An examination of malate metabolism in

Vitis vinifera during fruit ripening and in

response to elevated vineyard temperature

by

Crystal Sweetman B.Sc. (Hons.)

A thesis by publication, presented for the degree of Doctor of Philosophy at Flinders University of South Australia Faculty of Science & Engineering

July, 2011

Abbreviations

ADH	Alcohol dehydrogenase
ADP	Adenosine diphosphate
ANGIS	Australian National Genomic Information Service
AOX	Alternative oxidase
ATP	Adenosine triphosphate
BLAST	Basic Local Alignment Search Tool
BSA	Bovine serum albumin
cDNA	Complementary DNA
CH/BL	Chamber / blower heat treatment
СоА	Coenzyme A
COX	Cytochrome oxidase
Ct	Cycle threshold
DEDTC	Diethyldithiocarbamate
DFCI	Dana Farber Cancer Insitute
DNA	Deoxyribonucleic acid
DTT	Dithiothreitol
EDTA	Ethylenediaminetetraacetic acid
EST	Expressed sequence tag
H_2O_2	Hydrogen peroxide
KCI	Potassium chloride
KCN	Potassium cyanide
MDH	Malate dehydrogenase
ME	Malic enzyme
MES	2-(N-morpholino)ethanesulfonic acid
MPA	Metaphosphoric acid
NAD	Nicotinamide adenine dinucleotide
NADH	Nicotinamide adenine dinucleotide, reduced
NADP	Nicotinamide adenine dinucleotide phosphate
NADPH	Nicotinamide adenine dinucleotide phosphate, reduced
NAD(P)	NAD and NADP
NAD(P)H	NADH and NADPH
NCBI	National Centre for Biotechnology Information

OAA	Oxaloacetate
OG	Octyl gallate
отс	Open top chamber heat treatment
PCR	Polymerase chain reaction
PDC	Pyruvate decarboxylase
PEG	Polyethylene glycol
PEP	Phospho <i>enol</i> pyruvate
PEPC	Phospho <i>enol</i> pyruvate carboxylase
PEPCK	Phospho <i>enol</i> pyruvate carboxykinase
PEPCkin	Phospho <i>enol</i> pyruvate carboxylase kinase
РК	Pyruvate kinase
PMSF	Phenylmethylsulfonyl fluoride
PVP	Polyvinylpyrrolidone
PVPP	Polyvinylpolypyrrolidone
RNA	Ribonucleic acid
mRNA	Messenger RNA
RT-PCR	Reverse transcriptional PCR
qRT-PCR	Quantitative real-time PCR
SA	Surface area
T _a	PCR cycle annealing temperature
T _m	PCR cycle melting temperature
TCA	Tricarboxylic acid
TES	3-(N-morpholino)propanesulfonic acid
TMPD	N,N,N',N'-tetramethyl-p-phenylenediamine
WGS	Whole genome shotgun
bp / kb	Base pairs / kilobases
°C	Degrees, Celsius
g/mg/µg/ng	Gram / milligram / microgram / nanogram
L/ml/µl	Litre / millilitre / microlitre
Μ	Molar (moles.litre ⁻¹)
mM/µM/nM	Millimolar / micromolar / nanomolar
v/v	volume / volume
w/v	weight / volume

