
Chapter 1

Introduction

A huge amount of data is collected everyday and a real universal challenge is to

find actionable knowledge from such large amount of data. Data mining is an

emerging research direction to meet this challenge. Data mining techniques can

be deployed to search large databases to discover useful information that might

otherwise remain unknown.

Many data mining problems involve temporal aspects. Examples range from

transaction databases in health care and insurance, stock exchange and customer

goods in market sectors, sensor data collected from sensor networks, to scientific

databases in geophysics and astronomy. Mining this temporal data poses inter-

esting challenges than mining static data. While the analysis of static data sets

often comes down to the question of relating data items, with temporal data there

are many additional possible relations.

This thesis focuses on the discovery of temporal rules from sequential data,

that is, ordered lists of events (nominal symbols from a particular alphabet) where

each event has an associated time of occurrence. In sequential data, events not

only can occur at an instant (time point), but also can occur over a time interval.

In this thesis, an ordered list of events occurring at an instant is called an event

sequence and an ordered list of events occurring over a time interval is called an

interval sequence.
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A large number of studies have been concentrated on analysing event sequence

data, while the analysis of interval sequence data has received relatively little

attention. As a result, there are still many issues that need to be addressed

in the area of analysing interval sequence data. Three main issues that will be

addressed in this thesis are as follows.

1. The first important issue is that of what constitutes an interesting pattern in

data. As an example, the notions of sequential patterns or frequent episodes

represent the currently popular structures for patterns in event sequence

data. Therefore, the problem of defining structure for interesting patterns

in interval sequence data would be a problem that deserves attention.

2. In all data mining applications, the primary constraint is the large volume

of data. Hence there is always a need for efficient algorithms. Therefore, de-

signing efficient algorithms for the discovery of patterns in interval sequence

data is a problem that would continue to attract attention.

3. Another important issue is that of the analysis of discovered temporal pat-

terns so that one can find interesting patterns from a large number of pat-

terns generated by data mining algorithms. Making sense of such a large

number of patterns presents a significant challenge. Therefore, there is a

need for tools to assist the user finding interesting patterns from a set of

discovered patterns.

The next section introduces the research area of temporal data mining where

this thesis belongs. This is followed by describing the objectives, and the structure

of the thesis.

1.1 Temporal Data Mining

Data mining is actually an integral part of Knowledge Discovery in Database

(KDD) process, which is the overall process of converting raw data into use-

ful information (Fayyad, Piatetsky-Shapiro & Smyth 1996). Figure 1.1 shows
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Figure 1.1: Knowledge discovery process

a typical KDD process which consists of five steps (Klemettinen, Mannila &

Toivonen 1996):

1. Data collection and cleaning: selecting attributes, dealing with errors,

identification of the necessary background knowledge, etc.

2. Choice of pattern discovery method: deciding on the types of knowl-

edge to be discovered, parameter selection, etc.

3. Discovery of patterns (data mining): running algorithms for discovering

different types of patterns

4. Pattern Presentation: selecting interesting patterns, visualisation of re-

sults, etc.

5. Putting knowledge into use.

Data mining refers to the third step in this process and is defined as the

application of specific algorithms for extracting patterns from data. The KDD

process is interactive and iterative. Depending upon the extent to which the

results satisfy the user’s goals, iteration can be performed between any two steps.



CHAPTER 1. INTRODUCTION 4

Temporal data mining deals with the problem of mining patterns from tem-

poral data, which can be either symbolic sequences or numerical time series. It

has the capability to look for interesting correlations or rules in large sets of tem-

poral data, which might be overlooked when the temporal component is ignored

or treated as a simple numeric attribute (Roddick & Spiliopoulou 2002). The

following is the definition of temporal data mining presented in Lin et al. (2002).

Temporal Data Mining is a single step in the process of Knowledge

Discovery in Temporal Databases that enumerates structures (tempo-

ral patterns or models) over the temporal data, and any algorithm that

enumerates temporal patterns from, or fits models to, temporal data

is a Temporal Data Mining Algorithm.

Currently, temporal data mining is a fast expanding field with many research

results reported and many new temporal data mining analysis methods or proto-

types developed recently. There are two factors that contribute to the popularity

of temporal data mining. The first factor is an increase in the volume of temporal

data stored, as many real-world applications deal with huge amount of temporal

data. The second factor is the mounting recognition in the value of temporal data.

In many application domains, temporal data are now being viewed as invaluable

assets from which hidden knowledge can be derived, so as to help understand the

past and/or plan for the future (Chen & Petrounias 1998).

Temporal data mining covers a wide spectrum of paradigms for knowledge

modeling and discovery. Since temporal data mining is relatively a new field of

research, there is no widely accepted taxonomy yet. Several approaches have been

used to classify data mining problems and algorithms. Roddick & Spiliopoulou

(2002) have presented a comprehensive overview of techniques for the mining of

temporal data using three dimensions: data type, mining operations and type of

timing information (ordering). On the other hand, Antunes & Oliviera (2001)

base their classification on representation, similarity and operations.
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Based on its main tasks, temporal data mining can be grouped into five broad

categories: prediction, classification, clustering, search and retrieval, and pattern

discovery (Laxman & Sastry 2006). This categorization follows the categorization

of data mining tasks presented by Han and Kamber (2001), extended to temporal

data mining.

Prediction

Prediction is the task of explicitly modeling variable dependencies to predict a

subset of the variables from others. The task of time series prediction is to forecast

future values of the time series based on its past samples. In order to perform the

prediction, one needs to build a predictive model from the data. Koskela et al.

(1996) have studied neural networks for nonlinear modeling of time series data.

The prediction problem for symbolic sequences has been addressed in AI research

by Dietterich and Michalski (1985).

Classification

Classification is the task of assigning class labels to the data according to a model

learned from the training data where the classes are known. Classification is one

of the most common tasks in supervised learning, but it has not received much

attention in temporal data mining (Antunes & Oliveira 2001). In sequence clas-

sification, each sequence presented to the system is assumed to belong to one of

predefined classes and the goal is to automatically determine the corresponding

category for a given input sequence. Examples of sequence classification applica-

tions include signature verification (Nalwa 1997), gesture recognition (Yamato,

Ohya & Ishii 1992), and hand-written word recognition (Kundu, He & Bahl 1988).
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Clustering

Clustering1 is the process of finding intrinsic groups, called clusters, in the data.

Clustering of time series (or sequences) is concerned with grouping a collection

of time series (or sequences) based on their similarity. Time series clustering has

been shown effective in providing useful information in various domains (Liao

2005). For example, in financial data, clustering can be used to group stocks that

exhibit similar trends in price movements. Another example could be clustering

of fMRI time series for identifying regions with similar patterns of activation

(Goutte, Toft & Rostrup 1999). Clustering of sequences is relatively less explored

but is becoming increasingly important in data mining applications such as web

usage mining and bioinformatics (Laxman & Sastry 2006). A survey on clustering

time series has been presented by Liao (2005).

Searching and Retrieval

Searching and retrieval are concerned with efficiently locating subsequences or

sub-series (often referred to as queries) in large databases of sequences or time

series. In data mining, query based searches are more concerned with the prob-

lem of efficiently locating approximate matching than exact matching, known as

content-based retrieval. An example of a time series retrieval application is to find

out all the days of the year in which a particular stock had similar movements to

those of today. Another example is finding products with similar demand cycles.

An example of a sequence retrieval is finding gene expression patterns that are

similar to the expression pattern of a given gene. In order to address the time

series retrieval problem, different notions of similarity between time series and

indexing techniques have been proposed. There is considerably less work in the

area of sequence retrieval, and the problem is more general and difficult. For

more detail about time series and sequence retrieval can be found in Das and

Gunopulos (2003).

1Clustering is sometimes called unsupervised classification.
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Pattern Discovery

Unlike in search and retrieval applications, in the pattern discovery there is no

specific query in hand with which to search the database. The objective is sim-

ply to discover all patterns of interest. While the other tasks described earlier

have their origins in other disciplines like statistics, machine learning or pattern

recognition, the pattern discovery task has its origin in data mining itself.

A pattern is a local structure in the data. There are many ways of defining

what constitutes a pattern. There is no universal notion for interestingness of a

pattern either. However, one concept that is normally used in data mining is that

of frequent patterns, that is, patterns that occurs many times in the data. Much

of data mining literature is concerned with formulating useful pattern structures

and developing efficient algorithms for discovering frequent patterns.

Methods for finding frequent patterns are important because they can be used

for discovering useful rules, which in turn can be used to infer some interesting

regularities in the data. A rule usually consists of a pair of a left-hand side

proposition (the antecedent) and a right-hand side proposition (the consequent).

The rule states that when the antecedent is true, then the consequent will be true

as well.

It was mentioned above that temporal data can be symbolic sequences or

time series. The pattern discovery task typically assumes an underlying symbolic

representation. Therefore, to apply the pattern discovery methods on time series

data, the time series should be first converted into a discrete representation, for

example by first forming subsequences (using a sliding window) and then cluster-

ing these subsequences using a suitable measure of pattern similarity (Das, Lin,

Mannila, Renganathan & Smyth 1998). Another method can be used by quan-

tizing the time series into levels and representing each level (e.g., high, medium,

etc.) by a symbol (Aref, Elfeky & Elmagarmid 2004). A survey on time series

abstraction methods can be found in Höppner (2002).
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1.2 Research Objectives

1.2.1 Discovery of Point Temporal Rules

A large volume of research has been focused on discovering temporal patterns from

the data that contain sequences of events, where events are stamped with, and

interpreted as, time points. For example, several models of temporal association

rules have been proposed such as interval association rules (Ale & Rossi 2000),

calendric association rules (Li, Ning, Wang & Jajodia 2001), or cyclic association

rules (Ozden, Ramaswamy & Silberschatz 1998). The data used for the discovery

of these temporal association rules contain a set of transactions, each of which has

a time associated with it. Furthermore, Agrawal and Srikant (1995) introduced

the problem of discovering frequent sequences (sequential patterns) from a set of

event sequences, such as customer purchases, web log accesses, DNA sequences,

and so on. A number of algorithms have been proposed to discovers sequential

patterns, but in general can be categorized into two different approaches, i.e.,

Apriori-based (Agrawal & Srikant 1994) and pattern-growth (Han, Pei & Yin

2000) approaches. Another formulation of the problem of discovering frequently

occurring patterns in sequential data was introduced by Mannila et al. (1995).

The discovered patterns called episodes are mined over a single sequence of events,

not a set of event sequences.

In this thesis, previous studies on the discovery of temporal patterns from

event sequences serve as a foundation for conducting further research on the pat-

tern discovery from interval sequence data. Many methods and techniques that

have been proposed in this research area provide ideas that can be applied or ex-

tended to interval sequence data. Furthermore, as a result of research conducted

in this area, this thesis proposes a new temporal association rule model called

inter-transaction relative temporal association rules, representing the associative

relationships among items from different transactions (Winarko & Roddick 2003).

The problem of discovering relative temporal association rules has not been pro-
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posed before.

1.2.2 Discovery of Interval Temporal Rules

The importance of analysing interval data is highlighted by Böhlen et al. (1998),

who argue that for some applications events are better treated as intervals rather

than time points. For example, consider a medical database in which a patient’s

treatment is regarded each time as an event time-stamped with a time point,

indicating the time of the treatment. While it is useful, it could be advantageous

to interpret the treatment as an interval, representing the period between the

first and last occurrences of the treatment.

Several studies have been published about analysing interval sequence data.

Most studies concentrate on extracting temporal patterns from a symbolic interval

sequence originated from multivariate time series (Guimarães & Ultsch 1999,

Villafane, Hua, Tran & Maulik 2000, Höppner 2001, Mörchen, Ultsch & Hoos

2004). The time series can be transformed to labeled intervals using segmentation

and feature extraction, for example, via neural networks (Guimarães & Ultsch

1999). A set of interval patterns can also be extracted from a database of short

interval sequences (Kam & Fu 2000, Papapetrou, Kollios, Sclaroff & Gunopulos

2005).

The analysis of interval sequence data is new research area and has not been

fully explored. As mentioned above, the first important issue in analysing in-

terval sequence data is that of what constitutes an interesting pattern in data.

To address this problem, this thesis proposes the discovery of richer temporal

association rules from interval sequence databases containing a set of interval

sequences. Furthermore, to address the second issue regarding the algorithms for

the discovery of patterns, this thesis proposes a new algorithm, ARMADA, for dis-

covering richer temporal association rules. ARMADA is a novel algorithm which

requires at most two database scans and does not require candidate generation

or database projection (Winarko & Roddick 2005, Winarko & Roddick 2007).
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1.2.3 Retrieval of Discovered Temporal Rules

Like other techniques for the rule discovery, ARMADA could generate a large

number of richer temporal association rules. Finding interesting rules is a difficult

task when the number of rules is large. Providing the user with a long list

of rules hardly gives a useful overview of them. This problem is made worse as

richer temporal association rules have more complex structures than, for example,

association rules.

Several techniques commonly called the post-processing techniques have been

proposed to assist the user in the process of finding interesting association rules.

One approach is to use some interestingness measure to prune the discovered

association rules and/or to use the user’s domain knowledge to help the user to

identify interesting association rules (Silberschatz & Tuzhilin 1995, Padmanabhan

& Tuzhilin 1998, Liu, Hsu & Ma 1999). Another approach is to use templates

(Klemettinen, Mannila, Ronkainen, Toivonen & Verkamo 1994), or data mining

queries (Tuzhilin & Liu 2002), which allows the user to focus only on some subset

of the rules that are of interest to the user by asking appropriate queries.

This thesis addresses the post-processing problem by proposing a retrieval

system to facilitate the selection of interesting rules during the post-processing

of discovered richer temporal association rules. A query language TAR-QL is

proposed for specifying the criteria of rules to be retrieved. Furthermore, meth-

ods for evaluating queries are developed, especially for dealing with the queries

involving the format of richer temporal association rules. The proposed methods

employ signature file based indexes to speed up the query evaluation.

1.3 Organization of the Thesis

Apart from this introduction and the conclusion, the thesis contains six main

chapters, which is divided into three main parts, each of which contains a review

of the pertinent area and a contribution.
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The first part discusses the discovery of temporal rules from event sequence

and contains two chapters. Chapter 2 presents a comprehensive review of current

work in the discovery of temporal association rules, sequential patterns, episodes,

and periodic patterns. Chapter 3 describes the discovery of relative temporal

association rules.

The second part discusses the discovery of temporal rules from interval se-

quences and consists of two chapters. Chapter 4 presents a survey of previous

work on on the discovery of temporal patterns from interval sequences. Chap-

ter 5 describes the discovery of richer temporal association rules from databases

containing a set of interval sequences.

The third part presents the retrieval of discovered rules. Chapter 6 reviews the

index structures for improving DBMS performance for set-oriented and sequence-

oriented queries. This chapter first reviews the use of inverted files and signature

files for set retrieval. Then, it describes how the use of signature files for set

retrieval is extended for sequential pattern retrieval. Chapter 7 describes the re-

trieval system to facilitate the selection of interesting rules in the post-processing

of discovered richer temporal association rules.

Finally Chapter 8 concludes the thesis, consisting of summary, contributions,

and a discussion of areas of further research.



Chapter 2

Review of Mining Time Point

Patterns

A large number of previous studies on discovering temporal patterns from se-

quential data have focused on data that are stamped with, and interpreted as,

time points. Several variations of the classical association rule mining (Ceglar

& Roddick 2006) have been proposed under the name of temporal association

rules mining, whose task is to discover temporal association rules from a set of

timestamped transactions. Abstractly, such data can be viewed as a sequence of

event sets; and the temporal association rule represents a temporal relationship

between a set of events.

Agrawal and Srikant (1995) introduced the discovery of sequential patterns

from a set of data sequences. While in temporal association rule mining each

transaction is normally treated individually with no record of the associated ob-

ject, in sequential pattern mining each transaction is associated with a particular

object at a given time. Each data sequence consists of an ordered list of trans-

actions belonging to a particular object (e.g. customer or client who purchased

the transactions). Even though the framework is described using an example of

mining a database of customer transaction sequences, the concept of sequential

patterns is quite general and can be used in many other areas, such as analysing

12
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web access sequences and protein sequences. In general, a sequential pattern

represents a correlation among the events in the sequence.

Another framework for discovering temporal patterns in sequential data is

the mining of frequent episodes (Mannila, Toivonen & Verkamo 1995). In this

framework, the data are given in a single long sequence of events, and the task

is to discover frequent episodes in the sequence, which are later used to generate

episode rules. A frequent episode is essentially a frequent sequence, but instead

of being frequent across many data sequences, an episode is frequent within one

sequence. Later, Han et al. (1998) introduced the discovery of partially periodic

patterns from a long sequence of events.

This chapter reviews previous studies on the discovery of temporal patterns

from point-based sequential data. In particular, the review focuses on the dis-

covery of temporal association rules, sequential patterns, episodes and periodic

patterns. The chapter is structured as follows. Section 2.1 provides a survey of

different types of temporal association rule and methods to discover the rules.

