INVESTIGATION OF THE LONG CHAIN POLYUNSATURATED FATTY ACID SYNTHESIS PATHWAY IN SOUTHERN BLUEFIN TUNA (*THUNNUS MACCOYII*) AND YELLOWTAIL KINGFISH (*SERIOLA LALANDI*)

BY

MELISSA K. GREGORY

A thesis submitted for the Degree of Doctor of Philosophy

The School of Biological Sciences

Flinders University

March 2010

TABLE OF CONTENTS

TABLE OF FIGURES	VI
DATA TABLES	IX
ABBREVIATIONS	X
ABSTRACT	XIII
DECLARATION	. XV
ACKNOWLEDGEMENTS	XVI
PUBLISHED WORK	xvII
	1 \
I GENERAL INTRODUCTION	I
1.1 Polyunsaturated fatty acids (PUFA)	1
1.2 The long chain polyunsaturated fatty acid (LCPUFA) synthesis pathway	2
1.3 Aquaculture	5
1.4 Oils in aquaculture	6
1.5 The southern bluefin tuna (SBT) aquaculture industry in South Australia	7
1.6 The yellowtail kingfish (YTK) aquaculture industry in South Australia	9
2 YELLOWTAIL KINGFISH DIETARY TRIAL USING GRAPE SEED	
EXTRACT AS A NATURAL ANTIOXIDANT	11
2.1 Introduction	11
2.1.1 Quality of farmed fish	11
2.1.2 The use of antioxidants to preserve foods	12
2.1.3 The use of natural antioxidants	13
2.1.4 The use of grape seed extract (GSE) as a natural antioxidant	13
2.1.5 Antioxidants in aquaculture	15
2.2 Methods	18
2.2.1 Materials	18
2.2.2 Experimental diets	18
2.2.3 Experimental fish and dietary trial conditions	21
2.2.4 Sampling of fish	24
2.2.5 Survival and growth measurements	26
2.2.6 Proximate composition analysis	26
2.2.7 Pathology testing	27
2.2.8 Fatty acid analysis	29
2.2.8.1 Extraction of total lipid from tissues	29
2.2.8.2 Extraction of total lipid from feeds	29
2.2.8.5 Extraction of lipid classes from ussues	30 20
2.2.8.4 Analysis of FAME by gas chromatography	30
2.2.7 Explored quarty parameters	55 22
2.2.11 Statistical analysis	33
2.3 Results	

	2.3.1	Analysis of YTK experimental diets	35
	2.3.2	Growth performance and feed utilization efficiency	38
	2.3.3	Pathology testing	42
	2.3.4	The effect of dietary GSE supplementation on fillet quality	43
	2.3.4.1	Fillet fat content	43
	2.3.4.2	TBARS	47
	2.3.4.3	Fillet fatty acid composition	49
	2.3.5	Comparison of fatty acid profiles of the experimental diets and the	
		fillets	63
	2.4 Disc	ussion	64
2		CAND CHADA CTEDISATION OF A <i>FATTY ACVI</i>	
3	LUNINU	J AND CHARACTERISATION OF A FATTI ACIL	
	AODESAI Soutuei	UKASE AND A FAIIY ACYL ELUNGASE CDNA FKUM DN DI HEEIN THNA	77
	SUUTHE	KIN DLUEFIIN TUINA	••• / /
	3.1 Intro	oduction	77
	3.1.1	Long chain polyunsaturated fatty acid (LCPUFA) synthesis	
		enzymes	77
	3.1.1.1	The desaturase enzymes	77
	3.1.1.2	The elongase enzymes	78
	3.1.2	The ability of fish species to use the LCPUFA synthesis pathway	80
	3.2 Meth	hods	82
	3.2.1	Materials	82
	3.2.2	Bioinformatics and sequence analysis	82
	3.2.3	Isolation of total RNA from SBT tissue	83
	3.2.4	DNase treatment of total RNA	83
	3.2.5	Clean up of DNase treated RNA	83
	3.2.6	Quantification of RNA/DNA	84
	3.2.7	Primers	84
	3.2.8	Polymerase chain reaction (PCR)	85
	3.2.8.1	Clean up of PCR products	85
	3.2.8.2	PCR screening transformed colonies	85
	3.2.9	Quantitative real time polymerase chain reaction (qRT-PCR) using	
		SBT tissues	85
	3.2.9.1	Calculation of gene transcript levels	86
	3.2.10	Agarose gel electrophoresis	86
	3.2.11	Nucleic acid sequencing	87
	3.2.12	Ligation of a PCR product into a plasmid	87
	3.2.13	Transformation of <i>E. coli</i> DH5α cells	88
	3.2.14	Glycerol stocks of bacterial cells	88
	3.2.15	Plasmid DNA purification	88
	3.2.16	Cloning of an internal fragment of the sbt <i>Elovl5</i> and sbt/16des	
		cDNA	88
	3.2.17	Cloning of the 3' and 5' ends of the sbt <i>Elovl5</i> cDNA	89
	3.2.18	Cloning of the 3' and 5' ends of the sbt/16des cDNA	90
	3.2.19	Cloning of the full length sbt <i>Elov15</i> and sbt/16des cDNAs	91
	3.2.20	Site directed mutagenesis of the sbt/26des translation initiation	
		sequence	92
	3.2.21	Maintaining S. cerevisiae INVSc1 cells	93
	3.2.22	Glycerol stocks of S. cerevisiae INVSc1 cells	93
	3.2.23	Preparing competent S. cerevisiae INVSc1 cells	93

