
FLINDERS UNIVERSITY

College of Science and Engineering

DOCTORAL THESIS

A Mathematical Programming Approach to
Considering Value Dependencies in

Software Requirement Selection

Davoud MOUGOUEI

B.Eng. (Computer Engineering.), M.Sc. (Computer Science)

Thesis Submitted to Flinders University
for the degree of Doctor of Philosophy (Software Engineering)

College of Science and Engineering

June 6, 2018

c� Davoud MOUGOUEI, 2018

i

Declaration of Authorship

I certify that without acknowledgment this thesis does not incorporate any material

previously submitted for a degree or diploma in any university, and that to the best

of my knowledge and belief, it does not contain any material previously published or

written by another person except where due reference is made in the text.

Signed:

Date:

Birouni
June 6, 2018

ii

“The only simple truth is that there is nothing simple in this complex universe.

Everything relates. Everything connects.”

Johnny Rich, The Human Script

iii

Abstract

A Mathematical Programming Approach to Considering Value Dependencies in

Software Requirement Selection

Software requirement selection aims to find an optimal subset of requirements with

the highest value while respecting the project constraints. The value of a requirement

however may depend, positively or negatively, on the presence or absence of other

requirements in the optimal subset. Such Value Dependencies need to be considered in

software requirement selection. However, the existing requirement selection works

have mainly ignored value dependencies. This thesis presents a mathematical pro-

gramming approach, referred to as Dependency-Aware Requirement Selection (DARS),

for considering value dependencies in software requirement selection. The proposed

approach includes four different selection methods: (i) an Integer Programming (IP)

method, which takes into account the strengths of value dependencies; (ii) an Integer

Linear Programming (ILP) method, which accounts for the strengths and qualities of

value dependencies; (iii) a Mixed Integer Programming (MIP) method, that allows for

partial selection of requirements; and (iv) a Society-Oriented method, which takes into

account the social values of the requirements. Each method is comprised of three ma-

jor components: (i) identification of value dependencies; (ii) modeling value depen-

dencies; and (iii) integrating value dependencies into requirement selection. The main

contributions of this thesis are validated by studying real-world software projects and

extensive simulations with results highly suggestive of good prospects for application

of DARS in industrial contexts as the approach reduces the risk of value loss posed by

ignoring value dependencies among software requirements.

iv

Acknowledgements

I would like to express my sincere gratitude to Professor David Powers for being a

great support and a fantastic supervisor. Working with him was a very joyful and

a great honor for me. His knowledge, patience, and trust gave me the opportunity

to explore and examine new ideas to finally find my path toward completion of my

thesis. My gratitude for his guidance goes beyond thanks. I would also like to thank

Dr. Trent Lewis for his support and helpful reviews.

I also wish to thank Professor Jon Whittle, Professor Jerzy Filar, Professor Mark Wal-

lace, and Dr. Asghar Moeini who kindly provided their comments and views on my

work during my PhD candidature. I am thankful for their valuable insights which

helped open up new horizons for my research.

I am especially thankful to my friends for providing me with their valuable feed-

backs. They always encouraged me in difficult times and shared their stories with me.

To name a few: Jenny, Mohammad, Amir Mahdi, Somaiyeh, Pouya, Mehdi, Nasim,

Jameel, and Saeed.

I am thankful to the Australian government and Flinders University for generously

supporting this thesis by an Australian Government Research Training Program Schol-

arship and Elaine Martin Grant as well as travel grants which helped me present my

research at reputed venues including the 31st IEEE/ACM International Conference on

Automated Software Engineering (ASE 2016), the 39th International Conference on Software

Engineering (ICSE 2017), and the 30th Australian joint Conference on Artificial Intelligence

(AI 2017).

Last but not least, I am grateful to my dearest parents and lovely twin sisters for their

unconditional love and support throughout all stages of my studies.

v

To my dearest parents and lovely twin sisters for
unconditionally providing their love and encouragement.

vi

Publications during the PhD Candidature

This thesis is the outcome of research carried out during the PhD candidature of the

author at Flinders University. During the period, the main results of the thesis have

been published in high quality peer reviewed journals and conferences. Moreover,

some of our recent findings are under review for journal/conference publication. The

details of the publications produced in relation to the thesis and their relevance to

different chapters/sections of the thesis are discussed in detail in Section 1.3. We have

listed these publications as follows.

(P1) D. Mougouei and D. M. W. Powers. Modeling and selection of interdependent

software requirements using fuzzy graphs. International Journal of Fuzzy Systems,

19(6):1812–1828, Dec 2017

(P2) D. Mougouei. Factoring requirement dependencies in software requirement se-

lection using graphs and integer programming. In Proceedings of the 31st IEEE/ACM

International Conference on Automated Software Engineering, pages 884–887. ACM,

2016

(P3) D. Mougouei, D. M. W. Powers, and A. Moeini. An integer linear programming

model for binary knapsack problem with dependent item values. In W. Peng,

D. Alahakoon, and X. Li, editors, AI 2017: Advances in Artificial Intelligence: 30th

Australasian Joint Conference, Melbourne, VIC, Australia, August 19–20, 2017, Pro-

ceedings, pages 144–154. Springer International Publishing, Cham, 2017

(P4) D. Mougouei and D. M. W. Powers. The synergistic knapsack problem. Fuzzy

Optimization and Decision Making, Under Review

(P5) D. Mougouei, D. M. Powers, and A. Moeini. Dependency-aware software release

planning. In Proceedings of the 39th International Conference on Software Engineering

Companion, pages 198–200. ACM, 2017

vii

(P6) D. Mougouei and D. M. W. Powers. An integer programming method for consid-

ering value-related dependencies in software requirement selection. Information

and Software Technology, Under Review

(P7) D. Mougouei and D. M. W. Powers. Dependency-aware software release plan-

ning using fuzzy graphs and integer programming. Engineering Applications of

Artificial Intelligence, Under Review

(P8) D. Mougouei and D. M. W. Powers. Dependency-aware software release plan-

ning through mining user preferences. Expert Systems with Applications, Under

Review

(P9) D. Mougouei, H. Shen, and A. Babar. Partial selection of agile software require-

ments. International Journal of Software Engineering & Its Applications, 9(1):113–126,

2015

(P10) D. Mougouei and D. M. W. Powers. Paps: A scalable framework for prioritiza-

tion and partial selection of security requirements. International Journal of Ap-

proximate Reasoning, Under Review

(P11) D. Mougouei and M. K. Yeung. Visibility requirements engineering for com-

mercial websites. International Journal of Software Engineering & Its Applications,

8(8):11–18, 2014

(P12) D. Mougouei and D. M. W. Powers. Partial selection of software requirements.

International Conference on Computer Science, Engineering and Applications, Accepted

(P13) D. Mougouei and D. M. W. Powers. An integer programming model for embed-

ding social values into software requirement selection. International Conference

on Computer Science, Engineering and Applications, Accepted

(P14) D. Mougouei and D. M. W. Powers. Gotm: a goal-oriented framework for captur-

ing uncertainty of medical treatments. Intelligent Systems Conference (IntelliSys)

2018, Accepted

viii

Invited Talk Related to the Thesis

• D. Mougouei. Considering value-related dependencies among requirements in

software release planning: An integer programming approach. Faculty of Infor-

mation Technology, Monash University, July 2017

https://www.monash.edu/it/our-research/research-seminars/events/events/2017/it-seminardavoud-mougouei
https://www.monash.edu/it/our-research/research-seminars/events/events/2017/it-seminardavoud-mougouei
https://www.monash.edu/it/our-research/research-seminars/events/events/2017/it-seminardavoud-mougouei

ix

Academic Community Involvement

• Reviewer: International Journal of Fuzzy Systems

• Program Committee Member: 24th Australian Software Engineering Conference

• Program Committee Member: 7th International Conference on Software Engi-

neering and Applications (SEA-2018)

• Editor: Information and Computer Security

• Editor: Journal of Autonomous Intelligence

• Editor: Smart Construction Research

• Academic Member: Athens Institute for Education and Research

• Academic Member: Birouni Center for Education, Research, and Technology

x

Contents

Abstract iii

Acknowledgements iv

Publications during the PhD Candidature vi

Invited Talk Related to the Thesis viii

Academic Community Involvement ix

1 Introduction 1

1.1 Motivation and Problem Statement . 1

1.2 Thesis Focus and Key Contributions . 3

1.2.1 The Integer Programming Method (DARS-IP) 6

1.2.2 The Integer Linear Programming Method (DARS-ILP) 7

1.2.3 The Mixed Integer Programming Method (DARS-MIP) 10

1.2.4 The Society-Oriented DARS Method (DARS-SOC)1 11

1.3 Publications and Thesis Outline . 12

2 Background and Related Work 2 16

2.1 Background . 16

2.1.1 Combinatorial Optimization . 17

Exact Optimization Methods . 17

Approximation Methods . 18

Heuristics and Metaheuristics . 18

2.1.2 Mathematical Programming . 20

1The author of the thesis has recently joined the Society-Oriented Software Design project at the Fac-
ulty of Information Technology, Monash University.

2Review of the existing requirement selection works, with regard to considering value dependencies,
is presented in publications (P1)-(P8).

https://www.monash.edu/it/our-research/graduate-research/scholarship-funded-phd-research-projects/projects/society-oriented-software-design

xi

Linear Programming . 21

Integer Programming and Mixed Integer Programming 22

Convex Optimization . 22

2.1.3 Value Dependencies among Software Requirements 23

2.2 Related Work . 27

2.2.1 The Binary Knapsack Method . 30

2.2.2 The Precedence-Constrained Binary Knapsack Method 31

2.2.3 The Increase-Decrease Method . 33

2.2.4 The Stochastic Binary Knapsack Method 35

2.2.5 The Oregon Trail Knapsack Problem 37

3 The Integer Programming Method (DARS-IP)3 40

3.1 Introduction . 40

3.2 Modeling Value Dependencies using Fuzzy Graphs 43

3.2.1 Why Fuzzy Graphs? . 43

3.2.2 Fuzzy Requirement Interdependency Graphs 43

3.3 Integrating Value Dependencies into Selection 46

3.3.1 Overall Value of an Optimal Subset 47

3.3.2 The Integer Programming Model of the DAR-IP Method 48

3.3.3 Examples of Requirement Selection 49

3.4 Validation . 51

3.4.1 Simulations (Numerical Studies) 52

Simulation Design . 52

Simulation Results . 53

3.4.2 Case Study . 57

3.5 Automated Identification of Explicit Value Dependencies 62

3.6 Summary . 65

4 The Integer Linear Programming Method (DARS-ILP) 4 67

4.1 Introduction . 67

4.2 Identification of Value Dependencies . 69

3The contents of this chapter are presented in publications (P1) and (P2).
4The main results of this chapter are presented in publications (P1)-(P8).

xii

4.2.1 Gathering User Preferences . 69

4.2.2 Resampling . 70

4.2.3 Extracting Causal Relations among User Preferences 71

4.2.4 Testing the Significance of Causal Relations 73

4.2.5 Computing the Strengths and Qualities of value Dependencies . 74

4.2.6 Value Implications of Precedence Dependencies 76

4.3 Modeling Value Dependencies by Fuzzy Graphs 77

4.3.1 Value Dependency Graphs . 77

4.3.2 Value Dependencies in VDGs . 78

4.4 Integrating Value Dependencies into Selection 83

4.4.1 Overall Value of a Subset of Requirements 83

4.4.2 The Integer Linear Programming Model 85

4.4.3 The Blind Integer Programming Model 87

4.5 Case Study . 90

4.5.1 Description of Study . 91

4.5.2 Identification and Modeling of Dependencies 93

Precedence Dependencies in PMS-III 93

Value Dependencies in PMS-III . 93

4.5.3 Performing Requirement Selection 95

Similarities of Solutions . 101

Impact of DARS-ILP on the Overall Value 104

Understanding the Conflicting Objectives 109

Mitigating the Value-Loss . 110

4.6 Simulations . 111

4.6.1 Value Dependencies vs Budget . 115

4.6.2 Negative Value Dependencies vs Budget 117

4.6.3 Precedence Dependencies vs Budget 119

4.6.4 Negative Precedence Dependencies vs Budget 121

4.6.5 Positive vs Negative Value Dependencies 122

4.6.6 Positive vs Negative Precedence Dependencies 123

4.7 Complexity and Scalability Analysis . 125

4.7.1 The Overhead of using DARS-ILP 125

xiii

4.7.2 Scalability of the Optimization Model of DARS-ILP 126

4.8 Summary . 131

5 The Mixed Integer Programming Method (DARS-MIP) 5 133

5.1 Introduction . 133

5.2 Partial Selection of Requirements . 135

5.2.1 The Pre-PAS Process . 136

Modeling and Description of Requirements 137

Data Preprocessing . 139

5.2.2 Prioritization and Selection Process 142

Prioritization . 143

Fuzzification . 143

Fuzzy Inference . 144

Partial Selection . 147

5.3 The MIP Model of DARS-MIP . 150

5.4 Summary . 154

6 The Society-Oriented DARS Method (DARS-SOC) 6 156

6.1 Introduction . 156

6.2 Modeling The Economic and Social Value Dependencies 159

6.2.1 Value Dependency Graphs . 159

6.2.2 The Economic and Social Value Dependencies in VDGs 159

6.3 The Proposed Optimization Models for DARS-SOC 163

6.3.1 The Integer Linear Programming Model 163

6.3.2 The Mixed Integer Programming Model 166

6.4 Summary . 170

7 Conclusions 172

7.1 Summary of the main contributions . 172

7.1.1 The DARS-IP Method . 173

7.1.2 The DARS-ILP Method . 173

7.1.3 The DARS-MIP Method . 174
5The results of this chapter are presented in publications (P3), (P4), and (P6)-(P12).
6The contents of this chapter are presented in publications (P3), (P4), (P6), (P8), (P10), (P12), and (P13).

xiv

7.1.4 The Society-Oriented DARS Method (DARS-SOC) 175

7.2 Current Limitations . 176

7.2.1 Internal, External, and Conclusion Validity 176

7.2.2 Construct Validity . 177

7.3 Ongoing and Future Work7 . 179

7.3.1 Enhancing the Accuracy of the Dependency Identification 179

Enhancing the Quality of the Collected Data 179

Establishing a Shared Repository for User Preferences 180

The Classification of Software Requirements 180

The Classification of Users . 181

Enhancing the Accuracy of the Dependency Identification 181

7.3.2 Embedding Social Values into the Requirement Selection 181

The Identification of Social Value Dependencies 182

Embedding Social Values into the Requirement Modeling 182

7.3.3 Applications to Other Problems 183

7The author of the thesis has recently joined the Society-Oriented Software Design project at the Fac-
ulty of Information Technology, Monash University.

https://www.monash.edu/it/our-research/graduate-research/scholarship-funded-phd-research-projects/projects/society-oriented-software-design

xv

List of Figures

1.1 An overview of the main contributions of the thesis 4

1.2 The main components of different methods of DARS. 5

2.1 The word-cloud of the thesis. 16

2.2 Dahlstedt’s requirement dependency model. 24

2.3 Pohl’s requirement dependency model. 24

2.4 Value dependencies in Example 2.1 . 26

2.5 Percentages of the existing requirement selection methods that address

the criteria (C1)-(C7). 28

2.6 Percentages of the existing requirement selection works that are based

on the BK, PCBK, SBK, or Increase-Decrease methods. 29

3.1 FRIG of Example 3.1 . 45

3.2 FRIG of Example 3.3 (numbers are hypothetical). 49

3.3 Accumulated and overall values of RAN and PMR. 54

3.4 Sample simulation results for RAN requirements. 55

3.5 Sample simulation results for PMR requirements. 56

3.6 The FRIG of the PMS (Strengths of dependencies are not represented

for the sake of readability). 60

3.7 Selection results for the PMS (LOI u 22%) 61

3.8 Sample mappings from hi,j to different membership functions r(ri, rj). . 63

3.9 A sample preference matrix . 64

3.10 Pearl measure for the preference matrix of Figure 3.9 65

4.1 A sample preference matrix M4⇥20. 70

4.2 Steps for generating samples from user preferences. 71

4.3 Computing the Eells measure for the preference matrix of Figure 4.1. . . 72

xvi

4.4 Sample membership functions for strengths of value dependencies. . . 75

4.5 A sample value dependency graph. 78

4.6 The case study design. 92

4.7 The precedence dependency graph of requirements of PMS-III. 93

4.8 Explicit value dependencies among requirements of PMS-III. A cell at

row i and column j denotes quality and strength of a value dependency

from requirement ri to rj. 94

4.9 Influences of PMS-III requirements on the value of each other. A cell at

row i and column j denotes quality and strength of the influence of rj

on ri. 95

4.10 Comparing the requirement subsets found by the DARS-ILP and PCBK

methods for different price levels. 96

4.11 Comparing the requirement subsets found by the DARS-ILP and SBK

methods for different price levels. 97

4.12 Dissimilarities between requirement subsets (solutions) found by DARS-

ILP and those found by the PCBK/SBK methods. 101

4.13 Selection patterns of PCBK, SBK, and DARS-ILP methods for require-

ments of PMS-III at different price levels (%Price 2 {1, 2, ..., 100}). For

a requirement ri, denoted by i on the x-axis, and requirement selec-

tion methods mj and mk, %DFi(mj, mk) = %Fi(mj) �%Fi(mk), where

%Fi(mj) and %Fi(mk) give the percentage of the selection tasks in which

ri is selected by the mj and mk methods respectively. 103

4.14 Comparing the overall values provided by the PCBK, SBK, and DARS-

ILP methods at different price levels. %DOV(mj, mk) = %OV(mj) �

%OV(mk), where mj and mk denote the selection methods which are

being compared against each other. 105

4.15 Comparing the accumulated values provided by the PCBK, SBK, and

DARS-ILP methods at different price levels. %DAV(mj, mk) = %AV(mj)�

%AV(mk), where mj and mk denote the selection methods compared

against each other. 107

xvii

4.16 Comparing the expected values provided by the PCBK, SBK, and DARS-

ILP methods at different price levels. %DEV(mj, mk) = %EV(mj) �

%EV(mk), where mj and mk denote the selection methods being com-

pared against each other. 108

4.17 Risk of value loss for configurations of PMS-III found by the PCBK,

SBK, and DARS-ILP methods at different price levels. 110

4.18 %AV and %OV achieved for Simulation I (%Budget vs. VDL). 116

4.19 %OV and %AV achieved for Simulation I (%Budget vs. VDL). 118

4.20 %OV and %DOV achieved for Simulation II (%Budget vs. NVDL). . . . 119

4.21 %OV and %DOV achieved for Simulation III (%Budget vs. PDL). 120

4.22 %OV and %DOV achieved for Simulation IV (%Budget vs. NPDL). . . . 121

4.23 %OV and %DOV achieved for Simulation V (NVDL vs. VDL). 122

4.24 %OV and %DOV achieved for Simulation VI (NPDL vs. PDL). 124

4.25 Runtime of DARS-ILP for different Sizes (Simulation 1). 128

4.26 Runtime of DARS-ILP for different %Budget (Simulation 2). 128

4.27 Runtime of DARS-ILP for different PDLs (Simulation 3). 129

4.28 Runtime of DARS-ILP for different NPDLs (Simulation 4). 129

4.29 Runtime of DARS-ILP for different VDLs (Simulation 5). 130

4.30 Runtime of DARS-ILP for different NVDLs (Simulation 6). 131

5.1 Architecture of PAPS. 136

5.2 The SRM of OBS. Junction points and their absence represent logical

AND and logical OR respectively. 138

5.3 The Pre-PAS process in PAPS. 141

5.4 Prioritization and selection of requirements in PAPS. 143

5.5 A sample membership function tiv . 145

5.6 Fuzzy rules implemented in FCL . 146

5.7 Fuzzy Inference for r7 with respect to the top-level goal 147

6.1 A sample map of the social values in software projects. 157

xviii

List of Tables

1.1 Sections of the thesis and their corresponding publications (P1)-(P14). . . 14

2.1 Types of requirement dependencies. 25

2.2 Addressing the criteria (C1)-(C7) regarding different aspects of value

dependencies by different selection methods and their corresponding

works from the literature. 30

3.1 Overall strengths of the value dependencies in Example 3.3 49

3.2 Accumulated values, overall values, and accumulated costs of the re-

quirement subsets of Example 3.3 . 50

3.3 Estimated values and costs of requirements for RAN and PMR 52

3.4 Estimated values, costs, and strengths of explicit value dependencies. . . 58

3.5 Solution vectors and their corresponding overall value (OV) provided

by the different selection methods in the presence of various budget

constraints. A selection variable xi denotes whether requirement ri is

selected (xi = 1) or otherwise (xi = 0). 59

4.1 Qualitative serial inference in VDGs. 79

4.2 Overall influences computed for VDG of Figure 4.5. 82

4.3 The estimated and expected values of the requirements of PMS-III. . . . 92

4.4 The estimated costs and values of the requirements of PMS-II. 113

4.5 Performance simulations for the BK, PCBK, and DARS-ILP methods. . . 115

4.6 Runtime Simulations for the optimization model of DARS-ILP 126

5.1 The KAOS description of the requirements (goals) of OBS. 137

5.2 The derivation rules of the SRM of OBS. 139

5.3 Cost and Technical-ability of the OBS Requirements. 140

xix

5.4 Impact of Requirements in the SRM of OBS. 142

5.5 Membership functions for FIS inputs/output. 144

5.6 Priority values inferred by FIS for requirements of OBS. 148

5.7 The RDS values of the requirements of OBS. 149

5.8 RELAX-ed requirements of OBS. 149

6.1 Qualitative serial inference in a type t VDG. 160

xx

List of Abbreviations

The acronyms below are listed based on the order of first appearance in the thesis.

AV Accumulated Value.

EV Expected Value.

DARS Dependency-Aware Requirement Selection.

DARS-IP The Integer Programming method of DARS.

DARS-ILP The Integer Linear Programming Method of DARS.

DARS-MIP The mixed integer programming method of DARS.

DARS-SOC The society-oritented method of DARS.

OV Overall Value.

BKP-DIV The binary knapsack problem with dependent item values.

SKP Synergistic knapsack problem.

BKP Binary knapsack problem.

GRASP Greedy Randomized Adaptive Search Procedures.

LP Linear Programming.

BK Binary knapsack.

PCBK Precedence-Constrained Binary Knapsack.

SBK Stochastic Binary Knapsack.

OTKP Oregon trail knapsack problem.

SDP Selection deficiency problem.

xxi

NRP Next Release Problem.

FRIG Fuzzy Requirement Interdependency Graph.

LOI Level of Interdependency.

RAN Radio Access Network.

PMR Performance Management Recording.

PMS Precious Messaging System.

PDG Precedence Dependency Graph.

PDL Precedence Dependency Level.

NPDL Negative Precedence Dependency Level.

VDG Value Dependency Graph.

VDL Value Dependency Level.

NVDL Negative Value Dependency Level.

PAPS Pioritization and Partial Selection.

SRM Software Requirement Model.

SRL Software Requirement List.

FIS Fuzzy Inference System.

GFG Goal-based Fuzzy Grammar.

OBS Online Banking System.

RDS Required Degree of Satisfaction.

FCL Fuzzy Control Language.

GQM Goal Question Metric.

SVM Social Value Model.

xxii

List of Symbols

A glossary of the frequently used symbols in this thesis is given below.

R Set of requirements.

vi Estimated value of a requirement ri.

ci Estimated cost of a requirement ri.

ri Requirement ri 2 R.

p(ri) The probability that users select or use requirement ri.

E(vi) Expected value of a requirement ri.

O Optimal subset.

Õ Subset of excluded requirements.

G The Set of Software Goals.

µ Fuzzy membership function of requirements.

r Fuzzy membership function of value dependencies.

^ Fuzzy AND operator.

Ii Impact of the requirements on the value of ri.

_ Fuzzy OR operator.

v0i Overall value of a requirement ri.

h Measure of causal strength.

Mn⇥k Matrix of preferences for n requirements and k users.

w� The lower-bound of the confidence interval for Odds ratio.

xxiii

w+ The upper-bound of the confidence interval for Odds ratio.

s(ri,rj) Specifies quality of a value dependency from ri to rj.

r+•(ri,rj) Strength of all positive value dependencies from ri to rj.

r�•(ri,rj) Strength of all negative value dependencies from ri to rj.

qi The penalty for a requirement ri.

g Price limit.

gj Goal or subgoal gj 2 G.

DCg(x) the Impact of the Requirement/Goal x on Satisfaction of the Goal g.

� Fuzzy OR operator (taking maximimum).

⌦ Fuzzy AND operator (taking minimum).

zi The estimated effort for complete satisfaction of ri.

z 0i The RELAX-ed effort for partial satisfaction of ri.

st(ri,rj) Specifies quality of a value dependency of type t from ri to rj.

rt Fuzzy membership function of value dependencies of type t.

r+•
t (ri,rj) Strength of all positive value dependencies of type t from ri to rj.

r�•
t (ri,rj) Strength of all negative value dependencies of type t from ri to rj.

E(vi,t) The expected type t value of a requirement ri.

bt The minimum amount (lower-bound) required for the expected type t value of the

selected requiremenets.

1

Chapter 1

Introduction

1.1 Motivation and Problem Statement

Software requirement selection, also known as Software Release Planning [16, 17], aims

to find an optimal subset of the requirements of a software project with the highest

value while respecting the project constraints [18]. The values of the requirements

however, may positively or negatively depend on the presence or absence of the other

requirements [19, 20] in the optimal subset. Hence, it is important to consider Value

Dependencies among requirements in software requirement selection [21, 22, 23, 24].

Moreover, as observed by Carlshamre et al. [21], requirement dependencies in general

and value dependencies in particular are fuzzy [21] in the sense that the strengths of the

requirement dependencies, including value dependencies, are imprecise and vary [18,

25, 26, 21] from large to insignificant [27] in real-world projects. Hence, it is important

to consider not only the existence but the strengths of value dependencies [18, 21] and

the imprecision associated with those dependencies in software requirement selection.

Although the need for considering value dependencies was observed as early as in

2001 [21], the existing requirement selection works have mainly ignored value de-

pendencies by employing either the Accumulated Value (AV) [28, 22, 29, 30, 31] or the

Expected Value (EV) as the optimality criterion for software requirement selection in

software projects [32, 33, 34]. The latter take into account the uncertainty of the val-

ues through considering user preferences, yet they ignore value dependencies among

requirements. To further clarify this, consider the following scenario.

Chapter 1. Introduction 2

let R= {r1, r2, r3} be a requirement set with the estimated values v1 = 10, v2 =

20, v3 = 30, costs c1 = c2 = c3, and probabilities of being selected by the users

p(r1) = 0.9, p(r2) = 0.9, p(r3) = 0.4. We assume that the values of r2 and r3 highly

depend on the presence of r1 thus ignoring r1 would significantly impact the values of

r2 and r3 in a negative way. The following examples show the disadvantages of using

AV (Example 1.1) or EV (Example 1.2) as the optimality criterion in requirement selec-

tion. vi and ci in these examples denote the estimated value and cost of a requirement

ri respectively while p(ri) specifies the probability that ri is selected by the users.

Example 1.1. Consider requirement selection for R when budget is available only for

one of the requirements r1, r2, or r3. When accumulated value (AV) is used as the

optimality criterion, only r3 with v3 = 30 will be selected. As such, the value of

r3 may be negatively impacted, to a significant extent, by ignoring r1 and this may

result in value loss. Moreover, the accumulated value (AV) does not account for user

preferences ignoring the fact that r3 is less likely to be selected by the users compared

to r2 (p(r3) < p(r2)). Ignoring user preferences may also result in value loss.

Example 1.2. Consider using expected value (EV) as the optimality criterion in Ex-

ample 1.1, where we have E(v1) = 0.9 ⇥ 10 = 9, E(v2) = 0.9 ⇥ 20 = 18, and

E(v3) = 0.4⇥ 30 = 12. E(vi) denotes the expected value of a requirement ri. It is

clear that based on EV, requirement r2 with the highest expected value will be se-

lected. r1 however will be ignored despite its significant impact on the value of r2.

Value loss hence may occur again as a result of ignoring r1. Intuitively, users that

would have used or purchased r2 in the presence of r1, now may change their minds

in the absence of r1. This cannot be captured by the selection methods that use EV as

the measure of optimality.

Example 1.1 and Example 1.2 show that the selection methods that use AV/EV as the

optimality criterion may ignore highly influential requirements if they are of smaller

estimated/expected values compared to other requirements. Overall value on th other

hand, as presented in this thesis, captures value dependencies among requirements.

Chapter 1. Introduction 3

Hence, the penalties of ignoring (selecting) requirements with positive (negative) im-

pacts on the values of the selected requirements will be taken into account when mak-

ing the decisions about selecting or ignoring the requirements.

Some of the extant requirement selection works have attempted to consider value

dependencies by manually estimating the values of the requirement subsets. For n

requirements thus O(2n) estimations might be needed in worst case [35] and O(n2)

estimations may be needed when the estimations are limited to the pairs of require-

ments [22, 36, 19]. Such complexity further limits the practicality of these works, not

to mention the issues around the accuracy of the manual estimations.

Moreover, these works do not specify how to estimate the amount of the increased

or decreased values. Finally, the requirement selection works based on manual esti-

mations of the values of the requirement subsets do not capture the directions of the

influences. In other words, these methods do not distinguish among (a) requirement

ri influences the value of the requirement rj and not the other way round, (b) rj influ-

ences the value of ri and not the other way round, and (c) both ri and rj influence the

value of each other but to different extents.

1.2 Thesis Focus and Key Contributions

To effectively integrate value dependencies into software requirement selection, this

thesis presents a mathematical programming approach, referred to as Dependency-

Aware Requirement Selection (DARS). As outlined in Figure 1.1, the proposed approach

includes four different selection methods: (i) an Integer Programming (IP) method, i.e.

DARS-IP, which takes into account the strengths of value dependencies; (ii) an Inte-

ger Linear Programming (ILP) method, i.e. DARS-ILP, which extends the IP method

mainly by accounting for the qualities of value dependencies; (iii) a Mixed Integer Pro-

gramming (MIP) method, i.e. DARS-MIP, that allows for partial selection of require-

ments; and (iv) a Society-Oriented method, i.e. DARS-SOC, which takes into account

the social values [37, 38] of the requirements.

Chapter 1. Introduction 4

As depicted in Figure 1.1, each method is comprised of three major components: (i)

identification of value dependencies; (ii) modeling value dependencies; and (iii) inte-

grating value dependencies into requirement selection. The identification and mod-

eling components of DARS-MIP, however use the elements of the identification and

modeling components of the DARS-ILP method respectively. Moreover, the identifi-

cation component of DARS-SOC uses the elements of the identification component of

the DARS-ILP for the identification of economic value dependencies.

DARS

The DARS-ILP Method
(Chapter 4)

The Identification Component
(Section 4.2)

Dependency Identification
using the Eells Measure

The Modeling Component
(Section 4.3) Value Dependency Graph (VDG)

The Selection Component
(Section 4.4) The ILP Model of DARS-ILP

The Blind ILP Model of DARS-ILP

The DARS-IP Method
(Chapter 3)

The Modeling Component
(Section 3.2)

Fuzzy Requirement
Interdependency Graph (FRIG)

The Selection Component
(Section 3.3) The IP Model of DARS-IP

The Identification Component
(Section 3.5)

Dependency Identification
using the Pearl Measure

The DARS-MIP Method
(Chapter 5)

Partial Selection of Requirements
(Section 5.2) The PAPS Method

The Modeling Component

The Identification Component

The Selection Component
(Section 5.3) The MIP Model of DARS-MIP

The DARS-SOC Method
(Chapter 6)

The Identification Component

The Modeling Component
(Section 6.2) Extended VDG

The Selection Component
(Section 6.3) The ILP Model of DARS-SOC

The MIP Model of DARS-SOC

Uses

Uses

Uses

Extends

Extends

Extends

FIGURE 1.1: An overview of the main contributions of the thesis

Chapter 1. Introduction 5

The optimization models of the requirement selection methods presented in this thesis

are convex/linear [39] and can be efficiently solved by the existing commercial solvers

such as the IBM CPLEX [40]. We have implemented, solved, and tested all these op-

timization models using the Concert Technology and the JAVA API of IBM CPLEX [40].

The executable code for these models is available in JAVA and OPL languages and can

be obtained from the website of DARS1.

FIGURE 1.2: The main components of different methods of DARS.

Moreover, Figure 2.1 demonstrates the main components of the DARS-IP, DARS-ILP,

DARS-MIP, and DARS-SOC methods and the relations among those components at

the highest level of abstraction. As demonstrated, the proposed selection methods

rely on the identification of value dependencies from the user preferences. The iden-

tified value dependencies then will be modeled for reasoning about the implicit value

dependencies and computing the positive and negative influences of the requirements

on the values of each other.

Eventually requirement selection will be performed subject to the project constraints

and precedence dependencies, in order to find optimal or pareto optimal subsets of

requirements by considering the impacts of selecting or ignoring requirements on the

values of the requirements.

1http://bcert.org/projects/dars

http://bcert.org/projects/dars

Chapter 1. Introduction 6

1.2.1 The Integer Programming Method (DARS-IP)

The three main components of the proposed integer programming (IP) method of

DARS (DARS-IP) are as follows:

(i) Identification of value dependencies. One of the most commonly adopted measures

of causal strength referred to as Pearl measure [41] is used to specify the strengths

of causal relations among user preferences for software requirements. Fuzzy

membership functions are then used to estimate the strengths of the value de-

pendencies using the identified causal relations;

(ii) Modeling value dependencies. We have demonstrated the use of fuzzy graphs [42]

and their algebraic structure [43] for modeling the strengths of value dependen-

cies and capturing the imprecision associated with those dependencies;

(iii) Integrating value dependencies into requirement selection. We have proposed an IP

model which maximizes the overall value (OV) of a selected subset of require-

ments, where the strengths of the value dependencies are taken into account.

We show the practicality and validity of the IP method of DARS (DARS-IP) by study-

ing a real-world software project and carrying out simulations. We also demonstrate

why software vendors should take care with value dependencies among requirements,

and how to employ DARS-IP to assist decision makers to comprehend the results, thus

raising the following research questions.

(RQ1) What is the impact of using DARS-IP on the overall value of software prod-

ucts?

(RQ2) What is the relationship between maximizing the accumulated value and

overall value of software products?

(RQ3) How effective is DARS-IP in mitigating the selection deficiency problem?

(RQ4) What is the impact of value dependencies on the performance of DARS-IP?

(RQ5) How practical is DARS-IP for software projects?

Chapter 1. Introduction 7

1.2.2 The Integer Linear Programming Method (DARS-ILP)

The ILP method of DARS (DARS-ILP) extends the DARS-IP method mainly by taking

into account the qualities of value dependencies. In this regard, the dependency iden-

tification technique in DARS-IP is enhanced by (a) considering both the strengths and

qualities of value dependencies and (b) using a formal significance test to understand

the accuracy of the value dependencies.

Moreover, the modeling technique proposed in DARS-ILP is extended to capture not

only the strengths but also the qualities of value dependencies, thus allowing for rea-

soning about simultaneous positive and negative impacts of the explicit and implicit

value dependencies among the requirements. We have further presented a modified

version of the Floyd-Warshall algorithm [44] capable of efficiently computing the pos-

itive and negative influences of the requirements on the values of each other based on

the algebraic structure of fuzzy graphs.

Last but not least, the ILP model of the DARS-ILP method integrates both positive

and negative value dependencies into software requirement selection by taking into

account the qualities of value dependencies. The optimization model of the DARS-ILP

method is linear and scalable to software projects with large number of requirements.

The main components of the proposed DARS-ILP method are as follows:

(i) Identification of value dependencies. We have contributed a dependency identifi-

cation technique that uses the Eells measure of causal strength [45] to estimate

the strengths of value dependencies from causal relations among user prefer-

ences. The accuracy of such relations is determined by a formal significance

test. Identified dependencies will then be used to infer implicit dependencies

among requirements. We have further demonstrated using a Latent Multivari-

ate Gaussian model [46] to generate samples of user preferences when collecting

sufficient data on user preferences is not practical [46];

(ii) Modeling value dependencies. We have demonstrated the use of fuzzy graphs [42]

and their algebraic structure [43] for modeling the strengths and qualities of

value dependencies and capturing the imprecision associated with those depen-

dencies. On this basis, value dependencies are modeled by fuzzy relations [21,

Chapter 1. Introduction 8

47, 26, 48], where strengths of those dependencies are captured by their corre-

sponding fuzzy membership functions;

(iii) Integrating value dependencies into requirement selection. At the heart of DARS-

ILP is an integer linear programming model, which maximizes the Overall Value

(OV) of a selected subset of requirements, where user preferences and value de-

pendencies identified from those preferences are taken into account. We have

further contributed a Blind ILP model for DARS-ILP, which aims to mitigate the

risk of value loss posed by ignoring the positive influences of the requirement

on the values of each other. The Blind model does not require any information

about value dependencies, thus it is, specially, useful for the projects in which

the identification of the value dependencies is not practical.

We show the practicality and validity of the ILP method of DARS (DARS-ILP) by

studying a real-world software project. We also demonstrate why software vendors

should take care with value dependencies among requirements, and how to employ

DARS-ILP to assist decision makers to comprehend the results, thus raising the fol-

lowing research questions about the ILP method of DARS.

(RQ6) How effective is DARS-ILP with respect to considering value dependen-

cies?

(RQ6.1) How similar are solutions found by DARS-ILP to those found by the exist-

ing requirement selection methods?

(RQ6.2) What is the impact of using DARS-ILP on the overall value of software

products?

(RQ6.3) What is the relationship between maximizing the accumulated value, ex-

pected value, and overall value of software products?

(RQ6.4) How effective is DARS-ILP in mitigating the value loss caused by ignoring

(selecting) requirements with positive (negative) influence on the values of

selected requirements?

We moreover, carry out extensive simulations to evaluate the performance of the

DARS-ILP method in providing higher overall value and mitigating the value loss by

Chapter 1. Introduction 9

carrying out simulations for different levels of value dependencies, negative value de-

pendencies, precedence dependencies, negative precedence dependencies, and bud-

get. The following research questions thus will be raised.

(RQ7) How is the performance of DARS-ILP affected by changing value depen-

dencies, precedence dependencies and project constraints?

(RQ7.1) What is the impact of the value dependencies on the performance of DARS-

ILP in the presence of various budget constraints?

(RQ7.2) What is the impact of the negative value dependencies on the performance

of DARS-ILP in the presence of various budget constraints?

(RQ7.3) What is the impact of the precedence dependencies on the performance of

DARS-ILP in the presence of various budget constraints?

(RQ7.4) What is the impact of the negative precedence dependencies on the perfor-

mance of DARS-ILP in the presence of various budget constraints?

(RQ7.5) What is the impact of the negative value dependencies in highly, moder-

ately, or loosely interdependent value dependency graphs?

(RQ7.6) What is the impact of the negative precedence dependencies in highly or

loosely interdependent precedence dependency graphs?

Finally, the following research questions pertaining to the scalability of the DARS-

ILP are answered through applying DARS-ILP to a real-world software project and

carrying out simulations.

(RQ8) What is the overhead of identification and modeling of value dependencies

in DARS-ILP?

(RQ9) How scalable is the ILP model of DARS-ILP?

(RQ9.1) Is the ILP model scalable to large scale requirement sets?

(RQ9.2) What is the impact of budget on runtime?

(RQ9.3) What is the impact of precedence dependencies on runtime?

(RQ9.4) What is the impact of value dependencies on runtime?

Chapter 1. Introduction 10

1.2.3 The Mixed Integer Programming Method (DARS-MIP)

The DARS-ILP method, which is an enhanced version of the DARS-IP method, miti-

gates the value loss by taking into account the influences of the requirements on the

values of each other. But the effectiveness of the DARS-ILP method in mitigating the

value loss diminishes when the budget is tight or there exist several precedence rela-

tions among the requirements.

The reasons is that requirements with significant positive influences on the values of

the selected requirements may have to be ignored due to their conflicts with other re-

quirements or the lack of sufficient budget. Analogously, requirements with negative

influences on the values of the requirements may need to be selected when they are

required by other selected requirements. Hence, a value loss caused by ignoring (se-

lecting) requirements with positive (negative) influences on the values of the selected

requirements is foreseeable in DARS-ILP.

To mitigate this, we have proposed allowing for partial selection (satisfaction) of the

requirements when that can be tolerated in software projects. When partial selec-

tion is integrated into DARS, requirements with positive (negative) influences on the

values of the selected requirements can be partially selected rather than being fully

ignored (selected). This can mitigate the value loss caused by ignoring (selecting) the

requirements with positive (negative) influences. In doing so, we have presented a

mixed integer programming (MIP) method referred to as the MIP method of DARS,

i.e. DARS-MIP. Partial selection of requirements may or may not be tolerated and

DARS-MIP handles both scenarios.

The optimization model of the DARS-MIP method finds an optimal investment policy

that mitigates the value loss by allowing for increasing (decreasing) the investment

in the requirements with significant positive (negative) influences on the values of

the partially/fully selected requirements. The investment in each requirement ri is

bounded by the lower-bound cost and the upper-bound cost of ri. The upper-bound

cost of ri is estimated by the stakeholders and then RELAX-ed, using a RELAX-ation

technique proposed as part of a fuzzy method referred to as Prioritization and Partial

selection (PAPS), to determine the lower bound cost of ri.

Chapter 1. Introduction 11

The optimization model of the DARS-MIP method is linear and, therefore, scalable

to software projects with large number of requirement. Application of the DARS-

MIP method to real-world software projects is now under way as part of our ongoing

research to further investigate the effectiveness of the method in mitigating the value

loss in real-world settings.

1.2.4 The Society-Oriented DARS Method (DARS-SOC)2

The DARS-IP, DARS-ILP, and DARS-MIP methods focus on the economic values of

software requirements and the dependencies among those values. However, there are

several types of human values i.e. Social Values, as discussed in [38], with long term

impacts on the society that are also important and need to be considered in software

engineering activities including the requirement selection [37].

To address this, we have presented a society-oriented method for DARS, i.e. DARS-

SOC, that accounts for the social values in dependency-aware software requirement

selection. The proposed DARS-SOC method comprises two main optimization mod-

els, with different characteristics, that allow for embedding the social values and the

dependencies among those values into software requirement selection. We have fur-

ther demonstrated the use of fuzzy graphs and their algebraic structure for capturing

different types of social values in modeling value dependencies.

Our proposed DARS-SOC method relies on the dependency identification component

of DARS-ILP for identification of the economic value dependencies. But, to the best of

our knowledge, there are not any techniques in the present literature for identification

of social value dependencies. These dependencies may be identified manually for

small requirement sets. But development of more sophisticated techniques is needed

for automated identification of social value dependencies in medium to large scale

requirement sets. This is, however, beyond the scope of this thesis.

2The author of the thesis has recently joined the Society-Oriented Software Design project at the Fac-
ulty of Information Technology, Monash University.

https://www.monash.edu/it/our-research/graduate-research/scholarship-funded-phd-research-projects/projects/society-oriented-software-design

Chapter 1. Introduction 12

1.3 Publications and Thesis Outline

This thesis is the outcome of research carried out during the PhD candidature at

Flinders university. During the period, the main results of the thesis have been pub-

lished (or submitted for publication) in high quality peer reviewed journals and con-

ferences. These publications are as listed below.

(P1) D. Mougouei and D. M. W. Powers. Modeling and selection of interdependent

software requirements using fuzzy graphs. International Journal of Fuzzy Systems,

19(6):1812–1828, Dec 2017

(P2) D. Mougouei. Factoring requirement dependencies in software requirement se-

lection using graphs and integer programming. In Proceedings of the 31st IEEE/ACM

International Conference on Automated Software Engineering, pages 884–887. ACM,

2016

(P3) D. Mougouei, D. M. W. Powers, and A. Moeini. An integer linear programming

model for binary knapsack problem with dependent item values. In W. Peng,

D. Alahakoon, and X. Li, editors, AI 2017: Advances in Artificial Intelligence: 30th

Australasian Joint Conference, Melbourne, VIC, Australia, August 19–20, 2017, Pro-

ceedings, pages 144–154. Springer International Publishing, Cham, 2017

(P4) D. Mougouei and D. M. W. Powers. The synergistic knapsack problem. Fuzzy

Optimization and Decision Making, Under Review

(P5) D. Mougouei, D. M. Powers, and A. Moeini. Dependency-aware software release

planning. In Proceedings of the 39th International Conference on Software Engineering

Companion, pages 198–200. ACM, 2017

(P6) D. Mougouei and D. M. W. Powers. An integer programming method for consid-

ering value-related dependencies in software requirement selection. Information

and Software Technology, Under Review

(P7) D. Mougouei and D. M. W. Powers. Dependency-aware software release plan-

ning using fuzzy graphs and integer programming. Engineering Applications of

Artificial Intelligence, Under Review

Chapter 1. Introduction 13

(P8) D. Mougouei and D. M. W. Powers. Dependency-aware software release plan-

ning through mining user preferences. Expert Systems with Applications, Under

Review

(P9) D. Mougouei, H. Shen, and A. Babar. Partial selection of agile software require-

ments. International Journal of Software Engineering & Its Applications, 9(1):113–126,

2015

(P10) D. Mougouei and D. M. W. Powers. Paps: A scalable framework for prioritiza-

tion and partial selection of security requirements. International Journal of Ap-

proximate Reasoning, Under Review

(P11) D. Mougouei and M. K. Yeung. Visibility requirements engineering for com-

mercial websites. International Journal of Software Engineering & Its Applications,

8(8):11–18, 2014

(P12) D. Mougouei and D. M. W. Powers. Partial selection of software requirements.