Section 2.2 reviews algorithms for solving the basic sequential pattern mining

problem. Various extensions to the sequential pattern mining problem are also

discussed. Section 2.3 describes two basic algorithms for mining frequent episodes,

highlights several extensions to episode mining model, and briefly discusses peri-

odic pattern mining.

2.1 Mining Temporal Association Rules

Several types of temporal association rules have been proposed as extensions of

the classical association rules (Agrawal, Imielinski & Swami 1993). Ozden et

al. (1998) introduced cyclic association rules and presented two algorithms to

discover such rules. A cyclic association rule is an association rule that occurs

periodically over time. However, periodicity has limited power in describing real-

life variations. For instance, periodicity cannot describe real-life concepts such
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as the first business day of every month in which the distances between two such

consecutive business days are not always the same. Ramaswamy et al. (1998),

therefore, consider the discovery of association rules that hold during the time

intervals described by a calendar algebraic expression. The calendar algebra

adopted is considered more powerful than periodicity in describing time intervals

of interest.

Although the work of Ramaswamy et al. (1998) is more flexible than that

of Ozden et al. (1998), it requires the user to define the calendar algebraic

expression. To provide more flexibility to the user, Li et al. (2001) propose a

calendar schema as a framework for discovering temporal association rules.

Ale and Rossi (2000) consider the discovery of association rules hold during

the lifetime (lifespan) of items involved in the rules. An item’s lifespan is a

period between the first and the last time the item appears in transactions in

the dataset. The lifespan is intrinsic to the data so that the users do not need

to define it. Similarly, Lee et al. (2001) consider the problem of mining general

temporal association rules in publication databases. A publication database is

a set of transactions where each transaction contains an individual exhibition

period. Zimbrão et al. (2002) combine the work of Li et al. (2001) and Ale and

Rossi (2000) and propose a new approach to discover calendar-based association

rules with an item’s lifespan restriction.

Chen and Petrounias (2000) present the discovery of the longest interval and

the longest periodicity of association rules. Rainsford and Roddick (1999) pro-

pose to add temporal features to association rules by associating a conjunction of

binary temporal predicates that specify the relationships between the timestamps

of transactions. Subsequently, Rainsford and Roddick (2000) provide visualisa-

tion methods for viewing these temporal predicate association rules.

This section reviews temporal association rule mining. It first describes the

classification of temporal association rules. Based on this classification, four types

of temporal association rules are discussed by describing their mining problems
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and the algorithms to discover the rules.

2.1.1 Taxonomy of Temporal Association Rules

Previous studies on temporal association rules mining have focused on developing

temporal association rule models. The proposed models can be classified based

on three different aspects: measures of interestingness used, temporal feature

associated with the rules, and algorithms used to discover the rules. The result

of this classification is summarized in Tables 2.1 and 2.2.

Measures of Interestingness

In classical association rule mining, two commonly used measures of interesting-

ness are support and confidence (Agrawal et al. 1993). Both reflect the usefulness

and certainty of discovered rules (Han & Kamber 2001). However, for some of

the temporal association rule models discussed here, these two measures are con-

sidered insufficient and additional measures are proposed, for example, temporal

support, frequency, and temporal confidence (see Table 2.1).

Temporal support is used to filter the items with high support but short

life. The combination of support and temporal support is used to determine if

an itemset is frequent (Ale & Rossi 2000). Frequency measures the proportion

of the intervals during which the rules hold with respect to a set of given time

intervals (Chen & Petrounias 2000). Temporal confidence determines the strength

of the temporal relationships between temporal items in the rule (Rainsford &

Roddick 1999).

Temporal Features of the Rules

According to Chen and Petrounias (2000), a temporal association rule can be

represented as a pair < AR, TF >, where AR is an association rule and TF

is a temporal feature belonging to AR. Depending on the interpretation of the
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temporal feature TF , a temporal association rule < AR, TF > can be classified

as:

• a universal association rule if φ(TF ) = {T}, where T represents the time

domain;

• an interval association rule if φ(TF ) = {itvl}, where itvl ⊂ T is a specific

time interval;

• a periodic association rule if φ(TF ) = {p1, p2, . . . , pn}, where pi ⊂ T is a

periodic interval in cycles;

• a calendric association rule if φ(TF ) = {cal1, cal2, . . . , calm}, where calj ⊂

T is a calendric interval in a specific calendar.

This classification method is used to classify the temporal association rule

models discussed in this chapter. The universal association rule class represents

a class of classical (non-temporal) association rules (Agrawal et al. 1993), so it

will not be discussed further. Moreover, there is a type of temporal association

rule that is not covered by this classification and needs to be added, that is, binary

predicate association rules (Rainsford & Roddick 1999). As a result, Table 2.1

shows four classes of temporal association rules, namely interval, cyclic, calendric,

and binary predicate association rules. As can be seen in the table, a model can be

included into more than one class, depending on the temporal feature associated

with the association rules.

In the interval association rule class, a time interval has several interpretations.

It can be interpreted as a lifespan of items in the rules (Ale & Rossi 2000, Zimbrão,

de Souza, de Almeida & da Silva 2002), the maximum common exhibition period

of items in the rules (Lee, Lin & Chen 2001), or any specific time interval (Chen

& Petrounias 2000). Section 2.1.2 describes in more detail the interval association

rule model proposed by Ale and Rossi (2000).

The work of Ramaswamy et al. (1998) and Li et al. (2001) is classified as

calendric association rules since both use the notion of calendars to describe phe-

nomena of interest in association rules. Ramaswamy et al. (1998) introduced
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a calendar algebra concept to define a set of time intervals that the algorithm

considers in discovering the association rules. The calendar algebra is based on

the work reported by Allen (1983) and Leban et al. (1986), and the implementa-

tion reported by Chandra et al. (1994). On the other hand, Li et al. (2001) use

calendar schemas, instead of calendar algebra expressions. They consider all pos-

sible temporal association rules valid during time intervals specified by a calendar

schema, as opposed to simply complying with user-given temporal expressions.

This model will be described further in Section 2.1.4.

Mining Algorithms

Most of the algorithms for discovering temporal association rules are Apriori-

based algorithms1. The only algorithm that is not based on the Apriori is the

Progressive Partition Miner (PPM) algorithm (Lee et al. 2001). The classification

of the algorithms is shown in Table 2.2. The table also shows the format of each

temporal association rule model.

The next four subsections discuss the Apriori-based algorithms to discover

interval association rules (Section 2.1.2), cyclic association rules (Section 2.1.3),

calendric association rules (Section 2.1.4), and temporal predicate association

rules (Section 2.1.5). To facilitate the discussion, some common notations are

defined below.

Notations

Definition 2.1 (Database) Let I = {i1, i2, . . . , in} be a set of literals, called

items. Let D be a set of database transactions, where each transaction s consists

of a set of items such that s ⊆ I. Each transaction s is associated with an

identifier (TID) and a timestamp which represents valid time of a transaction s.

1Note that the Apriori algorithm refers to the algorithm to discover association rules
(Agrawal & Srikant 1994)
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A non empty set of items is called an itemset. An itemset i is denoted by

(i1i2 · · · im), where ij is an item. An itemset that contains k items called an

k-itemset. Ck denotes a set of candidate k-itemsets, while Fk denotes a set of

frequent k-itemsets.

2.1.2 Interval Association Rules

This subsection discusses the interval association rule model proposed by Ale

and Rossi (2000), which discovers association rules during the lifetime of items

involved in the rules. The model is motivated by the observation that it is possible

to have association rules with a high confidence but with little support. Normally,

such rules may not be discovered as their support is less than the minimum

support threshold. To overcome this, the model suggests that the denominator

in the support calculation is not based on the total number of transactions in the

database, but on the total number of transactions belonging only to the lifetime

of items in the rules. As a result, each generated rule has an associated time

frame, corresponding to the lifetime of the items participating in the rule.

a, d, f, g6s6

c, d, e, h5s5

a, c4s4

b, c, d, g3s3

a, b, c, g2s2

a, c, f, h1s1

ItemsTimestampTID

Figure 2.1: Example database

Let T = {. . . , to, t1, t2, . . .} be a set of time instants, countably infinite, over

which a linear order <T is defined. For ti, tj ∈ T , ti <T tj means that ti occurs

before tj. Let D be a transaction database (defined in Definition 2.1). Every item

in D has a period of life (lifespan) in the database, which represents the time in
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which the item is relevant to the user. The lifespan of an item x is represented

by a closed interval [ti, tj], where ti <T tj, and is denoted by lx. As an example,

from the transaction dataset in Figure 2.1, the lifespans of items a, b and c are

la = [1, 6], lb = [2, 3] and lc = [1, 5], respectively. The lifespan of an itemset

X is defined as an intersection of the items’ lifespan in the itemset, that is, the

lifespan of an itemset X = {i1i2 . . . im} is lX = li1 ∩ li2 ∩ · · · ∩ lim . In the case

X = (ac), its lifespan is lX = la ∩ lc = [1, 6] ∩ [1, 5] = [1, 5].

In association rule mining, the support of an itemset is defined as the fraction

of all transactions in the database in which the itemset is contained. In this

framework, the definition of the support takes into consideration the itemset’s

lifespan. Thus, the support of an itemset X in the database D (over its lifespan

lX), denoted by sup(X, lX , D), is defined as the number of transactions that

contain X divided by the number of transactions whose timestamp ti ∈ lX . An

itemset X = (ac) has the support of 0.6, since it is contained in 3 of the 5

transactions in its lifespan (Figure 2.1).

It is possible for an itemset to have high support but short life. From the

example dataset, an item e has support of 100% but its lifespan is short, that is,

|le| = 1. The concept temporal support is introduced and used to filter such items

(or itemsets). The temporal support of an itemset X is defined as the amplitude of

the lifespan of X, i.e., |lX |. The combination of support and temporal support is

used to determine if an itemset is frequent or not. Therefore, given the minimum

support minsup and the minimum temporal support min tsup, X is a frequent

itemset in its lifespan lX if its support and temporal support are greater than or

equal to minsup and min tsup, respectively. Let the minsup = 0.50 and min tsup

= 3, the itemset X = (ac) is frequent because its support sup(X, lX , D) = 0.6 is

greater than minsup and its temporal support |lX | = 5 is greater than min tsup.

An interval association rule is a rule of the form X → Y [t1, t2], where [t1, t2]

is a time frame corresponding to the lifespan of X ∪Y . The support of the rule is

the support of X ∪ Y (over lX∪Y ) and the temporal support of the rule is |lX∪Y |.
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The confidence of the rule in D (over lX∪Y ) is defined as

conf(X → Y, lX∪Y , D) =
sup(X ∪ Y, lX∪Y , D)

sup(X, lX∪Y , D)

Given the transaction dataset D (as defined in Definition 2.1), the minimum

support minsup, the minimum temporal support min tsup, and the minimum

confidence minconf, the problem of mining interval association rules is to find

all association rules that have at least the given support, temporal support and

confidence.

Ale and Rossi (2000) assert that any existing algorithms for association rule

discovery, for example Apriori (Agrawal & Srikant 1994) and FP-growth (Han, Pei

& Yin 2000), can be modified to discover interval association rules. Algorithm 2.1

shows pseudo code of an Apriori based algorithm for generating frequent itemsets

(in their lifespan), which consists of several passes. The first pass is used to obtain

a set F1 of frequent 1-itemsets. In subsequent passes, say a pass k > 1, a set Ck

of candidate k-itemsets is generated from a set Fk−1 of frequent (k− 1)-itemsets,

using Apriori’s method for candidate generation. If a candidate k-itemset U is

obtained by joining (k−1)-itemsets V and W , the lifespan of U is the intersection

of the lifespans of V and W . Then, the database is scanned to determine a set

Fk of frequent k-itemsets. When scanning the database, the algorithm not only

counts the occurrences of itemsets and records their lifespans but also counts the

number of transactions in their lifespans, which is required for calculating the

support of itemsets.

Once a set F of all frequent itemsets has been found, association rules can

be discovered from F , as follows. For every frequent itemset Z ∈ F , find the

rules X → (Z − X)[t1, t2]
2 such that the rule confidence, sup(Z,lZ ,D)

sup(X,lZ ,D)
, exceeds

the minconf, for each X ⊂ Z. In computing the rule confidence, the value of

sup(X, lZ , D) is estimated by using the value of sup(X, lX , D). The reason for

doing this is to avoid recalculating the support for (2k−2) itemsets X ⊂ Z in lZ .

2[t1, t2] is the lifespan of Z.



CHAPTER 2. REVIEW OF MINING TIME POINT PATTERNS 23

Input: A database D, minsup, and min tsup
Output: A set of frequent itemsets F
1: F1 = {frequent 1-itemsets}
2: for (k = 2; Fk−1 6= ∅; k++) do
3: Create Ck from Fk−1

4: for all transaction s ∈ D do
5: Count the support of all candidates X ∈ Ck

6: end for
7: Fk = {X ∈ Ck|sup(X, lX , D) ≥ minsup and |lX | ≥ min tsup}
8: end for
9: F =

⋃
k Fk

Algorithm 2.1: Pseudo code for generating frequent itemsets (in their lifespan)

2.1.3 Cyclic Association Rules

This subsection describes the concept of cyclic association rules and the discover-

ing of such rules as described by Ozden et al. (1998). Unlike classical association

rules, cyclic association rules are not required to hold for the entire transactional

database, but rather only for transactional data in a particular periodic time

interval.

The model assumes that the unit of time (hour, day, week, month, etc.) is

given (e.g., by the user). Suppose u is a given unit of time, the ith time unit is

denoted by ui, i ≥ 0, and corresponds to the time interval [i ·u, (i+1) ·u]. Given

a transactional database D, each time interval ui corresponds to the disjoint

segment of the database Di, that is, a set of transactions in D whose timestamps

are within time unit (interval) ui. A cycle c is a tuple (l, o), where l (multiples

of the time unit) is the length of the cycle, o is an offset (the first time unit in

which the cycle occurs), and 0 ≤ o < l. As an example, if the unit of time is an

hour, every fourth hour starting from the third hour (i.e, 3rd, 7th,. . .) is part of a

cycle c = (4, 3).

A cyclic association rule is a rule of the form X → Y c = (l, o), where c = (l, o)

is the cycle in which the rule holds. The rule holds in a cycle c = (l, o) if it holds

in every lth time unit starting with time unit uo
3. For example, if the rule holds

3An association rule holds in time unit ui means that it holds in Di.
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in time units 3rd, 7th, 11th, · · · , then the rule holds at a cycle c = (4, 3). It is

possible for an association rule to have more than one cycle. As an example, if

the unit of time is an hour and the rule holds during the interval 8am-9am and

4pm-5pm every day (i.e., every 24 hours), then it has two cycles c1 = (24, 8) and

c2 = (24, 16). Given a set of cycles, a large cycle is a cycle that is not multiple of

any other cycles in the set. A cycle (li, oi) is a multiple of another cycle (lj, oj) if

lj divides li and oj = oi mod lj. As an example, a cycle (24, 15) is a multiple of

a cycle (12, 3).

The problem of mining cyclic association rules is to discover the rules with

large cycles. Two algorithms have been proposed to discover cyclic association

rules. The first algorithm, called the sequential algorithm, performs association

rule mining and cycle detection independently. The second algorithm, called

the interleaved algorithm, employs optimisation techniques for discovering cyclic

association rules. The sequential algorithm is described in more detail below.

Generating cyclic association rules using the sequential algorithm consists of

two phases. In the first phase, association rules are generated for each time unit

using one of the existing methods. Once the rules of all the time units have been

discovered, the second phase of the algorithm is applied to detect (large) cycles

of each association rule, using the cycle detection procedure. In this procedure,

each association rule is represented as a binary sequence in which ‘1’s correspond

to the time units in which the rule holds and ‘0’s correspond to the time units

in which the rule does not hold. For example, the binary sequence 001100010101

represents the association rule that holds in D2, D3, D7, D9, and D11. Given

a binary sequence and the maximum cycle length of interest m, a procedure of

detecting cycles consists of two steps.

In the first step, the sequence is scanned. Each time ‘0’ is encountered at a po-

sition i, candidate cycles c = (j, i mod j), 1 ≤ j ≤ m are eliminated from the set

of candidate cycles. If the maximum cycle length of interest is m, the set of can-

didate cycles contains all possible cycles c(l, o), where 1 ≤ l ≤ m, 1 ≤ o < l. Let
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m = 4, then the set of candidate cycles is {c(1, 0), c(2, 0), c(2, 1), · · · , c(4, 0), · · · ,

c(4, 3)}. Given a sequence 001100010101, a digit ‘0’ is found at position 0, thus

cycles c(1, 0), c(2, 0), c(3, 0) and c(4, 0) are eliminated from the set of candidate

cycles. This step is completed whenever the last bit of the sequence is scanned or

the set of candidate cycles becomes empty, whichever is first. From the example,

after the eleventh bit is scanned, the only remaining cycle is c(4, 3), representing

a rule that holds in every fourth time unit starting from the time unit u3, followed

by u7 and u11.