3.	.2.24	Transformation of competent S. cerevisiae INVSc1 cells	94
3.	3.2.25 Maintaining transformed S. cerevisiae INVSc1 cells		94
3.	3.2.26 Extraction of genomic DNA from S. cerevisiae INVSc1 cells		94
	3.2.26.	1 S. cerevisiae cell lysis with Y-PER Reagent	94
	3.2.26.	2 S. cerevisiae cell lysis with lyticase	95
3.	.2.27	Extraction of RNA from S. cerevisiae INVSc1 cells	95
3.	.2.28	Extraction of total protein from S. cerevisiae INVSc1 cells	95
3.	.2.29	Precipitation of proteins with methanol/chloroform	96
3.	.2.30	Heterologous expression of the sbt <i>Elov15</i> and sbt <i>A6des</i> ORFs in S	Ĵ.
		cerevisiae	96
	3.2.30.	1 Cloning the sbt <i>Elov15</i> and sbt <i>46des</i> into pYES2	96
	3.2.30.	2 Cloning the sbt <i>Elovl5</i> and sbt⊿6des into pYES2/CT	98
	3.2.30.	3 Expression of recombinant protein in <i>S. cerevisiae</i> INVSc1 cells	98
	3.2.30.	4 Supplementing fatty acids to <i>S. cerevisiae</i> expressing sbtElov15,	
		sbtElovl5-42, sbt∆6des or sbt∆6desSDM	99
	3.2.30.	5 Supplementing metal cofactors and fatty acids to <i>S. cerevisiae</i>	
		expressing sbt Δ 6des or sbt Δ 6desSDM	99
3.	.2.31	Fatty acid analysis	100
	3.2.31.	1 Extraction of total lipid from SBT liver tissue	100
	3.2.31.	2 Extraction of total lipid from <i>S. cerevisiae</i> cells	100
	3.2.31.	3 Extraction of total lipid from SC-U medium	100
	3.2.31.	4 Analysis of FAME by gas chromatography	100
3.	.2.32	Western Blotting	104
	3.2.32.	1 Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-	-
		PAGE)	104
	3.2.32.	2 Protein sample preparation for SDS-PAGE	104
	3.2.32.	3 Protein transfer	104
	3.2.32.	4 Blotting and immunodetection	105
3.	.2.33	Statistical analysis	105
3.3	Resi	ılts	108
3.	.3.1	SBT liver fatty acid profile	108
3.	.3.2	Sequence analyses of the SBT <i>fatty acyl elongase</i>	108
3.	.3.3	Cloning the SBT <i>d6desaturase</i> cDNA	116
3.	.3.4	Sequence analyses of the SBT <i>A6desaturase</i>	116
3.	.3.5	Functional characterization of the sbt <i>Elovl5</i> ORF	127
3.	.3.6	Functional characterization of the sbt/16des ORF	144
3.	.3.7	Confirmation of the presence of the $sbt \angle 6 des$ and $sbt \angle 6 des$ SDM	
		constructs within the S. cerevisiae cells	146
3.	.3.8	Confirmation of the transcription of the sbt/16des and sbt/16desSD	ЭM
		constructs within the S. cerevisiae cells	146
3.	.3.9	Analysis of the relative protein levels of the sbtElov15, sbt∆6des a	ind
		sbt∆6desSDM in S. cerevisiae	152
3.	.3.10	qRT-PCR analysis of SBT tissues	155
	3.3.10.	1 Amplification efficiency	155
	3.3.10.	2 Amplification of <i>△6desaturase</i> and <i>Elov15</i> PCR products	155
	3.3.10.	3 Δ6desaturase and Elov15 mRNA abundance	155
3.4	Disc	eussion	157
тн	E LISF	OF FISH CELL LINES TO INVESTIGATE I CPUEA	
SV	NTHE	SIS	
4.1	Intro	oduction	171