International Conference on Computer Science, Engineering and Applications, Accepted

(P13) D. Mougouei and D. M. W. Powers. An integer programming model for embed-

ding social values into software requirement selection. International Conference

on Computer Science, Engineering and Applications, Accepted

(P14) D. Mougouei and D. M. W. Powers. Gotm: a goal-oriented framework for captur-

ing uncertainty of medical treatments. Intelligent Systems Conference (IntelliSys)

2018, Accepted

Table 1.1 shows the relations between the publications during the PhD candidature

((P1)-(P14)) and different sections of the thesis.

The remainder of this thesis is organized as follows. Chapter 2 gives background

information on the concepts discussed in the thesis. In this regard, the most important

approaches to optimization and mathematical programming are briefly discussed. We

further highlight the importance of considering value dependencies in the existing

literature.

Chapter 1. Introduction 14

TABLE 1.1: Sections of the thesis and their corresponding publications (P1)-(P14).

Section (P1) (P2) (P3) (P4) (P5) (P6) (P7) (P8) (P9) (P10) (P11) (P12) (P13) (P14)
Chapter 1: Introduction
Section 1.2
Chapter 2: Background and Related Work
Section 2.2
Chapter 3: The IP Method of DARS
Section 3.2
Section 3.3
Section 3.4
Section 3.5
Chapter 4: The ILP Method of DARS
Section 4.2
Section 4.3
Section 4.4
Section 4.5
Section 4.6
Section 4.7
Chapter 5: The MIP Method of DARS
Section 5.2
Section 5.3
Chapter 6: The Society-Oriented Method of DARS
Section 6.2
Section 6.3
Chapter 7: Conclusions
Section 7.3

The chapter continues with a critical review of the main existing software require-

ment selection works with respect to considering aspects of value dependencies. The

detailed review of these works is presented in publications (P1)-(P8). We have fur-

ther characterized the existing requirement selection works by their corresponding

selection methods: (i) Binary Knapsack (BK); (ii) Precedence-Constrained Binary Knapsack

(PCBK); (iii) Stochastic Binary Knapsack (SBK); or (iv) Increase-Decrease.

Chapter 3 presents the IP method of DARS (DARS-IP). The DARS-IP method includes

three main components: (i) identification of value dependencies; (ii) modeling value

dependencies; and (iii) integrating value dependencies into requirement selection.

The chapter focuses on considering the impacts of value dependencies on the value

of an optimal subset of the requirements during a selection process. This is achieved

by considering both the existence and the strengths of value dependencies in require-

ment selection. The main results of this chapter are presented in publications (P1) and

(P2). Moreover, the chapter answers (RQ1)-(RQ5).

Chapter 1. Introduction 15

Chapter 4 presents the ILP method of DARS (DARS-ILP), which improves the DARS-

IP method by integrating the qualities of value dependencies into the main compo-

nents of DARS-IP. The optimization models proposed in DARS-ILP, are linear and scal-

able to software projects with large number of requirements. The main results of this

chapter, as presented in publications (P1)-(P8), answer the research questions (RQ6)-

(RQ9). The generalized form of the optimization models presented in DARS-ILP are

further used in publications (P3) and (P4) to address the Binary Knapsack Problem with

Dependent Item Values (BKP-DIV) [3], and the Synergistic Knapsack Problem (SKP) [4].

Chapter 5 presents the MIP method of DARS, which allows for partial selection (sat-

isfaction) of requirements to further reduce the risk of value loss in software projects.

The DARS-MIP method pursues the policy of partially selecting requirements rather

than ignoring them or postponing them to the future. Moreover, a fuzzy method is

presented to assist partial selection of the requirements. The main contributions of

this chapter are presented in publications (P3), (P4), and (P6)-(P12).

Chapter 6 presents the Society-Oriented method of DARS (DARS-SOC), which not

only takes into account the economic values of the requirements but also accounts for

the social values of those requirements. The proposed method embeds social values

into software requirement selection using two different ILP models. The chapter fur-

ther demonstrates the use of fuzzy graphs for modeling the dependencies among the

social values of the requirements. The contents of this chapter are mainly presented in

publications (P3), (P4), (P6), (P8), (P10), (P12), and (P13).

Chapter 7 summarizes the main contributions of the thesis and concludes the results

while highlighting the assumptions and the limitations of using DARS for software

requirement selection. We have further discussed a selection of ongoing and future

research in this chapter.

16

Chapter 2

Background and Related Work 1

2.1 Background

There are different concepts used in this thesis in the area of combinatorial optimiza-

tion [49], mathematical programming [50], and software requirement selection [32].

Hence, we have briefly introduced some of these concepts in this section. A summary

of the key concepts/terms used in the thesis such as the Integer Programming (IP),

Integer Linear Programming (ILP), Mixed Integer Programming (MIP), and requirement

dependency can be seen in the Word-Cloud [51] of Figure 2.1.

FIGURE 2.1: The word-cloud of the thesis.

1Review of the existing requirement selection works, with regard to considering value dependencies,
is presented in publications (P1)-(P8).

Chapter 2. Background and Related Work 3 17

2.1.1 Combinatorial Optimization

Combinatorial optimization problems involve a finite number of alternatives: given

a ground set E = {e1, ..., en} and an objective function f : 2E ! IR, the set of feasi-

ble solutions S ⇢ 2E is finite. In a maximization problem the optimization method

searches for an optimal solution s⇤ 2 S such that 8s 2 S, f (s⇤) � f (s). Analogously,

for a minimization problem the optimization method aims to find an optimal solution

s⇤ 2 S such that 8s 2 S, f (s⇤)  f (s). To illustrate one amongst the most famous

examples of combinatorial optimization problems, let us consider the Binary Knapsack

Problem (BKP) [52]. The classical BKP2 is concerned with finding an optimal subset

of items with the highest value while respecting the capacity of the knapsack. In this

case the ground set is the set E of items in the knapsack while S, is formed by all sub-

sets of E whose sizes do not exceed the capacity of the knapsack, i.e. feasible subsets.

Hence, an optimal solution for the classical binary knapsack problem is a feasible sub-

set of E whose accumulated value is the highest among all other feasible subsets in S:

8s 2 S f (s⇤) � f (s). f (s) gives the accumulated value of each subset.

Exact Optimization Methods

Exact optimization methods provide the optimum for any instance of the problem.

Classical methods for exactly solving a combinatorial optimization problem are mainly

Branch-And-Bound (appeared in the literature as early as in 1966 [53]) and Dynamic Pro-

gramming (appeared in the literature as early as in 1952 [54]). These methods are based

on the well-known concept of Divide-And-Conquer and thus are categorized as divide-

and-conquer methods. Hence, both branch-and-bound and dynamic programming

methods solve a problem by combining the solutions to its subproblems.

The main difference between these methods however resides in the way they partition

a problem into subproblems. For a given optimization problem a branch-and-bound

algorithm finds an optimal solution to the problem by dividing the problem into in-

dependent subproblems, solving the subproblems, and outputting as the optimal so-

lution the best feasible solution found during the search.

2http://www.mathcs.emory.edu/ cheung/Courses/323/Syllabus/DynProg/knapsack1.html

http://www.mathcs.emory.edu/~cheung/Courses/323/Syllabus/DynProg/knapsack1.html

Chapter 2. Background and Related Work 4 18

On the contrary, the dynamic programming method can be used with a smaller set of

optimization problems and more specifically those problems that can be divided into

subproblems that are not independent [55]. In this context, a dynamic programming

method avoids repeatedly solving common subproblems. That is, each subproblem is

solved only once and then its optimal solution is saved in a table.

Approximation Methods

Approximation methods provide solutions of a certain optimality, for any instance

of the problem, which means that the distance from the exact optimal solution is

known. In other words, approximation methods provide a suboptimal solution with

an approximation-guarantee on the optimality of the solution in a sense providing

the best that can be done to give a guarantee of optimality for the solutions. Hence,

approximation methods are specifically used to solve intractable combinatorial opti-

mization problems for which finding the exact optimal solution is nearly infeasible.

The techniques used for finding approximate optimal solutions for computationally

intractable problems are often the ones used for finding exact optimal solutions for

tractable problems in a polynomial time. These techniques include:

• local search;

• greedy algorithms;

• sequential algorithms;

• linear programming and relaxation-based algorithms;

• dynamic programming algorithms;

• random algorithms.

More information on designing approximation algorithms can be found in [56].

Heuristics and Metaheuristics

Heuristic algorithms are developed to deal with hard combinatorial optimization prob-

lems of large scale for which finding the exact optimal solution is not computationally

Chapter 2. Background and Related Work 5 19

tractable nor can an approximation with a reasonable guaranteed distance from the

optimal be designed. Heuristics are employed in such circumstances to provide a so-

lution that is “good enough”. The heuristic methods are used to overcome the speed

and resource limitations of exact and approximation methods. They however, sacri-

fice the quality of the solutions in favor of the speed and effective resource usage. In

some cases in fact the heuristics may completely fail to provide a reasonable solution

while in several cases they may find solutions near optimal.

Hence, heuristics do not guarantee optimality nor do they provide any guaranteed

distance from the real optimal solution. In other words, there is no general frame-

work behind the design of heuristics that is able to find good quality solutions for all

problems. The effectiveness of a heuristic method relies on its ability to adapt to a par-

ticular realization, avoid entrapment at local optima, and exploit the basic structure of

the problem [55].

Metaheuristics, however, are more generic variations of heuristics. The most frequently

used metaheuristics include, but are not limited to, simulated annealing [57], evolu-

tionary techniques such as genetic algorithms [58], ant colony optimization [59], scat-

ter search and path-relinking [60], iterated local search [61], variable neighborhood

search [62], and GRASP (Greedy Randomized Adaptive Search Procedures) [63].

One of the interesting definitions for metaheuristics is given in [64]: “A metaheuristic

is an iterative master process that guides the operations of subordinate heuristics to

efficiently produce high-quality solutions. It may manipulate a complete (or incom-

plete) single solution or a collection of solutions at each iteration. The subordinate

heuristics may be high (or low) level procedures, or a simple local search, or just a

construction method.”

Moreover, in a metaheuristics bibliography by Osman et al. [65] they define meta-

heuristics as: “metaheuristic is formally defined as an iterative generation process

which guides a subordinate heuristic by combining intelligently different concepts for

exploring and exploiting the search space learning strategies are used to structure in-

formation in order to find efficiently near-optimal solutions.”

Chapter 2. Background and Related Work 6 20

Meta heuristics, which are general purpose heuristics designed for solving familiar-

ities of optimization problems have long been used in many different fields of engi-

neering. In software engineering however, using meta heuristic algorithms is mainly

known as Search-Based Software Engineering [66].

2.1.2 Mathematical Programming

The term “programming" in the context of mathematical programming means plan-

ning activities that consume resources and/or meet requirements. Mathematical pro-

gramming is mostly known as a technique used by decision makers to mathemat-

ically formulate optimization problems and develop optimal values of the decision

variables. However, the application of mathematical programming goes beyond this.

Three of the common sets of usages of mathematical programming are highlighted

in [67]:

(i) Building problem insight: Mathematical programming helps thoroughly understand

the problem and state a problem carefully as the model builder is required to specify

decision variables, constraints, the objective function, data constraints and constraints

that capture relationships among variables.

(ii) Numerical Mathematical Programming: Numerical usages of mathematical program-

ming include prescription of solutions, prediction of consequences, demonstration

of sensitivity, and solution of systems of equations. Although the most commonly

thought of application of mathematical programming is to find the optimal decisions,

there are many other applications. For instance, there are mathematical programming

models, which have been never used to find the optimal decision, rather these models

are employed to demonstrate what happens if certain factors are changed [67].

(iii) Solution Algorithm Development: Even though this is not a usage, mathematical

programming models are often used by researchers as a framework for developing

solution algorithms for solving problems. Research is also done on new formulation

techniques and their ability to appropriately capture real-world problems.

Chapter 2. Background and Related Work 7 21

Linear Programming

Linear programming, as it is known today, emerged out of the empirical programming

needs of the Air Force during World War II. The general linear programming problem

was devised by George B. Dantzig who also developed the Simplex method [68] of

solving linear programming problems around 1947 [69].The method is still the most

general and powerful-enough way of solving a large class of real-world problems that

can be formulated as linear programming problems. The simplex method yields an

exact optimal solution of the problem in a finite number of iterative steps. Soon af-

ter World War II, the great potentialities of linear programming were realized and

there followed throughout the business, engineering, and scientific world, a rapidly

expanding interest in the areas and methods of optimization [69].

A Linear Programming (LP) problem is a mathematical problem, where decision vari-

ables are selected so that a linear function of the decision variables is optimized while

satisfying a simultaneous set of linear constraints. If the objective function or any of

the constraints are not linear the problem is not characterized as LP anymore. Non-

linear optimization problems are generally more difficult to solve as they are of higher

computational complexity.

Each LP problem comprises several essential components. First, there are n different

unknowns E = {e1, ..., en} for which a decision variable xi denotes the amount un-

dertaken of its respective ei. Second is a linear objective function which gives the total

objective value Ân
i=1 xivi for a feasible solution. To be feasible however a solution must

simultaneously satisfy all the constraints that the problem of concern is subject to. All

constraints of a linear programming problem must also be linear.

To demonstrate this consider one of the most common optimization problems referred

to as the binary knapsack problem (BKP) [52]. The classical BKP is concerned with

finding an optimal subset of items with the highest value (Ân
i=1 xivi), which is a linear

objective, while respecting the capacity of the knapsack (C). In this case the ground

set is the set E of items in the knapsack while S, is formed by all subsets of E whose

sizes do not exceed the capacity of the knapsack (Ân
i=1 xisi), i.e. feasible subsets. This

is specified by (2.2), which is also a linear constraint.

Chapter 2. Background and Related Work 8 22

An optimal solution for the classical binary knapsack problem hence is a feasible sub-

set of E whose accumulated value is the highest among all other feasible subsets in

S: 8s 2 S f (s⇤) � f (s). f (s) gives the accumulated value of each subset as given

by (2.1)-(2.3). In these equations si and vi denote size and value of the item ei.

Maximize
n

Â
i=1

xivi (2.1)

Subject to
n

Â
i=1

xisi  C (2.2)

xi 2 {0, 1}, i = 1, ..., n (2.3)

The binary knapsack problem hence is a linear programming (LP) problem since the

objective function (2.1) as well as constraints (2.2) and (2.3) are all linear.

Integer Programming and Mixed Integer Programming

An integer program is a mathematical model in which all decision variables are in-

tegers. When at least one of the variables is relaxed to be a real number the model

is referred to as a mixed integer programming model. It is worth mentioning that in

some texts [70] the term integer programming comprises both of the aforementioned

models while the term Pure Integer Programming is used to specify integer program-

ming models with all integer variables.

It is clear that integer programming models and mixed integer programming models

can be linear or nonlinear depending on the formulation of the objective function and

constraints of the optimization models. For instance the classical formulation of the

binary knapsack problem is a linear optimization problem with integer, in this case 0

and 1, variables xi. Hence, the problem is an integer linear programming problem.

Convex Optimization

There are several real-world problems which cannot be formulated as a linear pro-

gramming (LP) problem. However, they can still be solved efficiently if they can be

formulated as a convex optimization problem [39] of form (2.4)-(2.5).

Chapter 2. Background and Related Work 9 23

Minimize f0(x) (2.4)

Subject to f0(x)  bi, i = 1, ..., n (2.5)

The objective functions f0, ..., fm : IRn ! IR in (2.4) are all convex, meaning that they

satisfy fi(ax+ by)  a fi(x)+ b fi(y) for all x, y 2 IRn and all a, b 2 IR with a+ b = 1,

a � 0, b � 0.

For an optimization problem to be convex, the objective function must be convex, all

inequality constraints, as in (2.5), must also be convex, and all equality constraints (if

any) must be linear. It is clear that the linear programming problem is a special case

of a convex problem where the objective function is linear.

Unfortunately, there is no general formula for solving convex optimization problems.

But, as with linear programming problems, there are very effective methods of solv-

ing them. Interior-point methods work very well in practice, and in some cases can

be proved to solve the problem to a specified accuracy with a number of operations

bounded with polynomial of the problem dimensions [39]. There are techniques and

tools such as IBM CPLEX that effectively solve different classes of convex optimization

problems [39].

2.1.3 Value Dependencies among Software Requirements

It is widely recognized that the requirements of a software project influence the values

of each other [19, 71, 20, 18]. Such influences are described in the literature as value

dependencies [21, 22], CVALUE dependencies [21], Increases/Decreases_value_of depen-

dencies [18, 23], and Positive/Negative value dependencies [24].

We use the term value dependencies consistently throughout this thesis. Identified ex-

plicitly or implicitly among software requirements, value dependencies are known to

be of the most common types of requirement dependencies [21, 72].

Chapter 2. Background and Related Work 10 24

FIGURE 2.2: Dahlstedt’s requirement dependency model.

FIGURE 2.3: Pohl’s requirement dependency model.

Chapter 2. Background and Related Work 11 25

TABLE 2.1: Types of requirement dependencies.

Type Description Example
Intrinsic Dependencies

Constrain [23, 73]
One requirement is a constraint of another requirement.
This kind of dependency can represent crosscutting
relationships among requirements.

• r1 : System should respond in 3 seconds.
• r2 : Users search books.
• r1 constrains r2.

Precede [23],
Precondition [73],
Requires [18]

If A precedes B, A is a precondition of B.
• r1 : System authenticates users.
• r2 : Users search books.
• r1 precedes r2.

Be_similar_to [23],
Similar [73],
Similar_to [18]

If two requirements share similar data information
or complement each other

• r1: Adding a new book record.
• r2: Modifying an old book record.
• r1 is similar to r2.

Conflicts [23, 73],
Conflicts_with [18] One requirement negatively impacts another requirement.

• r1: Increasing security.
• r2: Enhancing performance.
• r1 conflicts with r2.

Be_exception_of [23] One requirement describes an exceptional event
of another requirement.

• r1 : A user inputs a null user name.
• r2 : System authenticates user.
• r1 is an exception of r2.

Evolve_into [23],
Replaces [73],
Based_on [73]

A requirement evolves into a new version
This is used to trace and compare
different versions of requirement documents.

• r1 : Uploading reports using a desktop.
• r2 : Uploading reports using PDA.
• r1 evolves into r2.

Refines [23, 73],
Refines_to [18] One requirement is refined to more specific requirements.

• r1 : a valuer submits a valuation report.
• r2 : a valuer submits a report through website.
• r1 is refined as r2.

Additional Cost/Value Dependencies

Increase/Decrease_cost_of
[23, 18]

The implementation of one requirement increases/decreases
the implementation cost of another requirement.

• r1: No response-time should exceed 5 seconds.
• r2: Search for books.
• r1 increases the cost of r2.

Increase/Decrease_value_of
[23, 18]

The implementation of one requirement increase/decrease
the value of another requirement.

• r1 : Users listen to music on a mobile phone.
• r2 : Users browse photos on a mobile phone.
• r1 Increases the value of r2.

Based on the well-known dependency models from Dahlstedt [18] (Figure 2.2) and

Pohl [73] (Figure 2.3), Zhang et al. have classified requirement dependency types into

two categories [23]. The first category, referred to as intrinsic dependencies, reflect

structural/semantic information of requirements. In a practical context, intrinsic de-

pendencies may be used to discover some of the cost-related or value dependencies

among the requirements of software projects [23]. In other words, cost-related and

value dependencies may coexist with intrinsic dependencies. The second category

of dependencies, referred to as additional cost or value dependencies, is introduced to

capture cost-related or value dependencies in the absence of intrinsic dependencies.

Table 2.1 lists requirement dependencies and their corresponding examples as given

in Zhang’s categorization [23].

Explicit value dependencies can be identified through pairwise comparisons among

software requirements, which is a complex process [21]. However, several techniques

have been devised [21, 74, 75] to reduce this complexity with varying degrees of ef-

ficiency. Based on a study [21] by Carlshamre et al., identification of independent i.e.

singular requirements, scanning for similar requirements, and identification of highly

dependent requirements substantially reduce the effort required for identification of

requirement dependencies [21]. Nonetheless, manual identification of value depen-

dencies still remains difficult in practice and prone to human error.

Chapter 2. Background and Related Work 12 26

r1r2

r3r4

+

�+

�

FIGURE 2.4: Value dependencies in Example 2.1

These can be mitigated by automating the dependency identification through exploit-

ing the historical data about a software product as will be discussed in Chapter 3 and

Chapter 4. Implicit value dependencies may also exist among requirements. Identi-

fying these dependencies may be even more difficult than finding explicit value de-

pendencies as such implicit or indirect dependencies are more difficult to trace among

requirements by the experts. This further underpins the importance of using auto-

mated techniques and proper modeling to reason about implicit value dependencies.

We exploit the algebraic structure of fuzzy graphs for modeling value dependencies

and reasoning about implicit value dependencies as will be discussed in Chapter 3 and

Chapter 4. Implicit value dependencies hence can be inferred from properly modeled

explicit value dependencies. Example 2.1 discusses explicit and implicit value depen-

dencies in a typical money transfer system [76] characterized by a signed directed

graph of Figure 2.4 [77].

Example 2.1. Consider a money transfer system with a set of identified requirements

R = {r1 : transfer money, r2 : enhance confidentiality, r3 : enhance performance, r4 :

encrypt data}. As given by Figure (2.4), requirements r2 : enhance confidentiality and r3 :

enhance performance positively influence the value of requirement r1 : transfer money.

Hence, r2 and r3 are said to be value dependencies of r1. In other words, the value of

r1 depends on the presence of r2 and r3 in the money transfer system. Requirement

r4 : encrypt data positively influences the value of r2 : enhance confidentiality while it

negatively influences the value of r3 : enhance performance as encryption and perfor-

mance are conflicting objectives in software products [78]. Thus, it is clear that r4 has

an implicit positive influence on r1 in one way (r1, r2, r4) while it negatively influences

Chapter 2. Background and Related Work 13 27

the value of r1 in another way (r1, r3, r4) [79]. Thus, both implicit value dependencies

(r1, r2, r4) and (r1, r3, r4) can simultaneously [79] exist. This example shows that: (a)

a software requirement can implicitly influence the value of another requirement and

(b) a requirement can influence the value of another requirement both positively and

negatively.

Moreover, as observed by Carlshamre et al. [21] requirement dependencies in general

and value dependencies in particular are fuzzy [21] in the sense that the strength of

requirement dependencies are imprecise and vary from large to insignificant in the

context of real-world projects [80, 20, 26, 26, 81].

2.2 Related Work

It is widely recognized that the requirements of a software projects influence the val-

ues of each other [19, 71, 20, 18]. Such influences are described in the literature as

value dependencies [21, 22, 23, 24]. Value dependencies are fuzzy relations [21] with

varying strengths (e.g. weak, moderate, strong) and qualities (positive or negative)

which are imprecise and hard to specify [21, 2] in real-world software projects. Hence,

software requirement selection methods should consider the qualities and strengths

of explicit and implicit value dependencies while taking into account the imprecision

of those dependencies.

Moreover, Precedence Dependencies such as Requires [18] and Conflicts-With [73], also

have value implications. For instance, a requirement ri requires (conflicts-with) rj

means that ri cannot give any value if rj is ignored (selected). Hence, it is also im-

portant to consider the value implications of precedence dependencies in software

requirement selection. On this basis, we have characterized the following criteria for

evaluating the existing software requirement selection works based on how they con-

sider different aspects of value dependencies.

(C1) Taking into account explicit value dependencies.

(C2) Taking into account implicit value dependencies.

(C3) Taking into account qualities (positive or negative) of value dependencies.

Chapter 2. Background and Related Work 14 28

(C
1):

Explic
it

valu
e-re

late
d dependencies

(C
2):

Im
plic

it
valu

e-re
late

d dependencies

(C
3):

Qualit
ies of valu

e-re
late

d dependencies

(C
4):

Stre
ngth

s of valu
e-re

late
d dependencies

(C
5):

Dire
ctio

ns of valu
e-re

late
d dependencies

(C
6):

Valu
e im

plic
atio

ns of pre
cedence dependencies

(C
7):

Auto
m

ate
d id

entifi
catio

n of valu
e dependencies

0

20

40

60

80

100

10

2
7

10

0

81

10%
R

eq
u

ir
em

en
ts

el
ec

ti
on

m
et

h
od

s

FIGURE 2.5: Percentages of the existing requirement selection meth-
ods that address the criteria (C1)-(C7).

(C4) Taking into account strengths of value dependencies.

(C5) Taking into account directions of value dependencies.

(C6) Taking into account value implications of precedence dependencies.

(C7) Automated identification of value dependencies.

It can be seen in Figure 2.5 that the majority of the existing requirement selection works

(around 81%), reviewed in this thesis, address the criterion (C6) by taking into account

value implications of precedence dependencies while only around 10% of the existing

Chapter 2. Background and Related Work 15 29

19%

64%

7.5%

7.5%
2%

BK

PCBK

SBK

Unlimited Increase-Decrease

Pairwise Increase-Decrease

1

FIGURE 2.6: Percentages of the existing requirement selection works that are
based on the BK, PCBK, SBK, or Increase-Decrease methods.

works account for explicit value dependencies (address criterion (C1)). This figure re-

duces even further to around 2% for works that consider implicit value dependencies

(address criterion (C2)).

Another important criterion for evaluating the requirement selection works, with re-

gard to considering value dependencies and their aspects, is (C3): taking into account

the quality of value dependencies. That is to consider if requirements positively or

negatively influence the values of each other. This criterion is addressed by around

7% of the main requirement selection works.

Although around 10% of the main requirement selection works account for strengths

of value dependencies and therefore address (C4), none of them captures the direc-

tions of those dependencies (not addressing (C5)). Also, requirement selection works

that consider the strengths of value dependencies undermine the criterion (C7) by

relying on manually estimating the values of subsets of the requirements as demon-

strated in Figure 2.5. This, however, limits the practicality of such methods as will be

discussed in detail in Section 2.2.3.

Depending on their mathematical formulation the existing software requirement se-

lection works are based on one of the four main categories of the Binary Knapsack (BK),

Precedence-Constrained Binary Knapsack (PCBK), Stochastic Binary Knapsack (SBK), and

Increase-Decrease methods as will be explained in the following subsections.

Chapter 2. Background and Related Work 16 30

TABLE 2.2: Addressing the criteria (C1)-(C7) regarding different aspects of value dependencies
by different selection methods and their corresponding works from the literature.

Selection method Works from the literature (C1) (C2) (C3) (C4) (C5) (C6) (C7)
BK [82, 83, 84, 28, 85, 86, 87, 88] NO NO NO NO NO NO NO

PCBK method

[89, 71, 36, 16, 90, 29, 91, 92, 93, 94, 95]
[96, 97, 98, 99, 100, 101, 102, 103, 30, 104, 105]
[106, 25, 107, 108, 109]

NO NO NO NO NO YES NO

SBK [32, 33, 34] NO NO NO NO NO YES NO

Increase-Decrease
[22, 36, 19] (pairwise) YES NO YES YES NO YES YES
[35] (unlimited) YES YES NO YES NO YES YES

We further review the Oregon Trail Knapsack Problem (OTKP) [110], which is an at-

tempt to consider value dependencies in the general problem of binary knapsack with

dependent item values [3]. This method has not been used by any of the existing re-

quirement selection works. But, it is worth discussing as it shows the importance of

the problem of concern and the complexities of solving that problem.

Figure 2.6 shows percentages of the existing requirement selection works that are

based on the BK, PCBK, SBK, or Increase-Decrease methods. Also, Table 2.2 lists these

methods and their corresponding works from the literature. The selection methods

and their corresponding works from the literature are compared in Table 2.2 based on

the criteria (C1)-(C7).

2.2.1 The Binary Knapsack Method

The binary knapsack (BK) method is solely based on the classical formulation of the

binary knapsack problem [111, 21] as given by (2.6)-(2.8). Let R = {r1, ..., rn} be a set

of identified requirements, where 8ri 2 R (1  i  n), vi and ci in (2.6)-(2.8) denote

the value and the cost of ri respectively. Also, b in (2.7) denotes the available budget.

Maximize
n

Â
i=1

vixi (2.6)

Subject to
n

Â
i=1

cixi  b (2.7)

xi 2 {0, 1}, i = 1, ..., n (2.8)

Chapter 2. Background and Related Work 17 31

A decision variable xi specifies whether requirement ri is selected (xi = 1) or not

(xi = 0). The objective of BK method as given by (2.6) is to find a subset of R that

maximizes the accumulated value of a selected requirements (Ân
i=1 vixi) while entirely

ignoring the value dependencies as well as the precedence dependencies among the

requirements [82, 83, 84].

As demonstrated in figure 2.5, the binary knapsack (BK) method does not satisfy any

of the criteria of considering value dependencies as it entirely ignores those depen-

dencies. As shown in Figure 2.6, 19% of the main requirement selection works in the

existing literature are based on the BK method.

2.2.2 The Precedence-Constrained Binary Knapsack Method

The precedence-constrained binary knapsack (PCBK) method, enhances the BK method

by adding (2.12) to the optimization model of the BK method to account for prece-

dence dependencies. A positive (negative) dependency from a requirement rj to rk

is denoted by xj  xk (xj  1� xk) in (2.12). Also, the decision variable xi denotes

whether a requirement ri is selected (xi = 1) or not.

Maximize
n

Â
i=1

vixi (2.9)

Subject to
n

Â
i=1

cixi  b (2.10)

xi 2 {0, 1}, i = 1, ..., n (2.11)
8
>><

>>:

xj  xk if rj positively depends on rk

xj  1� xk if rj negatively depends on rk, j 6= k = 1, ..., n
(2.12)

However, when the PCBK method is used for requirement selection, value dependen-

cies either have to be formulated as precedence relations (as in the PCBK method used

in Chapter 3), or be ignored (as in the PCBK method used in Chapter 4).

Chapter 2. Background and Related Work 18 32

When value dependencies are formulated as precedence constraints, however, all de-

pendencies are treated as binary (0/1) relations and consequently a requirement can-

not be selected even in the presence of a sufficient budget unless all of its dependent

requirements are selected. This makes the PCBK method prone to the selection defi-

ciency problem (SDP) [2] as explained earlier. As a result of the SDP, any increase in

the number of dependencies would dramatically depreciate the accumulated value of

selected requirements [22]. Therefore the SDP can severely impact the effectiveness of

the PCBK method. In one study, Chen et al. [22] demonstrated that a 2% increase in

the number of precedence dependencies would lead to almost a 10% decrease in the

accumulated value of the optimal subset.

The SDP occurs if the condition of (2.13) holds. The dependency set D in (2.13) spec-

ifies the explicit dependencies among a set of requirements R = {r1, ..., rn}, where R

is partitioned into two distinct subsets: (i) an optimal subset O ✓ R (selected require-

ments); and (ii) an excluded set Õ ✓ R (ignored requirements) such that O \ Õ = ∆.

9 ri, rj 2 Õ : (ri, rj) 2 D,(Â
rk2O

ck) + ci  b (2.13)

(Â
rk2O

ck) + ci + cj > b

It is clear that when value dependencies are ignored, only value implications of the

precedence dependencies (C6) such as requires [18] and conflicts-with [73] can be cap-

tured by the PCBK method. The majority (around 64%) of the main requirement se-

lection works are based on this variation of the PCBK method as shown in Figure 2.6.

Hence, the term “PCBK method” in this thesis, except in Chapter 3, refers to the varia-

tion of the PCBK method that ignores value dependencies. To demonstrate the impact

of SDP on requirement selection, however, we use the other variation of the PCBK

method, which models value dependencies as precedence relations in Chapter 3.

One may suggest considering some of the stronger value dependencies as precedence

constraints. The effectiveness of such method is arguable as it may still be prone to

SDP depending on the ratio of the strong value dependencies and also the definitions

Chapter 2. Background and Related Work 19 33

of the strong and weak dependencies. Moreover, such analysis requires identification

of value dependencies and their strengths, that has not been addressed by any of the

existing works based on the PCBK method as shown in Table 2.2.

2.2.3 The Increase-Decrease Method

The Increase-Decrease selection method considers value dependencies among require-

ments through estimating the amount of the increased (decreased) values, which re-

sult from selecting different subsets of requirements. There are two different variations

of the Increase-Decrease method in the existing literature.

The first variation of the Increase-Decrease method, referred to as the Unlimited Increase-

Decrease method, as presented by Akker et al. [35] and given in (2.14)-(2.17) relies on

estimating the values of the requirement subsets of unlimited sizes ({2, ..., n} for n

requirements).

In (2.14)-(2.17), for each subset sj 2 S : {s1, ..., sm}, m  2n, with nj requirements, the

difference between the estimated value of sj (wj) and the accumulated value of the

requirements in sj (Ârk2sj
vk) is considered when computing the value of the selected

requirements. yj in (2.14) specifies whether a subset sj is realized (yj = 1) or not

(yj = 0). Also, constraint (2.16) ensures that yj = 1 only if 8rk 2 sj, xk = 1.

Maximize
n

Â
i=1

vixi +
m

Â
j=1

(wj � Â
rk2sj

vk) yj (2.14)

Subject to njyj  Â
rk2sj

xk (2.15)

n

Â
i=1

cixi  b (2.16)

xi, yj 2 {0, 1}, i = 1, ..., n, j = 1, ..., m (2.17)

The Unlimited Increase-Decrease method is complex and prone to human error as it

relies on manual estimations for requirement subsets [2]. These estimations may get

as complex as O(2n) for n requirements.

Chapter 2. Background and Related Work 20 34

The second variation of the Increase-Decrease method [22, 36, 19] referred to as the

Pairwise Increase-Decrease method, enhances the Unlimited Increase-Decrease method

by limiting the estimations to pairs of requirements, as given in (2.18)-(2.23), thus re-

ducing the complexity of the estimations to O(n2).

Maximize
n

Â
i=1

vixi +
n

Â
i=1

n

Â
j=1

xixjwi,j (2.18)

Subject to
n

Â
i=1

cixi  b (2.19)

yij  xi (2.20)

yij  xj (2.21)

yi,j � xi + xj � 1 (2.22)

xi, yi,j 2 {0, 1}, i, j = 1, ..., n (2.23)

This complexity however cannot be tolerated for software projects with medium to

large number of requirements. Moreover, relying on pairwise estimations results in

ignoring implicit value dependencies as the directions of dependencies are not speci-

fied. For instance, consider requirements R : {r1, r2, r3} with the positive value depen-

dencies from r1 to r2 and from r2 to r3.

An implicit positive value dependency from r1 to r3 can be inferred. An Increase-

Decrease model, however, fails to capture this even if pairwise estimations identify

that the value of r1 AND r2 (r2 AND r3) as a pair is higher than the accumulated value

of r1 and r2 (r2 and r3). Hence, if no explicit value dependency is found between r1

and r3 the influence of r3 on the value of r1 will be ignored.

Finally, both the Unlimited and Pairwise Increase-Decrease methods rely on manual

estimations for requirement subsets [2] and therefore they are prone to human error.

This can be mitigated to some extent by repeating the estimations by different experts.

But on the other hand, repeating the estimations introduces more complexity to the

estimation process.

Chapter 2. Background and Related Work 21 35

2.2.4 The Stochastic Binary Knapsack Method

The stochastic binary knapsack (SBK) requirement selection method maximizes the

expected value of a requirement subset based on the formulation of the stochastic

knapsack problem [112] as given by (2.24). In this equation, E(vi) denotes the expected

value of a requirement ri.

The work [32] for instance optimizes the expected value of a software product at dif-

ferent risk levels, where risk is defined as the summation of the covariances of the

values of the requirements as given by (2.25). In this constraint, cov(vi, vj) specifies

covariance of the vi and vj and l denotes the tolerable risk level.

Risk is used in the SBK method to promote more diversified solutions (requirement

subsets) through minimizing or limiting the variance of the value of the selected sub-

set of requirements. This is achieved by preferring requirement subsets with negligi-

ble or negative linear correlations among requirements over requirement subsets with

positive correlations among requirements. The reason is that positively correlated

requirements increase the value of Ân
j=1 xixjcov(vi, vj) while negatively correlated re-

quirements decrease the value of Ân
j=1 xixjcov(vi, vj) which respects (2.25). Minimiz-

ing or limiting the variance, therefore, results in choosing more diversified subsets of

requirements.

Such diversification results in selecting variety of requirements that satisfy certain

classes of users while may not be suitable to other users. This may help reduce the

risk of value loss through diversification as most users will like some features of the

software. But it may also result in choosing (ignoring) requirements that negatively

(positively) influence the values of each other, thus reducing user satisfaction of re-

quirements and resulting in value loss in another way.

Hence, requirement selection works such as [32, 33, 34], which are based on minimiz-

ing the variance of the value of the selected requirements, may result in value loss

through selecting requirements that negatively influence the values of each other or

ignoring requirements which positively influence the values of other requirements.

In other words, enhancing diversification may conflict with reducing the value loss

caused by ignoring (selecting) positive (negative) value dependencies of requirements.

Chapter 2. Background and Related Work 22 36

Maximize
n

Â
i=1

xiE(vi) (2.24)

Subject to
n

Â
i=1

n

Â
j=1

xixjcov(vi, vj)  l (2.25)

n

Â
i=1

xici  b (2.26)

xi 2 {0, 1}, i = 1, ..., n (2.27)

Moreover, there are even problems with using (2.25) for the purpose of diversification

(reducing the risk of value loss) in [32, 33, 34], which have been extensively discussed

in the portfolio optimization literature [113, 114]. To mention a few, optimization

methods based on covariance can only capture linear correlations ignoring non-linear

correlations even if they are significant.

Also, by using (2.25) one is assuming the values of the requirements are jointly nor-

mally distributed. This assumption has been repeatedly violated in real-world invest-

ment problems such as in the area of portfolio optimization [115, 113, 114]. Further-

more, there is not any research in (to the best of our knowledge) to have suggested

that values of software requirements are jointly normally distributed.

To summarize, as given by Table 2.2, software requirement selection works based on

the SBK method, which constitute around 7.5% of the main requirement selection

works, are the same as the works based on the PCBK method as far as considering as-

pects of value dependencies is concerned. That is, those requirement selection works

only satisfy criterion (C6) by considering the value implications of precedence depen-

dencies.

Maximize
n

Â
i=1

xiE(vi) (2.28)

n

Â
i=1

xici  b (2.29)

xi 2 {0, 1}, i = 1, ..., n (2.30)

Chapter 2. Background and Related Work 23 37

In this thesis (2.28)-(2.30) specify the optimization model of the SBK method. In other

words, we do not consider the constraint (2.25) as discussing diversification is beyond

the scope of this thesis.

2.2.5 The Oregon Trail Knapsack Problem

Burg et al. [110] presented a variation of the knapsack problem with dependent item

values [3] referred to as the Oregon Trail Knapsack Problem (OTKP), which was in-

spired from the Oregon Trail computer game, where players are asked to imagine

preparing for a trek across the Oregon Trail. In order to make it across country, the

travelers need to get good value for the supplies they purchase. They have a given

amount of money to spend, and the weight of their supplies is bounded by the capac-

ity of their wagon.

On this basis the formulation of the OTKP offered by Burg et al. [110] imposes cost

and weight limits, defines the value of each item by a value function that allows for

value of an item type to depend on the presence or absence of another item type in

the knapsack. Hence value of an item type may be constant, or it may decrease for

instance as more than one item of that type is taken. The rational behind this is that:

one does not need an infinite number of items of a certain type, and thus they diminish

in value as you take more of them.

More formally, the OTKP is formulated as given by (2.31)-(2.34), where xj is an integer

bounded by kj while w and c denote the weight and cost limits respectively. Also,

f j(vj, xj, xdj) is the value function of type j, in which vj is a constant value of the item j

without considering the dependencies among item types and dj gives the index of the

type upon which the value of xj depends.

An array of constant indices d1, ..., dn thus, captures the dependencies among the item

types. Also, xdj is a boolean variable with xdj = 1 when at least one item of type dj is

selected and we have xdj = 0 when no item of type dj is in the knapsack. uj gives the

upper-bound for the number of items of type j.

Chapter 2. Background and Related Work 24 38

Maximize
n

Â
i=1

fj(vj, xj, xdj) (2.31)

n

Â
i=1

xiwi  w (2.32)

n

Â
i=1

xici  c (2.33)

xj 2 {0, ..., uj} j = 1, ..., n (2.34)

Burg et al. [110] combined constraint propagation techniques and domain pruning

with classic branch and bound approaches to solve the optimization model of (2.31)-

(2.34) with the value functions in (2.35)-(2.37), (2.35)-(2.37), and (2.41)-(2.43).

The value function (2.35)-(2.37) ensures that items of type j have value only if (a) at

least one item of type dj is present in the knapsack (xdj > 0 ! kdj = 1). kdj specifies

if condition (a) is satisfied or not. The problem with this value function is that it does

not consider strengths of value dependencies by treating all dependencies as binary

relations. Moreover, (2.35)-(2.37) only capture the influences of items types on the

values of items ignoring the fact that the values of items may also be impacted by the

items of the same type to different extents.

f j(vj, xj, xdj) = xjvjkdj (2.35)
8
>><

>>:

kdj = 1 if xdj > 0

kdj = 0 if xdj  0
(2.36)

xj 2 {0, 1}, j = 1, ..., n (2.37)

Equations (2.35)-(2.37) give the second value function proposed by Burg et al. [110],

in which the value of an item j diminishes at the rate of a by selecting multiple items

of its type. This value function enhances (2.35)-(2.37) by considering the strengths of

value dependencies. But, it assumes that choosing multiple items of a certain type

equally impact the value of an item of the same type. Such impact nevertheless, can

be either positive or negative. But the function only considers negative impacts.

Chapter 2. Background and Related Work 25 39

The function further ignores that choosing items of other types may also impact the

values of the items of a certain type. Again, (2.38)-(2.40) only capture the influences of

items types on the values of items ignoring that the individual items also impact the

values of each other to various degrees.

f j(vj, xj, xdj) = kdj

xj�1

Â
i=0

aivj (2.38)
8
>><

>>:

kdj = 1 if xdj > 0

kdj = 0 if xdj  0
(2.39)

xj 2 {0, 1}, j = 1, ..., n (2.40)

The third value function proposed by Burg et al. [110] is given in (2.41)-(2.43), where

the value associated with xj type j items is diminished by a factor of b when type dj

items are present in the solution. In particular, the value of type j items can be reduced

to zero when b = 1. This value function enhances (2.38)-(2.40) by considering the

impact of selecting items of a different type on the value of an item of a specific type.

But, this value function does not consider positive impacts of item types on the values

of items. Moreover, the function in its present from does not account for the impact of

multiple item types on the value of an item.

f j(vj, xj, xdj) = xjvj � kdj bxjvj (2.41)
8
>><

>>:

kdj = 1 if xdj > 0

kdj = 0 if xdj  0
(2.42)

xj 2 {0, 1}, j = 1, ..., n (2.43)

In all the three value functions the problem of not considering value dependencies

among individual requirements can be solved by considering each requirement as a

different type. But, that will exponentially increase the complexity of any optimization

model that adopts such value functions. Due to all the problems discussed above, the

optimization model of the OTKP is not suitable to requirement selection problem.

40

Chapter 3

The Integer Programming Method

(DARS-IP)1

3.1 Introduction

Owing to budget constraints, it is hardly if ever feasible to satisfy the entire set of the

requirements of a software project [16]. Therefore, requirement selection is inevitable

to find an optimal subset of the requirements with the highest value while respect-

ing the project constraints [80, 116, 117, 118, 119]. This problem, also known as the

Next Release Problem (NRP) [16], is mathematically formulated by the Binary Knapsack

Problem (BKP) [3, 82, 83].

Based on the BKP formula, the existing requirement selection works aim to maximize

the Accumulated Value (AV) of an optimal subset of the requirements on the assumption

that the value of an optimal subset is derived by accumulating the estimated values

of the selected requirements [111]. However, several studies have argued that this

assumption does not hold when interdependencies exist among requirements [120,

35, 111, 2].

The reason is that software requirements affect the values of each other due to the

value dependencies among them [18, 120, 24]. As a result, the requirements excluded

from the optimal subset may impact the values of the selected requirements. On the

other hand, value dependencies can be of various strengths in the context of real-

world projects [80, 20, 5].

1The contents of this chapter are presented in publications (P1) and (P2).

Chapter 3. The Integer Programming Method (DARS-IP)2 41

In other words, values of requirements can weakly, moderately, or strongly depend

on each other [27]. Therefore, it is important to consider both the existence and the

strengths of the value dependencies [71, 111] when considering the impacts of the

requirements on values of each other during a requirement selection.

