonlinear regression algorithm which is suitable for databases whose input (e.g. body 

parameters) has high dimension and the input paramters are highly correlated (Yun et al., 

2014). 
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Kriging method 

The Kriging method predicts the value of a function at a given point as the weighted average 

of known values in the neighborhood points. The Kriging method has been used in 

orthopaedic biomechanics for reducing computational costs in repeated FE analysis, such 

as stochastic analysis of strain in the human pelvis (O'Rourke et al., 2016), sensitivity 

analysis of total knee replacements (Lin et al., 2009), or optimisation approaches (Lin et al., 

2010b). The stochastic analysis of wear in knee replacements showed that computation time 

can be reduced from 284 h per analysis for simulations to 1.4 h for the surrogate contact 

models (Lin et al., 2009). Furthermore, the Kriging method can be used for sensitivity 

analysis when all the influential input parameters and interactions are identified and used in 

developing surrogate models for predicting acetabulum micromotion (O'Rourke et al., 2016). 

Kriging-based models have been used in multi-body contact problems (Lin et al., 2009; 

Walter and Pandy, 2017) for predicting  tibiofemoral contact forces, patellofemoral contact 

forces and muscle forces occurring simultaneously in the knee during walking. This 

technique was shown to be efficient for modeling dynamic contact and wear simulations of 

total knee replacements by reducing the computational costs of simulations by 50 times (Lin 

et al., 2009). While the Kriging method has been used sucessfully for various biomechanical 

applications, Kriging-based models suffer from two disadvantages: firstly, as this model is 

able to interpolate a relatively low number of sample points at a time, thus training the model 

would be very computationally expensive and needs a considerable amount of memory, 

particularly when the sample points increases. Secondly, the most common implementation 

of Kriging interpolates the data, which affects the performance of the surogate model in 

relation to the noise in the data. Specifically, this can be problematic for element based 

surrogate models whenever a proportionately small number of elements with a coarse mesh 

are loaded during low loading conditions (Fitzpatrick et al., 2014). 
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Table 4-1: Summary of the popular surrogate modeling in orthopaedic biomechanic. 

Surrogae 
model/ 
Feature 

 
        Application 

Sampling 
Information 

 
Computational 

costs 

Performance 
assessment 

Computer 
Information 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Artificial 
Neural 

Network  
 
 
 

Estimating forces 

and torques via 

contact modeling of 

an artificial 

tibiofemoral joint 

 

(Eskinazi and 

Fregly, 2015) 

 

100-300 

samples were 

generated for 

each domain 

 

The average 

prediction time 

improved by 

17, 000 times. 

RMS error was 

less than 1% of 

the peak 

contact force 

reported for 

walking 

PC, Intel® 

Xeon® 

Quad Core 

3.1 GHz 

processor 

Computing contact 

pressure at the 

medial tibiofemoral 

interface of a 

knee implant during 

 

(Ardestani et al., 

2015) 

214 gait 

cycles for 

training, and 

74 gait 

cycles) for 

validation 

and testing  

  

The average 

prediction time 

improved by 

80 times. 

Normalised 

RMSE error 

ranged from 5.7 

– 10.4% across 

different 

subjects 

 

CPU (Dual-

Core CPU 

2.93 GHz, 4 

GB RAM) 

Prediction of 

femoral neck strains 

and corresponding 

fracture loads 

 

(Taylor et al., 

2017) 

Training 

datasets of 

50, 100, 

200, 500 and 

1000 

generated by 

LH sampling.  

Training time 

= 1 sec; 

prediction time 

for one single 

load case = 

0.002 sec. 

R2 = 0.92-0.98;  

Average 

RMSE,% strain 

0.012-0.022 

(500 samples is 

needed) 

PC, 8 GB 

RAM 

Prior information is required for building the networks (e.g. numer of neurons), but can be applied 
for linear and non-linear systems. 
 

 
 
 
Multivariate 

Linear 
Regression  
 

To predict 

micromotion over 

the entire bone–

implant interface. 

 

(Fitzpatrick et al., 

2014) 

Generating 

cohorts of 10, 

50, 

100, 200 and 

1000 samples 

using LH 

sampling. 

 

 

The prediction 

time improved 

by 1800 times. 

 

RMSE Error 

6.4 ± 4.2 

micromotion; 

R2 = 0.83  

(200 samples is 

needed) 

   

 

 

Four 

processing 

units 

(CPUs) 

Can be applied for linear or weakly non-linear systems, not suitbale for highly non-linear models 
(e.g. wear modeling). 

Multivariate 
adaptive 

regression 
splines  

 
No prior information is required and is able to be applied for linear or highly non-linear systems, 
and the outcome can be presented in simpler, easier-to-interpret models. This method has never 
been used in biomechanics. 
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Bayesian 
network 

 

 

To study the effect 

of implant 

positioning on the 

initial 

stability of a 

cementless total hip 

replacement 

 

(Bah et al., 2011) 

 

Latin 

hypercube 

sampling 

technique 

was used to 

pre-define 58 

implant 

positions 

 

 

The 

computational 

costs reduced 

by 

approximately 

2000 times. 

Average and 

peak RMSE for 

the region of 

interest (bone-

implant 

interface) with 

greater than 50 

micromotion 

were 0.5% and 

3.6%, 

respectively 

 

 

A cluster of 

seven dual-

core 

processors 

each with 8 

GB of RAM 

Can be used for contact modeling (weakly non-linear models), however, as it computes an 
extensive probability analysis betveen variables, it can be computationally very expensive for 
large scale studies (e.g. multiple subjects with different load cases). 

 
 

Gaussian 
process 

 
Can be used for non-linear systems, and provides a trade-off between fitting the data and 
smoothing out, allowing to handle noisy training datasets.  This technique has been used for 
estimating the pattern of gait kinematics (Yun et al., 2014), which was not fit with the contents of 
this table.  
 

 
 
   
 
   
 
     
   Kriging  

To predict the 

contact 

and wear in total 

knee replacements 

 

(Lin et al., 2009) 

 

300 samples 

were used to 

train the 

model  
 

 

The prediction 

time improved 

by 60 times 

Surrogate 

models 

produced wear 

volumes within 

0.5% error,  

compared to 

simulations 

 

 

 

3.4 GHz 

Pentium IV 

PC 

Sensitivity analysis 

of the FE model of 

intact hemipelvis 

to determine the 

most influential 

input parameters 

and their 

interactions on 

equivalent strains 

 

(O'Rourke et al., 

2016) 

Training sets 

were consist 

of 10, 20, 30, 

40, 50, 100, 

and 200 

sample 

points.  

 

The 

computational 

costs reduced 

by 

approximately 

24 times. 

The median 

RMSE error 

ranged from  

2.7–178.9; and 

the peak error 

ranged from 

134.5– 5383.2 

microstrain 

 

 

Eight CPUs 

(Intel 

Xeon 2.4 

GHz 

processor, 

32 GB 

RAM) 

Can be used for non-linear simulations (e.g. wear modeling), but can be computationally very 
expensive for large datasets, and is very sensetive to noisy data.  
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Conclusion 

A variety of surrogate models have been used by the biomechanics community to reduce 

the computational costs required by FE models, including artificial neural networks (Cilla et 

al., 2017; Eskinazi and Fregly, 2015; Taylor et al., 2017), multivariate linear regression 

(Fitzpatrick et al., 2014), multivariate adaptive regression splines (Friedman and Roosen, 

1995; Wang et al., 2014), the Kriging method (Walter and Pandy, 2017) and the Gaussian 

process (Seeger, 2004). However, the performance of each surrogate model is bound by 

the scope of training data (Forrester and Keane, 2009; Jin et al., 2001) meaning that, for 

example, a surrogate model trained on level gait is unlikely to be as effective in predicting 

musculoskeletal loading patterns for activities with a higher degree of variability such as 

stumbling and jumping. Furthermore, the performance of surrogate modelling techniques is 

dependent on the application type. For example, while the multivariate linear regression is 

a suitable technique for linear or weakly non-linear models (Fitzpatrick et al., 2014), it is 

likely to be less effective for non-linear systems, such as modelling the wear mechanism 

between bones and implants (Bevill et al., 2005; Cosmi et al., 2006).  
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Introduction 1 

Among the surrogate modelling techniques, multivariate linear regression (MLR) has been 

demonstrated to be one of the most efficient methods (Fitzpatrick et al., 2014) which was 

applied previously for different biomechanical applications, such as predicting femoral neck 

strain (Kersh et al., 2018), sensitivity analysis of fracture load (Taylor et al., 2017) and 

estimation of micro-movement at the bone implant interface (Fitzpatrick et al., 2014). 

However, the error and the computational advantage of MLR over finite-element models 

remains unclear for the calculation of strain over the femoral volume and across normal 

activities of daily living. This chapter aimed to explore the efficacy and efficiency of MLR 

method as the simplest surrogate modelling technique for rapid prediction of femoral strain 

fields during normal activities, including normal-walking, fast walking, stair ascent, stair 

descent and chair sitting, with different repetitions for each task, here referring to ‘trials’.   

Materials and methods 

A coupled musculoskeletal and finite-element was taken from the previous work (Martelli et 

al., 2015b) to calculate muscle and joint forces and femoral von Mises strain for a single 

healthy participant (female, 68-year-old, 53 kg weight, 157 cm height). All experimental and 

computational methods are described in detail by Martelli et al. (2015) and Dorn et al. (2012), 

respectively and described briefly below. 

Data collection 

                                            

1 The work presented in this chapter has been published in Medical Engineering and Physics. 

 
Ziaeipoor, H., Martelli, S., Pandy, M., Taylor, M., 2018. Efficacy and efficiency of multivariate linear regression 

for rapid prediction of femoral strain fields during activity. Medical Engineering and Physics 63, 88–92. 
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The CT images of pelvic and thigh region was provided for the participant was taken from 

the previous work (Martelli et al., 2015b), where more details about data collection, 

experiments and tools could be found. However, for the sake of completeness, the details 

of this work are summarized here. The images were provided using two different scanners 

from both whole body and axial sides, while a sample calibration phantom was placed below 

the participant's dominant leg during scanning, providing images with the slice thickness of 

0.5 mm and, the spacing of 0.5 mm. Gait analysis was recorded at the Biomotion Laboratory 

in University of Melbourne which was equipped with a 10-camera motion capture system 

(VICON, Oxford Metrics Group, Oxford) and sampling at 120 Hz. Forty-six reflective markers 

were attached to the skin at different anatomical landmarks described by Dorn et al. (2012), 

comprising the pelvis (3), thigh (6), shank (5) and foot (6), while the rest of markers were 

used for upper extremities and torso. The Ground reaction forces and moments were 

recorded using a force platform equipped with three strain-gauged (AMTI, Watertown, MA) 

sampling at 2000 Hz. Marker trajectories and ground reaction forces were recorded for five 

trials of each of the following five tasks: walking at the self-selected speed (normal walking), 

fast walking, stair ascent, stair descent, and rising from and sitting down on a chair (chair 

rise). Trials with incomplete marker trajectories were discarded, resulting in five repetitions 

for normal walking, fast walking and stair descent; four trials for stair ascent; and one trials 

for chair rise (Figure 5.1). The marker trajectories were labelled using a VICON motion 

capture system (Vicon, Oxford, UK), saved as c3d files, and then converted into OpenSim 

format using MOtoNMS (Mantoan et al., 2015).  
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Figure 5.1: The magnitude of hip joint reaction force expressed in Body Weight (BW) for the 
investigated normal activities. 

 

A previously developed musculoskeletal model (Martelli et al., 2015b) with 12-segment 

and 92 Hill-type muscle–tendon units proposed by Delp et al. (2007) was scaled to the 
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participant mass and anthropometry using measurements of body weight and segment 

lengths acquired during a static trial (Figure 5.2). The mass of the generic model was scaled 

to match that of each participant by computing the mass ratio between segments in the 

generic model. The distance between markers recorded during a stance trial was used for 

scaling different parameters, including joint centres, bone geometries, joint rotation axes, 

fibre lengths, muscle paths and tendon slack. A ball-and-socket joint was used to represent 

each shoulder, lumbar joint, and each hip; each knee joint was represented as a translating 

hinge joint; a universal joint was used for representing each ankle.  While, the elbow and 

shoulder joints were actuated by 10 ideal torque motors, all other joints were simulated using 

Hill-type muscle–tendon units. The centre of hip joint was determined as the centre of the 

sphere used to best-fit the femoral head surface. The knee axis was assumed to be placed 

on the axis which connects the femoral epicondyles. Muscle paths was also registered on 

the skeletal surfaces by placing the muscle lines-of-action onto the CT data. The optimum 

length for muscles and tendon slack was determined by scaling the values reported by Delp 

et al. (1990), so that each muscle develop its peak isometric force at the same joint angle. 

Finally, joint angles, muscle forces, and joint reaction forces were calculated using, 

respectively, inverse kinematics, static optimization and joint reaction analysis tools 

available in OpenSim (Delp et al., 2007). 
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 Figure 5.2: (a): CT data used to define the material properties and geometry; (b): The motion capture 
system in Vicon Nexus used to generate marker trajectories and ground reaction force; (c): A 
musculoskeletal model used for computing muscle and joint reaction forces. 

 

The muscle and joint reaction forces calculated at each time frame then were applied 

to a finite-element model of a femur using an automatic pipeline developed in an earlier 

study (Martelli et al., 2015b). The finite-element model of the femur was a locally isotropic, 

unstructured mesh comprised of 213,559 nodes and 143,534 elements (C3D10: Ten-node 

tetrahedral element) that was fully constrained distally (Figure 5.3). The femur model was 

fully constrained distally to satisfy equilibrium according to earlier studies (Behrens et al., 

2009; Zhou et al., 2017). The finite-element model was loaded by applying muscle forces 

and the hip joint reaction force for 50 frames uniformly distributed over each activity. The 

unit force vectors describing the line-of-action of each muscle force was assumed to 

originate at the muscle's attachment point on the femur and was oriented along the line-of-

action of the muscle force. The muscle force components was then computed by 

multiplication of  the muscle force calculated from static optimization and the unit force 

vector, and then were applied at the node closest to the muscle attachment point in the FE 

https://www.google.com.au/search?q=multiplication&spell=1&sa=X&ved=0ahUKEwj05tyS47zfAhWJQY8KHQ1iD0oQkeECCCsoAA
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model. The hip joint reaction force was applied on a node places on the surface of femoral 

head and was oriented toward the centre of femoral head (centre of pressure) determined 

by the musculoskeletal model for each frame of motion. Five layers of elements around the 

muscle attachment points were excluded to avoid boundary condition artefacts. The 

anatomical coordinate systems for pelvic, femoral and tibial was defined based on 

International Society of Biomechanics standards (Wu et al., 2002). The musculoskeletal and 

finite-element models were coupled using custom code developed in Matlab (MathWorks 

Inc., Natick, MA). The equivalent strain at the element centroid was computed using the 

linear-elastic solver implemented in Abaqus (Dassault Systems, USA). Thus, the full dataset 

comprised of muscle and joint reaction forces and femoral strains for 1000 frames (50 

frames per trial for 20 trials, in total). 