In the second step, large cycles are detected from the set of remaining cycles

by eliminating cycles that are not large, that is, starting from the shortest cycle,

for each cycle ci = (li, oi) in the set, eliminate cycle cj = (lj, oj) that is multiple

of ci = (li, oi) from the set. Since there is only one cycle c(4, 3) remains, this cycle

is obviously large.

2.1.4 Calendric Association Rules

This subsection discusses the calendric association rule model as described by Li

et al. (2001). This model is more general than the one proposed by Ramaswamy

et al. since it provides a framework for discovering association rules over a

calendar schema, instead of a calendar algebra expression.

A calendar schema is a relational schema R = (fn : ∆n, fn−1 : ∆n−1, . . . , f1 : ∆1),

where an attribute fi is a calendar unit name such as year, month and week, and

a domain ∆i is a finite subset of the positive integers. Given a calendar schema

R, a calendar pattern on the calendar schema R is a tuple on R of the form

〈dn, dn−1, . . . , d1〉, where di ∈ ∆i or the wild-card symbol ‘∗’ (representing the

word every). Each calendar pattern represents a set of time intervals.

As an example, given a calendar schema (week, day, hour), a calendar pattern

〈1, ∗, 10〉 represents the 10th hour of every day of week 1, and similarly 〈1, 1, 10〉

represents the 10th hour of day 1 of week 1. A calendar pattern with k wild-card

symbols is called a k-star calendar pattern, denoted ek, and a calendar pattern
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with at least one wild-card symbol is called a star calendar pattern. A calendar

pattern with no wild-card symbol is called a basic time interval, denoted e0. Given

calendar patterns e and e′ (in the same calendar schema), e covers e′ if the set of

time intervals of e′ is a subset of that of e. From the example, a calendar pattern

〈1, ∗, 10〉 covers 〈1, 1, 10〉.

A calendric association rule over calendar schema R is a pair (r, e), where r

is an association rule and e is a calendar pattern on R. There are two classes

of calendric association rules: precise-match association rules and fuzzy-match

association rules. Precise-match association rules require the rules to hold during

every interval in e, while fuzzy-match association rules require the rules to hold

during a significant fraction of these intervals. More formal definition of precise-

match and fuzzy-match association rules can be stated as follows.

Definition 2.2 (Precise-match association rule) Given a calendar schema

R, a calendar pattern e on R, and a transaction database D, a precise-match

association rule (r, e) holds in D if and only if the association rule r holds

in D[e0] for each basic time interval e0 covered by e. D[e0] denotes a set of

transactions in D whose timestamps are covered by e0.

Definition 2.3 (Fuzzy-match association rule) Given a calendar schema R,

a calendar pattern e on R, and a transaction database D, and a real number m

(match ratio), where 0 < m < 1, a fuzzy-match association rule (r, e) holds

in D if and only if the association rule r holds in D[e0] for at least (100 ·m)% of

the basic time intervals e0 covered by e.

Given a calendar schema R, the problem of mining calendric association rules

is to discover precise-match or fuzzy-match association rules for all possible star

calendar patterns in R. Similar to mining association rules, mining calendric as-

sociation rules can also be divided into two subproblems: first, finding all frequent

itemsets for all calendar patterns; and second, generating calendric association

rules using the frequent itemsets and their calendar patterns. Two algorithms are



CHAPTER 2. REVIEW OF MINING TIME POINT PATTERNS 27

proposed for finding calendric frequent itemsets; both are based on the Apriori

algorithm. The first algorithm, direct-Apriori, treats each basic time interval in-

dividually, while the second one, temporal-Apriori, is optimised by exploiting the

relationship among calendar patterns. The outline the direct-Apriori algorithm

to generate precise-match frequent itemsets for all possible star calendar patterns

on R is shown in Algorithm 2.2.

Input: A database D, minsup, a calendar schema R
Output: F (e), a set of frequent itemsets, for all star calendar patterns e on R
1: for all basic time interval eo do
2: F1(eo) = {frequent 1-itemsets in D[eo]}
3: for all star calendar patterns e that covers eo do
4: Update F1(e) using F1(eo);
5: end for
6: end for
7: for (k = 2; ∃ a star calendar pattern e such that Fk−1(e) 6= ∅;k + +) do
8: for all basic time interval eo do
9: Generate Ck(eo) from Fk−1(eo)

10: for all transactions s ∈ D[eo] do
11: Count the support of all candidate X ∈ Ck(eo)
12: end for
13: Fk(eo) ={X ∈ Ck(eo)|sup(X) ≥ minsup}
14: for all star patterns e that covers eo do
15: Update Fk(e) using Fk(eo);
16: end for
17: end for
18: end for
19: F (e) =

⋃
k Fk(e)

Algorithm 2.2: Pseudo code for generating precise-match frequent itemsets

The notations used in the algorithm are defined as follows. Ck(eo) denotes a

set of candidate k-itemsets for a basic time interval e0. Fk(e0) and Fk(e) denote

the set of frequent k-itemsets for a basic time interval e0 and a star calendar

pattern e, respectively.

The algorithm works in several passes. In each pass, the basic time intervals

in the calendar schema are processed one by one. For instance, if the calendar

schema R = (week : {1, 2, 3}, day : {1, 2, · · · , 7}), then there are totally 21 basic

time intervals in R to process, from 〈1, 1〉 to 〈3, 7〉. Given a basic time interval
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e0, the first pass of the algorithm computes F1(e0). Each F1(e0) is used to update

F1(e), where e is a calendar pattern that covers e0. In the subsequent k-th pass,

for k > 1, the algorithm first generates Ck(eo) from Fk−1(eo)), based on Apriori’s

method for candidate generation. Then the algorithm scans the transactions

whose timestamps are covered by e0, and generates Fk(e0). The Fk(eo) is used to

update Fk(e), where e is a calendar pattern that covers e0.

For precise-match, the update is performed by intersecting Fk(eo) with Fk(e),

that is, Fk(e) = Fk(e) ∩ Fk(eo). As an example, using a calendar schema R =

(week : {1, 2, 3}, day : {1, 2, · · · , 7}), let e0 = 〈2, 3〉. After this basic interval is

processed in a pass k, the algorithm updates Fk(e) of calendar patterns 〈2, ∗〉 and

〈∗, 3〉, because both calendar patterns cover e0 = 〈2, 3〉. Note that when Fk(e) is

first updated, Fk(e) = Fk(eo). Using this update method, a k-itemset is frequent

in Fk(e) only if it is frequent in all basic intervals covered by e.

2.1.5 Temporal Predicate Association Rules

The temporal predicate association rule was first proposed by Rainsford and

Roddick (1999). The model extends the association rule model by adding to the

rules a conjunction of binary temporal predicates that specify the relationships

between the timestamps of transactions. The binary temporal predicates are

defined using thirteen interval based relations proposed by Allen (1983) and the

neighbourhood relationships defined by Freksa (1992) .

Let D be a database of transactions and X → Y be an association rule

holds in D. Let P1 ∧ P2 . . . ∧ Pn be a conjunction of binary temporal predicates

defined on items contained in either X or Y , where n ≥ 0. A temporal predicate

association rule is a rule of the form X → Y ∧ P1 ∧ P2 . . . ∧ Pn. In addition to

the rule’s confidence, a temporal confidence is used to determine the strength of

the temporal relationships between temporal items in the rule. The rule X →

Y ∧ P1 ∧ P2 . . . ∧ Pn holds in a dataset D with the confidence c if and only if

at least c% of transactions in D that contain X also contain Y . Similarly, each
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predicate Pi holds with a temporal confidence tcPi
if and only if at least tcPi

% of

transactions in D that contain X and Y also satisfy Pi.

An example of temporal predicate association rule is as follows (Rainsford &

Roddick 1999):

policy c → invest a, product b | 0.87 ∧

(during(invest a,policy c) | 0.79) ∧

(before(product b,invest a)|0.91)

An interpretation for this rule is:

The purchase of investment a and product b are associated with in-

surance policy c with a confidence 0.87. The investment a occurs

during the period of policy c with a temporal confidence 0.79 and

the purchase of product b occurs before investment a with a temporal

confidence of 0.91.

The algorithm to discover temporal predicate association rules consists of four

phases. The first phase of the algorithm can be performed using any algorithm

for mining association rules. During this phase the temporal attributes associated

with the items are not considered. In the second phase, all of possible pairings

of temporal items in each generated rule are generated. For example, if the

association rule is (ab) → (c) then there are three possible pairings, i.e., ab, ac,

and bc. In the third phase, the database is scanned to determine the temporal

relationships between the candidate item pairings. Finally, the aggregation of

temporal relationships found in the third phase is then concatenated with the

original rule to generate temporal predicate association rules.

2.2 Mining Sequential Patterns

Sequential pattern mining, which discovers frequent sequences in a sequence

database, is an important data mining problem with broad applications, such
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as the analysis of customer purchase patterns, web access patterns, scientific ex-

periments, disease treatments, natural disasters, and DNA sequences (Pei, Han,

Mortazavi-Asl, Pinto, Chen, Dayal & Hsu 2001). Since it was first introduced

by Agrawal and Srikant (1995), it is one of the active research areas in temporal

data mining. As a result, a number of algorithms and techniques have been pro-

posed for mining sequential patterns. Earlier algorithms for sequential pattern

mining are Apriori-like algorithms, based on the Apriori property proposed for

mining frequent itemsets (Agrawal & Srikant 1994). A series of Apriori-like algo-

rithms have been proposed, among others, AprioriAll (Agrawal & Srikant 1995),

GSP (Srikant & Agrawal 1996), and SPADE (Zaki 1998). As alternatives to

the Apriori-based approach, other methods have also been proposed, such as

FreeSpan (Han, Pei, Mortazavi-Asl, Chen, Dayal & Hsu 2000) and PrefixSpan

(Pei et al. 2001). These new methods use a pattern-growth approach, based on

the FP-growth algorithm for mining frequent itemsets (Han, Pei & Yin 2000).

Various extensions of sequential pattern mining have been developed, such as

mining constraint-based sequential patterns, mining closed sequential patterns,

incremental and interactive mining of sequential patterns. Most extensions are

solved by extending the basic algorithms for mining sequential patterns.

This section provides a review of previous studies on sequential pattern min-

ing. Section 2.2.1 defines the problem of mining sequential patterns. Section

2.2.2 describes different approaches for mining sequential patterns and various

extensions of sequential pattern mining. Sections 2.2.3 and 2.2.4 discuss the dis-

covery of sequential patterns using Apriori-based approach with horizontal and

vertical data format, respectively. Section 2.2.5 describes the pattern-growth ap-

proach with database projection, while Section 2.2.6 describes the pattern-growth

approach with database indexing. Each approach is described in some detail, out-

lining how the basic algorithm works and identifying other contributions related

to the variations and extensions of the basic algorithms.
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2.2.1 Problem Definition

Let I = {i1, i2, . . . , in} be a set of of all items. An itemset is a non-empty

unordered collection of items. Without loss of generality, it is assumed that

items in an itemset are sorted in lexicographic order. An itemset i is denoted as

(i1i2 . . . im), where ij ∈ I for 1 ≤ j ≤ m. An itemset that contains k items is

called a k-itemset.

A sequence s = 〈s1s2 . . . sm〉 is an ordered list of itemsets, where each itemset

is called an element of the sequence. An item can appear only once in a given

element, but it can appear multiple times in different elements of a sequence. The

number of instances of items k =
∑m

i=1 |si| is called the length of the sequence.

A sequence with length k is called the k-sequence. For example, 〈(a)(b)(a)〉,

〈(ab)(a)〉, and 〈(b)(ac)〉 are all 3-sequences.

A sequence t = 〈t1t2 . . . tm〉 is a subsequence of s = 〈s1s2 . . . sn〉, denoted as

t v s, if there exist integers 1 ≤ j1 < j2 < . . . < jm ≤ n such that t1 ⊆ sj1 , t2 ⊆

sj2 , . . . , tm ⊆ sjm . If t is a subsequence of s, alternatively, s is said to contain

t. As an example, a sequence 〈(a)(bc)(d)〉 is a subsequence of 〈(a)(abc)(ac)(d)〉.

A sequence is said to be maximal in a set of sequences, if it is not contained in

other sequences in the set.

A database D is a set of transactions (CID, TID, ITEMS ), where CID is a

customer-id, TID is a transaction-id (based on the transaction time), and ITEMS

is a list of items in the transaction. For a given customer-id, there are no transac-

tions with the same transaction time, which means that there are no transactions

with the same transaction-id. All the transactions with the same CID can be re-

garded as a sequence of itemsets ordered by increasing TID. Each such sequence

is called a data sequence. Therefore, an analogous representation of the database

D is a set of data sequences, one sequence per customer, each representing an

order of transactions a customer has conducted.

Example 2.1 Let D be a database given in Figure 2.2, which contains eight

items (a to h), four customers, and ten transactions (adopted from Zaki (2001)).
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a, g, h254

b, f204

d, g, h104

a, b, f103

e202

a, b, f152

a, c, d, f251

a, b, f201

a, b, c151

c, d101

ITEMSTIDCID

����(dgh) (bf) (agh)����4

����(abf)����3

����(abf) (e)����2

����(cd) (abc) (abf) (acdf)����1

Data sequenceCID

(a) (b)

Figure 2.2: A database shown as a set of transactions and a set of sequences

Figure 2.2(a) shows the database as a set of transactions, sorted on TID within

each CID. Figure 2.2(b) shows the database represented as a set of data sequences.

This database is used as a running example throughout the discussion of mining

sequential patterns.

The support of a sequence s in the database D, denoted by sup(s), is defined as

the fraction of data sequences in the database that contain s. Given a minimum

support threshold minsup, a sequence is called frequent in D if its support is

greater than or equal to minsup. The task of mining sequential patterns is to

find all frequent sequences (sequential patterns) in the database D.

As an example, given the database D in Example 2.1 and a minimum support

threshold minsup = 0.4, a sequence 〈(bf)(a)〉 has the support of 0.5, since it is

contained in 2 of 4 data sequences (of customer 1 and 4). Therefore, the sequence

is frequent in D. A complete list of frequent sequences is shown in Figure 2.3.
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����(d)(bf)(a)����4

����(abf)����, ����(bf)(a)����, ����(d)(b)(a)����, ����(d)(bf)����, ����(d)(f)(a)����3

����(ab)����, ����(af)����, ����(bf)����, ����(b)(a)����, ����(d)(a)����, ����(d)(b)����, ����(d)(f)����, ����(f)(a)����2

����(a)����, ����(b)����, ����(d)����, ����(f)����1

Sequential patterns (minsup = 0.4)Length

Figure 2.3: A set of sequential patterns

2.2.2 Sequential Pattern Mining Algorithms and Exten-

sions

Sequential Pattern Mining Algorithms

Discovering frequent sequences is much more complex than discovering frequent

itemsets. If m is the total number of distinct items in the input data, the max-

imum number of sequences having k items is O(mk2k−1). In contrast, there are

only (m
k ) possible itemsets of size k in association rule mining (Joshi, Karypis &

Kumar 2001). As a result, a large number of studies in sequential pattern mining

have focused upon improving the efficiency of the algorithms.

In the data mining literature, algorithms for mining sequential patterns are

classified into two broad categories: Apriori-based and pattern-growth approaches.

The Apriori-based approach uses a candidate generation-and-test paradigm ini-

tially proposed for mining frequent itemsets (Agrawal & Srikant 1995). In order

to reduce the search space, the algorithms in this category generally employ an

Apriori principle, which states that all subsequences of a frequent sequence must

be frequent. Based on the format of their input databases, the Apriori-based

approach can be further separated into two categories: Apriori-based with hor-

izontal data format and Apriori-based with vertical data format. The difference

between these two data formats is described in Section 2.2.4.

Meanwhile, the pattern-growth approach adopts a pattern-growth principle

of mining frequent itemsets developed in the FP-growth algorithm (Han, Pei &

Yin 2000). This approach does not require candidate generation. The database
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is recursively projected into a set of smaller projected databases, and sequential

patterns are grown in each projected database by exploring only local frequent

fragments (Pei et al. 2001). Another approach for growing the patterns is by

indexing the database in memory (Lin & Lee 2002). This approach does not

require candidate generation and database projection. It discovers sequential

patterns by a recursive find-then-index technique. This technique recursively

finds the items which constitute a frequent sequence and constructs an index set

which indicates the set of data sequences for further exploration.

Extensions of Sequential Pattern Mining

The sequential pattern mining problem has been extended in various ways, in-

cluding mining constraint-based sequential patterns, mining closed sequential

patterns, mining top-k closed sequential patterns, incremental and interactive

sequential pattern mining. Each extension is briefly described below.

In many applications, sequential pattern mining can produce a large number

of sequential patterns. One way to address this issue is by allowing the user to

interactively add certain syntactic constraints on the mined sequences. For exam-

ple, the user may be interested in only those sequences that occur close together,

those that occur far apart, those that occur within a specified time frame, those

that contain specific items or those that predict a given attribute (Zaki 2000).