Summary

Acidity is an important characteristic for many fruits, particularly in aspects of fruit biochemistry and sensory quality. In grapes (Vitis vinifera), one of the most important agricultural fruiting crops, the use of fruit with low acidity and high pH in winemaking can increase risk of microbial spoilage and undesirable fermentative outcomes. Levels of the organic acid malate can determine acidity and pH in many fruits, through speciesand cultivar-specific regulation of developmental and environmental responses. Malate is also extensively involved in primary and secondary metabolic pathways that can be critical to fruit development and ripening. The grape berry demonstrates particularly striking changes in malate accumulation and degradation during development and in response to vine temperature, likely driven by changes in metabolic pathways involving the acid. If harvested late in the season, or if ripening berries are exposed to unusually warm temperatures, the fruit are likely to contain less-than-optimal acid due to reduced levels of malate. Despite the considerable influence that berry acidity imparts on berry and wine quality, the mechanisms of regulation for malate metabolism in response to changes in grape berry development and vine temperature are still largely unknown. This thesis contains an evaluation of the activities and transcripts of enzymes in V. vinifera fruit that are involved in processes such as glycolysis, gluconeogenesis, CO₂ assimilation, respiration and fermentation, each involving malate either directly or indirectly. Enzymes from purified grape berry mitochondrial preparations were also explored, providing evidence for two activities that were, until now, undetermined in grapes: NAD-dependent malic enzyme and alternative oxidase. A developmental series of grapes from fruit set until harvest maturity displayed the expected pattern of prevéraison malate accumulation, and post-veraison malate loss. Activities or transcripts that were differentially regulated with development included NADP-dependent malic enzyme, PEP carboxylase, PEP carboxykinase, pyruvate, orthophosphate dikinase, alcohol dehydrogenase and the terminal oxidases of the mitochondrial transport chain. To test the effect of elevated vine temperature on grape berry malate, field-based heat trials were established at numerous developmental stages. Temperature experiments were set up as mild, long-term heating trials to mimic a climatic shift, as well as shorter, more intense trials to represent heat-wave events. Effects of raising bunch temperature during the day and night were also investigated. Heating of grapevines at the post-set developmental stage (i.e. malate accumulation phase) led to higher berry malate, particularly when bunches were heated at night. Heating of grapevines around the véraison and pre-harvest stages (i.e. malate degradation phase) generally led to lower berry malate, unless bunches were also heated at night, or if the majority of malate had already been lost from the fruit before the time of treatment. Data indicated that the temperature-sensitive changes in grape berry malate during the day and/or night at different developmental stages could be linked to alterations in PEP carboxylase, PEP carboxykinase, pyruvate, orthophosphate dikinase and NAD-dependent malic enzyme. Implications of such shifts in metabolism are discussed in detail within the text.

Declaration

I certify that this thesis does not incorporate without acknowledgment any material previously submitted for a degree or diploma in any university; and that to the best of my knowledge and belief it does not contain any material previously published or written by another person except where due reference is made in the text.

Crystal Sweetman

School of Biological Sciences,

Faculty of Science and Engineering,

Flinders University of South Australia

Statement of the contributions of jointly authored papers

1. **Sweetman, C., Deluc, L.G., Cramer, G.R., Ford, C.M., Soole, K.L.** Regulation of malate metabolism in grape berry and other developing fruits. Review published in *Phytochemistry* on 15th September, 2009.

Author Contributions: CS surveyed the literature, analysed the data and drafted/constructed the manuscript. KLS and CMF contributed to the structure and editing of the manuscript. LGD and GRC assisted with provision and analysis of the microarray data, and with editing of the manuscript.

2. Sweetman, C., Ford, C.M., Soole, K.L. Developmental regulation of malate and its involvement in primary and secondary metabolism of *Vitis vinifera* fruit. Manuscript in preparation for submission to *Physiologia Plantarum*.

Author Contributions: CS designed and conducted all research experiments, analysed the data, and drafted/constructed the manuscript. KLS and CMF contributed to the research ideas and design, and the editing of the manuscript.

3. **Sweetman, C., Ford, C.M., Soole, K.L.** Importance of mitochondrial respiration and acid metabolism in *Vitis vinifera* berry development and ripening. Manuscript in preparation for submission to *Physiologia Plantarum*.

Author Contributions: CS designed and conducted all research experiments, analysed the data, and drafted/constructed the manuscript. KLS and CMF contributed to the research ideas and design, and the editing of the manuscript.

4. Sweetman, C., Soar, C.J., Sadras, V.O., Ford, C.M., Soole, K.L. Effects of elevated temperature on malate and other aspects of fruit primary metabolism in *Vitis vinifera*. Manuscript in preparation for submission to *The Journal of Experimental Botany*.

Author Contributions: CS assisted with experimental design of the CH/BL field experiment, collected materials, conducted all laboratory research experiments, analysed the data, and drafted/constructed the manuscript. KLS and CMF contributed to the research ideas and the editing of the manuscript. VOS designed field experiments and assisted with data analysis and editing of the manuscript.