 

 

 

 

 

Figure 5.3: Schematic representation of the FE model and its boundary 

conditions, featuring the applied muscle forces (red arrows), muscle 

attachment points (orange circles), joint reaction force (blue dashed line), 

point of application of the joint reaction force on the femoral head surface 

(pink circle), femoral head centre (pink circle) and distal constraint (blue 

triangles). 
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Multi-variate linear regression surrogate model 

A Latin hypercube (LH) sampling method was used to create the training set, which 

comprised of muscle forces, joint reaction forces and femoral strains for randomly selected 

frames of motion (Figure 5.4). The process was repeated to generate four training sets 

consisting of 50, 100, 200 and 300 frames, respectively. Training sets of similar size have 

been used to develop surrogate models in previous studies (Fitzpatrick et al., 2014; 

O'Rourke et al., 2016). The surrogate model, relating the magnitude of the applied forces to 

the equivalent von mises strain, was developed by fitting a MLR model for each element. 

Training the surrogate models returned the coefficients, which can be regarded as a link 

between the forces and the induced strain field.  In other words, by showing the training data 

set to each element (as input variable) and the strain (as output), the response of each 

element was (the coefficients) obtained (Figure 5.4). 

 

Figure 5.4: Flowchart illustrating the linear-based surrogate modelling approach used in the present 
study (Ziaeipoor et al., 2018). 
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The model took the form:  

𝜀𝑗,𝑘 = ∑(𝑐𝑖 × 𝑓𝑖
𝑘)

25

𝑖=0

;  𝑓1
𝑘 , … , 𝑓25

𝑘   

Where 𝜀𝑗,𝑘 is the equivalent von Mises strain at element j for frame k, and 𝑐𝑖 is the 

coefficient for the force i at frame k. The total number of forces applied to the finite-element 

model was 25, which included all the muscle forces in the musculoskeletal model acting on 

the femur and the hip reaction force. The strain field for all 1000 frames of motion was 

computed by multiplying the calculated coefficients 𝑐𝑖 in the MLR model and the 

corresponding muscle and joint reaction forces (Figure 5.5). 

 
Figure 5.5: A schematic representation explaining the development of the surrogate model: (a) 
training, and (b) strain prediction for each element.  

 

Metrics for assessing the performance of MLR model 

Performance of the MLR regression models was assessed by calculating the coefficient of 

determination (R2) and the slope of the linear regression between the strains predicted by 

the surrogate and finite-element models. CPU times needed to complete the finite-element 

analysis, train the MLR models, and calculate femoral strain using the MLR models were 
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compared on a standard desktop computer (8 CPUs Intel® Core(TM)® 3.4 GHz processor, 

32 GB RAM). Strain error was calculated using the finite-element strain as a reference and 

evaluated using the Root Mean Square Error (RMSE) as well as the 95th percentile of the 

strain error distribution as an indicator of peak error. These parameters were analysed 

frame-by-frame within each trial (i.e. 𝑅𝑀𝑆𝐸𝐹𝑟𝑎𝑚𝑒; 𝑅𝐹𝑟𝑎𝑚𝑒
2 ) by amalgamating all frames for 

each trial (i.e. 𝑅𝑀𝑆𝐸𝑇𝑟𝑖𝑎𝑙; 𝑅𝑇𝑟𝑖𝑎𝑙
2 ) and for each activity (i.e. 𝑅𝑀𝑆𝐸𝐴; 𝑅𝐴

2). 

Results 

The trial-by-trial comparison presented a good consistency for the coefficient of 

determination (R2) and slope, ranging from 0.84  0.94, and 0.97  0.99, respectively. The 

performance of the MLR model is presented for a selected trial of normal walking as an 

exemplar activity (Figure 5.6 and Figure 5.8). Close visual agreement was observed 

between the strain distributions estimated by the surrogate model trained using 200 samples 

and those predicted by the FE model (Figure 5.8). 

 

 

 

Figure 5.6: Contour 
plots showing the 
calculated femoral 
strain fields for normal 
walking obtained by 
applying finite element 
modelling (FEM) and 
MLR surrogate 
modelling. Results are 
shown at 25% intervals 
of the stance phase. 0% 
and 100% indicate the 
stance phase 
(Ziaeipoor et al., 2018). 
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Figure 5.7: The results of the fitted regression line between surrogate modelling (MLR) and FEM 
during five different percentage of stance phase (normal walking), including RMSE (µε); peak error 
(µε); coefficient of determination and slope. 

 

The average RMSE and peak error were 78 and 181 µε, respectively, across different 

frames. RMSE reached 207 µε during early stance and 140 µε during late stance while the 

corresponding peak errors reached 433 µε and 391 µε, respectively, for early and late stance 

(Figure 5.8). The peak error was 8.6% of peak equivalent strain in the diaphysis, ranging 

from approximately 2920 to 5020 µε during the stance phase of gait. The average coefficient 

of determination and slope were 0.97 and 0.99, respectively. 
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Figure 5.8: Evaluating the performance of the MLR surrogate model for normal walking: (a) pattern 

of the hip joint reaction force; (b) coefficient of determination (RFrame
2 ); (c) peak error and root mean 

square error (RMSEFrame) at each frame. BW in part (a) refers to body weight; the red (solid) dots 

shown in part (b) represent the frames used to train the surrogate model, and the blue (hollow) circles 

represents the coefficient of determination for those frames which has never used during the training 

process (Ziaeipoor et al., 2018). 

 

Similar performance of the MLR model was observed among the different activities. 

The median 𝑅𝑀𝑆𝐸𝐴 varied between 80 µε for normal walking and 124 µε for chair rise. Peak 

𝑅𝑀𝑆𝐸𝐴 varied from 163 µε for stair ascent to 389 µε for chair rise (Figure 5.9).  
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Figure 5.9: Box plots used to quantify the accuracy of model-predicted strains obtained from MLR 

surrogate modelling. The black box represents the range of the error between the 25th and 75th 

percentiles while the red horizontal dashed line represents the median error. The black dashed line 

represents the 95th percentile of RMSEA for each activity (Ziaeipoor et al., 2018).  

 

It was observed that the prediction error of the surrogate model was a function of the 

size of the training set. Increasing the size of the training set from 100 to 200 frames reduced 

the average RMSE across trials from 132  to 108  while a relatively small decrease in 

RMSE to 107  was obtained by increasing the training set size to 300 samples (Table 5-1).  
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Table 5-1: Effect of the size of training datasets on the accuracy of model-predicted femoral strains. 

Model accuracy was evaluated by computing the mean and peak error and the mean of coefficient 

of determination. These reported errors are based on pooled data. 

 RMSE (µε) R2  

Training Dataset Mean 95th perc. Mean Training Time (min) 

50 227,315 408,484 0.84  8.5 

100 132 326 0.92  8.7 

200 108 228 0.94  8.8 

300 107 201 0.94  8.9 

 

CPU time for predicting the full femoral strain for all 1,000 frames was 66,000 secs 

using the finite-element model alone (i.e., 55 minutes was required for predicting femoral 

strain for an entire activity of 50 frames). Training the MLR model required 13,200 secs for 

completing the 200 finite-element simulations in the training set, 528 secs for training and 

100 secs for predicting all 1,000 frames, which corresponds to 5 secs for predicting femoral 

strain for an entire activity (50 frames). The MLR-based surrogate model was faster than 

finite-element analysis for solving 209 frames or more (Figure 5.10). 

 

Figure 5.10: The CPU time required by the finite-element and the MLR model plotted against the 

number of frames (Ziaeipoor et al., 2018).   
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Discussion 

The present chapter evaluated the performance of a multivariate linear regression surrogate 

model in approximating the full strain field of an intact femur during five different activities of 

daily living.  We found that reliable predictions of femoral strain could be obtained across all 

five activities by training the surrogate model using 200 samples. The surrogate model 

closely reproduced the FE results at a low computational cost, with typical solution times of 

5 secs per activity compared to 55 minutes needed for a finite-element analysis when 50 

frames of motion were used to represent each activity.  

The predicted strains from the MLR model were in close agreement with those 

obtained using the finite-element model. The peak error in the MLR model was 8.6% of the 

peak equivalent strain (5020 µε), which is comparable to the error (i.e., 4.2 – 8.3% of peak 

strain on average) caused by material properties and geometry errors committed while 

generating the finite-element models from calibrated computed-tomography images (Taddei 

et al., 2006b). Furthermore, the average RMSE was 78 µε, which is consistent with the 

average error (113 obtained when finite-element models are used to predict 

experimentally measured cortical strains (Taddei et al., 2006b). Therefore, MLR models 

represent valid surrogates of finite-element calculations of femoral strain during activity. The 

training sample size was similar to that reported in previous surrogate modelling studies in 

biomechanics: Fitzpatrick et al. (2014) required 100 – 200 samples for a MLR-based 

surrogate model; Taylor et al. (2017) needed 200 – 500 samples to train an artificial neural 

network; and Lin et al. (2009) required 300 samples to develop a kriging-based surrogate 

model. This supports the validity of the MLR model developed in the present study.  
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The current study is not without limitations. Firstly, Latin Hypercube sampling was used 

to generate the training datasets, but generating more uniformly distributed samples using 

other potential techniques may improve model accuracy. Secondly, the performance of the 

surrogate model was lowest during early stance where the coefficient of determination was 

only 0.53. The FEM model itself was a linear mode, so the error likely caused by the non-

linear behaviour of the model arising, for example, from the location in the centre of femoral 

head which change during locomotion. Different surrogate methods (e.g. MARS, Gaussian 

Process and Artificial Neural Networks) may further improve model performance. Thirdly, 

the prediction time of the MLR model (0.1 sec per frame) was much faster than that of the 

finite-element model, although the MLR required 200 finite-element simulations for 

generating the training set and 528 secs for training the model. Thus, the MRL model is 

computationally advantageous relative to the finite-element model only when 209 frames of 

motion or more are to be analysed (Figure 5.10). Fourth, only normal activities were included 

in the reference study (Martelli et al., 2015b) to limit the risk of injury for the participants 

while executing demanding (e.g., sprinting) or para-physiological (e.g., falling) activities. 

Therefore, the validity of the present conclusion is limited to normal locomotion. Fifth, the 

MLR model was developed for a single healthy individual possibly limiting the generality of 

the present conclusions. However, the strain range predicted by the model (0 – 5020 ) 

spans a large portion of physiologically admissible strains (Bayraktar et al., 2004) and the 

loading conditions did span a broad range of normal activities, providing confidence on the 

performance of the MLR model over a relevant range of femoral strain and boundary 

conditions of the femur. 
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Conclusion 

A Multivariate Linear Regression model was successfully developed for a single individual 

and used to rapidly predict the full femoral strain field for a range of activities of daily living. 

The MLR model was able to predict the femoral strain field for each studied activity within 

an error comparable to the intrinsic error in finite-element models based on clinical CT 

images and was computationally advantageous when 209 loading cases or more were 

analysed. Hence, MLR enables large statistical studies of femoral strain during activity. 

However, other potential techniques are required to be evaluated to compare the 

performance of each method.  
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Introduction 1F

2 

As discussed in the chapter 4, to reduce the computational cost of finite-element analyses, 

several surrogate methods have been used in computational biomechanics, including 

Artificial Neural Networks (Cilla et al., 2017; Eskinazi and Fregly, 2015; Taylor et al., 2017), 

Multi-linear Regression (Fitzpatrick et al., 2014), Multivariate Adaptive Regression Splines 

(Friedman and Roosen, 1995; Wang et al., 2014), Kriging (O'Rourke et al., 2016; Walter and 

Pandy, 2017) and Gaussian process modelling (Seeger, 2004). Multivariate Adaptive 

Regression Splines is an extension of the multi-linear regression method, which can be used 

to model the nonlinearities between variables by partitioning the training datasets into 

separate linear or cubic splines known as ‘basis functions’ (Friedman and Roosen, 1995). 

Gaussian process modelling, which provides a trade-off between fitting the data and 

smoothing, can handle noisy training datasets while capturing the precise trend of the data 

(Wang and Shan, 2006). Artificial Neural Networks provide an effective solution when the 

optimum number of artificial neurons needed for building the network structure can be 

determined a priori, for example, using trial-and-error approaches (Cilla et al., 2017; Tu, 

1996). Kriging is best suited for nonlinear problems, but typically requires large training sets 

and is computationally expensive (Eskinazi and Fregly, 2015). Therefore, Multi-linear 

Regression (MLR), Multivariate Adaptive Regression Splines (MARS), and Gaussian 

process (GP) methods appear to be the best suited for predicting femoral strain during 

activity. However, the performance of each surrogate model is application-dependent and 

bounded by the scope of training data (Forrester and Keane, 2009; Jin et al., 2001). For 

                                            
2 The work presented in this chapter has been published in Journal of Biomechanics.  

Ziaeipoor, H., Taylor, M., Pandy, M., Martelli, S., 2019. A novel training-free method for real-time prediction 

of femoral strain. Journal of Biomechanics 86, 110-116. 
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example, a surrogate model trained on data for level walking is unlikely to be as effective in 

predicting musculoskeletal loading patterns for activities with a higher degree of variability 

such as stumbling and jumping.  

By leveraging the linearity of most models used to predict femoral strain (Fitzpatrick et 

al., 2014; Liang et al., 2018; Martelli et al., 2014a), the superposition principle can provide a 

solution that may outperform current surrogate methods while being applicable to every 

possible motor task or activity, without training. In the most general case, a muscle’s 

contribution to femoral strain can be described by calculating the strain tensor generated by 

three independent nominal force vectors applied to each of the muscle’s attachment points, 

and is therefore not related to a specific frame of motion. The displacement of the joint 

contact area during motion can be modelled by discretising the patch on the joint surface 

spanned by the joint contact force into a finite number of nodes. The strain tensor generated 

by the hip contact force can then be described by calculating the strain tensor generated by 

three independent nominal force vectors applied to each node in the patch. Femoral strain 

for a given frame of motion can be calculated by (1) matching the centre of pressure for the 

specific frame of motion using, for example, musculoskeletal modelling, and (2) determining 

the weights for the strain tensor generated by each nominal force component as the ratio 

between the amplitude of the actual force component and that of the nominal force applied. 