4

4.1.1	Culturing fish cells	171
4.1.2	Choosing fish cell lines	172
4.1.3	The use of fish cell lines	172
4.1.4	The use of the FHM and CHSE-214 cell lines to investigate	
	LCPUFA synthesis	174
4.1.5	Aims	175
4.2 Me	thods	175
4.2.1	Cell line culture materials	175
4.2.1.	1 The fish cell lines	175
4.2.1.	2 The media	176
4.2.2	Cell line culture methods	178
4.2.2.	1 Passaging cells	178
4.2.2.	2 Haemocytometer counting of cells	178
4.2.2.	3 Cell viability	179
4.2.2.	4 Cryopreservation of cell lines	179
4.2.3	Genomic DNA extraction from fish cell lines	180
4.2.4	Identification of cell lines using cytochrome oxidase subunit I	
	(<i>cox</i> 1) gene barcoding	180
4.2.5	Supplementation of FHM and CHSE-214 cells with fatty acids	180
4.2.5.	Preparation of the media supplemented with fatty acids	180
4.2.5.	2 Culturing cells in fatty acid supplemented media	181
4.2.5.	3 Harvesting cells after fatty acid supplementation	181
4.2.6	Fatty acid analysis	181
4.2.6.	1 Extraction of phospholipids from FHM and CHSE-214 cells	181
4.2.6.	2 Extraction of total lipid from cell culture growth medium	
4.2.6.	3 Analysis of FAME by gas chromatography	182
4.2.7	aRT-PCR analysis of FHM cells	185
4.2.7.	1 Calculation of gene transcript levels	185
4.2.8	Primary cell culture development	185
4.2.8.	1 The media	185
4.2.8.	2 Sampling of the fish tissue	
4.2.8.	3 Methods of dissociation of the tissue	187
4.2.8.	4 Primary cell culture maintenance	188
4.2.9	Bioinformatics analysis	189
4.2.10	Statistical analysis	189
4.3 Res	sults.	190
4.3.1	Identification of fish cell lines	190
4.3.2	Supplementing PUFA to cell lines	193
4.3.2.	1 The effect of storage on FHM cell phospholipids	193
4.3.2.1	2 The effect of FBS on FHM cell phospholipids	193
4.3.2.	3 Accumulation of n-3 fatty acids in FHM cells	
4.3.2.	4 Accumulation of n-6 fatty acids in FHM cells	205
4.3.2.	5 Accumulation of n-3 fatty acids in CHSE-214 cells	208
4.3.2.	6 Accumulation of n-6 fatty acids in CHSE-214 cells	
4.3.3	aRT-PCR analysis of FHM cells	
4.3.3	1 Amplification efficiency	
4.3.3	2 Amplification of $\Delta 6 desaturase$. Elov15 and β -actin PCR products	
4.3.3	$\Delta 6 desaturase$ and $E lov 15$ mRNA abundance	
4.3.4	Primary cell line development from two marine fish species	
4.3.4.	1 YTK primary cell culture development	221
	· · · · · · · · · · · · · · · · · · ·	

	4.3.4.2	SBT primary cell culture development	
	4.4 Discuss	sion	
5	GENERA	L DISCUSSION/CONCLUSION	231
6	APPENDI	X	
7	REFEREN	NCES	

TABLE OF FIGURES

Figure 1.1 Long chain polyunsaturated fatty acid (LCPUFA) synthesis in vertebrate	es. ⊿
Figure 2.1 Tank layout	4
Figure 2.2 Fillet sampling locations	25
Figure 2.3 The gas chromatogram of the authentic lipid standard	32
Figure 2.4 The variation in fish weight between diets and also within tanks of fish	
fed the same diet	40
Figure 2.5 Fat content of the fillets stored immediately after harvest at -80°C.	44
Figure 2.6 Fillet fat content correlated with fish weight.	45
Figure 2.7 Effect of diet and storage on fillet fat content	46
Figure 2.8 Effect of storage on TBARS value	48
Figure 2.9 Effect of storage on each fatty acid series.	53
Figure 2.10 Effect of diet on each fatty acid series	54
Figure 2.11 Effect of storage on ALA, EPA, DPA and DHA	56
Figure 2.12 Fillet DHA content correlated with fish weight	57
Figure 2.13 The variation in the proportion of DHA in the fillet between diets	
and also within tanks of fish fed the same diet	58
Figure 2.14 The proportion of individual fatty acids in each lipid class	59
Figure 2.15 Comparison of the various fatty acid series in the fillets from the	
baseline fish and the fish fed the experimental diets	61
Figure 2.16 Comparison of ALA, EPA, DPA and DHA in the fillets from the	<u> </u>
baseline fish and the fish fed the experimental diets	62
Figure 3.1 Gas chromatography-mass spectrometry analysis of unknown fatty	0.2
Eigenverse 2 2 Winnelighting of a SDT 6 (to be been a DNA DCD and beet	11
Figure 3.2 Visualisation of a SB1 <i>fatty acyl elongase</i> cDNA PCR product	11
Figure 3.4 A phylogenetic tree comparing deduced amino acid sequences I	12
acyl elongases from southern bluefin tune and the human elongases	
(FLOVI 1-7) (FLOVI 1-7)	13
Figure 3.5 A phylogenetic tree comparing deduced amino acid sequences of fatty	15
acyl elongases from southern bluefin tuna, other fish species and	
mammals	15
Figure 3.6 Visualisation of SBT <i>A6desaturase</i> cDNA PCR products	17
Figure 3.7 Visualisation of the amplification of the 3' and 5' ends of the SBT	
$\Delta 6 desaturase$ cDNA.	19
Figure 3.8 Visualisation of the SBT <i>A6desaturase</i> ORF PCR product1	20
Figure 3.9 An alignment of fatty acyl Δ 6desaturase deduced amino acid	
sequences1	21
Figure 3.10 A phylogenetic tree comparing deduced amino acid sequences of	
fatty acyl desaturases from southern bluefin tuna, other fish species	
and mammals1	24
Figure 3.11 An alignment of fatty acyl Δ 5desaturase amino acid sequences1	25
Figure 3.12 Time-course for the elongation of 18:4n-3 by recombinant	
<i>S. cerevisiae</i> induced to express the sbt <i>Elovl5</i> ORF, colony A1	29
Figure 3.13 Time-course for the elongation of 18:4n-3 by recombinant	20
S. cerevisiae induced to express the sbt <i>ElovIS</i> ORF, colony B	30
Figure 5.14 Functional characterisation of the sbt <i>ElovI</i> \mathcal{D} OKF, colony A, in	
recombinant S. <i>cerevisiae</i> grown in the presence of 18:3n-3 (A),	