The mining process which incorporates user-specified constraints to reduce search

space and derive only the user-interested pattern is called constraint-based mining.

Srikant and Agrawal (1996) were the first to consider mining sequential patterns

with time constraints (i.e., minimum and maximum gap between successive se-

quence elements), sliding time windows, and user-defined taxonomy. Garofalakis

et al. (1999) proposed regular expressions as constraints for sequential pattern

mining and developed a family of SPIRIT algorithms.

Another method is to search not just for frequent sequences but for sequences

that are closed as well. Pasquier et al. (1999) have introduced the idea of mining
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frequent closed itemsets. Recently, methods for mining closed sequential patterns

have been proposed (Yan, Han & Afshar 2003, Wang & Han 2004). A sequential

pattern is said to be closed if it is not properly contained in any other sequence

which has the same support. Formally, given a set F of all sequential patterns, a

set CS of closed sequential patterns is defined as

CS = {α| α ∈ F and 6 ∃β ∈ F such that α v β and sup(α) = sup(β)}

Even though mining closed sequential patterns may reduce the number of

generated sequential patterns, setting a minimum support threshold is not trivial.

A too small value may result in the generation of a large number of patterns,

while a too big one may lead to no patterns being found. One solution is to mine

top-k frequent closed patterns (Han, Wang, Lu & Tzvetkov 2002). Tzvetkov et

al. (2003) have developed the TSP algorithm to discover top-k closed sequential

patterns. The task of mining top-k closed sequential patterns is to find top-

k closed sequential patterns of minimum length min `. Here, k is the number

of closed sequential patterns to be mined, top-k refers to the k most frequent

sequences, and min ` is the minimum length of the closed sequential patterns.

In other situations the database may not be static, but it changes over time as

new data sequences are added to or deleted from the database. As an example,

every visit to a web site will add a new log to the site’s log database. Also, some

out-of-date logs (say those that are more than five-years old) may need to be

deleted. Since an operational database changes continuously, the set of frequent

sequences has also to be updated to stay valid. One simple strategy is to re-

run the mining algorithm on the updated database. However, this strategy fails

to take advantage of the valuable information obtained from a previous mining

exercise, which is particularly useful if the updated database and the old one

share a significant portion of common sequences. Therefore, there is a need for

methods that are able to efficiently maintain valid mined information due to

database updates. This problem is known as the incremental sequential pattern
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mining problem (Parthasarathy, Zaki, Ogihara & Dwarkadas 1999, Masseglia,

Poncelet & Teisseire 2003, Kao, Zhang, Yip, Cheung & Fayyad 2005).

The list of algorithms discussed in this section is summarized in Figure 2.4.

The figure shows the classes of algorithms for solving a basic sequential pattern

mining problem and its extensions. Note that this classification is neither unique

nor exhaustive, our objective is to facilitate an easy discussion of the numerous

techniques in the field.

2.2.3 Apriori-Based using Horizontal Data Format

When introducing the problem of mining sequential patterns in 1995, Agrawal

and Srikant presented three algorithms, namely, AprioriAll, AprioriSome, and

DynamicSome (Agrawal & Srikant 1995). AprioriAll finds all sequential pat-

terns, while AprioriSome and DynamicSome find only maximal sequential pat-

terns. However, many applications require all sequential patterns, and finding

maximal sequential patterns from a set of all sequential patterns is straightfor-

ward. Therefore, AprioriAll usually becomes the preferable algorithm.

AprioriAll is based on the Apriori algorithm for mining frequent itemsets

(Agrawal & Srikant 1994). This algorithm divides the problem of finding sequen-

tial patterns into three phases. It first finds all frequent itemsets in the database,

then transforms the database with each transaction replaced by the set of all

frequent itemsets contained in the transaction, and finally finds all sequential

patterns.

The problem with AprioriAll is the cost of transforming the database. It is

computationally expensive to do the data transformation on-the-fly during each

pass while finding sequential patterns. Alternatively, to transform the database

once and store the transformed database will be impracticable for large databases.

Therefore, the same authors propose the GSP (Generalized Sequential Patterns)

algorithm that is faster than AprioriAll (Srikant & Agrawal 1996) and does not

require database transformation. Moreover, GSP not only solves the basic se-
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quential mining problem (Section 2.2.1), but it also generalizes the problem by

considering time constraints, sliding windows, and taxonomies on the items.

Algorithm 2.3 outlines the discovery of sequential patterns using GSP, which

consists of multiple passes. In the first pass, it scans the database to find all of the

frequent items, which form the set F1 of frequent 1-sequences. In the k-th pass,

k > 1, the algorithm uses a set Fk−1 of frequent (k − 1)-sequences to generate

a set Ck of candidate k-sequences. Then, the database is scanned to count the

support for each candidate sequence. All of the candidates whose support in the

database exceeds a given minimum support threshold form the set Fk of frequent

k-sequences. This set is then used to generate a set of candidate sequence in the

next pass. The algorithm terminates when no new sequential pattern is found in

the pass, or no candidate sequence can be generated. The method for candidate

generation is described in more detail in the following.

1: F1 = {frequent 1-sequences}
2: for (k = 2; Fk−1 6= ∅; k = k + 1) do
3: Generate Ck from Fk−1;
4: for all customer-sequences s in the database do
5: Increment support count of all c ∈ Ck contained in s
6: end for
7: Fk = {c ∈ Ck|sup(c) ≥ minsup};
8: end for
9: Return F =

⋃
k Fk;

Algorithm 2.3: Pseudo code of the GSP Algorithm

GSP generates the set Ck from Fk−1 in two steps. In the first step, join step,

GSP joins Fk−1 with Fk−1. For any pair of sequences α and β in Fk−1, α joins

with β if discarding the first item of α and the last item of β results in identical

sequences. The candidate sequence generated by joining α and β is the sequence

α extended with the last item of β. The new item is added as a new element

of α if it is a separate element in β, otherwise it is added to the last element

of α. For example, consider three frequent 2-sequences in Figure 2.3: 〈(ab)〉,

〈(bf)〉, and 〈(f)(a)〉. The first and the second sequences can be joined to create

a candidate 3-sequence 〈(abf)〉, because dropping items a and f from the first
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and the second sequences, respectively, results in an identical subsequence 〈(b)〉.

Similarly, the join of the second and the third sequences results in a candidate

sequence 〈(bf)(a)〉. Next, in the prune step, the algorithm deletes all candidate

sequences c ∈ Ck such that some (k − 1)-subsequence of c is not in Fk−1. As an

example, the join of 〈(ab)〉 and 〈(b)(a)〉 results in a candidate sequence 〈(ab)(a)〉.

The prune step deletes 〈(ab)(a)〉 because it has a subsequence 〈(a)(a)〉 which is

not in F2 (Figure 2.3). According to the Apriori principle (mentioned in Section

2.2.2), the sequence 〈(ab)(a)〉 will not be frequent because it has a subsequence

that is not frequent.

Even though the use of the Apriori pruning in GSP can reduce the search

space, it is only effective when k > 2. For k = 2, for example, if there are

1000 frequent 1-sequences, GSP will generate 1000×1000+ 1000×999
2

= 1, 499, 500

candidate sequences. This requires a significant increase in resources. Besides

that, each iteration of GSP only discovers frequent sequences of the same length;

that is, a set of frequent k-sequences is discovered at the k-th iteration of the

algorithm. Consequently, the number of iterations (hence database scans) is de-

pendent on the length of the maximum length of frequent sequences. Multiple

scans of databases could be costly if the databases contain long sequential pat-

terns. As a result, other algorithms later developed to improve the performance

of GSP are aimed to solve these problems, such as by reducing the number of

database scans, or by getting rid of the need to generate candidate patterns.

The use of a more efficient data structure during candidate generation and

support counting could also improve the performance of GSP. This approach is

taken by the PSP algorithm (Masseglia, Cathala & Poncelet 1998). PSP still

follows the approach of candidate generation followed by support counting. How-

ever, PSP uses prefix-trees as its internal data structures, instead of hash-trees

used in GSP. The benefits of using the prefix-tree are that it requires less storage

space and improves efficiency during candidate generation and support counting

processes.
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MFS (Mining Frequent Sequences) is a two-stage GSP-based algorithm for

mining sequential patterns (Zhang, Kao, Yip & Cheung 2001). In the first stage,

a sample of the database is mined to get the rough estimation of frequent se-

quences. Then, based on this estimation the database is scanned to check and

refine candidate sequences until no more frequent sequences can be found. The

difference between MFS and GSP is the function of candidate generation. While

GSP generates Ck from Fk−1, MFS takes a set of frequent sequences of various

length to generate a set of candidate sequences of various length. The paper

claims that MFS discovers the same set of frequent sequences as does GSP, but

no proof of this is given in the paper. The MFS+ algorithm is an extension of

MFS for incremental mining of sequential patterns (Kao et al. 2005).

A universal formulation of sequential patterns was introduced by Joshi et al.

(2001). Different types of constraints such as structure, time, and item to be

integrated into the universal system are discussed; also corresponding counting

methods of sequential patterns and how to set thresholds are explained. A GSP

based algorithm is introduced with different count methods to explain how to use

the universal formulation of sequential patterns.

ISE (Incremental Sequence Extraction) is a GSP based algorithm for incre-

mental mining of sequential patterns (Masseglia et al. 2003). In order to reduce

the cost of finding new sequential patterns in the updated databases, the algo-

rithm utilises information collected during an earlier mining process. For example,

during candidate generation, the algorithm avoids generating candidate sequences

that have already been found to be frequent.

Lin and Lee (2003) introduced the KISP (Knowledge Base Assisted Incremen-

tal Sequential Pattern) algorithm for interactive discovery of sequential patterns.

KISP extends GSP with a knowledge base (KB), so that all queries about sequen-

tial patterns of various minimum support thresholds can be obtained from the

KB. When the desired patterns cannot be obtained from the KB, KISP mines

the database for new patterns by employing two optimization methods: direct
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new-candidate generation and concurrent support counting.

2.2.4 Apriori-Based using Vertical Data Format

All of the previously discussed algorithms work on a horizontal data format il-

lustrated in Figure 2.2. In the horizontal data format, the database contains a

list of customers (CID), each with its own list of transaction-ids (TIDs) and sets

of items. The SPADE algorithm (Zaki 1998), on the other hand, uses a vertical

format consisting of items’ id-list. The id-list of an item is a list of (CID, TID)

pairs indicating the transaction-id (i.e., transaction-time) of the item in the data

sequence. Figure 2.5(a) shows the vertical data format of part of an example

database. As shown in the figure, the id-list for the item a consists of tuples

{(1, 15), (1, 20), (1, 25), (2, 15), (3, 10), (4, 25)}. This is because item a appears in

customer-id 1, transaction-ids 15, 20, 25, and so on (Figure 2.2)(a)).

As was mentioned in the previous subsection, one of the shortcomings of GSP

is that it requires multiple database scans which depend on the length of the

longest frequent sequence in the databases. As a result, if the database is large

and contains long frequent sequences, GSP incurs a high I/O cost. Using the

vertical data format, SPADE can improve the performance of GSP by reducing

the number of database scans. Given the per item id-lists, SPADE iteratively

determines the support of any k-sequence by intersecting the id-lists of its two

generating (k − 1)-sequences. By checking on the number of distinct customer-

ids of the resulting id-lists, SPADE can determine whether the new sequence is

frequent or not. As a result, SPADE can complete the mining process in three

passes over the database, as outlined below.

SPADE first generates a set F1 of frequent 1-sequences. Given, the vertical

database format this can be done in a single database scan. For each item, the

algorithm reads the item’s id-list from the database. While scanning the id-list,

it increments the item’s support count for each new customer-id encountered.

SPADE then generates a set F2 of frequent 2-sequences. Computing F2 using



CHAPTER 2. REVIEW OF MINING TIME POINT PATTERNS 42

254

103

152

251

201

151

TIDCID

a

204

103

152

201

151

TIDCID

b f

204

103

152

251

201

TIDCID

103

152

201

151

TIDCID

(ab)

103

152

251

201

TIDCID

(af)

103

152

201

TIDCID

(abf)

(a)

Intersecting (ab) and (af) 

(b)

Figure 2.5: Vertical data format used in SPADE

the vertical database format is expensive, because the algorithm has to read the

id-list of each frequent item in F1 and intersect it with the id-list of other items in

F1. If there are m frequent items in F1, this approach requires m database scans,

whereas in the horizontal format this can be done in a single scan. To overcome

this problem, SPADE optimises the calculation of F2 by inverting the vertical

format to the horizontal format, and then using the new format to compute F2.

The next step is to find a set Fk of frequent k-sequences, for k ≥ 3. In order to

generate a candidate k-sequence α, SPADE uses two frequent (k − 1)-sequences

α1 and α2 that share a common prefix. There are several different operations for
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generating candidates, depending on the form of α1 and α2. Let p be a common

prefix of α1 and α2, and x and y are items. The first operation, if α1 = 〈(px)〉

and α2 = 〈(py)〉, then α = 〈(pxy)〉. The second, if α1 = 〈(px)〉 and α2 = 〈(p)(y)〉,

then α = 〈(px)(y)〉. The third, if α1 = 〈(p)(x)〉 and α2 = 〈(p)(y)〉, then there are

three possible candidates α = 〈(p)(x)(y)〉, α = 〈(p)(y)(x)〉, and α = 〈(p)(xy)〉.

As an example, two sequences 〈(ab)〉 and 〈(af)〉 have a common prefix 〈(a)〉 and

their join results in a candidate 〈(abf)〉.

The support of the candidate sequence α is not counted by scanning the

database. Instead, SPADE intersects (joins) the id-lists of α1 and α2 and counts

the support of the resulting id-list. Figure 2.5(b) shows the intersection of the id-

lists of 〈(ab)〉 and 〈(af)〉. As shown in the figure, the resulting sequence 〈(abf)〉

has the support of 3
4
, where 3 is the number of distinct customer-ids in its id-list.

All of the candidates whose support exceeds a given minimum support threshold

become the set of the newly found sequential patterns.

In order to reduce the memory consumption and increase its efficiency, SPADE

employs various optimizations, in particular, a notion of equivalence class of se-

quential patterns, dedicated breadth-first and depth-first search strategies. For

more detail, refer to Zaki (1998, 2000).

Based on the SPADE algorithm, Parthasarathy et al. (1999) propose the ISM

(Incremental Sequence Mining) algorithm for incremental and interactive mining

of sequential patterns. All queries are performed on a pre-processed in-memory

data structure called ISL (Increment Sequence Lattice). The ISL includes all the

frequent sequences and all the sequence in the negative border. The negative

border is the collection of all sequences that are not frequent but both of their

generating subsequences are frequent.

The cSPADE (Zaki 2000) algorithm extends SPADE by modifying the id-list

in SPADE to incorporate minimum gap, maximum gap, time window, and some

other constraints. The time window refers to the window of occurrence of the

whole sequence, not the sliding window used in GSP (Srikant & Agrawal 1996).



CHAPTER 2. REVIEW OF MINING TIME POINT PATTERNS 44

GOSPADE extends SPADE to incorporate the generalized occurrences (Leleu,

Rigotti, Boulicaut & Euvrard 2003b), which can be used to reduce the size of

the occurrence lists (id-lists) by representing several occurrences with a single

more general one. As described above, an id-list in SPADE stores one line per

occurrence, that is, three lines for occurrences of item a in customer-id 1, one line

for customer-id 2, and so on (Figure 2.5(a)). Using the concept of generalized

occurrence, the three consecutive occurrences of item a in customer-id 1 can be

represented by only one generalized occurrence of the form (1, [15, 20, 25]). This

method is especially useful when the databases contain consecutive repetitions

of items. Later, the same authors develop the GOSpec algorithm by extending

GOSPADE for mining sequential patterns involving the maximum and minimum

gap time constraints, and the time window constraint (Leleu, Rigotti, Boulicaut

& Euvrard 2003a).

Instead of using the id-list, the SPAM (Sequential PAttern Mining) algorithm

uses a vertical bitmap representation of the database (Ayres, Flannick, Gehrke

& Yiu 2002). A vertical bitmap is constructed for each item in the database,

and each bitmap has a bit corresponding to each transaction in the database. If

an item appears in a transaction, the bit corresponding to the transaction of the

bitmap for the item is set to ‘1’; otherwise, the bit is set to ‘0’. Consider the

database in Example 2.1. The vertical bitmap representation of this database

is presented in Figure 2.6. Each vertical bitmap for the item is partitioned into

four sections, and each corresponds to a data sequence. The first transaction

of the first customer contains items c and d, so the bit that corresponds to this

transaction in each of the bitmaps c and d is set to ‘1’, and other bits are set to

‘0’.