This model, henceforth referred to as the Superposition Principle Method (SPM), does not 

require training, and can be generated independently from motion analyses experiments.  

The aim of the present chapter was to develop an SPM model for one representative 

individual and to compare its performance to that of MLR, MARS, and GP for the prediction 

of femoral strain for a range of activities and repetitions. The strain error and the CPU time 

required for solving the elastic problem of the femur by SPM, MLR, MARS, and GP methods 
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were computed and compared. We hypothesized that the Superposition Principle Model 

(SPM) would outperform popular surrogate methods for the calculation of femoral strain 

during activity in relation to both accuracy and total computational time required. 

Building the surrogate methods 

The data obtained from the previous chapter was used to build the models in this chapter. 

Marker trajectories and ground reaction force for a healthy woman (68 years of age, 53kg 

weight) during repetitions of normal walking, fast walking, stair ascent, stairs descent and 

chair sitting were taken from the previous work (Martelli et al., 2015b). As it was explained 

in the previous chapter, a coupled musculoskeletal and finite-element model was taken from 

an earlier study to calculate muscle and joint reaction forces and femoral strains for 1000 

(Martelli et al., 2015b). Two sampling methods, Latin Hypercube (LH) and Design of 

Experiment (DOE), were used to generate training sets from the original data Latin 

Hypercube provided random samples while DOE provided samples that best spanned the 

variation in the original data (Han and Zhang, 2012). Training datasets of four different sizes 

(i.e., 50, 100, 200, and 300) required for developing MARS and GP methods were obtained 

for each mesh element and MLR was trained by taking the data from our earlier work 

(Ziaeipoor et al., 2018). The different in the distribution of samples for the training datasets 

with 200 samples are represented in Figure 6.1. All surrogate methods were implemented 

using custom code in Matlab (The Mathworks Inc., Natick, USA). 
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Figure 6.1: Generating training datasets using DOE and LH sampling (200 samples). 

 
 

Superposition principle model 

The Superposition Principle Model (SPM) was developed by leveraging the load-strain linear 

response in common finite-element models ensuring that every solution in the model can be 

expressed as a linear combination of a base of independent solutions. The SPM model was 

essentially a look-up table composed by a set of strain fields generated by nominal force 

vectors, each arbitrarily set to 100 N, applied to each muscle attachment and application 

point of the hip contact force. Finally, the strain tensor during a generic frame of motion was 

calculated as the sum of strain fields in the look-up table weighted by the ratio between the 

force intensity provided by the OpenSim model and the nominal force intensity (100 N). 

For the 24 muscles in the model acting on the femur, the femoral strain in the look-up 

table was calculated by applying the nominal force along each of the three coordinate axes 

for each of the 24 muscle-attachment sites, resulting in 72 strain fields.  
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The displacement on the hip centre of pressure during movement was modelled by 

identifying the node patch on the femoral head spanned by the hip centre of pressure 

(Figure 6.2). The centre of pressure was assumed to be the intersection between the sphere 

that best fit the femoral head surface (i.e., the hip centre henceforth) and the hip contact 

force vector passing through the hip joint centre (Figure 6.2). The patch was composed by 

101 nodes within the envelope of the trajectories of the hip joint centre of pressure across 

activities (Figure 6.2). For each node in the patch, the SPM model was completed by the 

strain field calculated using a nominal force vector ℎ𝑓⃗⃗⃗⃗ 𝑣𝑧 pointing to the hip joint centre. This 

condition represents a frictionless ball and socket joint consistent with a very low coefficient 

of friction characterising natural joints (Pawlak et al., 2015).  

 

Figure 6.2: Matching the applied unit force vector (100 N) with two arbitrary forces named ‘a’ and ‘b’ 
vectors passing through the centre of femoral head. The distance between the blue and yellow 
circles is the error that may occur during matching the vectors to perform prediction using SPM 
method. 
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The total strain tensor 𝜀�̿� generated by both muscle and hip contact forces for a generic 

frame i of activity was given by:  

𝜀�̿� = ∑∑
𝑓𝑚𝑖,𝑗,𝑘 

𝑓𝑛
×

3

𝑘=1
𝜀(̿𝑓𝑣𝑗,𝑘 

24

𝑗=1

) +
𝑓ℎ𝑖

𝑓𝑛
× 𝜀(̿ℎ𝑓⃗⃗⃗⃗ 𝑣𝑖,𝑧) 

 

where 𝑓𝑚𝑖,𝑗,𝑘  is the magnitude of the force component k, muscle j, frame i, obtained using 

models of human motion (Martelli et al., 2015b); 𝜀(̿𝑓𝑣𝑗,𝑘 ) is the strain tensor generated by a 

nominal force fn applied at the muscle attachment point j along the coordinate axis k; fhi is 

the magnitude of the hip contact force obtained using models of human motion (Martelli et 

al., 2015b) for frame i; and the nominal strain tensor 𝜀(̿ℎ𝑓⃗⃗⃗⃗ 𝑣𝑖,𝑧) was generated by a force 

vector ℎ𝑓⃗⃗⃗⃗ 𝑣𝑧 of magnitude fn applied to the node z at the femoral head surface. The node 

index z was dynamically determined by best matching the orientation of the hip contact force 

in the musculoskeletal model and that of the force ℎ𝑓⃗⃗⃗⃗ 𝑣𝑧.  

Assessment of performance 

The equivalent von Mises strain was calculated from the predicted strain tensor 𝜀�̿� to provide 

a compact assessment of the models’ performance relevant to both tensile and compressive 

states. The strain error was calculated as the difference between the strain predicted by the 

surrogate and SPM methods and corresponding finite-element calculations of strains. For 

each surrogate method studied, the sample size and sampling method providing minimal 

strain error were identified. Surrogate and SPM models were compared using linear 

regression. The strain error was assessed at three levels: by pooling all the activities and 

repetitions together; activity-by-activity by amalgamating all the repetitions of each activity; 

and frame-by-frame. The Root Mean Square Error (RMSE) and 95th percentile of the strain 
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error distribution were used as indicators of mean and peak error. The coefficient of 

determination (R2) and slope were used as indicators of goodness of fit. To gain insight into 

the source of error in the SPM method, the contribution to the total strain error in the SPM 

model of each muscle force and joint reaction force was calculated separately. Model 

efficiency was assessed using a standard desktop computer (Intel Core i7 processor, 8 

CPUs, 32 GB RAM). Total CPU time included the time required for constructing the models, 

the time needed to execute the FE simulations in the training set, and the training time. The 

time required for predicting strain during an entire activity (50 frames) and the total time 

required for predicting strain for all the 1000 frames, including both model construction and 

prediction, were also compared. 

Results 

The DOE sampling method was superior to the LH method for each training sample size, 

with both methods showing only a marginal improvement in the mean and peak errors above 

200 training samples (Table 6-1). Specifically, RMSE varied from 134 µε to 99 µε, 187 µε to 

100 µε, and 91 µε to 53 µε for MLR, MARS, and GP, respectively, when 200 training samples 

were used. RMSE improved on average by less than 10 µε when the training sample size 

was increased to 300 samples. Peak error obtained for the MLR method with 200 training 

samples remained less than 521 µε, thus assessment of the performance of MLR, MARS 

and GP was based on the DOE method with a training sample size of 200 (Table 6-1). 
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Table 6-1: Mean and peak error for the different surrogate modelling methods (Multivariate Linear 
Regression (MLR), Multivariate Adaptive Regression Splines (MARS) and Gaussian Process (GP)) 
for increasing training set and different sampling methods, including Latin hypercube (LH) sampling 
and Design of Experiment (DOE). These reported errors are based on pooled data.  

 

Training 

dataset 
Methods 

LH DOE 

Peak error𝐴𝑙𝑙 

 

𝑅𝑀𝑆𝐸𝐴𝑙𝑙 
(mean) 

  

Training 

time (h) 
Peak error𝐴𝑙𝑙 

𝑅𝑀𝑆𝐸𝐴𝑙𝑙 
(mean) 

Training 

time (h) 

  MLR 1,082,306 227,315 0.14 911 134 0.14 

50 MARS 1,234,000  9,348,000 6.8 851 187  6.9 

  GP 674 111 0.2 495 91 0.2  

  MLR 1021 132 0.14 697 109 0.14 

100 MARS 1422 508  23.0 678 133  22.7 

  GP 461 75 0.3  556 83  0.3 

  MLR 540 108 0.15 521 99 0.15 

200 MARS 785 170  60.8 414 100 59.7 

  GP 519 73 0.9  316 53 0.8 

  MLR 537 107 0.15 493 94 0.15 

300 MARS 441 106 93.5 385 90 91.7  

  GP 528 62  2.9 280 46  2.1 

*One processor used for training MARS and four processors used for MLR and GP 

 

Overall, SPM was found to be the most effective, showing the lowest mean (RMSE = 

40 µε) and peak (PE = 256 µε) errors. By comparison, mean errors were 99, 100, 53 µε 

while peak errors were 521, 414, 316 µε for MLR, MARS and GP, respectively. Across 

activities, the strain error remained relatively constant showing a peak error consistently 

below 300 µε for all methods, except when MLR and MARS were applied to the chair rise 

task, where the peak error was higher than 350 µε. SPM performed best for the chair rise 

task (RMSE = 6 µε; PE = 47 µε) and showed similar performance to that of GP for the 

remaining activities (RMSE < 30 µε; PE < 172 µε) (Figure 6.3).  
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Figure 6.3: The strain error (median, 50th percentile and range) calculated for the different methods 
(MLR, MARS, GP, SPM) for each activity separately. 

 

Comparing the performance of SPM and GP within a given activity, both models 

predicted femoral strains that were highly correlated to results obtained from corresponding 

finite-element calculations. The coefficient of determination (R2) was 0.97  1.00 for SPM 

and 0.88  0.99 for GP. The slope of the linear regression was 0.96  1.08 for SPM and 0.83 

 1.04 for GP. The GP model showed higher RMSE and peak errors during early and late 

stance, reaching 153 µε and 380 µε, respectively, during late stance (Figure 6.4). The SPM 

model showed RMSE and peak errors of 0 – 96 µε and 0 – 257 µε, respectively, and 

presented a pattern across the different frames not visibly related to a specific gait phase 

(Figure 6.4).  
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Figure 6.4: Comparison of the strain error in the SPM and GP methods for normal walking. Hip 
contact force during stance (a), frame-by-frame root mean square error (RMSE) (b), and peak error 
(c). Forces are expressed in body weight (BW) (Ziaeipoor et al., 2019). 

 

The strain error distribution was located for the most part in the distal femur for both 

SPM and GP (Figure 6.5). The strain error measured for SPM was entirely associated with 

the hip contact force and zero error was observed for all muscle forces. 
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Figure 6.5: Error distribution in the SPM (top) and GP (bottom) methods for the stance phase of 

normal walking,(Ziaeipoor et al., 2019).  

 

The SPM model provided the fastest construction time and the second fastest 

prediction time (Figure 6.6). Constructing the SPM model took 3.2 hours for solving 173 

finite-element simulations. Constructing the surrogate methods took 3.66 hours for solving 

the 200 finite-element analyses in the training set and 0.15, 59.7 and 0.8 hours for training 

MLR, MARS, and GP, respectively. Predicting the femoral strain for an entire activity (50 

frames) took approximately 36 s for SPM, and 6 s, 357 s and 1236 s for MLR, MARS, and 

GP, respectively.  
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When comparing the total time required by SPM, MLR, MARS, GP and a full finite-

element analysis for predicting femoral strain for an increasing number of frames, SPM 

showed the fastest prediction time for all 1000 frames (3.4 hours) and outperformed a full 

finite-element analysis when 176 frames or more were analysed. MARS and GP always 

underperformed SPM due to a greater amount of time required for constructing the model 

and predicting strain whereas the number of frames above which the MLR model 

outperformed the SPM model was 3660 (Figure 6.6).  

 

 

Figure 6.6: Total CPU time required by the full finite-element analysis and for model construction 

(i.e., solving 200 finite-element analysis and training) and predicting femoral strain using MLR, MARS 

and GP, (Ziaeipoor et al., 2019). 
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Discussion 

We developed a superposition principle model (SPM) and compared its performance to that 

of multi-linear regression (MLR), multivariate adaptive regression splines (MARS) and 

Gaussian process (GP) for estimating the full-field strain in one human femur across a range 

of daily activities. The SPM model did not require training and showed the highest accuracy, 

the lowest total time for predicting femoral strain for all 1000 frames studied, the lowest 

model construction time, the lowest number of frames above which it outperformed 

corresponding full finite-element analyses, and the second-fastest prediction time relative to 

the MLR method. Thus, the SPM method offers a training-free approach while providing the 

highest accuracy and lowest prediction time for most foreseeable biomechanical 

applications.  

The models studied for fast prediction of femoral strain produced an average strain 

error (RMSE = 40100 µε) over corresponding finite-element calculations that is comparable 

to the average strain error in current finite-element models (RMSE = 113 µε; (Schileo et al., 

2007)) hence supporting the use of SPM, MLR, MARS and GP models as valid alternatives 

to full finite-element analyses. Among the models analysed in the present study, SPM 

showed the lowest error (RMSE = 40 µε), the fastest model generation time (3.2 hours), and 

the second-fastest prediction time per activity (36 s) after MLR (6 s), supporting the SPM 

method as a valid alternative for biomechanical applications requiring fast strain prediction 

time. The MLR method may outperform SPM when several thousands of loading cases are 

examined.  
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Differently from surrogate models, the SPM model can be developed independently 

from muscle and joint force analyses and later used to analyse any activity and without 

training, which incurs a high computational cost when developing a surrogate method. 

Therefore, SPM is a training-free method not bounded by the scope of the available motion 

data, often obtained by combining motion experiments and musculoskeletal modelling. Also, 

SPM provides the strain parameter of interest, i.e., the von Mises strain in the present study, 

through calculation of the full strain tensor, while surrogate methods are trained separately 

for each parameter in output. While this may explain the slower prediction time of SPM 

compared to MLR, the difference in the computational cost between these two methods 

decreases when multiple strain parameters are of interest.  