The following authors agree that the Statement of the contributions of jointly authored papers accurately describes their contribution to research manuscripts 1., 2., 3., and 4. and give consent to their inclusion in this thesis.

 Sweetman, C.
 Soole, K.L.
 Ford, C.M.
 Cramer, G.R.
 Deluc, L.G.
 Sadras, V.O.

Acknowledgements

First, I thank my supervisors; Assoc. Prof. Kathleen Soole and Dr Christopher Ford. I am grateful for their wisdom and willingness to assist me in my endeavours. I also thank them for editing thesis drafts despite their incredibly busy schedules. In addition, I am truly thankful for Chris and Kathleen's support; both professionally and personally.

For their friendly assistance and collaborations in various aspects of this research, I thank Prof. Grant Cramer, Assist. Prof. Laurent Deluc, Assoc. Prof. Victor Sadras and Dr Chris Soar. Their contributions were vital to this thesis, and are much appreciated.

Next, to good friends and valuable contacts whom I have met as peers. In particular I thank Dr Crista Burbidge, Dr Vanessa Melino, Dr Vivek Vijayraghavan, Dr Chevaun Smith, Tania Kurek, Lidia Mischis and Pip Cook for making the lab so entertaining (and educational). A special mention to Crista and Vanessa for their vineyard shenanigans and generous support, both inside and outside of the lab, which will remain with me as fond memories, and to Vivek, James, Mike and Colin for therapeutic beer-o'clock 8-ball on Fridays. Jake Dunlevy has also been a valuable companion and coworker during this time. For day-to-day chats and "chin-ups", I thank the researchers and students from the 3rd floor of Biological Sciences at Flinders University, and more recently I have appreciated some wonderful encouragement from staff and students at the University of Adelaide.

I am indebted to my closest and most beloved family, Rick (the father) and Nathan (the brother), who have helped me throughout my entire education and all aspects of life. Although sometimes annoying, they are the most genuine and helpful people I know. Thanks also to Jo, Joseph and Amy; my new family.

I also thank my friends, old and new, for being around when I needed to laugh and leaving me alone when I needed to focus. While I will not list them all, I consider myself fortunate to have such a genuine and supportive group of people around me. Additional thanks (and perhaps apologies?) to Emma and Josh for putting up with me at home during the writing period.

Finally, I am extremely grateful for the two gentlemen in my life; Matt (the human) and Monkey (the canine), for their unwavering patience and affection during the final stages. Hopefully now I can give them both the attention that they deserve.

Table of Contents

List of Abbreviations Thesis summary Student Declaration Statement of the contributions of jointly authored papers Acknowledgements Table of Contents List of Figures List of Tables	II IV VI IX X XIV XVI
1. "Regulation of malate metabolism in grape berry and other developing fruits"	1
1.1. Abstract	3
1.2. Introduction	4
1.2.1. Fruit acidity and malate	4
1.2.2. Malate in fruit development	6
1.3. Pathways of malate synthesis in fruit	7
1.3.1. Glycolysis: PEPC-MDH reaction (pyruvate kinase bypass)	8
1.3.1.1. Phosphoenolpyruvate carboxylase (PEPC)	8
1.3.1.2. Malate dehydrogenase (MDH)	9
1.3.2. Photosynthesis 1.3.2.1. NADP-dependent malic enzyme (NADP-ME)	12 13
1.3.3. TCA cycle: fumarase and mitochondrial MDH (mMDH)	15
1.3.3.1. Fumarase	16
1.3.3.2. Mitochondrial NAD-dependent MDH (mMDH)	16
1.3.4. Glyoxylate cycle	17
1.4. Pathways of malate degradation in fruit	
1.4.1. Gluconeogenesis	18 18
1.4.1.1. Phosphoenolpyruvate carboxykinase (PEPCK)	18
1.4.1.2. Pyruvate, orthophosphate dikinase	20
1.4.2. Respiration	20
1.4.2.1. TCA cycle	21
1.4.2.2. NADP-dependent malic enzyme (NADP-ME)	22
1.4.2.3. NAD-dependent malic enzyme (NAD-ME) 1.4.2.4. Non-phosphorylating pathway of respiration	23
<i>1.4.2.4. Non-phosphorylating pathway of respiration</i> 1.4.3. Fermentation	24 25
1.4.3.1. Ethanol fermentation	25
1.4.3.2. Lactate fermentation	27
1.5. Intracellular transport of malate in the grape berry	28
1.6. Approaches to identify genes linked to high and low malate fruit	30
1.7. Temperature regulation of fruit malate metabolism	32
1.8. Transgenic approaches to modifying malate metabolism	34
1.9. Concluding remarks	37