As an Apriori-based algorithm, SPAM applies a candidate generation-and-test

principle. To generate the candidate sequences, it uses two operations: S-step

and I-step. Given a sequence s and an item x, the S-step generates the candidate

sequence by appending a new element (x) to the end of the sequence s. On the

other hand, the I-step generates the candidate sequence by adding the item x
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Figure 2.6: Vertical bitmap representation of the example database

to the last element of s. For example, given a sequence 〈(af)〉 and an item b,

the S-step generates a candidate 〈(af)(b)〉, while the I-step generates 〈(abf)〉.

SPAM counts the support of the candidate sequence by looking at the bitmap of

the candidate sequence. The bitmap of the candidate sequence is the result of

AND-ing the bitmaps of a sequence s and an item x.

LAPIN-SPAM (LAst Position INduction Sequential PAttern Mining) improves

the performance of SPAM by using a table called ITEM IS EXIST TABLE (Yang

& Kitsuregawa 2005). The table contains bit vectors representing the existence

of candidate sequences in each data sequence. Using information in the table, the

algorithm can avoid performing AND operations required by SPAM.

2.2.5 Pattern-Growth using Database Projection

The first proposed pattern-growth algorithm for sequential pattern mining is the

FreeSpan (Frequent Pattern-Projected Sequential Pattern Pattern Mining) algo-
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rithm (Han, Pei, Mortazavi-Asl, Chen, Dayal & Hsu 2000). Its basic idea is to

use frequent items to recursively project sequence databases into a set of smaller

projected databases to confine the search and growth of subsequences. Later,

Pei et al. (2001) propose the PrefixSpan (Prefix-projected Sequential Pattern

Mining) algorithm, which utilises prefix-projection to mine the complete set of

sequential patterns. Both methods create projected databases but they differ in

the criteria for database projection. FreeSpan creates projected databases based

on the current set of frequent sequences, while PrefixSpan does so based on fre-

quent prefixes only. The PrefixSpan algorithm is described in more detail below

by first defining notations used in the discussion.

Given two sequences α = 〈e1e2 . . . en〉, where each ei corresponds to a frequent

element in D and β = 〈e′1e′2 . . . e′m〉, where m ≤ n, β is called a prefix of α if and

only if (1) e′i = ei for i ≤ m−1; (2) e′m ⊆ em; and (3) all frequent items in (em−e′m)

are alphabetically ordered after those in e′m. Sequence γ = 〈e′′mem+1 · · · en〉 is

called the suffix of α w.r.t prefix β, where e′′m = (em − e′m). For example, given a

sequence s = 〈(a)(bcd)(e)(f)〉, sequences 〈(a)〉, 〈(a)(b)〉, and 〈(a)(bc)〉 are prefixes

of s, while 〈(a)(c)〉 or 〈(a)(cd)〉 is not. Also, 〈(bcd)(e)(f)〉 is a suffix of s w.r.t the

prefix 〈(a)〉, and 〈(cd)(e)(f)〉 is a suffix of s w.r.t the prefix 〈(a)(b)〉.

Let α be a sequential pattern in the database D. The α-projected database,

denoted as Dα, is the collection suffixes of sequences in D w.r.t. prefix α.

PrefixSpan discovers sequential patterns in three steps. As an illustration,

each step is described using the database in Example 2.1.

Step 1: Find frequent 1-sequences. The first step of PrefixSpan is to scan

the database D once to find all frequent items. Each of these frequent items is a

frequent 1-sequence. From the running example, the set of frequent 1-sequences

contains: 〈(a)〉, 〈(b)〉, 〈(d)〉, and 〈(f)〉.

Step 2: Divide search space into smaller subspaces. The set of all fre-

quent sequences can be divided into several groups such that the sequences within

a group share the same prefix. For example, from the set of frequent 1-sequences



CHAPTER 2. REVIEW OF MINING TIME POINT PATTERNS 47

����(adf)����, ���� ����, ���� ����, ����(a)����
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α−projected database

����(f)����

����(d)����

����(b)����

����(a)����

Prefix (α)

Figure 2.7: Database projected on frequent 1-sequences

found in the first step, the set of all frequent sequences can be partitioned into

four groups according to the four prefixes 〈(a)〉, 〈(b)〉, 〈(d)〉, and 〈(f)〉.

Step 3: Find frequent sequences in each subspace. Each group of se-

quential patterns can be mined by constructing corresponding projected databases

and by mining each recursively. As an example, to find the frequent sequences

with prefix 〈(a)〉, the database D is projected to get an intermediate database

D〈(a)〉. For every data sequence s in D, D〈(a)〉 contains the suffix of s w.r.t.

〈(a)〉. Figure 2.7 shows the projected database projected on each of frequent

1-sequences. In the figure, an underscore ‘ ’ preceding item b indicates that the

last element in the prefix, which is a, together with b, forms one element. After

obtaining D〈(a)〉, the algorithm scans D〈(a)〉 to find all frequent 2-sequences having

prefix 〈(a)〉. The scanning of D〈(a)〉 finds 〈( b)〉 and 〈( f)〉, each with the support

count of 3. Thus, all frequent 2-sequences prefixed with 〈(a)〉 are found, that is,

〈(ab)〉 and 〈(af)〉. Then recursively, the database D〈(a)〉 is projected w.r.t. 〈(ab)〉

and 〈(af)〉 to obtain D〈(ab)〉 and D〈(af)〉, respectively. Each of these projected

databases is recursively mined to obtain frequent sequences with the correspond-

ing prefix. The recursive process continues until all frequent sequences with prefix

〈(a)〉 are found.

By projecting databases and counting items’ supports, PrefixSpan only counts

the supports of sequences that actually occur in the database. In contrast, a can-

didate sequence generated by GSP may not appear in the database at all. The
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time for generating such candidate sequence and checking whether such a candi-

date is a subsequence of database sequences is wasted. This factor contributes to

the efficiency of PrefixSpan over GSP.

However, the cost of disk I/O might be high due to the creation and processing

of the projected databases. To further improve its performance, two optimiza-

tions for minimizing disk projections are proposed (Pei et al. 2001). The bi-level

projection technique, dealing with huge database, scans each sequence twice in

the (projected) database so that fewer and smaller projections are generated. The

pseudo-projection technique, avoiding physical projections, keeps the sequence-

suffix by a pointer-offset for each sequence in the projection. However, the maxi-

mum mining performance can be achieved only when the database size is reduced

to the size fit in the main memory, that is, by employing pseudo-projection after

using bi-level optimization.

The DELISP (DELImited Sequential Pattern) algorithm (Lin, Lee & Wang

2002) extends PrefixSpan to discover the generalized sequential patterns, con-

strained with minimum gap, maximum gap and sliding window. The bounded

projection technique eliminates invalid subsequence projections caused by un-

qualified maximum or minimum gaps. The window projection technique re-

duces redundant projections for adjacent elements satisfying the sliding window

constraint. The delimited growth technique grows only patterns satisfying con-

straints.

Antunes and Oliveira (2003) develop an algorithm called GenPrefixSpan,

which extends PrefixSpan to discover sequential patterns with gap constraints.

The same authors also propose the SPaRSe (Sequential Pattern Mining with Re-

stricted Search) algorithm for mining sequential patterns (Antunes & Oliveira

2004). The algorithm combines the candidate-and-test principle of GSP with the

restriction of the search space obtained from the use of projected databases.
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2.2.6 Pattern-Growth using Database Indexing

As an alternative to growing the frequent sequences with database projection, Lin

and Lee (2002) propose the MEMISP (MEMory Indexing for Sequential Pattern

Mining) algorithm which grows the frequent sequences with memory-indexing

approach. In this approach there is no candidate generation and no database

projection. Instead, MEMISP reads the database into memory, then through in-

dex advancement within an index set, MEMISP discovers patterns by a recursive

finding-then-indexing technique. MEMISP only requires one database scan if the

database fits in memory.

The following notations are needed to describe the MEMISP algorithm. Given

a frequent sequence ρ and a frequent item x in the database D, ρ′ is a type-1

sequential pattern if it can be formed by appending item x as a new element of

ρ, and is a type-2 sequential pattern by extending the last element of ρ with x.

The frequent item x is called the stem of the sequential pattern ρ′ and ρ is called

the prefix pattern (P-pat for short) of ρ′.

For example, given a frequent sequence 〈(a)〉 and a frequent item b, 〈(a)(b)〉

is a type-1 sequential pattern formed by appending b as a new element to 〈(a)〉,

and 〈(ab)〉 is a type-2 sequential pattern formed by extending 〈(a)〉 with b. The

〈(a)〉 is the P-pat and the item b is the stem of both 〈(a)(b)〉 and 〈(ab)〉. The null

sequence, denoted by 〈 〉, is the P-pat of any frequent 1-sequence.

Assuming the database fits in the memory, MEMISP discovers all sequential

patterns in three steps, as follows.

Step 1: Find all frequent items. In this step, the algorithm reads the database

D into memory. While reading each sequence from the database, the algorithm

computes the support count of every item, then finds the set of all frequent items.

Using the running example database, the algorithm finds frequent items a, b, d,

and f .

Similar to PrefixSpan, the set of all frequent sequences can be partitioned

into four groups according to the four prefixes 〈(a)〉, 〈(b)〉, 〈(d)〉, and 〈(f)〉. Each
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Figure 2.8: Example of index sets

group of frequent sequences can be mined by constructing corresponding index

sets (step 2) and by mining each index set recursively (step 3).

Step 2: Constructing the index set. Given a P-pat and a stem x, this

step constructs the index set ρ-idx, where is ρ is a sequential pattern formed by

combining current P-pat and a stem x. An index set ρ-idx contains a set of the

index’s elements; each contains a pair (ptr, pos), where ptr is a pointer to the data

sequence d ∈ D, and pos is the first occurring position of x in the data sequence

d (with respect to P-pat). An index element (ptr, pos) for a data sequence d is

created only if d supports ρ.

Step 3: Mining the index set. Given the index set ρ-idx, the algorithm

uses the index set to find stems w.r.t. P-pat = ρ. Any item appearing after the

pos position in the data sequence d pointed by ptr of the entry (ptr, pos) in ρ-idx

could be a potential stem. Thus, for every d existing in ρ-idx, the algorithm

increases the support count of such items by one. The algorithm then determines

the set of all stems having minimum support to form sequential patterns.

The following example illustrates the discovery of all frequent sequences with
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prefix 〈(a)〉 using steps 2 and 3. Using step 2, the algorithm constructs the index

set 〈(a)〉-idx from a stem x = a and P-pat = 〈 〉. This index set is shown in

Figure 2.8. In the figure, MDB denotes the in-memory database. In the index set

〈(a)〉-idx, the first element points to the first data sequence since the sequence

supports 〈(a)〉. The value of pos in the first element is 3 because stem a is found

at position 3 w.r.t. P-pat = 〈 〉, indicated by the underline.

Then, using step 3, the algorithm mines 〈(a)〉-idx to find all frequent 2-

sequences whose P-pat is 〈(a)〉. Let dk denotes the data sequence of a customer-id

k. The value of pos of an index element pointing to d1 is 3, so the algorithm only

needs to consider items occurring after position 3 in d1. The support count of

potential stems a, b, d, and f (for potential type-1 patterns) is increased by one.

The support count of potential stems b, d, and f for potential type-2 patterns is

also increased by one. The support counting continuous for items occurring after

positions 1, 1, and 6 in d2, d3, and d4, respectively. After validating the support

counts, only two stems b and f are found, each with the support of 3
4
. These two

stems are used to form type-2 patterns 〈(ab)〉 and 〈(af)〉.

The process continues by recursively applied steps 2 and 3 on P-pat = 〈(a)〉

and a stem x = {b, f}. Taking P-pat = 〈(a)〉 and x = b, step 2 creates 〈(ab)〉-idx

(Figure 2.8(b)). In the figure, the d4 is not pointed to by any index element

because it does not support 〈(ab)〉. Applying step 3 on this index set, a stem f

is found, resulting in a type-2 pattern 〈(abf)〉. Recursively creating and mining

the index set 〈(abf)〉-idx, no more stems can be found (Figure 2.8(c)). Therefore,

the process goes on by considering P-pat = 〈(a)〉 and x = f . The creation and

mining of 〈(af)〉-idx would not find any stem (Figure 2.8(d)). All subsequent

find-then-index processes on stem a with P-pat = 〈 〉 now finish.

When the database is too large to fit into the memory, MEMISP mines the

sequential patterns in two database scans using a partition-and-validation tech-

nique. The large database is partitioned so that each partition can be handled

in memory by the algorithm. By mining these partitions, the algorithm collects
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the set of potential sequential patterns. In order to be frequent in the whole

database, a sequence should be frequent in at least one of the partitions. Then

the true sequential patterns can be identified through support counting against

each data sequence in the database with only one extra database pass. Therefore,

the MEMISP can mine the database of any size in two passes of database scan.

2.3 Mining Episodes and Periodic Patterns

The problem of discovering episodes from a long sequence of events was intro-

duced by Mannila et al. (1995). An episode is a collection of events that occur

relatively close to each other in a certain (partial) order, whose total span of

time is constraint by a window. There are two basic approaches for discovering

episodes. The first approach is based on the occurrences of the patterns in a

sliding window along the sequence and used by the WINEPI algorithm (Mannila

et al. 1995, Mannila, Toivonen & Verkamo 1997). The second one relies on the

notion of minimal occurrences of the patterns and used by the MINEPI algo-

rithm (Mannila & Toivonen 1996, Mannila et al. 1997). Further studies have

been undertaken into variations that attempt to extend the basic episode discov-

ery framework, either by improving the algorithms or by enriching the generated

patterns. Furthermore, other studies have also been conducted that focus on the

discovery of periodic patterns. A periodic pattern is an ordered list of events that

repeats itself in the sequence of events.

This section reviews previous studies on the discovery of episodes and pe-

riodic patterns. In Section 2.3.1, several terms related to the event sequences

and episodes are introduced. Section 2.3.2 describes two approaches of mining

episodes by WINEPI and MINEPI. Section 2.3.3 discusses several extensions of

episode mining. Previous studies on periodic patterns, especially partial periodic

patterns, are presented in Section 2.3.4.
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2.3.1 Preliminary Definitions

In the episode model, the data is a history of events, where each event has a type

and a time of occurrence. Given a set E of event types, an event is a pair (e, t),

where e ∈ E and t is its occurrence time. An event sequence is a triple (s, Ts, Te),

where Ts is the starting time of the sequence, Te is the ending time, and s is an

ordered sequence of events of the form

s = 〈(e1, t1), (e2, t2), . . . , (en, tn)〉

where ei is an event type, and ti is the associated occurrence time, with Ts ≤ ti ≤

ti+1 < Te for all i = 1, . . . , n− 1. The following is an example of event sequence

(s, 1, 16) consisting of ten events:

〈(a, 2), (b, 3), (a, 7), (c, 8), (b, 9), (d, 11), (c, 12), (a, 13), (b, 14), (c, 15)〉 (2.1)

An episode α is a triple (V,≤, g), where V is a set of nodes, ≤ is a partial order

on V , and g : V → E is a mapping that associates each node in the episode with

an event type. A size of α, denoted |α|, is |V |. In simpler terms, an episode is a

partially ordered set of event types. When the order among the event types of an

episode is total, it is called a serial episode. However, when there is no order at

all, the episode is called a parallel episode. Parallel episodes are somewhat similar

to itemsets (Section 2.2.1). As an example, (a → b → c) is a serial episode of size

3 (the arrow is used to emphasize the total order). A parallel episode of size 3

with event types a, b, and c is denoted as (abc). In the first episode, each of the

events in the episode occurs in order, while in the second, the events occur but

the order is not important.

Let α and β be two episodes. An episode β is a subepisode of α, denoted as

β � α, if all the event types in β appear in α as well, and if the partial order

among the event types of β is the same as that for the corresponding event types

in α. As an example, (a → c) is a subepisode of the serial episode (a → b → c),



CHAPTER 2. REVIEW OF MINING TIME POINT PATTERNS 54

while (b → a) is not. In the case of parallel episodes, this order constraint is

not imposed, so every subset of the event types of an episode corresponds to a

subepisode.

An episode is said to occur in an event sequence if there exist events in the

sequence occurring in exactly the same order as the prescribed in the episode. For

example, in the example event sequence (Equation 2.1), the events (a, 2), (b, 3),

and (c, 8) constitute an occurrence of the serial episode (a → b → c), while the

events (a, 7), (b, 3), and (c, 8) do not, because for this serial episode to occur,

a must occur before b and c. Both of these sets of events, however, are valid

occurrences of the parallel episode (abc), since there are no restrictions with

regard to the order in which the events must occur for parallel episodes.

2.3.2 Two Basic Approaches for Mining Episodes

2.3.2.1 Mining Episodes with WINEPI Algorithm

In this approach, the episodes are mined over a single event sequence and their

statistical significance is measured as a percentage of windows containing the

episodes (frequency). An episode is considered interesting if it fits into a specific

window width, which is given by the user.

A window on event sequence S = (s, Ts, Te) is an event sequence W =

(w, ts, te), where ts < Te, te > Ts, and w consists of events (ei, ti) from s where

ts ≤ ti < te. The width of the window W is denoted as width(W ) = te − ts.