Another difference between SPM and surrogate methods concerns the origin of the 

error. The SPM error reported here originated completely from the different algorithms used 

in the present study for defining the node of application of the hip contact force and that in 

the study of reference (Martelli et al., 2015b). Specifically, in the present study the node of 

application of the hip contact force was determined by matching the direction of the hip 

contact force vector calculated using OpenSim and the direction passing through the node 

and the hip centre whereas, in the study of reference, the node of application of the hip 

contact force was the node on the femoral head surface closest to the intersection between 

the hip contact force vector calculated using OpenSim and the femoral head surface. The 

different algorithms led to a mismatch between the point of application of the hip contact 

force in the two studies of up to the element edge length (2 mm in average) and zero-error 

when the hip force vector was applied to the same node in both studies. Thus, the accuracy 

of the SPM method can be improved using a smaller element size while the accuracy of 
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surrogate methods can only be moderately improved by increasing the training set size 

above 200 (Table 6-1).  

Confidence in the validity and reliability of the present results may be gained through 

a comparison with previous studies. For example, the size of the training set in the present 

work is in agreement with earlier studies that used 100  200 samples for training a MLR 

method (Fitzpatrick et al., 2014), 200  500 samples for training an Artificial Neural Network 

(Taylor et al., 2017) and 300 samples for training a Kriging-based method (O'Rourke et al., 

2016). Also, and in agreement with earlier studies (Wang et al., 2014), we found that DOE 

sampling systematically reduces both the mean and peak errors for all methods, particularly 

MARS (Table 6-1), as a broader distribution of samples is generated. These observations 

support the validity of the surrogate methods developed here. The principle of superposition 

has been long used in musculoskeletal modelling studies for determining the contribution of 

individual muscles to joint motion and loading, commonly referred to as muscle-induced 

acceleration analysis (Kersh et al., 2018; Pandy, 2001; Pandy and Zajac, 1991). The present 

study applies the same principle to the strain tensor in the human femur by combining the 

strain tensor generated by each separate force applied to the model rather than fitting the 

data by training a surrogate model. Therefore, SPM is better suited than surrogate models 

for studying the causal relationships between muscle force, joint contact force and femoral 

strain.  

One limitation of the present study is that the time required for predicting strain for the 

50 frames of an entire activity (i.e., 36 s for SPM and 6 s for MLR) was higher than the real-

time duration of normal activities. Truly real-time analyses may be possible using alternative 

programming languages such as C++ or Fortran (Aruoba and Fernández, 2015) and/or by 
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determining the optimal mesh size and frame rate for the desired model accuracy and speed. 

A second limitation is that the SPM method was developed for an intact femur and may not 

outperform other surrogate models when highly non-linear problems such as joint 

replacement models and material non-linearity are of interest. Other surrogate methods 

might be better suited for addressing these types of problems. Finally, the SPM model was 

developed for one single femur, which may limit generality of the conclusions. However, the 

SPM method presented here can be generally applied to every linear-elastic and non-linear 

contact problem. Furthermore, the large range of loading conditions spanned by each 

model, separately generated for each element in the mesh, across a range of normal 

activities provides confidence on the SPM method’s superiority over alternative surrogate 

methods.  
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Conclusion 

In summary, the Superposition Principle Method (SPM) was developed for rapid prediction 

of femoral strain by leveraging the linear properties of common finite-element models of 

femoral strain and compared its performance to that of surrogate models, including MLR, 

MARS and GP. SPM required the lowest model generation time and provided the highest 

accuracy, the fastest total prediction time for all 1000 frames of motion studied, the second-

fastest prediction time per activity, and did not require training. So, SPM offers the highest 

accuracy among common surrogate methods in predicting femoral strains over multiple 

activities and repetitions. However, MLR could provide a better outcome when several 

thousands of loading conditions are examined. Furthermore, the current chapter examined 

the applicability of the SPM method for one geometry, one set of material properties with no 

nonlinearity or history/time-dependent behaviour and well-defined loading locations. So, the 

SPM method needs to be developed further, so that it could be used for large-population-

based studies by capturing variation between material properties and geometry of bones 

across a population, or, in clinical trials, where, for example, biofeedback is used in 

rehabilitation exercise. 

 

 

 

 



 

 

                                                               105 

 : EFFICIENT POPULATION-
BASED STUDY OF FEMORAL STRAIN 
DURING PHYSICAL ACTIVITY 
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Introduction 

The vast majority of traditional studies in orthopaedic biomechanics use a single (Noda et 

al., 2018; Taddei et al., 2006a; Taylor et al., 2012), or a few selected bones (Martelli et al., 

2014a; Martelli et al., 2014b), and/or selected/often simplified loading conditions (Behrens 

et al., 2009; Bitsakos et al., 2005; Duda et al., 1998; Filardi, 2018) for the models related to 

femoral strain calculation (Martelli et al., 2014a; Martelli et al., 2014b), or implant design (Al-

Dirini et al., 2019; Awadalla et al., 2018). The results then are extrapolated to a population 

as a whole. However, this approach sacrifices quantitative accuracy of bone analysis by 

disregarding the natural interpatient variability in shape and bone densitometry distribution 

(Bryan et al., 2010; Prendergast, 1997; Taylor et al., 2017). Furthermore, the muscle and 

joint reaction forces computed using musculoskeletal models vary between individuals 

(Martelli et al., 2015b). Consequently, there is an increasing need to move from individual-

subject studies to multiple-subject studies (Bryan et al., 2012) in order to account for the 

variation in geometry, material properties and loading conditions within a cohort of patients. 

The computational cost required for solving single-subject studies of bone is generally low 

and does not raise specific issues for the majority of biomechanical studies (Taylor and 

Prendergast, 2015), however, building and solving a large scale-FE studies of femurs 

subjected to multiple time varying load cases takes considerable time and can be  laborious. 

There are two major bottlenecks which prevent largescale implementation of patient-specific 

FE models becoming a commonplace approach in clinics. The first limitation is related to the 

ability to model a population by extracting the material properties and geometry of bone from 

the CT scans of each patient, a time-consuming and labour intensive task unless automatic 

segmentation techniques are available (Almeida et al., 2016; Ben Younes et al., 2014; Krčah 

et al., 2011). Statistical models can be developed as a source of data to produce synthetic 

populations. Although this could be a possible solution for reducing the cost of computation 
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required for large synthetic populations, FE models of each femur still need to be constructed 

and solved. Currently the solution phase of the problem is a major computational barrier, 

taking from minutes to days depending on the complexity, the scale and the number of frame 

of motions to be analysed using FE models. If the solution phase can be conducted within 

a reasonable time, like seconds or minutes, then the methodology can be used as a time-

effective way to explore large-scale biomechanical analysis of bone, and also be valuable 

for real or near-time prediction of femoral strain in clinical environments.  

Active shape and appearance models have been used as a technique to potentially reduce 

the dimensionality of a training database into linearly uncorrelated parameters, in order to 

describe the variation in the shape and modulus within a group of femurs. Once a statistical 

model is constructed, it can be used for producing a synthetic population which is needed 

for large FE models. This approach allows for the creation of femurs without taking the 

lengthy process required for generating bone models from CT data, leading to a 

considerable reduction in computational costs and the level of technical expertise. Principal 

component analysis (PCA) has been applied as a typical method to decompose the training 

population into its major components of variation in the shape and modulus. The PCA-based 

statistical model can create unique instances of synthetic femurs whose variation falls within 

the training population. The capability of PCA has been evaluated for various orthopaedic 

applications (Bryan et al., 2010; 2009, 2012; Nicolella and Bredbenner, 2012; Taghizadeh 

et al., 2017), such as studying the influence of femoral implant head size on the risk of 

fracture (Bryan et al., 2010), or for determination of the risk of femoral neck fracture within 

1000 synthetic femurs as the representative of a population (Bryan et al., 2009). Although 

the statistical models can provide a source for constructing FE models of the femur, the 

problem with solution phase remains unsolved. This can be computationally expensive for 
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studies requiring 100s to 1000s of analyses where muscle and joint forces are assumed 

stochastic, rather than deterministic variables (Martelli et al., 2015a). Therefore, if bone 

models can be generated using automatic segmentation techniques, and the solution phase 

can be performed within a reasonable time period (in a few minutes rather than hours or 

days), and without sacrificing  the accuracy of the model, then the strain calculations can be 

performed in clinics. 

In the previous chapter, a novel computational approach called ‘SPM’  was discussed 

which has been developed based on the principle of superposition by leveraging the linearity 

of the FE models of bone (Schileo et al., 2007). SPM generally can be applied to any linear-

elastic finite-element model and the models with low levels of non-linearity, not only to 

models of the human femur. The main conclusions drawn from this are that SPM is a training 

free method, it has a low error in comparison to alternative surrogate methods, and it is not 

bounded to the scope of the training data and would not be altered if more femurs were 

tested. Furthermore, both surrogate and SPM methods were created for each single element 

in the mesh spanning a broad range of physiological strain and loading conditions, hence 

providing confidence in the validity of the method for every foreseeable application of linear-

elastic bone models (Schileo et al., 2007). In fact, the SPM model is comprised of a set of 

independent solutions, unrelated to activity and determined through finite-element analysis. 

For each frame and activity, solutions are then determined using linear combinations of base 

solutions, without any training or iterative learning approach for operators. However, this 

technique was constructed and tested based on a single bone, and hence, to perform the 

strain prediction for another femur, the model needs to be reconstructed. The current 

limitation with the SPM method needs to be eliminated so that it can be used for estimating 

femoral strain for arbitrary femurs. 
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The aim of current chapter is to integrate active shape and appearance models with 

the SPM method, so that it can be used for real or near-real time prediction of femoral strain. 

This can be achieved by taking three general steps: (1) establishing a correspondence 

between the members of training datasets using a registration procedure, (2) construction 

of a PCA based statistical model which can be fitted into the training dataset to explain the 

variation in the shape and modulus of a population by calculating the scores for principle 

modes of variation and standard deviations, and (3) finding the casual relationship between 

a set of applied force vectors and resultant strain distribution based on the principle of 

superposition across principle modes of variation, allowing to perform femoral strain for 

different random or real subjects during multiple physical activities. As previously stated in 

the current chapter, the principle of superposition will be applied for a population, hence the 

name of the technique, ‘SPM’, will be changed to ‘SPM2’.  

Materials and methods 
Data acquisition 

The active shape and appearance models of a femur were generated using a training set of 

21 bones for healthy female subjects (65 ± 5 years; weight: 66 ± 12 kg, and height: 160 ± 7 

cm) which were collected from a previous study (Martelli et al., 2015b). All patients were 

able to walk unassisted and did not have a history of musculoskeletal disease. Ethics 

approval was provided by the Human Research Ethics Committee at the University of 

Melbourne. The experiments and tools applied to collect CT scans of bones has been 

described earlier in Chapter 5. Furthermore, the muscle and joint reaction forces used to 

test the model was taken from Chapter 5 for a representative patient (68 years of age with 

a weight of  53kg) during the activities of normal walking, fast walking, ascending stairs, 

descending stairs and chair sitting.   
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PCA data registration 

The main challenge to construct the PCA model is to reduce the dimensionality of the 

training data by establishing a point-to-point correspondence using a rigid and non-rigid 

registration procedure. This approach allows the morphing of a baseline mesh onto a target 

mesh by using the same number of nodes and elements. Before performing this registration 

scheme, a clean cut was made for each femur around the middle of femoral shaft using 

ScanIP (Simpleware, Exeter). A median length femur instance was then chosen as the 

reference femur, to minimise the distortion of elements while the surface of baseline mesh 

is being stretched or compressed to fit with the target surface. The baseline or reference 

femur was then meshed by changing the edge size of elements (1-1.5 mm) from the distal 

to proximal part, resulted in generating a fine mesh with 290,037 linear tetrahedral elements 

(C3D4: Four-node tetrahedral element) and 60,746 nodes.  

Rigid registration was conducted by taking two steps to remove the variation in the size 

and location of the training data members caused during collecting the CT data. In the first 

step, the baseline mesh was scaled to the target mesh. The Iterative closest point (ICP) 

matching algorithms were then used (Besl and McKay, 1992) in MATLAB  (The Mathworks, 

Natick, USA) to align the target meshes with the baseline mesh by performing a rigid 

transformation (three rotations and three translations), and the transformation matrices were 

stored.  

A non-rigid registration algorithm which was developed earlier by Bryan et al., (2010), 

was re-coded in MATLAB (The Mathworks, Natick, USA) to establish a 3D point-to-point 

correspondence between members of the training dataset by taking a two-step procedure:  

(i) surface registration scheme, and (ii) volumetric meshing (Figure 7.1). The surface 
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registration was conducted to morph the surface of a baseline femur onto the surface mesh 

of a target femurs, while using the geometry of the target femurs as a boundary condition. 

To optimize the quality of the morphed surface and increasing the speed of the algorithm, a 

set of user-defined parameters, specifying the magnitude and speed of surface matching, 

were changed iteratively. More details about the surface registration can be found in the 

established procedure provided by Bryan et al., (2010).  

In the next stage, the volumetric mesh-morphing of tetrahedral mesh was used by 

considering the registered target surface as a scaffold, permitting to define the coordinates 

of internal nodes of the mesh by computing the displacement vectors of all nodes (Bryan et 

al., 2010). This was achieved by implementing the diffusion-based mesh morphing scheme 

proposed earlier by Robertson and Sherwine (1999), which solves a set of Laplace 

equations using in input the baseline volume, the baseline surface and the target surface. 

Subsequently, the bones were re-scaled and transformed to the original position and the 

material properties of bones were re-assigned for each morphed mesh based through 

finding the closest point using linear-interpolation in MATLAB (The Mathworks, Natick, 

USA). 

 

Figure 7.1: The procedure used for fitting non-rigid registration technique to morph a baseline 
mesh into a target mesh. 
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Mesh quality assessment 

The success of the non-rigid registration technique was assessed by the evaluation of the 

quality of morphed mesh for each femur. The Normalised Shape Ratio (NSR) was computed 

for each registered femur as well as the initial baseline mesh as follows: 

𝑁𝑆𝑅 = 
𝑛𝑟

𝑅
 

Where, 𝑟 is the radius of the element insphere, 𝑛 is the number of dimensions being 

evaluated (e.g. 2 for surface elements, and 3 for solid elements), and R is the radius of the 

elements circumsphere (Field, 2000). This equation can yield a score ranging from 0 to 1 

for each element, where the value of 1 shows perfect regularity. The NSR score was 

computed for each tetrahedron element by plotting a boxplot representing a different 

percentage of each element that was contained.  