However, the existing requirement selection methods either assume that requirements

are independent [82, 83, 84, 85, 87] or they do not consider the strengths of those de-

pendencies [16, 33, 89, 90, 91, 92, 93, 97, 100, 101, 102, 108, 106] thus either ignoring

value dependencies or treating them as binary (0/1) relations by formulating the value

dependencies as precedence constraints of the BKP formula.

It is clear that ignoring value dependencies is not acceptable as it may result in a value

loss as discussed earlier. Hence, we focus on the possibility of treating value depen-

dencies as binary relations to demonstrate the problems caused by such an approach.

When value dependencies are treated as binary relations and formulated as prece-

dence constraints, excluding a requirement from the optimal subset may result in ig-

noring all requirements whose values depend on the excluded requirement even if

the budget allows for their implementation [22]. This problem is referred to as the

Selection Deficiency Problem (SDP) [2].

As a result of the SDP, any increase in the number of the dependencies results in a

significant reduction in the accumulated value of the optimal subset of the require-

ments [22]. Hence, the SDP can severely impact the efficiency of the selection methods

that ignore the strengths of value dependencies.

This chapter presents an Integer Programming (IP) method, presented in publication

(P1), for dependency-aware requirement selection. The proposed method, referred to

as DARS-IP, focuses on considering the impacts of value dependencies on the value of

an optimal subset of the requirements during a selection process. We have achieved

this through integrating the existence and the strengths of value dependencies into

requirement selection. In doing so, we have made three main contributions. First, we

have demonstrated the use of the algebraic structure of fuzzy graphs [43, 121, 42, 122]

to model value dependencies and their strengths.

Chapter 3. The Integer Programming Method (DARS-IP)3 42

Second, we have presented an Integer Programming (IP) model for requirement selec-

tion which maximizes the Overall Value (OV) of an optimal subset while mitigating the

selection deficiency problem [2]. The proposed model not only considers value depen-

dencies among requirements but, more importantly, explicitly factors in the strengths

of those dependencies. We have proposed overall value as an alternative to accumu-

lated value to be used as the measure of optimality. The overall value of an optimal

subset (selected requirements) considers the impacts of value dependencies on the

value of that subset.

Finally, we have proposed mining preferences of (potential) users, as presented in

(P1), to identify both the existence and the strengths of explicit value dependencies

among requirements of a software project. Explicit value dependencies are used to

infer implicit value dependencies based on the algebraic structure of fuzzy graphs.

The validity and practicality of the work are verified through carrying out several

simulations and studying a real-world software. The results of our simulations as

well as a real-world case study have consistently shown that: (a) the IP method of

DARS (DARS-IP) can properly capture the strengths of value dependencies among re-

quirements during a selection process while mitigating the selection deficiency prob-

lem (SDP); (b) DARS-IP always maximizes the overall value of an optimal subset; (c)

maximizing the overall value and the accumulated value of an optimal subset can be

conflicting objectives [123] as maximizing one may depreciate the other.

The remainder of this chapter is organized as follows. Section 3.2 gives the details of

modeling value dependencies by fuzzy graphs. Section 3.3 introduces our proposed

formulation of overall value of an optimal subset as well as our proposed integer pro-

gramming model.

The results of our simulations as well as the studying of a real-world software project

are discussed in Section 3.4. Section 3.5 then, presents a promising technique for the

automated identification of value dependencies among software requirements. Fi-

nally, Section 3.6 concludes the chapter with a summary of the main contributions

and future improvements/extensions.

Chapter 3. The Integer Programming Method (DARS-IP)4 43

3.2 Modeling Value Dependencies using Fuzzy Graphs

This section highlights our main reasons for choosing fuzzy graphs and then gives the

details of employing fuzzy graphs for modeling value dependencies among software

requirements.

3.2.1 Why Fuzzy Graphs?

Since their introduction in 1973 [124], fuzzy graphs have been widely adopted in de-

cision making and expert systems [42] as they contribute to more accurate models by

taking into account imprecision in real-world problems [124].

Fuzzy graphs have been demonstrated to be particularly useful in capturing the im-

precision of dependency relations in software projects [47, 26]. Ngo-The et al., ex-

ploited fuzzy graphs for modeling dependency satisfaction in release planning [47]

and capturing imprecision of coupling dependencies among requirements [26].

Moreover, Wang et al. [27] adopted linguistic fuzzy terms to capture the variances of

strengths of dependencies among software requirements. Hence, we use fuzzy graphs

and their algebraic structure for modeling value dependencies among requirements

and computing the influences of the requirements on the values of each other.

3.2.2 Fuzzy Requirement Interdependency Graphs

Based on the definition of fuzzy graphs [42], a Fuzzy Requirement Interdependency Graph

(FRIG) is defined as a directed fuzzy graph G = (R, D, µ, r) in which a non-empty set

of the identified requirements R = {r1, ..., rn} constitute the graph nodes and a set of

the (explicit) value dependencies D = R⇥ R among the software requirements form

the edges of the graph.

A dependency (ri, rj) 2 D means that the value of ri explicitly depends on the selection

of rj. The membership function r : R ⇥ R ! [0, 1] denotes the strengths of explicit

value dependencies (membership degrees of edges) in D. r(x, y) = 0 denotes the

absence of an explicit dependency from x to y.

Chapter 3. The Integer Programming Method (DARS-IP)5 44

The fuzzy membership function µ specifies the membership degree of requirements

in R. Requirements of a software are either identified and listed in its requirement

set R or they are unidentified. Hence, we have 8ri 2 R : µ(ri) = 1. Therefore,

G = (R, D, µ, r) can be abbreviated as G = (R, D, r).

On the other hand, for G = (R, D, µ, r) to be a fuzzy graph, the following condition

must hold at all times. 8(x, y) 2 D : r(x, y)  µ(x) ^ µ(y), where ^ denotes fuzzy

AND operator (taking infimum). In other words, for r(x, y) to denote a fuzzy relation,

the membership degree of a relation, also referred to as the strength of the relation

(dependence) must not exceed the membership degree of either of the two elements.

Theorem (3.1) shows that a FRIG always satisfies the condition of fuzzy graphs.

Proposition 3.1. If G = (R, D, r) is a FRIG, (8ri 2 R : µ(ri) = 1) then G always satisfies

the condition 8(ri, rj) 2 D : r(ri, rj)  µ(ri) ^ µ(rj).

Proof. G = (R, D, r) is a FRIG)

a) 8ri 2 R : µ(ri) = 1) 8(ri, rj) 2 D : µ(ri) ^ µ(rj) = in f imum(µ(ri), µ(rj)) = 1,

b) r : R⇥ R! [0, 1]) 8ri, rj 2 R, r(ri, rj)  1.

Therefore, 8(ri, rj) 2 D : r(ri, rj)  µ(ri) ^ µ(rj).

Example 3.1. Consider the FRIG E1 = (R, D, r) in Figure 3.1 with R = {r1, r2, r3, r4}

and D = {(r1, r2),(r2, r3),(r3, r4), (r4, r2)}. The membership function r specifies the

strengths of explicit dependencies in D as r(r1, r2)= 0.6, r(r2, r3) = 0.4, r(r3, r4) = 0.8,

r(r4, r2) = 0.2. The dependency (r1, r2) specifies that the value of r1 explicitly depends

on r2 and r(r1, r2) gives the strength of the dependency (0.6).

Value dependencies in a FRIG can be either explicit or implicit. Explicit dependencies

are identified by the edges of the graph whereas implicit dependencies are inferred

from explicit dependencies. For instance, an implicit dependency (r1, r2, r3) from r1 to

r3 in Figure 3.1 is inferred from explicit dependencies (r1, r2) and (r2, r3).

Chapter 3. The Integer Programming Method (DARS-IP)6 45

r1

r2

r3

r4

r(
r 1,

r 2)
=

0.6

r(r2 , r3) =
0.4

r(
r 3,

r 4)
=

0.8

r(r4, r2) = 0.2

FIGURE 3.1: FRIG of Example 3.1

Definition 3.1. Value Dependencies, and their Strengths. Let P = {p1, p2, ..., pm} be the

set of all value dependencies from node r0 to node rn in a FRIG G = (R, D, r). A

value dependency pi 2 P is defined as a sequence of distinct nodes (r0, ..., rn) such that

r(ri�1, ri) > 0, where 1  i  n and n � 1 is the length of the dependency.

The strength of a value dependency pi 2 P is derived by (3.1) that is the strength of

the pi equals the strength of the weakest explicit value dependency (edge) in pi.

8pi = (r0, ..., rn) 2 P, r(pi) =
n̂

j=1
r(rj�1, rj) (3.1)

In a FRIG G = (R, D, r) with m dependencies from a requirement r0 to rn, the overall

strength of all dependencies from r0 to rn is denoted as r•(r0, rn) and calculated by

(3.2). Based on (3.2), the overall strength of all dependencies from r0 to rn equals the

strength of the strongest dependency among all the m dependencies from r0 to rn. It

is clear that we have r•(r0, rn) = r(r0, rn) when there is no implicit value dependency

from r0 to rn.

Chapter 3. The Integer Programming Method (DARS-IP)7 46

r•(r0, rn) =
m_

i=1
r(pi) (3.2)

To measure the level of value dependencies in a FRIG G = (R, D, r) with n require-

ments (|R| = n) and k explicit value dependencies among those requirements (|D| =

k), we define the Level Of Interdependency (LOI) as given in (3.3).

LOI(G) =
k

nP2
, nP2 =

n!
(n� 2)!

(3.3)

Example 3.2. For the FRIG E1 in Example 3.1, with n = 4, k = 4 we have LOI(E1) =
4

4P2
=

4
12

= 0.33.

It is also worth mentioning that requirements of software projects may negatively in-

fluence the values of each other. For instance, a negative dependency from a require-

ment ri to a requirement rj means that the value of ri will be depreciated if rj is selected

with ri in an optimal subset. Such negative dependency nonetheless can be modeled

as a positive dependency from ri to r̄j where r̄j denotes ignoring rj (excluding rj from

an optimal subset). Hence, FRIGs can capture both positive and negative value de-

pendencies. Nevertheless, in this chapter we only focus on positive dependencies for

the sake of simplicity.

3.3 Integrating Value Dependencies into Selection

This section gives the details of integrating value dependencies into requirement se-

lection in the IP method of DARS (DARS-IP). To achieve this we present a measure

of value, referred to as Overall Value, which accounts for the impacts of value depen-

dencies on the economic value of a requirement subset. We further present the integer

programming model of the DARS-IP method, which optimizes the overall value of a

selected subset of requirements.

Chapter 3. The Integer Programming Method (DARS-IP)8 47

3.3.1 Overall Value of an Optimal Subset

During a selection process some of the requirements of a software project may be

excluded from the optimal subset. Due to the value dependencies among the require-

ments however, the excluded requirements may impact the values of the selected re-

quirements that depend on them. Equation (3.4) captures these impacts. For a FRIG

G = (R, D, r), O = {o1, ..., om} and Õ = {õ1, ..., õk} denote the selected and excluded

requirements respectively such that O ✓ R, Õ ✓ R : O \ Õ = ∆, O [Õ = R.

For all oi 2 O, Ii denotes the impact of the excluded requirements õj 2 Õ on the

value of oi. This impact is computed by taking supremum (fuzzy OR operator _) over

the strengths of all dependencies from oi to the excluded requirements in Õ. For an

excluded requirement õj 2 Õ then, the overall strength of all dependencies from oi to

õj is given by r•(oi, õj), which specifies the extent to which the value of oi relies on the

selection of õj (through all dependency paths from oi to õj) as derived by (3.2).

8oi 2 O, 8õj 2 Õ : Ii =
k_

j=1
(r•(oi, õj)) (3.4)

v0i = vi(1� Ii) (3.5)

OV = Â
oi2O

v0i = Â
oi2O

vi(1� Ii) (3.6)

As discussed earlier, the accumulated value (AV) of an optimal subset O is derived

by accumulating the estimated values of the selected requirements : Âoi2O vi, where

vi denotes the estimated value of oi. The overall value of O, denoted by OV, on the

other hand, is derived by accumulating the overall values of the selected requirements

as computed by (3.6). The overall value of O (Âoi2Ov0i) captures the impacts of value

dependencies as the overall value of each requirement oi 2 O (v0i) captures the impacts

of value dependencies on the value of that requirement as given by (3.5).

Chapter 3. The Integer Programming Method (DARS-IP)10 48

3.3.2 The Integer Programming Model of the DAR-IP Method

As discussed earlier, the optimization models of the BK and PCBK methods aim to

maximize the accumulated value of a requirement subset while ignoring value de-

pendencies. In contrast, the optimization model of the DARS-IP method maximizes

the overall value of a requirement subset by factoring in the impacts of requirements

on the values of the selected requirements. The IP model of the DARS-IP method is

given by (3.7)-(3.10). The model is single-objective.

In these equations, vi and ci denote the estimated value and cost of a requirement

ri respectively. Also, the boolean decision variable xi specifies whether ri is selected

(xi = 1) or ignored (xi = 0). Moreover, 0  Ii  1 is a real number specifying the

impact of the ignored requirements (xj = 0) on the value of a selected requirement.

Constraint (3.8) in the optimization model of DARS-IP ensures that the total cost of

the requirements does not exceed the budget limit b.

Maximize
n

Â
i=1

vixi(1� Ii) (3.7)

Subject to
n

Â
i=1

cixi < b (3.8)

0  Ii  1, i = 1, ..., n (3.9)

xi = {0, 1}, i = 1, ..., n (3.10)

The optimization model of DARS-IP, as given by (3.7)-(3.10), is convex [39] and there-

fore can be efficiently solved by the existing commercial solvers such as IBM CPLEX [40].

We have implemented, solved, and tested the optimization model of the DARS-IP

method using the Concert Technology and the JAVA API of IBM CPLEX [40]. The code

for this model is available in JAVA and OPL languages and can be obtained from the

website of DARS9.
9http://bcert.org/projects/dars

http://bcert.org/projects/dars

Chapter 3. The Integer Programming Method (DARS-IP)11 49

3.3.3 Examples of Requirement Selection

This section provides examples of requirement selection using the BK, PCBK, and

DARS-IP methods.

Example 3.3. Let Gp = (R, D, r) be a FRIG of a software project (Figure 3.2) with re-

quirement set R = {r1, r2, r3, r4} and explicit value dependencies D as in Figure 3.2

with strengths of r(r1, r2) = 0.4, r(r1, r3) = 0.8, r(r2, r4) = 0.3, r(r3, r1) = 0.8,

r(r3, r2) = 0.6, r(r3, r4) = 0.8, and r(r4, r3) = 0.2. The costs and values of the re-

quirements are specified by C = {c1 = 10, c2 = 10, c3 = 15, c4 = 10} and V = {v1 =

20, v2 = 10, v3 = 50, v4 = 10} respectively.

r1

r2

r3

r4

r(r3, r1) = 0.8

r(r3 , r2) =
0.6 r(r3, r4) = 0.8

r(
r 1,

r 2)
=

0.4

r(r1, r3) = 0.8

r(r2, r4) = 0.3

r(
r 4,

r 3)
=

0.2

FIGURE 3.2: FRIG of Example 3.3 (numbers are hypothetical).

TABLE 3.1: Overall strengths of the value dependencies in Example 3.3

r•(x, y) r1 r2 r3 r4

r1 1.0 0.6 0.8 0.8

r2 0.2 1.0 0.2 0.3

r3 0.8 0.6 1.0 0.8

r4 0.2 0.2 0.2 1.0

Chapter 3. The Integer Programming Method (DARS-IP)12 50

TABLE 3.2: Accumulated values, overall values, and accumulated
costs of the requirement subsets of Example 3.3

Subset AC AV OV Subset AC AV OV

s0 = {} 0 0 0 s8 = {r2, r3} 25 60 17
s1 = {r1} 10 20 4 s9 = {r2, r4} 20 20 16
s2 = {r2} 10 10 7 s10 = {r3, r4} 25 60 18
s3 = {r3} 15 50 10 s11 = {r1, r2, r3} 35 80 21
s4 = {r4} 10 10 8 s12 = {r1, r2, r4} 30 40 20
s5 = {r1, r2} 20 30 11 s13 = {r1, r3, r4} 35 80 36
s6 = {r1, r3} 25 70 14 s14 = {r2, r3, r4} 35 70 26
s7 = {r1, r4} 20 30 12 s15 = {r1, r2, r3, r4} 45 90 90

Example 3.4. Consider finding the optimal subset of requirements by the BK method.

Among all subsets of R in Table 3.2, the BK method recommends s6 = {r1, r3} as the

optimal subset with the highest accumulated value of AV = 70 and the accumulated

cost of AC = 25. Therefore we have O = {r1, r3}, Õ = {r2, r4}. In order to com-

pute the overall value of the optimal subset, we first calculate the impacts of excluded

requirements on the values of selected requirements based on (3.4). The impacts are

calculated based on the overall strengths of the value dependencies in Table 3.1.

The overall strengths of dependencies are calculated by (3.2) as explained earlier. For

instance, to compute the overall strength of the dependency from r4 to r2, dependen-

cies p1 = (r4, r3, r2) and p2 = (r4, r3, r1, r2) need to be considered. Based on (3.2),

the overall strength of the dependency is computed as: r•(r4, r2) = _((r(r4, r3) ^

r(r3, r2)), (r(r4, r3)^ r(r3, r1)^ r(r1, r2))) = _((0.2^ 0.6), (0.2^ 0.8^ 0.4)) = _(0.2, 0.2) =

0.2. The impacts then can be computed as I1 = _(r•(r1, r2), r•(r1, r4)) = 0.8, I3 =

_(r•(r3, r2), r•(r3, r4)) = 0.8. Finally, the overall value of the optimal subset O =

{r1, r3} is calculated as OV = v1 ⇥ (1� I1) + v3 ⇥ (1� I3) = 20⇥ 0.2 + 50⇥ 0.2 = 14

which is less than the overall value of s10. Therefore, the BK method does not neces-

sarily maximize the overall value of an optimal subset.

Example 3.5. Consider finding the optimal subset of requirements in Example 3.4

using the PCBK method, which finds a subset of requirements with the highest AV

respecting the budget (AC  25) and the precedence constraints among the require-

ments. We can derive a precedence constraints set PCS = {x1  x2, x1  x3, x2  x4,

x3  x1, x3  x2, x3  x4, x4  x3} from the dependency set D of Gp. Obviously there

Chapter 3. The Integer Programming Method (DARS-IP)13 51

is only one case that simultaneously satisfies both PCS and AC  25, which is the

empty set s0 = {} (x1 = x2 = x3 = x4 = 0) in Table 3.2 with AV = OV = 0. Hence,

none of the requirements can be implemented even though the budget is available for

implementing some of them. This is due to the selection deficiency problem (SDP) as

discussed before.

Example 3.6. Consider finding the optimal subset of requirements in Example 3.4 us-

ing the DARS-IP, which finds a subset of requirements with the highest overall value

while respecting AC  25. To do so, we first calculate the OV of all subsets of R

(steps of calculation were demonstrated for s6 in Example 3.4) as listed in Table 3.2.

Among all subsets of the requirements, s10 = {r3, r4} gives the highest overall value

of OV = 18 while the accumulated cost is within the budget, that is (AC  25). There-

fore, s10 = {r3, r4} will be selected as the optimal subset. s10 however, is not giving the

maximum accumulated value. s6 for instance, provides a higher AV.

3.4 Validation

Validity and practicality of the integer programming (IP) method of DARS are veri-

fied through carrying out several simulations (numerical studies) and studying a real-

world software project. In this regard the following research questions have been

answered about the proposed IP method.

(RQ1) What is the impact of using DARS-IP on the overall value of software prod-

ucts?

(RQ2) What is the relationship between maximizing the accumulated value and

overall value of software products?

(RQ3) How effective is DARS-IP in mitigating the selection deficiency problem?

(RQ4) What is the impact of value dependencies on the performance of DARS-IP?

(RQ5) How practical is DARS-IP for software projects?

Chapter 3. The Integer Programming Method (DARS-IP)14 52

3.4.1 Simulations (Numerical Studies)

Simulation Design

We compared the performance of DARS-IP against those of the BK and PCBK meth-

ods through carrying out simulations on requirements from two classic requirement

sets [125, 82, 83] from real-world projects of Ericssons Radio Access Network (RAN) and

Performance Management Recording (PMR) with 14 and 11 requirements respectively.

The estimated values and costs of the requirements of the RAN and PMR projects are

listed in Table 3.3.

TABLE 3.3: Estimated values and costs of requirements for RAN and PMR

Requirements RAN PMR

Value Cost Value Cost

r1 12 1 0 6

r2 6 2 6 5

r3 5 3 3 6

r4 7 4 11 19

r5 12 6 32 28

r6 16 11 20 4

r7 3 4 9 5

r8 3 6 4 7

r9 4 7 25 10

r10 5 12 9 3

r11 1 4 3 8

r12 1 6 � �
r13 21 23 � �
r14 3 10 � �

Simulation has been widely used for the purpose of evaluation in system analysis [126]

as well as the studies concerning requirement dependencies [27, 22]. Chen et al. [22]

for instance, proposed simulating requirement dependencies for analyzing the per-

formance of requirement selection methods. However, to the best of our knowledge,

there is no work in the existing literature which has studied the distribution of the

strengths of dependencies among software requirements. Hence, we simulate the

strengths of explicit value dependencies with uniformly distributed random numbers

in [0, 1] generated by the nextDouble() Method of the Class Random in Java [127].

Chapter 3. The Integer Programming Method (DARS-IP)15 53

The simulation process starts with construction of a fuzzy requirement interdepen-

dency graph (FRIG) with randomly generated strengths of explicit value dependen-

cies (edges of the graph) for a given level of interdependency (LOI2 [0, 1]). A range of

budgets (Budget= {1, 2, ..., 120}) will then be specified to examine the performance of

the selection methods in the presence of various budget constraints.

At the end of each simulation, an optimal subset of requirements will be generated by

each of the selection methods. Then the accumulated value and the overall value of

each optimal subset will be calculated and compared against those of the other selec-

tion methods. The simulation will be repeated for different levels of interdependency

(LOIs) among requirements. Simulations are carried out using the callable library

ILOG CPLEX 12.6.2 on a Windows machine with Core i7-2600 3.4 GHz processor and

16 GB of RAM.

Simulation Results

Figure 3.3 shows the results of our simulations. The x and y axes show the available

budget (Budget2 {1, ..., 120}) and the level of interdependency (LOI 2 {0, 0.1, ..., 1})

respectively. The z axis shows the percentage of the accumulated value (overall value)

of the optimal subset, which is the ratio of AV (OV) to the total accumulated value of

the requirements multiplied by 100.

Our simulation results consistently showed that the BK method maximized the ac-

cumulated value (AV) while DARS-IP maximized the overall value (OV) of optimal

subsets. Nevertheless, none of these methods simultaneously maximized both AV

and OV for an optimal subset. In other words, maximizing AV and OV demonstrated

to be conflicting objectives. This answers (RQ1) and (RQ2).

The results of our simulations also showed (Figure 3.3) that the effectiveness of the

PCBK method was severely impacted by the selection deficiency problem (SDP). In

other words, the PCBK method generated the lowest AV/OV unless in the presence of

a sufficient budget (Budget! 120) and/or a negligible level of interdependency (LOI

! 0). For LOI > 0.25 in both RAN and PMR requirement sets, almost no AV/OV was

Chapter 3. The Integer Programming Method (DARS-IP)16 54

0

0.5

10 20 40 60 80 100 120

0

20

40

60

80

100

LOI

Budget (relative)

AV
 (p

er
ce

nt
)

(a) Accumulated value of RAN

0

0.5

1
0 20 40 60 80 100 120

0

20

40

60

80

100

LOI

Budget (relative)

AV
 (p

er
ce

nt
)

(b) Accumulated value of PMR

0

0.5

1

020406080100120
0

20

40

60

80

100

LOIBudget (relative)

O
V

(p
er

ce
nt

)

(c) Overall Value of RAN

0

0.5

1

020406080100120
0

20

40

60

80

100

LOIBudget (relative)

O
V

(p
er

ce
nt

)

PCBK

BK
DARS-IP

(d) Overall value of PMR

FIGURE 3.3: Accumulated and overall values of RAN and PMR.

Chapter 3. The Integer Programming Method (DARS-IP)17 55

0 20 40 60 80 100 120
0

10

20

30

40

50

60

70

80

90

100

Budget (relative)

Va
lu

e
(p

er
ce

nt
)

(a) LOI = 0.8

0 20 40 60 80 100 120
0

10

20

30

40

50

60

70

80

90

100

Budget (relative)

Va
lu

e
(p

er
ce

nt
)

(b) LOI = 0.4

0 20 40 60 80 100 120
0

10

20

30

40

50

60

70

80

90

100

Budget (relative)

Va
lu

e
(p

er
ce

nt
)

(c) LOI = 0.2

0 20 40 60 80 100 120
10

20

30

40

50

60

70

80

90

100

Budget (relative)

Va
lu

e
(p

er
ce

nt
)

AV (BK)
OV (BK)
AV/OV (PCBK)
AV (DARS-IP)
OV (DARS-IP)

(d) LOI = 0.05

FIGURE 3.4: Sample simulation results for RAN requirements.

achieved by the PCBK method unless budget was available for all of the requirements

(b = Â14
i=1 ci = 99 for RAN).

It was, moreover, observed (Figure 3.3) that the DARS-IP mitigated the impact of the

SDP through considering the strengths of value dependencies. This answers (RQ3).

The BK method however was not subject to the SDP as it completely ignored depen-

dencies among requirements.

We further observed (Figure 3.3) that all of the selection methods performed equally

well when budget was available for all of the requirements to be implemented (Budget�

99 for RAN and Budget � 101 for PMR) or requirements were mutually independent.

Figure 3.4 and Figure 3.5 compare AV/OV achieved by the simulated selection meth-

ods for various levels of interdependencies among requirements of RAN and PMR

respectively. A dependency level of LOI = 0.8 implies that 80% of the explicit value

Chapter 3. The Integer Programming Method (DARS-IP)18 56

0 20 40 60 80 100 120
0

10

20

30

40

50

60

70

80

90

100

Budget (relative)

Va
lu

e
(p

er
ce

nt
)

(a) LOI = 0.8

0 20 40 60 80 100 120
0

10

20

30

40

50

60

70

80

90

100

Budget (relative)

Va
lu

e
(p

er
ce

nt
)

(b) LOI = 0.4

0 20 40 60 80 100 120
0

10

20

30

40

50

60

70

80

90

100

Budget (relative)

Va
lu

e
(p

er
ce

nt
)

(c) LOI = 0.2

0 20 40 60 80 100 120
0

10

20

30

40

50

60

70

80

90

100

Budget (relative)

Va
lu

e
(p

er
ce

nt
)

AV (BK)
OV (BK)
AV/OV (PCBK)
AV (DARS-IP)
OV (DARS-IP)

(d) LOI = 0.05

FIGURE 3.5: Sample simulation results for PMR requirements.

Chapter 3. The Integer Programming Method (DARS-IP)19 57

dependencies have non-zero strengths. The horizontal axis shows the available bud-

get and the vertical axis shows the percentage of the achieved AV/OV.

In almost every simulation, it was observed that for a given optimal subset O, AV of

O was smaller or equal to the OV of O. This is due to the fact that the overall value

of an optimal subset considers the impacts of value dependencies on the values of

requirements whereas the accumulated value of an optimal subset accumulates the

estimated values of selected requirements without considering value dependencies.

It was further observed that the gap between the overall value of an optimal subset

and its corresponding accumulated value (|AV-OV|) increased as the level of inter-

dependency (LOI) grew. The reason is that increasing the LOI increases the chances

that selected requirements explicitly depend on the excluded requirements which gen-

erally results in decreasing the overall value of the optimal subset (answer to (RQ4)).

The PCBK method, however, avoids choosing a requirement without its dependencies

being selected. Therefore, we have AV = OV for the PCBK method.

3.4.2 Case Study

To demonstrate the practicality of the DARS-IP and answer (RQ5), we performed se-

lection for 23 requirements of a messaging software product referred to as the Precious

Messaging System (PMS). We employed 5 stakeholders to estimate [90] the costs and

values of the requirements of the PMS. Each requirement ri was assigned an estimated

cost of ci 2 [1, 20] and an estimated value of vi 2 [1, 20] by different stakeholders. ci

and vi are real numbers.

Stakeholders then performed pairwise comparisons among requirements [21] to iden-

tify explicit value dependencies and estimate the strengths of those dependencies. A

dependency (ri, rj) was assigned a strength of r(ri, rj) 2 [0, 1] where r(ri, rj) = 0 and

r(ri, rj) = 1 denoted no dependency and a full dependency from ri to rj respectively.

The median of the estimated costs/values for each requirement ri was then computed

to account for the different opinions of the stakeholders. In a similar way, for each

Chapter 3. The Integer Programming Method (DARS-IP)20 58

explicit value dependency (ri, rj) the median of the 5 estimated strengths of that de-

pendency was computed to specify the strength of (ri, rj). Median was used as it is less

affected by the extreme opinions of stakeholders compared to the arithmetic mean.

Table 3.4 lists the estimated costs and values of the requirement of the PMS as well

as the strengths of explicit value dependencies among those requirements. The De-

pendency Vector of a requirement ri in Table 3.4 denotes the strengths of explicit value

dependencies from ri to other requirements of the PMS. Based on Table 3.4 and (3.3),

the level of interdependency is calculated for the requirements of the PMS as follows.

LOI(PMS) = 113
23P2

u 0.22.

TABLE 3.4: Estimated values, costs, and strengths of explicit value dependencies.

ID Value Cost Dependency Vector {r1, ..., r23}

r1 20 10 {0.0, 0.0, 0.0, 0.5, 0.3, 0.0, 0.6, 0.4, 0.0, 0.0, 0.0, 0.7, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.1, 0.0, 0.3}
r2 20 7 {1.0, 0.0, 0.0, 0.6, 0.6, 0.0, 0.6, 0.6, 0.0, 0.3, 0.3, 0.7, 0.0, 0.3, 0.0, 0.7, 0.0, 0.0, 0.0, 0.0, 0.2, 0.0, 0.8}
r3 6 1 {1.0, 0.0, 0.0, 0.5, 0.3, 0.0, 0.6, 0.0, 0.0, 0.0, 0.0, 0.7, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}
r4 17 10 {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.9, 0.0, 0.0, 0.4, 0.0, 0.7, 0.0, 0.0, 0.0, 0.0, 0.2, 0.0, 0.0}
r5 3 12 {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.5, 0.0, 0.0, 0.0, 0.0, 0.2, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}
r6 20 20 {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6, 0.0, 0.3, 0.3, 0.4, 0.0, 0.0, 0.0, 0.0, 0.7, 0.4, 0.0, 0.0, 0.0, 0.0, 0.0, 0.8}
r7 15 6 {0.0, 0.0}
r8 8 14 {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.4, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}
r9 20 15 {0.0, 0.7, 0.0, 0.0, 0.0, 0.7, 0.0, 0.3, 0.0, 0.0, 0.8, 0.2, 0.4, 0.0, 0.2, 0.7, 0.0, 0.0, 0.0, 0.0, 0.2, 0.0, 0.0}
r10 16 10 {0.0, 0.7, 0.0, 0.0, 0.3, 0.7, 0.0, 0.3, 0.0, 0.0, 0.0, 0.3, 0.4, 0.0, 0.0, 0.2, 0.0, 0.0, 0.0, 0.0, 0.2, 0.6, 0.0}
r11 20 4 {0.0, 0.0, 0.0, 0.4, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.4, 0.0, 0.0, 0.0, 0.2, 0.0, 0.0}
r12 10 6 {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.5, 0.5, 0.8, 0.0, 0.0, 0.0, 0.1, 0.4, 0.0, 0.0, 0.0, 0.0, 0.0, 0.4, 0.0}
r13 8 5 {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.8, 0.0, 0.0, 0.0, 0.1, 0.4, 0.0, 0.0, 0.0, 0.0, 0.1, 0.6, 0.0}
r14 5 12 {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.8, 0.0, 0.0, 0.0, 0.0, 0.8, 0.0, 0.0, 0.0, 0.0, 0.8, 0.0, 0.0}
r15 8 15 {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.8, 0.0, 0.0, 0.0, 0.0, 0.8, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}
r16 10 3 {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.8, 0.0, 0.0, 0.0, 0.0, 0.0, 0.5, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}
r17 15 12 {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.8, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.5, 0.0, 0.0, 0.0, 0.0, 0.0}
r18 10 3 {0.0, 0.0}
r19 20 20 {1.0, 0.3, 0.0, 0.7, 0.5, 1.0, 0.6, 0.5, 1.0, 0.6, 0.4, 0.0, 0.0, 0.1, 0.8, 0.8, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.8}
r20 20 20 {1.0, 0.3, 0.0, 0.7, 0.5, 1.0, 0.6, 0.5, 1.0, 0.6, 0.4, 0.0, 0.0, 0.1, 0.8, 0.8, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.8}
r21 15 12 {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.8, 0.0, 0.0, 0.0, 0.1, 0.8, 0.2, 0.0, 0.0, 0.0, 0.0, 0.3, 0.0}
r22 20 15 {0.0, 0.0}
r23 20 10 {0.0, 0.0}

Based on the estimations provided by the stakeholders, the FRIG of the PMS was

constructed (Figure 3.6) and selections were performed using the DARS-IP as well

as the BK and PCBK methods. Requirement selections were performed for various

ranges of budgets (Budget 2 {1, ..., 260}) to examine the performance of the selection

methods and answer the following research questions.

Chapter 3. The Integer Programming Method (DARS-IP)21 59

TABLE 3.5: Solution vectors and their corresponding overall value (OV) provided by the dif-
ferent selection methods in the presence of various budget constraints. A selection variable xi
denotes whether requirement ri is selected (xi = 1) or otherwise (xi = 0).

Budget Selection Model Overall Value (percent) Solution Vector {x1, ..., x23}

16
BK 5.21 {0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0}
PCBK 10.74 {0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1}
DARS-IP 12.88 {0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0}

46
BK 23.25 {1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1}
PCBK 19.94 {0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1}
DARS-IP 26.63 {0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1}

71
BK 31.07 {1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1}
PCBK 19.94 {0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1}
DARS-IP 34.60 {1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1}

76
BK 32.06 {1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1}
PCBK 19.94 {0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1}
DARS-IP 35.74 {1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1}

81
BK 31.90 {1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1}
PCBK 19.94 {0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1}
DARS-IP 37.98 {0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1}

141
BK 44.11 {1, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 1}
PCBK 53.37 {0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1}
DARS-IP 59.45 {1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1}

146
BK 45.40 {1, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1}
PCBK 53.37 {0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1}
DARS-IP 60.43 {1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1}

151
BK 46.87 {1, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1}
PCBK 53.37 {0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1}
DARS-IP 62.27 {1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1}

156
BK 46.87 {1, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1}
PCBK 53.37 {0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1}
DARS-IP 62.27 {1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1}

161
BK 50.12 {1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 1}
PCBK 53.37 {0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1}
DARS-IP 64.23 {1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1}

166
BK 51.41 {1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1}
PCBK 53.37 {0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1}
DARS-IP 64.72 {1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1}

171
BK 52.88 {1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1}
PCBK 53.37 {0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1}
DARS-IP 64.72 {1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1}

176
BK 52.88 {1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1}
PCBK 53.37 {0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1}
DARS-IP 66.69 {1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1}

181
BK 51.35 {1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1}
PCBK 53.37 {0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1}
DARS-IP 67.18 {1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1}

186
BK 52.64 {1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1}
PCBK 53.37 {0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1}
DARS-IP 73.83 {1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1}

191
BK 54.11 {1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1}
PCBK 53.37 {0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1}
DARS-IP 75.31 {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1}

196
BK 54.11 {1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1}
PCBK 53.37 {0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1}
DARS-IP 75.31 {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1}

246
BK 100.00 {1, 1}
PCBK 100.00 {1, 1}
DARS-IP 100.00 {1, 1}

Chapter 3. The Integer Programming Method (DARS-IP)22 60

Figure 3.7 summarizes the results of our experiments by comparing the accumulated

values (AV) and/or overall values (OV) achieved by the selection methods. The hor-

izontal axis shows the available budget (Budget = {1, ..., 260}) and the vertical axis

shows the percentages of AV/OV. Table 3.5 lists some of the optimal subsets provided

by the selection methods employed in the presence of various budget constraints.

Consistent with the simulations, the results of our case study demonstrated (Figure

3.7 and Table 3.5) that the BK method always maximized the accumulated value of

the selected requirements (optimal subset) while the DARS-IP maximized the overall

value of selected requirements. Moreover, maximizing the accumulated value and

overall value of an optimal subset was demonstrated to be in conflict.

r2
r3

r4

r5

r6

r7

r8

r9
r21

r10
r20

r12
r23 r11

r22

r14

r13

r16

r15

r18

r17

r19

r1

FIGURE 3.6: The FRIG of the PMS (Strengths of dependencies are not represented for the sake
of readability).

Furthermore, the results of our experiments showed (Figure 3.7 and Table 3.5) that

the DARS-IP mitigated the adverse impact of the selection deficiency problem (SDP)

by considering the strengths of value dependencies while the efficiency of the PCBK

method was negatively impacted by the SDP. For instance, we observed (Table 3.5)

Chapter 3. The Integer Programming Method (DARS-IP)23 61

that for Budget = 81, the overall value of the optimal subset provided by DARS-IP

was almost twice as high as the overall value provided by the PCBK method. The BK

method on the contrary, was not vulnerable to the SDP as it totally ignores dependen-

cies among requirements.

0 50 100 150 200 250 300
0

10

20

30

40

50

60

70

80

90

100

Budget (relative)

Va
lu

e
(p

er
ce

nt
)

AV (BK)
OV (BK)
AV/OV (PCBK)
AV (DARS-IP)
OV (DARS-IP)

FIGURE 3.7: Selection results for the PMS (LOI u 22%)
.

It is also worth mentioning that even though the DARS-IP method was applied to a

real-world software, performing pairwise comparisons for identification of value de-

pendencies demonstrated to be hard to achieve even for the relatively small require-

ment set used in this case study. Efficient techniques to identify value dependencies

hence are essential to enhance the practicality of DARS-IP for large scale requirement

sets. The following section will propose a technique for automated identification of

value dependencies from user preferences.

Chapter 3. The Integer Programming Method (DARS-IP)24 62

3.5 Automated Identification of Explicit Value Dependencies

Automated identification of value dependencies and their strengths has not been dis-

cussed in the existing literature. Nonetheless, various techniques from the information

retrieval and data mining domain [128] can be borrowed to assist such automation.

This section discusses one of the several possible approaches to automate the identi-

fication of value dependencies. Our proposed approach is based on mining the pref-

erences of (potential) users of a software [129, 8] to identify both the existence and

the strengths of explicit value dependencies among requirements of a software. It has

been widely recognized that user preferences of software requirements can determine

their values [129, 130] as highly preferred software requirements are more likely to be

purchased/used by the (potential) users. In other words, users preferring a require-

ment rj may also prefer a requirement ri (with the probability p(ri|rj)). This is known

as Market Basket Analysis or Association Rule Mining in the data mining domain [128].

An association from a requirement rj to ri (users preferring rj will also prefer ri) can

also be interpreted as a causal relation [41] from rj to ri meaning that choosing rj may

cause choosing ri by the users, thus enhancing the value made by selling ri. As such, it

is clear that a causal relation from rj to ri can also be interpreted as a value dependency

from ri to rj (the value of ri depends on preference of rj by the users). Hence, associ-

ation rule mining of user preference for requirements can be used for identification

of value dependencies and the strengths of those dependencies. In this context, mea-

sures of causal strength can be used to estimate the strengths of value dependencies.

One of the most commonly adopted measures of causal strength is Pearl’s Measure of

Causal Strength [41, 128, 131, 132, 45] which is denoted by hi,j in (3.11) and derived by

p(ri|rj). That is the chances that users that choose rj also choose ri. This can be used

to estimate the strength of an explicit value dependency from ri to rj. Pearl’s measure

then can be mapped into a desired fuzzy membership function r(ri, rj) (which gives

the strengths of value dependencies in FRIGs) as demonstrated in Figure 3.8. Various

membership functions could be explored for this mapping based on the preference

of the stakeholders. For instance, the membership function of Figure 3.8(b) treats de-

pendencies with causal strengths below 0.16 (hi,j < 0.16) as not significant enough to

Chapter 3. The Integer Programming Method (DARS-IP)25 63

be considered while dependencies with hi,j � 0.83 are treated as full dependencies of

strength 1.

Such a membership function might be suitable for selection methods that formulate

dependencies as precedence constraints. In such methods, it might be reasonable to

consider a strong causal dependency (say hi,j � 0.95) as a precedence relation rather

than ignoring it. The PCBK method, which only captures precedence relations, hence

can be improved this way by at least considering very strong value dependencies.

But this may exacerbate the selection deficiency problem [2] as explained before if

the threshold for strong dependencies is set too low. Figure 3.8(c) and Figure 3.8(d)

depict other alternative membership functions which, unlike membership functions

of Figure 3.8(a) and Figure 3.8(b), do not assume linearity for mapping hi,j to r(ri, rj).

hi,j = p(ri|rj) =
p(ri, rj)

p(rj)
, hi,j 2 [0, 1] (3.11)

User preferences for software requirements can be gathered in different ways [133,

⌘i,j

⇢(ri, rj)

0

1

1

(a)

⌘i,j

⇢(ri, rj)

0

1

1

(b)

⌘i,j

⇢(ri, rj)

0

1

1

(c)

⌘i,j

⇢(ri, rj)

0

1

1

(d)

FIGURE 3.8: Sample mappings from hi,j to different membership functions r(ri, rj).

Chapter 3. The Integer Programming Method (DARS-IP)26 64

134, 135] depending on the nature of a software release and the current state of a

software. For the first release of a software, user preferences could be gathered by

conventional market research approaches such as conducting surveys or referring to

the user feedback or sales records of similar software products in the market. For

future releases of a software, or when re-engineering of a software is of interest (e.g.

for legacy systems) user feedback and sales records of the previous releases of the

software might be used in combination with market research approaches to find user

preferences. It is also worth mentioning that in cases where collecting user preferences

in large quantities is difficult to achieve, re-sampling methods [136] could be used

to automatically generate larger samples of user preferences from a relatively small

sample while maintaining the characteristics of the initial sample [46].

1 1 1 1 1 1 0 0 1 1

1 1 0 1 0 0 1 1 0 0

0 0 1 0 0 0 0 1 1 0

1 0 1 1 0 1 1 1 0 1

0

BBBBBBBBBBBBBBB@

1

CCCCCCCCCCCCCCCA

M4£10 =

r1

r2

r3

r4

u1 u2 u3 u4 u5 u6 u7 u8 u9 u10

FIGURE 3.9: A sample preference matrix
.

Definition 3.2. Preference Matrix. Let R = {r1, ..., rn} be a requirement set and U =

{u1, ..., uk} be the list of users whose preference are gathered. A preference matrix

Mn⇥k is a binary (0/1) matrix of size n ⇥ k where n and k denote the number of re-

quirements and the number of users respectively. Each element mi,j specifies whether

a user ui has preferred a requirement rj (mi,j = 1) or not (mi,j = 0). A sample prefer-

ence matrix M4⇥10 is shown in Figure 3.9.

Example 3.7. Matrix E4⇥4 (Figure 3.10) gives Pearl’s measure of causal strength com-

puted for pairs of requirements in the preference matrix M4⇥10 of Figure 3.9 based on

(3.11). An element hi,j of E4⇥4 denotes the causal strength of an explicit value depen-

dence from ri to rj. For instance, we have h1,3 = p(r1|r3) =
p(r1,r3)

p(r3)
= 0.2

0.3 = 0.6667.

Chapter 3. The Integer Programming Method (DARS-IP)27 65

1.0000 0.6000 0.6667 0.7143

0.3750 1.0000 0.3333 0.5714

0.2500 0.2000 1.0000 0.2857

0.6250 0.8000 0.6667 1.0000

0

BBBBBBBBBBBBBBBB@

1

CCCCCCCCCCCCCCCCA

E4£4 =

r1

r2

r3

r4

r1 r2 r3 r4

FIGURE 3.10: Pearl measure for the preference matrix of Figure 3.9
.

3.6 Summary

This chapter presented an integer programming (IP) method, appeared in publications

(P1) and (P2), for dependency-aware requirement selection. The proposed method,

i.e. DARS-IP, considers the impacts of value dependencies in software requirement

selection. The method comprises three main components:

(i) Identification of value dependencies. We discussed the use of measures of causal

strength and fuzzy membership functions to identify value dependencies and

their strengths from user preferences;

(ii) Modeling value dependencies. We demonstrated the use of fuzzy graphs [42] and

their algebraic structure [43] for modeling the strengths of value dependencies

and capturing the imprecision associated with those dependencies;

(iii) Integrating value dependencies into requirement selection. We presented an integer

programming model which maximizes the overall value (OV) of a selected sub-

set of requirements, where the strengths of the value dependencies are taken into

account.

