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Abstract

In the era of information technology advancement, data are be-
ing collected and accumulated at a dramatic pace. The ability to
extract useful hidden knowledge from a large amount of data and
make decisions based on this knowledge has offered significant
benefits to business organizations. Predicting health risks of pa-
tients using Electronic Health Records (EHR) has attracted con-
siderable attention in recent years, especially with the develop-
ment of deep learning techniques. Health risk refers to the proba-
bility of the occurrence of a specific health outcome for a specific
patient. The predicted risks can be used to assist the decision-
making of healthcare specialists. EHRs contain a chronological
set of medical records, and within each medical event, there is a
set of clinical/medical activities. Various risk prediction models
have been developed and introduced to health risk prediction on
EHR data.

Predictive analytics is the process of analyzing large datasets
to discover patterns and meaningful insights where machine learn-
ing and statistical methods are applied to build predictive models
for decision support. However, EHR data has its unique charac-
teristics, such as high dimensionality, sparsity, irregularity, het-
erogeneity, random errors, temporality, and systematic biases. It
is technically challenging to apply existing risk prediction mod-
els to EHR data with a high degree of irregularity, which con-
tains many missing values and varying time intervals between
medical records. Existing studies on EHR data irregularity have
been focused on the provision of deep learning-based solutions.
These studies impute missing values by incorporating deep neu-
ral networks to learn variable correlations and introduce time de-
cay mechanisms to capture the impact of varying time intervals.
The complete data matrices obtained from the imputation task
are used for downstream risk prediction tasks. However, the ex-
isting imputation methods lead to less than desirable prediction
accuracy. Further improvements in risk prediction models are
necessary before they can be adopted for real-world applications.



This thesis investigates and develops new risk prediction mod-
els for handling the irregularity of EHR data and predicting pa-
tients’ health risks. We proposed compound density networks,
an end-to-end, novel, and robust model to train the imputation
method and prediction model simultaneously within a single frame-
work. The purpose is to handle missing values in EHR data, en-
hance imputed values’ reliability, and quantify their uncertain-
ties. We then developed deep imputation-prediction networks by
extending the compound density network to perform imputation
and prediction in EHR data. The focus is to capture the impact of
varying time intervals. We further introduced multi-task learning
to perform risk prediction tasks by incorporating the imputation
task as an auxiliary task while carrying out both simultaneously.

To improve imputation performance, we considered patient
similarity via incorporating graph analysis techniques. We pro-
posed contrastive learning-based imputation prediction networks,
which mainly impute missing values in EHR data by exploiting
similar patient information as well as patients’ personal contex-
tual information. Similar patients are generated from patient sim-
ilarity computing during stratification modeling and analysis of
patient graphs. We further proposed contrastive graph similarity
networks, which incorporate graph contrastive learning in repre-
sentation learning for EHR data. The graph similarity networks
were extended to multi-graph neural networks. This enables the
learning of multiple graph structures from input EHR data, which
aggregates the information from similar patients to offer a richer
representation of the patient and allows the extraction of patient
health context for both imputation and prediction tasks. The re-
sult is an optimised graph structure that incorporates the charac-
teristics of these graphs with attention mechanisms.

We empirically investigated the proposed deep imputation-
prediction models on two tasks using the Medical Information
Mart for Intensive Care Database and eICU Collaborative Re-
search Database. These tasks are (i) multivariate clinical time
series imputation and (ii) in-hospital mortality risk prediction.
The empirical results indicated that our models outperform state-
of-the-art imputation-prediction models by significant margins.



The strength of these models lies in their ability to present trans-
parency and interpretability of the decision process and provide
the estimation of epistemic and aleatoric uncertainties of the model
decisions.

Our research work made novel contributions to the improve-
ment of methodologies for dealing with the irregularity of EHR
data in the context of health risk prediction. These methodolo-
gies are potentially applicable to other medical applications such
as hospital length of stay prediction and phenotype classification.
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Chapter 1

Introduction

This chapter briefly introduces this work, including the background of this work, major
challenges, research gaps, research goals, and thesis organization.

1.1 Background
Healthcare involves a process of the diagnosis, treatment, and prevention of disease, injury,
and other physical and mental impairments in people. The healthcare industry, particularly
in developed countries, is growing at a rapid pace. However, due to the complexity of
healthcare, the healthcare industry lags behind other industries in implementing intelligent
decision systems.

The past decade has seen the rapid development of digital health technologies. Digital
health technologies aim to promote human health and improve healthcare systems. For
example, it includes smartphone apps [9,10], wearable devices [11,12], and remote patient
monitoring platforms [13, 14].

Accelerating the adoption of proven digital health technologies into routine care has
the potential to revolutionize human health by improving healthcare delivery and reducing
hospital costs. With the adoption of digital health systems, large amounts of Electronic
Health Records (EHRs) are available, but the major problem is how to translate the existing
information into useful knowledge and decision support tools to guide clinical practice.

Data mining has great potential for the healthcare industry. For example, it plays a
crucial role in detecting healthcare fraud and abuse [15–17], supporting drug discovery

1



1. Introduction

and development [18–20], detecting the early stage of a disease [21–23], and providing
clinical decision support systems [24–26], etc.

Data mining in healthcare is widely being used to predict patients’ health risks [1,3,4].
Health risk refers to the probability of the occurrence of a specific health outcome for a
specific patient. The predicted risks of a specific health outcome can be used to support
decision-making by healthcare professionals and improve healthcare delivery. Interest in
health risk prediction has been increasing, especially with the availability of a large amount
of EHR data.

EHRs are an increasingly common data source for health risk prediction. EHRs contain
patient health information, such as administrative and billing data, patient demographics,
progress notes, vital signs, medical histories, diagnoses, medications, lab test results, etc.
Integrated modeling of EHR data forms a chain of data that can be used for predictive
analysis. This enables researchers to develop EHR-based prediction systems and perform
health risk predictions.

Machine learning model is an important component in EHR-based prediction systems
and plays a key role in predictive modeling. Machine learning models are built with ma-
chine learning algorithms, such as k-nearest neighbors, support vector machines, random
forests, gradient boosting machines, and artificial neural networks trained using labeled,
unlabeled, or mixed data. Examples of representative applications include disease risk pre-
diction [27–30], in-hospital mortality risk prediction [5, 31–33], and risk-of-readmission
prediction [7, 34–36].

EHR data has its own issues, such as high dimensionality, temporality, sparsity, het-
erogeneity, irregularity, random errors, systematic noise, random bias, etc [37]. In this
thesis, we focus on the irregularity of EHR data, which contains many missing values
and varying time intervals between medical records. We take the medical records of two
anonymous patients from the publicly available Medical Information Mart for Intensive
Care (MIMIC-III) database [38] and present these in Figure 1.1 as an example. Figure 1.1
clearly indicates the irregularity problem, including many missing values and varying time
intervals between medical records. As typical machine learning models are not developed
for EHR data with a high degree of irregularity, they are not suitable for EHR-based patient
health risk predictions.

In this thesis, we investigate and develop new risk prediction models for handling the
irregularity of EHR data and predicting patients’ health risks.
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Figure 1.1: Illustration of medical records of patients A and B.

1.2 Major Challenges

1.2.1 Many missing values and Varying time inter-
vals
With EHR datasets, missing values are likely attributed to patient symptoms and reflect
treatment decisions. Different physiological variables (e.g., glucose, heart rate, and res-
piratory rate as shown in Figure 1.1) are examined at different times depending on a pa-
tient’s health conditions. When a certain symptom disappears, corresponding variables
are no longer examined. This would lead to missing values. Therefore, the patterns of
missing data in patients’ medical records may contain important information, e.g., dif-
ferent categories of missing data may reflect a typical clinical symptom, affecting both
time-independent and dependent variable relationships. More accurate, meaningful, and
reliable imputation of missing values would allow us to uncover such important informa-
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tion that in turn can lead to a model with better prediction performance.
Recent studies focus on modeling the variable correlations in patient medical records

with deep learning techniques to generate imputed values for missing values [39–47]. Af-
ter obtaining the complete data matrices from the imputation task, the complete data ma-
trices are used as input for risk prediction tasks [43, 44, 48–51]. However, not enough
attention was given to the reliability of the imputed values by these approaches. Such less
reliable imputed values may lead to biased prediction outcomes, especially when existing
prediction models are directly applied to predict health risks.

Due to changes in a patient’s underlying health condition, physiological variables be-
ing examined and the time intervals between examinations vary. Accordingly, the varia-
tion pattern of physiological variables in diverse time intervals plays a vital role in under-
standing a patient’s underlying health condition and predicting the patient’s future con-
dition. Much of the literature focused on the provision of time decay mechanisms to
take the irregular interval of examinations into consideration when imputing missing val-
ues [40, 43, 44, 46, 52]. Although previous studies have recognized the role of the time
decay mechanism, research has yet to systematically evaluate the use of time decay mech-
anisms on the feature/variable level of inputs (i.e., physiological variables in the patient’s
medical record).

Besides, a patient’s health status can become ’healthier’, ’deteriorating’, or recurrent.
When predicting health outcomes, we should automatically include learning of the impact
of the previous 48 hours of patient data on the prognosis (e.g., in-hospital mortality risk
prediction [5, 53, 54]). If the predictive model found an association between the previous
and current physiological variables, the previous physiological variables become critical
indicative variables regardless of how long ago these were collected, which should be
given sufficient consideration in the prediction model. However, this process is ignored
by existing work.

1.2.2 Deep Neural Networks with Multi-Task Learn-
ing
Current studies have investigated three modes of imputation-prediction processing. How-
ever, there are certain drawbacks associated with the use of these modes. (i) The first is to
consider imputation and prediction as two separable steps [43, 44, 46, 55–58]. Although
promising prediction performance has been demonstrated, these prediction models have
not attempted to learn the impact of the patterns of missing data in EHR data [39]. This
may lead to suboptimal prediction performance [59]. As a better alternative, imputation
and prediction can be tuned together within an end-to-end learning framework rather than
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be separated into two parts. (ii) This is the second mode. Despite its efficacy, existing
architectures for such modes are specifically proposed for improving risk prediction per-
formance [39, 60–62]. When used for imputation and prediction tasks, the architecture
treats both as separate optimization tasks, which essentially is not different from the first
mode. (iii) The third imputation-prediction processing mode is similar to that used by the
second, with the difference that the objective of the third is to simultaneously perform both
imputation and prediction tasks [40, 42, 51, 63–65]. However, imputation and prediction
tasks may lead to competition due to the shared parameter problem, as illustrated during
multi-task learning for optimization in some studies [66–68]. This kind of optimization
could also lead to suboptimal imputation and prediction results.

This work proposes to construct a single deep learning framework based on multi-task
learning that performs risk prediction tasks while incorporating the imputation task as
an auxiliary task. The benefit of implementing the imputation task as an auxiliary task
is that such an approach can improve risk prediction performance rather than competing
with it. With the construction of multi-task learning, the framework would simultaneously
generate imputation and prediction results.

1.3 Research Gaps

1.3.1 Imputation of missing data in EHRs based on
patients’ similarities

Patient similarity is defined as the similarity between two EHR patients’ journey data. The
EHR patient journey data includes a series of vital sign measurements, clinical history,
laboratory tests, etc. Patient similarity analysis is important for a wide range of medi-
cal applications. For example, many researchers have focused on the provision of patient
similarity-based retrieval service [69,70], and patient similarity-based model for diagnos-
tic prediction [71] and prognostic decision support [72].

None of the existing works explicitly consider patient similarity via stratification of
EHR data on the imputation task, which leads to suboptimal imputation performance. Pa-
tient stratification refers to the method of dividing a patient population into subgroups
based on specific disease characteristics and symptom severity. Patients in the same sub-
group generally had more similar health trajectories. This work proposes to impute miss-
ing values in patient data using information from the subgroup of similar patients rather
than the entire patient population.
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1.4 Research Goals
This section discusses the research goals of this thesis. At the highest level, this research
aims to investigate and develop new risk prediction models for healthcare decision support.

The main focus is on classification based health risk prediction. This includes iden-
tifying high-risk individual patients based on their historical EHR data and generating
corresponding risk scores or probabilities for reference by healthcare professionals.

The second focus is on the irregularity of EHR data. This includes developing new
machine learning methods to address the irregularity of EHR data with the hope of inte-
grating them into the context of classification based health risk prediction and improving
the overall performance.

A summary of the goals of our research is listed as follows.

• The primary goal is to design and implement a machine learning model for classifi-
cation based health risk prediction as the first step of the research. In particular, our
approach needs to address missing values in EHR data for effective predictive mod-
eling. Moreover, the handling of uncertainty quantification needs to be incorporated
into the machine learning model. To handle uncertainty quantification, we focused
on a mixture density network that learns about the impact of aleatoric uncertainty
and epistemic uncertainty.

• The second goal is to incorporate the handling of varying time intervals into the
machine learning model. To handle varying time intervals, we focused on a time-
decay attention approach that captures the variation pattern of input variables at the
time dimension and adaptively enhances the temporal representation of each pattern
with adjustable weights. It also examines the association between input variables to
identify critical indicative variables regardless of how long ago the associated event
happened.

• The third goal is to develop an imputation-prediction approach that is capable of
imputing missing values in patient data using information from the subgroup of
similar patients rather than the entire patient population.

• The last goal is to explore the processing mode of imputation and prediction. In
particular, we approached a multi-task learning problem for simultaneously gener-
ating imputation and prediction results by performing risk prediction tasks while
incorporating the imputation task as an auxiliary task.
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1.5 Thesis organization

1.5 Thesis organization

The remainder of this thesis is organised into nine chapters, from Chapter 2 to Chapter 10.

Chapter 2 – Literature Review
Chapter 2 reviews and summarizes relevant literature, focusing on the application of tradi-
tional statistical, machine learning, and deep learning missing data imputation techniques.

Chapter 3 – Compound Density Networks
Chapter 3 introduces compound density networks, an integrated end-to-end approach to
allow the imputation method and prediction model to be tuned together within a single
framework. The proposed approach focused on the provision of accurate and reliable pre-
diction results with EHR data. The results of this chapter have been published [62].

Chapter 4 – Attention-Based Bidirectional Recurrent Neural Networks
Chapter 4 introduces a novel deep imputation-prediction network to carry out imputation
and prediction tasks with EHR. The proposed approach focused on the provision of both
imputation and prediction results with EHR data. The results of this chapter have been
published [73].

Chapter 5 – Contrastive Neural Networks
Chapter 5 introduces a novel contrastive learning-based imputation-prediction network to
carry out imputation and prediction in EHR data. It integrates graph representation learn-
ing and contrastive learning in representation learning for EHR data. The results of this
chapter have been published [74].

Chapter 6 – Contrastive Graph Similarity Networks
Chapter 6 introduces a novel contrastive graph similarity network to carry out imputation
and prediction in EHR data. It incorporates graph contrastive learning in representation
learning for EHR data. The results of this chapter have been submitted for publication.

Chapter 7 – Multi-Graph Neural Networks
Chapter 7 introduces a novel multi-graph neural network to carry out imputation and pre-
diction in EHR data. It incorporates multi-graph learning in representation learning for
EHR data. The results of this chapter have been submitted for publication.

Chapter 8 – Multi-Task Deep Neural Networks

7
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Chapter 8 introduces a novel deep imputation-prediction network based on multi-task
learning that performs risk prediction tasks while incorporating the imputation task as
an auxiliary task. The results of this chapter have been submitted for publication.

Chapter 9 – Discussion
Chapter 9 includes a response to the research aims in relation to the research undertaken
by restating the research aims and discussing the results achieved and a detailed discussion
of the proposed approaches from different perspectives, such as network architecture and
performance comparison.

Chapter 10 – Conclusion and Future Work
Chapter 10 summarizes the main contributions of this study. Further, the limitations of
this study are discussed, and suggestions for future research are made.
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Chapter 2

Literature Review

In recent years, various machine learning and statistical approaches have been developed
and introduced to missing data imputation. In addition to machine learning and statisti-
cal approaches, deep neural networks such as recurrent neural networks and generative
adversarial networks are the widely used architecture for missing data imputation.

In this thesis, we review previous studies from three perspectives: traditional statistical,
machine learning, and deep learning techniques for missing data imputation.

This chapter presents relevant work identified through a literature review of relevant
topics. The topics are the application of traditional statistical, machine learning, and deep
learning missing data imputation techniques.

2.1 Traditional statistical techniques for miss-
ing data imputation

2.1.1 Simple imputation
Simple imputation is replacing missing values with the mean, median, random, or mode
values of the dataset at large or some similar summary statistic (e.g., last observation car-
ried forward and next observation carried backward) [75]. These methods are also known
as single imputation. A major advantage of the simple imputation is that it requires less
computational cost. When used on smaller datasets, the simple imputation is easy to ma-
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nipulate and thus provide results for reference. Despite its efficacy, the simple imputation
largely ignores variable correlations. Because of this, simple imputation is challenging to
apply to large datasets, especially high-dimensional sparse data.

2.1.2 Hot-deck imputation
Hot-deck imputation is a simple method for dealing with missing values in a data matrix
using observed values from the same matrix [76–78]. More specifically, for an object
with a missing value, Hot-deck imputation aims to first find the most similar object in
the data matrix and then replace the missing value with the value of the similar object.
Multiple similar objects are generally found, and one is randomly selected for missing
value imputation. Although the concept of this method is simple, different problems need
to define different similarity criteria, which are greatly affected by subjective and random
factors. The lack of a standardised outcome measure makes it difficult to interpret these
imputation results with confidence.

Examples of research into the Hot-deck imputation include [76, 79–82]. The study
by [79] proposes Weighted Hot-deck imputation by extending the original Hot-deck impu-
tation. The core idea of Weighted Hot-deck imputation is to use weights in the imputation
by incorporating them into the probabilities of selection for each similar object. Similar
to [79], the study by [76] further examines the effects of Weighted Hot-deck imputation
on bias and reports that Weighted Hot-deck imputation does not correct for bias. In an-
other major study, [80] proposes Fractional Hot-deck imputation by replacing the missing
values with a set of observed values and assigning corresponding weights to those values.
Further studies by [81] and [82] extend the Fractional Hot-deck imputation [80] to mul-
tivariate missing data. Compared with [81], [82] includes making two-phase systematic
sampling to improve the performance of Fractional Hot-deck imputation.

2.1.3 Expectation–maximization
The expectation-maximization imputation is built with multiple iterations, each based
on two stages: expectation and maximization. The expectation stage includes estimat-
ing missing values based on the observed values, while the maximization stage includes
checking whether the estimated values reach the most likely value [83].

In a study which set out to determine the efficacy of expectation-maximization, [84]
compares the imputation performance of list-wise or case deletion (e.g., every case with
one or more missing values is removed), mean imputation, and expectation-maximization
imputation and demonstrate that expectation-maximization imputation performs better
than other methods when the data missing exceeds 5%.
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A key study extending expectation-maximization to non-parametric bootstrap-based
expectation-maximization is that of [85], in which the complete data are hypothesised
multivariate normal. However, caution must be applied with a small sample size, as the
complete data might not be hypothesised multivariate normal.

In another major study, [86] employs expectation-maximization to address the prob-
lem of training Gaussian mixtures in large high-dimensional datasets with many missing
values. After obtaining the complete data matrices from the imputation task, the complete
data matrices are used as input for downstream classification tasks. Experimental results
demonstrate that the complete data obtained by expectation-maximization imputation has
a significant improvement in classification performance compared to those using other
imputation methods.

2.2 Machine learning techniques for miss-
ing data imputation
Before introducing machine learning techniques for missing data imputation, we first in-
troduce regression imputation because current machine learning techniques are inspired
by its ideas. Regression imputation is also known as conditional mean imputation, where
missing values are replaced with predicted values created on a regression model (e.g., a
logistic regression model) if data are randomly missing. Accordingly, the core idea of
regression imputation is to use all observed values to create a regression model and then
predict missing values with the created regression model.

2.2.1 K-nearest neighbors
The k-nearest neighbors algorithm (KNN) has been recognised as an important supervised
machine learning algorithm in the early academic community [87]. The core idea of KNN
is to match a point with its closest k neighbors in a multi-dimensional space. Since KNN
can be applied to continuous, discrete, ordinal, and categorical data, it is suitable for deal-
ing with all types of missing data.

Traditionally, the KNN has been widely used for missing data imputation [88–94].
These studies focus on the provision of a standard imputation implementation of KNN
and the development of KNN variants for enhanced imputation performance.

When using KNN for missing data imputation, it mainly classifies the nearest neigh-
bors of missing values and uses these neighbors to perform imputation based on a distance
metric between instances. Two of the most common methods for estimating the distance
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between instances are the use of Euclidean and Hamming distances [95–99].
There are certain drawbacks associated with the use of KNN. Since the imputation

process of KNN involves distance measurement between instances, a number of outliers
cannot be avoided. There are a number of distances available for measuring the distance
metric between instances, such as Euclidean, Manhattan, Hamming, and Weighted Ham-
ming distances [100]. In particular, Euclidean and Manhattan distances are used for nu-
meric attributes. Hamming and Weighted Hamming distances are used for categorical
attributes. Accordingly, the imputation performance of KNN may vary depending on the
distance metric used. Besides, it is challenging to directly apply KNN to categorical data
without data transformation and scaling. Due to practical constraints, researchers have
shown a decreased interest in the use of KNN as an imputation method.

2.2.2 Tree-based algorithms
The tree-based algorithms offer an effective way of dealing with many missing values. For
example, random forest is one of the best-known tree-based models [101]. A random forest
consists of many individual decision trees that operate as an ensemble. The random forest
has a number of attractive features, such as capturing the non-linearity of data and handling
outliers and mixed-type attributes (e.g., numerical attributes and categorical attributes).

A large and growing body of literature has demonstrated the effectiveness of tree-based
algorithms on the missing data imputation [102–109].

Examples of representative tree-based imputation methods include DMI [103], SiMI
[105], MissForest [104], and MD-MTS [108].

The DMI consists of an existing decision tree algorithm (e.g., C4.5 [110]) and an
expectation-maximization algorithm [111]. Specifically, DMI uses the decision tree al-
gorithm to impute categorical missing values. While for the imputation of numerical
missing values, DMI uses the decision tree algorithm to identify horizontal segments of
records with high correlations among the attributes first and then applies the expectation-
maximization algorithm to these identified horizontal segments. Concisely, the expectation-
maximization algorithm is built with multiple iterations, each based on two stages: expec-
tation and maximization. The expectation stage estimates missing values based on the
observed values, while the maximization stage checks whether the estimated values reach
the most likely value.

Similar to DMI, SiMI comprises an existing decision forest algorithm (i.e., SysFor
[112]) and an expectation-maximization algorithm [111]. It is also worth noting that SiMI
incorporates a more practical splitting and merging approach into the framework, which
is an important advantage of SiMI over DMI.
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The MissForest is an iterative imputation method based on a random forest [101]. The
random forest usually involves a process of multiple imputations in which unpruned clas-
sification or regression trees are carefully averaged. More specifically, the random for-
est comprises a series of single trees. Every single tree is built with a random sample
of the training data. When using a random forest and a single decision tree for missing
data imputation, the former reports significantly more imputation accuracy than the lat-
ter [102, 113–116].

The MD-MTS is particularly useful for handling missing values in multivariate clinical
time series data. The MD-MTS is built with an efficient gradient-boosting decision tree
(i.e., LightGBM [117]). The LightGBM is intrinsically a Gradient Boosting Machine (to
be detailed later). Experimental results on the ICHI challenge 2019 dataset demonstrate
the effectiveness and superiority of MD-MTS in multivariate clinical time series data im-
putation compared to state-of-the-art imputation methods (such as 3D-MICE [118] and
BRITS [40]).

The gradient boosting machine (i.e., particularly relevant for tree-based gradient boost-
ing machine) and random forest are ensemble learning methods that combine the outputs
of single trees to perform both regression and classification tasks. The differences between
the tree-based gradient boosting machine and random forest lie in how the tree is created.
The former creates one tree at a time, and each new tree has more robust than the previ-
ously trained tree, while the latter uses a random sample of the data to create each tree
independently.

2.2.3 Multivariate imputation by chained equations
Traditionally, Multivariate imputation by chained equations (MICE) [119] is one of the
most well-known imputation methods for handling incomplete medical/clinical data. The
mode of imputation processing used by MICE is to learn the distribution of observed
values in order to impute missing values. Specifically, MICE imputes missing values of
continuous attributes by fitting a linear regression model for the observed values. More
specifically, MICE predicts the conditional mean for each missing value and randomly
imputes a value from a normal distribution centered on the conditional mean.

Examples of research into the MICE architecture include [118,120–129].
Detailed examination of the use of MICE by [126] showed that MICE reduces bias

in the feature selection process compared to the basic technique that replaces the missing
value with a mean, mode, median, or constant value, in addition to achieving the best
imputation accuracy.

A key study comparing random forest (i.e., MissForest) and multivariate imputation
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by chained equations (MICE) is that of [121]. Specifically, [121] compares the imputation
performance between the use of a random forest and standard implementation of MICE
and then presents a new version of MICE (also known as random forest MICE) by com-
bining both MICE and random forest. The benefit of incorporating random forest into the
MICE architecture is capturing nonlinear relations and interactions from input variables.
Experimental results on the cardiovascular disease research dataset demonstrate the effec-
tiveness and superiority of random forest MICE in multiple imputation tasks compared to
using a standard implementation of MICE alone.

The study by [118] proposes 3-dimensional multiple imputations with chained equa-
tions (shorten for 3D-MICE) to impute missing values in clinical time series data. The
core idea of 3D-MICE is to combine the MICE architecture with the Gaussian process to
capture cross-sectional and longitudinal information from incomplete clinical time series
data. Experimental results on clinical laboratory time series data demonstrate the effec-
tiveness and superiority of 3D-MICE in the imputation task compared to using MICE and
Gaussian process alone.

The study by [125] integrates single imputation and multiple imputation techniques
into a hybrid approach (also known as SICE) for missing data imputation. The SICE is
an extension of MICE that includes two MICE variants applied to categorical attributes
and numeric attributes. Experimental results on three public medical datasets (e.g., the
well-studied datasets from the UCI Machine Learning Repository) demonstrate the effec-
tiveness and superiority of SICE in the imputation tasks compared to existing imputation
methods using these datasets.

In a recent study, [128] proposes a new version of MICE (shorten for SuperMICE) for
missing data imputation. The SuperMICE is built with the MICE architecture. Unlike a
standard imputation implementation of MICE, the proposed SuperMICE combines an en-
semble algorithm (also known as Super Learner) with the MICE architecture to estimate
each missing value by predicting the conditional mean value. The Super Learner consists
of a series of machine learning models, such as generalised additive models and random
forests (i.e., Tree-based models). With the construction of MICE and Super Learner, Su-
perMICE achieves state-of-the-art imputation performance on the National Crime Victim-
ization Survey dataset.

A more recent example of MICE-based imputation methods can be found in the work of
[130]. In particular, [130] conducts a series of experiments on mortality risk prediction in
emergency laparotomy in which incomplete patient health data are dealt with by combining
generalised additive models and MICE.

The evidence presented in this subsection suggests a growing trend toward combining
MICE with existing algorithms such as random forest as an ensemble imputation method.
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2.2.4 Support vector machine
Support vector machine (SVM) is one of the popular methods for dealing with missing val-
ues [131–135]. The main goal of SVM is to determine an optimal separating hyper-plane
that classifies the data points. Examples of representative SVM-based imputation methods
include [132,133,135]. The study by [132] proposes an SVM regression-based method for
filling in missing data. The core idea of the study [132] is to set the decision attribute as the
condition attribute and the condition attribute as the decision attribute first and then predict
the condition attribute values. Experimental results on the SARS dataset demonstrate the
effectiveness of the proposed SVM regression-based method on the imputation task. The
study by [133] utilizes least squares SVM (shorten for LS-SVM) to perform spatiotemporal
traffic missing data imputation and traffic flow prediction. Experimental results show that
LS-SVM significantly outperforms the traditional statistical missing data imputation tech-
niques, such as expectation maximization imputation. The study by [135] proposes a new
SVM-based method that includes making a new kernel function for addressing the prob-
lem with a large amount of missing data on the classification task. Experimental results on
the four datasets from the UCI machine learning repository demonstrate the effectiveness
and superiority of the proposed SVM-based method on the classification task.

2.3 Comparison of traditional statistical and
machine learning missing data imputation
techniques
A considerable amount of literature has been published on the comparison of traditional
statistical and machine learning missing data imputation techniques.

In one well-known early study, [136] compares the imputation performance of KNN,
MICE, and MissForest on the complete mammalian order Carnivora dataset. Four features
are used, and their values are randomly removed as inputs for KNN, MICE, and MissFor-
est. Extensive experimental results demonstrate that the imputation accuracy of KNN is
much lower than that of MICE and MissForest.

A key study comparing the imputation performance of MissForest, mean imputation,
KNN, and MICE is that of [137]. Experiments on two incomplete large medical datasets
(i.e., the University of Michigan Cirrhosis Cohort and Bowel Disease Cohort) show that
MissForest achieves the best imputation accuracy.

In another major study, [138] conducts a series of comparative experiments on miss-
ing data imputation. In particular, [138] validates several imputation methods, such as
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mean imputation, median imputation, linear regression, KNN, and MICE, on five numeric
datasets from the UCI machine learning repository. The method analysis results show that
KNN achieves the best imputation accuracy.

A recent study by [139] applies six conceptually different multiple imputation meth-
ods to deal with missing values in categorical questionnaire medical data. Multiple im-
putation aims to deal with missing data by estimating and replacing missing values many
times. The methods used in the study [139] include multiple imputation using expec-
tation–maximization with bootstrapping, multiple imputation using multiple correspon-
dence analysis, multiple imputation using latent class analysis, multiple hot-deck imputa-
tion, and multivariate imputation by chained equations with two different model specifi-
cations (i.e., logistic regression and random forests). Experimental results show that all
the methods achieve promising imputation accuracy where the dataset contains a small
missing sample. When using the dataset with 20% or more missing samples, multiple im-
putation using multiple correspondence analysis outperforms other imputation methods.

A more recent comparison of imputation methods can be found in the work of [140].
The study [140] focuses on the provision of time series missing data imputation. Extensive
experimental results show that KNN significantly outperforms the other methods, such as
mean imputation, MICE, and expectation maximization.

According to these previous studies, we can infer that the factors associated with the
imputation performance of models are as follows:

• The degree of missing data could be a major factor causing the model performance
differences.

• Machine learning model sensitivity could be another major factor [141, 142]. For
example, MissForest is a more practical method for dealing with data with a large
number of missing values [137].

• The parameterization of machine learning models could be a third factor, as the
model performance highly depends on parameter settings.

The major limitation of traditional statistical and machine learning missing data im-
putation techniques lies in the fact that they are not suitable for the imputation of missing
data in large data sets. Deep learning techniques have been proposed and proven useful in
imputing missing data in large data sets. As a special network architecture, deep neural
network architectures consist of layers and have been mined for many applications, such
as health risk prediction [1]. We will introduce deep learning missing data imputation
techniques in detail in the next section.
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2.4 Deep learning techniques for missing
data imputation

2.4.1 Recurrent Neural Networks
A recurrent neural network (RNN) is a type of neural network commonly used in speech
recognition. The RNN has a number of attractive features, for example, the ability to
capture long-term temporal dependencies and variable-length observations.

A considerable literature has grown up around the development of RNN-based impu-
tation methods. When used for missing data imputation, RNN mainly imputes missing
values by capturing long-term temporal dependencies of observed values.

RNNs addressing temporality

Preliminary work on the development of RNN-based imputation methods was undertaken
by [143]. The study mainly compares the classification performance of recurrent neural
networks and hidden Markov models1 on incomplete speech datasets. Experimental results
show that RNNs achieve superior both predictive and imputation accuracy.

The study by [144] utilizes a simple recurrent network (SRN) and a long short-term
memory (LSTM, a variant of RNN) [145] to impute missing values in the medical exam-
ination data. The incorporated RNNs impute missing values by capturing the temporal
dependencies of medical examination measurements. After obtaining the complete data
matrices from the imputation task, the complete data matrices are used for early disease
diagnosis. In the same vein, [146] applies LSTM to impute missing values in the time
series of air pollutants and uses the outputs of LSTM, which are the complete time series
of air pollutants, to make PM2.5 concentration prediction.

