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Abstract

Data mining is increasingly becoming important tool in extracting interesting
knowledge from large databases. Many industries are now using data mining tools
for analysing their large collections of databases and making business decisions.
Many data mining problems involve temporal aspects, with examples ranging
from engineering to scientific research, finance and medicine. Temporal data
mining is an extension of data mining which deals with temporal data. Mining
temporal data poses more challenges than mining static data. While the analysis
of static data sets often comes down to the question of data items, with temporal

data there are many additional possible relations.

One of the tasks in temporal data mining is the pattern discovery task, whose
objective is to discover time-dependent correlations, patterns or rules between
events in large volumes of data. To date, most temporal pattern discovery re-
search has focused on events existing at a point in time rather than over a tem-
poral interval. In comparison to static rules, mining with respect to time points
provides semantically richer rules. However, accommodating temporal intervals

offers rules that are richer still.

This thesis addresses several issues related to the pattern discovery from in-
terval sequence data. Despite its importance, this area of research has received
relatively little attention and there are still many issues that need to be addressed.
Three main issues that this thesis considers include the definition of what con-
stitutes an interesting pattern in interval sequence data, the efficient mining for

patterns in the data, and the identification of interesting patterns from a large
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number of discovered patterns.

In order to deal with these issues, this thesis formulates the problem of dis-
covering rules, which we term richer temporal association rules, from interval
sequence databases. Furthermore, this thesis develops an efficient algorithm, AR-
MADA, for discovering richer temporal association rules. The algorithm does not
require candidate generation. It utilizes a simple index, and only requires at most
two database scans. In this thesis, a retrieval system is proposed to facilitate the
selection of interesting rules from a set of discovered richer temporal association
rules. To this end, a high-level query language specification, TAR-QL, is proposed
to specify the criteria of the rules to be retrieved from the rule sets. Three low-
level methods are developed to evaluate queries involving rule format conditions.
In order to improve the performance of the methods, signature file based indexes
are proposed. In addition, this thesis proposes the discovery of inter-transaction

relative temporal association rules from event sequence databases.
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