Given an event sequence S = (s, Ts, Te) and a window width win, W(S, win)

denotes the set of all windows W on S such that width(W ) = win. The number

of windows in W(S, win) is Te − Ts + win− 1.

The frequency is defined as a percentage of windows containing the episode.

Given an event sequence S and a window width win, the frequency of an episode

α in S is

fr(α, S, win) =
|{w ∈ W(S, win)| α occurs in W}|

|W(S, win)|
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An episode α is a frequent if its frequency exceeds a given frequency threshold

min fr.

Given a sequence S, a class E of episodes, a window width win, and a fre-

quency threshold min fr, the task is to find all frequent episodes from S.

WINEPI discovers frequent episodes using the candidate generation-and-test

principle of the Apriori algorithm (Agrawal & Srikant 1994). It starts by com-

puting frequent episodes of size 1. These episodes are then combined to form

candidate episodes of size 2, and then, by counting their frequencies, frequent

episodes of size 2 are obtained. This process continues until all frequent episodes

of all sizes are found. The definition of episode frequency guarantees that all

subepisodes of a frequent episode are also frequent. Therefore, the candidate

generation step considers an episode as a candidate only if all its subepisodes

have been found frequent.

Once a set of all frequent episodes has been found, it can be used to generate

episode rules. In this approach, an episode rule is a rule of the form β → α,

where α and β are frequent episodes such that β ≺ α. Given an event sequence S

and a window width win, the confidence of the rule is fr(α,S,win)
fr(β,S,win)

. The rule holds

in S if its confidence exceeds a given confidence threshold minconf.

2.3.2.2 Mining Episodes with MINEPI algorithm

The episode discovery framework previously described employs the windows-

based frequency measure for episodes. As an alternative approach, Mannila et

al. (1997) have proposed the MINEPI algorithm based on the concept known as

minimal occurrences of episodes. The minimal occurrence approach looks at the

exact occurrences of episodes and the relationships between those occurrences,

instead of looking at the windows and only considering whether an episode occurs

in a window or not. By focusing on the occurrences of episodes, this approach

facilitates the discovery of rules with two window widths, one for the left hand

side and one for the whole rule, such as if a and b occur within 15 seconds of one
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another, then c follows within 20 seconds.

Given an episode α and an event sequence S, the interval [ts, te) is a minimal

occurrence of α in S if the following two conditions are met:

1. α occurs in the window W = (w, ts, te) on S

2. α does not occur in any proper subwindow on W , i.e., not in any window

W ′ = (w′, t′s, t
′
e) on S such that ts ≤ t′s, t′e ≤ te, and width(W ′) < width(W )

The set of minimal occurrences of an episode α in a given event sequence is

denoted by mo(α) = { [ts, te)| [ts, te) is a minimal occurrence of α}.

Instead of using frequency, MINEPI uses the concept of support. The support

of an episode α in an event sequence S is the number of minimal occurrences of

α, which is |mo(α)|. Given a minimum support minsup, an episode α is frequent

if |mo(α)| ≥ minsup.

An episode rule is an expression β[win1] → α[win2], where β and α are

frequent episodes such that β ≺ α, and win1 and win2 are integers. This rule

means that if the episode β has minimal occurrence at interval [ts, te) with te −

ts ≤ win1, then the episode α occurs at interval [ts, t
′
e) for some t′e such that

t′e − ts ≤ win2. The confidence of an episode rule β[win1] → α[win2] is defined

as
|{[ts, te) ∈ mowin1(β) | occ(α, [ts, ts + win2))}|

|mowin1(β)|

Given win1 and β, mowin1(β) = {[ts, te) ∈ mo(β) | te − ts ≤ win1}. Further,

given α and an interval [us, ue), define occ(α, [us, ue)) = true if and only if there

exists a minimal occurrence [u′
s, u

′
e) ∈ mo(α) such that us ≤ u′

s and u′
e ≤ ue.

Given an event sequence S, a class E of episodes, and a time bounds win1 and

win2, the task is to find all frequent episode rules of the form β[win1] → α[win2],

where α, β ∈ E , and β ≺ α.

Although MINEPI is an Apriori-based algorithm and consists of several iter-

ations, it only requires one scan of the input sequence for discovering frequent

episodes. In the first iteration, MINEPI computes the minimum occurrences of
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all episodes of size 1 from the input sequence and determines frequent episodes of

size 1. In the remaining iterations, having found the set Fk of frequent episodes

of size k (k ≥ 1), the algorithm creates the set Ck+1 of candidate episodes of size

k+1. Then, the algorithm finds out which candidate episodes α ∈ Ck+1 are really

frequent by forming the set mo(α). If α is generated from α1 and α2, mo(α) is

determined by performing a temporal join between mo(α1) and mo(α2).

After all frequent episodes have been found, the information about their

minimal occurrences can be used to generate episode rules. For an episode

rule β[win1] → α[win2], its confidence can be computed as follows. For each

[ts, te) ∈ mo(β) with te − ts ≤ win1, locate the minimum occurrence [us, ue) of

α such that ts ≤ us and [us, ue) is the first interval in mo(α) with this property.

Then check whether ue − us ≤ win2.

2.3.3 Extensions of Episode Model

Several studies have been proposed to extend the episode model described ear-

lier. Mannila and Toivonen (1996) extend MINEPI for discovering generalized

episodes, which allow events in the episodes to have attributes. Casas-Garriga

(2003) proposes an episode model that allows the user to choose the maximum

distance between events in the episode, instead of the fixed window width as de-

scribed earlier. The algorithm called Seq-Ready&Go automatically adjusts the

window width based on the length of the episodes being counted. However, Meger

and Rigotti (2004) have shown that this algorithm was not complete, and they

have proposed a new algorithm, WinMiner, to discover episode rules under the

maximum gap constraint and find, for each rule, the window size corresponding

to a local maximum of confidence.

Harms et al. (2001) propose the Gen-REAR algorithm to generate represen-

tative episodal association rules (REAR) from a set of frequent closed episodes,

which are generated by extending WINEPI. Later, the authors present the MOW-

CATL approach for generating episodal association rules using minimal occur-
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rences with constraint and time lag (MOWCATL) (Harms, Deogun & Tadesse

2002, Harms & Deogun 2004). Instead of generating episode rules from frequent

episodes, MOWCATL directly mines rules with an antecedent part and a conse-

quent part separated by a time lag. This way the rules can always be used for

prediction and separate maximum length constraints can be specified for both

parts of the rules. The difference between Gen-REAR and MOWCATL is that

Gen-REAR uses a sliding window approach, and does not allow for a delay in

time embedded within the relationships.

Mooney and Roddick (2004) propose the discovery of interacting episodes.

In order to increase the expressiveness of the resulting episodes, episodes are

combined with a subset of Allen’s relations (Allen 1983) to express temporal

relations among episodes. Initially, frequent episodes are mined, then interacting

episodes are searched within each episode. Interacting episodes are subepisodes

of the episode for which relations during, overlaps, or meets holds.

Padmanabhan & Tuzhilin (1996) extend the work of Mannila et al. (1995)

to find temporal logic patterns in temporal databases. It proposes the use of

first-order temporal logic (FOTL), with operators like Since, Until, Next, Always,

Sometimes, Before, After, and While, to express patterns in temporal databases.

As an example, a serial episode a → b → c can be expressed in temporal logic as

a before b and b before c.

A graph-based approach to locate episode occurrences in a sequence has been

described by Trońıcek (2001). The idea is to employ a preprocessing step to build

a finite automaton called DASG (Directed Acyclic Subsequence Graph), which

accepts a string if and only if it is a subsequence of the given input sequence.

This work is more suited for search and retrieval applications than for discovery

of all frequent episodes.

Laxman et al. (2004) propose two new episode counting methods, namely, the

non-overlapped occurrence count and the non-interleaved occurrence count, which

are based on directly counting some suitable subset of occurrences of episodes.
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These two methods are automata-based counting schemes and have the same

complexity as the windows-based counting of WINEPI (Mannila et al. 1997).

2.3.4 Mining Periodic Patterns

A periodic pattern is an ordered list of events which repeats itself in the sequence

of events. Two types of periodic patterns are full periodic patterns and partial

periodic patterns. In full periodic patterns, every point in time contributes to

the periodicity. For example, all the days in the year approximately contribute

to the season cycle of the year. In partial periodic patterns only some of the time

periods may exhibit periodic patterns. For example, a pattern stating that the

prices of a specific stock are high every Friday and low every Tuesday is a partial

periodic pattern, since it does not describe any regularity for the other week days

(Aref et al. 2004). Cyclic association rules (see Chapter 2.1.3) are partial periodic

patterns with perfect periodicity in the sense that each pattern reoccurs in every

cycle, with 100% confidence (Han, Dong & Yin 1999).

In temporal data mining, most studies in mining periodic patterns have con-

centrated on discovering partial periodic patterns. The first approach for mining

partial periodic patterns in symbolic time series is described by Han et al. (1998).

They present an Apriori-like algorithm for mining partial periodic patterns and

use the pattern confidence to measure how significant periodic patterns are. The

confidence of a pattern is defined as the occurrence count of the pattern over

the maximum number of periods of the pattern length contained in the input

sequence. For example, the pattern a ∗ b is a partial periodic pattern of length

3. The length of the pattern is usually called the period of the pattern. The wild

card symbol ‘*’ is introduced to allow partial periodicity. It denotes the ‘do not

care’ positions in a pattern, which can match any single set of symbols. Given a

sequence of symbols a{b, c}baebaced, the occurrence count of a ∗ b is 2, and its

confidence is 2
3
, where 3 is the maximum number of periods of length 3.

It is pointed out by Han et al. (1999) that the Apriori property used in the
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earlier algorithm is not as effective for mining partial periodic patterns as it is

for mining frequent itemsets. This is because in the frequent itemset mining the

number of frequent k-itemsets falls quickly as k increases, while in the partial

periodic mining the number of frequent k-patterns shrinks slowly with increasing

k. Therefore, based on the so called max-subpattern hit set property, Han et al.

(1999) present a more efficient method for mining partial periodic patterns. An

incremental version of this method is proposed by Aref et al. (2004). Elfeky et

al. (2004) propose an algorithm for mining periodic patterns in a single pass of

the data.

Periodicity mining algorithms usually require the user to specify the length

of the period. To overcome this, Berberidis et al. (2002) have employed the Fast

Fourier Transform of binary vectors for each symbol to obtain candidates period

lengths, which then can be used by the algorithm of Han et al. (1999).

All of the above studies consider only synchronous periodic patterns. Period-

icity may be occasionally disturbed due to some misses or skips in the sequence of

pattern occurrences. This happens when some random noise events get inserted

in between a sequence. Yang et al. (2000) propose to mine asynchronous periodic

patterns that have missing occurrences and whose occurrences may be shifted due

to disturbance. They introduce two parameters, namely min rep and max dis, to

specify the minimum number of repetitions that is required within each segment

of non-disrupted pattern occurrences and the maximum allowed disturbance be-

tween any two successive valid segments. The idea is that a pattern needs to

repeat itself at least a certain number (min rep) of times to demonstrate its sig-

nificance and periodicity. However, the disturbance between two valid segments

has to be within some reasonable bound, that is, max dis.

Huang and Chang (2004a) propose a general model for mining asynchronous

periodic patterns where each valid segment is required to be of maximum and

at least min rep contiguous matches of the pattern. They also propose three

algorithms to discover the patterns, namely, SPMiner, MPMiner, and CPMiner.
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Later, the PTV (Progressive Timelist-based Verification) algorithm is proposed

to improve the performance of SPMiner and MPMiner (Huang & Chang 2004b).

Yang et al. (2001) consider the mining of surprising periodic patterns from a

sequence of events. Instead of using the number occurrences, they use informa-

tion gain metric to measure the degree of surprise (or significance) of the patterns.

The goal is to search for patterns whose occurrence is significantly greater than

expectation. Then, the same authors extend the information gain measure to in-

clude a penalty for gaps between pattern occurrences (Yang, Wang & Yu 2002).

Recently, extensions for more robust pattern matching allowing random replace-

ment (Yang, Wang & Yu 2003) and meta patterns (Yang, Wang & Yu 2004) have

been proposed.

2.4 Summary

This chapter has provided a review of the discovery of temporal patterns from

point-based sequential data. The review has considered, in some detail, methods

for discovering temporal association rules, sequential patterns, frequent episodes,

and (partial) periodic patterns. This review serves as a foundation upon which

further research into discovering temporal rules from interval sequence data can be

based. Furthermore, as a result of research undertaken in the construction of this

review, a new type of rule called inter-transaction relative temporal association

rules has been proposed. The mining of relative temporal association rules is

presented in the next chapter (Chapter 3).



Chapter 3

Mining Relative Temporal

Association Rules

As mentioned in the previous chapter, due to its richer rule semantics, the prob-

lem of finding temporal association rules has become an important research topic

and is receiving a great deal of research interest. A short survey of temporal asso-

ciation rules is given together with an earlier discussion of this work in Winarko

and Roddick (2003).

However, with some notable exceptions, both classical (static) and currently

proposed temporal association rules express associations among items within the

same transaction. It would be interesting to find the rules that represent some

associative relationship among the field values from different transactions. Taking

medical data as an example, a rule can have the following form:

(abc)
<→ (de),

which is equivalent to an assertion that patients who have attributes (such as

symptoms) a, b and c are also likely to later have recorded attributes (such as

other symptoms or diagnoses) d and e. Attributes a, b and c and attributes d

and e are from different observations1. In this rule, the < annotation means that

1The terminology of transaction is replaced by that of observation as the former is barely

62
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a, b and c occur before d and e (á la the temporal constraints given by Allen,

Freksa and others (Allen 1983, Freksa 1992, Roddick & Mooney 2005)).

As stated by Lu et al. (1998), rules that represent associations among items

within the same transaction are called intra-transaction associations, while those

that represent associations among items from different transactions are called

inter-transaction associations. Sequential pattern discovery is considered intra-

transactional in nature because each sequence is treated as one transaction and

the mining process finds similarities among the sequences (Lu, Han & Feng 1998).

Apart from the other more obvious differences, the model proposed here differs

from the work on multi-dimensional inter-transaction mining (Lu et al. 1998,

Tung, Lu, Han & Feng 1999, Lu, Feng & Han 2000) in that this work is focused on

inter-transaction rule with the same client, object, customer, or patient identifier

Basing our work on the above ideas, a new type of rule, called inter-transaction

relative temporal association rules, can be proposed and in this chapter an algo-

rithm for mining them is described. The chapter is organized as follows. In

Section 3.1, the relative temporal association rule model is described. In Section

3.2, the algorithm for mining temporal relative association rules is introduced. A

performance study is presented in Section 3.3.

3.1 Model Description

In classical association rule, an itemset is defined as a non-empty set of items.

To distinguish the itemsets in the classical association from the itemsets in this

model, the itemsets in this model are termed relative itemsets. A relative itemset

has the form of l1 < l2 < · · · < ln, where each li is an itemset (j1 · · · jk). Without

loss of generality, this relative itemset can also be written as 〈l1 l2 . . . ln〉.

Given a database D of client observations, each observation consists of the fol-

lowing fields: client-id, observation-time, and the items present in the observation.

applicable for datasets containing medical and other data. However the two terms are broadly
interchangeable.
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Figure 3.1: Example database

Each client-id can have more than one observation with a different observation-

time. This chapter follows the convention of Agrawal and Srikant (1995) and uses

the term client sequence to refer to the list of observations, ordered by increasing

observation timestamp.

Consider the example database shown in Figure 3.1. In the left table, the

database contains a set of observations that have been sorted by observation

timestamp within the client-id. In the right table, the database is presented as a

set of client sequences. This dataset is used as a vehicle for describing the model.

Given a relative itemset l1 < l2 < · · · < ln and a client sequence 〈O1 O2 · · ·Om〉,

where Oi is the i-th observation and m ≥ n, the sequence contains the relative

itemset if there exist integer i1 < i2 < · · · < in such that l1 ⊆ Oi1 , l2 ⊆ Oi2 ,

. . . , ln ⊆ Oin . For example, a client sequence 〈(abd)(c)(dfg)(b)〉 contains a rela-

tive itemset (b) < (c) < (dg) because (b) ⊆ (abd), (c) ⊆ (c), and (dg) ⊆ (dfg).

However, this relative itemset is not contained in the 〈(c)(dg)(d)〉.

Given the database D, the support of a relative itemset is the fraction of all

sequences in D that contain the relative itemset. A relative itemset is frequent

in D if its support exceeds a given minimum support threshold minsup. As
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an example, given the minimum support minsup = 40%, the relative itemset

(c) < (dg) < (b) is frequent becuase it has the support of 50% (supported by

clients 2 and 4).