Construction of a statistical model using PCA 

Principle component analysis (PCA) was used for building three types of statistical models, 

including active shape model (ASM), the active appearance model (AAM), and a combined 

active shape and appearance model. While the ASM and AAM models were developed 

based on either shape or modulus distribution of bones respectively, the so-called combined 

active shape and appearance (combined ASM and AAM) model was built by capturing the 

variation in the shape and modulus bones simultaneously.  

To develop the statistical models, each femur was explained using a matrix containing 

the relevant information (e.g. shape, modulus, or both), followed by pooling data for all 

femurs to form a single training matrix. The PCA model was then fitted onto the matrix of 

training to determine the effect of each eigenmodes on the corresponding variation. For 
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example, to develop a combined active shape and appearance model, each femur was 

initially indexed using one column matrix (𝑋𝑚), composed of both coordinates of nodes 

(𝑥, 𝑦, 𝑎𝑛𝑑 𝑧) and the associated modulus of (𝐸) at each element, and the corresponding 

nodes (1, 2 … n), which can be concisely presented in the form below: 

𝑋𝑚 = [𝑥1, 𝑦1, 𝑧1, 𝐸1, … , 𝑥𝑛, 𝑦𝑛, 𝑧𝑛, 𝐸𝑛] 
𝑇  

Where, 𝑛 is the number of nodes, each member of training dataset (ranging from one 

to 𝑁) was then combined in the following format to produce the training dataset required for 

building the PCA model: 

𝐴 =  [𝑋1, 𝑋2, 𝑋3 … ,𝑋𝑁]  

The PCA was then applied onto the A matrix to describe the members of the training 

datasets as follows: 

𝑥 =  𝑥 ̅ +  ∑𝑐𝑖

𝑚

𝑖=1

𝑋𝑖 

Where 𝑥 is a produced femur instance; 𝑥 ̅ is the mean shape and modulus of the 

training dataset; 𝑋𝑖 represents a basis vector containing orthonormal modes and 𝑐𝑖 is a set 

of weighting coefficients describing the contribution of the first considered modes (𝑚) to the 

shape and modulus of the bone (Bryan et al., 2010). Using this relationship, it is possible to 

create legal or permissible synthetic femurs by altering the component weighting 

coefficients. For instance, the mean femur can be produced using 𝑐𝑖 = 0. Furthermore, the 

number of principle components to include, 𝑚, can be defined based on cumulative variance 

(cumulative energy curve) which determines the number of modes needed to represent a 

desired percent of variation in the training member (Campbell and Petrella, 2016). 
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Examination of PCA model 

The quality of the statistical model in generating synthetic femurs was evaluated using 

compactness, generalisation ability and visual assessment. Compactness refers to the 

number of PCA modes needed to represent a certain percentage of variation within a 

population and can be evaluated by calculating the cumulative energy for ASM and AAM 

models (Bryan et al., 2010). The generalisation ability can be evaluated through 

quantification of the error occurred during reconstruction of unseen femurs (Bryan et al., 

2010; Hawkins et al., 2003). To ensure that the combined ASM and AAM model has a 

consistent performance during a re-construction test, a Leave-one-out (LOO) approach was 

used (Bryan et al., 2010; Hawkins et al., 2003). In this case, the PCA model was built by 

leaving one subject out, and calculating the associated scores for the left subject using the 

known the built PCA model. The scores were then fitted onto the statistical model to perform 

prediction for the femur which was not used earlier for PCA construction, followed by 

determination of the difference between the reference bone and PCA-predicted values 

based on an element-by-element approach. The LOO approach was used iteratively until 

every femur was analysed and the error associated with the reconstruction of geometry and 

shape was determined. Finally, the combined ASM and AAM model was used to visually 

explore the variation in the shape and modulus of produced bones across the first three 

modes.   

PCA results 
Mesh quality 

The quality assessment of the morphed mesh using normalised shape ratio (NSR) showed 

a mean score of 0.87 across all target femurs, as compared to the score computed for 

baseline mesh which did not go through the mesh-morphing procedure (Figure 7.2). The 
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maximum and minimum values calculated for the volume of the 5 to 95 percentiles of the 

elements varied from 0.62 to 0.96, compared to the baseline mesh ranging from 0.7 to 0.96. 

 
Figure 7.2: Mesh morphing quality assessment for all femurs. The black box represents the range of 
the error between the 25th and 75th percentiles while the red horizontal dashed line shows the 
median error. The lower and upper bounds show 5th and 95th percentile of volume of mesh. The 
yellow box represents the target morphed meshes, and the green box represents the baseline mesh 
used as template for mesh-morphing. 

 

PCA performance analysis 

The evaluation of principal components’ cumulative energy for ASM showed a better 

capability for capturing the corresponding variation in the training data when compared with 

AAM and the combined ASM and AAM model which presented identical results with no 

difference across different models. So, for the sake of simplicity, only the performance of 

AAM was compared against the ASM model (Figure 7.3). The first mode of ASM was the 

prevalent mode by accounting for over 82% of the shape variation, requiring at least three 

and five PCA modes to preserve 92% and 95% of variation respectively. In contrast, the first 
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mode of AAM was able to describe only 27% of the modulus variation, maintaining 44% and 

53% of modulus variation, respectively, for three and five PCA modes.  

 

Figure 7.3: Plot of the cumulative energy/per mode, representing the capability of ASM and AAM 
models to capture the corresponding variation across different modes. The cumulative energy refers 
to the sum of the energy content across all of the investigated eigenvalues. As the cumulative energy 
for the AAM and the combined AAM and ASM models were identical, the plot was only provided for 
AAM model.   

 

 Re-construction error 

The evaluation of the geometry and modulus reconstruction error was calculated for each 

femur using the developed PCA model by considering the modes of variation (17 modes). 

The reconstruction of geometry showed a peak error ranging from 2.9 – 11.5 mm and a 

median error ranging  from 1.1 – 4.6 mm (Figure 7.4 – a). The modulus reconstruction error 

provided a peak error varying from 3,100 – 4,400 MPa and a median error within the range 

of 720 – 1,210 MPa (Figure 7.4 – b). 
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Figure 7.4: The PCA reconstruction error calculated for each femur on the basis of leave-one-out 
approach: (a) the geometry error measured by comparing the coordinates of element centroid 
between the original and reconstructed femur; and (b) the modulus error calculated for each element. 
The lower and upper bounds show 5th and 95th percentile of error; the red lines show the median 
error (50th percentile). 

  

Visual interpretation of principle modes 

The visual evaluation of a combined statistical shape and appearance model showed that 

the first mode appears to be a scaling mode with a noticeable increase in the anteversion 

angle, femoral head size, modulus, as well as a decrease in the femoral length (Figure 7.5). 

By the second mode, a little variation was noticed for femoral length and neck-shaft angle, 

however, a considerable change was noticed for bone modulus and anteversion angle. 



 

 

                                                               118 

Mode three experienced a little change in the anteversion angle, and a little increase in the 

bone modulus, while the length of the femoral shaft was almost constant across different 

standard deviations.  

 

Figure 7.5: The changes in the shape and modulus of the bones generated by PCA (combined ASM 
and AAM models) for the first three modes and the standard deviations (±2).  

 
 
Comparison of the current PCA model with previous studies 

        The compactness assessment showed that ASM was the most compact model when 

compared with the AAM, or combined ASM and AAM models. The first mode was found to 

be the dominant mode, which explained about 82% and 27% of variation respectively in the 

ASM and AAM models. This was comparable with previous findings, explaining the 35% 
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(Sarkalkan et al., 2014a) and 50% (Taghizadeh et al., 2017) of shape variation in the ASM 

model and about 35% of modulus variation in the AAM model. Furthermore, to explain 75% 

of the variation, the current combined ASM and AAM model needed at least 11 modes, or 

55% of total PCA modes, compared with a previous study which needed at least 8 modes, 

or 17% of total PCA modes (Bryan et al., 2010). According to the leave-one-out test of the 

training dataset, the average distance error ranged from 1.3 – 4.9 mm, comparable with 

previous studies ranging from 0.88 mm (Vaananen et al., 2012) to 1.22 mm (Grassi et al., 

2014). The peak error was shown to be 11.5 mm, which was higher than the previous 

findings, ranging from 5.6 mm (Vaananen et al., 2012) to 16 mm (Grassi et al., 2014). The 

modulus reconstruction error for each element showed a fairly high range of error with the 

mean ranging from 1,040–1,570 MPa and a peak error reaching to 4,400 MPa. This was 

more likely related to the relatively small size of the training dataset (20 femurs) used for the  

reconstruction of the modulus in the AAM model, compared with a PCA study built using 46 

femurs, representing lower error with mean = 500 MPa and peak = 1,400 MPa (Bryan et al., 

2010). When femur instances were visualised for the first three modes, a realistic bone 

material distribution was noticed (Bryan et al., 2010; Vaananen et al., 2012). The major 

source of error for ASM and AAM models were likely related to either the linear PCA 

procedure which is commonly used by the research community, or the limited number of 

training datasets which were used for building the PCA model. Hence, further research is 

needed to improve the accuracy of the current statistical models.   

 

Prediction of femoral strain using SPM2 

In the previous chapter, it was shown that Superposition Principle Method (SPM) can be 

used to accurately and efficiently predict femoral strain for a single subject while performing 

various physical activities. However, in order to transfer from a single-subject study to a 
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population-based one, the SPM and PCA methods need to be integrated. A flowchart 

explaining the construction and testing phase of the integrated PCA and SPM methods, 

referred to ‘SPM2’ is represented in Figure 7.6.   

 
Figure 7.6: A flowchart presenting the general approach needed for computing femoral strain within 
a population using an integrated version of SPM and PCA, called ‘SPM2’.  
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Construction of SMP2 

The PCA model was generated using 18 of the 21 participants according to an established 

procedure (Bryan et al., 2010). Three randomly selected participants were excluded from 

the training set and used as independent target instances for testing the performance of 

PCA model. The output of the PCA model was a (17x18) matrix, where each femur was 

represented using a vector of scores containing 17 numbers. The PCA scores generated for 

each femur ranged from -3.3 to 2.4, explaining the modulus and the shape of femurs for that 

particular mode and standard deviation. To explain 95% of variation, mode weights were 

constrained to -2 to +2 standard deviations (SDs) and the rest of variation in the training 

dataset was excluded from further consideration. While all PCA scores were plausible for 

reproducing bone instances, in order to reduce computational costs, only the extreme and 

mean standard deviation (SDs = 0 and ±2) were used, which resulted in building a look-up 

table composed of a set of bone instances (17 x 3). For each synthetic bone instance, a set 

of individual FE simulations were created by applying a nominal force vector, each arbitrarily 

set to 100 N, applied along each of the three coordinate axes for each of the muscle 

attachment sites (23) and the hip centre of the femoral head, resulting in 72 finite element 

simulations per femur. The bone instance for the mean standard deviation was the same for 

all modes. Hence, to reduce the number of simulations, the FE simulation for mean case 

was only generated once.  

The location of muscle attachment sites and centre of pressure was obtained from 

previous work (Martelli et al., 2015b) for the baseline femur, and the identified loading points 

were used for all femurs. For each simulation, the equivalent von Mises strain was calculated 

at the element centroid using the linear-elastic solver implemented in Abaqus (Dassault 

Systems, USA). The FE model of bone was locally isotropic, unstructured mesh consisting 

of 290,037 linear tetrahedral elements (C3D4: Four-node tetrahedral element) and 60,746 
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nodes that were fully constrained at distal region (Figure 7.6). As a result of generating and 

solving the total of 2,520 FE simulations, a full dataset comprised of the force components 

and their corresponding tensor of strains with six components (i.e. exx, eyy, ezz, exy, exz 

and eyz) were obtained, which allowed for calculation of principle or equivalent strain 

distribution. Furthermore, there was an upfront computational cost for building SPM2, 

requiring approximately 38 hours to create and solve all the FE simulations using a standard 

desktop computer (Intel Core i7 processor, 8 CPUs, 32 GB RAM).  

As a function of the change in mode weight, there was a weak, non-linear behaviour 

of the predicted strain at the element level. To capture such a non-linearity within each mode, 

a second-order function was fitted onto the strain components of each element across three 

standard deviations, and the resultant coefficients and constants were saved (Figure 7.6). 

This training process led to the determination of the causal relationship between the normal 

applied force (100 N) and the resultant strain tensors within each PCs. However, like the 

training phase, only three standard deviations were used, and an error occurred for each 

element (Figure 7.7). 

 

Figure 7.7: The interpolation error occurred during fitting a second-order function for each element 
across each mode. The blue dots represent those three standard deviations (0 and ±2) which was 
used for building the model while the red dots refer to those which were excluded from consideration. 
The region shown in green represents the error occurred during interpolation for the representative 
element.   
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Strain prediction using SPM2 

The total strain tensor (𝜀�̿�) for a given bone instance (𝑥) and an arbitrary frame of motion (𝑖) 

was computed as the sum of strain fields in the look-up table weighted by the ratio between 

the force intensity derived from OpenSim and the nominal force intensity as follows: 

𝜀𝑖𝑥̿̿̿̿ = ∑ ∑∑ [𝜀  ̿(𝑓𝑣𝑗,𝑘,𝑝) 
3

𝑘=1

24

𝑗=1

17

𝑝=1

− (𝑑 × c)] ×
𝑓𝑚 𝑖,𝑗,𝑘

𝑓𝑛
 

Where 𝑓𝑚𝑖,𝑘,𝑝 is the magnitude of force computed by OpenSim for a given muscle or 

joint reaction force 𝑗, along the coordinate axis 𝑘, and mode of variation 𝑝; 𝜀(̿𝑓𝑣𝑗,𝑘,𝑝 ) is the 

strain tensor computed by the nominal force vector of 𝑓𝑛 with an arbitrary magnitude set 

to 100 𝑁, and 𝑐 refers to the constants computed for each element through the fitted second-

order function, and 𝑑 = 𝑡 − 1, where 𝑡 is the total number of modes in the PCA model.  

To predict the total femoral strain for a given frame of motion, a vector of scores 

representing the shape and modulus of a testing femur was fitted onto the constructed PCA 

model to produce a new bone instance. Subsequently, the basis strain tensors for each force 

component was then estimated by fitting the known scores onto the trained second-order 

functions of each PCs. Finally, by iterative use of SPM2 formula, the strain field for 

component of the look-up table was computed through scaling the strain fields with regard 

to the applied force obtained from OpenSim and adding up the scaled strain tensors 

(Figure 7.6). 