The study by [63] proposes an end-to-end imputation network, Residual IMPutation
LSTM (shorten for RIMP-LSTM), for missing data imputation. The RIMP-LSTM in-
cludes residual units that are used to build deep neural networks. With the use of residual
units, RIMP-LSTM imputes missing values by comprehensively examining the associa-
tion between the previous observed values, which is an advantage over the standard LSTM.
It is also worth noting that RIMP-LSTM allows the imputation and prediction to be trained
together by modifying the loss function in the network architecture.

1An hidden Markov model is a probabilistic model that consists of a sequence of hidden states, each
corresponding to an observation. The hidden states are usually not directly observable, and the purpose of
HMM is to compute the sequence of hidden states given a sequence of observations.
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RNNs addressing irregularity

The study by [39] proposes a deep prediction model named GRU-D to carry out a series of
experiments using multivariate time series with missing values. The overall structure of
GRU-D is built upon Gated recurrent units (GRU) [147]. The GRU is a variant of RNNs
featured with a reset gate and an update gate, which control the flow of information between
the hidden state and the current input. The GRU-D mainly incorporates the empirical mean
value and the previous observation to impute missing values. Experimental results on three
public datasets demonstrate the effectiveness and superiority of GRU-D in the prediction
tasks compared to existing deep prediction methods.

The study by [42] proposes the use of an interpolation network and a prediction net-
work as a deep imputation-prediction network (shorten for InterpNet). The InterpNet
mainly focuses on the provision of multivariate time series data imputation. The interpola-
tion network is an unsupervised learning network that imputes missing values in multivari-
ate time series data. The prediction network includes Gated recurrent units that generate
prediction results. Similar to the above RIMP-LSTM, InterpNet allows the imputation
and prediction network to be trained together by adjusting the loss function in the network
architecture. Experimental results on two public datasets demonstrate the effectiveness
and superiority of InterpNet in the prediction tasks compared to existing deep prediction
methods.

Although GRU-D and InterpNet have achieved promising performance in many pre-
diction tasks, such as in-hospital mortality prediction and hospital length of stay predic-
tion, the multivariate time series data imputation accuracy has not been reported. It is also
worth noting that InterpNet and GRU-D take the irregular interval of multivariate time
series data into consideration when imputing missing values. The InterpNet mainly con-
verts observations into equally spaced ones. Despite its efficacy, the conversion process
inevitably leads to information loss due to variable-length observations. The GRU-D intro-
duces observations and corresponding timestamps into GRU to impute missing values as
the decay of previous input values toward the overall mean/sampling over time (also known
as the time decay mechanism). One well-known early study often cited in research on the
time decay mechanism is that of T-LSTM [148]. The time decay mechanism used in the
study [148] builds upon an implicit assumption that the more recent observed values are
more important than previously observed values on the risk prediction tasks such as septic
shock prediction [149] and in-hospital mortality prediction [150], hence, taking a mono-
tonically way to decay the information from previous time steps. However, there are certain
drawbacks when using the T-LSTM time-decay mechanism. The T-LSTM includes a time-
decay mechanism without trainable parameters, which results in a fixed decay mode. This
is not suitable for capturing the long-term temporal dependencies of observed values. In
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contrast to T-LSTM, GRU-D adopts the T-LSTM assumption but establishes a time-decay
mechanism with trainable parameters that can effectively capture the long-term temporal
dependencies of observed values. The time-decay mechanism used in GRU-D continues
to be used by a considerable literature on missing data imputation [40,43,44,46,47,60,65].

2.4.2 Bidirectional Recurrent Neural Networks
The bidirectional recurrent neural networks (shorten for bidirectional RNN) include two
independent RNNs trained together within a single framework. The input data (e.g., se-
quences) are fed in normal/regular time order for one RNN and reverse time order for an-
other RNN. The outputs of the two RNNs are combined/merged in several ways, such as
the use of average, sum, multiplication, or concatenation. Therefore, bidirectional RNNs
can make predictions based on the information from past and future time steps.

Examples of research into bidirectional RNN-based imputation method include [40,
52, 151–154].

The study by [40] employs a bidirectional RNN (shorten for BRITS) to impute missing
values in multivariate time series data and then exploits these imputed values to predict
the final imputed values. The two prediction losses are tuned together in BRITS.

The study by [151] proposes a deep imputation method (shorten for BRNN) by mod-
eling incomplete multivariate time series data with the utilization of Bidirectional RNNs.
The BRNN generates the imputed values for each variable with the last observed value or
the mean values of the same variable. These imputed values are used as initial imputed
values for the complete data matrix, fed into a bidirectional RNN to predict the final values
(i.e., imputed values).

The study by [152] proposes the use of bidirectional RNNs to model incomplete mul-
timodal wearable recording datasets of bio-behavioral signals. With the construction of
bidirectional RNNs, the long-term temporal dependencies of observed values are cap-
tured from the forward and backward in multimodal wearable recording datasets of bio-
behavioral signals. Compared with machine learning missing data imputation techniques
such as KNN and MICE, the bidirectional RNNs achieves the best imputation accuracy.

The study by [52] proposes a context-aware time series imputation framework (shorten
for CATSI) for handling the missing values in multivariate time series data. The CATSI
framework comprises a context-aware recurrent imputation module and a cross-variable
imputation module. The context-aware recurrent imputation module mainly learns from
the forward and backward in multivariate time series data. The two modules are used to
capture temporal information and cross-variable relations from multivariate time series
data. A fusion layer in CATSI is used to integrate these two imputation outputs into the

19



2. Literature Review

final imputation outputs/results.
The study by [153] proposes an LSTM-based imputation-prediction network architec-

ture (shorten for SBU-LSTM) for traffic state forecasting. The proposed network archi-
tecture comprises two key components: a bidirectional LSTM and a modified LSTM. The
incorporated bidirectional LSTM captures long-term temporal dependencies of observed
values from the forward and backward in spatiotemporal traffic data. The outputs of the
two LSTMs are concatenated at each time step. The modified LSTM includes an imputa-
tion unit that imputes missing values in spatiotemporal traffic data. Experimental results
on two real-world traffic state datasets demonstrate the effectiveness and superiority of
SBU-LSTM for both missing data imputation task and traffic state prediction task.

The study by [154] proposes a new deep imputation method by modeling incomplete
genotype data with the utilization of bidirectional RNNs. Experiments on two haplotype
datasets show that the proposed method outperforms the existing state-of-the-art imputa-
tion approaches in genotype data imputation tasks.

2.4.3 Autoencoders and Variational Autoencoders
An autoencoder is a type of deep neural network that can be used to learn the encoding of
input data in an unsupervised manner (there is no requirement for prelabeled data). The
core idea of an autoencoder is to learn a low-dimensional representation of the input data
by capturing the most important parts of the input data, which in turn reduces the dimen-
sionality of the input data. An autoencoder can technically be trained with supervised
learning methods (i.e., a machine learning method that learns from labeled data).

The Variational autoencoder is one of the most common methods for generating the
imputed values for missing values [155]. There are two likely causes for the differences
between an autoencoder and a Variational autoencoder. For the use of an autoencoder, the
encoder network in the architecture maps the input data to a fixed point. While for the
use of a Variational autoencoder, the encoder network in the architecture maps the input
data to a normal distribution (e.g., univariate or multivariate Gaussian distribution). In
addition, the Variational autoencoder includes the reconstruction loss with an additional
KL divergence term.

Taken together, the Variational autoencoder has been able to generate new data points
by sampling from the learned latent space, while the use of KL divergence term makes the
learned distribution as close as possible to the prior distribution, which allows generating
of accurate, meaningful, and reliable data samples.

In recent years, Autoencoders and Variational autoencoders, as well as their variants
for the imputation of missing data, have been widely investigated [56, 65, 156–180].
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In a study conducted by [168], a new deep imputation method (shorten for LSTM-
AEs) is proposed for spatiotemporal time series missing data imputation. The LSTM-AEs
consist of an autoencoder and an LSTM. The core idea of LSTM-AEs is to capture the
diversity of missing patterns from incomplete spatiotemporal time series data and then
utilize the captured spatiotemporal features to impute missing values. The captured spa-
tiotemporal features take a lower-dimensional feature representation that retains the se-
mantics/meanings of each feature. With the construction of an autoencoder and LSTM
combination, LSTM-AEs achieves state-of-the-art imputation performance on three sen-
sor datasets (e.g., the gas turbine data from the offshore oil Corporation).

Similar to LSTM-AEs [168], V-RIN [65] integrates a Variational autoencoder and a
GRU into a single deep imputation network. The incorporated Variational autoencoder
uses an encoder network to learn the distribution of patient health data and a decoder net-
work to generate the reconstructed data distribution where the reconstructed values as the
imputed values. The GRU used in V-RIN continues to be a recurrent imputation network,
which aims at capturing the variation pattern of input variables at the time dimension (i.e.,
the vertical dimension of the input data).

A key study combining a Variational autoencoder with a Gaussian process is that
of [167], in which the incomplete time series are mapped by a Variational autoencoder
into a latent feature space, followed by the use of a Gaussian process to capture the tem-
poral nature of sequential dynamic features. With the construction of the Variational au-
toencoder and Gaussian process, the proposed imputation method GP-VAE achieves the
best imputation accuracy on three public datasets (i.e., the Healing MNIST dataset [181],
the SPRITES dataset [182], the 2012 Physionet Challenge dataset [183]) compared to a
standard imputation implementation of Variational autoencoder.

In another major study, [56] proposes the use of an autoencoder architecture as a deep
imputation-prediction method to impute missing values in patient health data and perform
patient outcome prediction (e.g., short-term and long-term mortality risk predictions). Ex-
perimental results on a real-world chronic cardiovascular disease dataset demonstrate the
effectiveness and superiority of the proposed autoencoder-based imputation method for
both imputation and prediction tasks.

Recent work by [177] proposes a new deep imputation method (shorten for PMIVAE)
by modeling incomplete healthcare data with the utilization of the standard Variational
Autoencoder and a multiple imputation procedure. The standard Variational Autoencoder
only generates a single imputation result for missing values. The proposed PMIVAE gener-
ates multiple imputation results for missing values and analyzes the generated imputation
results to obtain the best imputation result, thanks to the well-designed multiple imputation
procedure. Experiments on multiple public medical datasets show that PMIVAE achieves
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state-of-the-art imputation performance.

2.4.4 Generative Adversarial Networks
In recent years, generative adversarial network-based models have made great progress in
real-world image applications such as image-to-image translation [184, 185], image gen-
eration [186, 187], image compression [188, 189], text generation [190, 191], and text-to-
image generation [192,193].

Generative adversarial networks (GANs) are a type of deep neural network that in-
cludes two competing neural networks (i.e., a generator and a discriminator) in a single
network architecture [194]. The intuitions behind GANs can be seen as making a gener-
ator and a discriminator against each other. The generator generates fake samples from
random ’noise’ vectors, and the discriminator distinguishes the generator’s fake samples
from actual samples.

A large and growing body of literature has focused on the provision of GAN-based
imputation methods. Examples of representative GAN-based imputation methods include
GRUI-GAN [43], E2GAN [44], Bi-GAN [45], conditional GAN [57], STING [46], and
MBGAN [47]. These studies take the vector of actual samples, which has many miss-
ing values, use a generator to generate the corresponding imputed values and distinguish
the generated imputed values from real values using a discriminator. It is worth bearing
in mind that these six GAN-based imputation methods are also RNN-based. They are
categorised as GAN-based imputation methods because the GAN structure is adopted.

The GRUI-GAN develops GRUI (also follows the GRU-D time-decay mechanism) to
learn temporal relationships between observed values of multivariate time series data and
incorporates the GAN architecture to generate complete data matrices. Despite its efficacy,
GRUI-GAN is not practical since the accuracy of the generator is unstable with a random
noise input, making it challenging to train the GRUI-GAN.

In order to address the difficulty of training the GRUI-GAN, E2GAN is proposed,
which uses an encoder-decoder RNN-based structure as the generator.

The Bi-GAN incorporates a bidirectional RNN into the GAN architecture. The incor-
porated bidirectional RNN learns from multivariate time series data in both forward and
backward directions and generates the imputed values for missing values.

The overall structures of conditional GAN, STING, and MBGAN are similar to Bi-
GAN. The core idea of conditional GAN is to use the observed values as "additional input"
when imputing missing values. Unlike a standard implementation GAN, the conditional
GAN generates the imputed values for missing values by replacing a random noise with
the captured dependencies and correlations of observed values (i.e., "additional input"),
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which allows the generating of accurate, meaningful, and reliable imputed values.
In addition to a bidirectional RNN, STING includes two attention-based modules, in-

cluding a self-attention mechanism module and a temporal attention mechanism module,
which are used to improve the quality of the generator’s output (i.e., obtained from GRUs).
More specifically, the self-attention mechanism module is mainly used to learn the depen-
dencies between observed values of multivariate time series data. The intuitions behind
the self-attention mechanism can be seen as allowing inputs to interact with each other and
determining which ones should receive more attention [195]. The outputs are the combina-
tion of these interactions and attention scores. The temporal attention mechanism module
used is similar to the GRU-D time-decay mechanism that takes into account the irregular
interval of multivariate time series data when imputing missing values.

The MBGAN also includes two attention-based modules, including a multi-head self-
attention module and a temporal attention mechanism module, which are used to capture
the associations between observed values of multivariate time series data and take into
account the adjacent timestamps of multivariate time series data when imputing missing
values. Overall, the two attention-based modules used in MBGAN are essentially not
different from the two attention-based modules by STING.

2.4.5 Convolutional Neural Networks
Convolutional Neural Networks (CNNs) have revolutionised image recognition and related
fields. Beginning with small networks such as AlexNet [196], and progressing towards
much larger networks like GoogleNet [197], and ResNet [198], CNNs have been able to
achieve performance in image recognition tasks on par with human performance.

As part of these advances, many CNN architectures have been proposed [199, 200].
Typically, these architectures consist of a combination of convolution layers of wide vari-
eties, combined with pooling layers, and usually terminating in dense layers.

The CNN-based model is particularly well suited for extracting and learning useful
feature data independently, especially in high-dimensional sparse data. When using CNNs
for missing data imputation, it estimates the missing values with the extracted important
information affecting correlations among features, including temporal dependence.

There is a large volume of published studies describing the role of CNN-based im-
putation methods. Examples of representative CNN-based imputation methods include
[201–209].

In a study conducted by [203], a CNN-based network architecture is proposed to deal
with incomplete health signal data. The proposed CNN-based network architecture mainly
imputes missing values by capturing the nonlinear relationships from the observed values.
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The study by [202] proposes a deep imputation method by modeling incomplete traffic
data with the utilization of CNNs. The proposed method transforms incomplete traffic
data into spatial-temporal images, then fed into the designed CNN-based context encoder
to generate complete spatial-temporal images.

Similar to [202], the study [205] proposes the use of a convolutional encoder-decoder
architecture to deal with incomplete traffic data. The convolutional encoder-decoder archi-
tecture comprises an encoder neural network and a decoder neural network. Both encoder
and decoder neural networks are based on CNNs.

A key study of genotype imputation by [206] proposes the use of CNNs as the imputa-
tion method. In particular, the CNN-based genotype imputation method (shorten for Re-
fRGim) is pre-trained with single nucleotide polymorphism data from the 1000 Genomes
Project. The pre-trained strategy is often used as a practical way of extracting and learn-
ing rich feature representations from complex high-dimensional data such as video and
3D image [210–214].

In another major study, [204] proposes a novel denoising convolutional autoencoder to
impute missing values in the accelerometer actigraphy data. Experimental results on the
National Health and Nutrition Examination Survey dataset demonstrate that the proposed
imputation method outperforms other imputation methods, such as mean imputation, zero-
inflated Poisson regression, and Bayesian regression.

Recent work by [208] proposes a novel neural tangent kernel (shorten for NTK) based
on fully connected neural networks and CNNs for incomplete data reconstruction. In a
fully connected neural network, each input node is connected to each output node. A
major advantage of fully connected neural networks is that no special assumptions are
made about the type of input data. While for the use of a CNN, not all nodes are connected,
and modules can be made based on the input, specifically for image data.

More recent applications of the CNN-based imputation method can be found in the
work of [209]. Experimental results on the datasets from the UCI machine learning repos-
itory demonstrate the effectiveness and superiority of the CNN-based imputation method
compared to other imputation methods such as MissForest, MICE, and GAN-based impu-
tation method [215].

2.4.6 Attention-based Neural Networks
Attention mechanisms have revolutionised machine translation and related fields. Begin-
ning with small network architecture [216], and progressing towards much larger network
architecture (e.g., Transformer) [195], attention-based neural networks have been able to
achieve promising performance in many machine translation tasks. Increased application
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of Transformer-based methods has been observed across a number of research fields in
recent years, such as bioinformatics [217,218], text classification [219,220], and medical
analysis [221, 222].

Before presenting attention-based Neural Networks for missing data imputation, we
detail two pioneering studies on attention mechanism [216] and [195]. The study by [216]
incorporates the attention mechanism into the encoder-decoder architecture to improve
the performance of the encoder-decoder model for machine translation. The idea of in-
corporating the attention mechanism is that such a consideration can learn a weighted
combination from input sequences. The decoder then uses the most relevant parts, high-
lighted by corresponding attention weights, to make decisions. The pioneering work of
Transformer [195] remains crucial to our wider understanding of attention mechanisms.
The Transformer model is built upon the encoder-decoder architecture. The encoder in
the Transformer mainly implements a multi-head self-attention mechanism, followed by a
fully connected feed-forward network that includes two linear transformations with Rec-
tified Linear Unit activation. The decoder in the Transformer implements a multi-head
self-attention mechanism and a fully connected feed-forward network similar to those im-
plemented by the encoder. It is worth noting that the multi-head mechanism implemented
by the decoder leverages the queries from the previous decoder sub-layer (i.e., a total of
three main sub-layers in the decoder) as well as the keys and values from the encoder,
which allows the decoder to pay attention to the multiple relationships and nuances for all
the words in the input text (e.g., machine translation).

Attention-based neural networks for the imputation of missing data have been investi-
gated recently [51, 58, 61, 223–227].

The study by [223] proposes the use of the self-attention mechanism [195] to im-
pute missing values in multivariate geo-tagged time series data. Experiments on multiple
geo-tagged time series datasets show that the proposed cross-dimensional self-attention
(shorten for CDSA) achieves state-of-the-art imputation performance compared to exist-
ing imputation approaches.

The study by [224] proposes a deep imputation method (shorten for AimNet) by mod-
eling incomplete mixed data (i.e., discrete and continuous attributes) with the utilization
of an attention-based framework. The mode of attention mechanism used by AimNet is
comparable in complexity to that used by the multiplicative attention mechanism. More
specifically, a simple dot product attention mechanism without a trainable weight matrix
(e.g., an identity matrix) is employed in the context of a calculation. Experiments on the
real-world datasets show that AimNet achieves the best imputation performance compared
to the existing state-of-the-art imputation methods such as MICE [119], MissForest [104],
and Gain [215].
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The study by [58] proposes a deep imputation method (shorten for MTSIT) based on
an autoencoder architecture to perform missing data imputation. The autoencoder archi-
tecture used in MTSIT includes the Transformer encoder [195] and a linear decoder, which
are implemented with a joint reconstruction and imputation approach.

The study by [61] proposes the use of the multi-head attention mechanism [195] to
deal with incomplete datasets from the UCI machine learning repository. The proposed
imputation-prediction method (shorten for MAIN) imputes missing values first and then
utilizes complete data matrixes to make downstream prediction tasks.

The study by [51] proposes a deep imputation-prediction method (shorten for MIAM)
based on the self-attention mechanism [195]. The MIAM mainly focuses on the provision
of multivariate clinical time series data imputation. Given multivariate clinical time series
data, MIAM imputes the missing values by extracting the relationship among the observed
values, missingness indicators (0 for missing and 1 for not missing), and the time interval
between consecutive observed values.

Although MAIN and MIAM have achieved promising performance in many down-
stream tasks, such as in-hospital mortality prediction, length of stay prediction, and phe-
notype classification, the imputation accuracy has not been reported.

The study by [227] proposes a self-attention-based imputation method (shorten for
SAITS) for time series data imputation. The core idea of SAITS is borrowed from the
current masked language model [228–232]. The masked language model is trained by
randomly masking a part of words in the input sequence and predicting those masked words
based on the context of the non-masked words. Despite its efficacy, SAITS is not practical
since the real-world datasets have an inherently high degree of missingness, making it
challenging to train the SAITS.

2.4.7 Graph Neural Networks
Increased application of Graph Neural Networks (GNNs) has been observed across a num-
ber of research fields in recent years, such as social recommender systems [233], bioin-
formatics [234], knowledge graphs [235], drug response prediction [236], materials sci-
ence and chemistry [237], and medical diagnosis and analysis [238]. GNN is a type of
neural network for dealing with graph-structured data [239, 240]. When used on high-
dimensional or complex data, very deep GNNs can be constructed by stacking multiple
graph convolutional layers. In GNNs, each graph’s convolutional layer aggregates infor-
mation from neighboring nodes and edges using a message-passing strategy. At each GNN
message-passing iteration, each node aggregates information from its neighborhood, and
as these iterations progress, each node embedding reaches out further in the graph to ex-
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tract global information. By doing so, both local and global information from the graph
is taken into consideration for generating useful node and graph-level representations for
various downstream predictions.

Previous studies have examined the effectiveness of GNN-based methods on missing
data imputation [241–252]. Examples of representative GNN-based imputation methods
include [241,242,244,246,252].

The study by [241] proposes a deep imputation method by modeling incomplete data
with the utilization of a GCN autoencoder. The core idea of GCN autoencoder is to apply
the idea of VAE to graph-structured data. In other words, graph-structured data is fed
into an encoder to generate new graphs or reason about graphs, where more correlations
are created and new edges are predicted. It is also worth mentioning that the proposed
deep imputation method is trained with an adversarial loss to make the distribution of the
reconstructed data as close as possible to that of the real data.

The study by [242] proposes GRAPE, a novel graph-based framework to perform fea-
ture imputation and label prediction. The core idea of GRAPE is to treat the missing data
imputation as a graph representation learning (i.e., it aims to generate graph representa-
tion vectors that capture the structure of graphs effectively.), which includes making two
types of nodes (i.e., the observations and features) and edges (i.e., the observed feature
values) on a bipartite graph. The benefit of constructing the bipartite graph is that such
a consideration can create connections between input features (i.e., based on the observa-
tions) and between the observations (i.e., based on the features). With the construction
of the GRAPE framework, the feature imputation and label prediction are treated as two
prediction tasks, i.e., an edge-level and a node-level.

The study by [244] proposes GRIN, a novel graph neural network architecture to carry
out spatiotemporal multivariate time series missing data imputation. The core idea of
GRIN is to utilize information from sensors at different locations to impute missing values
in spatiotemporal multivariate time series data.

The study by [246] proposes AGRN, an adaptive graph recurrent network, to perform
multivariate time series missing data imputation. The proposed AGRN is a combination
of a graph convolution network and a recurrent neural network. Specifically, the following
steps were taken: (i) AGRN incorporates a graph learning module to generate a graph that
represents the relationships between input variables; (ii) AGRN utilizes the graph convo-
lution module to aggregate information from neighboring nodes and edges; (iii) AGRN
employs a Gated Recurrent Unit to pass temporal information from the forward and back-
ward directions; (iv) AGRN fuses the outputs of Gated Recurrent Unit to generate complete
data.

The study by [252] integrates Generative Adversarial Network (GAN) and Graph Con-
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volutional Network (GCN) into an overall network architecture to carry out time series
missing data imputation. Specifically, the incorporated GAN inversion is utilised to trans-
late input (i.e., incomplete) time series data into a low-dimensional latent space. The pur-
pose of incorporating GAN inversion [253, 254] is to generate the optimal latent variable
values in the latent space of the pre-trained GAN.

Moreover, the incorporated GAN inversion is combined with a decay connection in
the GCN to take the temporal irregularity of input time series data into consideration on
the missing data imputation. The core idea of decay connection in the GCN is to decay
the dependences between adjacent observations as the time between them increases.

It is also worth noting that the idea of pre-trained GAN is to randomly mask a part of
words in the input sequence and predict those masked words based on the context of the
non-masked words. Therefore, the pre-trained GAN is the same as SAITS mentioned in
Section 2.2.6; they are not practical since the real-world datasets have an inherently high
degree of missingness, making it challenging to train the model.

2.5 Summary
In this chapter, we comprehensively reviewed the development of missing data imputation
techniques and introduced state-of-the-art methods. We discussed these methods from dif-
ferent angles, including traditional statistical, machine learning, and deep learning tech-
niques for missing data imputation. We also introduced several state-of-the-art methods
that are trying to perform missing data imputation and downstream prediction tasks. We
also pointed out several drawbacks and problems of current techniques and will solve these
problems and challenges in the following chapters.
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Chapter 3

Compound Density Networks

The following publication has been incorporated into this chapter:
[62] Yuxi Liu, Shaowen Qin, Zhenhao Zhang, and Wei Shao. Compound density networks
for risk prediction using electronic health records. In 2022 IEEE International Conference
on Bioinformatics and Biomedicine (BIBM), pages 1078–1085. IEEE, 2022

3.1 Introduction
The immense accumulation of Electronic Health Records (EHRs) provides an unprece-
dented opportunity to develop accurate, meaningful, and reliable outcome prediction mod-
els [29, 255, 256].

However, health data in EHRs present a high degree of irregularity, due to variations
of patient conditions and treatment needs. One of the notable issues is missing values,
which makes accurate and reliable predictions challenging. We present an example of
a patient’s records from the MIMIC-III database [38] in Figure 3.1. The physician con-
ducts/prescribes the necessary lab tests each time a patient is seen. Different physiological
variables (e.g., heart rate, glucose) are examined at different times depending on the pa-
tient’s symptoms [60]. When certain symptom disappears, corresponding variables are no
longer examined. This results in missing values.

Machine learning algorithms have brought revolutionary changes in a wide variety of
fields, such as computer vision [257], machine translation [258], and computational biol-
ogy [259]. Machine learning algorithms build models based on a large amount of sample
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Figure 3.1: An example of a patient’s clinical records.

data, known as training data. The prediction performance of machine learning models
will suffer if the training dataset has a large number of missing values. A simple solution
is to remove the observations that have missing data. This, however, is not applicable to
EHR data, as it means valuable information is discarded. A better strategy would be to im-
pute missing values. Several methods currently exist for the imputation of missing values,
such as Multiple Imputation, Expectation-Maximization, Nearest Neighbor and Hot Deck
methods. These methods rely on variable correlations to impute missing values. Previous
studies of [260–262] have demonstrated the effectiveness of these methods on EHR data.

Existing work usually separates imputation method and prediction model as two inde-
pendent parts of an EHR-based machine learning system. After imputing missing values,
the complete EHR data matrix is fed into existing machine learning models to make risk
predictions. For example, machine learning models can be used to predict in-hospital
mortality, decompensation, length-of-stay, and phenotype classification [53, 263].

However, with an EHR dataset, caution must be taken, as the missing values are likely
attributed to patient symptoms (as mentioned earlier). For this reason, the imputation
method and prediction model should be tuned together within a single framework rather
than separated as two parts. By doing so, the prediction model is able to deal with the
missing values in EHR data effectively. A recent study by [39] developed a deep prediction
model named GRU-D to address this problem. The overall structure of GRU-D is built
upon Gated recurrent units (GRU) [147]. The GRU-D mainly incorporates the empirical
mean value and the previous observation to impute missing values. Despite its efficacy,
the GRU-D suffers from notable methodological weaknesses. The empirical mean value
might be biased due to the diversity of patient data, hence lacking reliability. Utilizing
less reliable imputed values as part of the input is equivalent to introducing noise/error
into the input. This inevitably introduces a high degree of aleatoric uncertainty into the
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dataset (e.g., imputation error). Most of the existing machine learning models are sensitive
to aleatoric uncertainty, that is, a few small variations in the inputs may lead to significant
changes in model outputs. This might lead to biased prediction due to the cumulative effect
of imputation errors.

Uncertainty quantification has a pivotal role in model optimization [264]. Uncertainty
quantification allows researchers to know how confident they can be with the prediction
results, which is essential to building trust in prediction models. In contrast, it is often
less trustworthy when prediction results are presented without uncertainty quantification.
There are two main types of uncertainties: epistemic and aleatoric [265]. Epistemic un-
certainty indicates what the model does not know. It is attributed to inadequate knowledge
of the model. This is the uncertainty that can be reduced by having more data. Aleatoric
uncertainty is the inherent uncertainty that is part of the data generating process, such as
sensor noise, record error, or missing value. This variability cannot be reduced by having
more data. Current studies have used these two uncertainties as indicators of the reliability
of the method [29, 266].

The study by [267] investigated the differential impact of aleatoric uncertainty and
epistemic uncertainty on computer vision tasks. The approach taken in this study is a
mixed methodology based on Bayesian theory and deep neural networks, known as Bayesian
neural networks (BNNs). The core idea of BNNs is to replace the deterministic network’s
weight parameters with their probability distributions and, instead of optimizing the net-
work weights directly, use the average of all possible weights. However, the inference
of BNNs remains a major challenge and incurs a huge computational cost [268]. To ad-
dress the issue, many variational inference techniques are proposed, such as stochastic
variational inference [269] and sampling-based variational inference [270], which have
achieved promising performance in many prediction tasks [271, 272]. Despite their effi-
cacy, these methods still impose a tremendous burden on computational costs.

One well-known study that is often cited in research on Bayesian inference approxi-
mation is that of [273], which found that the use of dropout in deep neural networks could
be regarded as an approximate Gaussian process. Their theoretical framework employs a
dropout layer as a Bayesian inference approximation before every weight layer. The use
of dropout as a Bayesian approximation is currently the most popular method for provid-
ing epistemic uncertainty estimation due to its low computation cost and high efficiency.
Despite this, the use of dropout requires a number of repeated feed-forward calculations
of deep neural networks with randomly sampled weight parameters. The resulting outputs
are used to quantify the epistemic uncertainty of those deep neural networks.

In this chapter, we propose an end-to-end, novel, and robust prediction model by utiliz-
ing a Compound Density Network (CDNet) that consists of a Gated recurrent unit (GRU),
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a Mixture Density Network (MDN), and a Regularised Attention Network (RAN). The
proposed CDNet enables GRU and MDN to work together by iteratively leveraging the
output of each other to impute missing values. The GRU is used as a latent variable model
to model EHR data. The MDN is designed to sample latent variables generated by GRU.
The sampling process is equivalent to exploiting the generated latent variables to model the
distribution of imputed features. The MDN is built from two components: a deep neural
network and a mixture of distributions. We assume the mixture of distributions comprises
multiple Gaussian distributions because the imputed features are continuous. Specifically,
latent variables are fed into the deep neural network. The deep neural network then pro-
vides the parameters for multiple Gaussian distributions, including their means, variances,
and weights that can be used to build a Gaussian mixture distribution. The resulting Gaus-
sian mixture distribution is a multimodal distribution that contributes to the modeling of
complex patterns found in the input.

To enhance the reliability of imputed values and quantify their uncertainties, the RAN
is served as a regulariser for less reliable imputed values, leading to more robust model
outputs. The core idea behind RAN design is to model the attention weights as a func-
tion of the variance of Gaussian mixture distribution. When used for regularised learning,
it assigns smaller weights to imputed values with large variance. The output of RAN is
fed into the developed predictor network to make risk predictions. This involves mak-
ing an MDN for predicting the class probability distribution. The modeling process of
the MDN includes learning about the impact of aleatoric uncertainty and epistemic un-
certainty. When used for quantifying epistemic uncertainty, MDN can be regarded as a
sampling-free method because it does not require repeated feed-forward calculations of
deep neural networks. Specifically, the MDN uses a deep neural network to provide the
parameters (i.e., mean and variance) for a mixture of distributions. When properly trained,
we obtain the mean and the standard deviation, which means we have the entire class prob-
ability distribution (e.g., the risk of death and no death) and, by extension, the estimate of
the aleatoric and epistemic uncertainty. The resulting predicted class probability distribu-
tions are further used to estimate risk probabilities (e.g., the probability of death).