The validity and practicality of the DARS-IP method are verified by carrying out sim-

ulations and studying a real-world software project. Our results show that: (a) our

proposed integer programming method (DARS-IP) properly captures the strengths

of value dependencies during a requirement selection while mitigating the selection

Chapter 3. The Integer Programming Method (DARS-IP)28 66

deficiency problem (SDP), (b) DARS-IP always maximizes the overall value of the se-

lected requirements, and (c) maximizing the overall and the accumulated values of

the selected requirements are in conflict as maximizing one may depreciate the other.

The DARS-IP method proposed in this chapter and its main components are improved

by the ILP method of DARS (DARS-ILP), presented in Chapter 4, in several ways.

First, the dependency identification technique in DARS-IP is enhanced by (a) consid-

ering both the strengths and qualities of value dependencies and (b) using a formal

significance test to understand the accuracy of the value dependencies.

Second, the modeling technique proposed in DARS-ILP is extended to capture not

only the strengths but also the qualities of value dependencies, thus allowing for rea-

soning about simultaneous positive and negative impacts of the explicit and implicit

value dependencies among the requirements. In this regard, we have presented a

modified version of the Floyd-Warshall algorithm capable of efficiently computing

the positive and negative influences of the requirements on the values of each other

using the algebraic structure of fuzzy graphs.

Finally, the DARS-ILP method integrates both positive and negative value dependen-

cies into software requirement selection by taking into account the qualities of value

dependencies in the optimization model of DARS-ILP. The optimization model of the

DARS-ILP method is a linear model, which is scalable to software projects with large

number of requirements. The computational time of the optimization model of DARS-

ILP is discussed in detail in Section 4.7.

67

Chapter 4

The Integer Linear Programming Method

(DARS-ILP) 1

4.1 Introduction

Chapter 3 presented the integer programming method of DARS (DARS-IP), appeared

in Publication (P1) [1], for considering value dependencies in software requirement

selection. This chapter presents an integer linear programming2 method of DARS

(DARS-ILP), which extends/improves the main components of the DARS-IP method

in several ways as follows.

The dependency identification is enhanced in DARS-ILP by (a) considering both the

strengths and qualities of value dependencies and (b) using a formal significance test

to understand the accuracy of the value dependencies. In this regard, we have con-

tributed an automated dependency identification technique that uses the Eells mea-

sure of causal strength [45] to extract value dependencies from significant causal re-

lations among user preferences. We have further demonstrated the use of a Latent

Multivariate Gaussian model [46] to generate samples of user preferences when col-

lecting sufficient data on user preferences is not practical [46].

Modeling value dependencies is enhanced in DARS-ILP by taking into account the

qualities of value dependencies (positive or negative). The proposed modeling tech-

nique, thus, allows for reasoning about simultaneous positive and negative impacts

1The main results of this chapter are presented in publications (P1)-(P8).
2An integer linear programming (ILP) problem is a linear program where the variables are restricted

to be integers.

Chapter 4. The Integer Linear Programming Method (DARS-ILP) 3 68

of the explicit and implicit value dependencies among the requirements. We have

demonstrated the use of fuzzy graphs [42] for modeling the strengths and qualities

of value dependencies. We have further presented a modified version of the Floyd-

Warshall algorithm [44], which is capable of efficiently computing the positive and

negative influences of the requirements on the values of each other using the alge-

braic structure of fuzzy graphs.

Finally, requirement selection is improved in DARS-ILP by integrating the qualities

and the strengths of value dependencies into the ILP model of the DARS-ILP method.

The ILP model of the DARS-ILP mitigates the risk of value loss posed by ignoring

(selecting) the requirements with positive (negative) influences on the values of the

requirements. The model is linear and scalable to projects with large number of re-

quirements. We have further contributed a Blind ILP model for DARS-ILP, which aims

to mitigate the risk of value loss posed by ignoring the positive influences of the re-

quirement on the values of each other. The proposed Blind model does not require

any information about value dependencies, thus it is suitable for the projects in which

the identification of the value dependencies is not practical.

We show the practicality and validity of the DARS-ILP method by studying a real-

world software project. We moreover, carry out extensive simulations to evaluate the

effectiveness of the DARS-ILP method in providing higher overall value and miti-

gating the value loss in the presence of different levels of value dependencies, neg-

ative value dependencies, precedence dependencies, negative precedence dependen-

cies, and budget. Finally, the scalability of DARS-ILP is investigated by applying the

method to a real-world software project as well as carrying out simulations.

Our results show: that (a) compared to the requirement selection methods that ig-

nore value dependencies, the ILP method of DARS provides higher overall value by

mitigating the impact of ignoring (selecting) requirements with positive (negative) in-

fluence on the values of selected requirements; (b) maximizing the accumulated value

and overall value of a software are conflicting objectives; and (c) DARS-ILP is scalable

to software projects with large number of requirements for different levels of value

dependencies and precedence dependencies among the requirements. This is demon-

strated by simulating different scenarios for datasets of up to 3000 requirements.

Chapter 4. The Integer Linear Programming Method (DARS-ILP) 4 69

4.2 Identification of Value Dependencies

This section presents an automated technique for identification of value dependencies

based on causal relations among user preferences for requirements. We use the widely

adopted Eells measure [45] of causal strength and the Odds Ratio [137] to identify the

qualities and strengths of significant causal relations among requirements. A fuzzy

membership function will then be used to estimate the strengths and qualities of value

dependencies based on identified causal relations. Identified value dependencies will

be used to identify implicit dependencies among requirements using the algebraic

structure of fuzzy graphs and Algorithm 4.2 as will be discussed in Section 4.3.

4.2.1 Gathering User Preferences

User preferences can be gathered in different ways [133, 134, 135] depending on the

nature of the release. For a new software product, preferences may be gathered by

conventional market research techniques such as conducting surveys and/or mining

user reviews/comments in social media and online stores [138]. User preferences may

also be gathered by studying user preferences for features of similar software and/or

their sales records.

When sales/usage records for the requirements of a software product are available,

say from earlier versions, such information can be combined with market research

results to estimate user preferences for a newer version of software. This is partic-

ularly suitable for reengineering a software or releasing different configurations in a

software product line. We capture user preferences by a Preference Matrix as given by

Definition 4.1, which is a restatement of Definition 3.2.

Definition 4.1. (restatement of Definition 3.2). Preference Matrix. Let R = {r1, ..., rn}

be a requirement set and U = {u1, ..., uk} be the list of users whose preference are

gathered. A preference matrix Mn⇥k is a binary (0/1) matrix of size n ⇥ k where n

and k denote the number of requirements and the number of users respectively. Each

element mi,j specifies whether a user ui has preferred a requirement rj (mi,j = 1) or not

(mi,j = 0). A sample preference matrix M4⇥20 is shown in Figure 4.1.

Chapter 4. The Integer Linear Programming Method (DARS-ILP) 5 70

1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 0 1 1 1 1

1 1 0 1 0 0 1 1 0 0 1 1 0 1 0 0 1 1 1 1

0 0 1 0 0 0 0 1 1 0 1 1 1 0 0 0 0 0 1 1

1 0 1 1 0 1 1 1 0 1 1 1 1 1 0 1 0 1 0 0

0

BBBBBBBBBBBBBBB@

1

CCCCCCCCCCCCCCCA

r1

r2

r3

r4

u1 u2 u3 u4 u5 u6 u7 u8 u9 u10 u11 u12 u13 u14 u15 u16 u17 u18 u19 u20

FIGURE 4.1: A sample preference matrix M4⇥20.

4.2.2 Resampling

Resampling user preferences may be required to generate samples of user preferences

based on the estimated distribution of the original data (collected user preferences) to

enhance the accuracy of the Eells measure. This is particularly useful when conducting

a comprehensive market research is not practical.

We use a resampling technique introduced by Macke’s et al. [139] to generate larger

samples of collected user preferences using a Latent Multivariate Gaussian model. The

process as given in Figure 4.2 starts with reading the preference matrix of users (Step

1) and continues with estimating the means (Step 2) and variances of user preferences

(Step 3) for each requirement. Then the covariances matrix of the requirements will

be computed (Step 4) to be used for generating new samples. Thereafter the num-

ber of samples will be specified (Step 5) and samples will be generated based on the

Dichotomized Gaussian Distribution model discussed in [139] (Step 6).

The precision of the employed resampling technique (Figure 4.2) can be evaluated

(Step 7) by comparing the means and covariance matrix of the generated samples

against the covariance matrix of the initial samples gathered from users. Steps 1 to 7

may be repeated for larger numbers of samples until the means and covariance matrix

of the resampled data and those of the initial sample converge.

Macke’s technique has proved to be computationally efficient and feasible for a large

number of variables (software requirements). Macke et al. [46] showed that the en-

tropy of the Latent Multivariate Gaussian model is near theoretical maximum for a

wide range of parameters.

Chapter 4. The Integer Linear Programming Method (DARS-ILP) 6 71

Step 1. Read the Preference Matrix

Step 2. Estimate Means of Preferences

Step 3. Compute Variances of Prefrences

Step 4. Estimate Covariance Matrix of Requirements

Step 5. Specify the Number of Samples

Step 6. Generate Samples from the
Dichotomized Gaussian Distribution Model

Step 7. Evalue precision of resampling

FIGURE 4.2: Steps for generating samples from user preferences.

4.2.3 Extracting Causal Relations among User Preferences

User preferences for a requirement may increase or decrease preferences for other re-

quirements. Such causal relations can be identified using measures of causal strength [128,

131, 132]. Causal relations among user preferences can then be used to specify the

strengths and qualities of value dependencies among requirements as values of soft-

ware requirements are determined by user preferences for those requirements.

As such, we have adopted one of the most widely used measures of causal strength,

referred to as the Eells measure [45], to estimate the strengths and qualities of explicit

value dependencies among software requirements as given by (4.1). The sign (magni-

tude) of hi,j specifies the quality (strength) of a value dependency from a requirement

ri to rj, where selecting (ignoring) rj may influence, either positively or negatively, the

value of ri.

Chapter 4. The Integer Linear Programming Method (DARS-ILP) 7 72

hi,j = p(ri|rj)� p(ri|r̄j), hi,j 2 [�1, 1] (4.1)

For a pair of requirements (ri, rj), the Eells measure captures both positive and nega-

tive value dependencies from ri to rj by subtracting the conditional probability p(ri|r̄j)

from p(ri|rj), where conditional probabilities p(ri|r̄j) and p(ri|rj) denote strengths of

positive and negative causal relations from ri to rj respectively, that is selecting the

requirement ri may cause an increase or decrease in the value of rj.

1.0000 0.8333 0.8750 0.7692

0.5882 1.0000 0.6250 0.6154

0.4118 0.4167 1.0000 0.3846

0.5882 0.6667 0.6250 1.0000

0

BBBBBBBBBBBBBBBBBBBB@

1

CCCCCCCCCCCCCCCCCCCCA

°

r1

r2

r3

r4

r1 r2 r3 r4

(a) P4⇥4

0.0000 0.8750 0.8333 1.0000

0.6667 0.0000 0.5833 0.5714

0.3333 0.3750 0.0000 0.4286

1.0000 0.6250 0.6667 0.0000

0

BBBBBBBBBBBBBBBBBBBB@

1

CCCCCCCCCCCCCCCCCCCCA

=

r1

r2

r3

r4

r1 r2 r3 r4

(b) P̄4⇥4

+1.0000 °0.0417 +0.0417 °0.2308

°0.0785 +1.0000 +0.0417 +0.0440

+0.0785 +0.0417 +1.0000 °0.0440

°0.4118 +0.0417 °0.0417 +1.0000

0

BBBBBBBBBBBBBBBBBBBBBBBBBB@

1

CCCCCCCCCCCCCCCCCCCCCCCCCCA

r1

r2

r3

r4

r1 r2 r3 r4

(c) ⌘4⇥4

FIGURE 4.3: Computing the Eells measure for the preference matrix of Figure 4.1.

Matrices P4⇥4 (Figure 4.3(a)) and P̄4⇥4 (Figure 4.3(b)) show the strengths of positive

and negative causal relations among user preferences for requirements in the prefer-

ence matrix M4⇥8 (Figure 4.1). For a pair of requirements ri and rj with i 6= j, an

off-diagonal element pi,j (p̄i,j) of matrix P4⇥4 (P̄4⇥4) denotes the strength of a positive

(negative) causal relation from ri to rj.

For diagonal elements of P4⇥4 (P̄4⇥4) on the other hand, we have pi,i = p(ri|ri) = 1

(p̄i,i = p(ri|r̄i) = 0). Hence, subtracting each element p̄i,j from its corresponding ele-

ment pi,j, where i 6= j, gives the Eells causal strength hi,j for the value dependency from

ri to rj. Diagonal elements, however, may be ignored or set to zero as self-causation is

not meaningful here.

Algorithm 4.1 specifies the steps for computing the measure of causal strength for

a given preference matrix Mn⇥k. In this algorithm, an element li,j in matrix ln⇥2n

Chapter 4. The Integer Linear Programming Method (DARS-ILP) 8 73

Algorithm 4.1: Computing the Eells measure of strength.
Input: Matrix of user preferences: Mn⇥k
Output: Matrix of Eells measure: ⌘n⇥n

1: Pn⇥n 0
2: P̄n⇥n 0
3: ⌘n⇥n 0
4: �n⇥ 2n 0
5: for each rj 2 R do
6: for each ri 2 R do
7: for each ut 2 U do
8: if mj,t = 1 then
9: if mi,t = 1 then

10: li,j (li,j + 1)
11: else
12: li,j+n (li,j+n + 1)
13: end if
14: end if
15: end for
16: pi,j (

li,j
lj,j

)

17: p̄i,j (
li,j+n

lj+n,j+n
)

18: hi,j (pi,j � p̄i,j)
19: end for
20: end for

counts the number of times that a pair of requirements (ri,rj) are selected together by

the users. An element li,j+n on the other hand, gives the number of times users have

selected ri while ignoring rj. It is clear that, li,i gives the number of occurrences of ri

in Mn⇥k while li,i+n = 0.

Given a dataset of n requirements and t user preferences, lines 8 to 14 of Algorithm 4.1

will be executed for each pair of requirements and all gathered user preferences: O(t⇥

n2). Moreover, lines 16 to 18 need to be executed for all pairs of requirements. The

computational complexity of the algorithm is therefore of O(n2). The overall com-

plexity of the algorithm therefore is of O(t⇥ n2).

4.2.4 Testing the Significance of Causal Relations

Using measures of interestingness [140] is sometimes not sufficient to understand the

significance of the relations found among the items of a dataset as explained in [137].

In this regard, we have employed the widely adopted measure of association referred

to as the Odds Ratio to test if causal relations identified based on the Eells measure are

Chapter 4. The Integer Linear Programming Method (DARS-ILP) 9 74

significant or not. For a positive (negative) causal relation from requirement rj to ri,

which means the presence of rj positively (negatively) influences the value of ri, (4.2)

computes the Odds ratio denoted by w(ri, rj) in which the order of ri and rj does not

make any difference. Also, p(ri, rj) denotes the joint probability of ri and rj. Similarly,

p(ri, r̄j) gives the joint probability that ri is selected and rj is not.

w(ri, rj) =
p(ri, rj)p(r̄i, r̄j)

p(ri, r̄j)p(r̄i, rj)
, w(ri, rj) 2 (0, •) (4.2)

To test the significance of a causal relation from a requirement rj to ri we use the tech-

nique used in [137] by computing the lower bound (w�) and the upper bound (w+)

of the confidence interval of the Odds Ratio as given by (4.3)-(4.4). In these equations

z0 is the critical value corresponding to a desired level of confidence. Also, u denotes

the total number of user preferences gathered. When we find a lower bound w�  1

AND an upper bound w+ � 1 for the Odds ratio imply the absence of any significant

causal relation from rj and ri. To exclude insignificant relations, the strengths of those

relations will be set to zero.

w�(ri, rj) =

ln
�
w(ri, rj)

�
� z0p

u

s
1

p(ri, rj)
+

1
p(r̄i, r̄j)

+
1

p(r̄i, rj)
+

1
p(ri, r̄j)

(4.3)

w+(ri, rj) =

ln
�
w(ri, rj)

�
+

z0p
u

s
1

p(ri, rj)
+

1
p(r̄i, r̄j)

+
1

p(r̄i, rj)
+

1
p(ri, r̄j)

(4.4)

4.2.5 Computing the Strengths and Qualities of value Dependencies

The strength of an explicit value dependency from a requirement ri to rj hence is com-

puted by (4.5), which gives a mapping from the Eells measure of causal strength hi,j

to the fuzzy membership function r : R ⇥ R ! [0, 1] as given in Figure 4.4. Only

significant causal relations which pass the test in Section 4.2.4 will be considered.

Chapter 4. The Integer Linear Programming Method (DARS-ILP) 10 75

|⌘i,j |

⇢(ri, rj)

0

1

1

(a)

|⌘i,j |

⇢(ri, rj)

0

1

1

(b)

FIGURE 4.4: Sample membership functions for strengths of value
dependencies.

The fuzzy membership functions however maybe adjusted to account for the im-

precision of value dependencies and suit the particular needs of decision makers.

For instance, the membership function of Figure 4.4(a) may be used to ignore “too

weak” value dependencies while “too strong” dependencies are considered as full

strength relations, r(ri, rj) = 1. Different membership functions and measures of

causal strength may be used by decision makers resulting in a set of optimal solutions

to choose from.

r(ri, rj) = |hi,j| (4.5)

s(ri, rj) =

8
>>>>>><

>>>>>>:

+ if hi,j > 0

� if hi,j < 0

± if hi,j = 0

(4.6)

As given by (4.6), hi,j > 0 indicates that the strength of the positive causal relation

from ri to rj is greater than the strength of its corresponding negative causal rela-

tion: p(ri|rj) > p(ri|¬rj) and therefore the quality of (ri, rj) is positive (s(ri, rj) = +).

Similarly, hi,j < 0 indicates p(ri|¬rj) > p(ri|rj) ! s(ri, rj) = �. Also, p(ri|rj) �

p(ri|¬rj) = 0 specifies that the quality of the zero-strength value dependency (ri, rj) is

non-specified (s(ri, rj) = ±).

Chapter 4. The Integer Linear Programming Method (DARS-ILP) 11 76

4.2.6 Value Implications of Precedence Dependencies

As explained earlier, precedence dependencies among requirements such as requires

and conflicts-with and their value implications need to be considered in requirement

selection. For instance, a requirement ri requires (conflicts-with) rj implies that the

value of ri fully relies on selecting (ignoring) rj. This may not be captured by value

dependencies identified from user preferences.

Hence, it is important to not only consider user preferences in the identification of

explicit value dependencies, but to take into account the value implications of prece-

dence dependencies and consider them in a requirement selection. This can be achieved

by modeling the precedence dependencies using a Precedence Dependency Graph (PDG)

as introduced in Definition 4.2.

Definition 4.2. The Precedence Dependency Graph (PDG). A PDG is a signed directed

graph G = (R, W) in which R = {r1, ..., rn} denotes the graph nodes (requirements)

and W(ri, rj) 2 �1, 0, 1 specifies the presence or absence of a precedence dependency

from ri to rj. W(ri, rj) = 1 (W(ri, rj) = �1) specifies a positive (negative) precedence

dependency from ri to rj meaning that ri requires (conflicts-with) rj. Finally W(ri, rj) = 0

specifies the absence of any precedence dependency from requirement ri to rj.

PDL(G) =
k

nP2
=

k
n(n� 1)

(4.7)

NPDL(G) =
j
k

(4.8)

Hence, precedence dependencies of a software project can be captured by a PDG and

mathematically modeled in terms of the precedence constraints of the optimization

model used for a requirement selection. It is clear that increasing precedence depen-

dencies among requirements limits the number of choices and therefore reduce the

number of feasible solutions (requirement subsets). To measure the level of prece-

dence dependencies among requirements of a PDG, we have defined the Precedence

Dependency Level (PDL) and the Negative Precedence Dependency Level (NPDL) as given

by (4.7) and (4.8) respectively.

Chapter 4. The Integer Linear Programming Method (DARS-ILP) 12 77

The PDL of a precedence dependency graph G with n nodes (requirements) is com-

puted by dividing the total number of the precedence dependencies (k) among the

nodes of G by the maximum number of the potential precedence dependencies in G

(n(n� 1)). Also, the NPDL of G is computed by dividing the number of the negative

precedence dependencies (j) by the total number of the positive and negative prece-

dence dependencies.

4.3 Modeling Value Dependencies by Fuzzy Graphs

Since their introduction in 1973 [124], fuzzy graphs have been widely adopted in de-

cision making and expert systems [42] as they contribute to more accurate models by

taking into account imprecision in real-world problems [124].

Fuzzy graphs have, particularly, demonstrated to be useful in capturing the impre-

cision of dependency relations in software [47, 26]. Ngo-The et al., exploited fuzzy

graphs for modeling dependency satisfaction in release planning [47] and capturing

the imprecision of coupling dependencies among requirements [26]. Moreover, Wang

et al. [27] adopted linguistic fuzzy terms to capture the variances of strengths of de-

pendencies among software requirements.

In this section we discuss modeling value dependencies by fuzzy graphs and identi-

fication of implicit value dependencies among requirements. We further use the al-

gebraic structure of fuzzy graphs to compute the influences of requirements on the

values of each other.

4.3.1 Value Dependency Graphs

To account for the imprecision of value dependencies, we have introduced Value De-

pendency Graphs (VDGs) based on fuzzy graphs for modeling value dependencies and

their characteristics (quality and strength). We have specially modified the classical

definition of fuzzy graphs to consider not only the strength but also the quality (posi-

tive or negative) of value dependencies as given by Definition 4.3.

Chapter 4. The Integer Linear Programming Method (DARS-ILP) 13 78

Definition 4.3. The Value Dependency Graph (VDG) is a signed directed fuzzy graph [77]

G = (R, s, r) where, requirements R : {r1, ..., rn} constitutes the graph nodes. Also, the

qualitative function s(ri,rj) ! {+,�,±} and the membership function r : (ri, rj) !

[0, 1] denote the quality and the strength of the explicit value dependency (edge of the

graph) from ri to rj receptively. Moreover, r(ri, rj) = 0 denotes the absence of any

explicit value dependency from ri to rj. In that case we have s(ri, rj) = ±, where ±

denotes the quality of the dependency is non-specified.

r1r2

r3

r4
⇢(r1, r2) = 0.4,�(r1, r2) = +

⇢(r1, r3) = 0.8,�(r1, r3) = +

⇢(r1, r4) = 0.1,�(r1, r4) = �

⇢(r2, r4) = 0.3,�(r2, r4) = +

⇢(r3, r1) = 0.7,�(r3, r1) = +

⇢(r3
, r2

) =
0.6

,�(
r3,

r2)
= +

⇢(r
3 , r

4) =
0.8,�(r

3 , r
4) =

+

⇢(r4 , r3) = 0.2,�(r4 , r3) = +

FIGURE 4.5: A sample value dependency graph.

For instance, in the value dependency graph of Figure 4.5 s(r1, r2) = + and r(r1, r2) =

0.4 specifies a positive value dependency from r1 to r2 with strength 0.4. That is select-

ing r2 has an explicit positive influence on the value of r1.

4.3.2 Value Dependencies in VDGs

In Section 4.2 we introduced an automated technique for the identification of explicit

value dependencies and their characteristics (quality and strength) from user prefer-

ences. Definition 4.4 provides a more comprehensive definition of value dependencies

that includes both explicit and implicit value dependencies among the requirements

of a software project based on the algebraic structure of fuzzy graphs.

Chapter 4. The Integer Linear Programming Method (DARS-ILP) 14 79

Definition 4.4. Value Dependencies. A value dependency in a value dependency graph

G = (R, s, r) is defined as a sequence of requirements di :
�
r(0), ..., r(k)

�
such that

8r(j) 2 di, 1  j  k we have r
�
r(j � 1), r(j)

�
6= 0. j � 0 is the sequence of the

jth requirement (node) denoted as r(j) on the dependency path. A consecutive pair
�
r(j� 1), r(j)

�
specifies an explicit value dependency.

8di :
�
r(0), ..., r(k)

�
: r(di) =

k̂

j=1
r
�
r(j� 1), r(j)

�
(4.9)

8di :
�
r(0), ..., r(k)

�
: s(di) =

k

’
j=1

s
�
r(j� 1), r(j)

�
(4.10)

Equation (4.9) computes the strength of a value dependency di :
�
r(0), ..., r(k)

�
by

finding the strength of the weakest of the k explicit dependencies on di. Fuzzy operator

^ denotes Zadeh’s [141] AND operation (infimum).

The quality (positive or negative) of a value dependency di :
�
r(0), ..., r(k)

�
is cal-

culated by qualitative serial inference [142, 143, 79] as given by (4.10) and Table 4.1.

Inferences in Table 4.1 are informally proved by Wellman [143] and Kleer [142].

TABLE 4.1: Qualitative serial inference in VDGs.

s
�
r(j� 1), r(j), r(j + 1)

� s
�
r(j), r(j + 1)

�

+ � ±

s
�
r(j� 1), r(j)

� + + � ±
� � + ±
± ± ± ±

Let D = {d1, d2, ..., dm} be the set of all value dependencies from ri 2 R to rj 2 R in

a VDG G = (R, s, r), where positive and negative dependencies can simultaneously

exist from ri to rj. The strength of all positive value dependencies from ri to rj is de-

noted by r+•(ri,rj) and calculated by (4.11), that is to find the strength of the strongest

positive dependency [42] from ri to rj. Fuzzy operators ^ and _ denote Zadeh’s [141]

fuzzy AND (minimum) and fuzzy OR (maximum) operations respectively.

Chapter 4. The Integer Linear Programming Method (DARS-ILP) 15 80

In a similar way, the strength of all negative value dependencies from ri to rj is denoted

by r�•(ri,rj) and calculated by (4.12).

r+•(ri, rj) =
_

dm2D,s(dm)=+

r(dm) (4.11)

r�•(ri, rj) =
_

dm2D,s(di)=�
r(dm) (4.12)

A brute-force approach to computing r+•(ri, rj) or r�•(ri, rj) needs to calculate the

strengths of all paths from ri to rj which is of complexity of O(n!) for n requirements

(VDG nodes). To avoid such complexity, we have formulated the problem of calcu-

lating r+•(ri, rj) and r�•(ri, rj) as the widest path problem (also known as the max-

imum capacity path problem [144]) which can be solved in polynomial time by the

Floyd-Warshall algorithm [44].

For this purpose, we devised a modified version of Floyd-Warshall algorithm (Al-

gorithm 4.2) that computes r+•(ri, rj) and r�•(ri, rj) for all pairs of requirements

(ri, rj), ri, rj 2 R : {r1, ..., rn} with the time bound of O(n3). For each pair of require-

ments (ri, rj) in a VDG G = (R, s, r), lines 18 to 35 of Algorithm 4.2 find the strength

of all positive value dependencies and the strength of all negative value dependencies

from ri to rj.

Ii,j = r+•(ri, rj)� r�•(ri, rj) (4.13)

The overall strength of all positive and negative value dependencies from ri to rj is

referred to as the Influence of rj on the value of ri and denoted by Ii,j. Ii,j as given by

(4.13) is calculated by subtracting the strength of all negative value dependencies from

ri to rj (r�•(ri, rj)) from the strength of all positive value dependencies from ri to rj

(r+•(ri, rj)). It is clear that Ii,j 2 [�1, 1]. Ii,j > 0 states that rj influences the value of

ri in a positive way whereas Ii,j < 0 indicates that the ultimate influence of rj on ri is

negative.

Chapter 4. The Integer Linear Programming Method (DARS-ILP) 16 81

Algorithm 4.2: Calculating the strengths of value dependencies.
Input: VDG G = (R, s, r)
Output: r+•, r�•

1: for each ri 2 R do
2: for each rj 2 R do
3: r+•(ri, rj) r�•(ri, rj) �•
4: end for
5: end for
6: for each ri 2 R do
7: r(ri, ri)+• r(ri, ri)�• 0
8: end for
9: for each ri 2 R do

10: for each rj 2 R do
11: if s(ri, rj) = + then
12: r+•(ri, rj) r(ri, rj)
13: else if s(ri, rj) = � then
14: r�•(ri, rj) r(ri, rj)
15: end if
16: end for
17: end for
18: for each rk 2 R do
19: for each ri 2 R do
20: for each rj 2 R do
21: if min

�
r+•(ri, rk), r+•(rk, rj)

�
> r+•(ri, rj) then

22: r+•(ri, rj) min(r+•(ri, rk), r+•(rk, rj))
23: end if
24: if min

�
r�•(ri, rk), r�•(rk, rj)

�
> r+•(ri, rj) then

25: r+•(ri, rj) min(r�•(ri, rk), r�•(rk, rj))
26: end if
27: if min

�
r+•(ri, rk), r�•(rk, rj)

�
> r�•(ri, rj) then

28: r�•(ri, rj) min(r+•(ri, rk), r�•(rk, rj))
29: end if
30: if min

�
r�•(ri, rk), r+•(rk, rj)

�
> r�•(ri, rj) then

31: r�•(ri, rj) min(r�•(ri, rk), r+•(rk, rj))
32: end if
33: end for
34: end for
35: end for

Chapter 4. The Integer Linear Programming Method (DARS-ILP) 17 82

Example 4.1. Let D = {d1 : (r1, r2, r4), d2 : (r1, r3, r4), d3 : (r1, r4)} specify value de-

pendencies from requirement r1 to r4 in Figure 4.5. Using (4.10), qualities of d1 to

d3 are computed as: s(d1) = P(+,+) = +, s(d2) = P(+,+) = +, and s(d3) =

P(�) = �. Strengths are calculated by (4.9) as: r(d1) = ^
�
r(r1, r2), r(r2, r4)

�
=

min(0.4, 0.3), r(d2) = ^
�
r(r1, r3), r(r3, r4)

�
= min(0.8, 0.8), r(d3) = min(0.1). Us-

ing (4.11)and (4.12) then we have r(r1, r4)+• = _(r(d1), r(d2)) = max(0.3, 0.8) and

r�•(r1, r4) = max(r(d3)). Therefore, we have I1,4 = r(r1, r4)+• � r(r1, r4)�• = 0.7

which means the positive influence of r4 on the value of r1 prevails. Table 4.2 lists

influences of requirements in the VDG of Figure 4.5 on the value of each other.

TABLE 4.2: Overall influences computed for VDG of Figure 4.5.

Ii,j = r(ri, rj)+• � r(ri, rj)�• r1 r2 r3 r4

r1 0.0� 0.0 = 0.0 0.6� 0.1 = 0.5 0.8� 0.1 = 0.7 0.8� 0.1 = 0.7
r2 0.2� 0.0 = 0.2 0.0� 0.0 = 0.0 0.2� 0.0 = 0.2 0.3� 0.0 = 0.3
r3 0.7� 0.1 = 0.6 0.6� 0.1 = 0.5 0.0� 0.0 = 0.0 0.8� 0.1 = 0.7
r4 0.2� 0.0 = 0.2 0.2� 0.0 = 0.2 0.2� 0.0 = 0.2 0.0� 0.0 = 0.0

Definition 4.5. Value Dependency Level (VDL) and Negative Value Dependency Level (NVDL).

Let G = (R, s, r) be a VDG with R = {r1, ..., rn}, k be the total number of explicit value

dependencies in G, and m be the total number of negative explicit value dependencies.

Then the VDL and NVDL of G are derived by (4.14) and (4.15) respectively.

VDL(G) =
k

nP2
=

k
n(n� 1)

(4.14)

NVDL(G) =
m
k

(4.15)

Example 4.2. For the value dependency graph G of Figure 4.5 we have n = 4, k = 8,

and m = 1. VDL(G) is derived by (4.14) as: VDL(G) = 8
4⇥3 = 8

12 u 0.67. Also we

have from Equation (4.15), NVDL(G) = 1
8 = 0.125.

Chapter 4. The Integer Linear Programming Method (DARS-ILP) 18 83

4.4 Integrating Value Dependencies into Selection

4.4.1 Overall Value of a Subset of Requirements

This section details our proposed measure for the economic worth of a selected sub-

set of requirements (software product) i.e. overall value (OV) as an alternative to the

accumulated value (AV) and the expected value (EV) of that subset. The formulation

of overall value in this section takes into account user preferences for selected require-

ments as well as the impacts of value dependencies on the values of requirements.

Value dependencies as explained in Section 4.2 are identified based on causal relations

among user preferences. Section 4.2 presented an automated technique for identifica-

tion of value dependencies among requirements. Then, algorithm 4.2 was used to

infer implicit value dependencies and compute the influences of requirements on the

values of each other based on the algebraic structure of fuzzy graphs.

To compute the overall values of selected requirements, (4.16)-(4.17) give the penalty

of ignoring (selecting) requirements with positive (negative) influence on the values

of selected requirements. qi in this equation denotes the penalty for a requirement ri,

n denotes the number of requirements, and xj specifies whether a requirement rj is

selected (xj = 1) or not (xj = 0). Also, Ii,j, as in (4.13), gives the positive or negative

influence of rj on the value of ri.

qi =
n_

j=1

✓ xj
�
|Ii,j|� Ii,j

�
+ (1� xj)

�
|Ii,j|+ Ii,j

�

2

◆
=

n_

j=1

✓ |Ii,j|+ (1� 2xj)Ii,j

2

◆
, i 6= j = 1, ..., n (4.16)

xj 2 {0, 1}, j = 1, ..., n (4.17)

We made use of the algebraic structure of fuzzy graphs for computing the influences of

requirements on the values of each other as explained in Section 4.3. Accordingly, qi is

computed using the fuzzy OR operator which is to take supremum over the strengths

of all ignored positive dependencies and selected negative dependencies of ri in its

Chapter 4. The Integer Linear Programming Method (DARS-ILP) 19 84

corresponding value dependency graph. Overall values of selected requirements thus

can be computed by (4.19), where v0i denotes the overall value of a requirement ri, E(vi)

specifies the expected value of ri, and qi denotes the penalty of ignoring (selecting)

positive (negative) value dependencies of ri.

Equation (4.20) derives the overall value of a software product with n requirements,

where cost and expected value of a requirements ri are denoted by ci and E(vi) re-

spectively. Decision variable xi specifies whether ri is selected (xi = 1) or not (xi = 0).

E(Vi) is computed by (4.40), where vi denotes the estimated (nominal) value of ri. Also

p(ri)/p(r̄i) specify the probability that users select/ignore a requirement ri.

E(vi) = p(ri)⇥ vi + p(r̄i)⇥ 0 = p(ri)⇥ vi (4.18)

For a requirement ri, qi specifies the penalty of ignoring (selecting) requirements with

positive (negative) influence on the expected value of ri as explained earlier. qivi in

(4.20) therefore, gives the value loss for a requirement ri as a result of ignoring (se-

lecting) requirements that positively (negatively) impact user preferences for ri and

consequently its expected value.

v0i = (1� qi)E(vi) (4.19)

OV =
n

Â
i=1

xi(1� qi)E(vi), xi 2 {0, 1} (4.20)

Example 4.3. Consider finding penalties for requirements of Figure 4.5, where r4 is

not selected (x1 = x2 = x3 = 1, x4 = 0). From Table 4.2 we have I1,4 = I3,4 =

0.7, I2,4 = 0.3, I4,4 = 0.0. As such, based on (4.16) penalties are computed: q1 =

_(|0.0|+(1�2(1))(0.0)
2 , |0.45|+(1�2(1))(0.5)

2 , |0.7|+(1�2(1))(0.7)
2 , |0.7|+(1�2(0))(0.7)

2) = 0.7. Similarly,

we have q2 = 0.3, q3 = 0.7. Therefore, the overall value of the selected require-

ments r1, r2, r3 is derived by (4.20) as: OV(s1) = (1 � 0.7)E(v1) + (1 � 0.3)E(v2) +

(1� 0.7)E(v3).

Chapter 4. The Integer Linear Programming Method (DARS-ILP) 20 85

4.4.2 The Integer Linear Programming Model

This section presents our proposed integer linear programming (ILP) model for op-

timizing the overall value of a software product. The overall value of a requirement

subset, as given by (4.20), considers user preferences and the impacts of value depen-

dencies on the expected values of the selected requirements. The proposed ILP model

hence embeds user preferences and value dependencies into requirement selection by

optimizing the overall value of a software product.

Equations (4.21)-(4.26) give our proposed integer programming model as a main com-

ponent of the DARS-ILP method. In these equations, xi is a selection variable denoting

whether a requirement ri is selected (xi = 1) or ignored (xi = 0). Also qi in (4.16) spec-

ifies the penalty of a requirement ri, which is the extent to which the expected value

of ri is impacted by ignoring (selecting) requirements with positive (negative) influ-

ences on the value of ri. Constraint (4.23) on the other hand accounts for precedence

dependencies among requirements and the value implications of those dependencies.

Maximize
n

Â
i=1

xi(1� qi)E(vi) (4.21)

Subject to
n

Â
i=1

cixi  b (4.22)

8
>>><

>>>:

xi  xj rj precedes ri

xi  1� xj ri conflicts with rj, i 6= j = 1, ..., n
(4.23)

qi �
✓ |Ii,j|+ (1� 2xj)Ii,j

2

◆
, i 6= j = 1, ..., n (4.24)

xi 2 {0, 1}, i = 1, ..., n (4.25)

0  qi  1, i = 1, ..., n (4.26)

Moreover, for a requirement ri, qi depends on the selection variable xj and the strength

of positive (negative) value dependencies as given by (4.16). Since Ii,j is computed by

(4.13) we can restate qi as a function of xj: qi = f (xj). The objective function (4.21),

Chapter 4. The Integer Linear Programming Method (DARS-ILP) 21 86

thus, can be restated as Maximize Ân
i=1 xiE(vi) � xi f (xj)E(vi) where xi f (xj)E(vi) is

a quadratic non-linear expression [39]. Equations (4.21)-(4.24), on the other hand,

denote a convex optimization problem as the model maximizes a concave objective

function with linear constraints.

Maximize
n

Â
i=1

xiE(vi)� yiE(vi) (4.27)

Subject to
n

Â
i=1

cixi  b (4.28)

8
>><

>>:

xi  xj rj precedes ri

xi  1� xj ri conflicts with rj, i 6= j = 1, ..., n

(4.29)

qi �
✓ |Ii,j|+ (1� 2xj)Ii,j

2

◆
, i 6= j = 1, ..., n (4.30)

� gi  xi  gi, i = 1, ..., n (4.31)

1� (1� gi)  xi  1 + (1� gi), i = 1, ..., n (4.32)

� gi  yi  gi, i = 1, ..., n (4.33)

� (1� gi)  (yi � qi)  (1� gi), i = 1, ..., n (4.34)

0  yi  1, i = 1, ..., n (4.35)

0  qi  1, i = 1, ..., n (4.36)

xi, gi 2 {0, 1}, i = 1, ..., n (4.37)

Convex optimization problems are solvable [39]. However, for problems of moderate

to large sizes, integer linear programming (ILP) models are preferred [145] as they

can be efficiently solved, despite the inherent complexity of NP-hard problems, due

to the advances in solving ILP models and availability of efficient tools such as ILOG

CPLEX for that purpose. This motivates us to consider developing an ILP version of

the model as given by (4.27).

Chapter 4. The Integer Linear Programming Method (DARS-ILP) 23 87

In doing so, the non-linear expression xiqi is substituted with the linear expression

yi (yi = xiqi). As such, either a : (xi = 0, yi = 0), or b : (xi = 1, yi = qi) occur.

To capture the relation between qi and yi in a linear form, we have made use of an

auxiliary variable gi = {0, 1} and (4.31)-(4.35) are added to the original model. As

such, we have either (gi = 0)! a, or (gi = 1)! b.

Therefore, the optimization model of DARS-ILP given by (4.27)-(4.37), is linear and

therefore can be efficiently solved [39], even for large scale requirement sets, by the

existing commercial solvers such as IBM CPLEX [40]. We have implemented, solved,

and tested the optimization model of the DARS-ILP method using the Concert Technol-

ogy and the JAVA API of IBM CPLEX [40]. The code for this model is available in JAVA

and OPL languages and can be obtained from the website of DARS22.

4.4.3 The Blind Integer Programming Model

The ILP model presented in Section 4.4.2 relies on the identification of value depen-

dencies in software projects to mitigate the risk of value loss posed by ignoring the

influences of the requirements on the values of each other. But there might be situa-

tions where there is little or no information available about value dependencies. This

may occur, for instance, when it is not practical to collect user preferences as discussed

in Section 4.2.

Without sufficient information about value dependencies, the influences of the re-

quirements on the values of each other remain unidentified and, therefore, cannot be

taken into account in the requirement selection. This may lead to ignoring (selecting)

the requirements with significant positive (negative) influences on the values of the

selected requirements and therefore result in value loss.

When the negative influences of the requirements on the values of each other are neg-

ligible, reducing the number of the ignored requirements for a given budget, will mit-

igate the risk of value loss by reducing the chances that requirements with positive

influences are ignored.

22http://bcert.org/projects/dars

http://bcert.org/projects/dars

Chapter 4. The Integer Linear Programming Method (DARS-ILP) 24 88

On this basis, we have proposed a Blind ILP model for DARS-ILP that reduces the

chances that the requirements with positive influences on the values of the selected

requirements are ignored. The term “Blind” is used to emphasize that the model does

not rely on any information about value dependencies.

f1(n, xi, E(vi)) =
n

Â
i=1

xiE(vi) (4.38)

f2(n, xi) =
n

Â
i=1

xi (4.39)

E(vi) = p(ri)vi (4.40)

Equations (4.41)-(4.44) give a multi-objective (bi-objective) formulation of the blind

model of DARS-ILP, which aims to simultaneously maximize the utility functions f1

and f2 while respecting the budget constraint (4.42) and the precedence constraints

(4.43). The utility function f1 in (4.38) concerns with the expected value of the se-

lected requirements while the utility function f2 specifies the number of the selected

requirements as given by (4.39).

In these equations b denotes the available budget and xi is a decision variable speci-

fying whether a requirement ri is selected (xi = 1) or ignored (xi = 0). Also, ci and

E(vi) denote the estimated cost and the expected value of ri respectively. E(vi) is com-

puted by (4.40) in which vi specifies the estimated value of ri and p(ri) denotes the

probability that users purchase/use ri.

Maximize { f1(n, xi, E(vi)), f2(n, xi)} (4.41)

Subject to
n

Â
i=1

xici  b (4.42)

8
>>><

>>>:

xi  xj rj precedes ri

xi  1� xj ri conflicts with rj, i 6= j = 1, ..., n
(4.43)

xi 2 {0, 1}, i = 1, ..., n (4.44)

Chapter 4. The Integer Linear Programming Method (DARS-ILP) 25 89

The optimization model (4.41)-(4.44), aims to find a subset of the requirements that, si-

multaneously, maximizes the utility functions f1 and f2 while keeping the cost within

the budget and respecting the precedence constraints (4.43). However, maximizing

the number of the selected requirements (the utility function f2) may conflict with

maximizing the expected value of the selected requirements (the utility function f1)

and vice versa.

Hence, finding an optimal subset of the requirements, without additional preference

information from the stakeholders is not possible. In other words, without additional

information, all Pareto Optimal [84] subsets found by the optimization model (4.41)-

(4.44) are considered to be equally good. In a Pareto optimal (Non-Dominated) subset

found by the model, none of the utility functions f1 or f2 can be improved in value

without degrading the other one [49].

The optimization model (4.41)-(4.44) can be solved in different ways, as discussed

in [146], depending on the viewpoints of the stakeholders and, thus, there exist dif-

ferent solution philosophies when solving them. The optimization model may aim to

find a representative set of Pareto optimal subsets, and/or quantify the trade-offs in

satisfying the utility functions f1 and f2, and/or finding a single subset that satisfies

the preferences of the stakeholders.

In this regard, we reformulate the Blind ILP model of DARS-ILP as a single-objective

optimization model given by (4.45)-(4.49). The model aims to avoid ignoring require-

ments (maximizing f2) as long as the budget constraint (4.46) is respected and the util-

ity function f1 is partly satisfied by guaranteeing a lower-bound V for the expected

value of the optimal subset. V in (4.47) will be specified by the stakeholders.

The conflict between the utility functions f1 and f2, thus, is reconciled by maximizing

f2 while ensuring a lower-bound for f1. Moreover, precedence dependencies among

the requirements are captured by (4.48), where xi  xj states that a requirement ri

requires rj while xi  (1� xj) means that ri conflicts with rj.

Chapter 4. The Integer Linear Programming Method (DARS-ILP) 27 90

Maximize f1(n, xi, E(vi)) (4.45)

Subject to
n

Â
i=1

xici  b (4.46)

f2(n, xi) � V (4.47)
8
>>><

>>>:

xi  xj rj precedes ri

xi  1� xj ri conflicts with rj, i 6= j = 1, ..., n
(4.48)

xi 2 {0, 1} i = 1, ..., n (4.49)

The proposed Blind ILP model is formulated to mitigate the risk of value loss in the ab-

sence of sufficient information about value dependencies. Hence, the proposed model

does not require the identification and modeling of value dependencies.