18:2n-6 (B), 18:4n-3 (C), 18:3n-6 (D), 20:5n-3 (E), 20:4n-6 (F), 22:5n-3 (G) and 22:4n-6 (H) fatty acids	
Figure 3.15 Functional characterisation of the sbt <i>Elov15</i> ORF, colony B, in	
recombinant <i>S</i> cerevisiae grown in the presence of 18·3n-3 (A)	
$18\cdot 2n-6$ (B) $18\cdot 4n-3$ (C) $18\cdot 3n-6$ (D) $20\cdot 5n-3$ (E) $20\cdot 4n-6$ (E)	
22.5n-3 (G) and $22.4n-6$ (H) fatty acids	134
Figure 3.16 Functional characterisation of the sht $Elov/5$ ORF colony A in	
recombinant S <i>cerevisice</i> grown in the presence of 500 µM in tot	-a1
of $18.4n_3$ and $18.3n_6$ uninduced (A1) or induced (A2) $20.5n_3$	41
and 20.4n 6 uninduced (P1) or induced (P2), $20.3n-2$	6
and 20.411-0, uninduced (D1) of induced (D2), of 10.411-3, 10.511-0 20.5n 2 and 20.4n 6 uninduced (C1) as induced (C2)), 127
20.51-5 and $20.41-6$, uninduced (C1) or induced (C2)	13/
Figure 5.17 Functional characterisation of the solution of the solution of the solution of 500 m A, in	-1-
recombinant S. <i>cereviside</i> grown in the presence of 500 µM of ea	cn
18:4n-3 and 18:3n-6, uninduced (A1) or induced (A2), $20:5n-3$ and $18:3n-6$, $20:5n-3$ and $18:3n-6$, $20:5n-3$ and $18:3n-6$, $10:2n-3$	1 d
20:4n-6, uninduced (B1) or induced (B2), or 18:4n-3, 18:3n-6,	
20:5n-3 and 20:4n-6, uninduced (C1) or induced (C2)	
Figure 3.18 Characterisation of the media used in the recombinant <i>S. cerevisi</i>	ae
expression system containing the sbt <i>Elov15</i> ORF, colony A	142
Figure 3.19 Characterisation of the cells in the recombinant <i>S. cerevisiae</i>	
expression system containing the sbt <i>Elovl5</i> ORF, colony A	143
Figure 3.20 Pairwise alignment of the pYES2-sbt/16des and pYES2-sbt/16des	SDM
nucleotide sequences which were expressed in S. cerevisiae	145
Figure 3.21 Visualisation of sbt/16des or sbt/16desSDM PCR products amplif	ied
from S. cerevisiae genomic DNA	148
Figure 3.22 Pairwise alignment of the sbt/16des and pYES2-sbt/16des nucleot	ide
sequences.	149
Figure 3.23 Pairwise alignment of the sbt/16des and pYES2-sbt/16des predict	ed
protein sequences	
Figure 3.24 Visualisation of PCR products amplified from RNA extracted from	om
S. cerevisiae containing $sbtElov15$, $sbt26des$ or $sbt26desSDM$ and	1
synthesized into cDNA.	
Figure 3.25 Western blot analysis of the relative protein levels of the sbtElov	15
shtA6des and shtA6desSDM in <i>S_cerevisiae</i>	154
Figure 3.26 Tissue distribution of the expression of the SBT <i>fatty acyl elonge</i>	10 1 150
and A6desaturase genes	156
Figure 4.1.A typical gas chromatogram of fatty acid methyl esters derived fro	
Figure 4.1 A typical gas chromatogram of fatty actu methyl esters derived ne	10/
Finite Cell phospholipids.	104 m
Figure 4.2 A phylogenetic tree comparing the <i>cox</i> 1 nucleotide sequences for	n 101
∇T various fish species	191
Figure 4.3 Visualisation of the <i>cox</i> 1 gene amplification from the fish cell line	s 192
Figure 4.4 The effect of storage on the FHM cell phospholipids	195
Figure 4.5 The n-3 and n-6 fatty acids found in L-15 medium containing 10%) FBS
prior to incubation $(0 h)$ and after incubation $(24 h)$ with FHM ce	lls196
Figure 4.6 The n-3 and n-6 fatty acids found in the FHM cells after the cells	were
grown in L-15 medium containing 2% or 10% FBS	197
Figure 4.7 The effect of FBS in the L-15 medium on the n-3 PUFA (A) and n	I -6
PUFA (B) in the FHM cell phospholipids	199
Figure 4.8 The n-3 PUFA in FHM cell phospholipids after cell supplemention	n
with 5-20 μ M (A) or 1-5 μ M (B) of ALA.	202