The main contributions of this paper are listed as follows: We validate CDNet on the in-
hospital mortality prediction task from a publicly available EHR database that has a large
number of missing values in the input. Our model outperforms state-of-the-art models
by significant margins. We also empirically show that regularizing imputed values is a
key step for superior prediction performance. Analysis of prediction uncertainty shows
that our model can capture both aleatoric and epistemic uncertainties, which allows model
users to gain a better understanding of the model results.
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3.2 Method
We describe the proposed CDNet in this section. We introduce the basic notations of risk
prediction tasks first. We then detail the CDNet architecture. Finally, we present how to
use CDNet for risk prediction tasks.

3.2.1 Basic Notations
The EHR data consists of patients’ time-ordered records. Each patient’s records ensemble
can be further categorised as a patient journey, termed EHR patient journey data, in the fol-
lowing sections. The EHR patient journey data is denoted by X p = [X p

1 , · · · , X
p
t , · · · , X

p
Tp

]
∈ RN×Tp , where p is a patient and N is the number of sequential dynamic features (that
occur over time, e.g., vital signs) and Tp is the number of records. For simplicity, we drop
the p when it is unambiguous in the following sections.

3.2.2 Network Architecture
Our proposed network architecture comprises three key components: 1) a Gated recurrent
unit, 2) a Mixture Density Network, and 3) a Regularised Attention Network, as shown in
Figure 3.2. These neural network modules are trained together.

Learning feature embedding

An essential step before implementing the proposed components is to learn the embedding
of sequential dynamic features. Learning feature embeddings is able to help us translate
feature spaces. Specifically, an embedding layer is applied to sequential dynamic features,
generating the corresponding representations. This embedding layer provides a mapping
between sequential dynamic features and embedding space, allowing GRU to learn the
underlying dynamics of patient journeys via lower-dimensional feature representations.

Let Z denotes learnable feature vectors, which are used as prefilled values of the patient
journey X. This Z is initialised from the standard Gaussian distribution. By doing this,
the X is now termed X ′. Given an input X ′, the embedding layer can be written as:

Xemb = W emb · X ′ + bemb (3.1)

where Xemb ∈ Rdemb×T is the learned sequential dynamic feature embedding. W emb ∈

Rdemb×N is a learnable parameter, bemb ∈ Rdemb is a bias, and demb is the dimension of the
embedding space.
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Figure 3.2: Schematic representation of the architecture and workflow of
the proposed network.
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Model components

Gated recurrent units (GRU)

The core idea of GRU is to exploit the degree of missingness of all EHR patient jour-
neys to impute missing values. Due to patient-specific symptoms, the degree of miss-
ingness of sequential dynamic features may vary among patient journeys. Based on this
assumption, missing values of one patient journey can be inferred from other EHR pa-
tient journeys. The inference process is achieved by employing GRU [147]. The GRU is
currently the most popular method for generating latent variables from multivariate time
series data. Latent variables are a transformation of the data points into a continuous
lower-dimensional space. EHR patient journey data is a type of multivariate time series
data with more than one time-dependent feature; each not only depends on its past values
but also has some dependency on others. These dependencies must be modeled, which are
used for forecasting future values. After training, the employed GRU is able to generate
a series of latent variables derived from all EHR patient journeys modeling. These latent
variables correspond one-to-one with sequential dynamic features.

GRU is a variant of Recurrent neural networks (RNN) that modifies the basic RNN’s
hidden layer. One advantage of the GRU is that it avoids the problem of the vanishing
gradient suffered by an RNN. The essential nature of GRU is the gating of the hidden
state. Given input Xemb

t ∈ Rdemb and previous hidden state Ht−1 ∈ Rg, the current hidden
state Ht can be obtained through the following steps.

Specifically, Xemb
t and Ht−1 are fed into a gating mechanism. The gating mechanism,

including a reset gate Rt and an update gate Ut, is to decide which of the previous infor-
mation will be retained for Ht. The objective function of the gating mechanism can be
written as:

Rt = σ(WR · [Ht−1, Xemb
t ] + bR)

Ut = σ(WU · [Ht−1, Xemb
t ] + bU)

(3.2)

where WR ∈ Rg×(demb+g) and WU ∈ Rg×(demb+g) are learnable parameters. bR ∈ Rg and
bU ∈ Rg are biases. σ is the sigmoid activation function that is used to normalize the
outputs Rt and Ut in [0, 1]. The Xemb

t and the element-wise multiplication of Ht−1 with
Rt are used to generate an intermediate H̃t. Ht is obtained by the element-wise convex
combinations between H̃t and Ut. The formula can be written as:

H̃t = tanh(WH · [Rt ⊙ Ht−1, Xemb
t ] + hH)

Ht = Ut ⊙ Ht−1 + (1 − Ut) ⊙ H̃t

(3.3)

35



3. Compound Density Networks

where WH ∈ Rg×(demb+g) is a learnable parameter and hH ∈ Rg is a bias. ⊙ denotes the
element-wise multiplication.

The generated latent variables {Ht}
T
t=1 are used as the input of MDN.

Mixture Density Network (MDN)

The MDN is designed to sample latent variables generated by GRU. The sampling
process is equivalent to exploiting the use of generated latent variables to model the dis-
tribution of imputed features. The MDN comprises a deep neural network and a mixture
of distributions. Since the imputed features are continuous, we assume the mixture of dis-
tributions comprises multiple Gaussian distributions. Specifically, latent variables are fed
into the deep neural network. The deep neural network then provides the parameters for
multiple Gaussian distributions, including their means and variances, as well as weights
that can be used to build a Gaussian mixture distribution. The Gaussian mixture distribu-
tion can be written as:

p(Xt |Ht) =
K∑

k=1

βk · Dk(Xt |Ht)

Dk(Xt |Ht) = N(µk,Σk)

(3.4)

where k denotes the index of the corresponding mixture component. There are up to K
mixture components (i.e., distributions) per output. β denotes the mixing parameter. D
is the corresponding distribution to be mixed. D is a multivariate Gaussian distribution,
where µ is the mean vector and Σ is the covariance matrix with σ2 on the diagonal and 0
otherwise.

We assume mean µ and variance σ2 of each distribution are derived from a nonlinear
combination of the inputs. A deep feed-forward network is modified to output the param-
eters of the Gaussian mixture distribution. A constraint we must enforce here is σ2 > 0,
i.e., the variance of Gaussian must be positive. This is implemented by employing the
Exponential Linear Unit (ELU) activation with an offset [274]. Since this can technically
be zero, we have added an ϵ to the modified ELU to ensure stability.

h = ReLU(W h · H + bh)

β = so f tmax(W β · h + bβ)

µk = Wµ

k · h + bµk
σ2

k = ELU(Wσ
k · h + bσk ) + 1 + ϵ

(3.5)

where all parameters of W are projection matrices and all parameters of b are bias vectors.
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ϵ is a constant term (e.g., 1 × 10−15). β is the mixture weight of each component. We use
the softmax function to keep β in the probability space.

(The sampling process of MDN) We apply Gaussian noise ξ and variance Σk to µk to
obtain the predicted EHR patient journey X̂.

X̃k = µk +
√

Σk · ξ, ξ ∼ N(0, 1)

X̂ =
K∑

k=1

βk · X̃k

(3.6)

The optimization objective of MDN is to make the predicted patient journey X̂ as close
to the real-valued patient journey X as possible. The optimization function can be written
as:

L = MSE(W pro j · X̂, Xemb) (3.7)

where MSE(·) denotes the mean squared error. W pro j ∈ Rdemb×N is a learnable projection
matrix, which translates the predicted patient journey X̂ into the embedding space.

Regularised Attention Network (RAN)

The output of MDN is a Gaussian mixture distribution. The predicted patient journey
X̂ is obtained from the sampling of Gaussian mixture distribution. The X̂ includes imputed
values, combined with real-valued values as a complete data matrix that can be analysed
by our predictor network. However, caution must be taken with imputed values, as they
are inferred from the real-valued EHR patient journey data and thus are likely to be less
reliable. In response to this issue, the RAN is developed to enhance the reliability of
imputed values and quantify their uncertainties. The RAN contains an attention layer;
its output is a set of weights. The general idea of the attention layer is to regularize the
weights assigned to different patient journeys. For example, it assigns smaller weights to
less reliable data.

The unreliability scores of real-valued and imputed values are defined as:

φ =

0, f or real valued values

σ2, f or imputed values
(3.8)

where σ2 =
∑K

k=1 βk · σ
2
k is the mixed variance of Gaussian mixture distribution that can

be used to represent aleatoric uncertainty describing the unreliability of imputed values.
Since the real-valued values involve no uncertainty, we set their unreliability scores to
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zero.

Given the input φ, the attention layer can be written as:

γ = so f tmax(Wγ · (1 − φ) + bγ) (3.9)

where Wγ ∈ RN×N is a learnable parameter and bγ ∈ RN is a bias.

The weight γ is used to regularize the predicted patient journey X̂. The formula can
be written as:

X̂RAN = ReLU(WRAN (γ ⊙ X̂) + bRAN ) (3.10)

where WRAN ∈ RN×N is a learnable parameter and bRAN ∈ RN is a bias. ⊙ denotes the
element-wise multiplication. ReLU(·) is an activation function.

Risk Prediction

In order to apply CDNet to risk prediction tasks, a predictor network is developed, which
consists of an attention layer and an MDN.

The X̂RAN (the output of RAN) includes enhanced imputed values, combined with
the real-valued patient journey X as a complete data matrix that can be analysed by the
predictor network. The complete data matrix is denoted by X̂Combined . Since X̂Combined still
takes the form of sequence data, it is difficult to use as the input of an MDN to obtain
prediction probability distributions. In response to such an issue, the designed attention
layer is used to integrate the X̂Combined into a whole representation. The attention layer can
be written as:

τ = so f tmax(Wτ · X̂Combined + bτ)

X̂Overall =

T∑
t=1

τt ⊙ X̂Combined
t

(3.11)

where Wτ ∈ RN×N and bτ ∈ RN are learnable parameters. X̂Overall is the weighted average
of sampling a record according to its importance.

Instead of predicting a deterministic value for each patient journey, we predict the
class probability distribution and moreover include aleatoric and epistemic uncertainty
estimations. We model the output of every class as an MDN, generating three groups of
parameters for every class: the mean µp,k, the variance Σp,k, and the weights of the mixture
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βp. The process can be formalised as:

zp = ReLU(W z
p · X̂

Overall
p + bz

p)

βp = so f tmax(W β
p · zp + bβp)

µp,k = Wµ

p,k · zp + bµp,k
σ2

p,k = ELU(Wσ
p,k · zp + bσp,k) + 1 + ϵ

(3.12)

where all parameters of W are projection matrices and all parameters of b are bias vectors.
ϵ is a constant term. p denotes the index of the corresponding patient journey. There are
up to P patient journeys. k denotes the index of the corresponding mixture component.
There are up to K mixture components. βp is the mixture weight for each component of
patient p’s journey. µp,k is the predicted value of the k-th component of patient p’s journey.
Σp,k is the variance for each coordinate σ2

p,k representing its aleatoric uncertainty. Note
that for the binary classification task, both the dimensions of µp,k and σ2

p,k are set to 2. We
use the softmax function to keep βp in probability space and use the ELU function again
to satisfy the positiveness constraint of the variance.

We apply Gaussian noise η and variance Σp,k to µp,k to obtain the predicted class prob-
ability distribution for patient p’s journey.

ỹp,k = µp,k +
√

Σp,k · η, η ∼ N(0, 1)

ŷp = so f tmax(
K∑

k=1

βp,k · ỹp,k)
(3.13)

where K is the number of mixture components. ŷp is the prediction probability. The
objective function L′ of the risk prediction task is the average of cross-entropy:

L′ = −
1
P

P∑
p=1

(y⊤p · log(ŷp) + (1 − yp)⊤ · log(1 − ŷp)) (3.14)

where P is the number of patient journeys. yp is the ground-truth class/label for patient
p’s journey.
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3.3 Experiments

3.3.1 Experimental Setup

Datasets and Tasks

We conduct the in-hospital mortality prediction experiments on the publicly available
MIMIC-III1 database [38]. MIMIC-III is one of the largest publicly available ICU databases,
comprising 38,597 distinct patients and a total of 53,423 ICU stays. A total of 21,139 sam-
ples were extracted from the MIMIC-III database. We use clinical times series data (e.g.,
heart rate, glucose, and respiratory rate) as input [53]. The prediction tasks here are three
binary classification tasks: 1) In-hospital mortality (24 hours after ICU admission): to
evaluate ICU mortality based on the data from the first 24 hours after ICU admission. 2)
In-hospital mortality (36 hours after ICU admission): to evaluate ICU mortality based on
the data from the first 36 hours after ICU admission. 3) In-hospital mortality (48 hours
after ICU admission): to evaluate ICU mortality based on the data from the first 48 hours
after ICU admission. The MIMIC-III database being used has a high degree of missing-
ness in the input. E.g., for the mortality prediction of the first 48 hours after ICU admission,
the results of the statistical analysis of the input are shown in Table A.1.

Baselines

• Mean: The mean values of variables are used to impute the missing values.

• K-Nearest Neighbor (KNN): The average values of the top K most similar collec-
tions are used to impute the missing values.

• MICE: Multiple Imputation by Chained Equations (MICE) [119] uses chain equa-
tions to create multiple imputations for variables of different types.

• Simple: Simple concatenates the measurement with masking and time intervals,
which are then fed into a predictor to make risk predictions [39].

• BRNN: Bidirectional-RNN (BRNN) [151] generates the imputed values for each
variable with the last observed value or the mean values of the same variable. These
generated values are used as initial imputed values for the complete data matrix, fed
into a bidirectional RNN to predict missing values.

1https://mimic.physionet.org
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• CATSI: CATSI [52] comprises a context-aware recurrent imputation and a cross-
variable imputation, which are used to capture longitudinal information and cross-
variable relations from MTS data. A fusion layer in CATSI is used to integrate the
two imputation outputs into the final imputations.

• BRITS: BRITS [40] employs a bidirectional RNN to impute missing values first and
then exploits these imputed values to predict the final values.

• GRU-D: GRU-D [39] is described in the introduction section. GRU-D also utilised
a time decay mechanism to deal with irregular time intervals of medical events in
longitudinal patient records. The time decay mechanism builds upon an implicit
assumption that the more recent events are more important than previous events on
patient-specific risk prediction tasks, hence, taking a monotonically way to decay the
information from previous time steps for all patients (the previous medical events).

• GRU-Dd−: GRU-D without time decay mechanism.

• CDNet+: CDNet with a time decay mechanism [39].

The outputs of Mean, KNN, MICE, Simple, BRNN, and CATSI are fed into standard
GRU to make in-hospital mortality predictions.

Implementation Details & Evaluation Metrics

We perform all the baselines and CDNet with Python v3.9.7. We employ the following
libraries: fancyimpute for KNN and MICE and PyTorch for the rest of the methods. For
each task, we randomly split the datasets into training, validation, and testing sets in a
70:15:15 ratio. The validation set is used to select the best values of parameters. Training
and evaluations were performed on A40 GPU from NVIDIA with 48GB of memory. We
repeat all the methods ten times and report the average performance.

We use class weight in CrossEntropyLoss for a highly imbalanced dataset. This is
achieved by placing an argument called ’weight’ on the CrossEntropyLoss function (Py-
Torch).

We assess performance using the area under the receiver operating characteristic curve
(AUROC) and the area under the precision-recall curve (AUPRC).

3.3.2 Performance Analysis
Table 3.1 lists the results of in-hospital mortality prediction based on the clinical times
series data from the first 24, 36, and 48 hours after ICU admission, respectively. The
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larger the scores of AUROC and AUPRC, the better the predictive performance of the
method. Values in the parentheses denote standard deviations. These results suggest that
CDNet significantly and consistently outperforms other baseline methods. Comparing the
two results GRU-Dd− and GRU-D in Table 3.1 (24 hours after ICU admission), it can
be seen that the use of the time decay mechanism achieves a performance improvement
in AUROC by 1.86% and in AUPRC by 1.32%. Interestingly, it can be seen from the
data in Table 3.1 that GRU-Dd− outperforms GRU-D in terms of AUROC by 1.07% (36
hours after ICU admission). In addition, significant reductions in prediction performance
of CDNet+ (CDNet with a time decay mechanism) are observed compared with CDNet.
Taken together, these results suggest that there is high inconsistency on the effectiveness
of the time decay mechanism.

Table 3.1: Performance of baselines and our approaches on in-hospital mortality
prediction.

MIMIC-III/Mortality Prediction 24 hours after ICU admission 36 hours after ICU admission 48 hours after ICU admission

Metrics AUROC AUPRC AUROC AUPRC AUROC AUPRC

Mean 0.6780(0.017) 0.2283(0.017) 0.6821(0.016) 0.2322(0.015) 0.6816(0.016) 0.2314(0.015)
KNN 0.7122(0.016) 0.2498(0.022) 0.7057(0.015) 0.2423(0.019) 0.7086(0.013) 0.2464(0.019)

MICE [119] 0.7089(0.019) 0.2582(0.024) 0.7113(0.020) 0.2551(0.023) 0.7058(0.018) 0.2435(0.019)
Simple 0.6821(0.012) 0.2315(0.010) 0.6806(0.012) 0.2307(0.010) 0.6791(0.013) 0.2279(0.012)

BRNN [151] 0.6735(0.011) 0.2037(0.012) 0.6704(0.010) 0.2023(0.012) 0.6732(0.011) 0.2051(0.014)
CATSI [52] 0.7042(0.011) 0.2373(0.012) 0.7024(0.013) 0.2343(0.015) 0.7057(0.012) 0.2379(0.012)
BRITS [40] 0.7463(0.010) 0.2880(0.016) 0.7445(0.009) 0.2856(0.016) 0.7447(0.009) 0.2879(0.016)
GRU-D [39] 0.7323(0.012) 0.2821(0.014) 0.7235(0.012) 0.2679(0.015) 0.7285(0.011) 0.2763(0.015)
GRU-Dd− 0.7137(0.011) 0.2689(0.016) 0.7342(0.015) 0.2624(0.015) 0.7244(0.011) 0.2673(0.014)
CDNetα 0.7536(0.008) 0.3252(0.016) 0.7502(0.011) 0.3031(0.015) 0.7546(0.008) 0.2994(0.014)
CDNetβ 0.7557(0.013) 0.3402(0.014) 0.7538(0.010) 0.3404(0.017) 0.7543(0.012) 0.3413(0.020)
CDNet 0.7712(0.011) 0.3497(0.014) 0.7675(0.012) 0.3443(0.017) 0.7673(0.013) 0.3526(0.014)
CDNet+ 0.7588(0.019) 0.3286(0.017) 0.7506(0.020) 0.3166(0.017) 0.7529(0.018) 0.3177(0.015)

3.3.3 Ablation Analysis
We now proceed to examine the effectiveness of different components of our CDNet. To
this end, we conduct an ablation study on the datasets. We present two variants of CDNet
as:

• CDNetα: CDNet without MDN and RAN.

• CDNetβ: CDNet with MDN without RAN.

We present the ablation study results in Table 3.1. We find that CDNetβ outperforms
CDNetα. Overall, CDNetβ achieved significant performance improvements in AUPRC.
These results demonstrate the effectiveness of the MDN construction. According to these
results, we can also infer that CDNetβ is more concerned with the balance of classification
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than CDNetα. The superior performance of CDNet than CDNetβ verifies the efficacy of
RAN, in achieving performance improvements in AUROC and AUPRC.

3.3.4 Case study: Regularised Attention Network (RAN)
Analysis
Figure 3.3 and Figure 3.4 present the results of two patient journeys (two random examples)
obtained from the RAN analysis. The boxes with attention scores are imputed values. The
larger the attention scores, the more reliable the imputed values. The attention scores
ranging from 0.0 ∼ 1.0 were calculated by the RAN. The RAN takes into consideration
the entire patient journey, but the images are understandably truncated for visibility. We
take the first 20 records of the two patient journeys as an example for detailed discussion.
Between Figure 3.3 and Figure 3.4, there is a significant difference between the degree of
missingness of the two patient journeys. We can observe that less reliable imputed values
are assigned lower weights in the two patient journeys. These results suggest that RAN
not only can handle the different degrees of missingness of patient journey data but also
has fine-grained robustness at the feature level of patient journey data.
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Figure 3.3: Result of Patient A.

3.3.5 Case study: Uncertainty Analysis
Figure 3.5 shows the results obtained from the epistemic uncertainty estimation of four
patient journeys (four random examples). Each subgraph contains two predicted probabil-
ity distributions of a patient journey, where dodger blue and dark orange histograms are
derived from FFN (feed-forward network) ensembles and MDN, respectively. The MDN
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Figure 3.4: Result of Patient B.

used here is described in the subsection Risk Prediction. For MDN, we set the mixture
components to 100 (K = 100). In terms of a patient journey, these 100 components would
produce 100 prediction results, so that epistemic uncertainty of the prediction model can
be quantified. For FFN ensembles, we replace the MDN with 100 FNNs that have different
random seeds. The more the two discrete distributions (histograms) overlap, the better the
ability of the model to capture epistemic uncertainty. From the data in Fig. 4, it is appar-
ent that there are many overlaps between the two discrete distributions in each subgraph.
These results suggest that our method is able to capture epistemic uncertainty similar to
that of FFN ensembles.
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Figure 3.5: Predicted probability distribution of MDN (our method) and
FFN-ensemble.
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Figure 3.6: Epistemic uncertainty analysis. Two examples of the predicted
probability distribution on the in-hospital mortality prediction task.

Figure 3.6 shows the results obtained from the epistemic uncertainty analysis of two
patient journeys (two random examples). Figure 3.6 (g) left and Figure 3.6 (h) left compare
the prediction results obtained from MDN. Figure 3.6 (g) right and Figure 3.6 (h) right
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Figure 3.7: Aleatoric uncertainty analysis. Three examples of the predicted
probability distribution on the in-hospital mortality prediction task.

show the corresponding model discriminations, with ’True’ (likely to die) corresponding
to a prediction of mortality and ’False’ corresponding to the opposite (unlikely to die).
From the patient in Figure 3.6 (g), the agreement among ensemble members of MDN about
’True’ is high. In contrast, there is high disagreement for another patient in Figure 3.6 (h)
due to epistemic uncertainty.

Figure 3.7 shows the results obtained from the aleatoric uncertainty analysis of three
patient journeys (three random examples). Each subgraph contains two predicted class
probability distributions of a patient journey, where dodger blue and dark orange his-
tograms represent negative and positive classes, respectively, derived from MDN pre-
dictions. We augment MDN with 100 Gaussian noises to generate 100 class probability
distributions for each of the two patient journeys. From the data in Figure 3.7 (i) and Fig-
ure 3.7 (k), we can see that the histograms corresponding to the probability distributions
of the two predicted classes do not overlap. The results suggest that aleatoric uncertainty
had less impact on mortality predictions in these two cases. In addition, the negative class
(unlikely to die) in Figure 3.7 (i) reported significantly higher probability than the other
group. Similarly, the positive class (likely to die) in Figure 3.7 (k) reported significantly
higher probability than the other group. As can be seen from the data in Figure 3.7 (j), there
is a large overlap between the histograms corresponding to the probability distributions of
the two predicted classes. Thus, aleatoric uncertainty has a more significant impact on the
mortality predictions of this patient. Although the result of model discrimination may be
negative, this prediction should be taken with caution.
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Chapter 4

Attention-Based Bidirectional Recurrent
Neural Networks

The following publication has been incorporated into this chapter:
[73] Yuxi Liu, Zhenhao Zhang, and Shaowen Qin. Deep imputation-prediction networks
for health risk prediction using electronic health records. In 2023 International Joint Con-
ference on Neural Networks (IJCNN), pages 1–9. IEEE, 2023.

4.1 Introduction
Recent developments in deep learning techniques have stimulated interest in health risk
prediction using Electronic Health Records (EHRs). Health risk refers to the probability
of the occurrence of a patient’s health outcome. The predicted health risks can be used
to support decisions by healthcare professionals and improve healthcare delivery. Exam-
ples of successful applications include in-hospital mortality risk prediction [32], hospital
readmission risk prediction [275], and disease risk prediction [30]. These studies aim to
extract patient-specific contextual information from EHRs by combining deep neural net-
works and attention mechanisms to make risk predictions. Results obtained from these
prediction models have shown improved accuracy.

Further improvements in risk prediction models are necessary before they can be adopted
for real-world applications. This is challenging. One major issue is the high degree of ir-
regularity of EHR data. Figure 4.1 shows the clinical records of two anonymous patients
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from the publicly available MIMIC-III database [38]. The samples clearly indicated the
irregularity problems, i.e., many missing values and varying time intervals between data
points. Imputation of missing values, where the missing data are replaced with some
substitute value to create a complete data matrix, offers an effective way of dealing with
many missing values [118,209,276,277]. Recent studies of using imputation methods for
addressing missing values in EHR data include [56, 177, 278, 279].
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Figure 4.1: Illustration of clinical records of patients A and B.

However, with EHR datasets, missing values are likely attributed to patient symptoms
and reflect treatment decisions. Different physiological variables (e.g., glucose and respi-
ratory rate as shown in Figure 4.1) are examined at different times depending on a patient’s
health conditions. When a certain symptom disappears, corresponding variables are no
longer examined. This would lead to missing values. Therefore, the patterns of missing
data in patients’ records may contain important information, e.g., different categories of
missing data may reflect a typical clinical symptom, affecting both time independent and
dependent variable relationships. More accurate, meaningful, and reliable imputation of
missing values would allow us to uncover such important information that in turn can lead
to a model with better prediction performance.

Previous studies [39, 40, 42] have combined the imputation method and prediction
model in a single framework. InterpNet [42] represents such an example. InterpNet uses
an interpolation network (an unsupervised network) to generate imputed values for missing
values and a prediction network to generate prediction outcomes. Since it is difficult for an
unsupervised network to obtain reasonable network parameters, its outputs (predicted and
imputed values) are usually less than desirable. To deal with this problem, InterpNet also
includes using the loss between predicted and real-valued values to train the interpolation
network. However, InterpNet chooses to largely ignore the reliability of imputed values,
even the relatively larger difference between imputed and real-valued values. So far, we
have not found studies that offer adequate consideration of the reliability of imputed val-
ues. Such less reliable imputed values may lead to biased prediction outcomes, especially
when existing prediction models are directly applied to predict health risks.

In terms of irregularity in time intervals, most EHR-based prediction research stud-
ies have focused on utilizing time-decay mechanisms to handle varying time intervals in
longitudinal patient records. For example, GRU-D [39] takes into account the missing
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values and time intervals when predicting the health risk of patients based on their his-
torical EHR data. It mainly incorporates observed records and corresponding timestamps
into GRU (Gated Recurrent Unit) [147] to impute missing values by the decay of previ-
ous input values toward the overall mean/sampling over time. The time-decay mechanism
used in GRU-D continues to be used by a considerable amount of literature on imputation
research [40, 43, 44, 46, 48].

Despite GRU-D’s efficacy, it does not thoroughly consider the pattern of missing pa-
tient data that contains important information to be learned. As mentioned earlier, to cap-
ture changes in a patient’s underlying health condition, physiological variables being exam-
ined and the time intervals between examinations vary. Accordingly, the variation pattern
of physiological variables in diverse time intervals plays a vital role in understanding a pa-
tient’s underlying health condition and predicting the patient’s future condition. Besides, a
patient’s health status can become ’healthier’, ’deteriorating’, or recurrent. When predict-
ing health outcomes, we should automatically include learning of the impact of the previ-
ous 48 hours of patient data on the prognosis (e.g., in-hospital mortality prediction [53]). If
the predictive model found an association between the previous and current physiological
variables, the previous physiological variables become critical indicative variables regard-
less of how long ago these were collected, which should be given sufficient consideration
in the prediction model.

To address the aforementioned limitations, in this chapter, we propose a deep imputation-
prediction network to perform imputation and prediction with EHR data. Two novel reliability-
aware reconstruction (RARM) and time-decay attention (TDAM) modules are integrated
into a bidirectional GRU. The bidirectional GRU learns from the longitudinal patient data
in both forward and backward directions and generates the hidden state representations.
The RARM translates hidden state representations into predicted and imputed values, im-
plemented by constructing Gaussian mixture distributions and sampling these distribu-
tions.

The RARM comprises a deep neural network, a mixture of distributions, and an atten-
tion network. The deep neural network uses the hidden state representations to generate
multiple Gaussian distributions, including making weights for creating Gaussian mixture
distribution (i.e., a multimodal distribution). The multimodal distribution contributes to
modeling complex patterns found in the input. The outputs of the sampling of multimodal
distribution are predicted and imputed values. The attention network models the weights
as a function of the variance of the multimodal distribution, which assigns smaller weights
to imputed values with large variance and vice versa, thus enhancing the reliability of im-
puted values.

The TDAM comprises a time-decay mechanism and an attention network. The time-
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decay mechanism incorporates three common decay functions to capture the variation
pattern of input variables at the time dimension and adaptively enhances the temporal
representation of each pattern with adjustable weights. The attention network examines the
association between input variables. By learning the context of a given patient data, TDAM
is able to identify critical indicative variables regardless of how long ago the associated
event happened.

The main contributions of this paper are listed as follows: We propose a deep imputation-
prediction network to perform both imputation and prediction in EHR data. It effectively
handles the irregularity of EHR data, including many missing values and varying time
intervals, which leads to good prediction performance. To demonstrate the efficacy of
our proposed method, we conduct imputation and prediction experiments on two publicly
available databases: MIMIC-III [38] and eICU [280]. The results demonstrate the impu-
tation effectiveness and prediction superiority of our method. Further analysis of RARM
and TDAM shows that our method can provide transparency and interpretability of the
model decisions, which is another important advantage.

4.2 Method

In this section, we describe our proposed Deep Imputation-Prediction Network for health
risk predictions. We introduce the basic notations first. We then detail the network archi-
tecture. Finally, we present how to use the Deep Imputation-Prediction Network for health
risk predictions.

4.2.1 Basic Notations

In the dataset, each patient journey is a set of time-ordered clinical records, denoted by
x = {x1, x2, · · · , xT } ∈ RN×T , where T is the total number of records. Each record consists
of up to N time-variant features, i.e., vital signs, denoted by xt = {x1

t , x2
t , · · · , xN

t } ∈ RN ,
where xt is the patient’s record at time step t, and xi

t is the i-th time-variant feature of xt.
Let st and st+1 denote the temporal information of xt and xt+1. δi,t denotes the time interval
between xi and xt. δi,t = st − si, t = 1, 2, · · · , t − 1. Since each x is incomplete, we use
a mask matrix m ∈ RN×T to present whether the values of x exist or not, i.e., mi

t = 1, if xi
t

exists, otherwise mi
t = 0.
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4.2.2 Network Architecture
Our proposed network architecture comprises three key components: 1) a bidirectional
GRU, 2) a reliability-aware reconstruction module, and 3) a time-decay attention module,
as shown in Figure 4.2.
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Figure 4.2: Schematic representation of the architecture and workflow of
the proposed network.

Bidirectional GRU

We incorporate a bidirectional GRU into the proposed method to learn from each group
of data x in both forward and backward directions and generate the hidden state represen-
tations. We take the forward direction as an example:

x̂t−1 = R(ht−1),

x̄t = mt ⊙ xt + (1 − mt) ⊙ x̂t−1,

Ht−1 = T ({δi,t}
t−1
i=1, ht−1),

rt = σ(Wr · [Ht−1, x̄t] + br),

ut = σ(Wu · [Ht−1, x̄t] + bu).

(4.1)

The sigmoid activation function σ normalizes rt and ut in [0, 1]. R(·) is the designed
Reliability-Aware Reconstruction Module that translates the hidden state representation
ht−1 into the predicted x̂t−1. T (·) is the designed Time-Decay Attention Module that models
varying time intervals. The x̄t and the element-wise multiplication of Ht−1 with rt are used
to generate an intermediate h̃t. The element-wise convex combinations between h̃t and ut
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is used to obtain ht as:

h̃t = tanh(Wh · [rt ⊙ Ht−1, x̄t] + bh),

ht = ut ⊙ Ht−1 + (1 − ut) · h̃t.
(4.2)

The final outputs of the bidirectional GRU, including x̂, h, x̂′, and h′. x̂ and h are
obtained from the forward direction. x̂′ and h′ are obtained from the backward direction.