Although this observation dataset is similar to the one used for mining se-

quential patterns discussed in Agrawal and Srikant (1995), the rules generated

by the proposed model are different. In addition, the temporal nature of the rule

means that, unlike static rules, the same attribute can occur on both sides of the

rule. That is, in this model, it is possible to have the following rule:

(ab)
<→ (a) (3.1)

meaning that attributes a and b imply the continuation or re-occurrence of a in

later periods, while

(d)
>→ (cd) (3.2)

means that attribute d was often preceded by c and d in earlier time periods.

Finally, note that

(d)
>→ (c)

<→ (d) (3.3)

has a different semantics from Rule (3.2). In Rule (3.2) c and d must occur

in the same timestamp while in Rule (3.3) the items c and d occur in different

timestamps.

Formally, a relative temporal association rule, for the purposes of this work,

is one structured as follows:

X
temprel−→ Y, quals (3.4)

where X and Y are frequent relative itemsets, temprel is a temporal relation-

ship taken from, for example, those suggested by Allen (1983), Freksa (1992) and

others, and quals is some rule quality qualifications (such as support and con-

fidence). Based on the current definition of relative itemsets, the only possible
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temporal relationships are < and > (i.e. before and after, respectively), however

later work to accommodate intervals will change this to handle more advanced

constraints (see Chapter 5).

Furthermore, according to this definition, the rules can be used not only for

predicting the future (Rule (3.1)), but also for predicting the past (Rule (3.2)).

The important of predicting the past is illustrated in the following situation. If

we are interested in detecting a certain event B that we cannot measure directly,

it may manifest on other (measurable) events Ai that appear after the occurrence

of B. In such a case, a rule may be used to predict an event in the past (Höppner

2003).

As in mining classical association rules, two measures of relative temporal

association rules are: support and confidence. The support the rule is the support

of X temprel Y . The confidence of the rule is defined as:

conf(X
temprel−→ Y ) =

sup(X temprel Y )

sup(X)
(3.5)

Given a database D, the minimum support minsup and the minimum confidence

minconf , the rule X
temprel−→ Y holds in D if its support exceeds minsup and its

confidence exceeds minconf .

3.2 Mining Relative Temporal Association

Rules

This section discusses a method for mining relative temporal association rules and

in particular some issues and problems in the process. The problem of mining

temporal relative association rules can be decomposed into two subproblems:

finding all frequent relative itemsets and, for every frequent relative itemset,

generating the relative temporal association rules.
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3.2.1 Finding Frequent Relative Itemset

The algorithm to generate large relative itemsets consists of three steps: litemset

phase, transform phase, and relative itemset phase. These main steps are based

on the AprioriAll algorithm (Agrawal & Srikant 1995). Some modifications have

been made in the data structure in order to make the algorithm more efficient

(Bodon 2003).

Litemset Phase

This phase generates the set of all frequent itemsets within the same transaction

(intra-transaction). This can be done by using any available algorithms, such as

Apriori (Agrawal & Srikant 1994), or FP-growth (Han, Pei & Yin 2000), with

the exception that the definition of support is modified. In these non-temporal

algorithms, the support of an itemset is defined as the fraction of observations in

which an itemset is present. Here, the support for an itemset is defined as the

fraction of clients in which an itemset appears (at any time). For example, even

though the itemset (b) appears in 3 observations (Figure 3.1), its support is said

to be 2
4

as it appears only in the second and fourth clients. Given a minimum

support of 40%, a set of frequent itemsets that can be generated from the example

database is shown in Figure 3.2(a).

Transform Phase

In this phase, each observation is replaced by the set of all frequent itemsets con-

tained in that observation. Before the transform phase takes place, for efficiency,

the set of frequent itemsets generated in previous phase is first mapped into a

set of integers, as shown in Figure 3.2(a). The transformation process can be

outlined as follows.

First, all non-frequent items are removed from the observation. As an ex-

ample, the first observation of the second client, (abd), contains a non-frequent
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(b) Transformed database resulting from the transform phase

Figure 3.2: Output of each phase of the algorithm

item a, so it must be removed from the observation, resulting in the observation

(bd). If this removal creates an empty observation, then this observation is not

retained in the transformed client sequence. Consider the first observation of the

first client (Figure 3.1). After the non-frequent item h is deleted, this observation

becomes empty, thus it is dropped from the transformed client sequence.

Next, any client sequence that currently contains only one observation is

dropped from the transformed sequence. The client sequence with one obser-

vation could only produce a frequent relative itemset of size 1, which has been

found during the litemset phase. Therefore, the first and the third client sequences

are dropped from the transformed sequence. However, they still contribute to the
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count of the total number of clients.

Finally, each remaining observation is replaced by the set of all frequent item-

sets contained in that observation, then mapped into the set of integers repre-

senting frequent itemsets. As an example, the observation (dg) is replaced with

{(d), (g), (dg)}, and then mapped into {3, 4, 5}, where integers 3, 4, and 5 rep-

resent frequent itemsets (d), (g), and (dg), respectively. The observation (bd) is

replaced with {(b), (d)} because an itemset (bd) is not frequent, then {(b), (d)} is

mapped into {1, 3}. Given an example database D in the Figure 3.1, the trans-

formed database DT is shown in Figure 3.2(b). In the rest of this chapter, each

integer value representing a frequent itemset is called an item.

Relative Itemset Phase

This phase generates frequent relative itemsets (inter-transaction frequent item-

sets) from the transformed database DT . The algorithm is based on the Apriori

algorithm and is shown in Algorithm 3.1. In the algorithm, Fk is a set of frequent

relative itemsets of size k and Ck is a set of candidate relative itemset of size

k. The F1 is initialized by using the set of frequent itemsets generated in the

litemset phase, that is, F1 = {〈1〉, 〈2〉, 〈3〉, 〈4〉, 〈5〉}.

The candidate generation to obtain Ck is performed by joining Fk−1. Let p

and q be frequent relative itemsets of size (k−1) in Fk−1, p and q can be joined if

their first (k− 2) items are in common. The resulting candidate relative itemsets

are p[1] · · · p[k−2]p[k−1]q[k−1] and p[1] · · · p[k−2]q[k−1]p[k−1]. For example,

the relative itemset 〈2 1〉 and 〈2 3〉 in F2 (Figure 3.2(c)) can be joined to create

the candidates 〈2 1 3〉 and 〈2 3 1〉.

After this joining process, the pruning procedure will delete all candidate

c ∈ Ck such that c contains a relative itemset of size (k-1) that is not in Fk−1.

For example, the candidate relative itemset 〈2 1 3〉 is deleted from C3 because it

contains a relative itemset 〈1 3〉 that is not in F2. The pruning procedure cannot

be applied during the generation of C2. Therefore, if the size of F1 is |F1|, the
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1: F1 = {Frequent relative itemset of size 1};
2: for (k = 2; Fk−1 6= ∅; k + +) do
3: Generate Ck from Fk−1;
4: for each client sequence s in DT do
5: Increment the count of all candidate in Ck that are contained in s;
6: end for
7: Fk = Candidate in Ck with minimum support;
8: end for

Algorithm 3.1: Pseudo code for Generating frequent relative itemsets

join process will produce C2 whose size is equal to |F1| ∗ |F1|.

To improve the performance of the algorithm, especially in dealing with the

processing of C2, the algorithm is modified using the methods suggested in Bodon

(2003). First, to reduce the memory usage, C2 is store in a two-dimensional array,

instead of hash tree. Then, to accelerate the search, the support counting is done

by pairing method. Consider a client sequence 〈O1 O2 · · ·On〉 in the transformed

database. Each item from an observation Oi is combined with each item from an

observation Oj, where i < j, i = 1, 2, · · · , (n− 1) and j = 2, 3, · · · , n. Each time

a pair of items (k, l) is found, the support of a candidate relative litemset 〈k l〉

is increased by one. For example, given a client sequence 〈{2} {4, 5} {3}〉, the

resulting combinations are (2, 4), (2, 5), (2, 3), (4, 3), and (5, 3).

3.2.2 Generating Relative Temporal Association Rules

After all frequent relative itemsets have been found, relative temporal association

rules can be generated from them using the following procedure. For a frequent

relative itemset α = α1 < α2 · · · < αn, α is divided into two parts, αleft and

αright, such that αleft = α1 < α2 < · · · < αi and αright = αi+1 < αi+2 < · · · < αn,

where i = 1, 2, · · · (n− 1). Each pair of αleft and αright can generate two possible

rules: αleft
<→ αright or αright

>→ αleft.

This procedure is illustrated using the following example. Consider a frequent

relative itemset α = 〈2 5 1〉, representing the frequent relative itemset α = (c) <

(dg) < (b), with the support of 50% in Figure 3.2(c). This frequent relative
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itemset produces two pairs of αleft and αright:

αleft = (c) < (dg) and αright = (b) (3.6)

and

αleft = (c) and αright = (dg) < (b) (3.7)

A pair in (3.6) generate two possible rules: (c) < (dg)
<→ (b) and (b)

>→ (c) < (dg).

The first rule has the confidence of conf = sup(c<dg<b)
sup(c<dg)

= 2
2

= 100%. Similarly,

the second rule also has the confidence of 100%. Given a minimum confidence

minconf = 75%, both rules hold in the database. On the other hand, a pair in

(3.7) generate two possible rules: (c)
<→ (dg) < (b) and (dg) < (b)

>→ (c), with

the confidences of 50% and 100%, respectively. As a result, only the second rule

holds.

3.3 Evaluation

To evaluate the proposed method, the algorithm to generate frequent relative

itemsets was implemented using Java language. Two sets of experiments were

conducted on a 2.4GHz, 512 Mb PC running Windows 2000 Professional. The

experiments were run using synthetic data. The method to generate synthetic

observations is described in Agrawal and Srikant (1994). The input parameters

are shown in Table 3.1. Eight datasets were generated by setting the values of N

= 1000, |L| = 2000, |D| = 10K, 25K, 50K, 75K, 100K, and varying the values of

|C|, |T |, and |I|. The eight datasets are shown in Table 3.2.

The first set of experiments was to evaluate the performance of the algorithm

by measuring its processing times and counting the number of frequent relative

itemsets generated by the algorithm. The algorithm was run on the first four

datasets (Table 3.2) by varying the values of minimum support. Figure 3.3 shows

the execution times of the algorithm as the minimum support threshold is de-

creased from 10% to 2%. When the minimum support is high, the execution time
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Table 3.1: Parameters

|D| Number of clients
|C| Average number of observation per client
|T | Average number of items per observation
|I| Average size of a frequent itemset
|L| Number of frequent itemsets to be used
N Number of items

Table 3.2: Eight datasets for the experiments

|C| |T | |I| # observations
D10K-C5-T5-I2 5 5 2 54,499
D10K-C5-T5-I3 5 5 3 54,722
D10K-C10-T3-I2 10 3 2 104,643
D10K-C10-T3-I3 10 3 3 105,589
D25K-C5-T5-I3 5 5 3 137,582
D50K-C5-T5-I3 5 5 3 275,697
D75K-C5-T5-I3 5 5 3 411,980
D100K-C5-T5-I3 5 5 3 550,011

is low as only limited number of frequent relative itemsets are produced, as shown

in Figure 3.4.

The second set of experiments was performed to evaluate the scalability of the

algorithm. It was done by running the algorithm on different sizes of databases,

i.e., |D| = 10K, 25K, 50K, 75K, and 100K, and varying the values of minimum

supports. The values of other parameters were kept the same (see Table 3.2). It

can be seen from Figure 3.5 that the algorithm has linear scalability with the size

of databases.

It is also shown in Figure 3.6 the processing time required by each phase of

the algorithm when |D| = 100K and the minimum support is varied from 10%

to 2%. It can be seen from the figure that the biggest portion of the processing

time is spent during the litemset phase of the algorithm. Replacing the Apriori-

based algorithm used in this phase with more efficient algorithm would make the

algorithm running faster.
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Figure 3.3: Effect of decreasing minimum support on the processing time

Figure 3.4: Effect of decreasing minimum support on the number of patterns
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Figure 3.5: Effect of increasing database size on the processing time

Figure 3.6: Processing time required by each phase of the algorithm
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3.4 Summary

This chapter has proposed a new type of rules called inter-transaction relative

temporal association rules. In order to discover the rules, a set of frequent rel-

ative itemsets are first generated using the algorithm similar to the AprioriAll

algorithm. Some modifications to the AprioriAll algorithm have been introduced

to improve the performance of the algorithm. Then, the rules are generated from

the set of frequent relative itemsets. The experimental results showed that the

algorithm is operational. However, this work also shows that basing the algo-

rithm on more efficient algorithms, such as the ideas contained in the FP-Growth

algorithm could be used instead. Other ideas of improving Apriori-based algo-

rithms proposed by Bodon (2003) can also be used, for example, using trie data

structure instead of hash-tree, and brave candidate generation.

The idea of inter-transaction relative temporal association rules has under-

lain the introduction of observation intervals which would yield a richer relative

temporal constraint set. As a result, the discovery of richer temporal association

rules has been proposed in this thesis. The data model used for the discovery is

a database containing a set of interval sequences, where each interval sequence is

a list of intervals during which the observation is valid. This topic is presented

in Chapter 5.



Chapter 4

Review of Mining Time Interval

Patterns

Chapter 2 has presented numerous studies in the temporal data mining task

of pattern discovery. These studies concentrate on discovering temporal patterns

from point-based sequential data, where events in the sequence are instantaneous.

According to Böhlen et al. (1998), in many applications events are not instanta-

neous; they instead occur over a time interval. For instance, consider a database

application in which a data item is locked and then unlocked sometime later.

Instead of treating the lock and unlock operations as two discrete events, it can

be advantageous to interpret them together as a single interval event that better

captures the significance of placing, holding and releasing the lock. When there

are several such events, a series of interval events is formed (Villafane et al. 2000).

Because events are extended in time, different events may overlap in time and

interact. Temporal data mining methods can be used to extract patterns from

these interacting interval events.

Several applications exist where the discovery of temporal relations among

interval events can provide insight about the operation of the system in question.

Consider a sign language database that contains useful linguistic information on a

variety of grammatical and syntactic structures, as well as manual and non verbal

76
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fields. Detecting relations between the above structures and fields could be useful

to the linguist and may help them discover new type of relations they have not

known before. Another application is in network monitoring. Multiple types of

events occurring over certain time periods can be stored in a log, and the goal

is to detect general temporal relations of these events that with high probability

would describe regular patterns in the network (Papapetrou et al. 2005). Other

application areas include analysis of weather data (Höppner 2001), muscle activity

(Mörchen et al. 2004), audio data (Mörchen & Ultsch 2004), and video data

(Mörchen 2006). Despite these facts, research on mining temporal patterns from

interval-based sequential data has received little attention.

This chapter reviews previous studies related to the discovery of temporal

patterns from interval-based sequential data. In this context, there are two types

of interval data models commonly used for the pattern discovery, namely, interval

sequence databases and a long sequence of intervals. While interval sequence

databases can be given naturally (e.g., medical patient data, insurance contract,

etc.), a long sequence of intervals is often obtained from converting numerical

time series into a symbolic interval sequence. Moreover, most temporal patterns

are formulated using Allen’s temporal interval relations.

This chapter is organised as follows. Section 4.1 discusses the source of interval

data. Section 4.2 describes temporal operators used to facilitate the formulation

of temporal patterns. Section 4.3 discusses the discovery of temporal patterns

from a long sequence of intervals, while Section 4.4 describes the discovery of

temporal patterns from interval sequence databases.

4.1 Sources of Interval Data

Time series are one of the main sources of interval sequence data. Since many

pattern discovery algorithms require symbolic interval sequences and cannot be

applied to time series data, the time series are usually first segmented and trans-
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formed into sequences of labeled intervals. The labels denote a property in the

original series within the associated time interval. Then from the sequence of la-

beled intervals, the algorithms discover frequent temporal patterns. This process

is illustrated in Figure 4.1.

multivariate time series labeled interval sequence quantitative temporal patterns

abstraction mining alg

Figure 4.1: Transform time series into a sequence of intervals (Höppner, 2003)

Several methods for converting a continuous time series into a series of la-

beled intervals have been proposed. In general, there are two approaches for

partitioning time series, supervised and unsupervised approaches (Höppner 2002,

Höppner 2003). In the supervised approach, the attributes of interest are de-

fined a priori and labels from this given set are assigned to portions of the time

series. In other words, in the supervised approach, the shapes of interest are de-

termined in advance. For non-zero length of time interval, there are seven basic

shapes for describing local trends in a function f , corresponding to the possi-

ble combination of positive/zero/negative first and second derivatives, f ′ and f ′′

(Höppner 2002, Höppner 2003). These seven basic shape descriptors are constant,

linearly increasing, linearly decreasing, convexly increasing, convexly decreasing,

concavely increasing, and concavely decreasing, as shown in Figure 4.2. If these

basic shapes are used to describe the time series, the series can be divided into

subsequences by estimating the first and second derivatives via differencing. The

main problem with this approach is how to distinguish noise from significant fea-

tures. Noise makes the series oscillate around the true profile, and introduces a

large number of tiny segments and local extrema.