Figure 4.9 The n-3 PUFA in FHM cell phospholipids after cell supplemention	
with 5-20 μ M (A) or 1-5 μ M (B) of EPA	203
Figure 4.10 The n-3 PUFA in FHM cell phospholipids after cell supplemention	
with 1-10 μM of DHA	204
Figure 4.11 The n-6 PUFA in FHM cell phospholipids after cell supplemention	
with 5-20 µM (A) or 1-5 µM (B) of LA.	206
Figure 4.12 The n-6 PUFA in FHM cell phospholipids after cell supplemention	
with 5-20 μM (A) or 1-5 μM (B) of AA	207
Figure 4.13 The n-3 PUFA in CHSE-214 cell phospholipids after cell	
supplemention with 1-5 µM of ALA	210
Figure 4.14 The n-3 PUFA in CHSE-214 cell phospholipids after cell	
supplemention with 1-5 µM of EPA.	211
Figure 4.15 The n-3 PUFA in CHSE-214 cell phospholipids after cell	
supplemention with 1-5 µM of DPA	212
Figure 4.16 The n-3 PUFA in CHSE-214 cell phospholipids after cell	
supplemention with 1-5 µM of DHA	213
Figure 4.17 The n-6 PUFA in CHSE-214 cell phospholipids after cell	
supplemention with 1-5 µM of LA	215
Figure 4.18 The n-6 PUFA in CHSE-214 cell phospholipids after cell	
supplemention with 1-5 µM of AA.	216
Figure 4.19 A typical qRT-PCR amplification trace for <i>A6desaturase</i> , <i>Elov15</i>	
and β -actin abundance in FHM cells	219
Figure 4.20 Relative expression of the FHM cell line <i>A6desaturase</i> and <i>elongase</i>	2
genes after the cell line was supplemented with various PUFA.	220
Figure 4.21 The development of the YTK and SBT primary cell cultures from	
various tissue types	223
* 1	