Finally, the Blind ILP model of the DARS-ILP method, as given by (4.45)-(4.49), is

linear and therefore can be efficiently solved [39], even for large scale requirement sets,

by the existing commercial solvers such as IBM CPLEX [40]. We have implemented,

solved, the model using the Concert Technology and the JAVA API of IBM CPLEX [40].

The code for this model is available in JAVA and OPL languages and can be obtained

from the website of DARS26.

4.5 Case Study

This section discusses the practicality and validity of the ILP method of DARS (DARS-

ILP) by studying a real-world software product. We also demonstrate why software

vendors should take care with value dependencies among requirements, and how to

employ DARS-ILP to assist decision makers to comprehend the results, thus raising

the research questions (RQ6)-(RQ8) about the ILP method of DARS.

26http://bcert.org/projects/dars

http://bcert.org/projects/dars

Chapter 4. The Integer Linear Programming Method (DARS-ILP) 28 91

(RQ6) How effective is DARS-ILP with respect to considering value dependen-

cies?

(RQ6.1) How similar are solutions found by DARS-ILP to those found by the exist-

ing requirement selection methods?

(RQ6.2) What is the impact of using DARS-ILP on the overall value of software

products?

(RQ6.3) What is the relationship between maximizing the accumulated value, ex-

pected value, and overall value of software products?

(RQ6.4) How effective is DARS-ILP in mitigating the value loss caused by ignoring

(selecting) requirements with positive (negative) influence on the values of

selected requirements?

4.5.1 Description of Study

To demonstrate practicality of the DARS-ILP method we studied a real-world software

project referred to as PMS-III. As depicted in Figure 4.6 our study began with identifi-

cation of value dependencies and modeling those dependencies. Then, we performed

requirement selection using the PCBK, SBK, and DARS-ILP methods to find optimal

configurations of PMS-III based on the sales records of different configurations of pre-

vious releases of PMS-III. The configurations found by the PCBK, SBK, and DARS-ILP

methods for different price levels are shown in Figure 4.11.

For the configurations found by the PCBK, SBK, and DARS-ILP methods the accu-

mulated value (AV), expected value (EV), and overall value (OV) were computed to

compare the performance of the PCBK, SBK, and DARS-ILP methods for different

price levels. This helped stakeholders of PMS-III to find, for different price levels,

configurations of PMS-III with lower risk of value loss.

Table 4.4 lists the requirements of PMS-III and their estimated and expected values in

[1, 20]. The expected value of each requirement ri, denoted by E(vi) was computed by

multiplying the frequency of the presence of ri in the configurations sold prior to our

study (p(ri)) by its estimated value vi.

Chapter 4. The Integer Linear Programming Method (DARS-ILP) 29 92

FIGURE 4.6: The case study design.

TABLE 4.3: The estimated and expected values of the requirements of PMS-III.

ri p(ri) vi E(vi) ri p(ri) vi E(vi)

r1 00.94 10.00 09.43 r15 00.58 08.00 04.64
r2 01.00 20.00 20.00 r16 00.82 10.00 08.24
r3 00.37 05.00 01.85 r17 00.12 10.00 01.19
r4 00.98 17.00 16.61 r18 00.51 15.00 07.59
r5 00.88 06.00 05.28 r19 00.67 20.00 13.41
r6 00.91 20.00 18.30 r20 00.20 20.00 04.09
r7 00.82 15.00 12.36 r21 00.14 15.00 02.05
r8 01.00 09.00 09.00 r22 00.33 20.00 06.59
r9 00.97 20.00 19.43 r23 00.88 20.00 17.61
r10 00.76 16.00 12.18 r24 01.00 01.00 01.00
r11 00.57 20.00 11.36 r25 00.24 05.00 01.19
r12 01.00 12.00 12.00 r26 00.36 01.00 00.36
r13 00.76 08.00 06.09 r27 00.97 05.00 04.86
r14 00.45 14.00 06.28

Sum - 192.00 160.17 - - 150.00 72.82

Chapter 4. The Integer Linear Programming Method (DARS-ILP) 30 93

4.5.2 Identification and Modeling of Dependencies

Precedence Dependencies in PMS-III

To account for the precedence dependencies among the requirements of PMS-III and

their value implications, requirement dependencies of type Requires and Conflicts-With

were extracted (Figure 4.7) from the development artifacts of PMS-III and formulated

using (4.54)-(4.63), (4.71)-(4.80), and (4.95)-(4.104) in the optimization models of the

PCBK, SBK, and DARS-ILP methods respectively.

Moreover, stakeholders of the PMS-III specified that the presence of either r2 or r6 is

always essential to integrity of different configurations of PMS-III. To account for this,

we introduced (4.53) to the optimization models of the PCBK, SBK, and DARS-ILP

methods, where xi denotes whether ri is selected (xi = 1) or not (xi = 0).

Requires

Conflicts-With

R
e
q
u
ir
e
s

R
e
q
u
ir
e
s

R
e
q
u
ir
e
s

R
e
q
u
ir
e
s

OR

r2

r3

r4
r5

r6

r7

r8

r9

r10

r12

r11

r14

r13r16

r15

r18

r17

r19

r21

r20

r23r22

r25

r24

r27

r26

r1r27

r26

r1
Legend

AND

ri rj

ri rj

rj

ri

rk

rj

ri

rk

FIGURE 4.7: The precedence dependency graph of requirements of PMS-III.

Value Dependencies in PMS-III

To specify value dependencies among requirements of PMS-III, we first collected sales

records of different configurations of PMS-III as explained earlier. Then the Eells mea-

sure of causal strength was computed for all pairs of requirements using Algorithm 4.1

to identify the strengths and qualities of causal relations among requirements as ex-

plained in Section 4.2.3.

Chapter 4. The Integer Linear Programming Method (DARS-ILP) 31 94

FIGURE 4.8: Explicit value dependencies among requirements of PMS-III. A
cell at row i and column j denotes quality and strength of a value depen-
dency from requirement ri to rj.

The significances of the identified relations were subsequently tested using the Odds

Ratio at confidence level 95% as explained in Section 4.2.4. The strengths and qualities

of explicit value dependencies were finally computed using the significant causal rela-

tions found and the fuzzy membership function of Figure 4.4(a) as given by (4.5)-(4.6).

Algorithm 4.2 was used to infer implicit value dependencies and compute the overall

strengths of positive and negative value dependencies in the value dependency graph

(VDG) of requirements. The influences of requirements on the values of each other

were subsequently computed by (4.13).

Figure 4.8 shows the qualities and strengths of explicit value dependencies. The color

of a cell at row i and column j specifies the quality and the strength of a value de-

pendency from ri to rj. Colors associated with positive (negative) numbers denote

positive (negative) dependencies. Also, zero denotes the absence of any dependency.

Analogously, the positive or negative influences of requirements on the values of each

other are depicted in Figure 4.9.

Chapter 4. The Integer Linear Programming Method (DARS-ILP) 32 95

FIGURE 4.9: Influences of PMS-III requirements on the value of each other.
A cell at row i and column j denotes quality and strength of the influence of
rj on ri.

4.5.3 Performing Requirement Selection

This section demonstrates the effectiveness of DARS-ILP in considering value de-

pendencies in software requirement selection compared to the existing requirement

selection methods. The PCBK, SBK, and DARS-ILP methods, as explained earlier,

find optimal subsets of requirements based on their corresponding optimality criteria.

As given by (4.50) the PCBK method considers the estimated values of requirements

while the SBK method, as in (4.67), accounts for user preferences for requirements

by considering the expected values of requirements rather than their mere estimated

values. Finally, the DARS-ILP method factors in both user preferences and value de-

pendencies among requirements as given by (4.84)-(4.107). The expected values of re-

quirements and value dependencies among those requirements are computed based

on user preferences for requirements achieved from the Pre-TSP sales records of PMS-

III as depicted in Figure 4.6.

Chapter 4. The Integer Linear Programming Method (DARS-ILP) 33 96

FIGURE 4.10: Comparing the requirement subsets found by the DARS-ILP
and PCBK methods for different price levels.

Chapter 4. The Integer Linear Programming Method (DARS-ILP) 34 97

FIGURE 4.11: Comparing the requirement subsets found by the DARS-ILP
and SBK methods for different price levels.

Chapter 4. The Integer Linear Programming Method (DARS-ILP) 35 98

Price was determined as a major constraint for requirement selection as different con-

figurations of PMS-III had been released at different price levels, during the Pre-TSP

and TSP, to cope with the needs of different users [147]. Constraints (4.51), (4.68), and

(4.85) hence were added to the optimization models of PCBK, SBK, and DARS-ILP

methods respectively to contain the price of different configurations of PMS-III within

their corresponding price limits. This essentially converted the problem to a variation

of the Bounded Knapsack Problem. g 2 IR+ denotes the price limit and vi specifies

the estimated value of a requirement ri. Also xi specifies whether a requirement ri is

selected (xi = 1) or not (xi = 0). We omitted (2.25) from the optimization model of the

SBK method as considering the sales diversification is beyond the scope of this thesis.

The concept of diversification was explained in detail in Section 2.2.5.

Maximize
27

Â
i=1

xivi (4.50)

Subject to
27

Â
i=1

vixi  g (4.51)

xi 2 {0, 1}, i = 1, ..., 27 (4.52)

x2 + x6 = 1 (4.53)

x4  x1 + x2 (4.54)

x5  x1 + x2 (4.55)

x8  x1 + x2 (4.56)

x8  x25 (4.57)

x17  (1� x18) (4.58)

x18  (1� x17) (4.59)

x19  x2 (4.60)

x19  x6 (4.61)

x20  x2 (4.62)

x20  x6 (4.63)

x26  x27 (4.64)

x27  x1 (4.65)

x27  x6 (4.66)

Chapter 4. The Integer Linear Programming Method (DARS-ILP) 36 99

Moreover, (4.53),(4.70), and (4.94) were added to the optimization models of the PCBK,

SBK, and DARS-ILP methods respectively to ensure that at least one of the require-

ments r2 and r6 is selected as an essential requirement of PMS-III. Also (4.54)-(4.66),

(4.71)-(4.83), and (4.95)-(4.107) formulate precedence dependencies (requires and conflicts-

with) of Figure 4.7 in the optimization models of the PCBK, SBK, and DARS-ILP meth-

ods respectively. Model (4.50)-(4.66) thus presents the formulation of the optimization

model of the PCBK method for the requirements of PMS-III. Similarly, (4.67)-(4.83) and

(4.84)-(4.107) give the optimization models of the SBK and DARS-ILP methods for the

requirements of PMS-III.

Maximize
27

Â
i=1

xiE(vi) (4.67)

Subject to
27

Â
i=1

vixi  g (4.68)

xi 2 {0, 1}, i = 1, ..., 27 (4.69)

x2 + x6 = 1 (4.70)

x4  x1 + x2 (4.71)

x5  x1 + x2 (4.72)

x8  x1 + x2 (4.73)

x8  x25 (4.74)

x17  (1� x18) (4.75)

x18  (1� x17) (4.76)

x19  x2 (4.77)

x19  x6 (4.78)

x20  x2 (4.79)

x20  x6 (4.80)

x26  x27 (4.81)

x27  x1 (4.82)

x27  x6 (4.83)

Chapter 4. The Integer Linear Programming Method (DARS-ILP) 37 100

Maximize
27

Â
i=1

xiE(vi)� yiE(vi) (4.84)

Subject to
27

Â
i=1

vixi  g (4.85)

qi �
✓ |Ii,j|+ (1� 2xj)Ii,j

2

◆
, i 6= j = 1, ..., 27 (4.86)

� gi  xi  gi, i = 1, ..., 27 (4.87)

1� (1� gi)  xi  1 + (1� gi), i = 1, ..., 27 (4.88)

� gi  yi  gi, i = 1, ..., 27 (4.89)

� (1� gi)  (yi � qi)  (1� gi), i = 1, ..., 27 (4.90)

0  yi  1, i = 1, ..., 27 (4.91)

0  qi  1, i = 1, ..., 27 (4.92)

xi, gi 2 {0, 1}, i = 1, ..., 27 (4.93)

x2 + x6 = 1 (4.94)

x4  x1 + x2 (4.95)

x5  x1 + x2 (4.96)

x8  x1 + x2 (4.97)

x8  x25 (4.98)

x17  (1� x18) (4.99)

x18  (1� x17) (4.100)

x19  x2 (4.101)

x19  x6 (4.102)

x20  x2 (4.103)

x20  x6 (4.104)

x26  x27 (4.105)

x27  x1 (4.106)

x27  x6 (4.107)

Chapter 4. The Integer Linear Programming Method (DARS-ILP) 38 101

Selection tasks were performed for different price levels (%Price = {1, ..., 100}, Price =

%Price
100 ⇥ 342) using the PCBK, SBK, and DARS-ILP methods to find optimal subsets of

requirements of PMS-III (optimal configurations of PMS-III). Optimal configurations

found by the PCBK, SBK, and DARS-ILP methods were compared based on their simi-

larities, accumulated values, expected values, and overall values to answer (RQ6) and

its subquestions. The binary knapsack (BK) method (Section 2.2.1) and the Increase-

Decrease method (Section 2.2.3) were not used in requirement selection tasks as the

former ignores precedence dependencies resulting in violation of the precedence con-

straints and finding infeasible solutions while the latter relies on manual estimations

of values of requirement subsets and does not provide any formal way to specify the

amounts of the increased or decreased values of the requirement subsets as detailed in

Section 2.2.3. Selections were performed using the callable library ILOG CPLEX 12.6.2

on a windows machine with a Core i7-2600 3.4 GHz processor and 16 GB of RAM.

Similarities of Solutions

In this section we compare PCBK, SBK, and DARS-ILP based on their selection pat-

terns to answer (RQ6.1). Figure 4.12 depicts dissimilarities between the requirement

subsets found by the DARS-ILP and those found by PCBK/SBK based on Euclidean

Distance. While notable at all price levels, these dissimilarities decreased for highly

expensive (%Price! 100) or very cheap (%Price! 0) configurations of PMS-III.

(a) DARS-ILP vs. PCBK (b) DARS-ILP vs. SBK

FIGURE 4.12: Dissimilarities between requirement subsets (solutions) found by
DARS-ILP and those found by the PCBK/SBK methods.

Chapter 4. The Integer Linear Programming Method (DARS-ILP) 39 102

The reason is expensive configurations of PMS-III comprise most requirements thus

reducing the chances that requirements with positive influences on the values of the

selected requirements are ignored. Moreover, as given by Figure 4.9, there are no neg-

ative influences among requirements. Hence, similarities between solutions found by

the DARS-ILP method and those found by the PCBK and SBK methods increase for ex-

pensive configurations of PMS-III. For cheaper configurations, price constraint limits

the solution space for the PCBK, SBK, and DARS-ILP methods especially preventing

the DARS-ILP method from utilizing its advantage in considering value dependen-

cies. This resulted in more similarities between the solutions found by the DARS-ILP

method and those found by the PCBK and SBK methods for very cheap configurations

of PMS-III.

Finally we observed from Figure 4.13(a) and Figure 4.13(b) that requirement subsets

(solutions) found by the DARS-ILP method were more similar to the solutions found

by the SBK method than similar to the solutions found by the PCBK method. The

reason is as explained before both DARS-ILP and SBK consider user preferences while

the PCBK method ignores those preferences.

Figure 4.13 provides more insights into (RQ6.1) by comparing the selection patterns

of the PCBK, SBK, and DARS-ILP methods in 100 different selection tasks performed

at different price levels (%Price = {1, 2, ..., 100}). For a given requirement ri, %Fi(mj)

in Figure 4.13 specifies the percentages of the selection tasks in which ri is selected by

the requirement selection method mj. Hence, %DFi(mj, mk) = %Fi(mj)�%Fi(mk) > 0

states that the percentages of the selection tasks where ri is selected by the selection

method mj is higher than the percentages of the selection tasks where ri is selected by

mk. Similarly, %DFi(mj, mk) = %Fi(mj)�%Fi(mk) < 0 states that ri is more frequently

selected by mk compared to mj. mj and mk can be any of the selection methods used in

our selection tasks.

The results of our selection tasks showed (Figure 4.13) that requirements with signif-

icant influence on the values of pricey requirements were more frequently preferred

by DARS-ILP compared to the PCBK and SBK methods. This was more visible for

requirements r8, r12, r24, and r27 when in Figure 4.13(a) and for requirements r8, r12, r24

in Figure 4.13(b).

Chapter 4. The Integer Linear Programming Method (DARS-ILP) 40 103

(a) DARS-ILP vs. PCBK

(b) DARS-ILP vs. SBK

(c) SBK vs. PCBK

FIGURE 4.13: Selection patterns of PCBK, SBK, and DARS-ILP methods for requirements
of PMS-III at different price levels (%Price 2 {1, 2, ..., 100}). For a requirement ri, de-
noted by i on the x-axis, and requirement selection methods mj and mk, %DFi(mj, mk) =
%Fi(mj)�%Fi(mk), where %Fi(mj) and %Fi(mk) give the percentage of the selection tasks
in which ri is selected by the mj and mk methods respectively.

Chapter 4. The Integer Linear Programming Method (DARS-ILP) 41 104

Requirement r8 for instance was more frequently preferred by DARS-ILP compared

to the PCBK and SBK methods as the optimization model of DARS-ILP considers the

fact that r8 has a significant positive influence on the values of several valuable re-

quirements including r2, r4, r6, and r12 (Figure 4.9).

Similarly, r24 has a significant (positive) influence on the values of requirements r2, r6,

r8, andr12. r25 however, was more frequently selected by DARS-ILP as r8 requires r25

(Figure 4.7) and r8 is frequently selected by DARS-ILP due to its significant impact

on valuable requirements. As such, selecting r8 requires the presence of r25 in soft-

ware. DARS-ILP and SBK however were frequently selected r12 and r27 as these two

requirements are almost always preferred by users. This was not the case for PCBK as

it ignores user preferences.

Selection patterns in Figure 4.13 showed that when a decision was to be made regard-

ing the presence or absence of a requirement ri in a configuration of PMS-III, PCBK

only took into account the estimated value of ri ignoring user preferences. SBK on the

other hand, considered user preferences for ri by evaluating the expected value of ri

rather than merely its accumulated value.

DARS-ILP, however, evaluated the expected value of ri while considering the im-

pact of ri on the values of other requirements. More similarities were thus observed

among configurations found by the SBK and DARS-ILP as both methods took into

account user preferences. On the contrary, dissimilarities were more visible when

SBK and DARS-ILP/PCBK were compared as demonstrated in Figure 4.13(a) and Fig-

ure 4.13(c).

Impact of DARS-ILP on the Overall Value

(RQ6.2) is answered by comparing the percentages of overall values (%OV = (OV/342)⇥

100), accumulated values (%AV = (AV/342) ⇥ 100), and estimated values (%EV =

(EV/342)⇥ 100) provided by the PCBK, SBK, and DARS-ILP methods for 100 selec-

tion tasks, each performed at a specific price level (%Price = {1, 2, .., 100}), as shown

in Figures 4.14-4.16.

Chapter 4. The Integer Linear Programming Method (DARS-ILP) 42 105

Our results show (Figure 4.14) that requirement subsets found by the DARS-ILP method

provided higher or equal %OV in all selection tasks compared to the PCBK method.

The reason is that the optimization model of PCBK only considers estimated values

(prices) of requirements while entirely ignoring user preferences and value dependen-

cies among requirements. On the contrary, DARS-ILP not only takes into account user

preferences, but considers the influences of requirements on the values of each other

by integrating value dependencies into requirement selection.

(a) (b)

(c) (d)

FIGURE 4.14: Comparing the overall values provided by the PCBK, SBK, and
DARS-ILP methods at different price levels. %DOV(mj, mk) = %OV(mj) �
%OV(mk), where mj and mk denote the selection methods which are being com-
pared against each other.

For a given price, %OV of the requirement subset (solutions) found by the SBK method

was, for most price levels, higher than %OV of the solution provided by the PCBK

Chapter 4. The Integer Linear Programming Method (DARS-ILP) 43 106

method but still less than or equal to the overall value of the solution found by DARS-

ILP. The reason is that even though the SBK method does not consider value depen-

dencies, it still accounts for user preferences, similar to DARS-ILP, by optimizing the

expected values of selected requirements. This results in more similarities between the

configurations of PMS-III found by the SBK method and those found by the DARS-ILP

method as discussed in Section 4.5.3.

We observed in Figure 4.14(b) that the gap between the %OV achieved from the DARS-

ILP method and the PCBK/SBK method was notable in almost all selection tasks per-

formed at different price levels. But the gap reduced to almost negligible for highly

expensive (%Price! 100) or very cheap (%Price! 0) configurations of PMS-III. The

reason is, on one hand, there are no negative influences among the requirements of

PMS-III (Figure 4.9) and, on the other hand, expensive configurations of PMS-III com-

prise most requirements, which reduces the chances that requirements with positive

influence are ignored by PCBK/SBK.

That increases similarities between the expensive configurations of PMS-III found by

the PCBK/SBK and DARS-ILP methods as discussed in Section 4.5.3. For cheaper

configurations, the price-constraint limited the solution space in all the PCBK, SBK,

and DARS-ILP methods and specially prevented the DARS-ILP method from utiliz-

ing its advantage in considering value dependencies. The price constraint further

reduced the gap between %AV provided by the DARS-ILP and PCBK/SBK methods

(Figures 4.15) in the selection tasks.

We further observed insignificant differences amongst the accumulated values pro-

vided by the selection methods experimented in this study as shown in Figure 4.15.

The reason is that the price constraints (4.51), (4.68), and (4.85) in the optimization

models of the PCBK, SBK, and DARS-ILP methods respectively contain the accumu-

lated values of the solutions found by those models. The price constraints (4.51), (4.68),

and (4.85) are needed to factor out the interplay between the price and sales as ex-

plained earlier.

Chapter 4. The Integer Linear Programming Method (DARS-ILP) 44 107

(a) (b)

(c) (d)

FIGURE 4.15: Comparing the accumulated values provided by the PCBK, SBK,
and DARS-ILP methods at different price levels. %DAV(mj, mk) = %AV(mj) �
%AV(mk), where mj and mk denote the selection methods compared against each
other.

Chapter 4. The Integer Linear Programming Method (DARS-ILP) 45 108

(a) (b)

(c) (d)

FIGURE 4.16: Comparing the expected values provided by the PCBK, SBK,
and DARS-ILP methods at different price levels. %DEV(mj, mk) = %EV(mj) �
%EV(mk), where mj and mk denote the selection methods being compared against
each other.

Chapter 4. The Integer Linear Programming Method (DARS-ILP) 46 109

Moreover, the expected values of the requirement subsets found by the SBK method

were higher than those found by the DARS-ILP and PCBK methods in all selection

tasks (for all price levels) as shown in Figure 4.16(c) and Figure 4.16(d) respectively.

The expected values of requirement subsets found by the DARS-ILP method were

higher than those of the requirement subsets found by the PCBK method in most se-

lection tasks. This can be seen in Figure 4.16(b).

In some of the selection tasks, however, the expected values of the requirement subsets

found by the PCBK method were higher than those found by the DARS-ILP method

even though the PCBK method does not account for user preferences whatsoever. The

reason is that the DARS-ILP method optimizes the overall value of a requirement sub-

set (solution), which, simultaneously accounts for both user preferences and value

dependencies as give by (4.84). Hence in some cases the DARS-ILP method may find

solutions with lower expected values as taking into account value dependencies may

be in conflict with maximizing the expected values of a requirement subset.

Understanding the Conflicting Objectives

To answer (RQ6.3), we compared the overall values (Figure 4.14), accumulated values

(Figure 4.15), and expected values (Figure 4.16) of the requirement subsets found by

the PCBK, SBK, and DARS-ILP methods in different requirement selection tasks per-

formed at different price levels. From Figure 4.14 and Figure 4.15 it can be seen that

maximizing the accumulated value (AV) of a selected subset of requirements conflicts

with maximizing the overall value (OV) of that subset. This can be specially seen in

Figure 4.14(b) and Figure 4.15(b), where in several selection tasks, choosing require-

ment subsets with higher %AV by the PCBK method (Figure 4.15) reduced the overall

value.

Maximizing the expected value of a requirement subset also conflicts with optimiz-

ing its overall value as the former may result in ignoring requirements with lower

Chapter 4. The Integer Linear Programming Method (DARS-ILP) 47 110

expected values even if they have a significant influence on the values of other re-

quirements. That will increase the penalty of ignoring requirements with positive in-

fluences on the values of selected requirements, as given by (4.16), resulting in lower

overall value. This can be seen by comparing Figure 4.14(c) and Figure 4.16(c).

Mitigating the Value-Loss

Ignoring value dependencies among requirements can pose a major risk to the eco-

nomic worth of PMS-III configurations and eventually result in value loss as given

by (4.16). This risk can be be measured by the gap between the expected value of

software and its overall value, which accounts for value dependencies, as depicted in

Figure 4.17. As shown in this figure, for each selection task performed at a specific

price level, the gap between the expected value and the overall value of the PMS-III

configuration found by the DARS-ILP method was notably smaller than the gaps be-

tween the %EV and %OV provided by the PCBK method. Hence, using DARS-ILP

contributed to a smaller risk of value loss in different configurations of PMS-III.

FIGURE 4.17: Risk of value loss for configurations of PMS-III found by the
PCBK, SBK, and DARS-ILP methods at different price levels.

Chapter 4. The Integer Linear Programming Method (DARS-ILP) 48 111

We observed (Figure 4.17) that the risk of value loss for different configurations of

PMS-III found by DARS-ILP were under 5% while the risk of value loss for configura-

tions found by the PCBK and SBK methods inconsistently changed from almost neg-

ligible for cheaper configurations to around 37% in more expensive configurations.

In most configurations found by the PCBK and SBK, an inconsistent pattern of “the

higher the price the higher the risk of value loss" was observed suggesting a higher

risk for expensive configurations of PMS-III. The risk of value loss for the configura-

tions found by the SBK method, however, converged to those found by the DARS-ILP

method for %Price � 88 as both methods tended to choose more similar configura-

tions (Figure 4.12). This concludes our answer to (RQ6.4).

4.6 Simulations

Studying real-world software products, as in Section 4.5, helps understand practical

aspects of requirement selection methods. However, that may not be sufficient by itself

to understand the impact of different levels of value dependencies and precedence

dependences on requirement selection. To address this, we simulated requirement

selection for different levels of value dependencies and precedence dependencies in

different scenarios.

As discussed earlier, the optimization model of DARS-ILP considers value dependen-

cies while optimization models of the BK, PCBK, and SBK methods ignore value de-

pendencies. Also, both DARS-ILP and SBK consider user preferences by evaluating

the expected values of requirements as given by (4.27) and (2.24). However, the SBK

and DARS-ILP methods may find similar solutions in several cases as both methods

consider user preferences. This may specially happen when value dependencies are

found among frequently preferred requirements with high estimated values.

The interplay between considering user preferences and considering value dependen-

cies thus may interfere with studying the impact of value dependencies on the ef-

fectiveness of the selection methods being investigated. To avoid this and further

highlight the differences between considering and ignoring value dependencies in the

simulated scenarios, we modify the optimization model of DARS-ILP, as given by

Chapter 4. The Integer Linear Programming Method (DARS-ILP) 49 112

(4.108)-(4.118), by using the definition of overall value given in Section 3.3.2, which

substitutes the expected values of requirements (E(vi)) with their corresponding esti-

mated values (vi) thus factoring out user preferences from simulations.

Maximize
n

Â
i=1

xivi � yivi (4.108)

Subject to
n

Â
i=1

cixi  b (4.109)

8
>><

>>:

xi  xj rj precedes ri

xi  1� xj ri conflicts with rj, i 6= j = 1, ..., n

(4.110)

qi �
✓ |Ii,j|+ (1� 2xj)Ii,j

2

◆
, i 6= j = 1, ..., n (4.111)

� gi  xi  gi, i = 1, ..., n (4.112)

1� (1� gi)  xi  1 + (1� gi), i = 1, ..., n (4.113)

� gi  yi  gi, i = 1, ..., n (4.114)

� (1� gi)  (yi � qi)  (1� gi), i = 1, ..., n (4.115)

0  yi  1, i = 1, ..., n (4.116)

0  qi  1, i = 1, ..., n (4.117)

xi, gi 2 {0, 1}, i = 1, ..., n (4.118)

When the same substitution is performed on the optimization model of SBK, the ob-

jective function of the method becomes identical to that of the optimization model of

the PCBK method as given by (4.119)-(4.122). Moreover, as given by Table 2.2, the

stochastic binary knapsack method is the same as the PCBK method as far as con-

sidering aspects of value dependencies is concerned. That is the SBK method only

considers the value implications of precedence dependencies. As such, we avoid re-

peating the simulations for SBK.

Chapter 4. The Integer Linear Programming Method (DARS-ILP) 50 113

Maximize
n

Â
i=1

xivi (4.119)

Subject to
n

Â
i=1

cixi  b (4.120)

8
>><

>>:

xi  xj rj precedes ri

xi  1� xj ri conflicts with rj, i 6= j = 1, ..., n

(4.121)

xi 2 {0, 1}, i = 1, ..., n (4.122)

Simulations were carried out for requirements of a system referred to as PMS-II with

27 requirements with the estimated values and costs given in Table 4.4. The estimated

costs and values are scaled into [0, 20]. Value dependencies and precedence depen-

dencies among these requirements were generated randomly as will be explained in

the following.

TABLE 4.4: The estimated costs and values of the requirements of PMS-II.

ri ci vi ri ci vi

r1 05.00 10.00 r15 15.00 08.00
r2 20.00 20.00 r16 13.00 10.00
r3 00.00 04.00 r17 14.00 06.00
r4 10.00 17.00 r18 03.00 10.00
r5 01.00 03.00 r19 10.00 20.00
r6 20.00 20.00 r20 07.00 20.00
r7 06.00 15.00 r21 12.00 15.00
r8 05.00 09.00 r22 15.00 20.00
r9 16.00 20.00 r23 08.00 20.00
r10 10.00 16.00 r24 02.00 05.00
r11 04.00 20.00 r25 10.00 00.00
r12 03.00 10.00 r26 00.00 00.00
r13 05.00 06.00 r27 01.00 00.00
r14 07.00 08.00

Sum 112.00 178.00 - 110.00 134.00

The Java API of IBM CPLEX was used to implement the optimization models of the

BK, PCBK, and DARS-ILP methods and run them using the callable library ILOG

CPLEX 12.6.2 on a windows machine with a Core i7-2600 3.4 GHz processor and 16

GB of RAM.

Chapter 4. The Integer Linear Programming Method (DARS-ILP) 51 114

Requirement selection, then, was performed for different percentages of budget (%Budget =

{1, ..., 100}), value dependency levels (VDL 2 [0, 1]), negative value dependency lev-

els (NVDL 2 [0, 1]), precedence dependency levels (PDL 2 [0, 1]), and negative prece-

dence dependency levels (NPDL 2 [0, 1]). Table 4.5 lists our simulations settings. This

section answers the following research questions with regard to the performance of

DARS-ILP in different scenarios in Table 4.5.

(RQ7) How is the performance of DARS-ILP affected by changing value depen-

dencies, precedence dependencies and project constraints?

(RQ7.1) What is the impact of the value dependencies on the performance of DARS-

ILP in the presence of various budget constraints?

(RQ7.2) What is the impact of the negative value dependencies on the performance

of DARS-ILP in the presence of various budget constraints?

(RQ7.3) What is the impact of the precedence dependencies on the performance of

DARS-ILP in the presence of various budget constraints?

(RQ7.4) What is the impact of the negative precedence dependencies on the perfor-

mance of DARS-ILP in the presence of various budget constraints?

(RQ7.5) What is the impact of the negative value dependencies in highly, moder-

ately, or loosely interdependent value dependency graphs?

(RQ7.6) What is the impact of the negative precedence dependencies in highly or

loosely interdependent precedence dependency graphs?

To simulate value dependencies for a desired VDL and NVDL, uniformly distributed

random numbers in [�1, 1] were generated, where the sign and magnitude of each

number specified the quality and strength of its corresponding explicit value depen-

dency respectively. In a similar way, for a desired PDL and NPDL, random numbers

in {�1, 0, 1} were generated where 1 (�1) specified a positive (negative) precedence

dependency and 0 denoted the absence of any precedence dependency from a require-

ment ri to a requirement rj.

Chapter 4. The Integer Linear Programming Method (DARS-ILP) 52 115

Furthermore, percentages of the overall value of selected requirements (%OV= OV
Â27

i=1 vi
)

were used to measure the performance of the simulated selection methods. The per-

formance of the BK method was, however, arbitrary in all simulations as the BK

method does not consider precedence dependencies and therefore in many cases, de-

pending on the PDL and NPDL, violates those dependencies giving infeasible solu-

tions with no value (%OV = 0). On the other hand, the PCBK method enhances

the BK method by considering precedence dependencies. As such, the PCBK method

always outperforms the BK method giving higher or equal %OV. Hence, we have

mostly avoided discussing the results related to the BK method. Instead, we fo-

cus on comparing the performance of the PCBK and DARS-ILP methods. Moreover,

Increase-Decrease methods were not simulated as they do not specify how to achieve

the amount of the increased or decreased values as explained in Section 2.2.3.

TABLE 4.5: Performance simulations for the BK, PCBK, and DARS-ILP methods.

Simulation %Budget VDL NVDL PDL NPDL
I [0,100] [0,1] 0.00 0.02 0.00
II [0,100] 0.15 [0,1] 0.02 0.00
III [0,100] 0.15 0.00 [0,1] 0.00
IV [0,100] 0.15 0.00 0.02 [0,1]
V 95 [0,1] [0,1] 0.02 0.00
VI 95 0.15 0.00 [0,1] [0,1]

4.6.1 Value Dependencies vs Budget

To answer (RQ7.1), simulations were carried out for various percentages of budget

(%Budget 2 [0, 100]) and value dependency levels (VDL = [0, 1]) with settings of

Simulation I in Table 4.5. Figure 4.18 shows the percentages of the accumulated value

(%AV) and overall value (%OV) achieved from simulated selection methods.

As expected, the BK method violated precedence dependencies and generated in-

feasible solutions with %AV=%OV= 0 in most simulations (Figure 4.18(a) and Fig-

ure 4.18(b)). The reason is the BK method does not consider precedence dependen-

cies. It is clear that when there is no precedence dependencies (PDL=0), the BK and

the PCBK methods will be equal.

Chapter 4. The Integer Linear Programming Method (DARS-ILP) 53 116

(a) %AV(BK) (b) %OV(BK)

(c) %AV(PCBK) (d) %OV(PCBK)

(e) %AV(DARS-ILP) (f) %OV(DARS-ILP)

FIGURE 4.18: %AV and %OV achieved for Simulation I (%Budget vs. VDL).

Chapter 4. The Integer Linear Programming Method (DARS-ILP) 54 117

Nonetheless, our simulations showed that for %Budget=100 and NPDL=0, the BK

method provided %OV=%AV=100. This, however, could not be achieved in the pres-

ence of negative precedence dependencies. The reason is in such cases the BK method

had to exclude some of the requirements from the optimal subset to avoid violating

negative precedence dependencies. We further observed (Figure 4.18) that for a given

%Budget and NVLD=0 increasing VDL generally decreased %OV achieved by all se-

lection methods. The reason is increasing VDL increases the chances that the positive

dependencies of a requirement are excluded. This, as in (4.16), results in increasing

penalties of selected requirements and consequently reducing %OV.

Figure 4.18 and Figure 4.19, also, show that DARS-ILP gives higher %OV for all VDLs

and %Budget compared to the PCBK and BK methods. The reason is DARS-ILP con-

siders the value dependencies as well as the value implications of precedence de-

pendencies while the BK method ignores dependencies all together, and the PCBK

method only considers precedence dependencies. Figure 4.19 compares %OV and

%AV provided by the DARS-ILP method against those of the BK and PCBK methods

for various %Budget and VDLs. We have %DOV(m1,m2)=%OV(m1)�%OV(m2) and

%DAV(m1,m2)=%AV(m1)�%AV (m2) for a pair of selection methods m1 and m2.

Our results demonstrated that the DARS-ILP method outperformed the BK and PCBK

methods by providing higher %OV as given in Figure 4.19. Moreover, we observed

that finding a subset of requirements with the highest accumulated value conflicts

with finding a subset with the highest overall value. In other words, to maximize OV

and AV are conflicting objectives. This is demonstrated in many points in the graphs of

Figure 4.19(d) and Figure 4.19(b), where for a given %Budget and VDL, %DAV(DARS-

ILP,PCBK)< 0 while %DOV(DARS-ILP,PCBK)> 0.

4.6.2 Negative Value Dependencies vs Budget

To answer the research question (RQ7.2), simulations for various values of budget and

NVDL were performed with settings of Simulation II in Table 4.5. It was observed

that increasing NVDL resulted in arbitrary change in %OV achieved from PCBK and

DARS-ILP methods.

Chapter 4. The Integer Linear Programming Method (DARS-ILP) 55 118

(a) %DOV(DARS-ILP,BK) (b) %DOV(DARS-ILP,PCBK)

(c) %DAV(DARS-ILP,BK) (d) %DAV(DARS-ILP,PCBK)

FIGURE 4.19: %OV and %AV achieved for Simulation I (%Budget vs. VDL).

This is seen in (4.13) where increasing NVDL may arbitrarily increase or decrease the

penalty of selecting or ignoring requirements depending on the strengths of positive

and negative dependencies and the structure of the value dependency graph of the re-

quirements. Moreover, for %Budget=100 and NVDL ! 0, we observed (Figure 4.20),

for both PCBK and DARS-ILP methods, that the maximum %OV can be achieved. The

reason is, as expected, in such cases positive value dependencies do not matter as no

requirement has to be excluded from the optimal subset of requirements due to the

presence of sufficient budget.

Nonetheless, as we move to the right on the x axis in the graphs of (Figure 4.20),

NVDL increases and thus, even with sufficient budget, the maximum %OV cannot

be achieved. The reason is that, as explained earlier, in such cases even selecting re-

quirements may reduce the values of other requirements due to the negative value

dependencies among those requirements.

Chapter 4. The Integer Linear Programming Method (DARS-ILP) 56 119

(a) %OV(PCBK) (b) %OV(DARS-ILP)

(c) %DOV(DARS-ILP,PCBK)

FIGURE 4.20: %OV and %DOV achieved for Simulation II (%Budget vs. NVDL).

We, further, observed (Figure 4.20(c)), consistent with other simulations, that the DARS-

ILP method always provided higher %OV compared to the PCBK method as expected.

On the other hand, it was observed that the BK method failed to find feasible solutions

in most simulations due to violating precedence dependencies.

4.6.3 Precedence Dependencies vs Budget

To answer (RQ7.3), simulations for various %Budget and PDLs were performed with

settings of Simulation III in Table 4.5. For a given VDL, we observed that increasing

PDL generally resulted in decreasing the %OV achieved from the DARS-ILP method

(Figure 4.21(b)). The reason is increasing PDL reduces the number of feasible solutions

that maintain preceded dependencies. This is also described as the selection deficiency

problem (SDP) [2] where the efficiency of selection models is limited by precedence

dependencies.

Chapter 4. The Integer Linear Programming Method (DARS-ILP) 57 120

A similar effect was observed for the PCBK method (Figure 4.21(a)). However, de-

creasing %OV with PDL increase did not monotonically occur when the PCBK method

was used. In fact, increasing PDL resulted in higher %OV in some cases.

(a) %OV(PCBK) (b) %OV(DARS-ILP)

(c) %DOV(DARS-ILP,PCBK)

FIGURE 4.21: %OV and %DOV achieved for Simulation III (%Budget vs. PDL).

These arbitrary effects are more tangible in simulations with %Budget � 70 and vdl 

0.1. The reason is the PCBK method ignores value dependencies. As such, even with

fewer precedence constraints, the PCBK method may choose a solution with lower

%OV. On the contrary, the DARS-ILP method managed to give higher %OV for smaller

PDLs (Figure 4.21(b)).

Figure 4.21(c) shows the DARS-ILP method outperformed the PCBK method but, for

PDL � 0.15, the performances of the models converged. The reason is for larger PDLs

the number of feasible solutions is significantly reduced in both models. That pre-

vented the DARS-ILP method from exploiting value dependencies to provide solu-

tions with higher %OV.

Chapter 4. The Integer Linear Programming Method (DARS-ILP) 58 121

(a) %OV(PCBK) (b) %OV(DARS-ILP)

(c) %DOV(DARS-ILP,PCBK)

FIGURE 4.22: %OV and %DOV achieved for Simulation IV (%Budget vs. NPDL).

4.6.4 Negative Precedence Dependencies vs Budget

To answer (RQ7.4), simulations for different %Budget and NPDLs were performed

with settings of Simulation IV in Table 4.5.

For both PCBK and DARS-ILP methods increasing the NPDL simultaneously limited

the number of feasible solutions and increased the chances that certain requirements

are selected. The former resulted in decreasing the %OV while the latter increased the

%OV (4.22). This resulted in an arbitrary change in %OV when NPDL increased.

As one example for (b), consider requirements r1, r2, r3, where there are negative pre-

cede dependencies from r1 to r2 (x1  (1� x2)) and from r2 to r3, (x2  (1� x3)).

Hence, selecting r3 (x3 = 1) results in ignoring r2 (x2 = 0), which increases the chances

that r1 is selected (x1  1). Such effects, result in increasing the %OV even when

NPDL increases. This is seen in several points in the graph of figure (4.22).

Chapter 4. The Integer Linear Programming Method (DARS-ILP) 59 122

We, moreover, observed (Figure 4.22(c)) that the DARS-ILP method outperformed

PCBK for up to around 46%. In addition, for 75  %Budget < 100 and NPDL  0.15,

we observed that D(PCBK, BK) and D(DARS, PCBK) were the highest. The reason

is the DARS-ILP method can find better solutions in the presence of fewer negative

precedence constraints and more budget.

(a) %OV(PCBK) (b) %OV(DARS-ILP)

(c) %DOV(DARS-ILP,PCBK)

FIGURE 4.23: %OV and %DOV achieved for Simulation V (NVDL vs. VDL).

4.6.5 Positive vs Negative Value Dependencies

To answer (RQ7.5), simulations for various values of VDL and NVDL were performed

with %Budget = 95, PDL=0.02, and NPDL =0.0 as given by settings of Simulation V

in Table 4.5. The impact of VDL is shown to differ for smaller and larger NVDLs.

For smaller NVDLs (NVDL  0.01) increasing VDL monotonically decreased the

%OV provided by the selection methods. In other cases, however, increasing VDL

was demonstrated to increase %OV, although such an increase was not monotonic.

Chapter 4. The Integer Linear Programming Method (DARS-ILP) 60 123

The reason is, as explained earlier, higher NVDLs increase the chances that simulta-

neous negative and positive value dependencies exist from a requirement ri to rj and

therefore, negative value dependencies from ri to rj : r(ri, rj)�• mitigate the impact of

positive dependencies from ri to rj: r(ri, rj)+• and vice versa. This reduces the over-

all influence of rj on ri based on (4.13). Hence, neither selecting nor ignoring rj does

not result in a significant loss in the value of ri and the %OV of the selected subset of

requirements.

4.6.6 Positive vs Negative Precedence Dependencies

To answer (RQ7.6), simulations for different PDLs and NPDLs were performed with

settings of Simulation VI in Table 4.5. Our simulations showed (Figure 4.24) that in-

creasing PDL, in general, decreased the %OV provided by the PCBK and DARS-ILP

methods. This decrease, nevertheless, was not monotonic in the presence of negative

precedence dependencies (NPDL 6= 0). The reason for this arbitrary impact of negative

precedence dependencies was explained in detail in Section 4.6.4.

Our simulations showed that for any PDL there exists a threshold t, where PCBK and

DARS do not give any value for NPDLs < t. These thresholds increased as the PDL

increased. This is more visible for PDL � 0.1. To further explain this, consider a

requirement set R = {r1, r2} with equal costs and equal values, where r1 requires r2

(positive precedence dependency from r1 to r2) and r2 requires r1. This means we have

PDL = 1 and NPDL = 0. As such, for %Budget < 100, either or both of the r1 and r2

will have to be excluded from the optimal subset which results in violating precedence

dependencies and therefore no feasible solution can be found resulting in %OV=0.

However, for NPDl = 0.5, one of the precedence dependencies will change to nega-

tive (conflicts-with). As this is performed randomly, we have either (a): r1 requires r2

AND r2 conflicts with r1 or (b): r2 requires r1 AND r1 conflicts with r2. It is clear that

in either case (for Budget � 50), at least one requirement (r2 in (a) and r1 in (b)) can

be selected. For %Budget = 100, nevertheless, both r1 and r2 are selected in (a). This,

clearly shows how, for a given PDL, increasing NPDL can provide higher %OV.

Chapter 4. The Integer Linear Programming Method (DARS-ILP) 61 124

(a) %OV(PCBK) (b) %OV(DARS-ILP)

(c) %DOV(DARS-ILP,PCBK)

FIGURE 4.24: %OV and %DOV achieved for Simulation VI (NPDL vs. PDL).