Performance analysis of SPM2  

The accuracy of the SPM2 method was investigated by comparing the predicted strain fields 

with the corresponding FE results. To achieve this, two sources of errors were evaluated: 

interpolation error and reconstruction error. The interpolation error referring to the error 
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which occurred during the fitting of the second-order function was evaluated by calculating 

the strain error for a synthetic population consisting of 50 femurs randomly produced using 

the PCA scores. The interpolation error was further investigated by representing the PCA 

scores across different modes of variation in the shape and modulus of the statistical model. 

The reconstruction error in the case of the PCA model was evaluated by measuring the 

strain error for the reproduced femurs. This was achieved by extracting the scores for three 

unseen femurs using the available PCA model and reconstructing the bone instances using 

the obtained PCA scores. The FE simulations were then generated and solved for each of 

the reconstructed and original femurs and the equivalent strain fields were compared.  

To ensure that the SPM2 method had a consistent response across different loading 

conditions, two different sets of loads were taken from a single subject from chapter 6, 

including: (i) the full stance phase of normal walking as a representative activity, and (ii) 50 

random frames of normal walking, fast walking, stair climbing, stair ascent, stair descent, 

and chair sitting which were taken from the previous chapter. The accuracy of predictions 

were evaluated by fitting a linear regression line between the predicted strain fields and the 

FE results. The predictions were evaluated by taking two approaches: (i) frame-by-frame 

assessment of normal walking as the representative activity, and (ii) by pooling the entire 

frames of motion. The predictions were assessed either for each femur individually or by 

pooling the results for three femurs altogether. The Root Mean Square Error (RMSE) and 

95th percentile of the strain error was used as indicators of mean and peak error. The 

coefficient of determination (R2) and slope were used as indicators of the quality  of fitted 

regression line. The efficiency of SPM2 method was compared with the results of FEM by 

recording the computational time needed for the prediction of femoral strain for a full activity 

cycle using a standard desktop computer (Intel Core i7 processor, 8 CPUs, 32 GB RAM).  
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SPM2 results 
The performance of SPM2 for a synthetic population 

The SPM2 method was able to calculate the full femoral strain for 40 frames of motion in 3 

minutes (on average) compared with 44 minutes for FEM. In terms of accuracy, when the 

error associated with interpolation was evaluated for the synthetic population and 40 pooled 

frames of motion (normal walking), a consistent trend was noticed with the mean error of 89 

µε. The median error (50th percentile) ranged from 19 µε to 78 µε across the whole synthetic 

population (Figure 7.8). However, a lower consistency was observed when the peak error 

(95th percentile) was reported, reaching to 725 µε as the worst scenario, followed by the 

second peak with 624 µε, and reached 124 µε as the best femoral strain prediction.   

 

Figure 7.8: Boxplots illustrating the interpolation error in SPM2 method for a population composed 
of 50 synthetic femurs. Each boxplot shows the strain error for 40 pooled frames of normal walking. 
The lower and upper bounds show 5th and 95th percentile of error, while the red horizontal line 
represents the median error (50th percentile). 
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The visual investigation of the femurs shows no specific pattern or location of curve 

fitting error for both the worst and best scenarios (Figure 7.9). Furthermore, it was noticed 

that the error tended to occur at higher loads, by presenting a lower error at the early and 

later stance phase, and a higher error at mid-stance phase (e.g. 25 and 75% of stance). 

However, the peak strain error calculated for the worst scenario was less than 5% of the 

peak equivalent strain across different frame of motions (Figure 7.10).  

 

Figure 7.9: The distribution of interpolation error in SPM2 method for the worst (top) and the best 
(bottom) case during the stance phase of normal walking. Results are presented at 25% intervals of 
the stance phase. 
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Figure 7.10: Contour plots representing the distribution of femoral strain in FEM (top) and the strain 
error in SPM2 method (bottom) occurred due to the interpolation. The results are provided for the 
synthetic bone with the worst prediction.  

   

Fitting a linear regression between the strain predictions of SPM2 and FE results 

showed a good correlation for a given activity. Comparing the predictions for the best case 

against worst case showed a variation from 81 µε to 399 µε for RMSE, a variation from 0.95 

to 1.00 for coefficient of determination (R2), and a variation from 0.93–1.00 for the slope of 

the regression line (Figure 7.11).  
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Figure 7.11: Comparing the performance of the SPM method against FEM for femoral strain 
calculation for a pooled 40 frames of motion (normal walking). The best and the worst predictions 
across the synthetic population are reported. The best prediction refers to the femur instance with 
the lowest error, while the worst prediction refers to the femur instance with the highest error. 

 

The frame-by-frame assessment of the SPM2 method of an exemplar activity (normal 

walking) showed that the error was a function of the hip joint contact force (Figure 7.12). For 

example, for the worst case prediction, the highest peak error reached to 1,293 με at mid-
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stance phase, and reduced to 152 με at late stance. Moreover, RMSE error for the worst 

scenario varied from 90 to 675 με, compared with a more consistent variation obtained for 

the mean and best predictions with the range of 35 – 274 με, and 19 – 124 με respectively.  

 

Figure 7.12: Frame-by-frame analysis of SPM2 across different frames of stance phase (normal 
walking (a)) for the worst, best and mean cases by calculating peak (b) and RMSE (c) errors. The 
worst and best predictions are provided for the cases with the highest and lowest error, respectively, 
and the mean error refers to the average error which was measured by accounting the whole 
population. 
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When the computed microstrain error was normalized for different frames of motion, a 

high consistency was observed for the whole population with a mean RMSE and peak error 

was always lower than 1.6% and 2.9%, respectively (Figure 7.13 and Table 7-1). For the 

worst predictions, the RMSE and peak error were consistently lower than 2.2% and 4.9%, 

comparing with the corresponding results for the best-case predictions, yielding 0.9% and 

1.4% respectively. More details about this frame-by-frame assessment is provided in 

Table 7-1.   

 

Figure 7.13: The normalised error reported for SPM2 across different frames of motion in normal 
walking (a). The peak and RMSE errors are provided for best, mean and the worst scenarios (b).  
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Table 7-1: Performance assessment of SPM2 for computing femoral strain during locomotion. The 
reported errors are based on the full stance phase.  

 

Case 

Mean  

RMSE (µε) 

Mean 

Normalised 

RMSE (%) 

Peak 

Error (µε) 

Peak 

Normalised  

Error (%) 

Mean 

𝐑𝟐 

Mean 

Slope 

Best  74 0.7 202 1.4 0.99 0.99 

Mean 162 1.4 484 2.9 0.97 0.99 

The 

worst 
361 

1.6 
1, 293 

4.9 0.93 0.92 

 

The interpolation error was further investigated by calculating the PCA score of 

synthetic femurs for the worst and best scenarios across the entire principle modes of 

variation (Figure 7.14). It was observed that the PCA scores of the best prediction were 

closer to the mean (SDs = 0) when compared with the worst case, particularly during the 

first three modes, which explain about 44% of variation in the shape and modulus of the 

population. For example, as a predominant mode, the PCA score of the first mode was 0.14 

for the best scenario, compared with the corresponding PCA score of 1.77 obtained for the 

worst case (Table 2).  

 
 

Figure 7.14: PCA scores generated randomly for creating synthetic femurs. The worst and best 
refers to the femurs with the highest and lowest error obtained from SPM2 calculations.  
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Accuracy of SPM2 for unseen femurs 
Frame-by-frame assessment 

When the femoral strain prediction was compared between SPM2 and FEM methods by 

accounting for both reconstruction and interpolation error, a close agreement was observed 

for the strain distribution for all three unseen femurs across the entire activity (Figure 7.15). 

However, a noticeable difference was observed in terms of the magnitude of the femoral 

strain, particularly during the later stages of stance phase (Figure 7.15). For example, when 

the strain predictions were visualised for Femur 3, a noticeable strain difference was noticed 

between FEM and SPM2 results, particularly at distal femur. 
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Figure 7.15: Comparing the SPM2 predictions against FE results of three randomly selected 
participants which were not included in the training datasets used for building PCA model (i.e., the 
CT-based model instances henceforth).  
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Quantification of SPM2 error for unseen femurs presented a higher strain error for 

higher loads across different frames of the representative activity (Figure 7.16). For 

example, for Femur 3, the worst case, the RMSE and peak errors ranged from 215 and 501 

during early stage of stance phase to 904 and 1,776 at mid stance phase, and decreased 

to 93 and 129 at late stance phase, respectively. Furthermore, when the SPM2 predictions 

were investigated for Femur 1, the best case, an improvement in the accuracy of predictions 

was noticed with an RMSE ranging from 64 to 530 and peak error ranging from 128 to 1,133. 

In addition, while the mean coefficient of determination was 0.83 for the worst case, a better 

correlation was noted for the best scenario with the average R2 of 0.94 (Table 7-2). The 

slope of the fitted regression line between the prediction of SPM2 and FE results was always 

greater than 0.91 for all investigated cases (Table 7-2).    

 

Figure 7.16: Frame-by-frame analysis of SPM2 method for three unseen femurs by measuring (a) 
RMSE and (b) peak errors across different frames of normal walking as the representative activity.  
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Table 7-2: Performance assessment of SPM2 for three unseen femurs. 

Method 
Unseen Femurs 

Mean  

RMSE (µε) 

Peak 

RMSE (µε) 

Peak 

Error (µε) 

Mean 

𝐑𝟐 

Mean 

Slope 

 Femur 1 296 530 1, 133 0.94 0.91 

SPM2 Femur 2 304 504 1, 328 0.92 1.23 

 Femur 3 530 904 1, 776 0.83 0.97 

 
        

As discussed in the previous section, the distribution of PCA scores could be a 

parameter that influences the accuracy of predictions gained from the SPM2 method. 

Therefore, it would be interesting to see how the PCA scores are distributed for major 

principle modes of variation. Comparing the PCA score for the first five modes of variation 

(which can explain over 53% of variation in the population) revealed that the PCA scores of 

Femur 1 with the lowest error was closer to the mean (SDs = 0) than Femur 3 with the 

highest SPM2 error (Figure 7.17). For example, for Femur 1, the weights of the principle 

components of first, second and the third mode were 0.04, 0.36 and 0.13, respectively, 

compared with the corresponding principle components of -0.69, 0.72 and 0.36 gained for 

Femur 3.  

 

Figure 7.17: PCA scores of two unseen femurs (best and the worse cases) which were used for 
calculating femoral strain using SPM2 method.  
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Analysis of bones pooled  

The capability of SPM2 was further confirmed when the accuracy of predictions was 

evaluated for three bones pooled together and using 50 random frames of motion. Similar 

to the previous section, a low range of interpolation error was observed for the investigated 

testing data by showing a median (50th percentile) and peak error (95th percentile) of 4 and 

49 µε, respectively (Figure 7.18). The major source of strain error was related to the 

reconstruction of geometry and modulus of femurs using the PCA model, representing a 

median and peak error of 166 µε and 945 µε, respectively. However, when both interpolation 

and reconstruction error was taken into account, the total error remains identical, showing a 

median error of 163 µε and peak error of 931 µε.  

 

Figure 7.18: Comparing the contribution of two source of errors, interpolation and PCA reconstruction 
error, and the total error obtained when the femoral strain was computed for three unseen femurs 
and 50 random frames of motions. The blue box represents the range of the error between the 25th 
and 75th percentiles while the red horizontal line represents the median error (50th percentile). The 
lower and upper bounds show the 5th and 95th percentiles of error. 
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        For the three pooled femurs and 50 pooled frames of motion, the equivalent strain was 

calculated with an RMSE of 480 µε, a determination coefficient (R2) of 0.9, and a regression 

slope of 1.00 (Figure 7.19).  When validating each femur individually, RMSE was ranged 

from 310 to 569 µε, R2 was ranged from 0.86 to 0.96, while the regression slope was close 

to unity for all cases (Figure 7.20).  

 

Figure 7.19: Comparison of the strains predicted by SPM2 with the strains calculated using FE 
method on the corresponding three pooled bones and during 50 random frames of motions.  
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Figure 7.20: Individual validation of SPM2 for each unseen femur (a, b, c). The analysis was 
performed by considering 50 random frames of motion.  

 

        The validation of the single femurs presented a significantly lower error when the 

interpolation error in SPM2 (using the same femur geometry and material property 

distribution as the FE model) was compared against PCA reconstruction error (using femur 

geometry and material property distribution estimated from the combined ASM and AAM 

model) across different frames of investigated representative activity (Figure 7.21). The 
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median of interpolation error ranged 3 to 5 µε, while its peak error ranged from 48 to 50 µε. 

The evaluation of PCA reconstruction error for each individual femur also presented a 

median error changing from 146 to 191 µε and a peak error changing from 920 to 1,010 µε. 

 

Figure 7.21: The range of (a) PCA reconstruction and (b) interpolation errors calculated for each 
individual unseen femurs during 50 frames of motion. Each boxplot represents the range of the error 
between the 25th and 75th percentiles. The red horizontal line represents the median error (50th 
percentile). The lower and upper bounds show the 5th and 95th percentiles of error.  