Reliability-Aware Reconstruction Module (RARM)

We design a reliability-aware reconstruction module to translate ht into x̂t. It comprises
a feed-forward network (FFN), a mixture of distributions (i.e., multiple Gaussian distri-
butions because both the predicted and imputed values are continuous), and an attention
network. We feed hidden state representations into the FFN to generate means and vari-
ances for multiple Gaussian distributions and, moreover, weights for making a Gaussian
mixture distribution as:

p(x̃t |ht) =
K∑

k=1

βk · Dk(x̃t |ht),

Dk(x̄t |ht) = N(µk,Σk),

(4.3)

where k is the index of the corresponding mixture distribution, and each output has up to K
mixture distributions. β is the mixing parameter. D is the corresponding distribution to be
mixed, including the mean vector µ and the covariance matrix Σ with σ2 on the diagonal
and 0 otherwise as:

et = W e · ht + be,

βt = So f tmax(Wα · et + bα),

µk,t = Wµ

k · et + bµk ,

σ2
k,t = ELU(Wσ

k · et + bσk ) + 1 + ϵ ,

(4.4)

where β is the mixture weight of each distribution. Particularly, we augment the ELU
activation [281] with an offset to keep the variance of Gaussian greater than 0, i.e., σ2 >

0, and moreover, with a constant term ϵ (e.g., 1e-12) to ensure stability. Subsequently, we
incorporate Gaussian noise ξ and variance Σk to µk. The predicted x̃t can be written as:

xs
k,t = µk,t +

√
Σk,t · ξ, ξ ∼ N(0, 1),

x̃t =

K∑
k=1

βk,t · xs
k,t.

(4.5)
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Since imputed values are inferred from real-valued values, they are less reliable. There-
fore, we design an attention network to regularize the weights assigned to imputed values
as:

γt = So f tmax(Wγ · (1 − (1 − mt) ⊙ σ2
t ) + bγ),

x̂t = γ ⊙ x̃t,
(4.6)

where σ2
t =
∑K

k=1 βk,t · σ
2
k,t is the mixed variance of Gaussian mixture distribution. m is a

mask matrix (see Section III-A). x̂t is obtained by combining γ with x̄t.

Time-Decay Attention Module (TDAM)

We design a time-decay attention module to model varying time intervals of each patient
journey x. It comprises a time-decay mechanism and an attention network. The time-
decay mechanism relies on three common decay functions to capture the variation pattern
of input variables in time dimensions and adaptively enhances the temporal representation
of each pattern with adjustable weights as:

g(δi,t) = tanh(λ1 ·
1

log(e + w1 · δi,t)

+λ2 · e−w2·δi,t + λ3 ·
1

w3 · δi,t
),

(4.7)

where w1, w2, and w3 are learnable parameters. 1
log(e+w1·δi,t) [282], e−w2·δi,t [39], and 1

w3·δi,t

[148] are three decay functions. λ1, λ2, and λ3 are learnable weights.

Meanwhile, the attention network examines the association between {xi}
t−1
i=1 and xt as:

FFN = sigmoid(W L
2 · tanh(W L

1 · (mt ⊙ xt) + bL
1) + bL

2),

L(t) = ⌈(t − 1) · FFN(mt ⊙ xt)⌉ ,

q = Wq · (mt · xt),

ki = Wk · (mt ⊙ xt), i = t − L(t), · · · , t − 1,

αt−L(t), · · · , αt−1 = So f tmax(q · kt−L(t), · · · , q · kt−1),

(4.8)

where FFN(·) is a 2-layer FFN with tanh and sigmoid activation functions. L(t) ∈ [1, t−1]
is a learnable parameter for the number of records to look backward. W L

1 , W L
2 , Wα, bL

1 , and
bL

2 are learnable parameters. m is a mask matrix (see Section III-A).

The outputs of the time-decay mechanism and attention network are integrated into an
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overall hidden state representation as:

Ht−1 =

t−1∑
i=t−L(t)

αi,t · g(δi,t) · hi. (4.9)

Health Risk Prediction

We use h and h′ to make health risk predictions. Specifically, the following steps were
taken: we design an attention network to generate h f (f denotes forward) and hb (b denotes
backward) from h and h′. We integrate h f and hb into v. We apply a Softmax output layer
to v to obtain the predicted probability ŷ:

ζ = So f tmax(Wζ · h + bζ ), ζ ′ = So f tmax(Wζ ′ · h′ + bζ ′),

h f =

T∑
t=1

ζt ⊙ ht, hb =

T∑
t=1

ζ ′t ⊙ h′t ,

v = Wv · [h f , hb] + bv,

ŷ = So f tmax(Wy · v + by).

(4.10)

We calculate the loss using the cross-entropy between the ground truth y and the predicted
probability ŷ. Thus, we use the average of cross entropy as the objective function of health
risk prediction:

L = −
1
P

P∑
p=1

(y⊤p · log(ŷp) + (1 − yp)⊤ · log(1 − ŷp)), (4.11)

where P is the number of patient journeys. yp is the ground truth class/label for the patient
p’s journey.

4.3 Experiments

4.3.1 Experimental Setup

Datasets

We experiment with multivariate clinical times series extracted from the MIMIC-III1 and
eICU2 databases. The multivariate clinical times series were extracted based on literature

1https://mimic.physionet.org
2https://eicu-crd.mit.edu/
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[53, 54]. Tables A.1 and A.2 provide the summary statistics for the multivariate clinical
times series.

Imputation and Prediction Tasks
We conduct imputation and prediction tasks with different lengths of observation window
(i.e., 24 hours and 48 hours) on both databases. We take an observation window of 48
hours as an example:

• Multivariate clinical time series imputation and In-hospital mortality predic-
tion (48 hours after ICU admission) to evaluate ICU imputation and mortality
accuracy based on the data from the first 48 hours after ICU admission.

• Multivariate clinical time series imputation and In-hospital mortality predic-
tion (48 hours after eICU admission) to evaluate eICU imputation and mortality
accuracy based on the data from the first 48 hours after eICU admission.

Baseline Approaches
We compare the proposed approach with BRITS [40], InterpNet [42], GRU-D [39], GRU-
Dt− (without time-decay mechanism), GRUI-GAN [43], E2GAN [44], Bi-GAN [45], and
STING [46]. Since GRU-D is generated for prediction tasks, it does not include making
components for obtaining imputation results. Because of this, we augment GRU-D with
the BRITS regression component to obtain imputation accuracy. We feed the outputs of
GRUI-GAN, E2GAN, Bi-GAN, and STING into GRU to generate the prediction outcomes.

Implementation Details
The two EHR datasets are randomly divided into three components, including training,
validation, and testing sets, for each task, in a 70:15:15 ratio. The validation set is used to
obtain the best values of parameters. For training the model, we use Adam optimizer [283]
with the learning rate of 1 × 10−3, and the mini-batch size of 256. For bidirectional GRU,
the dimension size of hidden state representation g is 12. For TDAM, the dimension size
of W L

1 and W L
2 are 17 and 1. For RARM, the number of mixture distributions K is 7. The

dimension size of W e, Wα, Wµ, and Wσ is 24. For health risk prediction, the dimension
size of Wζ and Wζ ′ is 1. The dimension size of Wv is 12. The dropout method is applied
to the final Softmax output layer. The dropout rate is 0.3. For highly imbalanced datasets,
we augment the CrossEntropyLoss function with class weight. We repeat each method ten
times to obtain the mean and standard deviation of the evaluation metrics. All experiments
are implemented with PyTorch 1.10.0 on A40 GPU from NVIDIA with 48GB of memory.
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Evaluation Metrics
We evaluate the imputation performance of our approach with the mean absolute error
(MAE) and the mean relative error (MRE) between predicted and real-valued values.
Given x̂i and xi as the i-th predicted and real-valued value, as well as the total number
of ground truth PGT , the MAE and MRE are written as:

MAE =
∑PGT

i=1 |x̂i − xi |

PGT
(4.12)

MRE =
∑PGT

i=1 |x̂i − xi |∑PGT
i=1 |xi |

(4.13)

We evaluate the prediction performance of our approach with the area under the receiver
operating characteristic curve (AUROC) and the area under the precision-recall curve
(AUPRC).

The AUROC is calculated as the area under the ROC curve. A ROC curve represents
the trade-off between true positive rate (TPR) and false positive rate (FPR) across different
decision thresholds. A ’decision threshold’ is the number a probability is being compared
with to decide if that probability should indicate the positive or negative class. The TPR
and FPR are written as:

TPR =
TP

TP + FN
(4.14)

FPR =
FP

FP + TN
(4.15)

The AUPRC is calculated as the area under the PR curve. A PR curve represents the trade-
off between precision and recall across different decision thresholds. The precision and
recall are written as:

Precision =
TP

TP + FP
, (4.16)

Recall =
TP

TP + FN
. (4.17)

4.3.2 Performance Analysis
Table 4.1 lists the results of multivariate clinical time series imputation and physiologic
decompensation prediction based on the physiological data from the first 24 hours after
ICU/eICU admission. Table 4.2 lists the results of multivariate clinical time series impu-
tation and in-hospital mortality prediction based on the physiological data from the first
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48 hours after ICU/eICU admission. The larger the scores of AUROC and AUPRC, the
better the predictive performance of the method. The lower the values of MAE and MRE,
the better the imputation performance of the method. Values in the parentheses denote
standard deviations. These results suggest that our method outperforms other baseline
methods on imputation and prediction tasks.

The two tables (4.1 and 4.2) are quite revealing in several ways. First, there is a signif-
icant difference in the performance of baseline methods on both the imputation and pre-
diction tasks. For the multivariate clinical time series imputation of MIMIC-III (24 hours
after ICU admission), GRU-D outperforms E2GAN. However, E2GAN outperforms GRU-
D in the physiologic decompensation prediction of MIMIC-III. Second, the two tables
(4.1 and 4.2) show that the GAN-based imputation method resulted in higher MAE and
MRE values than the RNN-based imputation method. Third, the imputation performance
of baseline methods (except for Bi-GAN) over 24 hours is better than that of 48 hours.
Fourth, no significant performance difference was found between GRU-D and GRU-Dt−

on both the imputation and prediction tasks.

Table 4.1: Performance of baselines and our method on multivariate clinical
time series imputation and physiologic decompensation prediction.

MIMIC-III/24 hours after ICU admission Multivariate clinical time series imputation Physiologic decompensation prediction

Metrics MAE MRE AUROC AUPRC

BRITS [40] 4.6305(0.3451) 53.55%(0.0485) 0.7387(0.0093) 0.2794(0.0154)
InterpNet [42] 2.4345(0.0038) 55.82%(0.0009) 0.6476(0.0091) 0.2025(0.0118)
GRU-D [39] 3.1752(0.0151) 36.74%(0.0017) 0.7277(0.0111) 0.2785(0.0133)

GRU-Dt− 3.1774(0.0167) 36.76%(0.0019) 0.7103(0.0094) 0.2597(0.0075)
GRUI-GAN [43] 6.2258(0.0026) 71.97%(0.0003) 0.7188(0.0098) 0.2655(0.0104)

E2GAN [44] 6.1391(0.0056) 70.95%(0.0007) 0.7283(0.0070) 0.2624(0.0093)
Bi-GAN [45] 5.9098(0.0454) 68.38%(0.0052) 0.7262(0.0078) 0.2630(0.0103)
STING [46] 4.6212(0.0162) 53.43%(0.0019) 0.7312(0.0083) 0.2579(0.0115)

Ours 1.2835(0.0013) 15.05%(0.0002) 0.7507(0.0089) 0.2827(0.0122)

eICU/24 hours after eICU admission Multivariate clinical time series imputation Physiologic decompensation prediction

Metrics MAE MRE AUROC AUPRC

BRITS [40] 2.7905(0.2666) 36.21%(0.0234) 0.7082(0.0085) 0.2617(0.0083)
InterpNet [42] 3.1968(0.0012) 41.51%(0.0001) 0.7323(0.0045) 0.3339(0.0100)
GRU-D [39] 1.6043(0.0054) 20.82%(0.0007) 0.7024(0.0081) 0.2776(0.0134)

GRU-Dt− 1.5939(0.0067) 20.68%(0.0009) 0.6981(0.0109) 0.2668(0.0137)
GRUI-GAN [43] 5.9463(0.0057) 77.13%(0.0007) 0.7145(0.0099) 0.2996(0.0083)

E2GAN [44] 5.7179(0.0050) 74.16%(0.0004) 0.7159(0.0101) 0.3057(0.0132)
Bi-GAN [45] 5.5418(0.0174) 71.21%(0.0024) 0.7269(0.0105) 0.2981(0.0158)
STING [46] 5.2312(0.0609) 69.85%(0.0079) 0.7268(0.0098) 0.2976(0.0108)

Ours 1.0254(0.0005) 13.36%(0.0001) 0.7445(0.0041) 0.3159(0.0072)

4.3.3 Ablation Analysis
We conduct an ablation study to examine the effectiveness of different modules of our
method in imputation and prediction tasks. Four variants of our method are presented as
follows:
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Table 4.2: Performance of baselines and our method on multivariate clinical
time series imputation and in-hospital mortality prediction.

MIMIC-III/48 hours after ICU admission Multivariate clinical time series imputation In-hospital mortality prediction

Metrics MAE MRE AUROC AUPRC

BRITS [40] 5.3631(0.3804) 52.65%(0.0374) 0.7447(0.0092) 0.2879(0.0168)
InterpNet [42] 3.0316(0.0058) 37.83%(0.0007) 0.6664(0.0057) 0.2136(0.0059)
GRU-D [39] 3.6873(0.0218) 36.20%(0.0021) 0.7294(0.0097) 0.2771(0.0156)

GRU-Dt− 3.7043(0.0041) 36.37%(0.0004) 0.7267(0.0094) 0.2702(0.0189)
GRUI-GAN [43] 7.1359(0.0055) 70.05%(0.0005) 0.7619(0.0077) 0.3349(0.0178)

E2GAN [44] 6.9705(0.0104) 68.43%(0.0010) 0.7652(0.0054) 0.3599(0.0133)
Bi-GAN [45] 5.6357(0.0244) 55.37%(0.0088) 0.7649(0.0089) 0.3343(0.0143)
STING [46] 5.1522(0.0202) 50.88%(0.0020) 0.7667(0.0106) 0.3402(0.0187)

Ours 1.4982(0.0021) 14.81%(0.0002) 0.7828(0.0117) 0.3501(0.0205)

eICU/48 hours after eICU admission Multivariate clinical time series imputation In-hospital mortality prediction

Metrics MAE MRE AUROC AUPRC

BRITS [40] 4.0963(0.3359) 31.26%(0.0257) 0.7254(0.0057) 0.2573(0.0062)
InterpNet [42] 3.6726(0.0008) 28.06%(0.0003) 0.7514(0.0029) 0.2938(0.0138)
GRU-D [39] 2.8066(0.0107) 21.43%(0.0008) 0.7195(0.0111) 0.2631(0.0145)

GRU-Dt− 2.7735(0.0104) 21.18%(0.0008) 0.7216(0.0144) 0.2614(0.0128)
GRUI-GAN [43] 9.9809(0.0056) 76.26%(0.0002) 0.7280(0.0105) 0.2871(0.0120)

E2GAN [44] 9.7912(0.0111) 74.70%(0.0006) 0.7294(0.0106) 0.2970(0.0133)
Bi-GAN [45] 8.1643(0.0149) 62.35%(0.0010) 0.7241(0.0089) 0.2929(0.0104)
STING [46] 8.0315(0.0466) 61.21%(0.0036) 0.7475(0.0186) 0.2838(0.0197)

Ours 1.7047(0.0012) 13.08%(0.0001) 0.7688(0.0093) 0.3025(0.0092)

Oursα: A variation of our method in which we omit the time-decay attention module.

Oursβ: A variation of our method in which we omit the attention network from the
reliability-aware reconstruction module.

Oursγ: A variation of our method in which we omit the attention network from the
time-decay attention module.

Oursδ: A variation of our method in which we replace the time-decay attention module
with the GRU-D time-decay mechanism.

The results of the ablation study can be compared in Table 4.3. Note that both Oursβ
and Ours use the same experimental settings in multivariate clinical time series imputation
tasks. We find that Ours outperforms Oursα. It suggests that capturing the variation pattern
of input variables at time dimensions and adaptively enhancing the temporal representation
of each pattern with adjustable weights is helpful for improving the imputation and pre-
diction performance. Ours outperforms Oursβ, which shows that enhancing the reliability
of imputed values is practical for improving prediction performance. Ours outperforms
Oursγ , which demonstrates that identifying critical indicative features and regenerating
the feature embeddings under the context of a given patient data is critical for improving
the imputation and prediction performance. The superior performance of Ours compared
to Oursδ demonstrates the effectiveness of our proposed TDAM, which can capture the di-
versity among the variation pattern of input variables at time dimensions and thus improve
the imputation and prediction performance.
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Table 4.3: Ablation performance comparison.

MIMIC-III/24 hours after ICU admission Multivariate clinical time series imputation Physiologic decompensation prediction

Metrics MAE MRE AUROC AUPRC

Oursα 1.2990(0.0208) 15.25%(0.0025) 0.7331(0.0137) 0.2669(0.0115)
Oursβ - - 0.7449(0.0083) 0.2631(0.0106)
Oursγ 1.3076(0.0146) 15.35%(0.0018) 0.7383(0.0069) 0.2665(0.0091)
Oursδ 1.2964(0.0007) 15.21%(0.0001) 0.7326(0.0049) 0.2673(0.0076)
Ours 1.2835(0.0013) 15.05%(0.0002) 0.7507(0.0089) 0.2827(0.0122)

eICU/24 hours after eICU admission Multivariate clinical time series imputation Physiologic decompensation prediction

Metrics MAE MRE AUROC AUPRC

Oursα 1.0266(0.0007) 13.38%(0.0001) 0.7211(0.0100) 0.3011(0.0120)
Oursβ - - 0.7359(0.0088) 0.2983(0.0081)
Oursγ 1.0264(0.0007) 13.37%(0.0001) 0.7363(0.0106) 0.2990(0.0108)
Oursδ 1.0266(0.0006) 13.38%(0.0001) 0.7328(0.0090) 0.3083(0.0119)
Ours 1.0254(0.0005) 13.36%(0.0001) 0.7445(0.0041) 0.3159(0.0072)

MIMIC-III/48 hours after ICU admission Multivariate clinical time series imputation In-hospital mortality prediction

Metrics MAE MRE AUROC AUPRC

Oursα 1.5215(0.0147) 15.05%(0.0015) 0.7681(0.0059) 0.3184(0.0095)
Oursβ - - 0.7621(0.0121) 0.2944(0.0168)
Oursγ 1.5246(0.0170) 15.08%(0.0017) 0.7789(0.0101) 0.3430(0.0139)
Oursδ 1.5290(0.0131) 15.12%(0.0028) 0.7658(0.0065) 0.3185(0.0102)
Ours 1.4982(0.0021) 14.81%(0.0002) 0.7828(0.0117) 0.3501(0.0205)

eICU/48 hours after eICU admission Multivariate clinical time series imputation In-hospital mortality prediction

Metrics MAE MRE AUROC AUPRC

Oursα 1.7141(0.0142) 13.17%(0.0008) 0.7615(0.0097) 0.2995(0.0127)
Oursβ - - 0.7579(0.0087) 0.2930(0.0086)
Oursγ 1.7132(0.0030) 13.14%(0.0002) 0.7542(0.0143) 0.2985(0.0160)
Oursδ 1.7066(0.0021) 13.14%(0.0002) 0.7450(0.0105) 0.2902(0.0111)
Ours 1.7047(0.0012) 13.08%(0.0001) 0.7688(0.0093) 0.3025(0.0092)
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4.3.4 Case Study: Visualization Analysis
We further examine the transparency and interpretability of our method with random ex-
amples selected from the MIMIC-III database (48 hours after ICU admission), which is
demonstrated in Figure 4.3 and Figure 4.4. The multiple Gaussian distributions of three
patient journeys obtained from the RARM analysis are presented in Figure 4.3. By query-
ing the MIMIC-III database, we found significant differences in primary disease between
patients A, B, and C. Patients B and C had diabetes mellitus, and patient A had no diabetes
mellitus. As shown in Figure 4.3, RARM determines that the glucose of patients B and C
are modeled as a Gaussian mixture distribution (i.e., multimodal). A possible explanation
for this might be that RARM found more complex patterns in the glucose of patients B
and C. Patient B also had acute respiratory failure. Comparing the three patient journey
results, it can be seen that patient B’s respiratory rate (RR) and oxygen saturation (OS)
are modeled as multimodal distributions. In reviewing the literature [284–286], we found
that there are relatively high associations between respiratory rate, oxygen saturation, and
acute respiratory failure. These results corroborate the ideas of [287], which suggested that
the conditional distribution should be multimodal for tasks such as structured prediction
problems, forming one-to-many mappings.

(a) (b) (c)

Glucose
HR
MBP
OS
RR

Figure 4.3: The multiple Gaussian distributions of Glucose, Heart Rate
(HR), Mean blood pressure (MBP), Oxygen saturation (OS), and Respira-
tory rate (RR) for three patient journeys (i.e., patients A, B, and C).

The results of all patient journeys obtained from the TDAM analysis are presented in
Figure 4.4. From the graph above we can see that the decay trends are similar between
features such as capillary refill rate, mean blood pressure, systolic blood pressure, and
weight. Data from Figure 4.4 can be compared with the data in Figure 4.2, which shows
that the decay trend of the above features is consistent with 1

δ
[148]. Similarly, the decay

trend of diastolic blood pressure, glasgow coma scale total, and oxygen saturation are
consistent with e−δ [39]. These results suggest that TDAM can effectively capture the
variation pattern of input features at time dimensions and adaptively enhance the temporal
representation of each pattern with adjustable weights (Section III-B3, λ1, λ2, and λ3).
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Figure 4.4: Plots of decay rate for features used from the MIMIC-III
database.
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Chapter 5

Contrastive Neural Networks

The following manuscript has been incorporated into this chapter:
[74] Yuxi Liu, Zhenhao Zhang, Shaowen Qin, Flora D Salim, Antonio Jimeno Yepes.
Contrastive Learning-based Imputation-Prediction Networks for In-hospital Mortality Risk
Modeling using EHRs. In Joint European Conference on Machine Learning and Knowl-
edge Discovery in Databases, pages 428–443. Springer, 2023.

5.1 Introduction
The broad adoption of digital healthcare systems produces a large amount of electronic
health records (EHRs) data, providing us the possibility to develop predictive models
and tools using machine learning techniques that would enable healthcare professionals
to make better decisions and improve healthcare outcomes. One of the EHR-based risk
prediction tasks is to predict the mortality risk of patients based on their historical EHR
data [53,54]. The predicted mortality risks can be used to provide early warnings when a
patient’s health condition is about to deteriorate so that more proactive interventions can
be taken.

However, due to a high degree of irregularity in the raw EHR data, it is challenging to
directly apply traditional machine learning techniques to perform predictive modeling. We
take the medical records of two anonymous patients from the publicly available MIMIC-
III database and present these in Figure 5.1 as an example. Figure 5.1 clearly indicates the
irregularity problem, including many missing values and varying time intervals between
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medical records.
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Figure 5.1: Illustration of medical records of patients A and B.

Most studies have focused on exploiting variable correlations in patient medical records
to impute missing values and establishing time-decay mechanisms to take into account the
effect of varying time intervals between records [39,40,43,44,46,47,60,65]. After obtain-
ing the complete data matrices from the imputation task, the complete data matrices are
used as input for downstream healthcare prediction tasks [39, 40, 43, 44, 49, 51, 56, 60, 65,
177,278]. Although these studies have achieved satisfactory imputation performance, con-
sideration of using the information of similar patients on the imputation task, which might
lead to improved imputation performance, has not yet been fully experimented. Further-
more, with imputation data, high-quality representation must be applied, as the imputation
data may affect the performance of downstream healthcare prediction tasks.

Patient stratification refers to the method of dividing a patient population into sub-
groups based on specific disease characteristics and symptom severity. Patients in the
same subgroup generally had more similar health trajectories. Therefore, we propose to
impute missing values in patient data using information from the subgroup of similar pa-
tients rather than the entire patient population.

In this chapter, we propose a novel contrastive learning-based imputation-prediction
network with the aim of improving in-hospital mortality prediction performance using
EHR data. Missing value imputation for EHR data is done by exploiting similar patient
information as well as patients’ personal contextual information. Similar patients are gen-
erated from patient similarity calculation during stratification modeling and analysis of
patient graphs.

Contrastive learning has been proven to be an important machine learning technique in
the computer vision community [288]. In contrastive learning, representations are learned
by comparing input samples. The comparisons are made on the similarity between positive
pairs or dissimilarity between negative pairs. The main goal is to learn an embedding
space where similar samples are put closer to each other while dissimilar samples are
pushed farther apart. Contrastive learning can be applied in both supervised [289–291]
and unsupervised [292–294] settings.

Motivated by the recent developments in contrastive representation learning [295–
297], we integrate contrastive learning into the proposed network architecture to perform
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imputation and prediction tasks. The benefit of incorporating contrastive learning into the
imputation task is that such an approach can enhance patient representation learning by
keeping patients of the same stratification together and pushing away patients from differ-
ent stratifications. This would lead to enhanced imputation performance. The benefit of
incorporating contrastive learning into the prediction task is improved predictive perfor-
mance of the binary classification problem (i.e., the risk of death and no death), which is
achieved by keeping the instances of a positive class closer and pushing away instances
from a negative class.

The main contributions of this paper are listed as follows:

• To the best of our knowledge, this is the first attempt to consider patient similarity
via stratification of EHR data on the imputation task.

• We propose a novel imputation-prediction approach to perform imputation and pre-
diction with EHR data.

• We successfully integrate contrastive learning into the proposed network architec-
ture to improve imputation and prediction performance.

• Extensive experiments conducted on two real-world EHR databases show that our
approach outperforms all baseline approaches in imputation and prediction tasks.

5.2 Method
In this section, we describe our proposed Contrastive Learning-based Imputation-Prediction
Network for imputation and prediction tasks. We introduce the basic notations first. We
then detail the network architecture. Finally, we present how to use the Contrastive Learning-
based Imputation-Prediction Network for imputation and prediction tasks.

5.2.1 Basic Notations
We represent a multivariate time series X with up to N variables of length T as a set of
observed triplets, i.e., X = {( fi, vi, ti)}Ni=1. An observed triplet is represented as a ( f , v, t),
where f ∈ F is the variable/feature, v ∈ RT is the observed value, and t ∈ RT is the time.
We incorporate a masking vector mi to represent missing values in vi as:

mi,t =

1, i f vi,t is observed

0, otherwise
(5.1)
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Let δ ∈ RN×T , δ(l) ∈ RN×T , and δ(n) ∈ RN×T denote three time interval matrices. δt is
the time interval between the current time t and the last time t − 1. δ(l)

i,t is the time interval
between the current time t and the time where the i-th variable is observed the last time.
δ(n)

i,t is the time interval between the current time t and the time where the i-th variable is
observed next time. δ(l)

i,t and δ(n)
i,t can be written as:

δ(l)
i,t =

δi,t, i f mi,t−1 = 1

δi,t + δ
(l)
i,t−1, otherwise

(5.2)

δ(n)
i,t =

δi,t+1, i f mi,t+1 = 1

δi,t+1 + δ
(n)
i,t+1, otherwise

(5.3)

Let v(l) and v(n) denote two neighboring value matrices, the observed values of the last
time and next time. v(l) and v(n) can be written as:

v(l)
i,t =

vi,t−1, i f mi,t−1 = 1

v(l)
i,t−1, otherwise

(5.4)

v(n)
i,t =

vi,t+1, i f mi,t+1 = 1

v(n)
i,t+1, otherwise

(5.5)

where v(l)
i,t and v(n)

i,t are the values of the i-th variable of v(l)
t and v(n)

t .
Let D = {(Xp, yp)}Pp=1 denote the EHR dataset with up to P labeled samples. The p-th

sample contains a multivariate time series Xp consisting of the physiological variables, and
a binary label of in-hospital mortality yp ∈ {0, 1}. Let Xbase ∈ Rg denote the patient-specific
characteristics (i.e., age, sex, ethnicity, admission diagnosis) with up to g dimension.

5.2.2 Network Architecture
The architecture of the proposed network is shown in Figure 5.2.

Personalised Patient Representation Learning

Given an input multivariate time series/a single patient data X = {( fi, vi, ti)}Ni=1, the em-
bedding for the i-th triplet ei ∈ Rd is generated by aggregating the feature embedding
e( f )

i ∈ R
d , the value embedding e(v)

i ∈ R
d×T , and the time interval embedding e(t)

i ∈ R
d×T .
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Figure 5.2: Schematic representation of the architecture and workflow of
the proposed network.
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5. Contrastive Neural Networks

The feature embedding is similar to the word embedding, which allows features with sim-
ilar meanings to have a similar representation. Particularly, the value embedding and time
interval embedding are obtained by separately implementing a multi-channel feed-forward
neural network (FFN) as:

e(v)
i,1 , · · · , e

(v)
i,T = FFN (v)

i (vi,1, · · · , vi,T ),

e(t)
i,1, · · · , e

(t)
i,T = FFN (t)

i (δi,1, · · · , δi,T ).
(5.6)

Through the processes above, we are able to obtain e( f ) ∈ RNd , e(v) ∈ RNd×T , and
e(t) ∈ RNd×T , which are fed into the attention-based cross module to generate an overall
representation. Note that e( f ) ∈ RNd is expanded into e( f ) ∈ RNd×T . Specifically, we design
the attention-based cross module to generate a cross-attention matrix as:

ẽ = Wv · e(v) +Wt · e(t) + be,

E = ScaledDot(e( f ), ẽ) =
e( f ) · ẽ⊤
√

d
,

(5.7)

where E ∈ RNd×Nd is the cross-attention matrix that corresponds to the scaled-dot similar-
ity. We then apply a 1D convolutional layer to the cross-attention matrix E as:

α = So f tmax(Conv(E)), (5.8)

where Conv is the 1D convolutional layer and α is the cross-attention score matrix. We
integrate α and ẽ into a weighted representation e as:

e = α ⊙ ẽ. (5.9)

Given a batch of patients, the embedding for them can be written as:

e = [e1, e2, · · · , eB] ∈ RB×Nd×T , (5.10)

where B is the batch size. Since e still takes the form of sequence data, we design an
attention layer to generate a series of attention weights (β1, β2, · · · , βT ) and reweight these
weights to produce an overall feature representation as:

β = So f tmax(e ·We + be),

ē =
T∑

t=1

βt ⊙ et,
(5.11)
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where ē ∈ RB×Nd is the new generated patient representation.

Similar Patients Discovery and Information Aggregation

Before conducting patient similarity calculation, we encode Xbase ∈ Rg as ebase ∈ Rdg and
concatenate ebase with ē as:

ebase = Wbase · Xbase + bbase,

e′ = Concate(ē, ebase),
(5.12)

where Concate is the concatenation operation.
For the batch of patient representations, the pairwise similarities that correspond to

any two patient representations can be calculated as:

Λ = sim(e′, e′) =
e′ · e′

(Nd + dg)2 , (5.13)

where sim(·) is the measure of cosine similarity and Λ ∈ RB×B is the patient similarity
matrix.

Moreover, we incorporate a learnable threshold φ into the patient similarity calculation
to filter out similarities below the threshold. The similarity matrix can be rewritten as:

Λ′ =

Λ, i f Λ > φ

0, otherwise
(5.14)

We take into account the batch of patients’ representations as a graph to aggregate the
information from similar patients, where the similarity matrix Λ′ is the graph adjacency
matrix. We apply graph convolutional layers to enhance the representation learning as:

ê = [ê1, ê2, · · · , êB]⊤ = GCN(e′,Λ′)

= ReLU(Λ′ReLU(Λ′ · e′W e
1) ·W e

2),
(5.15)

where ê is the aggregated auxiliary information from similar patients. A note of caution
is due here since we ignore the bias term. We replace e′ in Eq. (15) with e′′ for the
imputation task. By doing so, the output of graph convolutional layers can take the form of
sequence data. Particularly, e′′ is obtained by concatenating e and ebase, where ebase ∈ Rdg

is expanded into ebase ∈ Rdg×T .
Through the processes above, we are able to generate e′/e′′ and ê representations for the

batch of patients. The e′/e′′ refers to the patient themselves. For an incomplete patient p
(i.e., the patient data has many missing values), we generate the missing value representa-
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5. Contrastive Neural Networks

tions with ê. For a complete patient, we augment e′/e′′ with ê to enhance the representation
learning.