Last but not least, we observed that for simulations with PDL� 0.1, the performance

of the PCBK and DARS-ILP methods converged as both methods provided similar

%OV: D%OV(DARS,PCBK)! 0. This, however, was not the case in the presence of

high levels of negative precedence dependencies.

The reason is a large number of precedence dependencies substantially reduce the

number of feasible solutions impacting the performance of the DARS and PCBK meth-

ods. Nonetheless, increasing NPDL can increase the number of feasible solutions as

explained above. Under such circumstances, it is clear that the DARS-ILP method can

make better choices with regard to the %OV as it takes into account value dependen-

cies in addition to the precedence dependencies.

Chapter 4. The Integer Linear Programming Method (DARS-ILP) 62 125

4.7 Complexity and Scalability Analysis

This section evaluates the scalability of DARS-ILP for identification and modeling

value dependencies as well as considering those dependencies in software require-

ment selection. We specially generate random datasets with different numbers of re-

quirements (up to 3000) to investigate the scalability of the ILP model of DARS-ILP for

different scenarios in relation to value and precedence dependencies among require-

ments. Simulations thus were designed to answer the following questions.

(RQ8) What is the overhead of identification and modeling of value dependencies

in DARS-ILP?

(RQ9) How scalable is the ILP model of DARS-ILP?

(RQ9.1) Is the ILP model scalable to large scale requirement sets?

(RQ9.2) What is the impact of budget on runtime?

(RQ9.3) What is the impact of precedence dependencies on runtime?

(RQ9.4) What is the impact of value dependencies on runtime?

4.7.1 The Overhead of using DARS-ILP

Our proposed DARS-ILP method relies on the identification and modeling of value

dependencies. These two processes hence constitute the main overhead of DARS. In

the ILP method of DARS presented in this chapter, the identification of value depen-

dencies from causal relations among user preferences is automated as explained in

Section 4.2. The process, nevertheless, relies on computing the Eells measure [45] for

pairs of the requirements. Algorithm 4.2 computes the Eells measure in O(t⇥ n2) for

n requirements and t records of user preferences.

Precedence dependencies among requirements (e.g. requires, conflicts-with, AND,

OR) on the other hand, are identified as part of the requirement analysis and inferred

from the structure and/or semantic of a software product using automated or semi-

automated techniques [148, 18]. This, is an inevitable aspect of software requirement

analysis and is not specific to DARS-ILP.

Chapter 4. The Integer Linear Programming Method (DARS-ILP) 63 126

Moreover, construction of a value dependency graph of requirements, inferring im-

plicit value dependencies, and computing the influences of requirements using Algo-

rithm 4.2 is of computational complexity of O(n3) as discussed earlier in Section 4.3.

This concluded our answer to (RQ8).

4.7.2 Scalability of the Optimization Model of DARS-ILP

The optimization model of the DARS-ILP method as given by (4.27)-(4.35) is scalable

to datasets with a large number of requirements, different budget constraints, and var-

ious degrees of precedence/value dependencies. To demonstrate this, runtime simu-

lations in Table 4.6 were carried out.

TABLE 4.6: Runtime Simulations for the optimization model of DARS-ILP

Simulation Size %Budget VDL NVDL PDL NPDL

1 [0,3000] 50 0.15 0.00 0.02 0.00
2 200 [0,100] 0.15 0.00 0.02 0.00
3 200 50 0.15 0 [0,1] 0.00
4 200 50 0.15 0.00 0.02 [0,1]
5 200 50 [0,1] 0.00 0.02 0.00
6 200 50 0.15 [0,1] 0.02 0.00

To simulate value dependencies for a desired VDL and NVDL, uniformly distributed

random numbers in [�1, 1] were generated, where the sign and magnitude of each

number specified the quality and the strength of its corresponding explicit value de-

pendency.

We used Precedence Dependency Level (PDL) and Negative Precedence Dependency Level

(NPDL) as given by (4.123) and (4.124) to specify the degree of precedence dependen-

cies in a precedence graph G with n nodes (requirements). k gives the total number of

precedence dependencies while j denotes the number of negative precedence depen-

dencies in (4.123) and (4.124) respectively.

Chapter 4. The Integer Linear Programming Method (DARS-ILP) 64 127

PDL(G) =
k

nP2
=

k
n(n� 1)

(4.123)

NPDL(G) =
j
k

(4.124)

For a given PDL and NPDL, random numbers in {�1, 0, 1} were generated where 1

(�1) specified a positive (negative) precedence dependency and 0 denoted the absence

of any precedence dependency from a requirement ri to rj. Simulations were carried

out using the callable library ILOG CPLEX 12.6.2 on a windows machine with a Core

i7-2600 3.4 GHz processor and 16 GB of RAM.

(RQ9.1) is answered by runtime simulation 1, which evaluates the runtime of the opti-

mization model of the DARS-ILP method for different numbers of requirements (Fig-

ure 4.25). We observed that increasing the number of requirements increased, as ex-

pected, the runtime of the optimization model of the DARS-ILP method. Nonetheless,

for requirement sets with up to 750 (n  750) requirements, the model managed to

find the optimal solution in less than a minute. For 750 < n  2000 the runtime was

above one minute but did not exceed two hours. Finally, for 2000 < n  3000 it took

hours before selection was completed.

On the other hand, our results for Simulation 2 demonstrated (Figure 4.26) that the

runtime of the optimization model of the DARS-ILP method increased with budget

increase. The reason is with more budget, more requirements can be selected which

results in a larger solution space. As such, it may take longer for the optimization

model of the DARS-ILP method to find an optimal subset of requirements. This an-

swers (RQ9.2).

To answer (RQ9.3) we simulated the requirement selection for various precedence

dependency levels (PDLs). Our results (Figure 4.27) demonstrated, in general, that

the runtime of the optimization model of the DARS-ILP method increased when PDL

increased. The reason is increasing PDL limits the number of choices for the opti-

mization model of the DARS-ILP method as the model needs to respect precedence

dependencies. Hence, it takes longer for the optimization to complete.

Chapter 4. The Integer Linear Programming Method (DARS-ILP) 65 128

FIGURE 4.25: Runtime of DARS-ILP for different Sizes (Simulation 1).

FIGURE 4.26: Runtime of DARS-ILP for different %Budget (Simulation 2).

Chapter 4. The Integer Linear Programming Method (DARS-ILP) 66 129

FIGURE 4.27: Runtime of DARS-ILP for different PDLs (Simulation 3).

FIGURE 4.28: Runtime of DARS-ILP for different NPDLs (Simulation 4).

Chapter 4. The Integer Linear Programming Method (DARS-ILP) 67 130

Increasing NPDL on the other hand, had no significant impact on the runtime of

the optimization model of the DARS-ILP method in most places. Nonetheless, for

larger NPDLs (NPDL ! 1), runtime was increased. The reason is at such high

NPDL, the optimization model of the DARS-ILP method cannot find a feasible solu-

tion with some values as each requirement conflicts with almost every other require-

ment. Hence, it takes longer for the optimization to complete and return the null set

(%OV=0) as the only feasible solution.

FIGURE 4.29: Runtime of DARS-ILP for different VDLs (Simulation 5).

Simulation 5 was carried out to answer (RQ9.4) by measuring the runtime of the selec-

tion models in the presence of various value dependency levels (VDLs). Our results

demonstrate (Figure 4.29) that increasing (decreasing) VDL has an inconsistent impact

of negligible magnitude on the runtime of the optimization model of the DARS-ILP

method. In a similar way, our simulations for various negative value dependency lev-

els (NVDLs) showed (Figure 4.30) that the impact of increasing (decreasing) NVDL on

the runtime of the optimization model of the DARS-ILP method was unpredictable.

Chapter 4. The Integer Linear Programming Method (DARS-ILP) 68 131

FIGURE 4.30: Runtime of DARS-ILP for different NVDLs (Simulation 6).

4.8 Summary

In this chapter we presented an integer linear programming (ILP) method, referred to

as the DARS-ILP method, for dependency-aware requirement selection, which miti-

gates the risk of value loss posed by ignoring (selecting) the requirements with pos-

itive (negative) influences on the values of the selected requirements. The proposed

method allows for the identification and modeling of value dependencies as well as

the integration of those dependencies into software requirement selection. The main

results of this chapter are presented in publications (P1)-(P8).

The DARS-ILP method enhances the main components of the DARS-IP method, pre-

sented in Chapter 3, in several ways. First, the dependency identification technique

in DARS-IP is enhanced by (a) considering the qualities of value dependencies and

(b) using a formal significance test to understand the accuracy of the value dependen-

cies. Second, the modeling technique proposed in DARS-ILP considers the qualities

of value dependencies, thus allowing for reasoning about simultaneous positive and

negative impacts of the explicit and implicit value dependencies among the require-

ments.

Chapter 4. The Integer Linear Programming Method (DARS-ILP) 69 132

In this regard, we have presented a modified version of the Floyd-Warshall algo-

rithm [44], which efficiently computes the positive and negative influences of the

requirements on the values of each other based on the algebraic structure of fuzzy

graphs. Fourth, the ILP model of DARS-ILP integrates both positive and negative

value dependencies into software requirement selection. Finally, the optimization

model of DARS-ILP method is linear, and, thus, is scalable to software projects with

large number of requirements.

We have further contributed a Blind ILP model for the DARS-ILP method, which miti-

gates the risk of value loss posed by ignoring the positive influences of the requirement

on the values of each other. The model does not rely on the identification of value de-

pendencies and, thus, it is suitable for the projects in which the identification of value

dependencies is not practical.

We demonstrated the practicality, effectiveness, and scalability of the proposed ILP

method by studying a real-world software product and carrying out simulations. Our

results show that (a) compared to the requirement selection methods that ignore value

dependencies, the ILP method of DARS provides higher overall value by mitigating

the impact of ignoring (selecting) requirements with positive (negative) influence on

the values of selected requirements, (b) maximizing the accumulated value and over-

all value of a software are in conflict, and (c) DARS-ILP is scalable to large scale re-

quirement sets for different levels of value dependencies and precedence dependen-

cies among requirements. This is demonstrated by simulating different scenarios for

datasets of up to 3000 requirements.

133

Chapter 5

The Mixed Integer Programming Method

(DARS-MIP) 1

5.1 Introduction

We demonstrated in Chapter 4 that the DARS-ILP method, which is an enhanced ver-

sion of the DARS-IP method, mitigates the value loss by taking into account the in-

fluences of the requirements on the values of each other. We further observed in Sec-

tion 4.6 that the the effectiveness of the DARS-ILP method in mitigating the value loss

reduces in the presence of a tight budget or a high level of precedence dependencies

(PDL) among the requirements. The reason is that requirements with significant posi-

tive influences on the values of the selected requirements may have to be ignored due

to their conflicts with other requirements or the lack of sufficient budget. Analogously,

requirements with negative influences on the values of the requirements may need to

be selected when they are required by other selected requirements. Hence, a value loss

caused by ignoring (selecting) requirements with positive (negative) influences on the

values of the selected requirements is foreseeable in DARS-ILP. To mitigate this value

loss, we have proposed allowing for partial selection (satisfaction) of the requirements

when that can be tolerated. When partial selection is allowed in DARS, requirements

with positive (negative) influences can be partly satisfied rather than being completely

ignored (satisfied). This can mitigate the risk of value loss caused by ignoring (select-

ing) requirements with positive (negative) influences.

1The results of this chapter are presented in publications (P3), (P4), and (P6)-(P12).

Chapter 5. The Mixed Integer Programming Method (DARS-MIP) 3 134

Section 5.2 of this chapter demonstrates the use of a fuzzy method, referred to as Pri-

oritization and Partial Selection (PAPS), for partial selection of software requirements.

The PAPS method was presented in Publication (P10) to account for partial satisfac-

tion of security requirements. The method was also used in Publication (P9) to allow

for partial selection of Agile requirements. We further presented an enhanced version

of PAPS in Publication (P12).

To allow for partial selection of the requirements in DARS, we have presented, in Sec-

tion 5.3, a mixed integer programming2 (MIP) method referred to as the MIP method

of DARS, i.e. DARS-MIP. The optimization model of DARS-MIP aims to find an op-

timal investment policy that accounts for the value dependencies among the require-

ments. Such a policy mitigates the value loss by allowing for increasing (decreasing)

the investment in the requirements with significant positive (negative) influences on

the values of the partially/fully selected requirements.

The investment in each requirement ri is bounded by the lower-bound cost and the

upper-bound cost of ri. The upper-bound cost of ri may be estimated by the stake-

holders and then be RELAX-ed using the RELAX-ation technique proposed as part

of the PAPS method presented in Section 5.2 to determine the lower bound cost of ri.

When ri cannot be tolerated to be partially selected (satisfied), however, the lower-

bound cost of ri will be identical to its upper-bound cost.

The dependency identification technique presented Section 4.2 is used in DARS-MIP

for the identification of value dependencies among requirements. The DARS-MIP

method further uses the modeling technique presented in Section 4.3 for modeling

value dependencies and computing the influences of the requirements on the values

of each other. Hence, this chapter only focuses on the optimization model of DARS-

MIP. The model is linear and scalable to large scale requirement sets.

It is also worth mentioning that the DARS-MIP method assumes that the budget is effi-

ciently invested in the selected requirements, thus the expected value of a requirement

will be adjusted based on the proportion of the budget invested in that requirement.

2A mixed integer programming (MIP) problem is a linear program where some of the variables are
restricted to have integer values only.

Chapter 5. The Mixed Integer Programming Method (DARS-MIP) 4 135

The amount of the investment in each requirement is, however, bounded by the upper-

bound cost and the lower-bound cost of that requirement. The DARS-MIP method,

thus, accounts for the uncertainty associated with estimating the costs of the require-

ments by considering a range for those costs.

5.2 Partial Selection of Requirements

Due to the resource limitations it is hardly, if ever, possible to implement the entire

set of identified requirements for a software project [149, 2]. Hence, prioritization

and selection is required to find an optimal subset of requirements [150, 107] with the

highest value. Requirement selection, however, may result in ignoring some of the

requirements. But ignoring requirements even if they are of lower values may result

in value loss due to the existence of value dependencies among requirements.

To mitigate this we proposed in (P9) and (P10) a fuzzy method referred to as Prior-

itization and Partial Selection (PAPS) which reduces the risk of value loss caused by

ignoring requirements through accounting for partial selection (satisfaction) [9] of re-

quirements, when that can be tolerated, rather than ignoring requirements or post-

poning them to the future releases. The proposed method helps reduce the value loss

by reducing the chances that requirements with positive influences on the values of

other requirements are ignored. The PAPS method is scalable to software projects with

large number of requirements and allows for prioritization and selection of require-

ments with respect to different goals [9, 10].

The method is composed of two major processes as shown in Figure 5.1. The first pro-

cess is referred to as Pre Prioritization and Selection (Pre-PAS), which comprises model-

ing and description of requirements as well as preprocessing the data for the priori-

tization and selection process. The Pre-PAS uses our previously developed modeling

technique in [76, 78, 151] to capture partiality of requirements (goals) [152, 149] in a

Software Requirement Model (SRM) of a software project will be used to construct the

Software Requirement List (SRL) of that software project.

Chapter 5. The Mixed Integer Programming Method (DARS-MIP) 5 136

FIGURE 5.1: Architecture of PAPS.

Then requirements in the SRL will be prioritized using a Fuzzy Inference System (FIS)

[153]. Each requirement contributes to satisfaction of at least one goal. The FIS, infers

the linguistic priorities of the requirements with respect to their selection criteria. We

account for partiality in the optimal SRL through RELAX-ing [154, 155] the satisfac-

tion criteria of requirements when that can be tolerated. Requirements then will be

RELAX-ed and partially included in the optimal SRL.

5.2.1 The Pre-PAS Process

The Pre-PAS process, as depicted in Figure 5.1, starts with the modeling and descrip-

tion of software requirements. First, the SRM of a software product will be developed

and then a Goal-based Fuzzy Grammar (GFG) [156] of the SRM will be constructed to

formally describe the SRM. The Pre-PAS process ends with preparing the data for the

prioritization and selection process.

Chapter 5. The Mixed Integer Programming Method (DARS-MIP) 6 137

Modeling and Description of Requirements

An efficient model is required to capture the partiality of software requirements [78].

This section gives an overview of a goal-based modeling technique developed in our

prior work [78, 76, 152, 157, 152], which captures partiality of requirements in software

products.

Due to its inherent support for partial satisfaction [9] of requirements, SRM is em-

ployed to serve as the input of the prioritization and selection process in the PAPS

method.

TABLE 5.1: The KAOS description of the requirements (goals) of OBS.

Goal Description Requirement Description

s maintain OBS security r1 achieve request transaction code
g1 avoid transfer money out of account r2 achieve latency examination
g2 avoid unauthorized online transfer r3 achieve one-time pad
g3 avoid stealing id and password r4 achieve SSL
g4 avoid man in the middle r5 achieve password trial limitation
g5 avoid guessing id and password r6 achieve password policy
g6 avoid dictionary attack r7 achieve password encryption
g7 avoid guess password r8 achieve random id
g8 avoid guess id r9 achieve CAPTCHA
g9 avoid brute forcing r10 achieve complex pin
g10 avoid unauthorized transfer via debit card r11 achieve access control
g11 maintain transfer network security r12 achieve redundant server
g12 avoid hijack server
g13 maintain service availability

The SRM of a software product is developed through a goal-based modeling process

presented in our prior work [76]. The process starts with the identification of the main

goals of the software system. Then goals will be developed into lower level goals and

eventually the requirements.

Our goal-based modeling process uses a combination of the RELAX [154, 155] and

KAOS [158] description languages to describe software goals (requirements). The re-

quirement model of an Online Banking System (OBS) is illustrated in Figure 5.2 and the

SRM nodes (goals/requirements) are described in Table 5.1.

Chapter 5. The Mixed Integer Programming Method (DARS-MIP) 7 138

FIGURE 5.2: The SRM of OBS. Junction points and their absence represent logical AND
and logical OR respectively.

We have made use of a fuzzy-based technique presented in our earlier work [156, 159,

160, 161] to formally describe the requirement model of a software project. The tech-

nique employed, allows for the description of the partiality in the SRM of a software

project [9, 11]. The description process includes the construction of the goal-based

fuzzy grammar (Definition 5.1) of a software product and extracting the derivation

rules (Definition 5.2) among goals/requirements.

Definition 5.1. Goal-Based Fuzzy Grammar. Is a quintuple GR = (G, R, P, s, t) in which

G is a set of goals, R is a set of requirements, P is a set of fuzzy derivation rules and t

denotes the membership function of derivation. s represents the top-level goal of the

system.

For OBS, G = {g1, ..., g13}, R = {r1, ..., r12}, P = {p1, ..., p20} and s = “maintain [OBS]

[security]”. Due to its fuzziness, GFG is able to properly capture partiality in the SRM

of the system. The elements of P 2 GR are expressions of the form given in (5.1).

Chapter 5. The Mixed Integer Programming Method (DARS-MIP) 8 139

In this equation, d is the degree to which a sub-goal gj contributes to the satisfaction of

a goal or subgoal gi. If r1, ..., rn are fuzzy statements in (G [R)⇤ and r1 ! r2 ! ... !

rn, then we call this chain a goal derivation chain under the GFG employed.

t(gi ! gj) = d, d 2 [0, 1] or t(gi, gj) = d (5.1)

TABLE 5.2: The derivation rules of the SRM of OBS.

Rule Membership Value Rule Membership Value

p1 : s! g1g13 0.95 p11 : g4 ! r2r3 0.75
p2 : g1 ! g2g10g12 0.95 p12 : g4 ! r4 0.90
p3 : g13 ! r12 0.90 p13 : g6 ! g7 0.60
p4 : g2 ! r1g3g5 0.85 p14 : g6 ! g8 0.60
p5 : g10 ! g11 0.90 p15 : g9 ! g7 0.65
p6 : g10 ! r10 0.40 p16 : g9 ! g8 0.60
p7 : g12 ! r11 0.90 p17 : g7 ! r5 0.70
p8 : g3 ! g4 0.85 p18 : g7 ! r6 0.80
p9 : g5 ! g6g9 0.90 p19 : g7 ! r7 0.90
p10 : g11 ! r9 0.80 p20 : g8 ! r8 0.60

Definition 5.2. Extracting Derivation Rules. The description technique employed con-

structs a GFG for a given SRM and identifies the derivation rules [156, 161, 159]. The

degree to which the success of a rule contributes to the satisfaction of its predecessor

will specify its membership value. This value will be determined by the membership

function t of the GFG [161].

The extracted derivation rules for the SRM of the OBS and their corresponding mem-

bership values are listed in Table 5.2. The derivation rule p11(g1 ! r2r3) in Table 5.2,

states that r2 AND r3 contribute to the satisfaction of the goal g1.

Data Preprocessing

Data preprocessing includes estimation of the criteria used for prioritization and selec-

tion. Our proposed PAPS method as presented in (P9) and (P10) uses Cost, Technical-

Ability, and Impact of requirements on the satisfaction of different goals as its main

selection criteria.

Chapter 5. The Mixed Integer Programming Method (DARS-MIP) 9 140

TABLE 5.3: Cost and Technical-ability of the OBS Requirements.

Requirement r1 r2 r3 r4 r5 r6 r7 r8 r9 r10 r11 r12

Cost 0.50 0.70 0.70 0.30 0.05 0.50 0.20 0.01 0.60 0.10 0.70 1.00
Technical-ability 1.00 0.20 0.10 0.90 1.00 0.30 0.20 1.00 0.10 1.00 0.20 0.20

The cost of implementation is a real number in [0, 1] as given in Table 5.3. Also, the

technical-ability is defined as a real number in [0, 1], which reflects the ease of imple-

mentation for each requirement. Technical-ability of requirements in the SRM of the

OBS are listed in Table 5.3. To compute the impacts (2 [0, 1]) of requirements we first

construct the SRL of those requirements as depicted in Figure 5.3.

Let GR = (G, R, P, s, t) be the GFG of a SRM. For each goal g 2 G, SRL[g] ✓ R⇤

whose members contribute to the satisfaction of the goal g. A requirement x is said

to be in SRL[g] if and only if x can be derived from g. SRL[g] can be constructed for

the goal g in the SRM of the system. This allows for the goal-based prioritization of

requirements with focus on the satisfaction of different goals. Function “buildSRL” in

Figure 5.3 constructs the SRL of the system. We have implemented the SRL as a two

dimensional list (list of lists) in which a list of SRL[g], contains requirements which

contribute to the satisfaction of the goal g.

the impact of each requirement x in SRL[g] of the system is denoted by DCg(x) as

given by 5.2, which is the degree of contribution of x to the satisfaction of the goal

g. To calculate the impact of x firstly the membership values of the derivation rules

on the derivation chain of x will be evaluated based on (5.2). Subsequently the fuzzy

membership values will be calculated for each derivation chain through taking min-

imum of all membership values of the derivation rules on the derivation chain of x.

Finally, the impact will be calculated through taking supremum over all membership

values of the derivation chains which can generate x.

Equation (5.2) computes the impact of a requirement x on a goal g in the SRM of a

software project. The t-norm sign � and a t-conorm sign ⌦ denote fuzzy OR (max-

imum) and AND (minimum) operators respectively based on Zadeh’s definition in

[162]. tg(x) specifies the strongest degree for contribution of x to the satisfaction of

the goal g.

Chapter 5. The Mixed Integer Programming Method (DARS-MIP) 10 141

public class prePAS {
public static SRM srm;
public static SRL <String,ArrayList> srl;
public static GFG gfg;
// The constructor takes the list of requirements and
// their corresponding costs and technical-ability as the input
// and generates the SRL of the software project
public prePAS(List<ArrayList<Requirement>> requirements){

// Build the software requirement model of the projects
// and formally describe the model by constructing the
// GFG of the project
srm = buildSRM(requirements);
//calculate the impacts of requirements on
//the satisfaction of the goals in the SRM
// and update the SRM
srm = calculateImpacts(srm);
// build the software requirement list
srl = buildSRL(srm);

}
// building the software requirement list
public void buildSRL(){

for(each Requirement r in gfg.R){
for(each Goal g in gfg.G){

if(r.impact[g] != 0){
// if r contributes to the satisfaction of g
SRL[g].add(r);

}
}

}
}
// calculating the impact of a Requirement r
// on satisfaction of the Goal g
public void calculateImpact(Requirement r, Goal g){

for(each Goal g in gfg.G){
for(each Requirement r in gfg.R){

double impact = 0;
List <ArrayList<derivationRule>> derivationChains = parse(r);
// the minimum impact of the rules on the derivation chain
double minimumImpact = 1;
// the maximum impact of the rules on the derivation chain
double maximumImpact = 0;
// taking supremum over derivation chains
for(each ArrayList<derivationRule> chain in derivationChains){

for(each rule in derivationChain){
// Mu denotes the fuzzy memebership function
minimumImpact = min(minimumImpact,GFG.Mu(rule));

}
r.impact[g] = max(maximumImpact,minimumImpact);

}
}

}
}

}

FIGURE 5.3: The Pre-PAS process in PAPS.

Chapter 5. The Mixed Integer Programming Method (DARS-MIP) 11 142

For instance, ts(r7) for r7 in the SRM of OBS is calculated for two derivation chains: i)

s ! g1 ! g2 ! g5 ! g9 ! g7 ! r7 and ii) s ! g1 ! g2 ! g5 ! g6 ! g7 ! r7,

as follows: ts(X = r7) = (0.95⌦ 0.95⌦ 0.85⌦ 0.9⌦ 0.65⌦ 0.9)� (0.95⌦ 0.95⌦ 0.85⌦

0.9⌦ 0.6⌦ 0.9) = 0.65. The impacts of requirements in the SRM of OBS are calculated

by the function “calculateImpacts” in Figure 5.3 as listed in Table 5.4.

DCg(x) = tg(x) = �(t(g, r1)⌦ t(r1, r2)⌦ ...⌦ t(rn, x)) (5.2)

TABLE 5.4: Impact of Requirements in the SRM of OBS.

Goal t(r1) t(r2) t(r3) t(r4) t(r5) t(r6) t(r7) t(r8) t(r9) t(r10) t(r11) t(r12)
s 0.85 0.75 0.75 0.85 0.65 0.65 0.65 0.60 0.80 0.40 0.90 0.90
g1 0.85 0.75 0.75 0.85 0.65 0.65 0.65 0.60 0.80 0.40 0.90 0.00
g2 0.85 0.75 0.75 0.85 0.65 0.65 0.65 0.60 0.00 0.00 0.00 0.00
g3 0.00 0.75 0.75 0.85 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
g4 0.00 0.75 0.75 0.90 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
g5 0.00 0.00 0.00 0.00 0.65 0.65 0.65 0.60 0.00 0.00 0.00 0.00
g6 0.00 0.00 0.00 0.00 0.60 0.60 0.60 0.60 0.00 0.00 0.00 0.00
g7 0.00 0.00 0.00 0.00 0.70 0.80 0.90 0.00 0.00 0.00 0.00 0.00
g8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.60 0.00 0.00 0.00 0.00
g9 0.00 0.00 0.00 0.00 0.65 0.65 0.65 0.65 0.00 0.00 0.00 0.00
g10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.80 0.40 0.00 0.00
g11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.80 0.00 0.00 0.00
g12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.90 0.00
g13 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.90

5.2.2 Prioritization and Selection Process

The PAS process starts with preprocessing the FIS inputs. For a software project pre-

processing includes construction of the SRL of that project and calculation of the im-

pacts for requirements in the SRL. Subsequently, the impact, cost and technical-ability

values will be fuzzified [163] to serve as the input of the FIS. We have employed a

Mamdani-type [164] fuzzy inference system to specify the priorities of requirements

with respect to their impacts, costs and technical-abilities. Prioritization can be per-

formed with focus on satisfaction of any of the goals in the SRL of a software project.

This is important especially when satisfaction of a particular goal is emphasized by the

stakeholders. Finally, prioritized requirements will be partially selected by RELAX-

ation of their satisfaction criteria. To perform RELAX-ation, we need to obtain Required

Degree of Satisfaction (RDS) for each requirement through deffuzification of its priority.

Chapter 5. The Mixed Integer Programming Method (DARS-MIP) 12 143

Prioritization

Prioritization starts with fuzzification of the FIS inputs. These inputs include the im-

pact, cost and technical-ability of the requirements. As depicted in Figure 5.1, the

fuzzified values will serve as the inputs for the FIS. The FIS then infers the fuzzified

priority values of the requirements based on the fuzzy rule-base of PAPS. Priority of

each requirement specifies the extent to which it needs to be satisfied.

public class PAS {
// PAS: Prioritization and Selection
public PAS(SRL <String,ArrayList> srl, GFG gfg){

for(each Goal g in gfg.G){
for(each Requirement r in SRL[g]){

// fuzzify prioritization criteria
r.fuzzifiedImpact=fuzzify(r.impact);
r.fuzzifiedCost=fuzzify(r.cost);
r.fuzzifiedTechnicalAbility=fuzzify(r.technical_ability);
// infer priorities based on the fuzzy rule-base
r.priority=FIS(r);
// defuzzify linguistic prioritization
r.RDS=defuzzify(r.priority);
// RELAX-ing the effort needed for
// implementation/satisfaction of r
r.relaxed_effort= r.RDS * r.effort;

}
}

}
}

-1-

FIGURE 5.4: Prioritization and selection of requirements in PAPS.

Fuzzification

All of the FIS inputs (impact, cost and technical-ability) are categorized under three

fuzzy categories of Low (L), Medium (M), and High (H). Three membership functions

are defined for each input and its corresponding categories. We have employed a

semi-trapezoids shape for membership functions. Consequently, four diverse points

are required to define each membership function. The membership functions are cal-

culated based on (5.3) and listed in Table 5.5. Each membership function will be cal-

culated based on four specific points as given by equation (5.3) and depicted in Figure

5.3. We have employed a combination of a Fuzzy Control Language (FCL) [162] and

jFuzzyLogic [165] to implement the membership functions.

Chapter 5. The Mixed Integer Programming Method (DARS-MIP) 13 144

TABLE 5.5: Membership functions for FIS inputs/output.

FIS Input/ Output Membership Function (tiv(x))

Impact (i) til(i) = max(min(i+0.35
0.35 , 1, 0.45�i

0.35), 0)

tim(i) = max(min(i�0.2
0.25 , 1, 0.55�i

0.25), 0)

tih(i) = max(min(i�0.5
0.1 , 1, 1�i

0.1), 0)

Cost(c) tcl(c) = max(min(i+0.35
0.35 , 1, 0.45�i

0.35), 0)

tcm(c) = max(min(i�0.2
0.25 , 1, 0.55�i

0.25), 0)

tch(c) = max(min(i�0.5
0.1 , 1, 1�i

0.1), 0)

Technical-ability (t) ttl(t) = max(min(i+0.35
0.35 , 1, 0.45�i

0.35), 0)

ttm(t) = max(min(i�0.2
0.25 , 1, 0.55�i

0.25), 0)

tth(t) = max(min(i�0.5
0.1 , 1, 1�i

0.1), 0)

Priority (p) tpo(p) = max(min(p+0.1
0.1 , 1, 0.3�p

0.1), 0)

tpw(p) = max(min(p�0.2
0.1 , 1, 0.5�p

0.1), 0)

tpn(p) = max(min(p�0.3
0.15 , 1, 0.8�p

0.15), 0)

tps(p) = max(min(p�0.65
0.1 , 1, 1�p

0.1), 0)

8i 2 {impact, cost, technical-ability}, 8v 2 {low, medium, high} : (5.3)

9(x0, x1, x2, x3), t(x0) = t(x3) = 0, t(x1) = t(x2) = 1!

tiv(x) = max
�

min(
x� x0

x1 � x0
, 1,

x3 � x
x3 � x2

), 0
�
.

For each goal g and requirement r Figure 5.4 shows fuzzification of SRL[g][r].impact,

SRL[g][r].cost, and SRL[g][r].technicalAbility using the membership functions of Ta-

ble 5.5.

Fuzzy Inference

The PAPS method employs a Mamdani-type [164] fuzzy inference system to specify

the linguistic priorities of software requirements based on four main categories of Op-

tional (O), Weak (W), Normal (N) and Strong (S).

Chapter 5. The Mixed Integer Programming Method (DARS-MIP) 14 145

FIGURE 5.5: A sample membership function tiv

Priorities are inferred, for each requirement, with respect to its fuzzified prioritization

criteria (impact, cost, and technical-ability as presented in (P9), (P10). Our employed

FIS relies on the inference rules in the fuzzy rule base of the software project. The

fuzzy rules in the rule-base of the FIS may be modified, as depicted in Figure 5.1, by

the stakeholders to reflect their preferences.

We have implemented the fuzzy rules using FCL statements. As shown in Figure

5.4, 27 fuzzy rules are listed in the rule-base of the project. Software requirements of

OBS are prioritized and listed in Table 5.6. Each requirement has 14 different priority

values each computed with regard to a specific goal in the SRM of OBS.

We demonstrated in (P9), (P10) that goal-based prioritization and selection provides

structured arguments regarding requirements. For instance requirement “r7: achieve

password encryption” in the SRL of OBS is strongly needed for the satisfaction of

goal “g2: avoid [unauthorized online transfer]” while it is weakly recommended with

respect to the satisfaction of goal “g6: avoid guess password”. Consequently, other

requirements (e.g. r5) might need to be selected if satisfaction of g6 is concerned.

Figure 5.5 demonstrates the membership functions of the FIS inputs (impact, cost,

technical-ability) as well as the membership function of the fuzzy priority of r7. r7 is

prioritized with respect to the top-level goal s. Membership values for FIS variables

are depicted by vertical lines in their corresponding membership functions.

Chapter 5. The Mixed Integer Programming Method (DARS-MIP) 15 146

FIGURE 5.6: Fuzzy rules implemented in FCL

Chapter 5. The Mixed Integer Programming Method (DARS-MIP) 16 147

FIGURE 5.7: Fuzzy Inference for r7 with respect to the top-level goal

Partial Selection

Partial selection (satisfaction) of requirements, when tolerated, can be explicitly ad-

dressed by RELAX-ing [76, 166] the satisfaction criteria of those requirements. As

one example, implementation of a complex password policy in a software product in-

creases the level of security on one hand and reduces the usability of the system [167]

on the other hand.

On the other hand, implementation of a less complex password policy may be toler-

ated to maintain the usability of the system. In this case, the satisfaction criterion of

the requirement “password policy” can be relaxed to be partially included into the

optimal SRL of a software product. In other words, “password policy” can be par-

tially selected. Partial selection in PAPS, includes defuzzification and RELAX-ation of

requirements.

We need crisp values in order to perform the RELAX-ation operation on the require-

ments [78, 9]. Therefore, defuzzification is required to map the linguistic priority

values into their corresponding crisp representations. To do so, we need to use the

membership functions of the priority (the FIS output) values. We have listed these

membership functions in Table 5.5.

Chapter 5. The Mixed Integer Programming Method (DARS-MIP) 17 148

TABLE 5.6: Priority values inferred by FIS for requirements of OBS.

Goal
Linguistic Priority Values

r1 r2 r3 r4 r5 r6 r7 r8 r9 r10 r11 r12
s S W W S N W N N W N W O

g1 S W W S N W N N W N W -
g2 S W W S N W N N - - - -
g3 - W W S - - - - - - - -
g4 - W W S - - - - - - - -
g5 - - - - N W N N - - - -
g6 - - - - N O W N - - - -
g7 - - - - N N N - - - - -
g8 - - - - - - - N - - - -
g9 - - - - N W N N - - - -

g10 - - - - - - - - W N - -
g11 - - - - - - - - W - - -
g12 - - - - - - - - - - W -
g13 - - - - - - - - - - - O

Four different linguistic categories of optional, weak, normal and strong specify the

priority of requirements. Defuzzification, as in Figure 5.4, updates the RDS attributes

of the requirements in the SRL based on their corresponding defuzzified priorities. We

have employed the Center of Gravity (COG) [168] formula in order to defuzzify the

priority values.

The linguistic prioritizes of the requirements will fall into one of the four major cat-

egories of optional, weak, normal or strong as explained earlier. A requirement in the

optional category has the lowest priority. Requirements in the weak and normal cate-

gories however can be weakly and normally satisfied respectively while requirements

in the strong category must be strongly satisfied. To explicitly address this partiality,

we need to specify the extent to which each requirement is expected to be satisfied.

For this purpose we use RDS values obtained from defuzzification of the linguistic

priorities.

For some of the requirements of software projects such as availability of a system, for

instance, it may be rather easy to measure the satisfaction of requirements. But, this

is not easy to achieve for several types of requirements due to the lack of proper mea-

sures to evaluate the satisfaction of those requirements. Samples criteria for evaluating

the satisfaction of requirements of OBS are listed in Table 5.8.

Chapter 5. The Mixed Integer Programming Method (DARS-MIP) 18 149

TABLE 5.7: The RDS values of the requirements of OBS.

Goal
RDS Values

r1 r2 r3 r4 r5 r6 r7 r8 r9 r10 r11 r12

s 0.82 0.25 0.25 0.82 0.59 0.36 0.42 0.55 0.35 0.55 0.25 0.13
g1 0.82 0.25 0.25 0.82 0.59 0.36 0.42 0.55 0.35 0.55 0.25 -
g2 0.82 0.25 0.25 0.82 0.59 0.36 0.42 0.55 - - - -
g3 - 0.25 0.25 0.82 - - - - - - - -
g4 - 0.25 0.25 0.82 - - - - - - - -
g5 - - - - 0.59 0.36 0.42 0.55 - - - -
g6 - - - - 0.55 0.24 0.35 0.55 - - - -
g7 - - - - 0.64 0.6 0.55 - - - - -
g8 - - - - - - - 0.55 - - - -
g9 - - - - 0.59 0.36 0.42 0.59 - - - -
g10 - - - - - - - - 0.35 0.55 - -
g11 - - - - - - - - 0.35 - - -
g12 - - - - - - - - - - 0.25 -
g13 - - - - - - - - - - - 0.13

TABLE 5.8: RELAX-ed requirements of OBS.

Requirement Sample Satisfaction Criterion z 0i

r1: achieve request transaction code expiry rate 0.82z1

r2: achieve latency examination examination delay 0.25z2
r3: achieve one-time pad randomness 0.25z3
r4: achieve SSL entropy 0.82z4
r5: achieve password trial limitation trial delay 0.59z5
r6: achieve password policy complexity 0.36z6
r7: achieve password encryption length of the encryption key 0.42z7
r8: achieve random id randomness 0.55z8
r9: achieve CAPTCHA level of distortion 0.35z9
r10: achieve complex pin complexity 0.55z10
r11: achieve access control complexity 0.25z11

r12: achieve redundant server number of servers 0.13z12

Hence, it would be hard, if possible at all, to explicitly RELAX the satisfaction criteria

of requirements. To tackle this, we RELAX the effort needed for complete satisfaction

of requirements to indirectly RELAX their satisfaction criteria. There are well estab-

lished measures of effort [169], which can be used in this regard. We demonstrated

in (P9) using story points to RELAX the amount of the effort put on satisfaction of

Agile requirements. Equation (5.4) computes the RELAX-ed efforts for a requirement

ri, where zi denotes the estimated effort needed to fully satisfy (implement) ri while z 0i

specifies the RELAX-ed effort put on ri.

Chapter 5. The Mixed Integer Programming Method (DARS-MIP) 19 150

Nevertheless, RELAX-ing the satisfaction criteria of requirements by RELAX-ing their

required effort is based on the assumption that the effort is put efficiently on satisfac-

tion of requirements thus the more effort is put on satisfaction of a requirement the

more the requirement is satisfied. In other words, the amount of the effort put on a

requirement determines the satisfaction criteria of that requirements. Hence, RELAX-

ing the amount of the effort needed to satisfy a requirement will also RELAX the sat-

isfaction criterion of that requirement.

z 0i = ziri.RDS (5.4)

As one example for RELAX-ation, consider the requirement “r6: achieve password

policy”. Based on Table 5.7, SRL[s][r6] = weak. In this case r6 is neither required to

be fully included in the SRL[s] nor fully omitted. Instead, r6 can be partially included

(selected) in the SRL[s] through RELAX-ing the effort needed for its satisfaction. If a

less complex password encryption can be tolerated in SRL[s], less effort can be put

on satisfaction of r6 by implementing a less complex password policy. This will save

some effort to be put on other requirements while still providing users with a pass-

word policy feature of an acceptable quality. Hence we have z 06 = r6.RDS⇥ z6. It is

worth mentioning again that this RELAX-ation can only be achieved when partial sat-

isfaction of r6 is tolerated. Table 5.8 lists the RELAX-ed effort values for requirements

of OBS.

5.3 The MIP Model of DARS-MIP

We demonstrated in Chapter 4 that the DARS-ILP method, which is an enhanced ver-

sion of the DARS-IP method, mitigates the value loss by taking into account the in-

fluences of the requirements on the values of each other. We further observed in Sec-

tion 4.6 that the precedence relations among the requirements and budget constraint

reduce the effectiveness of DARS-ILP in mitigating the value loss.

Chapter 5. The Mixed Integer Programming Method (DARS-MIP) 20 151

The reasons is that requirements with significant positive influences on the values of

the selected requirements may have to be ignored due to their conflicts with other re-

quirements or the lack of sufficient budget. Analogously, requirements with negative

influences on the values of the requirements may need to be selected when they are

required by other selected requirements.

To further mitigate the value loss, we propose partial selection (satisfaction) of re-

quirements, when that can be tolerated, in dependency-aware requirement selection.

Partial selection of the requirements of a software project mitigates the value loss by

(a) increasing the investment in the requirements that positively influence the values

of the requirements; and (b) reducing the investment in the requirements that nega-

tively influence the values of the requirements.

A minimum investment amount (lower-bound cost) and a maximum investment amount

(upper-bound cost) are specified for the satisfaction of each requirement ri. When ri

cannot be tolerated to be partially selected (satisfied), however, the lower-bound cost

of ri will be the same as its upper-bound cost.

One approach to specifying these boundaries is to use the estimated costs of the re-

quirements as the upper-bound costs and then RELAX the effort needed for the satis-

faction of the requirements using the fuzzy method, i.e. PAPS, presented in Section 5.2

to determine the lower bound costs of the requirements.

To allow for partial selection of requirements in DARS, we have contributed a mixed

integer programming (MIP) method referred to as the MIP method of DARS, i.e.

DARS-MIP, for integrating value dependencies into requirement selection while al-

lowing for partial selection of the requirements when that can be tolerated.

Hence, the proposed DARS-MIP method aims to find an optimal investment policy for

the satisfaction of the requirements of a software project, where such a policy increases

(decreases) the investment in the requirements that positively (negatively) influence

the values of the requirements.

Model (5.6)-(5.14) give the optimization model of the DARS-MIP method. In these

equations, the relaxed (real) variable 0  xi  1 specifies the investment ratio of a

Chapter 5. The Mixed Integer Programming Method (DARS-MIP) 21 152

requirement ri, which is the proportion of the budget that is invested in the satisfac-

tion of ri based on the optimal investment policy found by the optimization model of

DARS-MIP. As given by (5.10), the investment ratio of ri is contained within its lower-

bound zi(
ci,l
b) and upper-bound zi(

ci,u
b), which are determined by the lower-bound cost

and the upper-bound cost of the satisfaction of ri denoted by ci,l , and ci,u respectively.

E(vi) = p(ri)vi (5.5)

When no money is invested in ri (zi = 0), we have xi = 0. But when some of the budget

is invested in the satisfaction of ri (zi = 1), (5.10) determines the lower-bound (ci,l
b
�

and

the upper-bound (ci,u
b
�

for the investment ratio of ri. When ri cannot be tolerated to

be partially selected (satisfied), however, we have ci,l = ci,u, which implies xi =
ci,u
b if

zi = 1, and xi = 0 if zi = 0.

Maximize
n

Â
i=1

� xib
ci,u

�
E(vi)� yiE(vi) (5.6)

Subject to
n

Â
i=1

xi  1 (5.7)

8
>>><

>>>:

zi  zj rj precedes ri

zi  1� zj ri conflicts with rj, i 6= j = 1, ..., n
(5.8)

qi �
n_

j=1

 � xjb
cj,u

��
|Ii,j|� Ii,j

�
+
�
1� xjb

cj,u

��
|Ii,j|+ Ii,j

�

2

!
, i 6= j = 1, ..., n (5.9)

zi
� ci,l

b
�
 xi  zi

� ci,u
b
�
, i = 1, ..., n (5.10)

� zi  yi  zi, i = 1, ..., n (5.11)

� (1� zi)  yi � qi  (1� zi), i = 1, ..., n (5.12)

zi 2 {0, 1}, i = 1, ..., n (5.13)

0  qi  1, i = 1, ..., n (5.14)

Chapter 5. The Mixed Integer Programming Method (DARS-MIP) 22 153

The optimization model of the DARS-MIP method finds an optimal investment policy,

which specifies the optimal subset of the requirements in which requirements are fully

(xi =
ci,u
b) or partly (ci,l

b  xi <
ci,u
b) included.

The expression (xib
ci,u

)E(vi) in (5.6) states that the estimated value (vi) of a (partially)

selected requirement ri and subsequently its expected value (E(vi)) are influenced by

the proportion of the budget invested in the satisfaction of ri. E(vi) is computed by

(6.29), where p(ri) denotes the probability that users purchase or use ri.