 

The geometry and modulus reconstruction error 

As discussed previously, the inaccuracy of the calculated strain fields in SPM2 was mostly 

related to the reconstruction of femurs using the PCA method. For example, for a combined 

statistical shape and appearance model, the PCA model yielded an RMSE and peak error 

of 488 µε and 945 µε respectively (Figure 7.22). However, when the PCA-based statistical 

model was built based on geometry and the material properties from the original femur used, 

the computed RMSE and peak strain error were 261 µε and 493 µε respectively.  Prediction 

made with the original femur geometry and modulus assigned from the AAM model resulted 

in RMSE and a peak strain error of 340 µε and 600 µε (Figure 7.22).  
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Figure 7.22: Femoral strain prediction accuracy for FE models constructed based on synthetic 
femurs reproduced by three PCA models: (a) Combined statistical shape and appearance model; 
(b) Statistical shape model (ASM); and (c) Statistical appearance model (AAM).    
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Discussion 

Real-time prediction of femoral strain can promote large studies of bone, like assessing the 

risk of bone fracture (Bessho et al., 2009; Fuchs et al., 2017; Zani et al., 2015) and improving 

the biomechanical behaviour of implantable devices (Chanda et al., 2015; Helwig et al., 

2009; Small et al., 2016). Unlike the popular surrogate modelling techniques which are 

bound by the training datasets, the Superposition Principle Method (SPM) is a training-free 

method which can be used for the rapid prediction of femoral strain during any physical 

activity. However, the applicability of this technique needs to be extended from one single 

subject to larger studies (e.g. a population-based study) to understand how the variability on 

the geometry and material quality between individuals would influence the performance of 

the technique. Therefore, the aim of the current chapter was to develop and test a novel 

computational method termed SPM2 for efficient calculation of femoral strain in a cohort of 

patients. To develop SPM2, a combined statistical shape and appearance model was 

integrated with the principle of superposition to capture a compact load-strain linear 

response in a set of basis FE simulations generated for each PCA mode of variation.  The 

strain prediction of a given frame was then calculated within each mode by scaling the 

computed strain tensors with regard to amplitude of the actual force component and that of 

the nominal force applied (e.g. 100 N), and followed by adding the scaled strain tensors 

across different modes. The accuracy of the femoral strain computed by SPM2 method was 

then evaluated using two sets of data: (i) a synthetic population to explore the effect of 

anatomical variability and (ii) three unseen femur to examine the applicability of SPM2 

method for real femurs. As a result of this analysis, two sources of errors (Interpolation and 

reconstruction errors) were identified and compared across different physical loading 

conditions (e.g. 50 random frames of motion and a full activity cycle). 
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The SPM2 method was used successfully for accurate prediction of femoral strain 

during motion when it was applied for both synthetic and unseen femurs.   For the synthetic 

population, the peak error changed from 1.4% (for the best case) to 4.9% (for the worst 

case), in agreement with the error (i.e., 4.2 – 8.3% of peak strain on average) caused by the 

geometry and material properties of the FE models constructed from CT images (Taddei et 

al., 2006b). Such a consistency in strain error was also observed with a low RMSE of 81–

399 με (equal to 0.7 to 1.6% of peak strain), in agreement with the average RMSE of 113 

με achieved when the FE calculations were compared with the corresponding experimental 

measurements (Taddei et al., 2006b). This source of error occurred due to fitting the second-

order function to the strain tensors across different modes, resulting in an accumulated strain 

error over the entire modes.  Furthermore, when the applicability of SPM2 method was 

examined for each unseen femur not belonging to the training dataset, a reasonable strain 

prediction was noticed (RMSE < 10% of peak strain, R2 > 0.86). These results were 

comparable with the outcome of PCA-based FE studies created from CT data, reporting 

normalised RMSE of 11 – 13% (Grassi et al., 2017) and 11 –15% (Grassi et al., 2016), and 

coefficient of variation (R2) greater than 0.88 (Grassi et al., 2017) and 0.89 (Grassi et al., 

2016). From the reported strain differences for pooled unseen femurs, the PCA 

reconstruction error was the major source of strain error (median error = 166 με and peak 

error = 945 με), as compared with the negligible interpolation error (median error = 4 με and 

peak error = 49 με), highlighting the importance of the PCA method for accurate prediction 

of femoral strain in the SPM2 method. In addition to this, when the PCA scores of both 

synthetic and unseen femurs were investigated, a lower strain error achieved for those bone 

instances with the PCA scores near to the mean standard deviation (SD = 0). This finding 

was more important for the first three modes, which could explain about 44% of variation in 

the shape and modulus of the population. 
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Further analysis of the PCA method revealed that a higher portion of strain error was 

related to the reconstruction of femurs using the Active Shape Model (ASM) rather than the 

Active Appearance Model (AAM). For example, when the strain calculations of statistical-

based FE models were compared with the corresponding FE models of the (original) three 

bones pooled, the error for geometry reconstruction (peak error = 493 με, RMSE = 261 με) 

was lower than the error computed for modulus reconstruction (peak error = 600 με, RMSE 

= 340 με). Furthermore, the coefficient of determination for ASM (R2 =0.97) was marginally 

higher than AAM (R2 =0.95), as compared with previous findings, with R2 of 0.89 and 0.88, 

respectively. (Grassi et al., 2017). This evidence suggests that the error in the reconstruction 

of modulus could influence the accuracy of strain calculations more than the geometry 

reconstruction. Thus, further improvement is required for statistical models, particularly for 

reconstruction of material properties which is likely prone to higher errors.  

The present work has some limitations. The SPM2 was developed and tested for 

calculation of femoral strain on the basis of a relatively small size of training data with 21 

healthy women (65 ± 5 years). While the leave-one-out approach was used for reporting the 

reconstruction error of PCA model, to save the computational costs, and avoid re-building 

the SPM2 method, 18 femurs were used for building the SPM2 model, and three femurs 

were randomly selected for testing. To gain more confidence in term of the strength of the 

proposed technique, a larger population needs to be used by incorporating a larger variation 

in material characteristics and femoral anatomy (Austman et al., 2008; Bah et al., 2015a; 

Bryan et al., 2010; Oftadeh et al., 2015). The PCA predictions was restricted to ±2 standard 

deviations, covering about 95% of the variation within each mode, and ignoring the 

remaining percentage. To cover the variation near to boundaries (SDs = ±3), the size of the 

training dataset needs to be increased to provide enough data representing the entire 
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variation within each mode. In term of efficiency, the SPM2 method is faster than the FE 

method by a factor of 15 times. However, further improvement is achievable either by coding 

the MATLAB programs using more efficient programming languages such as C++ and 

Fortran (Aruoba and Fernández, 2015), or optimising the element size which was used for 

statistical shape and appearance models. For synthetic femurs, a physiologically less 

realistic (peak error = 14,000 – 20,000 με) strain fields was observed. This could, most likely, 

be related to, the magnitude of muscle and joint reaction forces that were taken from one 

single-subject and applied for all femurs. So, to explore the applicability of SPM2 for 

particular applications, like assessing the risk of femoral fracture (Martelli et al., 2014b), the 

applied forces needs to be scaled based on the body-weight of patients. While this would 

help to estimate a physiologically more realistic femoral strain fields, the main conclusions 

that SPM2 can be applied to any linear-elastic finite-element model would not be altered. 

Furthermore, the current study used a linear-based PCA model for the development of 

statistical shape and appearance model. However, more improvement, could likely be 

achieved by testing other alternative solutions, particularly, non-linear PCA methods, such 

as Kernel PCA (Chaber et al., 2018), Independent Component Analysis (Li et al., 2010), or 

non-linear classification techniques (Heimann and Meinzer, 2009; Lu and Pandolfo, 2011; 

Rasoulian et al., 2013). 

The SPM method was applied in the previous chapter by varying the point of 

application of the hip contact force during locomotion, and the current chapter used a 

constant point to apply the joint reaction force. This led to ignoring the error associated with 

linearising the surface of the femoral head. Hence, the SPM2 method needs further changes 

so that the variation in the location of hip contact force can be considered. Finally, the SPM2 

method was explored as a suitable technique for applications with linear systems like the 
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calculation of strain for intact femurs during motion (Kersh et al., 2018; Martelli et al., 2014a; 

Taylor et al., 2017), or relatively low non-linear models like the calculation of micromotion 

between bone and implant (Fitzpatrick et al., 2014). However, this method would not be 

appropriate for the prediction of outcome of interest in highly non-linear models, such as 

predicting the pattern of strain or wear for knee joint (Kazemi et al., 2013) with a complex 

dynamic system during locomotion (Walter and Pandy, 2017).  

Conclusion 

Large finite-element studies of bone have been hampered by their expensive computational 

costs, leading to a limit of the adaptation of FE analysis for this particular application which 

needs more efficient techniques. The current work developed and applied a novel 

computational method called SPM2 as a viable technique to bypass the computational 

complexity of current population-based studies of bone. The SPM2 method would be 

capable to predict femoral strain for a synthetic population with an average correlation 

coefficient of 0.97, allowing performance for particular applications such as assessing the 

risk of fracture in a population. However, the accuracy of predicted strain fields for unseen 

femurs was reduced slightly by showing the minimum correlation coefficient of 0.83. Two 

major sources of errors were identified during prediction of strain via the SPM2 method: 

interpolation error and reconstruction error. While the interpolation error could be reduced 

by increasing the number of standard deviations used within each PCA mode, the 

reconstruction error could be improved by either increasing the size and the variability of 

training dataset, or implementing other potential statistical models (e.g. non-linear PCA), 

which would enable a person to reconstruct the geometry and material properties of bone 

with higher accuracy. Therefore, to improve the robustness of the SPM2 method for strain 
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calculation, more advanced statistical shape and appearance models are needed to 

eliminate the PCA reconstruction error as the major source of error. 

In conclusion, the proposed training-free computational method can provide a 

promising path for real, or near-real-time, biomechanical analysis of intact or implanted 

femurs for large population-based studies and various physical activities. However, the 

performance of the Active appearance model still needs further improvement, either by 

testing other methods or increasing the size of training datasets, to provide a consistent and 

low strain error for a set of independent femur instances. 

 

 

 

 

 

 

 

 



 

 

                                                               147 

 : DISCUSSION, 
CONCLUSIONS, AND FUTURE WORK 
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Background, aim and significant findings 

The currently-used workflow for calculation of femoral strain in FE models includes 

segmentation of bone from CT images; mesh generation; assignment of material properties; 

the definition of loading condition; and submitting models to FE solvers (i.e. implicit or explicit 

solutions), as well as post-processing the obtained results. However, the current workflow, 

from building to solving the models, is a time-consuming and labour-intensive process, 

requiring a skilful operator. While statistical shape and appearance models are viable 

solutions for reducing the computational expenses of building FE models of a large 

cohort/population, the solution phase is still a computational barrier where 100s to 1000s of 

bone models are analysed. Current FE models are less attractive for clinical applications, 

where solution times of seconds to a few minutes are required.  

The aim of this thesis was to develop a novel computational method for biomechanical 

analysis of bone, enabling rapid prediction of femoral strain distribution which would be 

applicable to multiple subjects and various loading conditions. The potential techniques were 

developed and the performance of each method was evaluated by measuring the solution 

time and strain error. The significant findings of this work are summarised below.  

In Chapter 5, the efficacy and efficiency of Multi-Linear Regression (MLR) for 

computation of femoral strain during five different physical activities (normal walking, fast 

walking, stair ascent, stair descent, and chair rise) for a single healthy individual was 

explored. The MLR was able to predict femoral strain for a full activity cycle up to 200 times 

quicker than FE model. RMSE ranged from 1.2% to 1.3% while peak error ranged from 2.2% 

to 3.6% of the maximum micro-strain (5,020 με), followed by presenting lower accuracy 

when the magnitude of the applied load was lower, (e.g. in early and late stance phase) with 
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RMSE of 4.1% and a peak error of 8.6% of the maximum computed micro-strain. Therefore, 

MLR-based surrogate model could be applied as an efficient computational approach for 

predicting strain fields over the entire volume of long bones and across a range of normal 

physical activities. 

In Chapter 6, by leveraging the linearity of most biomechanical studies of bone, a newly 

developed training-free method was developed, based on the superposition principle 

(Superposition Principle Method, SPM). The performance of this technique was then 

compared against three popular surrogate models:  Multi-Linear Regression, Multivariate 

Adaptive Regression Splines, and Gaussian Process by measuring the time and strain error. 

The main advantage of the SPM method was related to its construction phase, permitting 

the building of a model independent from motion analyses experiments. The theory behind 

this relied on finding the causal relationship between a set of nominal applied forces and the 

resultant strain fields. Once constructed, the model was able to predict full tensor of femoral 

strain for a given frame of motion by scaling the known strain fields with regard to the 

corresponding force components, followed by adding the computed femoral strain for each 

force component. Among the surrogate methods, it was found that 200 DOE samples 

consistently provided low error (RMSE < 100 με), with model construction time ranging from 

3.8 to 63.3 h and prediction time ranging from 6 to 1,236 seconds per activity. Furthermore, 

compared with surrogate models, a better performance was observed from the SPM 

method, by producing the lowest strain error (RMSE = 40 με), the fastest model construction 

time (3.2 hours) and the second fastest prediction time per activity (36 seconds) after Multi-

Linear Regression (6 seconds).  

The SPM error originated completely from the different algorithms used in the present 

study and in the study of reference (Martelli et al., 2015b) for matching the nodes on the 
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femoral head surfaces and the hip force vector calculated using OpenSim. Specifically, in 

the present study the hip contact force vector was applied to the node on the femoral head 

surface by matching the direction of the hip contact force vector calculated using OpenSim 

and the direction through the node and the hip centre. While, in the reference study (Martelli 

et al., 2015b), the hip contact force vector was applied to the node on the femoral head 

surface closest to the intersection between the hip contact force calculated using OpenSim 

and the femoral head surface. The different algorithms led to a mismatch between the point 

of application of the hip contact force in the two studies of up to the element edge length (2 

mm in average) and to zero-error when the hip force vector was applied to the same node 

in both studies. The SPM error attributable to each muscle in the model was systematically 

zero because muscle attachment points were fixed throughout the activity. Therefore, while 

the error surrogate models could only be reduced marginally by increasing the training set 

size above 200, the error in the SPM method could be reduced without a significant 

computational cost by generating smaller elements on the surface of the femoral head. 

It was demonstrated that surrogate models are application-based and the performance 

of these techniques is bounded by training dataset, meaning that a surrogate model trained 

on data for level walking is unlikely to be as effective for activities with a higher degree of 

variability, like jumping. In contrast, the SPM model is comprised of a set of independent 

solutions, unrelated to activity, determined through finite-element analysis. For each frame 

and activity, solutions are then determined using linear combinations of base solutions, 

without training or any iterative learning approach. Therefore, the SPM method is a training-

free method which could be applied for any activity without the need to re-train the model, 

provided that the predicted strains are within the linear elastic region.  
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In Chapter 7, a novel computational approach called ‘SPM2’ was developed and the 

performance of this technique was examined for a population-based study by considering 

the variation in anatomy and bone distribution. This was achieved by amalgamating the 

Principle of superposition and a combined statistical shape and appearance model. The 

accuracy of predicted femoral strain was explored for two sets of data, including synthetically 

generated population and three unseen femurs. For a synthetic population generated using 

random PCA scores, the SPM2 method was able to reliably predict the femoral strain 

compared with the corresponding FE method across the whole population and for randomly 

selected frames of motion. The peak error ranged from 1.4 – 4.9 % (of maximum strain), 

while the RMSE varied from 0.7 to 1.6% (of maximum strain), which was consistent with 

previous findings (Grassi et al., 2014; Taddei et al., 2006b). While the variation within each 

mode is currently only described by three points (Standard deviations), increasing the 

number of points may help to reduce the error. However, as a result of this change, the 

number of simulations needed for building the SPM2 will increase accordingly, requiring the 

solution of an additional 2,448 simulations, which ultimately increases the computational 

cost.  