We design an attention-based fusion module to refine both e′/e′′ (the two representa-
tions used in prediction and imputation tasks) and ê. Since imputation and prediction tasks
involve the same process of modeling, we take the prediction task as an example. The two
weights γ ∈ RB and η ∈ RB are incorporated to determine the importance of e′ and ê,
obtained by implementing fully connected layers as:

γ = Sigmoid(e′ ·Wγ + bγ),

η = Sigmoid(ê ·Wη + bη).
(5.16)

A note of caution is due here since we keep the sum of γ and η must be 1, i.e., γ + η = 1.
We achieve this constraint by combining γ = γ

γ+η
and η = 1 − γ. The final representation

e∗ is obtained by calculating γ · e′ + η · ê.

Contrastive Learning

We integrate contrastive learning into the proposed network architecture to perform impu-
tation and prediction tasks. For the prediction task, we augment the standard cross-entropy
loss with the supervised contrastive loss [289]. We treat the patient representations with
the same label as the positive pairs and the patient representations with different labels as
the negative pairs. For the imputation task, we augment the standard mean squared error
loss with the unsupervised contrastive loss [298]. We treat a single patient representation
and its augmented representations as positive pairs and the other patient representations
within a batch and their augmented representations as negative pairs. The formula can be
written as:

LSC = −

B∑
i=1

1
Byi

log
∑B

j=1 1[yi=y j ]exp(sim(e∗i , e∗j)/τ)∑B
k=1 1[k ̸=i]exp(sim(e∗i , e∗k)/τ)

,

LUC = −log
exp(sim(e∗i , e∗j)/τ)∑2B

k=1 1[k ̸=i]exp(sim(e∗i , e∗k)/τ)
,

(5.17)

where B represents the batch size; 1[·] represents an indicator function; sim(·) represents
the cosine similarity measure; τ represents a hyper-parameter that is used to control the
strength of penalties on negative pairs; Byi is the number of samples with the same label
in each batch.
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Imputation and Prediction Tasks

For the prediction task, we feed e∗ into a softmax output layer to obtain the predicted ŷ as:

ŷ = So f tmax(Wy · e∗ + by). (5.18)

The objective loss is the summation of cross-entropy loss and the supervised con-
trastive loss with a scaling parameter λ to control the contribution of each loss as:

LCE = −
1
P

P∑
p=1

(y⊤p · log(ŷp) + (1 − yp)⊤ · log(1 − ŷp)),

L = λ · LCE + (1 − λ) · LSC .

(5.19)

For the imputation task, we take the neighboring observed values (of each patient) as
inputs to incorporate patient-specific contextual information. The process of embedding
used by v(l) and v(n) can be written as:

e(v),(l)
i = FFN (v),(l)

i (v(l)
i ), e(t),(l)

i = FFN (t),(l)
i (δ(l)

i ),

e(v),(n)
i = FFN (v),(n)

i (v(n)
i ), e(t),(n)

i = FFN (t),(n)
i (δ(n)

i ),

ẽ(l) = W (l)
v · e

(v),(l) +W (l)
t · e

(t),(l) + b(l)
e ,

ẽ(n) = W (v)
n · e

(v),(n) +W (n)
t · e

(t),(n) + b(n)
e ,

ec = Concate(ẽ(l), ẽ(n)),

(5.20)

where ẽ(l) and ẽ(n) are the representations of v(l) and v(n) after embedding. The embedding
matrix ec is obtained by concatenating ẽ(l) and ẽ(n).

Given the final representation e∗ and the embedding matrix ec, we use a fully connected
layer to impute missing values as:

v̂ = e∗ ·W v
1 + ec ·W v

2 + bv. (5.21)

The objective loss is the summation of the mean square error and the unsupervised
contrastive loss with a scaling parameter λ to control the contribution of each loss as:

LMSE =
1
P

P∑
p=1

(mp ⊙ vp − mp ⊙ v̂p)2,

L = λ · LMSE + (1 − λ) · LUC .

(5.22)
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5.3 Experiments

5.3.1 Experimental Setup

Datasets and Tasks

We validate our approach1 on the MIMIC-III2 Database and eICU3 Database. The 21,139
and 38,056 samples/patients were taken from the two databases. Detailed information on
the two databases can be found in the literature [38] and [280]. Table 5.1 presents the
summary statistics for the MIMIC-III and eICU features used.

For the MIMIC-III database, we evaluate multivariate clinical time series imputation
and in-hospital mortality accuracy based on the data from the first 24/48 hours after ICU
admission. Similarly, for the eICU database, we evaluate multivariate clinical time series
imputation and in-hospital mortality accuracy based on the data from the first 24/48 hours
after eICU admission.

Baseline Approaches

We compare our approach with GRU-D [39], BRITS [40], GRUI-GAN [43], E2GAN [44],
E2GAN-RF [50], STING [46], MTSIT [58], and MIAM [51] (see related work section).
We feed the output of GRUI-GAN, E2GAN, E2GAN-RF, STING, and MTSIT into GRU
to estimate in-hospital mortality risk probabilities. Moreover, the regression component
used in BRITS is integrated into GRU-D and MIAM to obtain imputation accuracy.

Implementation Details

We implement all approaches with PyTorch 1.11.0 and conduct experiments on A40 GPU
from NVIDIA with 48GB of memory. We randomly use 70%, 15%, and 15% of the
dataset as training, validation, and testing sets. We train the proposed approach using an
Adam optimizer [283] with a learning rate of 0.0023 and a mini-batch size of 256. For
Personalised patient representation learning, the dimension size d is 3. For similar patients
discovery and information aggregation, the initial value of φ is 0.56, and the dimension
size of W e

1 and W e
2 are 34 and 55. For contrastive learning, the value of τ is 0.07. The

dropout method is applied to the final Softmax output layer for the prediction task, and
the dropout rate is 0.1. For the imputation task, the dimension size of W (l)

v , W (l)
t , W (n)

v , and

1The implementation code is available at https://github.com/liulab1356/CL-ImpPreNet
2https://mimic.physionet.org
3https://eicu-crd.mit.edu/
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Table 5.1: MIMIC-III and eICU features used for multivariate clinical time se-
ries imputation and in-hospital mortality prediction 48 hours after ICU admission.

MIMIC-III Feature Data Type Missingness (%)

Capillary refill rate categorical 99.78
Diastolic blood pressure continuous 30.90
Fraction inspired oxygen continuous 94.33
Glasgow coma scale eye categorical 82.84
Glasgow coma scale motor categorical 81.74
Glasgow coma scale total categorical 89.16
Glasgow coma scale verbal categorical 81.72
Glucose continuous 83.04
Heart Rate continuous 27.43
Height continuous 99.77
Mean blood pressure continuous 31.38
Oxygen saturation continuous 26.86
Respiratory rate continuous 26.80
Systolic blood pressure continuous 30.87
Temperature continuous 78.06
Weight continuous 97.89
pH continuous 91.56
Age continuous 0.00
Admission diagnosis categorical 0.00
Ethnicity categorical 0.00
Gender categorical 0.00

eICU Feature Type Missingness (%)

Diastolic blood pressure continuous 33.80
Fraction inspired oxygen continuous 98.14
Glasgow coma scale eye categorical 83.42
Glasgow coma scale motor categorical 83.43
Glasgow coma scale total categorical 81.70
Glasgow coma scale verbal categorical 83.54
Glucose continuous 83.89
Heart Rate continuous 27.45
Height continuous 99.19
Mean arterial pressure continuous 96.53
Oxygen saturation continuous 38.12
Respiratory rate continuous 33.11
Systolic blood pressure continuous 33.80
Temperature continuous 76.35
Weight continuous 98.65
pH continuous 97.91
Age continuous 0.00
Admission diagnosis categorical 0.00
Ethnicity categorical 0.00
Gender categorical 0.00
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W (n)
t are 28. For a fair comparison, the hyper-parameter of the proposed model (i.e., τ)

was fine-tuned by a grid-searching strategy.
The performance of contrastive learning heavily relies on data augmentation. We aug-

ment the observed value v with random time shifts and reversion. For example, given the
observed value v = [v1, v2, · · · , vT ], we are able to obtain vshi f t = [v1+n, v2+n, · · · , vT+n] and
vreverse = [vT , vT−1, · · · , v1] from random time shift and reversion, and n is the number of
data points to shift.

Evaluation Metrics

We use the mean absolute error (MAE) and the mean relative error (MRE) between pre-
dicted and real-valued values as the evaluation metrics for imputation performance. We
use the area under the receiver operating characteristic curve (AUROC) and the area under
the precision-recall curve (AUPRC) as the evaluation metrics for prediction performance.
We report the mean and standard deviation of the evaluation metrics after repeating all the
approaches ten times.

5.3.2 Performance Analysis
Table 5.2 presents the experimental results of all approaches on imputation and prediction
tasks from MIMIC-III and eICU databases. The larger the scores of AUROC and AUPRC,
the better the predictive performance of the method. The lower the values of MAE and
MRE, the better the imputation performance of the method. Values in the parentheses
denote standard deviations. Together these results suggest that our approach achieves the
best performance in both imputation and prediction tasks. For example, for the multi-
variate clinical time series imputation of MIMIC-III (24 hours after ICU admission), the
MAE and MRE of Ours are 0.3563 and 8.16%, smaller than 0.3988 and 38.44% achieved
by the best baseline (i.e., MTSIT). For the in-hospital mortality prediction of MIMIC-III
(24 hours after ICU admission), the AUROC and AUPRC of Ours are 0.8533 and 0.4752,
larger than 0.8461 and 0.4513 achieved by the best baseline (i.e., GRU-D).

Similarly, for the multivariate clinical time series imputation of eICU (24 hours after
ICU admission), the MAE and MRE of Ours are 0.5365 and 7.02%, smaller than 1.1726
and 15.35% achieved by the best baseline (i.e., MIAM). For the in-hospital mortality pre-
diction of eICU (24 hours after ICU admission), the AUROC and AUPRC of Ours are
0.7626 and 0.3388, larger than 0.7455 and 0.3178 achieved by the best baseline (i.e., GRU-
D).

As Table 5.2 shows, the RNN-based approach (i.e., GRU-D and BRITS) outperforms
the GAN-based approach (i.e., GRUI-GAN, E2GAN, E2GAN-RF, and STING) in the im-
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putation task. From the prediction results of the MIMIC-III database, we can see that
the transformer-based approaches (i.e., MTSIT and MIAM) resulted in lower values of
AUROC and AUPRC. From the prediction results of the eICU database, no significant
difference between the transformer-based approach and other approaches was evident.

5.3.3 Ablation Analysis
We conduct an ablation study to examine the effectiveness of different components of our
method in imputation and prediction tasks. We present two variants of our approach as
follows:

• Oursα: A variation of our approach that does not perform graph analysis-based pa-
tient stratification modeling.

• Oursβ: A variation of our approach in which we omit the contrastive learning com-
ponent.

All implementations of Oursα and Oursβ can be found in the aforementioned Github
repository.

The results of the ablation study can be compared in Table 5.2. We find that Ours
outperforms its variants Oursα and Oursβ. Overall, these results confirm the effectiveness
of the network construction with enhanced imputation and prediction performance.
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Table 5.2: Performance of our approaches with other baselines on multivariate
clinical time series imputation and in-hospital mortality prediction.

MIMIC-III/24 hours after ICU admission Multivariate clinical time series imputation In-hospital mortality prediction

Metrics MAE MRE AUROC AUPRC

GRU-D [39] 1.3134(0.0509) 87.33%(0.0341) 0.8461(0.0051) 0.4513(0.0124)
BRITS [40] 1.3211(0.0923) 87.92%(0.0611) 0.8432(0.0040) 0.4193(0.0144)

GRUI-GAN [43] 1.6083(0.0043) 107.20%(0.0029) 0.8324(0.0077) 0.4209(0.0280)
E2GAN [44] 1.5885(0.0045) 105.86%(0.0032) 0.8377(0.0083) 0.4295(0.0137)

E2GAN-RF [50] 1.4362(0.0031) 101.09%(0.0027) 0.8430(0.0065) 0.4328(0.0101)
STING [46] 1.5018(0.0082) 102.53%(0.0047) 0.8344(0.0126) 0.4431(0.0158)
MTSIT [58] 0.3988(0.0671) 38.44%(0.0647) 0.8029(0.0117) 0.4150(0.0165)
MIAM [51] 1.1391(0.0001) 75.65%(0.0001) 0.8140(0.0044) 0.4162(0.0079)

Ours 0.3563(0.0375) 8.16%(0.0086) 0.8533(0.0119) 0.4752(0.0223)
Oursα 0.3833(0.0389) 8.78%(0.0089) 0.8398(0.0064) 0.4555(0.0139)
Oursβ 0.4125(0.0319) 8.95%(0.0077) 0.8417(0.0059) 0.4489(0.0182)

eICU/24 hours after eICU admission Multivariate clinical time series imputation In-hospital mortality prediction

Metrics MAE MRE AUROC AUPRC

GRU-D [39] 3.9791(0.2008) 52.11%(0.0262) 0.7455(0.0107) 0.3178(0.0190)
BRITS [40] 3.6879(0.3782) 48.30%(0.0726) 0.7139(0.0101) 0.2511(0.0111)

GRUI-GAN [43] 9.1031(0.0130) 119.29%(0.0016) 0.7298(0.0094) 0.3013(0.0141)
E2GAN [44] 7.5746(0.0141) 99.20%(0.0018) 0.7317(0.0155) 0.2973(0.0253)

E2GAN-RF [50] 6.7108(0.0127) 90.38%(0.0015) 0.7402(0.0131) 0.3045(0.0227)
STING [46] 7.1447(0.0651) 93.56%(0.0083) 0.7197(0.0154) 0.2873(0.0182)
MTSIT [58] 1.6192(0.1064) 21.20%(0.0139) 0.7215(0.0071) 0.2992(0.0115)
MIAM [51] 1.1726(0.3103) 15.35%(0.0406) 0.7262(0.0179) 0.2659(0.0148)

Ours 0.5365(0.0612) 7.02%(0.0079) 0.7626(0.0117) 0.3388(0.0211)
Oursα 0.6792(0.0716) 8.89%(0.0093) 0.7501(0.0143) 0.3325(0.0151)
Oursβ 0.5923(0.0514) 7.75%(0.0067) 0.7533(0.0104) 0.3303(0.0175)

MIMIC-III/48 hours after ICU admission Multivariate clinical time series imputation In-hospital mortality prediction

Metrics MAE MRE AUROC AUPRC

GRU-D [39] 1.4535(0.0806) 86.47%(0.0482) 0.8746(0.0026) 0.5143(0.0077)
BRITS [40] 1.3802(0.1295) 82.21%(0.0768) 0.8564(0.0040) 0.4445(0.0189)

GRUI-GAN [43] 1.7523(0.0030) 104.50%(0.0018) 0.8681(0.0077) 0.5123(0.0166)
E2GAN [44] 1.7436(0.0036) 103.98%(0.0022) 0.8705(0.0043) 0.5091(0.0120)

E2GAN-RF [50] 1.6122(0.0027) 102.34%(0.0017) 0.8736(0.0031) 0.5186(0.0095)
STING [46] 1.6831(0.0068) 100.46%(0.0035) 0.8668(0.0123) 0.5232(0.0236)
MTSIT [58] 0.4503(0.0465) 30.42%(0.0314) 0.8171(0.0114) 0.4308(0.0189)
MIAM [51] 1.3158(0.0003) 78.20%(0.0002) 0.8327(0.0024) 0.4460(0.0061)

Ours 0.4396(0.0588) 6.23%(0.0073) 0.8831(0.0149) 0.5328(0.0347)
Oursα 0.7096(0.0532) 8.85%(0.0066) 0.8671(0.0093) 0.5161(0.0151)
Oursβ 0.5786(0.0429) 7.47%(0.0056) 0.8709(0.0073) 0.5114(0.0176)

eICU/48 hours after eICU admission Multivariate clinical time series imputation In-hospital mortality prediction

Metrics MAE MRE AUROC AUPRC

GRU-D [39] 5.8071(0.2132) 44.53%(0.0164) 0.7767(0.0141) 0.3210(0.0182)
BRITS [40] 5.5546(0.5497) 42.59%(0.0421) 0.7285(0.0114) 0.2510(0.0097)

GRUI-GAN [43] 14.0750(0.0301) 107.96%(0.0021) 0.7531(0.0167) 0.2897(0.0201)
E2GAN [44] 12.9694(0.0195) 99.47%(0.0015) 0.7605(0.0063) 0.3014(0.0137)

E2GAN-RF [50] 11.8138(0.0161) 91.52%(0.0011) 0.7763(0.0057) 0.3101(0.0125)
STING [46] 12.0962(0.0806) 92.79%(0.0062) 0.7453(0.0182) 0.2805(0.0190)
MTSIT [58] 2.8150(0.2105) 21.58%(0.0161) 0.7418(0.0091) 0.3078(0.0120)
MIAM [51] 2.1146(0.4012) 16.23%(0.0414) 0.7574(0.0127) 0.2776(0.0105)

Ours 0.9412(0.0930) 7.21%(0.0071) 0.7907(0.0123) 0.3417(0.0217)
Oursα 1.1099(0.1064) 8.51%(0.0081) 0.7732(0.0100) 0.3311(0.0265)
Oursβ 0.9930(0.0817) 7.61%(0.0062) 0.7790(0.0117) 0.3335(0.0178)
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Chapter 6

Contrastive Graph Similarity Networks

The following manuscript has been incorporated into this chapter:
Yuxi Liu, Zhenhao Zhang, Shaowen Qin, Flora D Salim, Jiang Bian and Antonio Jimeno
Yepes. Fine-grained Patient Similarity Measuring using Contrastive Graph Similarity Net-
works. In 2024 IEEE 12th International Conference on Healthcare Informatics (ICHI),
Under Review

6.1 Introduction
With the adoption of digital health systems, large amounts of Electronic Health Records
(EHRs) are available, but the major problem is how to translate the existing information
into useful knowledge and decision-support tools to guide clinical practice. Data min-
ing is the process of analyzing large datasets to discover patterns and meaningful insights.
Specifically, it involves a process of analysis in which data scientists employ machine learn-
ing and statistical methods to build predictive models for decision support.

Various machine learning methods have been developed for clinical and research appli-
cations using EHR data, such as clinical risk prediction [291,299–302], phenotype analy-
sis [148, 303–306], disease prediction and progression [307–311].

However, EHR data are often incomplete. For example, vital sign measurements are
gathered from multiple sources at various time points during an ICU stay [53, 54]. A
patient’s vital signs are measured as indicators of their health status. When a patient’s
condition deteriorates, or new symptoms appear, the corresponding vital signs are more
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frequently measured and recorded [312]. Accordingly, this results in the creation of mul-
tiple incomplete patient data, where missing values need to be filled with plausible values
through imputation. As typical machine learning methods are not developed for EHR data
with such irregularity, they are not directly applicable to EHR data analysis. A general
practice is to impute missing values in EHR data to address this issue. Existing studies
construct deep imputation methods by combining recurrent neural networks or generative
adversarial networks with attention mechanisms and model the variable associations in
EHR data to impute missing values [40, 46, 47, 57, 313].

Although existing studies have demonstrated promising performance, the similarity
between samples/patients has not been fully taken into consideration in the imputation task.
Patient similarity analysis aims to classify patients into medically relevant groups likely
to have similar health outcomes or temporal experiences [314]. In real clinical reasoning
scenarios, it is a general practice to utilize data from similar patients to generate hypotheses
and make decisions (i.e., precision medicine [314–316]). Accordingly, we argue that the
missing values in each patient’s data could be handled by aggregating the information
from similar patients. Since no set criteria are available, a new challenge we face is how
to calculate the similarity between patients in a large EHR dataset.

In this paper, we propose a novel Contrastive Graph Similarity Network to simultane-
ously perform imputation and prediction with EHR data. The core idea of our method is
borrowed from Graph Contrastive Learning (GCL). The GCL is a self-supervised graph
learning technique that exploits the structure of graphs with data augmentation techniques
for contrastive learning to create different views [317–319]. To this end, we construct
multiple patient-patient similarity graphs using vital signs and demographics as well as
diagnosis and procedure codes as relational information and then aggregate the informa-
tion from similar patients to generate rich patient representations (Figure 6.1a). To further
put similar patients closer and push dissimilar patients apart, we construct positive and
negative sample pairs in contrastive learning using the generated patient representations.
We arbitrarily select a node as an anchor (Figure 6.1b). Positive samples for an anchor are
defined as (i) the same nodes as the anchor in different views, (ii) the nodes connected to
the anchor within the same view, and (iii) the nodes connected to the anchor from different
views. The remaining samples are negative. For the imputation task, we construct sample
pairs by pairing a positive (or negative) sample with the anchor. For the prediction task, we
repeat the above sample pairing process with the constraint that the pairs must be formed
between samples with the same binary label. This process is repeated for all nodes. We de-
sign a composite loss for imputation and prediction, where two hyper-parameters are used
to control the ratio between imputation loss and prediction loss to minimize the overall
loss.
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The main contributions of this paper are listed as follows:

• We propose a novel Contrastive Graph Similarity Network to simultaneously per-
form imputation and prediction with EHR data.

• To the best of our knowledge, this is the first attempt that uses a tailored Contrastive
Graph Similarity Network for similarity calculation among patients in ICUs.

• We evaluate our method against competing baselines on real-world EHR databases,
and the results demonstrate the effectiveness and superiority of our method in ICU
mortality risk prediction and clinical time series imputation.

6.2 Method
In this section, we describe our proposed Contrastive Graph Similarity Network for im-
putation and prediction tasks. We first introduce the basic notations. We then detail the
network architecture. Finally, we present how to use the Contrastive Graph Similarity
Network for imputation and prediction tasks.

6.2.1 Basic Notations
Let D = {(Xi,Yi)}|P|i=1 represent the EHR dataset with up to |P| samples/patients. X contains
multivariate time series data X (t) and static data X (s). Particularly, X (t) contains a series of
vital sign measurements (e.g., oxygen saturation, fraction inspired oxygen, and tempera-
ture), and X (s) contains demographics (i.e., age, sex, and ethnicity) as well as diagnosis
and procedure codes (i.e., unique medical codes). Y represents target labels for the bench-
marks/tasks. We represent the elements in X (t) using (x(t)

1 , · · · , x
(t)
T ) ∈ Rd×T , where T is the

number of time steps and d is the number of vital signs. We represent missing values in
X (t) using a mask matrix M ∈ Rd×T .

6.2.2 Network Architecture
Figure 6.1 displays the overview of the proposed Contrastive Graph Similarity Network.

Learning patient representation with learnable graph augmen-
tation
LetG = {P,E} represent a patient-patient similarity graph. P is a set of nodes, where each
node represents a patient. E is a set of edges that connects patients. The adjacency matrix
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Figure 6.1: Schematic representation of the architecture and workflow of
the proposed network.

A represents the causal connections between patients. For example, Ai, j is 1 if patients i
and j are connected, and 0 otherwise.

Now, we feed X into a multi-channel attention module to generate up to N adjacency
matrices. The multi-channel attention module has up to N channels, where each channel
has an attention layer. Specifically, the following steps were taken: (i) we apply adaptive
average pooling to X (i.e., at the horizontal dimension) to generate a new feature repre-
sentation X̄. (ii) we apply a linear transformation to X̄ to generate query and key vectors.
(iii) we take the dot product between query and key vectors and then apply the Softmax
function to obtain a set of attention weight matrices. We formulate the above process as:

Qi = WQ
i · X̄,Ki = WK

i · X̄,

Ai = So f tmax(Qi · K⊤i ), i ∈ {1, 2, · · · ,N},
(6.1)

where all W are learnable weight matrices. Q and K are query and key vectors. {Ai}
N
i=1

is a set of attention weight matrices, where each attention weight matrix corresponds to a
patient-patient similarity graph. We introduce a learnable threshold φ to those matrices to
generate binary matrices as adjacency matrices to consider the information from similar
patients.

Next, we feed X into the Transformer encoder [195] to generate a rich feature repre-
sentation. To be specific, we apply a linear transformation to X to generate Q′, K ′, and V ′

and then take the dot product between Q′ and K ′ and apply the Softmax function to obtain
attention scores on V ′. We formulate the above process as:

Q′ = WQ′ · X,K ′ = WK ′ · X,V ′ = WV ′ · X,

α j = So f tmax(Q′j · K ′⊤j ),

head j = α j · V ′j , j ∈ {1, 2, · · · , L},

Z = (head1|| · · · ||headL) ·WO,

(6.2)

where all W are learnable weight matrices. || is the concatenation operator. L is the number
of heads. Subsequently, we feed Z into a normalised layer with the residual connection
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[198], followed by a feed-forward network (FFN). In the same vein, we feed the output
of FFN into a normalization layer with the residual connection again to generate a rich
feature representation Z̃ as:

Z ′ = norm(X + Z),

ZFFN = ReLU(Z ′ ·W1) ·W2,

Z̃ = norm(Z ′ + ZFFN ),

(6.3)

where all W are learnable parameters, norm(·) is the batch normalization, and ReLU(·) is
the rectified linear activation function.

Last, we combine Z̃ with {Ai}
N
i=1 to aggregate the information from similar patients as:

Ẑ (i) = Ai · Z̃ , i ∈ {1, 2, · · · ,N}. (6.4)

Subsequently, we apply adaptive average pooling to Ẑ to generate the patient representation
Z̄ .

Contrastive Learning

To further put similar patients closer and push dissimilar patients apart, we construct pos-
itive and negative sample pairs in contrastive learning using the generated patient repre-
sentations {Z̄ (i)}Ni=1. We arbitrarily select a node as an anchor (as shown in Figure 6.1b)
and treat each graph as a view. Positive samples for an anchor are defined as (i) the same
nodes as the anchor in different views, (ii) the nodes connected to the anchor within the
same view, and (iii) the nodes connected to the anchor from different views. The remain-
ing samples are negative. For the imputation task, we construct sample pairs by pairing a
positive (or negative) sample with the anchor. For the prediction task, we repeat the above
sample pairing process with the constraint that the pairs must be formed between samples
with the same binary label. This process is repeated for all nodes.

Contrastive Imputation Loss We select Z̄ (1)
p as an anchor. The contrastive loss be-
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tween Z̄ (1) and Z̄ (2) can be calculated as:

L
(Imp)
CL (Z̄ (1)

p ) =

−
1

2|N(p)| + 1
log

exp(sim(Z̄ (1)
p , Z̄ (2)

p )/τ)
exp(sim(Z̄ (1)

j , Z̄
(2)
p )/τ)

+
∑

k∈N(p)(exp(sim(Z̄ (1)
p , Z̄ (1)

k )/τ)
+
∑

k ̸=p(exp(sim(Z̄ (1)
p , Z̄ (1)

k )/τ)
+exp(sim(Z̄ (1)

p , Z̄ (2)
p /τ)))

+exp(sim(Z̄ (1)
p , Z̄ (2)

p /τ)))
,

(6.5)

where N(p) is a set of neighbors in Z̄ (1)
p . sim(·) is the dot product operation. τ is a tem-

perature parameter that controls the strength of penalties on negative pairs. Since the two
views are symmetric, we select Z̄ (2)

p as an anchor again. The contrastive loss LImp
CL (Z̄ (2)

p )
can be calculated in the way as Eq. (5). Accordingly, the contrastive loss between Z̄ (1) and
Z̄ (2) can be calculated as:

L
(Imp)
CL (Z̄ (1), Z̄ (2)) =

1
2|P|

|P|∑
p=1

(L(Imp)
CL (Z̄ (1)

p ) +L(Imp)
CL (Z̄ (2)

p )).
(6.6)

Through the processes above, we have been able to calculate the contrastive loss be-
tween Z̄ (1) and Z̄ (2). Since {Z̄ (i)}Ni=1 is set of patient representations, we arbitrarily select one
and then calculate the contrastive loss between it and the others. Accordingly, we utilize
the total contrastive loss as the contrastive imputation loss:

L
(Imp)
CL =

1
N

N∑
n=1,n̸=l

L
(Imp)
CL (Z̄ (l), Z̄ (n)). (6.7)

Contrastive Prediction Loss We select Z̄ (1)
p as an anchor. The contrastive loss between

Z̄ (1) and Z̄ (2) can be calculated as:

L
(Pre)
CL (Z̄ (1)

p ) =

−
1

2NYp + 1
log

exp(sim(Z̄ (1)
p , Z̄ (2)

p )/τ)
exp(sim(Z̄ (1)

p , Z̄ (2)
p )/τ)

,

+
∑|P|

k=1 1[Yp=Yk](exp(sim(Z̄ (1)
p , Z̄ (1)

k )/τ)
+
∑|P|

k=1 1[k ̸=p](exp(sim(Z̄ (1)
p , Z̄ (1)

k )/τ)
,

+exp(sim(Z̄ (1)
p , Z̄ (2)

k /τ)))
+exp(sim(Z̄ (1)

p , Z̄ (2)
k /τ)))

,

(6.8)
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where Yp is the label of node p (i.e., patient p). NYp is the number of nodes with the same
label as node p. sim(·) is the cosine similarity. 1[·] is an indicator function. Similar to the
imputation task, we utilize the total contrastive loss as the contrastive prediction loss:

L
(Pre)
CL (Z̄ (1), Z̄ (2)) =

1
2|P|

|P|∑
p=1

(L(Pre)
CL (Z̄ (1)

p ) +L(Pre)
CL (Z̄ (2)

p )),

L
(Pre)
CL =

1
N

N∑
n=1,n̸=l

L
(Pre)
CL (Z̄ (l), Z̄ (n)).

(6.9)

Composite Loss

Since the imputation task can be viewed as a regression task, we employ the mean absolute
error (MAE) as the objective function between the original X and predicted X̂ of each
patient as:

X̂ = Wr · Z̃ + br ,

L
(Imp)
MAE =

1
|P|

|P|∑
p=1

|Xp ⊙ Mp − X̂p ⊙ Mp|,
(6.10)

where Wr is a learnable parameter and br is a bias. Accordingly, the imputation lossL(Imp)

is the summation of the MAE and the contrastive imputation loss as:

L(Imp) = λMAE · L
(Imp)
MAE + (1 − λMAE) · L(Imp)

CL , (6.11)

where λMAE is a scaling parameter used to make the trade-off between the MAE and the
contrastive imputation loss.

In order to perform prediction tasks, we employ the cross entropy (CE) as the objective
function between the target label Y and predicted label Ŷ of each patient as:

Ŷ = So f tmax(Z∗ ·Wc + bc),

L
(Pre)
CE = −

1
|P|

|P|∑
p=1

(Y⊤p · log(Ŷp)

+(1 − Yp)⊤ · log(1 − Ŷp)),

(6.12)

where Z∗ is the pooled representation obtained by applying adaptive average pooling to Z̃
before feeding into the Softmax output layer. Wc is a learnable parameter and bc is a bias.
Accordingly, the prediction loss L(Pre) is the summation of the CE and the contrastive
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prediction loss as:

L(Pre) = λCE · L
(Pre)
CE + (1 − λCE) · L(Pre)

CL , (6.13)

where λCE is a scaling parameter used to make the trade-off between the CE and the con-
trastive prediction loss.

We design a composite loss for imputation and prediction, where two scaling parame-
ters are used to make the trade-off between imputation loss and prediction loss as:

L = λ(Pre) · L(Pre) + λ(Imp) · L(Imp). (6.14)

where λ(Pre) and λ(Imp) are scaling parameters.