Moreover, qi, as given by (5.9), specifies the penalty of a requirement ri, which is the

extent to which the expected value of ri is negatively impacted by ignoring (selecting)

requirements with positive (negative) influences on the value of ri. We use the value

dependency graphs (VDGs) presented in Section 4.3 for modeling value dependencies

and reasoning about the qualities and strengths of those dependencies based on the

algebraic structure of fuzzy graphs. Hence qi is computed by the fuzzy operator
W

,

which finds the maximum of the influences of the ignored (selected) requirements

with positive (negative) influence on the value of ri.

When a requirement rj with a positive influence on the value of ri is ignored (xj = 0),

Ii,j will be considered as the negative influence of ignoring rj on the value of ri as given

by (5.9). But when rj is partially selected (cj,l
b  xj <

cj,u
b), this implies that rj is only

partially ignored and therefore the negative influence of the ignoring rj on the value

of ri is adjusted to (1� xjb
cj,u

)Ii,j.

Analogously, when a requirement rj with a negative influence on the value of ri is fully

selected, this influence is considered as Ii,j by (5.9). But when rj is partially selected,

the negative influence of the selecting rj on the value of ri is adjusted to xjb
cj,u

Ii,j in (5.9).

In other words, the lower the investment in rj, the lower the value loss caused by

selecting rj will be.

In addition, (5.8) accounts for the precedence constraints and their value implications

while (5.7) ensures that the total amount of the money invested in the requirements

does not exceed the available budget b. The expression zi  zj in (5.8) states that a

requirement ri requires rj while zi  (1� zj) means that ri conflicts with rj.

Chapter 5. The Mixed Integer Programming Method (DARS-MIP) 24 154

It is also worth mentioning that the proposed DARS-MIP method relies on the depen-

dency identification technique presented in Section 4.2. The method also uses value

dependency graphs (VDGs) presented in Section 4.3 for modeling value dependen-

cies and reasoning about the strengths and qualities of those dependencies. Hence,

we avoid repeating those components of the DARS-ILP method in this chapter.

The optimization model of DARS-MIP, as given by (5.6)-(5.14), is linear and there-

fore can be efficiently solved [39], even for large scale requirement sets, by the exist-

ing commercial solvers such as IBM CPLEX [40]. We have implemented, solved, and

tested the optimization model of the DARS-MIP method using the Concert Technology

and the JAVA API of IBM CPLEX [40]. The code for this model is available in JAVA and

OPL languages and can be obtained from the website of DARS23.

5.4 Summary

Budget limitations and precedence dependencies among requirements may result in

ignoring (selecting) the requirements with significant positive (negative) influences on

the values of the selected requirements in DARS-ILP. This may result in value loss. To

further mitigate the risk of value loss posed by ignoring (selecting) the requirements

with positive (negative) influences, we proposed allowing for partial selection (satis-

faction) of the requirements when that can be tolerated.

When partial selection is allowed in DARS, requirements with positive (negative) in-

fluences on the values of the selected requirements can be partly satisfied rather than

being completely ignored (satisfied). This can mitigate the risk of value loss caused by

ignoring (selecting) the requirements with positive (negative) influences. To achieve

this, we presented a mixed integer programming (MIP) method referred to as the MIP

method of DARS, i.e. DARS-MIP.

The method takes into account value dependencies while allowing for partial selection

of requirements. The optimization model of the DARS-MIP method finds an optimal

investment policy that mitigates the value loss by allowing for increasing (decreasing)

23http://bcert.org/projects/dars

http://bcert.org/projects/dars

Chapter 5. The Mixed Integer Programming Method (DARS-MIP) 25 155

the investment in the requirements with significant positive (negative) influences on

the values of the partially/fully selected requirements.

The investment in a requirement ri is bounded by the lower-bound cost and the upper-

bound cost of ri. The upper-bound cost of ri is estimated by the stakeholders and then

RELAX-ed, using a RELAX-ation technique presented in this chapter, to determine the

lower bound cost of ri.

The MIP model of the DARS-MIP method is linear and scalable to software projects

with large number of requirement. The main contributions of Chapter 5 are pre-

sented in publications (P3), (P4), and (P6)-(P12) and application to real-world software

projects is now under way as part of our ongoing research to further investigate the

effectiveness of the method in mitigating the value loss.

156

Chapter 6

The Society-Oriented DARS Method

(DARS-SOC) 1

6.1 Introduction

Software requirement selection, also known as Software Release Planning [16, 17], aims

to find a subset of requirements with the highest economic value for a release of soft-

ware while respecting the project constraints [18]. However, there are several types

of human values [38] i.e. Social Values, as depicted in Figure 6.1, with long term im-

pacts on the society [37] that are also important and need to be considered in software

requirement selection.

In fact the social values of certain software requirements may be even more important

than their economic value. Software requirements that help people with their illnesses

and disabilities or software requirements used for promoting social values [170] in

the society are examples of such requirements in which social values are at least as

important as the economic value. Social values, therefore, need to be embedded into

software requirement selection.

Moreover, software is increasingly seen as a way of promoting positive social changes

in the society. This includes initiatives which “strive to build innovative software

solutions with a social conscience” as stated by Ferrario et al. [170].

Embedding social values into the software engineering activities, including the re-

quirement selection is also referred to as “software engineering for social good” [170].

1The contents of this chapter are presented in publications (P3), (P4), (P6), (P8), (P10), (P12), and (P13).

Chapter 6. The Society-Oriented DARS Method (DARS-SOC) 3 157

This area is receiving growing interest in recent years. But the existing requirement

selection works (Table 2.2) ignore social values of software requirements and their im-

pacts on the society. To consider the social values in software requirement selection,

these values need to be integrated into the optimization models of the requirement

selection methods. A sample map of the social values in software domain is demon-

strated2 in Figure 6.1. Social values, however, may change across different societies.

FIGURE 6.1: A sample map of the social values in software projects.

It is widely known that in a software project the economic values of the selected re-

quirements may positively or negatively depend on the presence or absence of other

requirements [19, 20] in the selected subset of the requirements, i.e. Optimal Subset.

Analogously, there are also dependencies among social values of the requirements in

the sense that the presence or absence of the certain requirements may impact the

social values of other requirements. Moreover, there might be relationships and con-

flicts [171] among different types of social values.

2Source: [37]

Chapter 6. The Society-Oriented DARS Method (DARS-SOC) 4 158

Hence, it is important that we take into account the dependencies among the social

values as well as the dependencies among the economic values of the requirements

in the optimization models of the software requirement selection methods. Depen-

dencies among the social values and dependencies among the economic values are all

referred to as value dependencies for the ease of reference in this chapter.

Moreover, as observed by Carlshamre et al. [21], requirement dependencies in gen-

eral and value dependencies in particular are fuzzy [21] in the sense that the strengths

of those dependencies are imprecise and vary [18, 25, 26, 21] from large to insignifi-

cant [27] in real-world projects. Hence, it is important to consider not only the exis-

tence but the strengths of value dependencies and the imprecision of those dependen-

cies in software projects.

This chapter extends the DARS-ILP and DARS-MIP methods presented in Chapter 4

and Chapter 5 to account for the social values in dependency-aware software require-

ment selection. The proposed method, referred to as the Society-Oriented method of

DARS (DARS-SOC), accounts for the economic and social values as well as the depen-

dencies among those values in software requirement selection.

The proposed DARS-SOC method comprises two main optimization models, with dif-

ferent characteristics, that allow for embedding the social values and the dependencies

among those values into software requirement selection. We have further extended

the definitions of the Value Dependency Graphs (VDGs) and value dependencies pre-

sented in Section 4.3.2 to capture different types of social values in modeling value

dependencies.

Our proposed DARS-SOC method relies on the technique presented in Section 4.2 for

the identification of the economic value dependencies. But, to the best of our knowl-

edge, there are not any techniques in the present literature for identification of so-

cial value dependencies. These dependencies may be identified manually for small

requirement sets. But development of more sophisticated techniques is needed for

automated identification of social value dependencies in medium to large scale re-

quirement sets. this is, however, beyond the scope of this thesis.

Chapter 6. The Society-Oriented DARS Method (DARS-SOC) 5 159

6.2 Modeling The Economic and Social Value Dependencies

This section presents a technique for modeling the economic and social value depen-

dencies among software requirements. The proposed technique extends the definition

and the use of value dependency graphs (VDGs) presented in Section 4.3 to account

for different types of value dependencies among the requirements of software projects.

The algebraic structure of fuzzy graphs is used for computing the influences of the re-

quirements on the values of each other.

6.2.1 Value Dependency Graphs

In this section we use value dependency graphs (VDGs) for modeling the economic

and social value dependencies and their characteristics (qualities and strengths) in

software projects. The definition of a type t VDG of a software project is provided by

Definition 6.1. A type t VDG of a software project captures the dependencies among

the type t values (e.g. economic values) of the requirements of that project.

Definition 6.1. Value Dependency Graph (VDG). A type t VDG is a signed directed

fuzzy graph Gt = (R, st, rt) , where the requirement set R : {r1, ..., rn} constitutes the

graph nodes. Also, the qualitative function st(ri,rj)! {+,�,±} and the membership

function rt: (ri, rj) ! [0, 1] specify the quality and the strength of an explicit type t

value dependency from ri to rj respectively. rt(ri, rj) = 0 and st(ri, rj) = ± specify the

absence of any explicit value dependency of type t from ri to rj.

It is clear that the extended definition of the VDGs, as given by Definition 6.1, allows

for the construction of multiple value dependency graphs for software projects, where

each graph captures the value dependencies related to a specific aspect of social val-

ues.

6.2.2 The Economic and Social Value Dependencies in VDGs

Definition 6.2 provides a comprehensive definition of value dependencies that in-

cludes explicit and implicit value dependencies of different types. These value de-

pendencies are defined based on the algebraic structure of fuzzy graphs.

Chapter 6. The Society-Oriented DARS Method (DARS-SOC) 6 160

Definition 6.2. Value Dependencies. A type t value dependency in a VDG Gt = (R, st, rt)

is defined as a sequence of the requirements di :
�
r(0), ..., r(k)

�
such that 8r(j) 2 di,

1  j  k we have rt
�
r(j� 1), r(j)

�
6= 0. j � 0 is the sequence of the jth requirement

(node) denoted as r(j) on the dependency path. A consecutive pair
�
r(j � 1), r(j)

�

specifies an explicit value dependency.

8di :
�
r(0), ..., r(k)

�
: rt(di) =

k̂

j=1
rt
�
r(j� 1), r(j)

�
(6.1)

8di :
�
r(0), ..., r(k)

�
: st(di) =

k

’
j=1

st
�
r(j� 1), r(j)

�
(6.2)

Equation (6.1) computes the strength of a type t value dependency di :
�
r(0), ..., r(k)

�

by finding the strength of the weakest of the k explicit type t dependencies on di. The

fuzzy operator ^ denotes Zadeh’s [141] AND operation (infimum). Also, the quality

(positive or negative) of a type t value dependency di :
�
r(0), ..., r(k)

�
is calculated by

the qualitative serial inference [142, 143, 79] of (6.2) as shown in Table 6.1.

TABLE 6.1: Qualitative serial inference in a type t VDG.

st
�
r(j� 1), r(j), r(j + 1)

� st
�
r(j), r(j + 1)

�

+ � ±

st
�
r(j� 1), r(j)

� + + � ±
� � + ±
± ± ± ±

Let Dt = {d1, d2, ..., dm} be the set of all type t value dependencies from ri 2 R to

rj 2 R in a type t VDG Gt = (R, st, rt), where the positive and negative dependencies

can simultaneously exist from ri to rj. The strength of all positive value dependencies

of type t from ri to rj is denoted by r+•
t (ri,rj) and calculated by (6.3), that is to find the

strength of the strongest positive dependency [42] from ri to rj.

Fuzzy operators ^ and _ denote Zadeh’s [141] fuzzy AND (minimum) and fuzzy OR

(maximum) operators respectively. In a similar way, the strength of all negative value

dependencies of type t from ri to rj is denoted by r�•
t (ri,rj) and calculated by (6.4).

Chapter 6. The Society-Oriented DARS Method (DARS-SOC) 7 161

r+•
t (ri, rj) =

_

dm2Dt,st(dm)=+

rt(dm) (6.3)

r�•
t (ri, rj) =

_

dm2Dt,st(di)=�
rt(dm) (6.4)

A brute-force approach to computing r+•
t (ri, rj) or r�•

t (ri, rj) in a type t VDG needs

to calculate the strengths of all paths from ri to rj, which is of complexity of O(n!) for

n requirements (the VDG nodes). To avoid such a complexity, we have formulated

the problem of calculating r+•
t (ri, rj) and r�•

t (ri, rj) as the widest path problem, also

known as the maximum capacity path problem [144], which can be solved in polyno-

mial time using the Floyd-Warshall algorithm [44].

In doing so, we devised a modified version of the Floyd-Warshall algorithm (Algo-

rithm 6.1) that computes r+•
t (ri, rj) and r�•

t (ri, rj) for all pairs of the requirements

(ri, rj), ri, rj 2 R : {r1, ..., rn} with the time bound of O(n3). For each pair of the re-

quirements (ri, rj) in a type t VDG Gt = (R, st, rt), lines 18 to 35 of Algorithm 6.1 find

the strength of all positive value dependencies and the strength of all negative value

dependencies from ri to rj.

Ii,j,t = r+•
t (ri, rj)� r�•

t (ri, rj) (6.5)

The overall strength of all positive and negative value dependencies of type t from ri

to rj is referred to as the Influence of rj on the type t value of ri and denoted by Ii,j,t.

Ii,j,t 2 [�1, 1], as given by (6.5), is calculated by subtracting r�•
t (ri, rj) from r+•

t (ri, rj).

Ii,j,t > 0 states that rj influences the type t value of ri in a positive way and Ii,j,t < 0

states that the ultimate influence of rj on the type t value of ri is negative.

Chapter 6. The Society-Oriented DARS Method (DARS-SOC) 8 162

Algorithm 6.1: Calculating the strengths of the type t value dependencies.
Input: VDG Gt = (R, st, rt)
Output: r+•

t , r�•
t

1: for each ri 2 R do
2: for each rj 2 R do
3: r+•

t (ri, rj) r�•
t (ri, rj) �•

4: end for
5: end for
6: for each ri 2 R do
7: rt(ri, ri)+• rt(ri, ri)�• 0
8: end for
9: for each ri 2 R do

10: for each rj 2 R do
11: if st(ri, rj) = + then
12: r+•

t (ri, rj) rt(ri, rj)
13: else if st(ri, rj) = � then
14: r�•

t (ri, rj) rt(ri, rj)
15: end if
16: end for
17: end for
18: for each rk 2 R do
19: for each ri 2 R do
20: for each rj 2 R do
21: if min

�
r+•

t (ri, rk), r+•
t (rk, rj)

�
> r+•

t (ri, rj) then
22: r+•

t (ri, rj) min(r+•
t (ri, rk), r+•

t (rk, rj))
23: end if
24: if min

�
r�•

t (ri, rk), r�•
t (rk, rj)

�
> r+•

t (ri, rj) then
25: r+•

t (ri, rj) min(r�•
t (ri, rk), r�•

t (rk, rj))
26: end if
27: if min

�
r+•

t (ri, rk), r�•
t (rk, rj)

�
> r�•

t (ri, rj) then
28: r�•

t (ri, rj) min(r+•
t (ri, rk), r�•

t (rk, rj))
29: end if
30: if min

�
r�•

t (ri, rk), r+•
t (rk, rj)

�
> r�•

t (ri, rj) then
31: r�•

t (ri, rj) min(r�•
t (ri, rk), r+•

t (rk, rj))
32: end if
33: end for
34: end for
35: end for

Chapter 6. The Society-Oriented DARS Method (DARS-SOC) 9 163

6.3 The Proposed Optimization Models for DARS-SOC

We have proposed two different optimization models for taking into account the eco-

nomic and social values in DARS-SOC. The first optimization model is an integer lin-

ear programming (ILP) model that extends the ILP model of the DARS-ILP method

(Section 4.4.2) by taking into account the social values of the requirements. The second

optimization model is a mixed integer programming (MIP) model, which is based on

the optimization model of the DARS-MIP method (Section 5.3). The proposed MIP

model of DARS-SOC considers the social values of the requirements while allowing

for partial selection of those requirements when that can be tolerated.

We consider two types of values in the optimization models of the DARS-SOC method.

First is the economic value, which is manifested in terms of revenue/profit and sec-

ond is the social values such as the values depicted in the value map of Figure 6.1. For

the sake of the notational convenience, we specify the economic value of a software

requirement ri by vi,1 while the social values of ri are specified by vi,2, ..., vi,T. T denotes

the total number of the values including the economic value.

In order to account for the impact of the value dependencies on different types of val-

ues, we compute the penalties of ignoring (selecting) the requirements with positive

(negative) influences on the economic/social values of the requirements based on the

algebraic structure of fuzzy graphs.

6.3.1 The Integer Linear Programming Model

Model (6.7)-(6.18) give our proposed ILP model for DARS-SOC. In these equations, xi

is a selection variable denoting whether a requirement ri is selected (xi = 1) or ignored

(xi = 0). Also qi,t in (6.11) specifies the penalty for the type t value of a requirement ri,

which is the extent to which the type t value of ri is impacted by ignoring (selecting)

requirements with positive (negative) influences on the type t value of ri. Also, T in

(6.7)-(6.18) specifies the total number of the value types including the economic value.

Moreover, qi,t as appeared in (6.11) gives the simplified algebraic expression of the

penalty given in Equation (6.6). The simplified expression of qi,t in (6.11) is, of course,

Chapter 6. The Society-Oriented DARS Method (DARS-SOC) 10 164

equivalent of its original expression in (6.6). Moreover, (6.5) computes Ii,j,t, which is

the influence of a requirement rj on the type t value of ri as explained in Section 6.2.

qi,t =
n_

j=1

✓ xj
�
|Ii,j,t|� Ii,j,t

�
+ (1� xj)

�
|Ii,j,t|+ Ii,j,t

�

2

◆
=

n_

j=1

✓ |Ii,j,t|+ (1� 2xj)Ii,j,t

2

◆
, i 6= j = 1, ..., n, t = 1, ..., T (6.6)

As stated earlier, vi,1 in (6.7)-(6.18) denotes the economic value of a requirement ri and

E(vi,t), t 2 {2, ..., n} denotes the expected type t value of a requirement ri. Similarly, in

all other variables/parameters in (6.7)-(6.18), t = 1 denotes the variables/parameters

related to the economic value while t = {2, ..., T} specify the variables/parameters re-

lated to the social values. The expected values of the requirements are used in the pro-

posed ILP model to account for the uncertainties associated with the economic/social

values of those requirements.

The objective function (6.7) aims to optimize the economic value of a selected subset

of the requirements subject to (6.8)-(6.18). Constraint (6.8) ensures that the total cost

of the requirements will not exceed the project budget b. Also, (6.9) in the proposed

model accounts for the precedence dependencies among the requirements and the

value implications of those dependencies, which may impact all value types. Prece-

dence dependencies mainly include the requirement dependencies of type Requires

(Conflicts-with), where one requirement intrinsically requires (conflicts with) the other

one.

The set of the Social Constraints (6.10) ensures that the minimum amounts (lower-

bounds) required for the expected type t values of the requirements are provided. bt

in (6.10) denotes the required lower-bound for the expected type t value of the selected

requirements.

Assigning proper values to bt is specially useful for the reconciliation of the potential

conflicts among the social values when the satisfaction of one value type conflicts with

Chapter 6. The Society-Oriented DARS Method (DARS-SOC) 12 165

the satisfaction of another value type. bt can be modified in such cases to suit the value

preferences of the stakeholders.

Maximize
n

Â
i=1

xiE(vi,1)� yi,1E(vi,1) (6.7)

Subject to
n

Â
i=1

cixi  b (6.8)

8
>><

>>:

xi  xj rj precedes ri

xi  1� xj ri conflicts with rj, i 6= j = 1, ..., n

(6.9)

n

Â
i=1

xiE(vi,t)� yi,tE(vi,t) � bt, t = 2, ..., T (6.10)

qi,t �
✓ |Ii,j,t|+ (1� 2xj)Ii,j,t

2

◆
, i 6= j = 1, ..., n, t = 1, ..., T (6.11)

� gi  xi  gi, i = 1, ..., n (6.12)

1� (1� gi)  xi  1 + (1� gi), i = 1, ..., n (6.13)

� gi  yi,t  gi, i = 1, ..., n, t = 1, ..., T (6.14)

� (1� gi)  (yi,t � qi,t)  (1� gi), i = 1, ..., n, t = 1, ..., T (6.15)

0  yi,t  1, i = 1, ..., n, t = 1, ..., T (6.16)

0  qi,t  1, i = 1, ..., n, t = 1, ..., T (6.17)

xi, gi 2 {0, 1}, i = 1, ..., n (6.18)

For a given requirement ri, in (6.7)-(6.18) we have either a : (xi = 0, yi,t = 0), t =

1, ..., T, or b : (xi = 1, yi,t = qi,t), t = 1, ..., T occur. To capture the relation between qi,t

and yi,t in a linear form, we have made use of an auxiliary variable gi = {0, 1} and

(6.12)-(6.18). As such, we have either (gi = 0) ! a, or (gi = 1) ! b. The selection

model (6.7)-(6.18) therefore is a linear model as it has a linear objective function with

linear inequality constraints.

Chapter 6. The Society-Oriented DARS Method (DARS-SOC) 13 166

Moreover, the dependency identification technique presented in Section 4.2 can be

used for automated identification of the economic value dependencies from user pref-

erences. But, to the best of our knowledge, there are not any techniques in the present

literature for identification of social value dependencies. These dependencies may be

identified manually for small requirement sets. But development of more sophisti-

cated techniques is needed for automated identification of social value dependencies

in medium to large scale requirement sets. We have implemented and solved the ILP

model of the DARS-SOC method using IBM CPLEX [40]. The OPL code for this model

can be obtained from the website of DARS11.

6.3.2 The Mixed Integer Programming Model

As discussed in Section 4.6 the precedence and budget constraints impact the effec-

tiveness of the ILP model of DARS-ILP in mitigating the value loss. The reason is

that the requirements with significant positive influences on the values of the selected

requirements may have to be ignored due to their conflicts with other requirements

or the lack of sufficient budget. Analogously, requirements with negative influences

on the values of the requirements may need to be selected when they are required by

other selected requirements. Hence, a value loss caused by ignoring (selecting) the

requirements with positive (negative) influences may occur when the ILP model of

DARS-ILP is used.

The ILP model of the DARS-SOC method is based on the ILP model of DARS-ILP

and, thus, suffers from the same problem. To further mitigate the risk of value loss

in DARS-SOC, we adopt the approach proposed in Chapter 5 by allowing for par-

tial selection (satisfaction) of the requirements when that can be tolerated. For a type

t 2 {1, ..., T} value, partial selection reduces the risk of value loss by increasing (de-

creasing) the investment in the satisfaction of the requirements that positively (neg-

atively) influence the type t values of the requirements. A lower-bound cost and an

upper-bound cost will be specified for the satisfaction of each requirement ri. When ri

cannot be tolerated to be partially selected (satisfied), however, the lower-bound cost

of ri equals its upper-bound cost.

11http://bcert.org/projects/dars

http://bcert.org/projects/dars

Chapter 6. The Society-Oriented DARS Method (DARS-SOC) 14 167

One approach to specifying these boundaries is to use the estimated costs of the re-

quirements as the upper-bound costs and then RELAX the effort needed for the satis-

faction of those requirements, using the RELAX-ation technique proposed as part of

the PAPS method presented in Section 5.2, to determine the lower bound costs of the

requirements.

To allow for partial selection of requirements in DARS-SOC, we have contributed a

mixed integer programming (MIP) model for integrating the economic/social value

dependencies into requirement selection while allowing for partial selection of the re-

quirements when that can be tolerated. Hence, the proposed DARS-MIP method finds

an optimal investment policy for the satisfaction of the requirements, where such a

policy increases (decreases) the investment in the requirements that positively (nega-

tively) influence the economic/social values of the requirements.

Equations (6.19)-(6.28) give our proposed MIP model of DARS-SORC, which aims to

find an optimal investment policy that maximizes the economic value of an optimal

subset of the requirements while respecting the Social Constraints in (6.22) and keeping

the cost within the budget b. The proposed model also mitigates the value loss caused

by ignoring value dependencies in two ways: (i) by taking into account the influences

of the requirements on the values of each other and (ii) by allowing for partial selection

of the requirements when that can be tolerated.

In (6.19)-(6.28), the relaxed (real) variable 0  xi  1 specifies the investment ratio of

a requirement ri, which is the proportion of the budget invested in the satisfaction of

ri based on the optimal investment policy found by the MIP model of DARS-SOC. As

given by (6.24), the investment ratio of ri is contained within its lower-bound gi(
ci,l
b)

and upper-bound gi(
ci,u
b), which are given by the lower-bound cost and the upper-

bound cost of ri specified by ci,l , and ci,u respectively.

When there is no investment in ri (gi = 0), we have xi = 0. But when there is some

investment in ri (gi = 1), (6.24) determines the lower-bound (ci,l
b
�

and the upper-bound

(ci,u
b
�

for the investment ratio of ri. When ri cannot be tolerated to be partially selected

(satisfied), however, we have ci,l = ci,u, which means xi = ci,u
b for gi = 1, and xi =

0 for gi = 0. The optimization model of the DARS-MIP method builds an optimal

Chapter 6. The Society-Oriented DARS Method (DARS-SOC) 15 168

investment policy, which specifies the optimal subset of the requirements in which

requirements are fully (xi =
ci,u
b) or partially (ci,l

b  xi <
ci,u
b) included.

The expression (xib
ci,u

)E(vi,t) in (6.19) captures the impact of the investment ratio of a

requirement ri on the expected type t value (E(vi,t)) of ri. Equation (6.29) gives E(vi),

where vi,t denotes the estimated type t value of ri and p(ri) denotes the probability

that users purchase or use ri.

We specify the economic value of a software requirement ri by vi,1 while the social val-

ues of ri are specified by vi,2, ..., vi,T. T denotes the total number of the values including

the economic value. Similarly, in all other variables/parameters in (6.19)-(6.28), t = 1

denotes the variables/parameters related to the economic value while t = {2, ..., T}

specify the variables/parameters related to the social values.

Maximize
n

Â
i=1

� xib
ci,u

�
E(vi,1)� yi,1E(vi,1) (6.19)

Subject to
n

Â
i=1

xi  1 (6.20)

8
>>><

>>>:

gi  gj rj precedes ri

gi  1� gj ri conflicts with rj, i 6= j = 1, ..., n
(6.21)

n

Â
i=1

� xib
ci,u

�
E(vi,t)� yi,tE(vi,t) � bt, t = 2, ..., T (6.22)

qi,t �
✓ |Ii,j,t|+

�
1� 2(xjb

cj,u
)
�

Ii,j,t

2

◆
, i 6= j = 1, ..., n, t = 1, ..., T (6.23)

gi
� ci,l

b
�
 xi  gi

� ci,u
b
�
, i = 1, ..., n (6.24)

� gi  yi,t  gi, i = 1, ..., n, t = 1, ..., T (6.25)

� (1� gi)  yi,t � qi,t  (1� gi), i = 1, ..., n, t = 1, ..., T (6.26)

gi 2 {0, 1}, i = 1, ..., n (6.27)

0  qi,t  1, i = 1, ..., n, t = 1, ..., T (6.28)

Chapter 6. The Society-Oriented DARS Method (DARS-SOC) 16 169

E(vi) = p(ri)vi (6.29)

Moreover, qi,t, as given by (6.23), specifies the type t penalty of a requirement ri, which

is the extent to which the type t expected value of ri is negatively impacted by ignor-

ing (selecting) requirements with positive (negative) influences on the type t value of

ri. We use the value dependency graphs (VDGs) presented in Section 6.2 for modeling

value dependencies and reasoning about the qualities and strengths of those depen-

dencies based on the algebraic structure of fuzzy graphs. Hence qi,t is computed by the

fuzzy operator
W

, which finds the maximum of the influences of the ignored (selected)

requirements with positive (negative) influence on the type t value of ri.

When a requirement rj with a positive influence on the type t value of ri is ignored

(xj = 0), Ii,j,t will be considered as the negative influence of ignoring rj on the type

t value of ri as given by (6.23). But when rj is partially selected (cj,l
b  xj <

cj,u
b),

this implies that rj is only partially ignored and therefore the negative influence of the

ignoring rj on the type t value of ri is adjusted to (1� xjb
cj,u

)Ii,j,t. Equation (6.5) computes

Ii,j,t as explained in Section 6.2.

Analogously, when a requirement rj with a negative influence on the type t value of

ri is fully selected, this influence is computed as Ii,j,t in (6.23). But when rj is partially

selected, the negative influence of the selecting rj on the type t value of ri is adjusted

to xjb
cj,u

Ii,j,t in (6.23). In other words, the lower the investment in rj, the lower the type t

value loss caused by selecting rj will be.

The set of the social constraints (6.22) ensures that the optimal policy found by the op-

timization model will provide an expected type t value, which is at least as large as bt.

Assigning proper values to bt further helps reconcile the potential conflicts among the

social values when the satisfaction of one value conflicts with the satisfaction of an-

other one. bt can be modified in such cases to suit the preferences of the stakeholders

of the software projects.

Chapter 6. The Society-Oriented DARS Method (DARS-SOC) 18 170

It is also worth mentioning that the proposed MIP model of DARS-SOC uses value

dependency graphs (VDGs) presented in Section 6.2 for modeling different types of

value dependencies and reasoning about their characteristics.

Moreover, the dependency identification technique presented in Section 4.2 can be

used for automated identification of the economic value dependencies from user pref-

erences. But, to the best of our knowledge, there are not any techniques in the present

literature for identification of social value dependencies. These dependencies may be

identified manually for small requirement sets. But development of more sophisti-

cated techniques is needed for automated identification of social value dependencies

in medium to large scale requirement sets.

The MIP model of the DARS-SOC, as given by (6.19)-(6.28), is linear and therefore

can be efficiently solved [39], even for large scale requirement sets, by the existing

commercial solvers such as IBM CPLEX [40]. We have implemented and solved the

MIP model of the DARS-SOC method using the IBM CPLEX [40]. The OPL code for

this model can be obtained from the website of DARS17.

6.4 Summary

In this chapter we proposed a method for dependency-aware software requirement

selection that not only takes into account the economic values of the requirements but

also accounts for social values of those requirements. The proposed method, referred

to as the Society-Oriented method of DARS (DARS-SOC) helps embed social values

into software requirement selection.

The proposed DARS-SOC method comprises two main optimization models with dif-

ferent characteristics, that allow for embedding the social values and dependencies

among those values into software requirement selection. The first optimization model

is an integer linear programming (ILP) model that aims to optimize the economic

value of a selected subset of the requirements subject to a set of social constraints.

The set of the social constraints ensures that the lower-bound of the social values are

provided by the optimal subset of the requirements.
17http://bcert.org/projects/dars

http://bcert.org/projects/dars

Chapter 6. The Society-Oriented DARS Method (DARS-SOC) 20 171

The second optimization model presented for DARS-SOC is a mixed integer program-

ming (MIP) model that enhances the ILP model of DARS-SOC by further mitigating

the risk of value loss posed by ignoring (selecting) requirements with positive (nega-

tive) influences on the values of the selected requirements.

This is achieved in the proposed MIP model by allowing for partial selection (satisfac-

tion) of the requirements when that can be tolerated. The model, thus, aims to find an

optimal budget investment policy that maximizes the economic value of an optimal

subset of the requirements while respecting the social constraints.

We have further extended the definitions of the value dependency graphs (VDGs)

and value dependencies presented in Section 4.3.2 to capture different types of social

values in modeling value dependencies.

Finally, the dependency identification component of the DARS-ILP method is used

in DARS-SOC for automated identification of the economic value dependencies. But,

devising more sophisticated techniques is needed for automated identification of so-

cial value dependencies in requirement sets. This is, however, beyond the scope of

this thesis19. The contents of this chapter are presented in publications (P3), (P4), (P6),

(P8), (P10), (P12), and (P13).

19The author of the thesis has joined the Society-Oriented Software Design project at the Faculty of
Information Technology, Monash University.

172

Chapter 7

Conclusions

7.1 Summary of the main contributions

Software requirement selection aims to find an optimal subset of requirements with

the highest value while respecting the project constraints. Values of requirements,

however, may positively or negatively depend on the presence or absence of other

requirements in the optimal subset. Moreover, value dependencies are imprecise and

hard to specify in software projects. Hence, it is important to consider Value Dependen-

cies and the imprecision associated with those dependencies in software requirement

selection. This thesis focused on considering value dependencies and their different

aspects in software requirement selection.

To effectively consider value dependencies in software requirement selection this the-

sis presented a mathematical programming approach, referred to as Dependency-Aware

Requirement Selection (DARS). The proposed approach comprises an Integer Programing

(IP) method i.e. DARS-IP, an Integer Linear Programming (ILP) method i.e. DARS-ILP,

a Mixed Integer Programing MIP method i.e. DARS-MIP, and a Society-Oriented method

i.e. DARS-SOC with different characteristics for considering value dependencies in

requirement selection. Each method is comprised of three major components: (i) a

technique for identification of value dependencies; (ii) a technique for modeling value

dependencies and computing influences of requirements on the values of each other;

and (iii) a mathematical programming model for integrating value dependencies into

finding optimal subsets of requirements. In this regard, the following contributions

were presented.

Chapter 7. Conclusions 173

7.1.1 The DARS-IP Method

Chapter 3 focused on considering the impacts of value dependencies on the value of

an optimal subset of the requirements during a selection process. In this regard, an

integer programming (IP) method of DARS, referred to as DARS-IP, was presented.

The IP method includes; (i) identification of value dependencies, (ii) modeling value

dependencies, and (iii) integrating value dependencies into software requirement se-

lection.

We showed the practicality and validity of the DARS-IP by studying a real-world

software project and carrying out simulations. Our results, as presented in publica-

tions (P1) and (P2), answered research questions (RQ1)-(RQ5) indicating that (a) the

IP method of DARS (DARS-IP) can properly capture the strengths of value dependen-

cies among requirements during a selection process while mitigating the selection de-

ficiency problem (SDP); (b) the DARS-IP method always maximizes the overall value

of an optimal subset; (c) maximizing the overall value and the accumulated value of an

optimal subset can be conflicting objectives [123] as maximizing one may depreciate

the other.

7.1.2 The DARS-ILP Method

Chapter 4 focused on enhancing the main components of the DARS-IP method in

different ways as presented in publications (P1)-(P8). An integer linear program-

ming (ILP) method referred to as DARS-ILP was presented for dependency-aware

requirement selection, which is scalable to software projects with large number of re-

quirements. The proposed ILP method of DARS (DARS-ILP) further enhances the IP

method (DARS-IP) by considering not only the strengths but also qualities of value

dependencies in the optimization model.

Moreover, the dependency identification technique in DARS-IP was improved by DARS-

ILP through (a) considering both strengths and qualities of value dependencies and

(b) using a formal significance test to prune value dependencies (which may be spuri-

ous rather than reflecting real relationships amongst values of requirements). The ILP

method of DARS also allows for modeling negative value dependencies.

Chapter 7. Conclusions 174

In this regard, a modified version of the Floyd-Warshall algorithm [44] was contributed

that computes the positive and negative influences of requirements on the values of

each other using the algebraic structure of fuzzy graphs.

Chapter 4 answered research questions (RQ6)-(RQ9) by studying a real-world soft-

ware project and carrying out extensive simulations to study the impact of value de-

pendencies on the effectiveness of DARS-ILP in mitigating the value loss caused by

ignoring value dependences.

Our results show: that (a) compared to the requirement selection methods that ig-

nore value dependencies, the ILP method of DARS provides higher overall value by

mitigating the impact of ignoring (selecting) requirements with positive (negative) in-

fluence on the values of selected requirements; (b) maximizing the accumulated value

and overall value of a software are conflicting objectives; and (c) DARS-ILP is scalable

to software projects with large number of requirements for different levels of value

dependencies and precedence dependencies. This was demonstrated by simulating

different scenarios for datasets of up to 3000 requirements.

7.1.3 The DARS-MIP Method

Chapter 5 presented a mixed integer programming (MIP) method that integrates value

dependencies into requirement selection while allowing for partial selection (satisfac-

tion) of requirements when that can be tolerated. The MIP method of DARS (DARS-

MIP) pursues the policy of partially selecting requirements rather than ignoring them

or postponing them to the future releases. The main contributions of this chapter are

presented in publications (P3), (P4), and (P6)-(P12).

The optimization model of the DARS-MIP method finds an optimal investment policy

that mitigates the value loss by allowing for increasing (decreasing) the investment

in the requirements with significant positive (negative) influences on the values of

the partially/fully selected requirements. The investment in each requirement ri is

bounded by the lower-bound cost and the upper-bound cost of ri.

Chapter 7. Conclusions 175

The upper-bound cost of ri is estimated by the stakeholders and then RELAX-ed, using

a RELAX-ation technique proposed as part of a fuzzy method referred to as Prioritiza-

tion and Partial selection (PAPS), to determine the lower bound cost of ri.

The optimization model of the DARS-MIP method is linear and scalable to software

projects with large number of requirement. Application of the DARS-MIP method

to real-world software projects is now under way as part of our ongoing research to

further investigate the effectiveness of the method in mitigating the value loss in real-

world settings.

7.1.4 The Society-Oriented DARS Method (DARS-SOC)

The DARS-IP, DARS-ILP, and DARS-MIP methods focus on the economic values of

software requirements and the dependencies among those values. However, there are

other types of human values i.e. Social Values with long term impacts on the society

that are also important and need to be considered in software requirement selection.

To address this, we presented in Chapter 6 a society-oriented method for DARS, i.e.

DARS-SOC, that accounts for social values in dependency-aware requirement selec-

tion. The proposed DARS-SOC method comprises two main optimization models,

with different characteristics, that allow for embedding the social values and the de-

pendencies among those values into software requirement selection. We further ex-

tended the value dependency graphs, presented as the modeling component of DARS-

ILP, for capturing different types of social values in modeling value dependencies.

Our proposed DARS-SOC method uses the dependency identification component of

DARS-ILP for identification of the economic value dependencies. But, to the best of

our knowledge, there are not any techniques in the present literature for identification

of social value dependencies. These dependencies may be identified manually for

small requirement sets. But development of more sophisticated techniques is needed

for automated identification of social value dependencies in medium to large scale

requirement sets.

The contents of Chapter 6 are mainly presented in publications (P3), (P4), (P6), (P8),

(P10), (P12), and (P13).

Chapter 7. Conclusions 176

7.2 Current Limitations

We discuss the limitations of this thesis to contain it within a complete and full under-

standing of its limitations. Typical of experimental studies [172], the limitations of the

thesis belong to the classes of internal, external, conclusion, and construct validity.

7.2.1 Internal, External, and Conclusion Validity

Limitations concerning the internal, external, and conclusion validity of the proposed

selection methods are mainly about evaluation of the impact of the selection meth-

ods on the actual value (manifested in terms of revenue, profit, or return) of software

products and generalization of the results to industrial practice. Such limitations are

typical of the software requirement selection (release planning) works regardless of

the methods used. All the existing software requirement selection works including

the main works reviewed in Section 2.2 (Table 2.2) share the same limitation due to

the following reasons.

An ultimate evaluation of a software requirement selection method can be achieved

by studying its impact on the actual value (manifested in terms of revenue, profit, or

return) of software products as optimizing the value is the ultimate purpose of the

requirement selection methods. Such study however, requires software vendors to

invest in developing and/or maintaining different configurations of a software prod-

uct based on different selection methods even if such investments are not economi-

cally worthwhile. This is difficult, if possible at all, to achieve in real-world software

projects as software vendors hesitate to invest their money on developing different

configurations of a software product proposed by different selection methods when

the profitability of using those methods is under investigation.

To avoid developing multiple configurations of the same software product, one may

suggest releasing different configurations of an already existing software product based

on the requirement subsets found by different selection methods and then study the

value achieved from each configuration to understand the impact of using different

selection methods on the actual value.

Chapter 7. Conclusions 177

However, there are several complexities concerning the technical and financial aspects

of releasing and maintaining different configurations of a software products, which

makes it less appealing to most investors unless they can be assured that the released

configurations are likely to be economically worthwhile.

Moreover, the prices of different configurations of a software product can also be a

determining factor in choosing certain configurations of a software product by the

users. In other words, the higher/lower price of a configuration may encourage the

users to choose another configuration. Widely recognized in finance [147], the inter-

play between the sales and price is hard to exclude from analysis of value. This further

exacerbates the difficulty of evaluating the impacts of requirement selection methods

on the actual value.

Furthermore, users may compare a software product with its alternatives in the mar-

ket, whether it is from the same vendor or other competitors. Hence, users satisfaction

or dissatisfaction with a certain product may impact their preferences for its alterna-

tive products in the market. The dynamics of the software market and the role of

the competitors in increasing or decreasing the sales and subsequently the value of a

software product however, is hard to predict.

For the these reasons and other factors such as marketing and familiarity of the users

with the features of software products, that also impact the sales and value, it is hard

to specifically evaluate the impact of the requirement selection methods on the actual

value. Hence, unless the above-mentioned factors are controlled somehow, the im-

pacts of the existing requirement selection works, including the main works reviewed

in Section 2.2 (Table 2.2), on the actual value is unknown. Unfortunately, there are no

studies in the present literature, to the best of our knowledge, that has addressed this.

7.2.2 Construct Validity

Limitations concerning the construct validity are mainly about measures and tools

used in the experiment design. We used different measures of causal strength [45] in

Chapters 3-5 in this thesis to estimate qualities and strengths of value dependencies.

Chapter 7. Conclusions 178

However, further studies are needed to investigate the accuracy of such estimations

for different datasets as, to the best of our knowledge, no previous work has measured

value dependencies among software requirements.

Moreover, in Section 4.5 of this thesis we used the sales record of a software product to

extract the frequencies of the user preferences for different requirements and identify

the value dependencies among those requirements. It is clear that, in this way, pref-

erences of the users are impacted by the prices of the requirements. In other words,

a higher price might have encouraged or discouraged users to purchase a certain fea-

ture of a software product. Analogously, a lower price might also have encouraged or

discouraged users to choose certain features. This was not an issue in the case study

of Section 4.5 as a price change was not intended by the stakeholders.

But, in other cases, the interplay between the price and user preferences may interfere

with reflecting the actual preference of the users. In other words, when the prices of

the requirements of a new release of a software product are significantly different from

their original prices in the earlier version(s), the value dependencies found from the

sales records might be misguiding. In such cases tracking the usage patterns of the

users in the earlier version(s) of a software product or similar products in the market

may help extract the user preferences and estimate the value dependencies among the

requirements. Hence, more sophisticated techniques are needed to allow for capturing

the preferences of the users from different sources.

Finally, in this thesis we did not cover automated identification of social value de-

pendencies among requirements, which is required by the optimization model of the

society-oriented method of DARS (DARS-SOC). These dependencies maybe identi-

fied manually for small requirement sets. But for medium to large requirement sets,

developing more sophisticated techniques for automated identification of social value

dependencies is necessary. To achieve this, we further need to develop proper mea-

sures for evaluating social values in software projects.

Chapter 7. Conclusions 179

7.3 Ongoing and Future Work1

To address the limitations of the thesis discussed in Section 7.2, the following research

directions can be explored. Some of these directions are part of our ongoing research

while the rest can be pursued as future work.

7.3.1 Enhancing the Accuracy of the Dependency Identification

Enhancing the Quality of the Collected Data

Practicality of the proposed requirement selection methods, namely DARS-IP, DARS-

ILP, DARS-MIP, and DARS-SOC, can be enhanced by improving the techniques used

for the automated collection of user preferences, which serve as the input to the de-

pendency identification components of the proposed selection methods.

Conducting surveys is a conventional way of collecting user preferences. But com-

plementary techniques are also required to be used in combination with surveys to

overcome the limitations of the surveys (Section 7.2.2) and enhance the quality of the

collected user preferences.

In Section 4.5 we demonstrated the use of the sales records of a software product to ex-

tract the frequencies of the user preferences for different requirements and identify the

value dependencies. This was reasonable to be used in the case study of Section 4.5

as a price change was not intended by the stakeholders. But, in other cases, prefer-

ences of the users may be impacted by the prices of the requirements as explained in

Section 7.2.2.

In this regard, mining user opinions in online stores (repositories) and information

gathered from tracking user behavior on similar software seem to be promising ap-

proaches. This, particularly, helps factor out the impact of the price on user preferences

as discussed in Section 7.2.2. limited by the accuracy of its text-mining technique, the

work [138] is an interesting example for gathering user opinions from online sources.