Х

1.10. Thesis air	ns	39
1.10.1.	Developmental regulation of grape berry malate	39
1.10.2.	. Temperature regulation of grape berry malate	39
1.10.3	Specific aims	39
1.11. Reference	es	40
2. "Developme	ental regulation of malate and its involvement in primary and	
secondary	metabolism of Vitis vinifera fruit"	51
2.1. Abstract		53
2.2. Introduction	on	53
2.3. Materials	and methods	55
2.3.1.		55
	Malate quantification	56
	Enzyme extraction	56
2.3.4.		56
2.3.5.	, , ,	57
2.3.6. 2.3.7.		58 60
2.3.7.	•	60 60
2.3.8.		61
2.4. Results		62
2.4.1.	Fruit growth and developmental changes in malate levels	62
2.4.2.	Developmental patterns of gene transcript levels and enzyme activities	62
2.4.3.		71
2.5. Discussion		74
2.5.1.	Malate synthesis during berry development	75
2.5.2.	Malate degradation during berry development	77
2.6. Concluding	g remarks	85
2.7. Reference	S	87
3. "Importance	e of mitochondrial respiration and acid metabolism in	
Vitis vinifer	a berry development and ripening"	93
3.1. Abstract		95
3.2. Introduction	on	95
3.3. Materials	and methods	98
3.3.1.	Materials	98
3.3.2.		99
3.3.3.		99
3.3.4.	,	100
3.3.5.	, , , ,	100
3.3.6.	Polarographic enzyme activity assays	101

3.3.7. 3.3.7.	Bioinformatics Quantitative real-time reverse transcriptional PCR	102 102
3.4. Results:		104
3.4.1.	Genetic analysis	104
	3.4.1.1. VvCox	104
	3.4.1.2. VvAox1a	104
	3.4.1.3. VvAox1b	107
	3.4.1.4. VvAox2	107
	Purification of grape berry mitochondria	107
	Mitochondrial respiration	107
	Malate-metabolising enzymes in purified mitochondria	111
3.4.5.	COX and AOX activities	111
3.5. Discussion		114
	Transcripts of the mitochondrial electron transport chain (mETC)	114
3.5.2.		118
3.5.3.	Mitochondrial respiration	119
	3.5.3.1. Respiration of exogenous malate	120
	3.5.3.2. Grape berry COX	122
	3.5.3.3. Grape berry AOX	123
3.5. Concluding	g remarks	125
3.6. References	5	127
4. "Effects of e	levated temperature on malate and other aspects of fruit	
primary me	tabolism in <i>Vitis vinifera</i> "	132
4.1. Abstract		134
4.2. Introductio	on	135
4.3. Materials a	and methods	138
4.3.1.	Experimental Design	138
4.3.2.	Malate Quantification	139
4.3.3.	Enzyme Extraction	140
4.3.4.	Enzyme Activity Assays	140
4.3.5.	Quantitative Real-time Reverse Transcriptional PCR	141
4.3.6.	Statistical Analyses	142
4.4. Results		142
4.4.1.	Berry weight and malate content	142
	Enzyme Activities and Gene Transcripts	
4.4.1.	Enzyme Activities and Gene Transcripts 4.4.2.1. NAD(P)-dependent malate dehydrogenases and malic	142 145
4.4.1.	Enzyme Activities and Gene Transcripts 4.4.2.1. NAD(P)-dependent malate dehydrogenases and malic Enzymes	142 145 145
4.4.1.	 Enzyme Activities and Gene Transcripts 4.4.2.1. NAD(P)-dependent malate dehydrogenases and malic Enzymes 4.4.2.2. Phosphoenolpyruvate carboxylase 	142 145 145 147
4.4.1.	 Enzyme Activities and Gene Transcripts 4.4.2.1. NAD(P)-dependent malate dehydrogenases and malic Enzymes 4.4.2.2. Phosphoenolpyruvate carboxylase 4.4.2.3. Phosphoenolpyruvate carboxykinase 	142 145 145 147 150
4.4.1.	 Enzyme Activities and Gene Transcripts 4.4.2.1. NAD(P)-dependent malate dehydrogenases and malic Enzymes 4.4.2.2. Phosphoenolpyruvate carboxylase 4.4.2.3. Phosphoenolpyruvate carboxykinase 4.4.2.4. Pyruvate kinase 	142 145 145 147 150 150
4.4.1.	 Enzyme Activities and Gene Transcripts 4.4.2.1. NAD(P)-dependent malate dehydrogenases and malic Enzymes 4.4.2.2. Phosphoenolpyruvate carboxylase 4.4.2.3. Phosphoenolpyruvate carboxykinase 	142 145 145 147 150
4.4.1.	 Enzyme Activities and Gene Transcripts 4.4.2.1. NAD(P)-dependent malate dehydrogenases and malic Enzymes 4.4.2.2. Phosphoenolpyruvate carboxylase 4.4.2.3. Phosphoenolpyruvate carboxykinase 4.4.2.4. Pyruvate kinase 4.4.2.5. Pyruvate, orthophosphate dikinase 	142 145 145 147 150 150 150