6.3 Experiments

6.3.1 Experimental Setup

Datasets and Baselines

We conduct extensive experiments on the MIMIC-III1 and eICU2 databases with ICU mor-
tality risk prediction and clinical time series imputation. The details of the two databases
are described in the literature [38, 280]. We extract vital sign measurements (e.g., oxy-
gen saturation, fraction inspired oxygen, and temperature), demographics (i.e., age, sex,
and ethnicity), as well as diagnosis and procedure codes (i.e., unique medical codes) from
the two databases. We provide mortality risk assessments for ICU patients using the data
from the first 24 and 48 hours after admission [53, 54]. For the MIMIC-III database, the
sample size is 17,886, where the Positive (likely to die)/Negative (unlikely to die) ratio
is 1:6.59. For the eICU database, the sample size is 36,670, where the Positive/Negative
ratio is 1:7.49.

We evaluate the performance of our method against deep imputation methods [39,40,
46,47,57,58,313]. For the imputation task, we replace the fully connected layer in GRU-D
with a regression layer. For the prediction task, we replace the linear decoder in MTSIT
with a Softmax output layer; we feed the output of Conditional GAN, STING, MBGAN,
and SA-EDGAN into GRU to estimate ICU mortality risk probabilities.

The source code of our method and data extraction are released at the Github repository3.
1https://mimic.physionet.org
2https://eicu-crd.mit.edu/
3https://github.com/LZlab01/CGSNet
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Table 6.1 presents the summary statistics for the vital signs and demographics used.

Implementations & Evaluations

The two EHR datasets are extracted from the MIMIC-III and eICU databases. Each EHR
dataset is randomly split into the training, validation, and testing set in a 0.7:0.15:0.15
ratio. The Adam optimizer [283] (with an initial learning rate of 0.001 and a batch size
of 256) is applied to train the proposed method. For the MIMIC-III dataset, the number
of channels in the multi-channel attention module is 2, and the dimension size of WQ

i and
WK

i are 17; the number of heads in the Transformer encoder is 4, the number of layers is
1, and the dimension size of WQ, WK and WV is 24; the temperature parameter τ is 0.6; the
scaling parameters λMAE and λCE are 0.8; the scaling parameters λ(Imp) and λ(Pre) are 0.5
and 0.7, respectively. For the ICU dataset, the number of channels in the multi-channel
attention module is 4, and the dimension size of WQ

i and WK
i are 16; the number of heads

in the Transformer encoder is 2, the number of layers is 1, and the dimension size of WQ,
WK and WV is 26; the temperature parameter τ is 0.5; the scaling parameters λMAE and
λCE are 0.95; the scaling parameters λ(Imp) and λ(Pre) are 0.9 and 0.7, respectively. For the
ICU patient deterioration prediction, the dropout method is also employed for the Softmax
output layer, and the dropout rates of MIMIC-III and eICU are 0.1 and 0.2, respectively.
For a fair comparison, the hyper-parameter of the proposed model (i.e., τ) was fine-tuned
by a grid-searching strategy. All experiments run with PyTorch 1.11.0 on an NVIDIA RTX
A5000 GPU. We adopt the mean absolute error (MAE), the mean relative error (MRE),
the receiver operating characteristic curve (AUROC), and the area under the precision-
recall curve (AUPRC) to evaluate imputation and prediction performance. We repeat each
experiment ten times and report the average performance.

6.3.2 Performance Analysis
We report the result of ICU mortality risk prediction and clinical time series imputation
in Tables 6.2 and 6.3. From the table below, we can see that our method reports more
AUROC and AUPRC scores and lower MAE and MRE scores than the baselines. For
instance, from the data in Table 6.2, our method reaches the highest AUROC and AUPRC
scores with 0.8967 and 0.5863 and the lowest MAE and MRE scores with 1.9012 and
0.2248. Similarly, from the data in Table 6.3, our method reaches the highest AUROC and
AUPRC scores with 0.8889 and 0.5637 and the lowest MAE and MRE scores with 1.1728
and 0.2548.

Besides, there was no significant prediction performance difference between RNN-
based methods (i.e., GRU-D, Brits) and GAN-based methods (i.e., Conditional GAN,
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Table 6.1: MIMIC-III and eICU vital signs and demographics used for clinical
time series imputation and ICU mortality risk prediction 48 hours after admission.

MIMIC-III Feature Data Type Missingness (%)

Capillary refill rate categorical 99.78
Diastolic blood pressure continuous 30.90
Fraction inspired oxygen continuous 94.33
Glasgow coma scale eye categorical 82.84
Glasgow coma scale motor categorical 81.74
Glasgow coma scale total categorical 89.16
Glasgow coma scale verbal categorical 81.72
Glucose continuous 83.04
Heart Rate continuous 27.43
Height continuous 99.77
Mean blood pressure continuous 31.38
Oxygen saturation continuous 26.86
Respiratory rate continuous 26.80
Systolic blood pressure continuous 30.87
Temperature continuous 78.06
Weight continuous 97.89
pH continuous 91.56
Age continuous 0.00
Ethnicity categorical 0.00
Gender categorical 0.00

eICU Feature Type Missingness (%)

Diastolic blood pressure continuous 33.80
Fraction inspired oxygen continuous 98.14
Glasgow coma scale eye categorical 83.42
Glasgow coma scale motor categorical 83.43
Glasgow coma scale total categorical 81.70
Glasgow coma scale verbal categorical 83.54
Glucose continuous 83.89
Heart Rate continuous 27.45
Height continuous 99.19
Mean arterial pressure continuous 96.53
Oxygen saturation continuous 38.12
Respiratory rate continuous 33.11
Systolic blood pressure continuous 33.80
Temperature continuous 76.35
Weight continuous 98.65
pH continuous 97.91
Age continuous 0.00
Ethnicity categorical 0.00
Gender categorical 0.00
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STING, MBGAN, SA-EDGAN). What is interesting about the data is in the two tables
that STING achieves poor imputation performance compared to other baseline methods.
For example, for clinical time series imputation (i.e., 48 hours after eICU admission),
STING achieves the highest MAE and MRE scores with 7.2456 and 0.6355, which is an
increase over the best baseline Brits by 4.6432 and 0.4369.

The most striking result from the data comparison is that MTSIT resulted in the lowest
MAE and MRE scores among the baselines (except for 48 hours after eICU admission).
For example, for clinical time series imputation (i.e., 24 hours after eICU admission),
MTSIT achieves the lowest MAE and MRE scores with 1.7775 and 0.2307. These results
suggest that MTSIT is the most competitive baseline method.

6.3.3 Visualization Analysis
Now, we make a comparison between the proposed method and its variants that change
parts of the contrastive learning module. Doing such a comparison can allow us to under-
stand how the contrastive learning module makes decisions. The results obtained from the
visualization analysis of the contrastive learning module can be compared in Figure 6.2.
The experimental data were gathered 48 hours after admission (MIMIC-III). As shown
in Figure 6.2, positive represents the patient who died and negative represents the patient
who did not die. From Figure 6.2a to Figure 6.2d, we omit the contrastive learning com-
ponent; λ(Imp) is greater than λ(Pre); λ(Pre) is greater than λ(Imp); λ(Imp) is equal to λ(Pre). The
two scaling parameters λ(Imp) and λ(Pre) are used to make the trade-off between imputa-
tion loss and prediction loss. Looking at Figure 6.2a, the instances from the positive and
negative classes are scattered. Compared with the instances in Figure 6.2a, the instances
in Figure 6.2b are clustered together, and each cluster has instances from both positive
and negative classes. From the data in Figure 6.2c, we can see that the instances from
the positive and negative classes are clustered together towards two distinguishable clus-
ters. From the data in Figure 6.2d, we can see that the instances from the positive and
negative classes in each cluster towards two distinguishable sub-clusters. These results
are in agreement with our expectations. It is also important to bear in mind the possible
bias in these responses, as those overlapping samples with different labels are illustrated
in Figure 6.2c. This result seems to be consistent with other research, which found that
samples with different labels in graphs can also be connected (also known as heterophily
in graphs [320–322]). Further work is needed to fully consider homophily and heterophily
in graphs on the development of the patient-patient similarity graph.
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Table 6.2: Performance Comparison (48 hours after admission).

MIMIC-III ICU Mortality Risk Prediction Clinical Time Series Imputation

Metrics AUROC AUPRC MAE MRE

GRU-D [39] 0.8820(0.0097) 0.5568(0.0189) 2.6698(0.3745) 0.3158(0.0443)
Brits [40] 0.8805(0.0017) 0.5524(0.0133) 2.3192(0.2674) 0.2743(0.0316)

Conditional GAN [57] 0.8762(0.0074) 0.5458(0.0214) 3.2563(0.1382) 0.3852(0.0281)
STING [46] 0.8824(0.0043) 0.5349(0.0285) 6.3998(0.1918) 0.7570(0.0227)

MBGAN [47] 0.8705(0.0045) 0.5611(0.0199) 2.7752(0.0764) 0.3346(0.0104)
SA-EDGAN [313] 0.8785(0.0063) 0.5585(0.0178) 2.4288(0.0489) 0.2873(0.0057)

MTSIT [58] 0.8735(0.0032) 0.5352(0.0171) 2.0814(0.1265) 0.2461(0.0149)
Our 0.8967(0.0038) 0.5863(0.0098) 1.9012(0.1517) 0.2248(0.0179)

eICU ICU Mortality Risk Prediction Clinical Time Series Imputation

Metrics AUROC AUPRC MAE MRE

GRU-D [39] 0.8276(0.0054) 0.4275(0.0144) 2.6695(0.2664) 0.2038(0.0132)
Brits [40] 0.8163(0.0122) 0.4248(0.0127) 2.6024(0.1399) 0.1986(0.0107)

Conditional GAN [57] 0.8219(0.0093) 0.4033(0.0217) 3.8645(0.2085) 0.2949(0.0179)
STING [46] 0.8270(0.0070) 0.4084(0.0185) 7.2456(0.3626) 0.6355(0.0213)

MBGAN [47] 0.8235(0.0095) 0.4025(0.0169) 3.1270(0.1762) 0.2386(0.0158)
SA-EDGAN [313] 0.8267(0.0072) 0.4190(0.0165) 2.9355(0.2238) 0.2241(0.0171

MTSIT [58] 0.8044(0.0025) 0.3921(0.0446) 2.6124(0.1918) 0.1994(0.0145)
Our 0.8420(0.0036) 0.4457(0.0231) 2.4924(0.1880) 0.1902(0.0143)

Table 6.3: Performance Comparison (24 hours after admission).

MIMIC-III ICU Mortality Risk Prediction Clinical Time Series Imputation

Metrics AUROC AUPRC MAE MRE

GRU-D [39] 0.8821(0.0087) 0.5526(0.0282) 1.6365(0.2514) 0.3612(0.0546)
Brits [40] 0.8816(0.0015) 0.5543(0.0097) 1.7512(0.5390) 0.3805(0.1171)

Conditional GAN [57] 0.8757(0.0061) 0.5374(0.0198) 2.1139(0.1017) 0.4594(0.0216)
STING [46] 0.8784(0.0069) 0.5177(0.0220) 3.9430(0.3774) 0.8568(0.0820)

MBGAN [47] 0.8778(0.0073) 0.5539(0.0287) 1.8159(0.1025) 0.3947(0.0192)
SA-EDGAN [313] 0.8819(0.0098) 0.5448(0.0514) 1.7396(0.1081) 0.3781(0.0234)

MTSIT [58] 0.8775(0.0035) 0.5425(0.0143) 1.6224(0.3226) 0.3526(0.0701)
Our 0.8889(0.0036) 0.5637(0.0073) 1.1728(0.1210) 0.2548(0.0262)

eICU ICU Mortality Risk Prediction Clinical Time Series Imputation

Metrics AUROC AUPRC MAE MRE

GRU-D [39] 0.8166(0.0198) 0.4618(0.0266) 2.2304(0.3413) 0.2894(0.0449)
Brits [40] 0.8194(0.0077) 0.4601(0.0179) 2.0333(0.5573) 0.2638(0.0723)

Conditional GAN [57] 0.8168(0.0083) 0.4371(0.0175) 2.8693(0.1328) 0.3724(0.0143)
STING [46] 0.8226(0.0061) 0.4355(0.0121) 5.9237(0.5266) 0.7680(0.0685)

MBGAN [47] 0.8193(0.0053) 0.4554(0.0198) 2.2592(0.0981) 0.2933(0.0107)
SA-EDGAN [313] 0.8214(0.0049) 0.4466(0.0256) 2.0350(0.1014) 0.2642(0.0132)

MTSIT [58] 0.8138(0.0031) 0.4322(0.0529) 1.7775(0.0435) 0.2307(0.0055)
Our 0.8385(0.0035) 0.4746(0.0137) 1.6671(0.0814) 0.2162(0.0105)
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Figure 6.2: The t-SNE plot of the feature representation Z̃ . (a) w/o con-
trastive learning module; (b) λ(Imp) is greater than λ(Pre); (c) λ(Pre) is greater
than λ(Imp); (d) λ(Imp) is equal to λ(Pre).
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Chapter 7

Multi-Graph Neural Networks

The following publication has been incorporated into this chapter:
Yuxi Liu, Zhenhao Zhang, Shaowen Qin, Flora D Salim. A Multi-Graph Fusion Frame-
work for Patient Representation Learning. In 2024 IEEE 12th International Conference
on Healthcare Informatics (ICHI), Under Review

7.1 Introduction
Electronic health records (EHRs) represent a digital version of a patient’s medical history
generated from clinical routine care. A popular focus in deep learning using EHR data is
patient representation learning, which mainly learns a dense mathematical representation
of individual patients using deep neural networks [1, 5, 323–331]. Based on the outcome
of patient representation learning, patient similarity can be computed and, further, infor-
mation from similar patients can be aggregated for clinical risk prediction (e.g., disease
risk prediction and mortality risk prediction) [324–326].

Previous studies have focused on patient representation learning from a single graph
view. However, in real clinical reasoning scenarios, it is a common practice to use informa-
tion from different patient-level features [332] (e.g., demographics, vital signs, diagnoses,
procedures, and lab tests) to represent a patient health context, which naturally results in
a rich representation with multiple graphs generated from the patient-level features.

Motivated by the recent developments in graph representation learning [333–338], a
strategy to build a patient-patient similarity graph is adopted to exploit multivariate clini-
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cal time series, demographics, and diagnoses as relational information form multi-graphs.
To this end, we propose a novel Multi-Graph Fusion Framework for patient representa-
tion learning (Figure 7.1), which learns multiple graph structures from input patient-level
features and, in turn, generates an optimal graph structure that incorporates the character-
istics of these graphs with attention mechanisms. Based on the foundation established by
multi-graph representation learning, we aggregate the information from similar patients to
offer a rich representation of the patient, which allows extraction of patient health context
for missing data imputation and clinical risk prediction.

The main contributions of this paper are listed as follows:

• We propose a novel Multi-Graph Fusion Framework for patient representation learn-
ing. To the best of our knowledge, this is the first attempt to consider multivariate
clinical time series, demographics, and diagnoses as patient health context in multi-
graph representation learning.

• We conduct extensive experiments on two real-world EHR databases with multivari-
ate clinical time series imputation and in-hospital mortality risk prediction tasks, and
the results demonstrate the effectiveness and superiority of our method in compari-
son to all baselines.

7.2 Method
In this section, we describe our proposed Multi-Graph Fusion Framework for patient rep-
resentation learning. We first introduce the basic notations. We then detail the network
architecture. Finally, we present how to use the Multi-Graph Fusion Framework for impu-
tation and prediction tasks.
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Figure 7.1: Schematic representation of the architecture and workflow of
the proposed network.
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7.2.1 Basic Notations
EHRs contain longitudinal data that are generated from clinical routine care. Each patient
has a multivariate clinical time series with up to K physiological variables of length T ,
i.e., X = {x1, x2, · · · , xT } ∈ RK×T , where xt = {x1

t , x2
t , · · · , xK

t } ∈ RK is the t-th record and
xk

t is the value of the k-th variable of xt.
We represent the presence of the data using a masking matrix M = {m1,m2, · · · ,mT } ∈

RK×T as:

mk
t =

1, i f xk
t is presence

0, i f xk
t is absence

. (7.1)

Let τ ∈ R represent the time stamp when the t-th record is obtained. We repre-
sent the time interval between two consecutive records using a time interval vector ∆ =
{δ1, δ2, · · · , δT } ∈ RT . The elements of ∆ are represented as:

δt =

τt+1 − τt, i f t < T

0, i f t = T
. (7.2)

EHR data also contains demographics and diagnoses. Let Xc ∈ RC represent the de-
mographics (i.e., age, sex, ethnicity) with up to C dimensions. Let Xd ∈ {0, 1}D represent
the previous ICD-9 diagnosis codes with up to D dimensions.

7.2.2 Network Architecture
The architecture of the proposed network is shown in Figure 7.1.

Multi-Graph Representation Learning

Graph representation learning has attracted considerable attention, both scholarly and pop-
ular. Graph representation learning aims to generate graph representation vectors that ef-
fectively capture the structure and features of high-dimensional sparse graph data. The
Graph Convolutional Network (GCN) is currently the most popular method for learning
representations of graph-structured data [339–342]. The GCN is a neural network archi-
tecture that exploits the graph structure and aggregates node information from the neigh-
borhoods in a convolutional fashion [298]. Recently, GCN-based models have made great
progress in various real-world applications such as text classification [343], social recom-
mendation [344], chemical-gene interaction [345], drug response prediction [236], and
medical diagnosis and analysis [238].
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More recent attention has focused on the provision of multi-graph representation learn-
ing. Multi-graph representation learning aims to generate a consistent representation by
exploiting the complementary information of multiple graphs [346]. Representative multi-
graph representation learning applications include entity linkage identification [347], drug
discovery [348], semi-supervised classification problem [346], urban region profiling [349],
and gene-disease association prediction [350].

Motivated by these successful applications, we propose a strategy to build a patient-
patient similarity graph (see Figure 7.1a), which exploits multivariate clinical time series
(i.e., X), demographics (i.e., Xc), and ICD-9 diagnosis codes (i.e., Xd) as relational infor-
mation. The intuitions behind our strategy can be explained as seeing the need to specify
x, xc, xd in the form of a multi-graph.

We define the target graph G = (V,E), whereV and E are the set of nodes and edges.
The mathematical representation of the graph G is the adjacency matrix A ∈ RP×P (to be
detailed later), where P is the number of nodes that correspond to the number of patients.
Ai j is equal to 1 if and only if nodes i and j are connected.

We feed X, Xc, and Xd into a multi-head attention layer [195] to generate three adja-
cency matrices. Towards this, we take X as an example for a detailed description. First, we
feed X into Gated Recurrent Units [147] to generate a series of hidden representations, i.e.,
x̃1, x̃2, · · · , x̃T = GRU(x1, x2, · · · , xT ). Then, we take x̃T (i.e., the hidden representation at
time T ) as input for the multi-head attention layer (Note that we remove the subscript T
in the following steps). The multi-head attention layer has up to N heads. We take headi

as an example. For headi, x̃ is linearly transformed to generate the query, key, and value
vectors as:

Qi = x̃ ·WQ
i ,

Ki = x̃ ·WK
i ,

(7.3)

where Qi ∈ Rdk and Ki ∈ Rdk are query and key vectors. WQ
i and WK

i are learnable
projection matrices. The headi can be rewritten as:

headi = So f tmax(
Qi · K⊤i
√

dk
). (7.4)

We concatenate all heads and use a linear transformation to project it back to the original
space as:

A(X) = (head1||head|| · · · ||headN ) ·WO, (7.5)

where WO is a learnable projection matrix. || is the concatenation operator. A(X) is an
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7. Multi-Graph Neural Networks

attention-weight matrix with patient relations. In the same vein, Xc and Xd are used as
inputs for the multi-head attention layer in order to generate A(Xc) and A(Xd ).

Next we design an attention layer to adaptively fuse A(X), A(Xc), and A(Xd ) into an overall
representation A as:

Ã = A(X)||A(Xc)||A(Xd ),

QA = Ã ·WQ
A ,

KA,1 = A(X) ·WK
A,1,

KA,2 = A(Xc) ·WK
A,2,

KA,3 = A(Xd ) ·WK
A,3,

α1, α2, α3 = So f tmax(
QA · KA,1
√

dK
,
QA · KA,2
√

dK
,
QA · KA,3
√

dK
),

A = α1 ⊙ A(X) + α2 ⊙ A(Xc) + α2 ⊙ A(Xd ),

(7.6)

where all W are learnable projection matrices. ⊙ and || are the Hadamard product and the
concatenation operator, respectively.

Similar Patients Information Aggregation & Patient Health Con-
text Extraction

We combine Message Passing Neural Networks and Gated Recurrent Units to aggregate
the information from similar patients and extract patient health context from rich patient
representations (see Figure 7.1b). Given x(l−1)

i,t ∈ RK that represents the features of node i
(i.e., the i-th patient) in layer (l-1), Message Passing Neural Networks can be written as:

x(l)
i,t = ΘG(x(l−1)

i,t ) = γ(l)(x(l−1)
i,t ,

⊕
j∈N(i)

φ(l)(x(l−1)
i,t , x(l−1)

j,t )), (7.7)

whereN(i) is the set of neighbors of the i-th node inG. γ(l) and φ(l) are update and message
functions.

⊕
is an aggregation function.

Based on the foundation established by Message Passing Neural Networks, we imple-
ment Gated Recurrent Units as:

ri,t = σ(ΘG([x′i,t ||mi,t ||ĥi,t−1],Wr)),

ui,t = σ(ΘG([x′i,t ||mi,t ||ĥi,t−1],Wu)),

h̃i,t = tanh(ΘG([x′i,t ||mi,t ||ri,t ⊙ ĥi,t−1],Wh)),

hi,t = ui,t ⊙ hi,t−1 + (1 − ui,t) ⊙ h̃i,t,

(7.8)

where ri,t and ui,t are reset and update gates. x′i,t is a refined vector of the i-th node at time
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t, i.e., a combination of actual value (i.e., xt) and predicted value (i.e., x̂t) as:

x̂t = Wx · ht−1 + bx,

x′t = mt ⊙ xt + (1 − mt) ⊙ x̂t.
(7.9)

Moreover, ĥi,t is the refined hidden representation of the i-th node at time t, obtained by
decaying the hidden state ht−1 [39] as:

ηt = exp{−max(0,Wη · δt + bη)},

ĥt−1 = ηt ⊙ ht−1,
(7.10)

where Wη and bη are learnable parameters. η is a time decay factor.

Missing Data Imputation and Clinical Risk Prediction

For the imputation task, we feed the hidden state representation h into a fully connected
layer to generate the predicted X̂ as:

X̂ = Wy · h + by. (7.11)

Subsequently, the objective loss is the mean absolute error as:

LMAE =
1
P

P∑
i=1

|Mi ⊙ Xi − Mi ⊙ X̂i |. (7.12)

For the prediction task, we feed the last hidden state representation hT into a Softmax
output layer to generate the predicted ŷ as:

ŷ = So f tmax(Wy · hT + by). (7.13)

Subsequently, the objective loss is the cross-entropy loss as:

LCE = −
1
P

P∑
i=1

(y⊤i · log(ŷi) + (1 − yi)⊤ · log(1 − ŷi)). (7.14)

93



7. Multi-Graph Neural Networks

7.3 Experiments

7.3.1 Experimental Setup

Datasets, Tasks, and Evaluation Metrics

Our experiments are carried out on the MIMIC-III1 Database [38] and eICU2 Database
[280]. We extract 21,105 and 27,390 patients/samples from the MIMIC-III and eICU
databases, where the Positive (likely to die)/Negative (unlikely to die) ratio is 1:6.56 and
1:6.15, respectively. We extract multivariate clinical time series (i.e., a series of physio-
logical variables), demographics (i.e., age, sex, ethnicity), and ICD-9 diagnosis codes (i.e.,
unique ICD codes) from the two databases. Tables A.1 and A.2 show multivariate clinical
time series data on the two databases. The multivariate clinical time series imputation is a
regression task with the mean absolute error (MAE) and the mean relative error (MRE) be-
tween the original and predicted target multivariate clinical time series being the primary
evaluation metrics. In-hospital mortality prediction is defined as predicting the mortal-
ity risk of patients based on the data from the first 48 hours after ICU/eICU admission.
Physiologic decline/decompensation prediction is defined as predicting the mortality risk
of patients based on the data from the first 24 hours after ICU/eICU admission. These are
binary classification tasks, with the area under the receiver operating characteristic curve
(AUROC) and the area under the precision-recall curve (AUPRC) being the primary eval-
uation metrics. Taken together, we carry out in-hospital mortality prediction using the
data from the first 24 hours and 48 hours after ICU/eICU admission.

Baselines

We compare our approach with Recurrent Neural Networks GRU-D [39] and BRITS [40],
Generative Adversarial Networks GRUI-GAN [43] and E2GAN [44], Attention-based Neu-
ral Networks MIAM [51] and MTSIT [58], Graph Neural Networks GCT [351], AGRN
[246], and GRIN [244]. For the imputation task, we replace the fully connected layer in
GRU-D with a regression layer [40]. Similarly, we replace the Softmax output layer in
GCT with a regression layer [40]. For the prediction task, we replace the linear decoder in
MTSIT with a Softmax output layer; for AGRN and GRIN, we take the last hidden state in
their GRUs as input for a Softmax output layer. We also provide a variant of our approach
(i.e., Ourα), which specifies input patient-level features in the form of a single graph.

1https://mimic.physionet.org
2https://eicu-crd.mit.edu/
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Implementations

All approaches are implemented with PyTorch 1.10.0 on an Nvidia A40 GPU. The twp
EHR datasets are randomly divided into three parts, using 70% for training, 15% for vali-
dation, and 15% for testing. The Adam optimizer [283] (i.e., with a learning rate of 0.0016
and a batch size of 256) is employed to train the proposed approach. For multivariate clin-
ical time series, the dimension size of WQ and WK is 19. For demographics, the dimension
size of WQ and WK is 2. For ICD-9 diagnosis codes, the dimension size of WQ and WK

is 17. The dimension size of WQ
A , WK

A,1, WK
A,2, WK

A,3 is 139. The dropout method is applied
to the Softmax output layer (i.e., with a dropout rate of 0.3) for the prediction task. All
approaches are repeated ten times, and the average values with standard deviation for each
evaluation metric are reported. The source code of our method and data extraction are
released at the Github repository3.

7.3.2 Performance Analysis
Tables 7.1 and 7.2 compare the performance of our approach and baselines on the MIMIC-
III and eICU databases. The larger the scores of AUROC and AUPRC, the better the
predictive performance of the method. The lower the values of MAE and MRE, the better
the imputation performance of the method. Values in the parentheses denote standard
deviations. Together, these results indicate that our approach consistently achieves the best
performance in terms of MAE, MRE, AUROC, and AUPRC scores. For example, as can
be seen from Table 7.1 (below), our method achieves the highest AUROC and AUPRC with
0.8379 and 0.4623 and the lowest MAE and MRE with 0.7962 and 0.1825. Similarly, from
Table 7.2, our method achieves the highest AUROC and AUPRC with 0.8622 and 0.5103
and the lowest MAE and MRE with 1.3039 and 0.1627. The superior performance of our
approach than the variant of our approach Ourα confirms the effectiveness of constructing
multi-graph representation learning in improving the performance.

For multivariate clinical time series imputation (i.e., 24 hours after ICU/eICU admis-
sion), the best baseline is given by the MIAM. For in-hospital mortality prediction (i.e., 24
hours after ICU/eICU admission), the best baseline is given by the GRIN. For multivari-
ate clinical time series imputation (i.e., 48 hours after ICU admission), the best baseline
is given by the GRIN. For multivariate clinical time series imputation (i.e., 48 hours after
eICU admission), the best baseline is given by the GCT. For in-hospital mortality predic-
tion (i.e., 48 hours after ICU admission), the best baseline is given by the GRU-D. For
in-hospital mortality prediction (i.e., 48 hours after eICU admission), the best baseline
is given by the GRIN. These results suggest that GRIN is the most competitive baseline

3https://github.com/Le1328/Model
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method.
Furthermore, the prediction performance of all approaches improved significantly as

the prediction window from the first 24 hours to the first 48 hours after ICU/eICU admis-
sion. For example, GRU-D achieves an AUROC of 0.8521 and an AUPRC of 0.4720 based
on the data from the first 48 hours after ICU admission, which is a significant improve-
ment over an AUROC of 0.8259 and an AUPRC of 0.4329 based on the data from the first
24 hours after ICU admission. Similarly, GRU-D achieves an AUROC of 0.8027 and an
AUPRC of 0.3949 based on the data from the first 48 hours after eICU admission, which
is a significant improvement over an AUROC of 0.7682 and an AUPRC of 0.3409 based
on the data from the first 24 hours after eICU admission.

Table 7.1: Imputation and prediction results on the two databases (24 hours after
ICU/eICU admission).

MIMIC-III/24 hours after ICU admission Multivariate Clinical Time Series Imputation In-hospital Mortality Prediction

Metrics MAE MRE AUROC AUPRC

GRU-D [39] 1.8554(0.1774) 0.4254(0.0406) 0.8259(0.0113) 0.4329(0.0242)
BRITS [40] 1.7887(0.2928) 0.4101(0.0671) 0.8066(0.0010) 0.4298(0.0044)

GRUI-GAN [43] 1.1536(0.0024) 1.1425(0.0022) 0.7848(0.0699) 0.3666(0.0855)
E2GAN [44] 1.1386(0.0046) 1.1277(0.0042) 0.8061(0.0269) 0.3763(0.0210)
MIAM [51] 0.8109(0.0063) 0.1859(0.0014) 0.8121(0.0041) 0.4068(0.0065)
MTSIT [58] 0.8917(0.0672) 0.2044(0.0154) 0.7899(0.0274) 0.3684(0.0341)
GCT [351] 1.1355(0.3137) 0.2603(0.0719) 0.8232(0.0077) 0.4305(0.0175)

AGRN [246] 0.8339(0.0331) 0.1912(0.0076) 0.6822(0.0017) 0.2257(0.0032)
GRIN [244] 0.8216(0.0259) 0.1883(0.0059) 0.8306(0.0053) 0.4224(0.0179)

Ourα 1.0045(0.2895) 0.2303(0.0663) 0.8008(0.0338) 0.3512(0.0591)
Our 0.7962(0.1171) 0.1825(0.0255) 0.8379(0.0104) 0.4623(0.0403)

eICU/24 hours after eICU admission Multivariate Clinical Time Series Imputation In-hospital Mortality Prediction

Metrics MAE MRE AUROC AUPRC

GRU-D [39] 1.2804(0.1452) 0.1666(0.0189) 0.7682(0.0184) 0.3409(0.0222)
BRITS [40] 1.6927(0.3193) 0.2205(0.0414) 0.7624(0.0036) 0.3279(0.0070)

GRUI-GAN [43] 4.0085(0.0194) 1.2726(0.0031) 0.7511(0.0393) 0.3385(0.0352)
E2GAN [44] 3.8742(0.0163) 1.2311(0.0047) 0.7567(0.0235) 0.3286(0.0297)
MIAM [51] 1.0534(0.0961) 0.1377(0.0125) 0.7389(0.0096) 0.3155(0.0106)
MTSIT [58] 1.5627(0.1366) 0.2032(0.0179) 0.7540(0.0043) 0.3473(0.0159)
GCT [351] 1.0902(0.1293) 0.1425(0.0168) 0.7419(0.0114) 0.3208(0.0123)

AGRN [246] 1.2368(0.0553) 0.1610(0.0073) 0.6885(0.0025) 0.2587(0.0029)
GRIN [244] 1.1298(0.0725) 0.1466(0.0094) 0.7687(0.0064) 0.3390(0.0224)

Ourα 1.7136(0.8482) 0.2234(0.1107) 0.7635(0.0077) 0.3552(0.0199)
Our 1.0498(0.0137) 0.1374(0.0053) 0.7845(0.0094) 0.3761(0.0237)
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Table 7.2: Imputation and prediction results on the two databases (48 hours after
ICU/eICU admission).