DATA TABLES

Table 2.1 Custom mineral/vitamin premix formulation 1	19
Table 2.2 Diet formulations 2	20
Table 2.3 The weight and length of the six fish from the trial chosen for	
pathology testing	28
Table 2.4 The fat content of the experimental diets determined by proximate analysis at SARDI Pig and Poultry Production Institute or by fatty	
acid analysis in our laboratory	36
Table 2.5 The fatty acid composition and unsaturation index of the experimental diets	37
Table 2.6 Growth performance and feed utilisation efficiency of the fish fed the	
experimental diets for 8 weeks	39
Table 2.7 Proximate analysis of the fish fed the experimental diets for 8 weeks4	11
Table 2.8 Effect of diet on fillet fatty acid composition and various quality	
parameters immediately after harvest5	50
Table 2.9 Effect of diet on fillet fatty acid composition and various quality	
parameters after storage at 4°C for 4 days5	51
Table 2.10 Fatty acid composition of ordinary muscle from yellowtail (Seriola auingueradiata) (Sohn et al. 2007*) and the fillet from YTK fed diet 1	
in this study	58
Table 2.11 The fatty acid composition of YTK fillets published by Nichols <i>et al.</i>	
(1998)*, and the fillet values obtained in this study from the baseline	
fish and the fish fed diet 1	59
Table 3.1 Primers used for amplifying the sbt <i>Elov15</i> cDNA and ORF10)6
Table 3.2 Primers used for amplifying the sbt/16des cDNA and ORF10)7
Table 3.3 SBT liver fatty acid profile 11	0
Table 3.4 Identity matrix showing the results of a pairwise comparison	
between the identities of the deduced amino acid sequences of fish	
fatty acyl elongases and the human ELOVL5 and ELOVL211	4
Table 3.5 Identity matrix showing the results of a pairwise comparison	
between the identities of the deduced amino acid sequences of fish	
$\Delta 6$ desaturase and the human $\Delta 6$ desaturase	23
Table 3.6 Identity matrix showing the results of a pairwise comparison	
between the identities of the deduced Δ 5 desaturase amino acid	
sequences from fish and mammals and the SB1 Δ bdesaturase	26
Table 3.7 Functional characterization of the sol <i>Elovis</i> ORF, colony A, with	• •
Table 2.8 Eurotional characterization of the sht <i>Elouis</i> OPE, colony P, with	,2
individual substrate supplementations	25
Table 2.0 Eurotional characterization of the sht <i>Elouis</i> OPE colony A using	,,,
multiple substrate supplementations with 500 µM in total of PLIEA 13	20
Table 3.10 Eunctional characterization of the $sbt E lov/5$ ORE colony A using	,0
multiple substrate supplementations with 500 µM of each PUFA	10
Table 4.1 The fatty acid composition of L-15 medium FBS and L-15 medium	ru
containing 10% (v/v) FRS 15 medium, 1 b5 and 1 15 medium 15	33
Table 4.2 The fatty acid composition of FHM cells grown in L-15 medium	,,,
containing 2% or 10% FBS and CHSE-214 cells grown in L-15	
medium containing 2% FBS	98
	0

ABBREVIATIONS

AA	Arachidonic acid; 20:4n-6
AAHL	Australian Animal Health Laboratory
AESEC	Australasian Experimental Stockfeed Extrusion Centre
AGRF	Australian Genome Research Facility
ALA	α -linolenic acid; 18:3n-3
ANGIS	Australian National Genomic Information Service
ANOVA	Analysis of variance
AS	Atlantic salmon cell line
ATCC	American Tissue Culture Collection
BHA	Butylated hydroxyanisole
BHT	Butylated hydroxytoluene
bp	Base pair
BSC	Biohazard Safety Cabinet
cDNA	Complimentary DNA
CEFAS	Centre for Environment, Fisheries and Science
CHSE-214	Chinook salmon cell line
cm / mm	Centimetre / millimetre
cox1	Cytochrome oxidase subunit I
CSIRO	Commonwealth Scientific and Industrial Research
	Organisation
DEPC	Diethyl pyrocarbonate
DHA	Docosahexaenoic acid; 22:6n-3
DMSO	Dimethyl sulfoxide
DNA	Deoxyribose nucleic acid
DPA	Docosapentaenoic acid; 22:5n-3
EDTA	Ethylenediaminetetraacetic acid
EFA	Essential fatty acid
EMEM	Eagle's minimum essential medium
EPA	Eicosapentaenoic acid; 20:5n-3
EPC	Epithelioma papulosum cyprinid cell line
EFAD-EPC	Essential fatty acid deficient-epithelioma papulosum cyprini
EQDM	Ethoxyquin dimer
ER	Endoplasmic reticulum
EU	Eurpoean Union
FAAL	Flinders Advanced Analytical Laboratory
FAF-BSA	Fatty acid free bovine serum albumin
FAME	Fatty acid methyl esters
FBS	Fetal bovine serum
FBW	Final body weight
FCR	Feed conversion ratio
FFA	Free fatty acid
FHM	Fathead minnow cell line
FLO	Fillet lipid quality
GC	Gas chromatography
GC-MS	Gas chromatography-mass spectrometry
GSE	Grape seed extract
GSP	Gene specific primer
h	Hour

HMEM	Hank's minimum essential medium
HSD	Honestly significantly difference
HSI	Hepatosomatic index
IA	Index of atherogenicity
IBW	Initial body weight
IT	Index of thrombogenicity
ITS1	Internal transcribed spacer of 18S rRNA
IU	International unit
kb	Kilobase
kDa	Kilodalton
$kg/g/mg/\mu g/ng$	Kilogram / gram / milligram / microgram / nanogram
$kL/L/mL/\mu l$	Kilolitre / litre / millilitre / microlitre
LA	Linoleic acid; 18:2n-6
LB	Luria broth
LCPUFA	Long chain polyunsaturated fatty acids
LDL	Low-density lipoprotein
M / mM / µM	Molar / millimolar / micromolar
MDA	Malonaldehvde
min	Minute
MP	Maximum parsimony
mRNA	Messenger ribonucleic acid
MUFA	Monounsaturated fatty acids
NCBI	National Center for Biotechnology Information
ND	Not detected
nm	Nano metre
nmol	Nano mole
n-3	Omega-3
n-6	Omega-6
OD	Ontical density
ORF	Open reading frame
PAUP*	Phylogenetic analysis using parsimony (*and other methods)
PBSA	Phosphate buffered saline
PCR	Polymerase chain reaction
PG	Propyl gallate
PLHC-1	Topminnow cell line
PUFA	Polyunsaturated fatty acids
aRT-PCR	Quantitative real time polymerase chain reaction
RACE-PCR	Rapid amplification of cDNA ends-polymerase chain reaction
RE	Restriction enzyme
RNA	Ribonucleic acid
ROS	Reactive oxygen species
RTG-2	Rainbow trout cell line
RT-PCR	Reverse transcriptase-polymerase chain reaction
SA	South Australia
SAF-1	Gilthead sea bream cell line
SAP	Shrimp alkaline phosphatase
SARDI	South Australian Research and Development Institute
Sats	Saturated fatty acids
SBT	Southern bluefin tuna
SBT-G	SBT gonad cell line