	chain	154
4.5. Discussion 4.5.1. 4.5.2. 4.5.3.	Effect of elevated temperature on post-set berries Effect of elevated temperature on veraison berries Grape berry metabolism in the face of climatic change	154 156 159 163
4.6. Concluding	remarks	165
4.7. References		166
5. Summary an	d future directions	172
5.1. Experiment	tal summary	173
5.2.1.	ental regulation of grape berry malate Malate accumulation phase Malate degradation phase	174 174 174
5.3.1. 5.3.2.		177 177 180 181 181 181
5.4. Implication	s of research	182
5.5. Future Directions		183
5.6. References		185
Appendices		186
	ling evelopmental series sampling regime and experimental design eat treatment sampling regime and experimental design	187 187 187
A2. Enzyme ext	raction and assay optimisation	194
A3. Networks o	f potential flux at three stages of berry development	197
A4. Gene transo	cript and enzyme activity scatter plots	200

List of Figures

Figure 1.1:	Potential Metabolic Pathways Involving Malate in Fruit Cells	5
Figure 1.2:	Transcript Levels of Extra-mitochondrial Enzymes Involved in Malate Metabolism in <i>V. vinifera</i> cv. Cabernet Sauvignon	10
Figure 1.3:	Transcript Levels of Mitochondrial Enzymes Involved in Malate Metabolism in <i>V. vinifera</i> cv. Cabernet Sauvignon	14
Figure 2.1:	Attributes of berry development throughout ripening	63
Figure 2.2:	Developmental changes in PEPC activity and transcripts	64
Figure 2.3:	Developmental changes in NAD(P)-MDH, NADP-ME and PK activities	65
Figure 2.4:	Developmental changes in NAD-ME activity and transcript	67
Figure 2.5:	Developmental changes in VvPpdk transcript	68
Figure 2.6:	Developmental changes in PEPCK activity and transcript	69
Figure 2.7:	Developmental changes in ADH activity and transcripts	70
Figure 2.8:	Changes in metabolite content across stages of berry development	73
Figure 3.1:	Sequence alignment and phylogenetic tree of translated V. vinifera, M. indica and A. thaliana AOX genes	105
Figure 3.2:	Normalised gene transcript level data across development	106
Figure 3.3:	Activities of contaminating enzymes in crude and purified preparations of grape berry mitochondria	108
Figure 3.4:	Mitochondrial membrane integrity of crude and purified mitochondria	109
Figure 3.5:	State III mitochondrial respiration across berry development	110
Figure 3.6:	Relative rates of mitochondrial malate-catabolic pathways	112
Figure 3.7:	Capacity for mitochondrial respiration through COX	113
Figure 3.8:	Capacity for mitochondrial respiration through AOX	115
Figure 3.9:	Capacity for respiration through a) COX and b) AOX	116
Figure 3.10	: Capacity for respiration through AOX in isolated mitochondria respiring malate	117
Figure 4.1:	Developmental changes in berry weight in response to Chamber-Blower treatments	144
Figure 4.2:	Effect of elevated temperature treatments on amount of malate per berry	146