1The author of the thesis has recently joined the Society-Oriented Software Design project at the Fac-
ulty of Information Technology, Monash University.

https://www.monash.edu/it/our-research/graduate-research/scholarship-funded-phd-research-projects/projects/society-oriented-software-design

Chapter 7. Conclusions 180

Establishing a Shared Repository for User Preferences

Gathering user preferences for different requirements of software products may be re-

source consuming and, therefore, not affordable to smaller software vendors. Larger

software vendors on the other hand, have access to more resources and most likely

to benefit from more efficient ways of gathering user preferences. However, such

information is rarely available to smaller software vendors for a variety of reasons

including the resource limitations and confidentiality matters.

As such, smaller software vendors (e.g. developers of the mobile applications), which

constitute the majority of the active players in the software market, cannot properly

take into account the actual preferences of the users. This can be mitigated by estab-

lishing an open access shared repository of user preferences, which can be efficiently

accessed by the developers as well as the software development tools. This lays a

solid foundation for the automated integration of the user preferences into software

development activities including the requirement selection. Such a repository will

also allow users to monitor how their preferences are taken into account by different

vendors.

The Classification of Software Requirements

There might be cases, where identification of value dependencies among individual

requirements is not feasible (say due to the lack of time or sufficient data) while value

dependencies among classes of requirements can be found and taken into account. For

instance, choosing requirements belonging to the class of security may increase users

satisfaction with the requirements belonging to the class of financial transactions and

therefore the presence of security features may improve the values of the financial

transaction requirements.

Hence, considering value dependencies among classes of software requirements at

different levels of abstraction may still help prevent value loss caused by ignoring

those dependencies. Value dependencies identified at higher levels of abstraction may

be used to identify value dependencies among lower level classes of requirements and

individual requirements.

Chapter 7. Conclusions 181

This provides a structured way of integrating value dependencies into requirement

selection and consequently mitigating the value loss caused by ignoring value depen-

dencies even if identification of those dependencies among individual requirements

is not feasible.

The Classification of Users

Identification of value dependencies for different classes of users helps enhance the

accuracy of the identified value dependencies and therefore improve the effectiveness

of the requirement selection methods. This way, different configurations of a software

product can be released for different classes of the users based on the value dependen-

cies identified for those classes. This further increases users satisfaction and mitigates

the value loss for different configurations of a software targeted for different classes of

users.

Enhancing the Accuracy of the Dependency Identification

The accuracy of the dependency identification technique used in this thesis can be

enhanced by exploring different measures of casual strength on a variety of the real-

world datasets. Also different fuzzy membership functions can be explored, based on

the feedback from software practitioners, for enhancing the accuracy of the strengths

and qualities of the value dependencies among software requirements.

7.3.2 Embedding Social Values into the Requirement Selection

Software requirement selection is traditionally guided by the economic worth of soft-

ware, i.e. value. Social values in software and the dependencies among those values,

however, are also important [173] and need to be considered in dependency-aware

requirement selection. In this regard, Chapter 6 of this thesis presented a Society-

Oriented method of DARS, referred to as DARS-SOC, which integrates social values

into requirement selection. The DARS-SOC method can be improved in several ways.

Chapter 7. Conclusions 182

The Identification of Social Value Dependencies

In this thesis we did not cover automated identification of social value dependen-

cies among requirements, which is required by the optimization model of the society-

oriented method of DARS (DARS-SOC). These dependencies maybe identified man-

ually for small requirement sets. But for medium to large size requirement sets, de-

veloping more sophisticated techniques for automated identification of social value

dependencies is necessary. To achieve this, we need to develop proper measures for

evaluating social values in software projects.

Lack of proper criteria for measuring social values has been characterized in th litera-

ture [174] as a major challenge to the effectiveness of the methods used for embedding

social/sustainability values into software products. The first step to the automated

identification of social value dependencies, thus, is to address this challenge by intro-

ducing practical measures for social values. Such measures must be able to properly

capture the imprecision of social values. Moreover, it is important to develop the mea-

sures of social values in full participation with stakeholders of software projects as

social values may change across different classes of stakeholders.

Hence, establishing a collaborative platform, in which a participatory development

of the standards and guidelines concerning the identification and measuring social

values is supported, can be of significant benefit. For instance, in partnership with the

stakeholders, customizable measures of social values can be developed using a Goal

Question Metric (GQM) approach [175], where the stakeholders specify the goals based

on their particular needs.

Embedding Social Values into the Requirement Modeling

A proper modeling technique is required for modeling social values and considering

the imprecision of those values in software projects. Such a model will serve as the

input for a requirement selection process. Social values are treated as non-functional

requirements or soft-goals [37]. Hence, adopting goal-oriented techniques such as [78,

174] for construction of Social Value Model (SVM) of software products help capture

these soft-goals and their relations with functional requirements of software products.

Chapter 7. Conclusions 183

Moreover, participatory [176] construction of the social value model (SVM) of software

products helps take into account opinions of different stakeholders when specifying

social values as those values may differ across different classes of the stakeholders.

SVMs may use Fuzzy Reasoning [161, 1] for capturing the uncertainty of relations and

conflicts among social goals and requirements. The SVM of a software product can

also allow, through impact analysis, for investigating the consequences of breaching

social values in software to give more visibility [37] to social values and their direct

and indirect [1] impacts.

7.3.3 Applications to Other Problems

Consider a general form of the dependency-aware requirement selection, which is a

Binary Knapsack Problem with Dependent Item Values (BKP-DIV) as described in Publica-

tion (P3) [3]. The problem of concern is to find an optimal subset of the items with the

highest value without the assumption of independence among values of the require-

ments. In other words, the values of the selected items may change in the presence or

absence of other items in the knapsack.

In other words, the value of an item is not known until the decision is made about

the presence or absence of the other items in the knapsack.This SKP is one of the

most commonly found problems in Software Engineering activities as well as other

real-world problems. In fact it can be rarely assumed that the values of the items of

a real-world selection problem are independent. We have also formulated a similar

problem, referred to as the Synergistic Knapsack Problem (SKP) in publication (P4) [4].

Among the many applications of the BKP-DIV and SKP, are the software requirement

selection problem [5, 2], software test-case selection problem, and medical treatment

selection problem, where the value (effectiveness) of a certain treatment may change in

the presence or absence of other treatments. We have discussed the relations among

medical treatments and the uncertainty of those relations in publication (P14) [14].

This publication lays a foundation for a dependency-aware selection of medical treat-

ments.

184

Bibliography

[1] D. Mougouei and D. M. W. Powers. Modeling and selection of interdependent

software requirements using fuzzy graphs. International Journal of Fuzzy Systems,

19(6):1812–1828, Dec 2017.

[2] D. Mougouei. Factoring requirement dependencies in software requirement

selection using graphs and integer programming. In Proceedings of the 31st

IEEE/ACM International Conference on Automated Software Engineering, pages 884–

887. ACM, 2016.

[3] D. Mougouei, D. M. W. Powers, and A. Moeini. An integer linear programming

model for binary knapsack problem with dependent item values. In W. Peng,

D. Alahakoon, and X. Li, editors, AI 2017: Advances in Artificial Intelligence: 30th

Australasian Joint Conference, Melbourne, VIC, Australia, August 19–20, 2017, Pro-

ceedings, pages 144–154. Springer International Publishing, Cham, 2017.

[4] D. Mougouei and D. M. W. Powers. The synergistic knapsack problem. Fuzzy

Optimization and Decision Making, Under Review.

[5] D. Mougouei, D. M. Powers, and A. Moeini. Dependency-aware software re-

lease planning. In Proceedings of the 39th International Conference on Software En-

gineering Companion, pages 198–200. ACM, 2017.

[6] D. Mougouei and D. M. W. Powers. An integer programming method for con-

sidering value-related dependencies in software requirement selection. Informa-

tion and Software Technology, Under Review.

[7] D. Mougouei and D. M. W. Powers. Dependency-aware software release plan-

ning using fuzzy graphs and integer programming. Engineering Applications of

Artificial Intelligence, Under Review.

BIBLIOGRAPHY 185

[8] D. Mougouei and D. M. W. Powers. Dependency-aware software release plan-

ning through mining user preferences. Expert Systems with Applications, Under

Review.

[9] D. Mougouei, H. Shen, and A. Babar. Partial selection of agile software require-

ments. International Journal of Software Engineering & Its Applications, 9(1):113–

126, 2015.

[10] D. Mougouei and D. M. W. Powers. Paps: A scalable framework for priori-

tization and partial selection of security requirements. International Journal of

Approximate Reasoning, Under Review.

[11] D. Mougouei and M. K. Yeung. Visibility requirements engineering for com-

mercial websites. International Journal of Software Engineering & Its Applications,

8(8):11–18, 2014.

[12] D. Mougouei and D. M. W. Powers. Partial selection of software requirements.

International Conference on Computer Science, Engineering and Applications, Ac-

cepted.

[13] D. Mougouei and D. M. W. Powers. An integer programming model for embed-

ding social values into software requirement selection. International Conference

on Computer Science, Engineering and Applications, Accepted.

[14] D. Mougouei and D. M. W. Powers. Gotm: a goal-oriented framework for cap-

turing uncertainty of medical treatments. Intelligent Systems Conference (Intel-

liSys) 2018, Accepted.

[15] D. Mougouei. Considering value-related dependencies among requirements in

software release planning: An integer programming approach. Faculty of Infor-

mation Technology, Monash University, July 2017.

[16] A. J. Bagnall, V. J. RaywardSmith, and I. M. Whittley. The next release problem.

Information and Software Technology, 43(14):883–890, Dec. 2001.

[17] X. Franch and G. Ruhe. Software release planning. In Proceedings of the 38th

International Conference on Software Engineering Companion, pages 894–895. ACM,

2016.

BIBLIOGRAPHY 186

[18] Å. G. Dahlstedt and A. Persson. Requirements interdependencies: state of the

art and future challenges. In Engineering and managing software requirements,

pages 95–116. Springer, 2005.

[19] Y. Zhang, M. Harman, and S. L. Lim. Empirical evaluation of search based

requirements interaction management. Information and Software Technology,

55(1):126 – 152, 2013. Special section: Best papers from the 2nd International

Symposium on Search Based Software Engineering 2010.

[20] W. N. Robinson, S. D. Pawlowski, and V. Volkov. Requirements interaction man-

agement. ACM Comput. Surv., 35(2):132-190, June 2003.

[21] P. Carlshamre, K. Sandahl, M. Lindvall, B. Regnell, and J. Natt och Dag. An in-

dustrial survey of requirements interdependencies in software product release

planning. In Fifth IEEE International Symposium on Requirements Engineering,

2001. Proceedings, pages 84–91, 2001.

[22] C. Li, M. v. d. Akker, S. Brinkkemper, and G. Diepen. An integrated approach for

requirement selection and scheduling in software release planning. Requirements

Engineering, 15(4):375–396, Nov. 2010.

[23] H. Zhang, J. Li, L. Zhu, R. Jeffery, Y. Liu, Q. Wang, and M. Li. Investigating

dependencies in software requirements for change propagation analysis. Infor-

mation and Software Technology, 56(1):40–53, 2014.

[24] J. Karlsson, S. Olsson, and K. Ryan. Improved practical support for largescale

requirements prioritising. Requirements Engineering, 2(1):51–60, Mar. 1997.

[25] A. Ngo-The and G. Ruhe. A systematic approach for solving the wicked prob-

lem of software release planning. Soft Computing, 12(1):95–108, 2008.

[26] A. Ngo-The and M. O. Saliu. Measuring dependency constraint satisfaction in

software release planning using dissimilarity of fuzzy graphs. In Cognitive Infor-

matics, 2005.(ICCI 2005). Fourth IEEE Conference on, pages 301–307. IEEE, 2005.

[27] J. Wang, J. Li, Q. Wang, H. Zhang, and H. Wang. A simulation approach for

impact analysis of requirement volatility considering dependency change. Re-

quirements Engineering: Foundation for Software Quality, pages 59–76, 2012.

BIBLIOGRAPHY 187

[28] P. Baker, M. Harman, K. Steinhofel, and A. Skaliotis. Search based approaches

to component selection and prioritization for the next release problem. In Pro-

ceedings of the 22Nd IEEE International Conference on Software Maintenance, pages

176–185. IEEE, 2006.

[29] M. A. Boschetti, M. Golfarelli, S. Rizzi, and E. Turricchia. A lagrangian heuris-

tic for sprint planning in agile software development. Computers & Operations

Research, 43:116–128, Mar. 2014.

[30] A. A. Araújo, M. Paixao, I. Yeltsin, A. Dantas, and J. Souza. An architecture

based on interactive optimization and machine learning applied to the next re-

lease problem. Automated Software Engineering, pages 1–49, 2016.

[31] D. Greer and G. Ruhe. Software release planning: an evolutionary and iterative

approach. Information and Software Technology, 46(4):243 – 253, 2004.

[32] A. Pitangueira, P. Tonella, A. Susi, R. Maciel, and M. Barros. Minimizing the

stakeholder dissatisfaction risk in requirement selection for next release plan-

ning. Information and Software Technology, 2017.

[33] L. Li, M. Harman, F. Wu, and Y. Zhang. The value of exact analysis in require-

ments selection. IEEE Transactions on Software Engineering, 43(6):580–596, 2017.

[34] L. Li, M. Harman, E. Letier, and Y. Zhang. Robust next release problem: han-

dling uncertainty during optimization. In Proceedings of the 2014 Annual Confer-

ence on Genetic and Evolutionary Computation, pages 1247–1254. ACM, 2014.

[35] M. van den Akker, S. Brinkkemper, G. van Diepen, and J. Versendaal. Flexible

release planning using integer linear programming. REFSQ’05, 2005.

[36] J. d. Sagrado, I. M. d. Águila, and F. J. Orellana. Multiobjective ant colony opti-

mization for requirements selection. Empirical Software Engineering, pages 1–34,

Nov. 2013.

[37] M. A. Ferrario, W. Simm, S. Forshaw, A. Gradinar, M. T. Smith, and I. Smith.

Values-first se: research principles in practice. In Software Engineering Companion

(ICSE-C), IEEE/ACM International Conference on, pages 553–562. IEEE, 2016.

BIBLIOGRAPHY 188

[38] S. H. Schwartz. Basic human values: An overview. Recuperado de http://www.

yourmorals. org/schwartz, 2006.

[39] S. Boyd and L. Vandenberghe. Convex optimization. Cambridge university press,

2004.

[40] I. I. CPLEX. V12.7: Cplex user’s manual. International Business Machines Corpo-

ration, 2016.

[41] B. Fitelson and C. Hitchcock. Probabilistic measures of causal strength. na, 2011.

[42] A. Rosenfeld. Fuzzy graphs. Fuzzy Sets and Their Applications, 77:95, 1975.

[43] A. Kalampakas, S. Spartalis, L. Iliadis, and E. Pimenidis. Fuzzy graphs: al-

gebraic structure and syntactic recognition. Artificial Intelligence Review, pages

1–12, July 2013.

[44] R. W. Floyd. Algorithm 97: shortest path. Communications of the ACM, 5(6):345,

1962.

[45] E. Eells. Probabilistic causality, volume 1. Cambridge University Press, 1991.

[46] J. H. Macke, P. Berens, A. S. Ecker, A. S. Tolias, and M. Bethge. Generating spike

trains with specified correlation coefficients. Neural Computation, 21(2):397–423,

2009.

[47] A. Ngo The and M. O. Saliu. Fuzzy structural dependency constraints in soft-

ware release planning. In The 14th IEEE International Conference on Fuzzy Systems,

2005. FUZZ’05., pages 442–447. IEEE, 2005.

[48] X. F. Liu and J. Yen. An analytic framework for specifying and analyzing im-

precise requirements. In Proceedings of the 18th international conference on Software

engineering, pages 60–69. IEEE Computer Society, 1996.

[49] C. H. Papadimitriou and K. Steiglitz. Combinatorial optimization: algorithms and

complexity. Courier Corporation, 1998.

[50] S. Bradley, A. Hax, and T. Magnanti. Applied mathematical programming. 1977.

BIBLIOGRAPHY 189

[51] W. Cui, Y. Wu, S. Liu, F. Wei, M. X. Zhou, and H. Qu. Context preserving dy-

namic word cloud visualization. In Visualization Symposium (PacificVis), 2010

IEEE Pacific, pages 121–128. IEEE, 2010.

[52] H. Kellerer, U. Pferschy, and D. Pisinger. Knapsack problems. Springer, 2004.

[53] E. L. Lawler and D. E. Wood. Branch-and-bound methods: A survey. Operations

research, 14(4):699–719, 1966.

[54] R. Bellman. On the theory of dynamic programming. Proceedings of the National

Academy of Sciences, 38(8):716–719, 1952.

[55] P. Festa. A brief introduction to exact, approximation, and heuristic algorithms

for solving hard combinatorial optimization problems. In Transparent Optical

Networks (ICTON), 2014 16th International Conference on, pages 1–20. IEEE, 2014.

[56] D. P. Williamson and D. B. Shmoys. The design of approximation algorithms. Cam-

bridge University Press, 2011.

[57] S. Kirkpatrick, C. D. Gelatt Jr, and M. P. Vecchi. Optimization by simulated

annealing. In Spin Glass Theory and Beyond: An Introduction to the Replica Method

and Its Applications, pages 339–348. World Scientific, 1987.

[58] D. E. Goldberg. Genetic algorithms in search, optimization, and machine learn-

ing, 1989. Reading: Addison-Wesley, 1989.

[59] M. Dorigo, M. Birattari, and T. Stutzle. Ant colony optimization. IEEE computa-

tional intelligence magazine, 1(4):28–39, 2006.

[60] F. Glover, M. Laguna, and R. Martí. Fundamentals of scatter search and path

relinking. Control and cybernetics, 29(3):653–684, 2000.

[61] E. H. Aarts and J. K. Lenstra. Local search in combinatorial optimization. Princeton

University Press, 1997.

[62] P. Hansen and N. Mladenović. An introduction to variable neighborhood search.

In Meta-heuristics, pages 433–458. Springer, 1999.

[63] T. A. Feo and M. G. Resende. A probabilistic heuristic for a computationally

difficult set covering problem. Operations research letters, 8(2):67–71, 1989.

BIBLIOGRAPHY 190

[64] S. Voß, S. Martello, I. H. Osman, and C. Roucairol. Meta-heuristics: Advances

and trends in local search paradigms for optimization. Springer Science & Business

Media, 2012.

[65] I. H. Osman and G. Laporte. Metaheuristics: A bibliography, 1996.

[66] M. Harman and B. F. Jones. Search-based software engineering. Information and

software Technology, 43(14):833–839, 2001.

[67] B. A. McCarl and T. H. Spreen. Applied mathematical programming using al-

gebraic systems. Cambridge, MA, 1997.

[68] D. G. Luenberger and Y. Ye. The simplex method. In Linear and Nonlinear Pro-

gramming, pages 33–82. Springer, 2016.

[69] S. Sinha. Mathematical Programming: Theory and Methods. Elsevier, 2005.

[70] D.-S. Chen, R. G. Batson, and Y. Dang. Applied integer programming: modeling and

solution. John Wiley & Sons, 2011.

[71] M. M. A. Brasil, T. G. N. d. Silva, F. G. d. Freitas, J. T. d. Souza, and M. I. Cortés.

A multiobjective optimization approach to the software release planning with

undefined number of releases and interdependent requirements. In R. Zhang,

J. Zhang, Z. Zhang, J. Filipe, and J. Cordeiro, editors, Enterprise Information Sys-

tems, number 102, pages 300–314. Springer Berlin Heidelberg, Jan. 2012.

[72] A. M. Pitangueira, R. S. P. Maciel, and M. Barros. Software requirements selec-

tion and prioritization using sbse approaches: A systematic review and map-

ping of the literature. Journal of Systems and Software, 103:267–280, 2015.

[73] P. K. Process-Centered Requirements Engineering. Research Studies Pre, Taunton,

Somerset, England New York, Oct. 1996.

[74] J. N. och Dag, B. Regnell, P. Carlshamre, M. Andersson, and J. Karlsson. A fea-

sibility study of automated natural language requirements analysis in market-

driven development. Requirements Engineering, 7(1):20–33, 2002.

BIBLIOGRAPHY 191

[75] J. Li, R. Jeffery, K. H. Fung, L. Zhu, Q. Wang, H. Zhang, and X. Xu. A Busi-

ness Process-Driven Approach for Requirements Dependency Analysis, pages 200–

215. Springer Berlin Heidelberg, Berlin, Heidelberg, 2012.

[76] D. Mougouei, M. Moghtadaei, and S. Moradmand. A goal-based modeling ap-

proach to develop security requirements of fault tolerant security-critical sys-

tems. In Computer and Communication Engineering (ICCCE), 2012 International

Conference on, pages 200–205. IEEE, 2012.

[77] S. Wasserman and K. Faust. Social network analysis: Methods and applications,

volume 8. Cambridge University Press, 1994.

[78] D. Mougouei. Goal-based requirement engineering for fault tolerant security-

critical systems. International Journal of Software Engineering and Its Applications,

7(5):1–14, 2013.

[79] A. Kusiak and J. Wang. Dependency analysis in constraint negotiation. Systems,

Man and Cybernetics, IEEE Transactions on, 25(9):1301–1313, 1995.

[80] A. G. Dahlstedt and A. Persson. Requirements interdependencies - moulding

the state of research into a research agenda. In Ninth International Workshop on

Requirements Engineering: Foundation for Software Quality (REFSQ 2003), pages

71–80, 2003.

[81] B. Ramesh and M. Jarke. Toward reference models for requirements traceability.

IEEE Transactions on Software Engineering, 27(1):58–93, Jan. 2001.

[82] J. Karlsson and K. Ryan. A costvalue approach for prioritizing requirements.

IEEE Software, 14(5):67–74, Sept. 1997.

[83] H.-W. Jung. Optimizing value and cost in requirements analysis. IEEE Software,

15(4):74–78, July 1998.

[84] Y. Zhang, M. Harman, and S. A. Mansouri. The multi-objective next release

problem. In Proceedings of the 9th Annual Conference on Genetic and Evolutionary

Computation, page 1129–1137, New York, NY, USA, 2007. ACM.

BIBLIOGRAPHY 192

[85] A. Finkelstein, M. Harman, S. A. Mansouri, J. Ren, and Y. Zhang. A search

based approach to fairness analysis in requirement assignments to aid negotia-

tion, mediation and decision making. Requirements Engineering, 14(4):231–245,

2009.

[86] Y. Zhang, M. Harman, A. Finkelstein, and S. A. Mansouri. Comparing the per-

formance of metaheuristics for the analysis of multi-stakeholder tradeoffs in

requirements optimisation. Information and Software Technology, 53(7):761–773,

2011.

[87] J. del Sagrado, I. M. del Aguila, and F. J. Orellana. Ant colony optimization

for the next release problem: A comparative study. In Search Based Software

Engineering (SSBSE), 2010 Second International Symposium on, pages 67–76. IEEE,

2010.

[88] A. C. Kumari, K. Srinivas, and M. Gupta. Software requirements selection using

quantum-inspired elitist multi-objective evolutionary algorithm. In Advances in

Engineering, Science and Management (ICAESM), 2012 International Conference on,

pages 782–787. IEEE, 2012.

[89] N. Veerapen, G. Ochoa, M. Harman, and E. K. Burke. An integer linear program-

ming approach to the single and bi-objective next release problem. Information

and Software Technology, 65:1–13, 2015.

[90] D. Greer and G. Ruhe. Software release planning: an evolutionary and iterative

approach. 46(4):243–253, 2004.

[91] G. Ruhe and D. Greer. Quantitative studies in software release planning under

risk and resource constraints. In Proceedings of the 2003 International Symposium

on Empirical Software Engineering, pages 262–270, Sept 2003.

[92] G. van Valkenhoef, T. Tervonen, B. de Brock, and D. Postmus. Quantitative

release planning in extreme programming. Information and software technology,

53(11):1227–1235, 2011.

[93] Y. Zhang and M. Harman. Search based optimization of requirements inter-

action management. In Search Based Software Engineering (SSBSE), 2010 Second

BIBLIOGRAPHY 193

International Symposium on, pages 47–56. IEEE, 2010.

[94] P. Tonella, A. Susi, and F. Palma. Using interactive ga for requirements priori-

tization. In Search Based Software Engineering (SSBSE), 2010 Second International

Symposium on, pages 57–66. IEEE, 2010.

[95] F. G. Freitas, D. P. Coutinho, and J. T. Souza. Software next release planning

approach through exact optimization. Int. J. Comput. Appl, 22(8):1–8, 2011.

[96] F. Colares, J. Souza, R. Carmo, C. Padua, and G. Mateus. A new approach to

the software release planning. In Software Engineering, 2009. SBES ’09. XXIII

Brazilian Symposium on, pages 207–215, Oct 2009.

[97] M. O. Saliu and G. Ruhe. Bi-objective release planning for evolving software

systems. In Proceedings of the the 6th joint meeting of the European software engi-

neering conference and the ACM SIGSOFT symposium on The foundations of software

engineering, pages 105–114. ACM, 2007.

[98] O. Saliu and G. Ruhe. Supporting software release planning decisions for evolv-

ing systems. In 29th Annual IEEE/NASA Software Engineering Workshop, pages

14–26. IEEE, 2005.

[99] H. Jiang, J. Zhang, J. Xuan, Z. Ren, and Y. Hu. A hybrid aco algorithm for the

next release problem. In Software Engineering and Data Mining (SEDM), 2010 2nd

International Conference on, pages 166–171. IEEE, 2010.

[100] M. van den Akker, S. Brinkkemper, G. Diepen, and J. Versendaal. Determina-

tion of the next release of a software product: an approach using integer linear

programming. In CAiSE Short Paper Proceedings, 2005.

[101] A. Ngo-The and G. Ruhe. Optimized resource allocation for software release

planning. IEEE Transactions on Software Engineering, 35(1):109–123, 2009.

[102] W.-N. Chen and J. Zhang. Ant colony optimization for software project schedul-

ing and staffing with an event-based scheduler. IEEE Transactions on Software

Engineering, 39(1):1–17, 2013.

BIBLIOGRAPHY 194

[103] J. del Sagrado, I. M. ÁAguila, and F. J. Orellana. Requirements interaction in the

next release problem. In Proceedings of the 13th annual conference companion on

Genetic and evolutionary computation, pages 241–242. ACM, 2011.

[104] F. Colares, J. Souza, R. Carmo, C. Pádua, and G. R. Mateus. A new approach

to the software release planning. In Software Engineering, 2009. SBES’09. XXIII

Brazilian Symposium on, pages 207–215. IEEE, 2009.

[105] A. M. Pitangueira, P. Tonella, A. Susi, R. S. Maciel, and M. Barros. Risk-aware

multi-stakeholder next release planning using multi-objective optimization. In

International Working Conference on Requirements Engineering: Foundation for Soft-

ware Quality, pages 3–18. Springer, 2016.

[106] M. van den Akker, S. Brinkkemper, G. Diepen, and J. Versendaal. Software prod-

uct release planning through optimization and what-if analysis. Information and

Software Technology, 50(1):101–111, 2008.

[107] P. Tonella, A. Susi, and F. Palma. Interactive requirements prioritization using a

genetic algorithm. Information and software technology, 55(1):173–187, 2013.

[108] J. Xuan, H. Jiang, Z. Ren, and Z. Luo. Solving the large scale next release prob-

lem with a backbone-based multilevel algorithm. IEEE Transactions on Software

Engineering, 38(5):1195–1212, 2012.

[109] O. Saliu and G. Ruhe. Software release planning for evolving systems. Innova-

tions in Systems and Software Engineering, 1(2):189–204, 2005.

[110] J. J. Burg, J. Ainsworth, B. Casto, and S.-D. Lang. Experiments with the “oregon

trail knapsack problem”. Electronic Notes in Discrete Mathematics, 1:26–35, 1999.

[111] M. Harman, J. Krinke, I. MedinaBulo, F. PalomoLozano, J. Ren, and S. Yoo. Exact

scalable sensitivity analysis for the next release problem. ACM Trans. Softw. Eng.

Methodol., 23(2):19:1–19:31, Apr. 2014.

[112] M. I. Henig. Risk criteria in a stochastic knapsack problem. Operations research,

38(5):820–825, 1990.

BIBLIOGRAPHY 195

[113] T. Doganoglu, C. Hartz, and S. Mittnik. Portfolio optimization when risk factors

are conditionally varying and heavy tailed. Computational Economics, 29(3):333–

354, 2007.

[114] J. Suárez-Lledó. The black swan: the impact of the highly improbable. The

Academy of Management Perspectives, 25(2):87–90, 2011.

[115] The pitfalls of modern portfolio theory - assumptions.

[116] S. Barney, A. Aurum, and C. Wohlin. A product management challenge: Cre-

ating software product value through requirements selection. Journal of Systems

Architecture, 54(6):576–593, June 2008.

[117] G. Ruhe. Product Release Planning: Methods, Tools and Applications. Taylor &

Francis, June 2010.

[118] P. Achimugu, A. Selamat, R. Ibrahim, and M. N. Mahrin. A systematic literature

review of software requirements prioritization research. Information and Software

Technology, 56(6):568–585, June 2014.

[119] N. Kukreja, S. S. Payyavula, B. Boehm, and S. Padmanabhuni. Value-based re-

quirements prioritization: Usage experiences. Procedia Computer Science, 16:806–

813, 2013.

[120] P. Carlshamre. Release planning in market-driven software product develop-

ment: Provoking an understanding. Requirements Engineering, 7(3):139–151,

Sept. 2002.

[121] H.-J. Zimmermann. Fuzzy relations and fuzzy graphs. In Fuzzy Set Theory and

Its Applications, pages 69–89. Springer Netherlands, Jan. 1996.

[122] J. N. Mordeson. Fuzzy mathematics. In L. S. Davis, editor, Foundations of Image

Understanding, number 628, pages 95–125. Springer US, Jan. 2001.

[123] B. Korte and J. Vygen. Combinatorial Optimization: Theory and Algorithms.

Springer, 2006.

[124] S. Mathew and M. Sunitha. Strongest strong cycles and theta fuzzy graphs. IEEE

Transactions on Fuzzy Systems, 21(6):1096-1104, Dec 2013.

BIBLIOGRAPHY 196

[125] J. Karlsson and K. Ryan. Supporting the selection of software requirements. In

Proceedings of the 8th International Workshop on Software Specification and Design,

1996., pages 146–149, Mar 1996.

[126] A. M. Law and W. D. Kelton. Simulation Modeling and Analysis. McGraw-Hill

Higher Education, 2nd edition, 1997.

[127] Random (Java Platform SE 7).

[128] J. Y. Halpern and C. Hitchcock. Graded causation and defaults. The British

Journal for the Philosophy of Science, 66(2):413–457, 2015.

[129] T. do Nascimento Ferreira, A. A. Araújo, A. D. B. Neto, and J. T. de Souza. Incor-

porating user preferences in ant colony optimization for the next release prob-

lem. Applied Soft Computing, 49:1283–1296, 2016.

[130] Z. Racheva, M. Daneva, K. Sikkel, and L. Buglione. Business value is not only

dollars – results from case study research on agile software projects. In M. A.

Babar, M. Vierimaa, and M. Oivo, editors, ProductFocused Software Process Im-

provement, number 6156 in Lecture Notes in Computer Science, pages 131–145.

Springer Berlin Heidelberg, Jan. 2010.

[131] J. Pearl. Causality. Cambridge university press, 2009.

[132] D. Janzing, D. Balduzzi, M. Grosse-Wentrup, B. Schölkopf, et al. Quantifying

causal influences. The Annals of Statistics, 41(5):2324–2358, 2013.

[133] C. W.-K. Leung, S. C.-F. Chan, F.-L. Chung, and G. Ngai. A probabilistic rating

inference framework for mining user preferences from reviews. World Wide Web,

14(2):187–215, 2011.

[134] S. Holland, M. Ester, and W. Kießling. Preference mining: A novel approach on

mining user preferences for personalized applications. In European Conference on

Principles of Data Mining and Knowledge Discovery, pages 204–216. Springer, 2003.

[135] A. S. Sayyad, T. Menzies, and H. Ammar. On the value of user preferences in

search-based software engineering: a case study in software product lines. In

2013 35th International Conference on Software Engineering (ICSE), pages 492–501.

IEEE, 2013.

BIBLIOGRAPHY 197

[136] C.-F. J. Wu. Jackknife, bootstrap and other resampling methods in regression

analysis. the Annals of Statistics, pages 1261–1295, 1986.

[137] J. Li, T. D. Le, L. Liu, J. Liu, Z. Jin, B. Sun, and S. Ma. From observational studies

to causal rule mining. ACM Transactions on Intelligent Systems and Technology

(TIST), 7(2):14, 2016.

[138] L. Villarroel, G. Bavota, B. Russo, R. Oliveto, and M. Di Penta. Release planning

of mobile apps based on user reviews. In Proceedings of the 38th International

Conference on Software Engineering, pages 14–24. ACM, 2016.

[139] D. P. Kroese, J. C. Chan, et al. Statistical modeling and computation. Springer, 2014.

[140] T.-D. B. Le and D. Lo. Beyond support and confidence: Exploring interesting-

ness measures for rule-based specification mining. In Software Analysis, Evolu-

tion and Reengineering (SANER), 2015 IEEE 22nd International Conference on, pages

331–340. IEEE, 2015.

[141] L. A. Zadeh. Fyzzy sets. Inf. Comput., 8:338-353, Dec 1965.

[142] J. De Kleer and J. S. Brown. A qualitative physics based on confluences. Artificial

intelligence, 24(1):7–83, 1984.

[143] M. P. Wellman and M. Derthick. Formulation of tradeoffs in planning under uncer-

tainty. Pitman London, 1990.

[144] V. Vassilevska, R. Williams, and R. Yuster. All-pairs bottleneck paths for general

graphs in truly sub-cubic time. In Proceedings of the thirty-ninth annual ACM

symposium on Theory of computing, pages 585–589. ACM, 2007.

[145] D. G. Luenberger and Y. Ye. Linear and nonlinear programming, volume 228.

Springer, 2015.

[146] R. T. Marler and J. S. Arora. Survey of multi-objective optimization methods for

engineering. Structural and multidisciplinary optimization, 26(6):369–395, 2004.

[147] J. M. Karpoff. The relation between price changes and trading volume: A survey.

Journal of Financial and quantitative Analysis, 22(1):109–126, 1987.

BIBLIOGRAPHY 198

[148] W. Zhang, H. Mei, and H. Zhao. A feature-oriented approach to modeling re-

quirements dependencies. In Requirements Engineering, 2005. Proceedings. 13th

IEEE International Conference on, pages 273–282. IEEE, 2005.

[149] K. Loer and M. D. Harrison. An integrated framework for the analysis of de-

pendable interactive systems (ifadis): Its tool support and evaluation. Automated

Software Engineering, 13(4):469–496, 2006.

[150] A. Roy, D. S. Kim, and K. S. Trivedi. Scalable optimal countermeasure selection

using implicit enumeration on attack countermeasure trees. In IEEE/IFIP Inter-

national Conference on Dependable Systems and Networks (DSN 2012), pages 1–12.

IEEE, 2012.

[151] D. Mougouei and M. K. Yeung. Requirement Engineering for Intrusion Tolerant

Systems. LAP LAMBERT Academic Publishing, Aug. 2013.

[152] D. Mougouei, W. N. W. A. Rahman, and M. M. Almasi. Measuring security of

web services in requirement engineering phase. International Journal of Cyber-

Security and Digital Forensics (IJCSDF), 1(2):89–98, 2012.

[153] G. Klir and B. Yuan. Fuzzy sets and fuzzy logic, volume 4. Prentice hall New

Jersey, 1995.

[154] J. Whittle, P. Sawyer, N. Bencomo, B. H. Cheng, and J.-M. Bruel. Relax: a lan-

guage to address uncertainty in self-adaptive systems requirement. Requirements

Engineering, 15(2):177–196, 2010.

[155] J. Whittle, P. Sawyer, N. Bencomo, B. H. Cheng, and J.-M. Bruel. Relax: Incor-

porating uncertainty into the specification of self-adaptive systems. In 2009 17th

IEEE International Requirements Engineering Conference, pages 79–88. IEEE, 2009.

[156] D. Mougouei and W. N. W. A. Rahman. Fuzzy description of security require-

ments for intrusion tolerant web-services. In The Second International Conference

on Cyber Security, Cyber Peacefare and Digital Forensic (CyberSec2013), pages 141–

147. The Society of Digital Information and Wireless Communication, 2013.

[157] D. Mougouei, W. N. W. A. Rahman, and M. Moein Almasi. Evaluating fault tol-

erance in security requirements of web services. In Cyber Security, Cyber Warfare

BIBLIOGRAPHY 199

and Digital Forensic (CyberSec), 2012 International Conference on, pages 111–116.

IEEE, 2012.

[158] A. Van Lamsweerde. Elaborating security requirements by construction of in-

tentional anti-models. In Proceedings of the 26th International Conference on Soft-

ware Engineering, pages 148–157. IEEE Computer Society, 2004.

[159] D. Mougouei, W. Nurhayati, and M. Eshraghi Eavri. Fuzzy-based intrusion

tolerance for web-services. pages 83–88, 2013.

[160] D. Mougouei, W. Nurhayati, and M. Eshraghi Eavri. Fuzzy-based intrusion

tolerance for web-services. International Journal of Advances in Computer Science

and its Applications, 4(1):83–88, 2014.

[161] D. Mougouei and W. Nurhayati. A fuzzy-based technique for describing secu-

rity requirements of intrusion tolerant systems. International Journal of Software

Engineering and its Applications, 7(2):99–112, 2013.

[162] L. A. Zadeh. Fuzzy sets. Information and control, 8(3):338–353, 1965.

[163] B. Bede. Fuzzy inference. In Mathematics of Fuzzy Sets and Fuzzy Logic, pages

79–103. Springer, 2013.

[164] E. H. Mamdani. Application of fuzzy algorithms for control of simple dynamic

plant. Electrical Engineers, Proceedings of the Institution of, 121(12):1585–1588,

1974.

[165] R. W. Lewis. Programming industrial control systems using IEC 1131-3. Number 50.

Iet, 1998.

[166] B. H. Cheng, P. Sawyer, N. Bencomo, and J. Whittle. A goal-based modeling

approach to develop requirements of an adaptive system with environmental

uncertainty. In International Conference on Model Driven Engineering Languages

and Systems, pages 468–483. Springer, 2009.

[167] A. Adams and M. A. Sasse. Users are not the enemy. Communications of the ACM,

42(12):40–46, 1999.

BIBLIOGRAPHY 200

[168] E. Van Broekhoven and B. De Baets. Fast and accurate center of gravity defuzzi-

fication of fuzzy system outputs defined on trapezoidal fuzzy partitions. Fuzzy

Sets and Systems, 157(7):904–918, 2006.

[169] A. J. Albrecht and J. E. Gaffney. Software function, source lines of code, and

development effort prediction: a software science validation. IEEE transactions

on software engineering, (6):639–648, 1983.

[170] M. A. Ferrario, W. Simm, P. Newman, S. Forshaw, and J. Whittle. Software engi-

neering for’social good’: integrating action research, participatory design, and

agile development. In Companion Proceedings of the 36th International Conference

on Software Engineering, pages 520–523. ACM, 2014.

[171] X. Shi, L. Wu, and X. Meng. A new optimization model for the sustainable

development: Quadratic knapsack problem with conflict graphs. Sustainability,

9(2):236, 2017.

[172] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and A. Wesslén.

Experimentation in software engineering. Springer Science & Business Media, 2012.

[173] B. Friedman. Value-sensitive design. interactions, 3(6):16–23, 1996.

[174] J. Cabot, S. Easterbrook, J. Horkoff, L. Lessard, S. Liaskos, and J.-N. Mazón. In-

tegrating sustainability in decision-making processes: A modelling strategy. In

Software Engineering-Companion Volume, 2009. ICSE-Companion 2009. 31st Inter-

national Conference on, pages 207–210. IEEE, 2009.

[175] V. Caldiera and H. D. Rombach. The goal question metric approach. Encyclopedia

of software engineering, 2(1994):528–532, 1994.

[176] M. A. Ferrario, W. Simm, P. Newman, S. Forshaw, and J. Whittle. Software engi-

neering for ’social good’: Integrating action research, participatory design, and

agile development. In Companion Proceedings of the 36th International Conference

on Software Engineering, ICSE Companion 2014, pages 520–523, New York, NY,

USA, 2014. ACM.

	Abstract
	Acknowledgements
	Publications during the PhD Candidature
	Invited Talk Related to the Thesis
	Academic Community Involvement
	Introduction
	Motivation and Problem Statement
	Thesis Focus and Key Contributions
	The Integer Programming Method (DARS-IP)
	The Integer Linear Programming Method (DARS-ILP)
	The Mixed Integer Programming Method (DARS-MIP)
	The Society-Oriented DARS Method (DARS-SOC)The author of the thesis has recently joined the Society-Oriented Software Design project at the Faculty of Information Technology, Monash University.

	Publications and Thesis Outline

	Background and Related Work Review of the existing requirement selection works, with regard to considering value dependencies, is presented in publications P1(P1)-P8(P8).
	Background
	Combinatorial Optimization
	Exact Optimization Methods
	Approximation Methods
	Heuristics and Metaheuristics

	Mathematical Programming
	Linear Programming
	Integer Programming and Mixed Integer Programming
	Convex Optimization

	Value Dependencies among Software Requirements

	Related Work
	The Binary Knapsack Method
	The Precedence-Constrained Binary Knapsack Method
	The Increase-Decrease Method
	The Stochastic Binary Knapsack Method
	The Oregon Trail Knapsack Problem

	The Integer Programming Method (DARS-IP)The contents of this chapter are presented in publications P1(P1) and P2(P2).
	Introduction
	Modeling Value Dependencies using Fuzzy Graphs
	Why Fuzzy Graphs?
	Fuzzy Requirement Interdependency Graphs

	Integrating Value Dependencies into Selection
	Overall Value of an Optimal Subset
	The Integer Programming Model of the DAR-IP Method
	Examples of Requirement Selection

	Validation
	Simulations (Numerical Studies)
	Simulation Design
	Simulation Results

	Case Study

	Automated Identification of Explicit Value Dependencies
	Summary

	The Integer Linear Programming Method (DARS-ILP) The main results of this chapter are presented in publications P1(P1)-P8(P8).
	Introduction
	Identification of Value Dependencies
	Gathering User Preferences
	Resampling
	Extracting Causal Relations among User Preferences
	Testing the Significance of Causal Relations
	Computing the Strengths and Qualities of value Dependencies
	Value Implications of Precedence Dependencies

	Modeling Value Dependencies by Fuzzy Graphs
	Value Dependency Graphs
	Value Dependencies in VDGs

	Integrating Value Dependencies into Selection
	Overall Value of a Subset of Requirements
	The Integer Linear Programming Model
	The Blind Integer Programming Model

	Case Study
	Description of Study
	Identification and Modeling of Dependencies
	Precedence Dependencies in PMS-III
	Value Dependencies in PMS-III

	Performing Requirement Selection
	Similarities of Solutions
	Impact of DARS-ILP on the Overall Value
	Understanding the Conflicting Objectives
	Mitigating the Value-Loss

	Simulations
	Value Dependencies vs Budget
	Negative Value Dependencies vs Budget
	Precedence Dependencies vs Budget
	Negative Precedence Dependencies vs Budget
	Positive vs Negative Value Dependencies
	Positive vs Negative Precedence Dependencies

	Complexity and Scalability Analysis
	The Overhead of using DARS-ILP
	Scalability of the Optimization Model of DARS-ILP

	Summary

	The Mixed Integer Programming Method (DARS-MIP) The results of this chapter are presented in publications P3(P3), P4(P4), and P6(P6)-P12(P12).
	Introduction
	Partial Selection of Requirements
	The Pre-PAS Process
	Modeling and Description of Requirements
	Data Preprocessing

	Prioritization and Selection Process
	Prioritization
	Fuzzification
	Fuzzy Inference
	Partial Selection

	The MIP Model of DARS-MIP
	Summary

	The Society-Oriented DARS Method (DARS-SOC) The contents of this chapter are presented in publications P3(P3), P4(P4), P6(P6), P8(P8), P10(P10), P12(P12), and P13(P13).
	Introduction
	Modeling The Economic and Social Value Dependencies
	Value Dependency Graphs
	The Economic and Social Value Dependencies in VDGs

	The Proposed Optimization Models for DARS-SOC
	The Integer Linear Programming Model
	The Mixed Integer Programming Model

	Summary

	Conclusions
	Summary of the main contributions
	The DARS-IP Method
	The DARS-ILP Method
	The DARS-MIP Method
	The Society-Oriented DARS Method (DARS-SOC)

	Current Limitations
	Internal, External, and Conclusion Validity
	Construct Validity

	Ongoing and Future WorkThe author of the thesis has recently joined the Society-Oriented Software Design project at the Faculty of Information Technology, Monash University.
	Enhancing the Accuracy of the Dependency Identification
	Enhancing the Quality of the Collected Data
	Establishing a Shared Repository for User Preferences
	The Classification of Software Requirements
	The Classification of Users
	Enhancing the Accuracy of the Dependency Identification

	Embedding Social Values into the Requirement Selection
	The Identification of Social Value Dependencies
	Embedding Social Values into the Requirement Modeling

	Applications to Other Problems