SC-U	Synthetic minimal defined medium for yeast without uracil
SD	Standard deviation
SDA	Stearidonic acid; 18:4n-3
SDM	Site directed mutagenesis
SDS	Sodium dodecyl sulphate
SDS-PAGE	Sodium dodecyl sulphate polyacrylamide gel electrophoresis
SE	Standard error
SGR	Specific growth rate
T/V	Trypsin-versene
TBA	Thiobarbituric acid
TBARS	Thiobarbituric acid reactive substances
TBHQ	Tert-butylhydroquinone
TBR	Tree bisection reconnection
TCA	Trichloroacetic acid
TF	Turbot cell line
TL	Total fish length
TLC	Thin layer chromatography
U	Units
UTR	Untranslated region
v/v	Volume/volume
WG	Weight gain
w/v	Weight/volume
w/w	Weight/weight
YEp	Yeast episomal plasmid
YPD	Yeast extract peptone dextrose
YTK	Yellowtail kingfish

ABSTRACT

The essential polyunsaturated fatty acids (PUFA) for humans, 18:3n-3 (α -linolenic acid, ALA) and 18:2n-6 (linoleic acid, LA), must be obtained through the diet because they cannot be synthesized. Humans consume a diet rich in n-6 fatty acids and are not able to convert the essential dietary n-3 PUFA ALA into n-3 long chain polyunsaturated fatty acids (LCPUFA) like 20:5n-3 (eicosapentaenoic acid, EPA), 22:5n-3 (docosapentaenoic acid, DPA) and 22:6n-3 (docosahexaenoic acid, DHA). In contrast to humans, fish are considered to have a functional LCPUFA synthesis pathway which can convert ALA into the LCPUFA derivatives EPA, DPA and DHA.

The vertebrate LCPUFA synthesis pathway requires three elongation and three desaturation steps to convert ALA to DHA. The fatty acyl Δ 6desaturase and fatty acyl elongase, Elov15, are both considered to be used twice. This thesis aimed to examine the LCPUFA synthesis pathway, in particular Elov15 and Δ 6desaturase, in freshwater, anadromous and marine fish species.

Three fish models were used to examine the accumulation of individual PUFA and their subsequent LCPUFA products. Yellowtail kingfish (YTK; *Seriola lalandi*) were used as an *in vivo* marine fish species model and were fed a diet containing a synthetic antioxidant, ethoxyquin, and/or a natural antioxidant, grape seed extract, for 8 weeks. The YTK fillet was found to bioaccumulate 2.5-fold more DHA than the level supplied in the diet. However, natural fish variation resulted in substantial variation in the proportion of DHA in the fillet. Interestingly, there was a significant decrease in the proportion of DHA in the fillet after storage at 4°C for 4 days, regardless of ethoxyquin or grape seed extract antioxidant protection.

Southern bluefin tuna (SBT; *Thunnus maccoyii*) are a large and economically valuable marine aquaculture species in South Australia. Whole SBT are essentially unobtainable for research as their supply is limited due to a strict wild-catch quota system and the inability to routinely breed them in captivity. To elucidate the enzymatic regulation of the SBT LCPUFA synthesis pathway, the *Saccharomyces*

cerevisiae expression system was used to characterise the *Elov15* and $\Delta 6 desaturase$ genes from SBT liver tissue. The SBT *Elov15* and $\Delta 6 desaturase$ cDNAs encoded predicted proteins which had the main structural characteristic features of microsomal fatty acyl elongases and desaturases, respectively, from mammals and other fish. The Elov15 enzyme was very efficient at elongating C₁₈ and C₂₀ PUFA substrates, with higher activity towards the n-3 substrates than the n-6 substrates. The $\Delta 6 desaturase$ enzyme activity appeared to be low because desaturation products were not detected when the cultures were supplemented with various n-3 and n-6 PUFA. However, $\Delta 6 desaturase$ protein expression in the *S. cerevisiae* system was also low, thus making it difficult to determine the substrate specificity of the $\Delta 6 desaturase$. This thesis went further to show that at least one fatty acyl elongase gene is expressed in a range of SBT tissues, while expression of $\Delta 6 desaturase$ appears to be limited.