-	Effect of elevated temperature treatments on activities of enzymes directly involved in malate metabolism	148
Figure 4.4: E	Effect of elevated temperature treatments on PEPC transcripts and activity	149
Figure 4.5: E	Effect of elevated temperature treatments on PEPCK transcript and activity	151
-	Effect of elevated temperature treatments on aspects of pyruvate netabolism	152
Figure 4.7: E	Effect of elevated temperature treatments on ADH transcripts and activity	153
-	Effect of elevated temperature treatments on transcripts of terminal oxidases of the mitochondrial electron transport chain	155
Figure A.1.1	: Berry sampling design for Coombe developmental series	188
Figure A.1.2	: Tagged bunches for the developmental series	189
Figure A.1.3	: A developmental scale of fruit from Coombe vineyard during 07-08 season	190
Figure A.1.4	: Equipment used for heat treatment of vines in the field	191
Figure A.1.5	: Experimental design of chamber/blower (ie. day/night heating) treatments	192
Figure A.2.1	: Protein concentration in berry enzyme extracts	194
Figure A.2.2	: Example of enzyme assay optimisation data	195
Figure A.3.1	: Pre-veraison network of malate metabolism	197
Figure A.3.2	: Veraison network of malate metabolism	198
Figure A.3.3	: Post-veraison network of malate metabolism	199
Figure A.4.1	: Malate content Vs ambient temperature from developmental series	200
Figure A.4.2	: NAD(P)-MDH activities Vs malate content from heat treatments	201
Figure A.4.3	: NAD-ME transcript Vs temperature and malate content from developmental series	202
Figure A.4.4	: NAD-ME transcript and activity Vs malate content from heat treatments	203
Figure A.4.5	: PEPC transcripts Vs temperature and malate content from developmental series	204
Figure A.4.6	: PEPC transcripts and activity Vs malate content from heat treatments	205
Figure A.4.7	: PEPCK transcript Vs temperature and malate content from developmental series	206

Figure A.4.8: PEPCK transcript and activity Vs malate content from heat treatments	207
Figure A.4.9: PPDK transcript Vs temperature and malate content from developmental series	208
Figure A.4.10: PPDK transcript Vs malate content from heat treatments	209
Figure A.4.11: ADH gene transcripts Vs temperature and malate content from developmental series	210
Figure A.4.12: ADH transcripts Vs malate content from heat treatments	211
Figure A.4.13: AOX and COX transcripts Vs temperature and malate content from developmental series	212
Figure A.4.14: AOX and COX transcripts Vs malate content from heat treatments	213
Figure A.4.15: PEPC transcript Vs PEPC activity from heat treatments	214

List of Tables

Table 1.1:	Relative expression values for putative genes of malate-metabolising enzymes from <i>V. vinifera</i> cv. Cabernet Sauvignon (external to mitochondria)	11
Table 1.2:	Relative expression values for putative genes of malate-metabolising enzymes from <i>V. vinifera</i> cv. Cabernet Sauvignon (mitochondrial)	15
Table 2.1:	List of accession numbers, primer sets and probes used for qRT-PCR	59
Table 2.2:	Malate flux capacities of enzymes at veraison	72
Table 3.1:	List of accession numbers, primer sets and probes used for qRT-PCR	103
Table 4.1:	List of accession numbers, primer sets and probes used for qRT-PCR	143
Table 5.1:	Summary of scatter plot comparisons between temperature, malate, gene transcript levels and enzyme activities	178
Table A.1.1	: Location and climatic data for Coombe and Nuriootpa Research Station vineyards	193
Table A.2.1	: Substrate affinities of enzymes from mature Shiraz grape berries	196