MIMIC-III/48 hours after ICU admission Multivariate Clinical Time Series Imputation In-hospital Mortality Prediction

Metrics MAE MRE AUROC AUPRC

GRU-D [39] 2.1163(0.1304) 0.2640(0.0162) 0.8521(0.0087) 0.4720(0.0224)
BRITS [40] 1.9234(0.4344) 0.2400(0.0542) 0.8105(0.0016) 0.4333(0.0043)

GRUI-GAN [43] 1.5349(0.0011) 1.0741(0.0008) 0.8324(0.0513) 0.4041(0.0766)
E2GAN [44] 1.5139(0.0085) 1.0593(0.0058) 0.8035(0.0421) 0.4413(0.0511)
MIAM [51] 1.3226(0.0041) 0.1650(0.0005) 0.8381(0.0075) 0.4350(0.0164)
MTSIT [58] 1.9679(0.2400) 0.2455(0.0299) 0.8207(0.0117) 0.4220(0.0238)
GCT [351] 1.3868(0.2330) 0.1730(0.0290) 0.8410(0.0162) 0.4659(0.0230)

AGRN [246] 1.3420(0.0228) 0.1674(0.0025) 0.7270(0.0041) 0.2659(0.0071)
GRIN [244] 1.3101(0.0627) 0.1634(0.0078) 0.8462(0.0109) 0.4773(0.0247)

Ourα 1.4367(0.1719) 0.1792(0.0214) 0.8208(0.0080) 0.4073(0.0477)
Our 1.3039(0.0872) 0.1627(0.0108) 0.8622(0.0125) 0.5103(0.0326)

eICU/48 hours after eICU admission Multivariate Clinical Time Series Imputation In-hospital Mortality Prediction

Metrics MAE MRE AUROC AUPRC

GRU-D [39] 1.8661(0.0510) 0.1419(0.0038) 0.8027(0.0144) 0.3949(0.0245)
BRITS [40] 2.5136(0.4963) 0.1911(0.0377) 0.7968(0.0029) 0.3650(0.0094)

GRUI-GAN [43] 6.0778(0.0095) 1.1291(0.0006) 0.7750(0.0343) 0.3667(0.0352)
E2GAN [44] 5.9437(0.0166) 1.1023(0.0041) 0.7829(0.0323) 0.3686(0.0382)
MIAM [51] 1.4796(0.1245) 0.1126(0.0095) 0.7404(0.0375) 0.3082(0.0325)
MTSIT [58] 2.5308(0.1942) 0.1923(0.0148) 0.7768(0.0038) 0.3983(0.0154)
GCT [351] 1.4624(0.0377) 0.1108(0.0026) 0.7686(0.0162) 0.3565(0.0137)

AGRN [246] 1.9260(0.0357) 0.1466(0.0026) 0.7267(0.0022) 0.3151(0.0046)
GRIN [244] 1.5053(0.1072) 0.1146(0.0081) 0.8180(0.0063) 0.4094(0.0188)

Ourα 1.9849(0.0371) 0.1511(0.0029) 0.7930(0.0117) 0.3869(0.0257)
Our 1.4287(0.0958) 0.1092(0.0075) 0.8265(0.0138) 0.4355(0.0226)
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Chapter 8

Multi-Task Deep Neural Networks

The following manuscript has been incorporated into this chapter:
Yuxi Liu, Zhenhao Zhang, Shaowen Qin, Jiang Bian. Multi-Task Deep Neural Networks
for Irregularly Sampled Multivariate Clinical Time Series. In 2024 IEEE 12th Interna-
tional Conference on Healthcare Informatics (ICHI), Under Review (This paper is an ex-
tended version of the publication [1])

8.1 Introduction
Digital health systems are widely available and being integrated into routine healthcare
operations, resulting in growth in electronic health records (EHRs) data. With advances
in data processing tools and methods, there has been an increased interest in establishing
health risk prediction models as a key instrument in clinical decision support [352–354].

However, EHR data has its unique characteristics, such as high dimensionality, spar-
sity, irregularity, temporality, bias, etc [299]. It is technically challenging to apply tradi-
tional machine learning or statistical models to such data. The high degree of irregularity,
including many missing values and varying time intervals, needs to be dealt with when
establishing predictive models. EHR data irregularity is a natural consequence of health
care provision, as every patient is different. For example, patients are more likely to be ex-
amined by healthcare specialists when changes in their health status or treatment decisions
occur, hence the intervals between physiological variables are often irregular (as shown
in Figure 8.1) [60, 355]. Additionally, it can be seen from Figure 8.1 that the data miss-
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ingness of patient B is significantly higher than that of patient A. The variation of missing
data patterns adds another layer of complexity, which would affect the performance of
downstream risk prediction [49, 356].

Timestamp14:11
Record1

14:17
Record2

14:32
Record3

14:58
Record4

15:42
Record5

15:46
Record6

135

63

98

69

64

98

12

71

135

97

13

70

124

64

98

131

70

15

66

96

16

82

Time interval

Systolic blood pressure

Oxygen saturation

Heart rate

Diastolic blood pressure

ICU

Respiratory rate

Timestamp17:58
Record1

18:03
Record2

18:22
Record3

18:32
Record4

18:47
Record5

19:51
Record6

54

95

103

120 115

24

106

98

71

23

Time interval

Systolic blood pressure

Oxygen saturation

Heart rate

Diastolic blood pressure

ICU

Respiratory rate

a)

b)

Missing Value

Missing Value

Figure 8.1: Illustration of irregular multivariate clinical time series.

Most of the previous research studies with EHR data have been focused on the provi-
sion of deep learning-based solutions [39,40,43,44,46,60]. These studies mainly impute
missing values by incorporating recurrent neural networks to learn variable correlations
and introduce time-decay mechanisms to take the effect of varying time intervals into ac-
count. The complete data matrices obtained from the imputation task are used for down-
stream risk prediction tasks.

There are three modes of imputation-prediction processing, each has its drawbacks.
The first is to consider imputation and prediction as two separable steps [43,44,46,56–58].
Although promising prediction performance has been demonstrated, these prediction mod-
els have not attempted to learn the impact of the patterns of missing data in EHR data. This
may lead to suboptimal prediction performance. As a better alternative, imputation and
prediction can be tuned together within an end-to-end learning framework rather than be
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separated into two parts. This is the second mode. Despite its efficacy, existing archi-
tectures for such modes are specifically proposed for improving risk prediction perfor-
mance [39,60–62]. When used for imputation and prediction tasks, the architecture treats
both as separate optimization tasks, which essentially is not different from the first mode.
The third imputation-prediction processing mode is similar to that used by the second, with
the difference that the objective of the third is to simultaneously perform both imputation
and prediction tasks [40, 42, 51, 63–65]. However, imputation and prediction tasks may
lead to competition due to the shared parameter problem, as illustrated during multi-task
learning for optimization in some studies [66–68]. This kind of optimization could also
lead to suboptimal imputation and prediction results.

In this chapter, we propose to construct a single deep learning framework based on
multi-task learning that performs the risk prediction task while incorporating the impu-
tation task as an auxiliary task. The benefit of implementing the imputation task as an
auxiliary task is that such an approach can improve risk prediction performance rather
than competing with it. It is a novel deep imputation-prediction network in which imputa-
tion and prediction tasks are implemented with an auxiliary network and a main network,
respectively (as shown in Figure 8.2). The intuition behind our network architecture is that
the direction of information flow is from the auxiliary network to the main network only.
By doing so, the forward pass of the main network depends on the auxiliary network, while
the inference of the auxiliary network does not depend on the main network. Therefore,
imputation and prediction tasks can be implemented simultaneously within a single deep
learning framework without competition.

The main contributions of this paper are listed as follows:

• We propose a novel imputation-prediction method to simultaneously carry out im-
putation and prediction tasks using irregularly sampled multivariate clinical time
series.

• To the best of our knowledge, this is the first research to perform risk prediction
tasks by incorporating the imputation task as an auxiliary task while carrying out
both simultaneously.

• Experiments on data from two real-world EHR databases using our proposed method
demonstrates superior prediction and imputation accuracy.

8.2 Method
In this section, we propose a Multi-Task Deep Neural Network, which performs the risk
prediction task while incorporating the imputation task as an auxiliary task. We first in-
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troduce the basic notations. We then detail the network architecture. Finally, we present
how to use the Multi-Task Deep Neural Network for imputation and prediction tasks.

8.2.1 Basic Notations
We represent a multivariate clinical time series with up to K physiological variables as
X = {x1, x2, · · · , xT } ∈ RK×T , where T is the number of medical records. For example, xt =

{x1
t , x2

t , · · · , xK
t } ∈ RK is the t-th medical record and xk

t is the value of the k-th physiological
variable of xt.

Since X can be incomplete, we represent the missing values in xk
t by introducing a

masking vector Mk
t as:

Mk
t =

1, i f xk
t is observed

0, otherwise
. (8.1)

Let st represent the timestamp when the t-th medical record is obtained, and ∆t repre-
sent the time interval for each physiological variable since its last medical record. The ∆k

t

can be written as:

∆k
t =


st − st−1 + ∆

k
t−1, t > 1,Mk

t−1 = 0

st − st−1, t > 1,Mk
t−1 = 1

0, t = 1

. (8.2)

Let D = {(Xn,Y (I)
n ,Y (P)

n )|n = 1, 2, · · · ,N} represent an EHR dataset with up to N mul-
tivariate clinical time series. Each has two target labels Y (I)

n and Y (P)
n , which are used for

imputation and prediction tasks.

8.2.2 Network Architecture
In this section, we propose a new deep imputation-prediction network by modeling irregu-
larly sampled multivariate clinical time series with the utilization of the convolutional and
residual recurrent components (As shown in Figure 8.2). The benefit of integrating the
convolutional and residual recurrent components is capturing the long-term dependencies
and short-term correlations of multivariate clinical time series data, which leads to good
representation learning [1, 5, 357]. Moreover, we incorporate the most commonly used
time decay mechanisms [39, 60, 150] into the proposed network architecture to deal with
varying time intervals. We give a detailed description of the proposed network architecture
in the following subsections.
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Figure 8.2: Schematic representation of the architecture and workflow of
the proposed network.

Convolutional Component

Given multivariate clinical time series X, we first construct a learnable variable to carry
out prefilling operations. Let ψ represent a learnable variable, which is initialised as X̃ =
M · X + (1 − M) · ψ. We then apply the zero vector padding to X̃ by embedding a zero
vector before the first record of X̃ and after the last record of X̃. We finally feed X̃ into a
convolutional component.

In particular, a combination of up to K kernels {Wk}
K
k=1 is applied to the corresponding

K variables. For example, x̃k
t:t+l−1 represents the concatenation of k-th variable of different

records {x̃k
t , x̃k

t+1, · · · , x̃
k
t+l−1}. A kernel Wk ∈ Rl is applied to the window of x̃k

t:t+l−1 to
generate a new latent variable vk

t ∈ Rwith a rectified linear unit (ReLU) activation function
as:

vk
t = ReLU(x̃k

t:t+l−1 ·Wk + bk), (8.3)

where ReLU(x) = max(x, 0) and bk ∈ R is a bias. In a follow-up step, Wk is implemented
as a sliding window in order to generate a latent vector vk = {vk

1, v
k
2, · · · , v

k
T }. The final

representation of X̃ can be v ∈ RK×T based on concatenating all of those latent vectors.

Residual Recurrent Component

The residual recurrent component is built upon GRU [147]. The GRU is a variant of RNN
that is characterised by the reset gate rt and the update gate ut, which decide the information
from the previous hidden state ht−1 should be updated or reset the previous hidden state
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ht−1 whenever needed.
Given the final representation vt obtained from the convolutional component, GRU

generates ht by the use of a linear combination of the previous hidden state ht−1 and the
candidate state h̃t as:

ht = GRU(vt) = ut ⊙ h̃t + (1 − ut) ⊙ ht−1,

ut = σ(W 1
u · ht−1 +W 2

u · vt + bu),

h̃t = tanh(W 1
h · (rt ⊙ ht−1) +W 2

h · vt + bh),

rt = σ(W 1
r · ht−1 +W 2

r · vt + br),

(8.4)

where all W and b are learnable parameters, ⊙ is the element-wise multiplication, and σ is
the sigmoid function. The ut controls the information from the previous hidden state ht−1

and the candidate state h̃t. Note that h̃t is computed in the way as a standard implementation
of RNN. The rt decides the proper amount of information from the previous hidden state
ht−1 that contributes to h̃t generation.

Inspired by the residual connection [198], we forward an identity mapping of the GRU
input to its output side as h′t = ResGRU(vt) = GRU(vt)+vt. By doing so, the corresponding
residual block is only required to capture the difference between input and output, which
in turn simplifies the overall training process by reducing the number of epochs required
for the model to converge.

Time Decay Mechanism

To capture the impact of varying time intervals, competitive time decay mechanisms that
fit a deep imputation-prediction network are sought and critically reviewed. Collectively,
we separately incorporate three types of time decay mechanisms [39,60,150] into the pro-
posed network architecture to test their efficacy on imputation and prediction performance.

Specifically, we augment the residual recurrent component with time decay mecha-
nisms [39, 60] respectively. The mathematical formulations for [39, 60] are as:

f1(∆t) = exp{−max(0,Wγ · ∆t + bγ)}, (8.5)

where Wγ and bγ are learnable parameters.

f2(∆t) =
1

log(e + ∆t)
,

f3(∆t) = e−∆t ,

f4(∆t) =
1
∆t
,

(8.6)
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where f2(·), f3(·), and f4(·) are three types of decay functions that describe the process of
reducing weight by a consistent percentage rate over a period of time.

The above f (·) functions are integrated into the GRU architecture that contribute hid-
den state representation generation. Therefore, ĥt−1 can be written as f (∆t) ⊙ ht−1. Subse-
quently, Eq. (4) can be rewritten as:

ht = GRU(vt) = ut ⊙ h̃t + (1 − ut) ⊙ ĥt−1,

ut = σ(W 1
u · ĥt−1 +W 2

u · vt + bu),

h̃t = tanh(W 1
h · (rt ⊙ ĥt−1) +W 2

h · vt + bh),

rt = σ(W 1
r · ĥt−1 +W 2

r · vt + br).

(8.7)

Compared with time decay mechanisms in [39] and [60], [150] also takes the similarity
between medical records into consideration on the time decay mechanism. In other words,
if the similarity between two medical records is significant, the importance of the previous
one should be slightly decayed. This is achieved by combining the attention function [195]
and the decay function 1

log(e+∆t) . The mathematical formulations for [150] are as:

Qk
T = W k

Q · x̃
k
T ,

Kk
t = W k

K · x̃
k
t ,

ηk
t = tanh(

Qk
T · K

k
t

βk · log(e + (1 − σ · (Qk
T · K

k
t )) · ∆t)

),

α = So f tmax(η),

X̃ ′ = α ⊙ X̃.

(8.8)

Multi-Task Learning for Imputation and Prediction Tasks

Multi-task learning refers to a single shared machine learning model that performs mul-
tiple target tasks simultaneously. As mentioned in the introduction section, the mode of
imputation-prediction processing used by [40,42,51,63–65] are based on multi-task learn-
ing with deep neural networks.

Multi-task learning with deep neural networks can be done based on either hard or
soft parameter sharing of hidden layers [358]. The hard parameter sharing method allows
target tasks to share parameters from a series of hidden layers, while the soft parameter
sharing method allows each target task to have its own backbone with its own parameters.
Previous studies suggest that multiple target tasks lead to competition regardless of the
hard or soft parameter sharing methods [359].

In response to the competition, we construct different optimizers for imputation and
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prediction tasks and then perform the risk prediction task by incorporating the imputation
task as an auxiliary task. As Figure 8.2 shows, an auxiliary network and a main network
are developed and introduced to the imputation and prediction tasks. The key aspect of our
network architecture is that the direction of information flow is from the auxiliary network
to the main network only. Accordingly, the forward pass of the main network depends on
the auxiliary network, while the inference of the auxiliary network does not depend on
the main network. Because of this, imputation and prediction tasks can be implemented
simultaneously within a single deep learning framework without competition.

Now we define the objective functions for the imputation and prediction tasks. Given
the final representation h′, we utilize a fully connected layer to impute missing values as:

ŷ(I) = W (I)
y · h

′ + b(I)
y . (8.9)

The objective function of the imputation task is the mean square error as:

L(I) =
1
N

N∑
n=1

(Mn ⊙ ŷ(I)
n − Mn ⊙ Y (I)

n )2. (8.10)

For the risk prediction task, we utilize h′T as input for a Softmax output layer in order
to obtain the predicted ŷ(p) as:

ŷ(P) = So f tmax(W (P)
y · h

′
T + b(P)

y ). (8.11)

The objective function of the risk prediction task is the average of cross-entropy with a
constraint L-infinity norm || · ||∞ as:

L = −
1
N

N∑
n=1

((Y (P)
n )⊤ · log(ŷ(P)

n ) + (1 − Y (P)
n )⊤ · log(1 − ŷ(P)

n )),

L(P) = L + λ · ||θ − ϕ||∞,

||θ − ϕ||∞ = lim
p→∞

(
J∑
j

|θ j − ϕ j |
p)

1
p ,

(8.12)

where λ is a scaling parameter to control the contribution of cross-entropy and constraint,
||θ − ϕ||∞ is the distance between the auxiliary network parameter {θ j}

J
j=1 and the main

network parameter {ϕ j}
J
j=1, and J is the number of shared layers in the network architecture.
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8.3 Experiments

8.3.1 Experimental Setup

Datasets, Tasks, and Evaluation Metrics

We validate the performance of our model1 on two real-world EHR databases, i.e., MIMIC-
III2) Database and eICU3 Database. We extract 21,105 and 36,670 patients/samples from
the MIMIC-III and eICU databases, where the Positive (likely to die)/Negative (unlikely to
die) ratio is 1:6.56 and 1:7.49, respectively. Detailed information on the two databases can
be found in the literature [38,280]. We conduct multivariate clinical time series imputation
and in-hospital mortality prediction experiments on the two databases. The multivariate
clinical time series data are selected on the basis of [53, 54]. Tables A.1 and A.2 show
multivariate clinical time series data on both databases.

To validate the imputation performance of our model, we use mean absolute error
(MAE) and mean relative error (MRE) between predicted and actual values as the primary
evaluation metrics. Given the n-th actual and predicted values xn and x̂n, as well as the
total number of ground truth N , we define MAE and MRE as:

MAE =
∑ N

n=1|x̂n − xn|

N
,

MRE =
∑ N

n=1|x̂n − xn|∑N
n=1 |xn|

.

(8.13)

According to the literature [53, 54], in-hospital mortality risk prediction is defined as
predicting the mortality risk of patients based on the data from the first 48 hours after ad-
mission. This is a binary classification task with the area under the receiver operating char-
acteristic curve (AUROC) and the area under the precision-recall curve (AUPRC) being
the primary evaluation metrics. It is worth noting that the physiologic decline prediction
is defined as predicting the mortality risk of patients based on the data from the first 24
hours after admission [53, 54]. Taken together, two mortality prediction tasks are carried
out on each database based on the data from the first 24 and 48 hours after admission.

1The implementation code is available at https://github.com/zxc0160/Model
2https://mimic.physionet.org
3https://eicu-crd.mit.edu/
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Baseline Methods

To demonstrate the effectiveness of our method, we use GRU-D [39], BRITS [40], V-RIN
[65], GRUI-GAN [43], E2GAN [44], STING [46], MTSIT [58], MIAM [51] as baseline
methods for comparison.

Besides, we present six variants of our method as follows:
Oursα: A variation of our method in which we incorporate the time decay mechanism

[39] into the residual recurrent component.
Oursβ: A variation of our method in which we incorporate the time decay mechanism

[60] (i.e., the first row of Eq. (6)) into the residual recurrent component.
Oursγ: A variation of our method in which we incorporate the time decay mechanism

[60] (i.e., the second row of Eq. (6)) into the residual recurrent component.
Oursδ: A variation of our method in which we incorporate the time decay mechanism

[60] (i.e., the third row of Eq. (6)) into the residual recurrent component.
Oursϵ : A variation of our method in which we incorporate the time decay mechanism

[150] into the network architecture.
Oursε: A variation of our method that does not perform any time decay mechanism.

Implementation Details

The training was done in a machine equipped with a CPU: AMD EPYC 7543, 80GB RAM,
and a GPU: NVIDIA A40 with 48GB of memory using Pytorch 1.10.0. For training the
model, we used Adam optimizer [283] with the mini-batch of 256 patients. We randomly
split 70%, 15%, and 15% of the dataset into training, validation, and testing sets. We chose
the best one from the model’s performance on the validation set.

For the MIMIC-III database, the number of physiological variables K is 17. For the
convolutional component, the kernel size is 3 and the stride is 1. For the residual recurrent
component, the dimension of hidden variables is 17. For multi-task learning, the scaling
parameter λ is 0.002, and the learning rates for the imputation and prediction optimizers
are 0.0065 and 0.0034, respectively. We also applied the dropout method to the imputation
and prediction tasks; the dropout rate is 0.3 and 0.1, respectively. For the eICU database,
the number of physiological variables K is 16. For the convolutional component, the kernel
size is 3 and the stride is 1. For the residual recurrent component, the dimension of hidden
variables is 16. For multi-task learning, the scaling parameter λ is 0.0013, and the learning
rates for the imputation and prediction optimizers are 0.0077 and 0.0022, respectively. We
also applied the dropout method to the imputation and prediction tasks; the dropout rate
is 0.3 and 0.2, respectively. For a fair comparison, the hyper-parameter of the proposed
model (i.e., λ) was fine-tuned by a grid-searching strategy.
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Since GRU-D is proposed for the risk prediction task, the regression component [40]
was integrated into its network architecture to generate imputation results. We replaced the
linear decoder of MTSIT with a Softmax output layer to generate prediction results. For
a fair comparison, we used the complete data matrices imputed by GRUI-GAN, E2GAN,
STING as input to GRU to generate prediction results.

8.3.2 Performance Analysis
Tables 8.1, 8.2, 8.3, and 8.4 present the imputation and prediction results obtained from all
methods. The larger the scores of AUROC and AUPRC, the better the predictive perfor-
mance of the method. The lower the values of MAE and MRE, the better the imputation
performance of the method. Values in the parentheses denote standard deviations. Overall,
these results suggest that our proposed method achieves the best imputation and predic-
tion accuracy. For example, it can be seen from Table 8.1 that Oursα reported significantly
more AUROC and AUPRC scores than the best baseline method V-RIN and Oursδ reported
significantly less MAE and MRE values than the best baseline method MTSIT.

Besides, it can be seen from the data in Table 8.2 that V-RIN is the best baseline method
and significantly outperforms other baseline methods in both imputation and prediction
tasks. The interesting aspect of Table 8.3 is that MTSIT achieves the best imputation per-
formance and the worst prediction performance. From the data in Table 8.4, it is apparent
that the prediction performance among the baseline methods GRU-D, BRITS, MTSIT, and
MIAM is very close.

Comparing the prediction results across the four tables, it can be seen that Oursα sig-
nificantly and consistently outperforms Oursε (i.e., without any time decay mechanism).
These results suggest that the time decay mechanism [39] plays an important role in ad-
dressing varying time intervals of multivariate time series data, which leads to good pre-
diction performance. Oursα also consistently outperforms other baseline methods in the
risk prediction task. For example, it can be seen from Table 8.2 that Oursα reported more
AUROC and AUPRC scores than the best baseline method V-RIN and also variant method
Oursϵ . These results suggest that the time decay mechanism [39] is particularly well suited
for improving the downstream risk prediction performance of our network architecture.

The most interesting aspect of the four tables is the imputation results of the variant
methods (i.e., Oursβ, Oursγ, Oursδ). From the data in Tables 8.1 and 8.3, we can see
that Oursδ resulted in the lowest value of MAE and MRE. From the data in Tables 8.2
and 8.4, we can see that Oursβ and Oursγ resulted in the lowest value of MAE and MRE,
respectively. These results suggest that the time decay mechanism [60] helps to improve
the imputation performance of our network architecture. In addition, the three variant
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methods (Oursβ, Oursγ, Oursδ) consistently outperform Oursε (i.e., without any time decay
mechanism). These results suggest that capturing the effect of varying time intervals can
help improve imputation performance.

Comparing the results of three types of time decay mechanisms [39, 60, 150], it can
be seen that the incorporating of the two types of time decay mechanisms [39, 60] into
the multi-task deep neural network could improve the imputation performance, but only
the time decay mechanism [39] could improve the prediction performance. Contrary to
expectations, the incorporating of time decay mechanism [150] into the multi-task deep
neural network has failed to improve imputation and prediction performance. This result
is in line with the literature [62] finding, which showed there is high inconsistency in the
effectiveness of the time decay mechanism. This conflicting experimental result could be
associated with the structure of deep neural networks. Further investigations are needed
to confirm and validate this finding.

Table 8.1: Performance of all methods on multivariate clinical time series im-
putation and in-hospital mortality prediction.

Method Multivariate Clinical time series imputation In-hospital mortality prediction

MIMIC-III/48 hours after ICU admission MAE MRE AUROC AUPRC

GRU-D [39] 3.6873(0.0218) 36.20%(0.0021) 0.7294(0.0097) 0.2771(0.0156)
BRITS [40] 5.3631(0.3804) 52.65%(0.0374) 0.7447(0.0092) 0.2879(0.0168)
V-RIN [65] 3.1522(0.0080) 31.15%(0.0010) 0.7758(0.0003) 0.3244(0.0010)

GRUI-GAN [43] 7.1359(0.0055) 70.05%(0.0005) 0.7619(0.0077) 0.3349(0.0178)
E2GAN [44] 6.9705(0.0104) 68.43%(0.0010) 0.7652(0.0054) 0.3599(0.0133)
STING [46] 5.1522(0.0202) 50.88%(0.0020) 0.7667(0.0106) 0.3402(0.0187)
MTSIT [58] 1.6965(0.1114) 21.16%(0.0139) 0.6841(0.0171) 0.2584(0.0182)
MIAM [51] 2.0941(0.0596) 26.13%(0.0074) 0.7192(0.0158) 0.2600(0.0111)

Oursα 0.6017(0.0289) 7.50%(0.0036) 0.8031(0.0045) 0.3800(0.0126)
Oursβ 0.4246(0.0600) 5.29%(0.0074) 0.7420(0.0435) 0.2982(0.0438)
Oursγ 0.4080(0.0531) 5.09%(0.0066) 0.7331(0.0108) 0.2689(0.0145)
Oursδ 0.3743(0.0565) 4.66%(0.0070) 0.7093(0.0258) 0.2547(0.0271)
Oursϵ 1.3653(0.0232) 17.03%(0.0028) 0.7754(0.0085) 0.3621(0.0176)
Oursε 0.8525(0.0396) 10.63%(0.0049) 0.7789(0.0077) 0.3553(0.0145)
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Table 8.2: Performance of all methods on multivariate clinical time series im-
putation and in-hospital mortality prediction.

Method Multivariate Clinical time series imputation In-hospital mortality prediction

eICU/48 hours after ICU admission MAE MRE AUROC AUPRC

GRU-D [39] 2.8066(0.0107) 21.43%(0.0008) 0.7195(0.0111) 0.2631(0.0145)
BRITS [40] 4.0963(0.3359) 31.26%(0.0257) 0.7254(0.0057) 0.2573(0.0062)
V-RIN [65] 1.8357(0.1097) 14.01%(0.0083) 0.7846(0.0139) 0.3373(0.0117)

GRUI-GAN [43] 9.9809(0.0056) 76.26%(0.0002) 0.7280(0.0105) 0.2871(0.0120)
E2GAN [44] 9.7912(0.0111) 74.70%(0.0006) 0.7294(0.0106) 0.2970(0.0133)
STING [46] 8.0315(0.0466) 61.21%(0.0036) 0.7475(0.0186) 0.2838(0.0197)
MTSIT [58] 2.8713(0.1357) 21.92%(0.0103) 0.7237(0.0042) 0.2952(0.0103)
MIAM [51] 2.2828(0.1288) 17.42%(0.0098) 0.7222(0.0099) 0.2513(0.0087)

Oursα 0.8846(0.0697) 6.75%(0.0053) 0.7984(0.0055) 0.3510(0.0075)
Oursβ 0.5852(0.0787) 4.46%(0.0060) 0.7169(0.0155) 0.2650(0.0168)
Oursγ 0.5858(0.0988) 4.47%(0.0075) 0.7166(0.0054) 0.2510(0.0047)
Oursδ 0.6011(0.1219) 4.58%(0.0093) 0.7028(0.0068) 0.2533(0.0060)
Oursϵ 1.8689(0.0655) 14.26%(0.0050) 0.7577(0.0048) 0.2994(0.0054)
Oursε 1.1397(0.0918) 8.70%(0.0066) 0.7477(0.0074) 0.2861(0.0150)

Table 8.3: Performance of all methods on multivariate clinical time series im-
putation and in-hospital mortality prediction.

Method Multivariate Clinical time series imputation In-hospital mortality prediction

MIMIC-III/24 hours after ICU admission MAE MRE AUROC AUPRC

GRU-D [39] 3.1752(0.0151) 36.74%(0.0017) 0.7277(0.0111) 0.2785(0.0133)
BRITS [40] 4.6305(0.3451) 53.55%(0.0485) 0.7387(0.0093) 0.2794(0.0154)
V-RIN [65] 2.8958(0.0040) 33.68%(0.0009) 0.7183(0.0144) 0.2776(0.1261)

GRUI-GAN [43] 6.2258(0.0026) 71.97%(0.0003) 0.7188(0.0098) 0.2655(0.0104)
E2GAN [44] 6.1391(0.0056) 70.95%(0.0007) 0.7283(0.0070) 0.2624(0.0093)
STING [46] 4.6212(0.0162) 53.43%(0.0019) 0.7312(0.0083) 0.2579(0.0115)
MTSIT [58] 1.1495(0.0861) 26.35%(0.0197) 0.6459(0.0111) 0.2049(0.0131)
MIAM [51] 1.2760(0.0506) 29.26%(0.0116) 0.6845(0.0152) 0.2215(0.0128)

Oursα 0.3763(0.0202) 8.62%(0.0046) 0.7491(0.0061) 0.2917(0.0095)
Oursβ 0.2394(0.0311) 5.48%(0.0071) 0.6546(0.0339) 0.1940(0.0247)
Oursγ 0.2412(0.0309) 5.52%(0.0070) 0.6521(0.0075) 0.2043(0.0039)
Oursδ 0.2363(0.0316) 5.41%(0.0072) 0.6541(0.0078) 0.2030(0.0068)
Oursϵ 0.7881(0.0109) 18.07%(0.0025) 0.7143(0.0080) 0.2794(0.0131)
Oursε 0.4826(0.0162) 11.06%(0.0037) 0.7015(0.0105) 0.2620(0.0114)

Table 8.4: Performance of all methods on multivariate clinical time series im-
putation and in-hospital mortality prediction.

Method Multivariate Clinical time series imputation In-hospital mortality prediction

eICU/24 hours after ICU admission MAE MRE AUROC AUPRC

GRU-D [39] 1.6043(0.0054) 20.82%(0.0007) 0.7024(0.0081) 0.2776(0.0134)
BRITS [40] 2.7905(0.2666) 36.21%(0.0234) 0.7082(0.0085) 0.2617(0.0083)
V-RIN [65] 1.1811(0.0745) 15.32%(0.0096) 0.7431(0.0070) 0.3071(0.0037)

GRUI-GAN [43] 5.9463(0.0057) 77.13%(0.0007) 0.7145(0.0099) 0.2996(0.0083)
E2GAN [44] 5.7179(0.0050) 74.16%(0.0004) 0.7159(0.0101) 0.3057(0.0132)
STING [46] 5.2312(0.0609) 69.85%(0.0079) 0.7268(0.0098) 0.2976(0.0108)
MTSIT [58] 1.8202(0.1014) 23.62%(0.0131) 0.7067(0.0034) 0.2895(0.0106)
MIAM [51] 1.3827(0.0903) 17.94%(0.0117) 0.7084(0.0086) 0.2586(0.0076)

Oursα 0.5384(0.0454) 6.98%(0.0059) 0.7679(0.0019) 0.3603(0.0105)
Oursβ 0.3846(0.0687) 4.99%(0.0089) 0.6817(0.0145) 0.2341(0.0133)
Oursγ 0.3603(0.0561) 4.67%(0.0072) 0.6766(0.0065) 0.2242(0.0086)
Oursδ 0.3913(0.0718) 5.07%(0.0093) 0.6785(0.0048) 0.2323(0.0040)
Oursϵ 1.0752(0.0413) 13.95%(0.0053) 0.7422(0.0033) 0.3005(0.0077)
Oursε 0.7439(0.0472) 9.65%(0.0061) 0.7223(0.0075) 0.2847(0.0095)
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Chapter 9

Discussion

This chapter presents a discussion of the research undertaken. In the following sections,
we will include a response to the research aims in relation to the research undertaken by
restating the research aims and discussing the results achieved. In addition, we will discuss
the proposed approaches from different perspectives, including network architecture com-
parison, performance comparison, time-decay mechanism, transparency, interpretability,
and reliability of the model decisions.