The FHM (fathead minnow; *Pimephales promelas*) and CHSE-214 (Chinook salmon; *Oncorhynchus tshawytscha*) epithelial cell lines were used as *in vitro* systems to examine the LCPUFA synthesis capabilities of freshwater and anadromous fish species, respectively. The fish cell lines were supplemented with n-3 and n-6 PUFA to investigate if the LCPUFA synthesis pathway in the cell lines could be used as a model for fish *in vivo*. This thesis confirmed that the CHSE-214 cells had functional Δ 6desaturase, Elov15 and Elov12 enzymes, consistent with previous data. In contrast, the FHM cell line displayed the ability to elongate PUFA substrates but did not efficiently desaturate them. The low Δ 6desaturase and *Elov15* genes in the FHM cells following n-3 PUFA supplementation. Approximately the same level of up-regulation was seen, regardless of the n-3 PUFA.

This thesis highlights the different LCPUFA synthesis pathway capabilities in freshwater, anadromous and marine fish species. These findings will help define dietary approaches to maintaining or enhancing the synthesis of LCPUFA in aquaculture fish species.

DECLARATION

I certify that this thesis does not incorporate without acknowledgement any material previously submitted for a degree or diploma in any university; and that to the best of my knowledge and belief it does not contain any material previously published or written by another person except where due reference is made in the text.

Melissa K. Gregory

ACKNOWLEDGEMENTS

I would like to thank my supervisor, Dr Kathy Schuller, for her day to day support and guidance. A special thanks for all of your time and effort during my thesis preparation. I would like to thank my co-supervisors, Prof Bob Gibson and Prof Andy Ball. Bob, thankyou for your refreshing ideas and introducing me to the world of fatty acid research. Andy, thankyou for your comments, advice and honest opinion with my paper.

Thanks to Drew Sutton, Valene See and Peter Bain in the Schuller lab. Drew, thankyou for sharing an office and lab with me for 3.5 years and always listening, whether it was to my general chatter, gossiping, ranting or whinging! And for all of the science questions of course!

A huge thankyou must go to the people who made coming to Uni each day fun because I knew I was going to see some of my best friends. Chevaun, Patrick, Lexi, Drew, Mel P, Bart, Ana, Simon, Mel S and Emma - there are so many reasons to thank you! Firstly, for all of the fun times at work, in the corridor, the tearoom and in everyones offices, as well as all the great times we've had going away together or heading out for dinner and drinks. Secondly, for always being happy to help and offer science advice.

A special thanks to Chevaun for responding to my endless emails with thesis questions and for the friendship we've developed through science which will last forever! A very special thankyou to my boyfriend Bart for all of his support, both at work and home. Your ideas and enthusiasm helped me get through the hard patches and your patience with me while I've been writing up has been incredible. The days writing were made easier knowing we always had something fun planned together.

Mum and Dad, thankyou for providing me with the opportunity to be 'a professional student' and giving me the endless support which made it possible for me to go through this whole process. To my other family and friends, thankyou for always showing an interest in my PhD and asking when it's done. Well, it's done!

PUBLISHED WORK

Part of the work in this thesis has been published.

Publications:

Gregory, M.K., See, V.H.L., Gibson, R.A., Schuller, K.A. (2010) Cloning and functional characterisation of a fatty acyl elongase from southern bluefin tuna (*Thunnus maccoyii*), *Comparative Biochemistry and Physiology, Part B*, 155, 178-185.

Abstracts:

Gregory, M.K., See, V.H.L., Gibson, R.A., Schuller, K.A. Cloning and functional characterization of a fatty acyl elongase from southern bluefin tuna (*Thunnus maccoyii*), <u>oral presentation</u> at World Congress on Oils and Fats & 28th ISF Congress, Sydney, NSW, Australia, September 2009.

Schuller, K.A., **Gregory, M.K.**, Gibson, R.A., Cloning and characterization of a southern bluefin tuna (*Thunnus maccoyii*) fatty acyl elongase cDNA, <u>oral presentation</u> at Aquaculture Europe, Trondheim, Norway, August 2009.

Gregory, M.K., Gibson, R.A., Schuller, K.A. Omega-3 fatty acid conversion in the southern bluefin tuna gonad cell line, <u>poster</u> at International Society for the Study of Fatty Acids and Lipids (ISSFAL), Kansas City, Missouri, USA, May 2008.

Gregory, M.K., Buchanan, J., Gibson, R.A., Schuller, K.A. Yellowtail kingfish diet trial using grape seed extract as a natural antioxidant supplement, <u>poster</u> at the Aquafin CRC conference, Barossa Valley, SA, Australia, May 2007.