When the applicability of SPM2 was examined for unseen femurs, a lower accuracy 

was noted, mainly due to a poor performance of PCA during reconstruction of femurs. The 

average of shape reconstruction error in the ASM model was ranged from 1.3 – 4.9 mm, 

corroborating previous studies with an average error of 1.22 (Grassi et al., 2014), 0.88 mm 

(Vaananen et al., 2012) and 1.64mm (Rao et al., 2013). Furthermore, while the elemental 

modulus reconstruction error showed a fairly high average error (860 MPa) compared with 

a previous study (500 MPa), a realistic modulus distribution was noticed when the first few 

modes of PCA were visualised. Prediction of femoral strain using reconstructed femurs 
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showed a normalised RMSE error of 9% (of peak strain) for AAM and 5% (of peak strain) 

for ASM models. This was comparable with previous findings, reporting the normalised 

RMSE of 10% and 8% respectively for AAM and ASM-based FE models when compared 

with experimental measurements (Grassi et al., 2017). However, according to previous 

research (Bryan et al., 2010; Grassi et al., 2017; Vaananen et al., 2012), increasing the 

sample size up to a certain level (e.g. 40 – 100 femurs) could help to tailor further 

development of AAM models as the major source of error.  

Additionally, detailed analysis of strain error for unseen femurs presented a higher 

amount of strain error resulting from the reconstruction of the modulus distribution as 

compared to the reconstruction of the shape. This finding could be justified by looking at the 

compactness test, where PCA needed a higher number of modes to explain a certain 

percentage of variation for modulus as compared to the shape. Thus, caution is needed 

when building statistical models using PCA, particularly for statistical appearance models 

which could potentially generate a higher range of error during model reconstruction, leading 

to strain predictions using SPM2 with higher errors. Another finding worth mentioning was 

related to the PCA scores and their effects on the measured strain errors. It was noted that 

when PCA scores for both synthetic and unseen femurs are close to the mean femur (with 

standard deviation = 0) of the population, a lower error could be achieved. This could likely 

be related to building the SPM2 method based on the PCA scores of the mean femur across 

different modes of variation, and further improvements may be achieved, if further standard 

deviations were accounted for in the construction of SPM2.  
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Limitations 

The quality of a statistical shape and appearance model is dependent on the training 

datasets which have been used to build the model. In the present work, the size of training 

datasets used to build the statistical model was restricted to 21 healthy women (age range 

= 60 – 74). Due to this relatively small sample size, the range of femurs which were used for 

the construction of statistical shape and appearance models could reflect the small sample 

size and its potential bias. Furthermore, analysis of the PCA model using a compactness 

test and reconstruction error showed a better performance for ASM than AAM. For example, 

using the first five PCA modes, the ASM model was able to preserve around 95% of existing 

variation, whereas the AAM model was only able to capture 53% in the first five modes. 

Therefore, more caution needs to be taken while constructing the AAM models from CT 

images, and the statistical model needs to be constructed using a sufficient number of bones 

to provide a better representation of the whole population.  

The statistical shape and appearance model, which is the foundation of the SPM2 

method, has been constructed using a linear-based PCA method. The motivation to use this 

statistical model could be related to its two major features: compactness and reversibility. 

The compactness allows the PCA method to explain the main features of a training dataset 

by the projection of a high dimensional space into lower dimensional space. This capability 

allows the method to explain the shape and material properties of each bone using a limited 

set of PCA weights, without which a point-to-point training process would be needed to 

explain the variation in the shape and material properties of bone, making it too difficult to 

explain large population-based studies with a wide variety set of bone models. The 

reversibility is another feature of the PCA method which allows it to either reconstruct a 

femur from a set of known weights or extract the weights for a given femur. This feature is 
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an important requirement, particularly when the aim is to use PCA weights in large studies 

of bone or clinical applications, allowing the examination of the performance of an 

established PCA model by assessing the errors occurring during the reconstruction of shape 

and material properties, and thus evaluating the resultant strain error occurring in SPM2.  

The PCA method has been used in a vast majority of statistical models as the preferred 

method for describing the shape of a population, while presenting a difficulty explaining the 

variation in material properties (Bryan et al., 2010; Bryan et al., 2012; Vaananen et al., 2012). 

This was further confirmed through the current study by showing the difficulty the PCA 

method has capturing the variation in material properties for unseen femurs, while better 

performance was noted for the reconstruction of shape in unseen femurs. While increasing 

the sample size is suggested as a potential solution (Sarkalkan et al., 2014b) for improving 

the performance of the active appearance model (AAM), another possible solution which 

needs to be explored, is the use of smaller elements. This might be effective on the 

distribution of material properties, particularly when the material properties of bones are re-

assigned from the original mesh to the morphed mesh.   

Another major limitation with PCA is its algorithm, which uses a least-square estimation 

and assumes that data are distributed normally, while the principle modes are orthogonal to 

each other (Linting et al., 2007). This could lead to the outliers associated with realistic 

training datasets being ignored and the generation of bone instances with implausible shape 

and material properties, specifically when the size of the training dataset is not large enough. 

To circumvent this limitation, it is essential to consider other potential classification methods 

to understand how the accuracy of the current AAM-based statistical models could be 

improved. Independent component analysis (ICA) is an extension of PCA (Hyvärinen, 2012; 
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Tumer et al., 2019), which has been explored successfully for different fields of science 

and technology, including biomedical engineering, either for explaining the material 

properties (Üzümcü et al., 2003), for 3D shape analysis , or; removal of artefacts using 

simulated data (Djuwari et al., 2005). However, unlike the PCA model which provides a 

natural ordering of the eigenvectors according to the associated eigenvalues, a typical ICA 

method can explain the variation within a dataset via a set of independent factors, making it 

impossible to describe the variation within population in an appropriate format as required 

for SPM2. Therefore, if the generated independent components obtained from ICA could be 

ordered meaningfully, then this method could potentially be used as an alternative to current 

PCA models. Kernel PCA is a generalisation of PCA and has been proven to be a powerful 

classification technique for nonlinear dimensionality reduction of high-dimensional feature 

space and has claimed success in machine learning and pattern recognition problems (Deng 

and Tian, 2013; Peter et al., 2019). A standard PCA uses a linear algorithm to project the 

data into a straight line, affecting the accuracy of the model when the datasets are not 

distributed normally in the design space (Bishop, 2006). For example, when the shape and 

distribution of material properties in one specific bone is different from others, linear PCA 

may not be the best option to capture such a different property, leading to the loss of the 

variation within the population and making some errors for the reconstruction of the 

corresponding femur. In this case, Kernel PCA, which uses a non-linear algorithm, allows 

for the description of these small variations during the reduction of a high dimensional space 

into multiple low dimensional subspaces. Another potential method which could be used for 

improving the performance of AAM models could be Autoencoders which is developed 

based on the theory of neural networks to reduce a high-dimensional observation to a lower-

dimensional representation space. While this technique is able to describe the non-linearity 

of the given training data, due to the reduction of the number of layers during finding the 
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relationship between input and output layers using an optimising function, a perfect 

reconstruction of all vectors of material properties may not be possible (Bishop, 2006). 

Therefore, a correct choice of method needs to be established by testing these potential 

methods to understand which of them is more suitable for the construction of AAM models 

as the major source of error, and to investigate how the obtained AAM weights could be 

combined with ASM weights produced from a linear-PCA model as a suitable technique for 

describing shape with a population. 

When the SPM method was developed for single subject study during motion, the 

centre of pressure was assumed to be the intersection between the sphere that best fit the 

femoral head surface and the hip contact force vector passing through the hip joint centre. 

This assumption led to the generation and solving of 101 individual simulations for those 

nodes located within the envelope of the trajectories of the hip joint centre of pressure across 

activities. However, for the sake of simplicity, the SPM2 method was applied for population-

based study by assuming that the location of applied joint contact force is constant across 

different subjects during motion. While this may increase the computational costs 

significantly due to creating and solving a large number of individual simulations for three 

components (e.g. x, y, and z) of joint contact force across the entire standard deviations and 

modes of variation, this would not affect the validity of the concept used in the SPM2 method. 

It could be advantageous if the centre of pressure could be varied during motion within the 

population-based study, helping to physiologically better describe the distribution of femoral 

strain during different loading conditions.  

The SPM2 method showed a great potential for reducing the computation required for 

calculation of femoral strain. The current solution time in the SPM2 method for activity cycle 

discretised into 40 frames of motion is approximately 15 times quicker than the FE method. 
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However, the analysis time could be reduced further by rewriting the codes using more 

efficient programming languages, like C++, which is almost 11 times quicker than MATLAB 

(Aruoba and Fernández, 2015). This would allow the performance of strain prediction in a 

few seconds, which is a requirement for clinical applications and large studies of bone.  

The current statistical model was developed based on the shape and material 

properties of bones derived from CT images. However, the CT images are not standard of 

care, due to some limitations, such as high operational costs and exposing patients to 

significant doses of radiation, making them less attractive for clinical-based studies, like 

assessing the risk of femoral fracture (Grassi et al., 2016; Vaananen et al., 2012). The 

capability of planar dual-energy X-ray absorptiometry (DEXA) has made it popular for FE 

studies of bone (Grassi et al., 2017) as well as the establishment of statistical shape and 

appearance models (Sarkalkan et al., 2014b; Vaananen et al., 2012). Although statistical 

models built from these quick and non-invasive DEXA images is in early stages and the 

accuracy of generated 3D models projected from 2D images needs to be improved, (Grassi 

et al., 2017; Vaananen et al., 2012), combining these DEXA-imaged based statistical 

models, with real-time musculoskeletal models (Durandau et al., 2018; Pizzolato et al., 

2017a; Samy et al., 2019), and using the SPM2 method would potentially permit the 

determination of the distribution of femoral strain in clinics without harm to patients.  

The data used in this study was obtained from previous work (Martelli et al., 2015b), 

where the bones were segmented manually. For future work, fully automatic segmentation 

approaches could be coupled with the current SPM2 workflow, allowing it to include a wider 

variation in the shape and material properties of bones by enlarging the size of training 

datasets up to thousands of CT images. This could, ultimately, improve the robustness of 
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PCA-based statistical models by incorporating a wide variation in the shape and material 

properties of bone within the population (Bryan et al., 2010; Vaananen et al., 2012). 

Applications and future work 

The aim of this thesis was to develop an efficient computational model for calculation of 

femoral strain during motion in large bone studies. This aim has been achieved by 

developing and testing the SPM2 method for a linear-elastic problem, while capturing the 

non-linearity of joint contact force during motion. However, this technique has greater 

capabilities and with further development could be used for: (i) assessing the risk of fracture 

on the femoral neck for a large number of activity regimes across a representative patient 

population; (ii) real or near-real time calculation of femoral strain while patients are 

exercising or performing physical activates; and (iii) assessing the primary stability of an 

implant design by evaluating the effect of several patient and surgical factors on the 

interfacial micromotion and strain between bone and implant within the populations.  

The current study used a limited set of normal activity for testing the performance of 

SPM2. However, by accounting a large space of potential or physiologically plausible forces, 

it is clearly feasible to study femoral neck mechanics. To generate such physiologically 

plausible muscle forces, the available full-body musculoskeletal models need to be coupled 

with potential statistical approaches (e.g. Bayesian statistics) and sampling methods (e.g. 

Markov chain Monte Carlo). The obtained data can then simply be fed into the SPM2 method 

to explore the risk of femoral fracture within a representative or real population by ranking a 

variety of physical activities based on their effect on the risk of fracture. 
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Recently, real-time musculoskeletal modelling pipelines are suggested for the direct 

calculation of forces in the lower limb (Durandau et al., 2018; Pizzolato et al., 2017a; Samy 

et al., 2019). These force estimation approaches which are typically developed based on 

EMGs and motion-capture data, are able to provide a real-time bio-feedback for different 

participants and physical activates in clinics. So, by coupling these musculoskeletal models 

and having a set of segmented CT data, it is feasible to fit the input data (forces and PCA 

weights representing the material properties and shape of bone) into the SPM2 method to 

compute femoral strain in a time-effective manner. Thus, translation of this rapid 

computational method to the clinical environment could be beneficial for various applications 

including: establishing personalised treatments after surgery (e.g. total hip replacement); 

improvement of rehabilitation systems by providing real-time biofeedback about the effect 

of forces acting on bone during daily activities; improving the accuracy of musculoskeletal 

models in their estimation of muscle and joint reaction forces by efficiently refining the 

models based on the predicted femoral strains; and also in sport biomechanics, for 

enhancing the performance of athletes during exercise (e.g. running and cycling) or 

examining the risk of bone injury, like assessing the risk of bone stress injury (BSI) as a 

common problem among runners. 

The current study used the SPM2 method for calculation of femoral strain in intact 

femurs. However, in future research, it would be interesting to look at the performance of 

SPM2 for implantable devices. For example, this could be a useful tool for investigating the 

interface conditions between the interface of bone and a designed implant, allowing the 

understanding of the primary stability of implanted bones across a large population, and 

ultimately helping to optimise the design of implants by accounting for both anatomical (Bah 

et al., 2015b) and surgical variabilities (Al-Dirini et al., 2019; Bah et al., 2011). To achieve 
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this, the available automated implantation approaches (Al-Dirini et al., 2019) could be 

coupled with large FE studies of bone (Bryan et al., 2012; Galloway et al., 2013) to 

synthetically generate populations which are implanted in the ideal position in hosting bone, 

leading to the generation of the training data required to build the SPM2 method. However, 

the major challenge would be related to establishing a suitable algorithm so that the size 

and shape of an implant design could be matched with the corresponding hosting bone 

across different standard deviations and modes of variation. If this problem could be solved, 

then the methodology could be used as an effective solution for comparative assessment of 

implant designs for large population based-studies.  

In conclusion, the Superposition principle method (SPM) is a training-free method 

providing solutions of femoral strain during activity that outperform common surrogate 

models both in terms of error and computational time. The combination of superposition 

principle and the PCA-based statistical model is computationally an effective solution for 

running population-based simulations of femoral mechanics during activity. With further 

development, this approach could potentially be used for other applications, such as 

improving the design of implantable devices, either using a real or representative population, 

and providing biofeedback to patients while performing physical activates in clinics.  
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