9.1 Confirmation of Research Aims
As stated in Chapter 1, the aim of this research was to investigate and develop new risk
prediction models for healthcare decision support. One of the complexities of such an aim
is the irregularity of EHR data, including many missing values and varying time intervals
between medical records. With an aim that held such complexities, the proposed approach
needed to be able to handle the irregularity of EHR data and predict patients’ health risks.

Even though the ability to provide such a risk prediction model was the aim of the
research, various objectives were set out to confirm it.

The first objective was to design and implement a machine learning model for clas-
sification based health risk prediction. In particular, missing values in EHR data need to
be addressed for effective predictive modeling. As demonstrated in Chapter 3, the pro-
posed Compound Density Network addressed this issue by imputing missing values as a
patient health context was given. After generating imputed values for missing values, it
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was demonstrated that the proposed Compound Density Network can also enhance the
reliability of imputed values and quantify their uncertainties and thus improve prediction
performance. This was illustrated in Figure 3.3 and Figure 3.4 when used for regularised
learning, and it assigns smaller weights to imputed values with large variance and larger
weights to imputed values with small variance.

The second objective was to incorporate the handling of varying time intervals between
medical records into the Compound Density Network. This objective was achieved by ex-
tending the Compound Density Network into the Attention-based Bidirectional Recurrent
Neural Network, as illustrated in Chapter 4. After presenting several case studies, it was
demonstrated that the proposed Attention-based Bidirectional Recurrent Neural Network
could capture the variation pattern of input variables at the time dimension and adaptively
enhance the temporal representation of each pattern with adjustable weights (As shown in
Figure 4.4). Besides, the proposed Attention-based Bidirectional Recurrent Neural Net-
work demonstrated its ability to model more complex patterns as a clinical context was
given. For example, this was illustrated in Figure 4.3 when used for modeling clinical
feature distributions, and the glucose of patients with diabetes was modeled as a Gaussian
mixture distribution.

The third objective was capable of imputing missing values in patient data using infor-
mation from the subgroup of similar patients rather than the entire patient population. This
objective was achieved with the development of three graph neural networks, including a
Contrastive Neural Network, a Contrastive Graph Similarity Network, and a Multi-Graph
Neural Network, as illustrated in Chapter 5, Chapter 6, and Chapter 7. After introducing
these graph neural networks into the multivariate clinical time series imputation task, it
was demonstrated that they outperform state-of-the-art baseline approaches by significant
margins. For example, this was illustrated in Tables 5.2 when comparing the imputation
results of the Contrastive Neural Network with those of the baseline approaches.

The last objective was to explore the processing mode of imputation and prediction. As
demonstrated in Chapter 8, three modes of imputation-prediction processing were inves-
tigated for this work, including (i) considering imputation and prediction as two separable
steps, (ii) training imputation and prediction within an end-to-end learning framework,
and (iii) simultaneously performing both imputation and prediction tasks. Moreover, a
Multi-Task Deep Neural Network was proposed, which performs the risk prediction task
while incorporating the imputation task as an auxiliary task. This was achieved through
constructing a single deep learning framework based on multi-task learning. It enabled
the direction of information flow only from the auxiliary network to the main network.
When the Multi-Task Deep Neural Network was applied to multivariate clinical time se-
ries imputation and in-hospital mortality risk prediction, it outperformed state-of-the-art
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baseline approaches by significant margins.

9.2 Network Architecture Comparison
The proposed imputation-prediction approaches are developed based on modular deep
neural networks. Modular deep learning has emerged as a promising solution to challenges
from real-world EHR data [5, 29, 150, 360, 361]. In a modular deep learning framework,
computation units are implemented as autonomous parameter-efficient modules, and in-
formation flow is conditionally passed among modules and subsequently aggregated. The
benefit of constructing the modular deep learning framework is that such an approach can
easily develop and introduce new neural network modules into the network architecture
to support hidden knowledge and information extraction and inference; consequently, it is
easy to extend the network architecture to a wide range of medical applications such as
drug discovery and phenotype analysis.

As demonstrated in Figure 3.2, the Compound Density Network is a combination of
three modules, including a Gated recurrent unit, a Mixture Density Network, and a Regu-
larised Attention Network. These neural network modules are stacked and trained together.
The Attention-based Bidirectional Recurrent Neural Network also consists of three mod-
ules, as shown in Figure 4.2, including a bidirectional Gated recurrent unit, a reliability-
aware reconstruction, and a time-decay attention, where reliability-aware reconstruction
and time-decay attention modules are integrated into the bidirectional Gated recurrent
unit. Accordingly, the three modules used in the Attention-based Bidirectional Recurrent
Neural Network are not directly stacked together, which is significantly different from the
Compound Density Network. The multi-task deep neural network consists of a convolu-
tional neural network module and a recurrent neural network module adjusted together by
implementing the residual connection [198]. The convolutional neural network and recur-
rent neural network modules are integrated into a main network and an auxiliary network,
respectively, and the direction of information flow is from the auxiliary network to the
main network only, as illustrated in Figure 8.2. Accordingly, the forward pass of the main
network depends on the auxiliary network, while the inference of the auxiliary network
does not depend on the main network.

It is worth noting that the above three approaches all contain the recurrent neural net-
work, especially the Compound Density Network and Attention-based Bidirectional Re-
current Neural Network, which are based on the recurrent neural network as the main
backbone. Accordingly, they are categorised as recurrent neural network-based imputa-
tion approaches with similar network architectures to other approaches in this family, such
as GRU-D [39], BRITS [40], TBM [55], BRNN [151], and InterpNet [42] described in
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Chapter 2.
Different from the aforementioned recurrent neural network-based imputation approaches,

the proposed contrastive neural network, contrastive graph similarity network, and multi-
graph neural network are developed based on graph representation learning. In other
words, the core idea of these approaches is to incorporate graph representation learning in
representation learning for EHR data. In terms of network components, contrastive neural
network and contrastive graph similarity network are more similar because they all in-
clude making a contrastive learning module for enhanced patient similarity calculations,
as illustrated in Figure 5.2 and Figure 6.1. In contrast, the multi-graph neural network
can be categorised as a type of Graph Recurrent Neural Network that combines graph
neural network and recurrent neural network [246, 250, 362]. As typical graph represen-
tation learning usually involves learning the graphical structure of input data, as shown
in Figure 7.1, these graph neural network-based approaches are more complex than those
recurrent neural network-based approaches.

9.3 Performance Comparison
We compared the performance of the proposed deep imputation-prediction networks with
Recurrent Neural Networks (i.e., GRU-D [39], BRITS [40], InterpNet [42], V-RIN [65]),
Generative Adversarial Networks (i.e., GRUI-GAN [43], E2GAN [44], Conditional GAN
[57], Bi-GAN [45], STING [46], E2GAN-RF [50], MBGAN [47], SA-EDGAN [313]),
Attention-based Neural Networks (i.e., MTSIT [58], MIAM [51]), and Graph Neural Net-
works (i.e., GCT [351], AGRN [246], and GRIN [244]). From the results demonstrated
in Chapter 3 to Chapter 8, we have demonstrated the effectiveness and superiority of our
proposed deep imputation-prediction approaches on multivariate clinical time series im-
putation and in-hospital mortality risk prediction.

From the results demonstrated in Tables 4.1 and 4.2, we can see that Recurrent Neu-
ral Networks (i.e., GRU-D and InterpNet) resulted in the lowest value of MAE and MRE
scores compared with Generative Adversarial Networks (i.e., GRUI-GAN, E2GAN, Bi-
GAN, and STING). Similarly, from the results demonstrated in Table 5.2, we can see
that Recurrent Neural Networks (i.e., GRU-D and BRITS) resulted in the lowest value of
MAE and MRE scores compared with Generative Adversarial Networks (i.e., GRUI-GAN,
E2GAN, E2GAN-RF, and STING). These results suggest that Recurrent Neural Networks
outperformed Generative Adversarial Networks in terms of multivariate clinical time se-
ries imputation on the MIMIC-III and eICU databases. It is difficult to explain this result,
but it may be related to the quality of the input data, as the inputs from the two databases
have high missing ratios. These findings might help us to better understand the character-
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istics of deep neural networks, especially those Generative Adversarial Networks that may
be more sensitive to the missing ratio of the input data.

From the results demonstrated in Table 5.2, we can see that Attention-based Neural
Networks (i.e., MTSIT and MIAM) resulted in the lowest value of MAE and MRE scores
compared with Recurrent Neural Networks and Generative Adversarial Networks. Addi-
tionally, the performance superiority of MTSIT and MIAM in the eICU database is more
significant than that in the MIMIC-III database. Besides, from the results demonstrated
in Tables 6.2 and 6.3, we can see that MIAM is a strong baseline approach in terms of
multivariate clinical time series imputation. According to these results, we can demon-
strate that Attention-based Neural Networks outperform Recurrent Neural Networks and
Generative Adversarial Networks in terms of multivariate clinical time series imputation
on the MIMIC-III and eICU databases.

From the results demonstrated in Tables 6.2, 6.3, 7.1 and 7.2, no significant differ-
ences were found in the imputation performance of the baseline approaches (except for
most Generative Adversarial Networks, i.e., GRUI-GAN, E2GAN, Conditional GAN, and
STING) in the MIMIC-III and eICU databases. This result may be explained in part by
the association of multivariate clinical time series, demographics, and ICD-9 diagnosis
codes [3]. Therefore, demographics and ICD-9 diagnosis codes are influenced factors that
have a considerable (positive) impact on the imputation performance of multivariate clin-
ical time series. Moreover, we can see that Generative Adversarial Networks resulted in a
higher value of MAE and MRE scores in terms of multivariate clinical time series imputa-
tion on the eICU database. This also accords with our earlier observations, which showed
that Generative Adversarial Networks achieved suboptimal imputation performance com-
pared with Recurrent Neural Networks and Attention-based Neural Networks.

From the results demonstrated in Chapter 3 to Chapter 8, we have demonstrated that
there is high inconsistency in the imputation and prediction effectiveness of the baseline
approaches. This was illustrated in Tables 8.1, 8.2, 8.3, and 8.4 when comparing the im-
putation and prediction results of the baseline approaches. For example, MTSIT achieved
the best imputation performance and suboptimal prediction performance. Similarly, from
the results demonstrated in Tables 7.1 and 7.2, MIAM, GRIN, and GCT achieved the best
imputation performance and suboptimal prediction performance. This provides some ex-
planation as to why the Multi-Task Deep Neural Network needs to be proposed. In other
words, imputation and prediction can be implemented as a multi-task learning problem,
where the imputation task is an auxiliary task to improve risk prediction performance.
Overall, the proposed Multi-Task Deep Neural Network simultaneously achieved the best
imputation and prediction performance.
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9.4 Time-decay Mechanism

The novelty of the Attention-based Bidirectional Recurrent Neural Network is its time-
decay attention module’s ability to incorporate three decay functions to capture the varia-
tion pattern of input variables at the time dimension and adaptively enhance the temporal
representation of each pattern with adjustable weights. As well it examines the association
between input variables to identify critical indicative variables regardless of how long ago
the associated event happened. This allows the Attention-based Bidirectional Recurrent
Neural Network to work for real-world applications. By applying the time-decay attention
module to all patient journeys, the decay trends of clinical features are consistent with the
three decay functions instead of a linear process, as seen in literature [39]. Further studies,
which take more decay functions into account, will need to be undertaken.

9.5 Transparency and Interpretability

The novelty of the proposed imputation-prediction approaches lies in their ability to present
transparency and interpretability of the model decisions. A predictive model’s trans-
parency generally means its ability to export a relationship map between inputs and out-
puts [363]. The relationship map allows users to understand, validate, and edit the findings
extracted by the predictive model. Model interpretability refers to the ability to understand
learning processes without knowing the results [364]. As demonstrated in Figure 3.3 and
Figure 3.4, the regularised attention network module of the Compound Density Network
could export a relationship map between inputs and outputs, where less reliable imputed
values are assigned lower weights and vice versa. The reliability-aware reconstruction
module of the Attention-based Bidirectional Recurrent Neural Network could model com-
plex patterns of input clinical features. As demonstrated in Figure 4.3, the reliability-aware
reconstruction module could model the input clinical feature as a Gaussian mixture dis-
tribution (i.e., multimodal distribution) instead of an unimodal distribution. These results
further support the idea of [4, 287], which found the conditional distribution should be
multimodal for tasks such as structured prediction problems, forming one-to-many map-
pings. The contrastive learning module of the contrastive graph similarity network could
flexibly group similar patients based on the imputation and prediction tasks, as illustrated
in Figure 6.2.
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9.6 Epistemic Uncertainty and Aleatoric Un-
certainty
The novelty of the proposed Compound Density Network lies in its ability to present the
reliability of the model decisions. This was demonstrated in Figure 3.5, Figure 3.6 and
Figure 3.7, the mixture density network module of the Compound Density Network could
capture and quantify the impact of epistemic/model uncertainty and aleatoric uncertainty
on the in-hospital mortality risk prediction. These results suggest that epistemic uncer-
tainty and aleatoric uncertainty have a considerable impact on model decisions. There are
similarities between the attitudes expressed by epistemic uncertainty and aleatoric uncer-
tainty analysis in this study and those described by [255]. The success of this demonstra-
tion provides real-world validation of foundational work that is believed to be a first of its
kind for analyzing epistemic uncertainty and aleatoric uncertainty in the context of multi-
variate clinical time series imputation and in-hospital mortality risk prediction. With such
an approach for analyzing epistemic uncertainty and aleatoric uncertainty in a real-world
application, specifically for users (e.g., healthcare professionals), they can be used to build
trust in prediction models, which may help facilitate and support the collaboration between
users and developers. Further experimental investigations are needed to examine the ef-
fects of epistemic uncertainty and aleatoric uncertainty on more medical applications. For
example, the effects of epistemic uncertainty and aleatoric uncertainty on the mortality
risk in patients with a particular disease, such as Congestive Heart Failure (CHF) [365]
and Diabetes [366] will need to be undertaken. Considerably modeling work will have to
be conducted in order to reduce the effects of epistemic uncertainty, such as incorporating
more observations and reducing the number of parameters of neural networks.

117



Chapter 10

Conclusion

In the following sections, we will discuss our research findings in relation to each chapter,
highlight corresponding contributions, acknowledge the limitations, and propose future
research.

10.1 Summary of the thesis findings and con-
tributions
In Chapter 3, we have presented a novel approach of integrated training and regularizing
a deep learning model with the aim of predicting patient health risk using EHRs with
a large number of missing values. We validated the proposed CDNet on the in-hospital
mortality risk prediction tasks using the publicly available MIMIC-III database that has a
large degree of missingness in the input. Extensive experimental results demonstrated that
CDNet significantly outperformed existing approaches. The ablation experiments proved
that regularizing imputed values is a key factor for performance improvements. Further
analysis of prediction uncertainty proved that our model could capture both aleatoric and
epistemic uncertainties, which allows model users to know how reliable the results are.

In Chapter 4, we have presented a novel deep imputation-prediction network with the
aim of improving the prediction of patient health risks using EHR data. We integrated
two novel modules, including time-decay attention and reliability-aware reconstruction,
in a bidirectional GRU that performs missing data imputation and health risk prediction
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tasks. We evaluated the efficacy of our approach with the publicly available MIMIC-III
and eICU databases, proving the competitiveness and superiority of our approach in mul-
tivariate clinical time series imputation and in-hospital mortality risk prediction compared
with baseline approaches. Moreover, several case studies are presented to show the trans-
parency and interpretability of the model decisions.

In Chapter 5, we have presented a novel contrastive learning-based imputation-prediction
network to perform imputation and prediction with EHR data. The proposed approach
explicitly considers patient similarity by stratification of EHR data and successfully in-
tegrates contrastive learning into the network architecture. We empirically show that the
proposed approach outperforms all the baseline approaches by conducting multivariate
clinical time series imputation and in-hospital mortality risk prediction on the publicly
available MIMIC-III and eICU databases. The ablation experiments confirmed the ef-
fectiveness of the network construction with enhanced imputation and prediction perfor-
mance.

In Chapter 6, we have presented a novel Contrastive Graph Similarity Network, which
focuses on the provision of missing data imputation and health risk prediction. The pro-
posed approach explicitly calculates the similarity between patients and then aggregates
the information from similar patients to impute missing values. We evaluated our ap-
proach against competing baseline approaches on the publicly available MIMIC-III and
eICU databases, and the results demonstrated the effectiveness and superiority of our ap-
proach in multivariate clinical time series imputation and in-hospital mortality risk pre-
diction. Further, the model analysis results confirmed the effectiveness of constructing the
contrastive learning module in patient similarity calculating.

In Chapter 7, we have presented a novel Multi-Graph Fusion Framework for patient
representation learning. We demonstrated the effectiveness of our approach with extensive
experiments on the publicly available MIMIC-III and eICU databases with multivariate
clinical time series imputation and in-hospital mortality risk prediction, and the results
indicated that our approach outperforms all baseline approaches.

In Chapter 8, we have presented a novel deep imputation-prediction network based on
multi-task learning, which performs risk prediction tasks by incorporating the imputation
task as an auxiliary task. We experimentally demonstrated that the proposed approach
achieves the best imputation and prediction accuracy by conducting multivariate clinical
time series imputation and in-hospital mortality risk prediction on the publicly available
MIMIC-III and eICU databases. Moreover, we empirically demonstrated that the incor-
poration of time decay mechanisms is a key factor for superior imputation and prediction
performance.
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10.2 Limitations and Future Works

10.2.1 Network Architecture Optimization
Although the proposed deep imputation-prediction networks have achieved promising per-
formance in multivariate clinical time series imputation and in-hospital mortality predic-
tion tasks, both in performance and computing efficiency, there is a need to find the optimal
network architecture; consequently, it is very crucial to optimize these network architec-
tures. In future investigations, it might be possible to reduce the complexity of neural
network architecture in which the hyper-parameters and hidden layers as well as the num-
ber of nodes can be tuned.

Training deep neural network models is computationally expensive, especially when
building very deep neural network architectures. A further study with more focus on the
efficiency of the model is therefore suggested. For example, the training time of the model
should be taken into consideration in the imputation and prediction tasks.

10.2.2 Use of Both Structured and Unstructured Data
The MIMIC-III and eICU are large medical databases comprising all information relating
to patients admitted to intensive care units. This work mainly uses structured data (e.g.,
multivariate clinical times series and ICD-9 diagnosis codes) as input for the imputation
and prediction tasks. This may lead to sub-optimal prediction performance. Further inves-
tigation and experimentation into more informative details, such as free text diagnosis (i.e.,
unstructured data), are strongly recommended. In terms of directions for future research,
further work could expand deep imputation-prediction networks into a multi-modal fusion
network architecture to handle both structured and unstructured data.

10.2.3 Secondary Healthcare Applications
In our case studies, the experimental data were selected on the basis of [53, 54], i.e., the
data from the first 24 and 48 hours after ICU admission. However, due to variations in
patient conditions and treatment needs, real-time mortality risk scores should be generated
for patients, which also contribute to more proactive intervention generation. In terms of
directions for future research, deep imputation-prediction networks could be reconstructed
and introduced into real-time decision-making.

This work has only taken into account the irregularity of EHR data in the context of
in-hospital mortality risk prediction. Since deep neural network architectures are a result
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of intuition and trial-and-error, the performance of other case studies would allow us to
verify the robustness of the proposed deep imputation-prediction networks. The same
experimental setup is likely to be effective for other case studies, such as regression-based
hospital length of stay prediction, binary classification-based readmission prediction, and
multi-classification-based phenotype prediction. Further studies regarding the comparison
of imputed values under different prediction tasks would be worthwhile.

Further experiments could also be conducted to determine the safety and efficacy of the
proposed deep imputation-prediction networks on other publicly available EHR databases,
such as the Medical Information Mart for Intensive Care IV (MIMIC-IV) database [367]
and Medical Information Mart for Intensive Care IV Emergency Department (MIMIC-IV-
ED) database [368].

10.2.4 Individual Fairness on Similarity Computing
Some of the distribution of patient-specific characteristics, such as age, sex, and ethnic-
ity, are imbalanced, which, although considered, is not thoroughly analyzed when com-
puting patient similarity in the proposed Contrastive Neural Network, Contrastive Graph
Similarity Network, and Multi-Graph Neural Network. These characteristics are sensitive
attributes that may lead to bias in imputation and prediction results. In addition, there
might still be many "unseen" attributes that could significantly affect the model training
process. For example, the missing rates among vital signs vary significantly, ranging from
less than 30% (e.g., diastolic blood pressure and heart rate) to exceeding 90% (e.g., capil-
lary refill rate and pH), causing concerns about the fairness of the patient similarity model.
Therefore, effort should be made to develop patient models that minimize unfairness in the
future.

10.2.5 Transfer Learning, Few-shot Learning, and Zero-
shot Learning
The proposed deep imputation-prediction networks may not be applicable to all learning
settings. For example, this includes transfer learning, few-shot learning, and zero-shot
learning required for real application scenarios. Transfer learning aims to transfer knowl-
edge obtained from one task to another related task to improve performance. For example,
mortality prediction windows are set to 24 hours and 48 hours after admission. Accord-
ingly, the complete data matrix obtained from the former task can be extracted as input
to the latter task. Few-shot learning aims to make predictions for new classes based on
just a few examples of labeled data, while for zero-shot learning, there is no labeled data
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available for new classes. Considerably more work will need to be done to incorporate
these deep imputation-prediction networks into transfer learning, few-shot learning, and
zero-shot learning settings.

10.2.6 Explainable Neural Network Architecture
Despite its great success, significant barriers remain when it comes to the adoption of deep
imputation-prediction networks for real-world applications. A key issue is that deep inter-
polation prediction networks remain "black-box" in terms of their architectures. In other
words, these "black-box" models are built from data by algorithms, which means humans,
even those who design them, cannot understand how the models combine input features
to make decisions. Therefore, the learning process of these models is non-transparent or
partially transparent, which leads to difficulties in the interpretation of results. Further
research should be carried out to generate more interpretable representations (i.e., feature
vectors or matrices derived from deep learning models that can be further visualized),
which link to available information and lead to better user acceptance.

10.3 Summary
The aim of this thesis was to investigate and develop new risk prediction models for ad-
dressing the irregularity of EHR data and predicting patients’ health risks. This aim was
addressed by proposing six deep imputation-prediction models using a combination of
real-world EHR databases and case studies. The strength of these models lies in their
ability to present transparency and interpretability of the model decision process and pro-
vide the estimation of epistemic and aleatoric uncertainties of the model decisions. This
research made novel contributions to the improvement of methodologies for handling ir-
regularity of EHR data in the context of health risk prediction. These methodologies are
potentially applicable to other medical applications such as hospital length of stay predic-
tion and phenotype classification.
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Appendix A

A.1 MIMIC-III and eICU Databases
The EHRs being used are two real-world large medical databases, the Medical Informa-
tion Mart for Intensive Care (MIMIC-III1) Database and eICU2 Collaborative Research
Database.

MIMIC-III is one of the largest publicly available intensive care unit (ICU) databases,
comprising 38,597 distinct patients and a total of 53,423 ICU stays. eICU is a multi-center
intensive care unit database comprising medical records of 200,859 patients collected from
208 critical care units in the United States between 2014 and 2015. These two databases
contain all information relating to patients admitted to intensive care units. Detailed in-
formation on the two databases can be found in the literature [38, 280].

A total of 21,139 samples were taken from the MIMIC-III database [53]. A total of
38,056 samples were taken from the eICU database [54]. For the MIMIC-III database,
a total of 17 physiological variables (e.g., systolic blood pressure, diastolic blood pres-
sure, respiratory rate, heart rate. As shown in Figure 1.1) were selected on the basis of
the literature [53]. Similarly, for the eICU database, a total of 16 physiological variables
were selected on the basis of the literature [54]. The tables A.1 and A.2 below illustrate
the missingness proportion of different categories of physiological variables. The selected
physiological variables are a subset of the MIMIC-III and eICU databases for a wide range

1https://mimic.physionet.org
2https://eicu-crd.mit.edu/
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of benchmark tasks, such as modeling the risk of physiologic decline and in-hospital mor-
tality (to be detailed in the next section).

The characteristics of physiological variables are listed as follows:

• Each physiological variable can be considered as a sequential dynamic feature that
records an independent observation, while a set of features with the same timestamp
can represent the patient’s health status at that time during an ICU stay.

• For each patient, all timestamped sequential dynamic features form a chain of data
providing the context of the entire duration of hospitalization (i.e., one patient jour-
ney), which should be taken into consideration in a holistic manner for predictive
modeling.

• Each patient journey data can also be considered one multivariate clinical time se-
ries data with more than one time-dependent variable (i.e., a series of physiological
variables).

• Each variable not only depends on its past values (i.e., long-term dependencies) but
also has some dependency on other variables (i.e., present interdependencies) [3].

A.2 EHR-based Prediction Tasks
Based on the publicly available MIMIC-III [38] and eICU [280] databases, researchers
have created benchmark datasets and proposed four benchmarks/tasks [53, 54]. Specif-
ically, the proposed four tasks include modeling the risk of physiologic decline (i) and
in-hospital mortality (ii), and estimating hospital length of stay (iii), as well as classifying
phenotype (iv). More specifically, physiologic decline prediction and in-hospital mortality
prediction are binary classification tasks, hospital length of stay prediction is a regression
task, and phenotype classification is a multi-class classification task.

In this section, we focus mainly on predicting the mortality risk of patients based on
their historical EHR data. According to the literature [53, 54], in-hospital mortality risk
prediction is defined as predicting the mortality risk of patients based on the data from the
first 48 hours after ICU/eICU admission.

It is also worth noting that the physiologic decline prediction is defined as predicting
the mortality risk of patients based on the data from the first 24 hours after ICU/eICU
admission. Together, these two risk prediction tasks can be seen as predicting patients’
"long-term" and "short-term" mortality risks.

Outside the above four benchmarks/tasks, researchers have investigated disease risk
prediction [369–371] and risk-of-readmission prediction [372–374]. Overall, these dis-
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ease risk prediction and risk-of-readmission prediction are also classification-based risk
predictions. Examples of research into disease risk prediction include cardiovascular dis-
ease risk prediction [375–377], heart failure risk prediction [378–380], and diabetes risk
prediction [381–383]. Representative risk-of-readmission prediction methods include re-
current neural network-based method [384], statistical learning method [34], and graph-
based method [35].

Table A.1: The 17 physiological variables selected from the MIMIC-III
database.

Feature Data Type Missingness (%)

Capillary refill rate categorical 99.78
Diastolic blood pressure continuous 30.90
Fraction inspired oxygen continuous 94.33
Glasgow coma scale eye categorical 82.84
Glasgow coma scale motor categorical 81.74
Glasgow coma scale total categorical 89.16
Glasgow coma scale verbal categorical 81.72
Glucose continuous 83.04
Heart Rate continuous 27.43
Height continuous 99.77
Mean blood pressure continuous 31.38
Oxygen saturation continuous 26.86
Respiratory rate continuous 26.80
Systolic blood pressure continuous 30.87
Temperature continuous 78.06
Weight continuous 97.89
pH continuous 91.56
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Table A.2: The 16 physiological variables selected from the eICU database.

Feature Data Type Missingness (%)

Diastolic blood pressure continuous 33.80
Fraction inspired oxygen continuous 98.14
Glasgow coma scale eye categorical 83.42
Glasgow coma scale motor categorical 83.43
Glasgow coma scale total categorical 81.70
Glasgow coma scale verbal categorical 83.54
Glucose continuous 83.89
Heart Rate continuous 27.45
Height continuous 99.19
Mean arterial pressure continuous 96.53
Oxygen saturation continuous 38.12
Respiratory rate continuous 33.11
Systolic blood pressure continuous 33.80
Temperature continuous 76.35
Weight continuous 98.65
pH continuous 97.91
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B.1 ICU mortality risk prediction
A considerable literature has been published around the theme of ICU mortality risk
prediction [5, 32, 33, 39, 64, 150, 385–402]. Representative ICU mortality risk predic-
tion models include [5, 32, 39, 150, 385, 386, 389]. It is worth mentioning that the tradi-
tional SAPS [403] and APACHE [404] scores, as well as their variants SAPS II [405] and
APACHE II [406] scores, are mainly used for assessing the severity of the health condition
as defined by the probability of patient mortality.

The study by [385] introduced the Super Learner Algorithm (SICULA) to predict mor-
tality risk for ICU patients. The SICULA is an ensemble machine-learning framework that
comprises a series of traditional machine-learning models, such as generalised linear mod-
els. Experimental results on the MIMIC-II dataset demonstrate that SICULA outperforms
the traditional SAPS-II and APACHE-II scores.

Similarly, the study by [386] proposed an ensemble machine learning framework (EM-
PICU Random Forest) to predict the mortality risk of patients based on data from the
first 24 hours and 48 hours after ICU admission. Experimental results on the MIMIC-II
dataset demonstrate that EMPICU Random Forest outperforms the traditional SAPS-I and
APACHE-II scores, random forests, decision trees, etc.

The ICU-LSTM [389] is proposed to take both sequential and non-sequential features
as inputs for ICU mortality risk prediction. The former refers to vital signs, while the
latter refers to the previous ICD-10 diagnosis codes. ICU-LSTM is built with the Long
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short-term memory (LSTM) units [145]. Experimental results on the Asan Medical Cen-
ter (AMC) ICU dataset demonstrate that ICU-LSTM outperforms the traditional logistic
regression model.

The study by [39] proposed GRU-D to model the long-term temporal dependencies
in multivariate clinical time series and utilize the decay mechanism to learn the impact
of varying time intervals. GRU-D [39] is built upon Gated Recurrent Unit (GRU) [147].
The GRU is a variant of recurrent neural networks featuring a reset gate and an update
gate, which control the flow of information between the hidden state and the current input.
Experimental results on the MIMIC-III and PhysioNet datasets demonstrate that GRU-D
achieves superior performance over the state-of-the-art models on mortality risk predic-
tion.

The study by [150] proposes a deep learning predictive framework (shorten for Con-
Care) based on stacked recurrent neural networks. The ConCare mainly utilizes a multi-
channel GRU architecture to model long-term temporal dependencies of multivariate clin-
ical time series data [53]. With the construction of multi-channel GRU architecture, each
univariate time series is modeled by a standard implementation of GRU. Each univariate
time series is a time series that contains a single clinical variable recorded sequentially
over time increments. Experimental results on the MIMIC-III dataset demonstrate the ef-
fectiveness and superiority of ConCare in the mortality risk prediction compared to the
existing deep prediction methods such as RETAIN [407] and T-LSTM [148].

The study by [32] proposes a deep Markov model (shorten for AttDMM) by integrat-
ing hidden Markov models (HMMs), neural networks, and attention mechanisms. The
AttDMM pays attention to improving the prediction performance of an HMM by incorpo-
rating neural networks into the HMM structure, then using the HMM hidden state repre-
sentation (i.e., the HMM output) directly to make ICU mortality prediction. Experimental
results on the MIMIC-III dataset demonstrate the effectiveness and superiority of AttDMM
in the mortality risk prediction compared to a standard implementation of HMMs and deep
prediction methods such as and ICU-LSTM.

The study by [5] proposes a novel deep neural network with a modular structure (shorten
for TAttNet) to carry out health risk prediction tasks using EHR data. The TAttNet mainly
models long-term dependencies and short-term correlations of multivariate clinical time
series data with deep neural network-based modules. It is worth noting that the previous
ICD-9 diagnosis and procedure codes are modeled as auxiliary information. Experimental
results on the MIMIC-III dataset demonstrate the effectiveness and superiority of TAttNet
in the mortality risk prediction compared to existing deep prediction methods such as RE-
TAIN [407] and T-LSTM [148].
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