There are at least two methods to deal with noise. The first method uses

function approximation techniques and extracts the description of the time series

from the approximating function, instead of the original series. In this method,
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Figure 4.2: Seven basic shapes (Höppner, 2003)

the problem of handling noise is taken care of by the applied approximation

techniques. The second method uses smoothing techniques to get more robust

estimates of the first and second derivatives. In this case, the handling of noise

corresponds to selecting an appropriate smoothing filter.

Figure 4.3 shows the partitioning of time series (weather data) into a sequence

of labeled intervals using predefined labels (Höppner 2001). The kernel smoothing

(Ramsay & Silverman 1997) has been applied to compensate the noise and to get

more robust estimates of the first and second derivatives. Then, the smoothed

series are segmented into highly increasing, increasing, level, decreasing, and

highly decreasing segments.

On the other hand, in the unsupervised approach there is no such set of labels

given in advance. The set of labels has to be derived from the data. This can

be done by identifying similar parts in the time series via clustering. Clustering

is usually used to partition data entities such that similar data objects belong

to the same group and dissimilar data objects belong to different groups. In

this approach, small portions of time series can be considered as data objects,
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highly inc.
increasing
level
decreasing
highly dec.

Time series

Interval sequence
time

Figure 4.3: Example of partitioning time series using supervised approach
(Höppner, 2001)

and every cluster can be considered as an inductively derived label for a group

of similar portions. However, traditional clustering techniques partition a set of

attribute vectors rather than portions of a time series. Therefore, the problem is

how to represent segments of the original time series as new data entities that is

more appropriate for traditional clustering methods.

There are four methods for learning shapes of time series by clustering (Höppner

2002, Höppner 2003). First, in clustering of embedded subsequences, a window of

constant width is slid along the series. The content of each window is trans-

formed into a vector of observations. Clustering is performed on this collection of

subsequences (Das et al. 1998, Karimi & Hamilton 2000). However, Keogh et al.

(2003) have claimed that clustering of time series subsequences is meaningless.

This is because the output of subsequence time series clustering does not depend

on input, and is therefore meaningless. Second, in clustering of embedded models,

an abstract representation of the series is embedded in a vector, and clustering is

performed on these ‘embedded models’ rather than the embedded subsequences.

The third method, clustering by warping costs, does not transform the time series

into another representation, but defines an n×n symmetric dissimilarity matrix,

where n is the number of series. An element (i, j) of the matrix denotes the
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Figure 4.4: Example of partitioning time series using unsupervised approach
(Höppner, 2003)

warping cost of warping time series i to series j. Then relational clustering algo-

rithms are applied to cluster the sequences into homogeneous groups. The fourth

method, clustering using Markov models, is to learn a Hidden Markov model

(HMM) or Markov chain for each subsequence and to cluster via the resulting

probability models.

As an example, Figure 4.4 illustrates the procedure of segmenting time series

into labeled interval sequence using clustering of embedded sequences. Given

the series, a window of width 3 is a contiguous subsequence consisting of three

consecutive values. By sliding the window along the series, a set of windows

(subsequences) of width 3 is formed. This set is then clustered, and the resulting

clusters are shown on the right. The labels for each window is given below the

series. A labeled interval sequence can be formed by concatenating all consecutive

identical labels. It can be seen from the figure that the resulting sequence contains

eight intervals.

Sometimes no abstraction step is required because the data is already in in-

terval event form, for example, diseases of a patient, insurance contract, and

period in which a certain DNA sequence occurs. This is the type of data ideally

stored in temporal databases, which store temporal data, i.e., data that is time-

dependent (time varying). Consider medical data consisting of patients’ history,

in which each patient’s history is described by a series of values, such as the

body temperature, cholesterol level, blood pressure etc. Each of these values is

associated with an interval representing a period of time during which the value

holds. Similar examples can be found in many areas that rely on the obser-
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vation of evolutionary processes, such as environmental studies, economics and

many natural sciences. Even though temporal databases support the temporal

data mining process, they are not essential for performing temporal data mining

(Roddick & Spiliopoulou 2002). To date, algorithms for mining such interval

data have been developed around the simpler notion of a flat file data (Kam &

Fu 2000, Papapetrou et al. 2005, Winarko & Roddick 2005).

It is also possible to obtain interval data from point-based data, for example,

by aggregating similar events to intervals of equal events, and then applying

interval event mining to the new data. This approach is taken by Lee et al.

(2002) who present a new data mining technique to discover temporal rules from

interval data originated from point-based data. A pre-processing algorithm is

used to summarise data with time points and generalise it into interval data.

A temporal relation algorithm is then used to discover temporal rules among

transactions from interval data by extending the AprioriAll algorithm (Agrawal

& Srikant 1995).

4.2 Time Interval Operators

Several interval operators have been proposed in the literature to describe the

relationships among intervals. Allen (1983) introduces temporal relationships

between intervals and operators for reasoning about relations between intervals.

For any pair of intervals there are 13 possible relationships, as illustrated in Figure

4.5. As shown in the figure, a relationship B meets A means that an interval B

terminates at the same point in time at which an interval A starts. Its inverse

relationship is A is-met-by B.

The Allen relations have been widely used in research in data modelling (e.g.

temporal data modelling and temporal databases), temporal or spatial reasoning,

as well as data mining. In temporal reasoning, research using Allen’s interval logic

has been concerned with finding tractable sub-classes of the algebra (Nebel &
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Bürckert 1995, Drakengren & Jonsson 1997, Krokhin, Jeavons & Jonsson 2003).

In spatial reasoning, they have been extended to describe spatial relations in 2-

or 3-dimensional space (Guesgen 1989). In data mining, they have been used

for the formulation of temporal patterns involving intervals (see Sections 4.3 and

4.4).

B before A

B meets A

B overlaps A

B is-finished-by A

B contains A

B starts A

B equals A

B is-started-by A

B during A

B finishes A

B is-overlapped-by A

B is-met-by A
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A after B
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Figure 4.5: Allen’s interval relationships

Freksa (1992) has generalised Allen’s work by introducing semi-intervals,

with the following 11 operators: older (ol), younger (yo), head to head (hh),

survives (sv), survived by (sb), tail to tail (tt), precedes (pr), succeeds (sd),

contemporary of (ct), born before death of (bd), and died after birth of (db).

The power of such a generalisation lies in the fact that if either one or the other

is not known some inference is often still possible, sometimes without loss of

information. For example, although information may be known about the date

of birth or death of a person but not both, this does not prevent some inferences

being made regarding events in history.

Freksa has also introduced the notion of ‘conceptual neighbourhoods’ to ac-

commodate coarse knowledge. Two relations between pairs of events are con-

ceptual neighbour if they can be directly transformed into one another by con-

tinuously deforming (i.e., shortening, lengthening, or moving) the events. For

example, the relations before and meets are conceptual neighbours since they

can be transformed into one another by lengthening one of the events. However,
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the relations before and overlaps are not conceptual neighbours since transfor-

mation by continuous deformation can only take place via the relation meets. A

conceptual neighbourhood is a set of relations between pairs of events that are

path-connected through conceptual neighbour relations. Based on this concept,

Allen’s thirteen relations can be arranged according to their conceptual neigh-

bourhood.

Roddick and Mooney (2005) have combined Allen’s interval relations with the

five point-interval relations of Vilain (1982) considering the relative positions of

the interval midpoints. A total of 49 relations is obtained, e.g., nine different

versions of overlaps. Some of the different overlaps relations can be interpreted

as small, medium, or largely overlapping intervals. The motivation is to handle

data with coarse time stamps and data from streams with arbitrary local order.

The authors also describe the relation between the models of Allen and Freksa

and the respective extension to midpoints and/or intervals of equal durations.

As was mentioned in the previous section, interval data can be obtained by

abstracting time series. It is pointed out by Mörchen (2006) that Allen’s rela-

tions have severe disadvantages when used for pattern discovery from interval

data obtained from time series. One of the disadvantages is that symbolic in-

terval sequences obtained from numeric time series inherit the noise existing in

the original data. The interval boundaries gained from pre-processing steps like

discretisation of values or segmentation are subject to noise in the measurements.

Such time points should thus be considered approximate. Using Allen’s relations

to formulate patterns, such slight variations of interval boundaries can create

fragmented patterns that describe the same intuitive relationship between inter-

vals with different operators. This is illustrated in Figure 4.6 in which three pairs

of almost equal intervals have different relationships. Any pattern using one of

Allen’s relations that requires equality of two interval boundaries can be altered

by changing one boundary by a small time unit only. To overcome this drawback,

one approach is to relax the strictness of Allen’s relations by using a threshold

to consider temporally close interval boundaries equal (Aiello, Monz, Todoran &
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Worring 2002).

A
B

A
B

A
B

(a) A overlaps B (b) A during B (c) A finishes B 

Figure 4.6: Three relationships resulting from two almost equal intervals

In another approach, Ultsch (2004) defines the Unification-based Temporal

Grammar (UTG) that contains an approximate version of Allen’s equals operator

called more or less simultaneous. The main elements of the UTG are Events

and Sequences. The Events combine several more or less simultaneous intervals,

a robust version of Allen’s equals. The start and end points of the intervals

are not required to be exactly equal; they only need to be within a small time

interval. The number of intervals in an Event is restricted to the dimensionality

of the interval series. The Sequences describe an ordering of several Events with

immediately followed by or followed by after at most t time units. A further

generalisation, called coincides, is proposed by dropping the constraint on the

boundary points, only requiring some overlap between the intervals (Mörchen &

Ultsch 2004). The concept of coincidence describes the intersection of several

intervals. This is equivalent to the disjunction of Allen’s overlaps, starts, during,

finishes, the four corresponding inverses, and equals. The coincides operator

represents this temporal concept.

Mörchen (2006) proposes the TSKR (Time Series Knowledge Representation),

which extends the UTG by allowing an arbitrary number of coinciding parts of

intervals in contrast to the fixed number of complete intervals within Events,

and by relaxing the total order in Sequences to a partial order. The TSKR is a

hierarchical language describing the temporal concepts of duration, coincidence,

and partial order in an interval time series. Its basic primitives are labeled interval

called Tones, representing duration. Simultaneously occurring Tones form Chord,

representing coincidence. Several Chords connected with a partial order form a

Phrase.
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4.3 Mining Patterns from a Long Sequence of

Intervals

Only a few previous studies consider the discovery of temporal patterns from a

long sequence of intervals, which might originate from multivariate time series.

Villafane et al. (2000) propose a technique to discover containment relationships

from interval time series. A containment lattice is constructed from the intervals,

and then the containment relationships are discovered with the Growing Snake

Traversal method. Hoppner (2001) mines temporal rules expressed with Allen’s

interval logic and a sliding window to restrict the pattern length. The patterns

are mined with an Apriori-like algorithm. In other work, temporal patterns are

extracted from a symbolic interval sequence obtained from multivariate time series

and formulated using the UTG (Guimarães & Ultsch 1999, Mörchen et al. 2004,

Mörchen & Ultsch 2004). In Mörchen (2006) the patterns are expressed using

the TSKR.

This section describes in more detail the temporal pattern discovery frame-

work proposed by Höppner (2001), which generalises the discovery of episodes in

event sequences (Mannila et al. 1997) to interval sequences.

Let S denote the set of all possible states (labels). A state interval (b, s, f)

denotes a state s ∈ S holds during a period of time [b, f)1, where b is the start-

time and f is the end-time, when the state no longer holds. A state sequence on

S is a series of triples defining state intervals

(b1, s1, f1), (b2, s2, f2), (b3, s3, f3), (b4, s4, f4), · · ·

where bi ≤ bi+1 and bi < fi hold.

This model uses Allen’s temporal interval logic to describe the relationships

between state intervals. Given n state intervals (bi, si, fi), 1 ≤ i ≤ n, a temporal

pattern of size n is a pair (s, M), where s : {1, . . . , n} → S maps index i to the

1It is assumed that the begin time is inclusive but the end time is not.
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corresponding state, and M is an n×n matrix whose elements M [i, j] denote the

relationship between intervals [bi, fi) and [bj, fj). The size of a temporal pattern

α is the number of intervals in α, denoted by dim(α). If the size of α is n, then

α is called a n-pattern.

Many state sequences map to the same temporal pattern. These sequences

are called instances of the pattern. A temporal pattern has no specific temporal

extensions because it has been abstracted from the time intervals given in a

specific sequence. However, the pattern instances themselves do have a temporal

extension. Figure 4.7 shows two temporal patterns with their corresponding state

sequences. As depicted in the figure, the value of M [i, j] is always the inverse of

that of M [j, i].

time
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B

A

B

C

time

State interval sequences:

Temporal patterns:

=oi

o=

BA

A

B =aa

b=oi

bo=

CBA
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B
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Figure 4.7: Example of temporal patterns

A temporal pattern α = (sα, Mα) is a subpattern of β = (sβ, Mβ), denoted

by α v β, if dim(sα, Mα) ≤ dim(sβ, Mβ) and there is an embedding (injective

mapping) π : {1, . . ., dim(sα, Mα)} → {1, . . ., dim(sβ, Mβ)} such that

∀i, j ∈ {1, . . ., dim(sα, Mα)}:

sα(i) = sβ(π(i)) ∧Mα[i, j] = Mβ[π(i), π(j)]

In simple terms, a temporal pattern α is a subpattern of β if α can be obtained

by removing some states (and the corresponding relationships) from β. Consider

the 2-pattern and 3-pattern in the Figure 4.7. The first pattern is a subpattern
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of the second because the first pattern can be obtained by removing the state C

and its corresponding relationships (with A and B) from the second.

To simplify the pattern notation, the model uses the so called normalized

temporal patterns. The basic idea is to order the state intervals in time with in-

creasing index. Given a state sequence, sorting the state intervals in the sequence

lexicographically (by the start time, end time, and state) results in a normalized

pattern. Let (bi, si, fi) and (bj, sj, fj) be any two state intervals in the pattern in-

stance. If the start times of both state intervals are different, the ordering is based

on the start times, and the resulting relation between (bi, fi) and (bj, fj) is before,

meets, overlaps, is-finished-by, or contains (See Figure 4.5). If the start times

of both intervals are equal and the end times are different, the ordering is based

on the end times, and the possible relation is starts. If (bi, fi) and (bj, fj) are

identical, the ordering is based on the states (alphabetically, si < sj or sj < si),

and the relation is equals. Both temporal patterns in Figure 4.7 are already in

the normalized form.

As in the discovery of episodes (see Chapter 2.3.2), given a long sequence of

intervals, a sliding window is used to restrict the pattern length. The patterns are

considered interesting if they can be observed within this window. The support of

a pattern α, denoted by sup(α), is defined as the total time in which the pattern

can be observed within the sliding window. A pattern is called frequent if its

support exceeds a threshold minsup.

The task is to discover all frequent (normalized) temporal patterns from a

single sequence of state intervals. The algorithm for the discovery of temporal

patterns is based on the Apriori algorithm (Agrawal & Srikant 1994), extended to

deal with a sequence of intervals. The algorithm requires several passes over the

input sequence. The first pass over the sequence counts the support of every single

state (also called candidate 1-patterns), and generates a set of frequent 1-patterns.

This set is then used to create candidate 2-patterns, and by determining their

supports (using the second pass over the sequence) the frequent 2-patterns are
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found. Analogously, these frequent 2-patterns are used to first obtain candidate

3-patterns and then using the third pass the frequent 3-patterns are found, and

so on. This procedure is repeated until no more frequent patterns can be found.

To generate a candidate (k+1)-patterns, the algorithm joins any two frequent

k-patterns that share a common (k − 1)-pattern as prefix. As an example, the

two 2-patterns (A meets B) and (A meets C) share the primitive 1-pattern A as a

common prefix. Therefore, both can be joined to generate candidate 3-patterns.

To obtain a candidate 3-pattern, the missing relationship between B and C has

to be determined. The law of transitivity for interval relations (Allen 1983)

shows that the possible set of interval relations is {is-started-by, equals, starts}.

In normalized form, only two out of these three possible relationships remain,

that is, {equals, starts}. In addition to the pruning method based on the law of

transitivity, the pruning technique that is used for the discovery of association

rules (Agrawal & Srikant 1994) can still be applied to temporal patterns, because

the property that every k-subpattern of a (k+1)-candidate must be frequent also

holds in this case.

After all frequent temporal patterns have been found, the rule of the form

X → Y can be constructed from every pair frequent patterns X and Y , with

X v Y . The confidence of the rule is conf(X → Y ) = sup(Y )
sup(X)

.

4.4 Mining Patterns from Interval

Sequence Databases

This section discusses the discovery of temporal patterns from interval sequence

databases proposed by Kam and Fu (2000) and Papapetrou et al. (2005).

Kam and Fu (2001) have proposed A1 temporal patterns to represent re-

lationships between intervals found in a set of interval sequences. Let E =

〈E1, E2, . . . , En〉 be an ordered set of event intervals, called event interval se-

quence (interval sequence for short). Each event interval Ei is a triple (bi, ei, fi),
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where ei is an event type (label), bi is the event start time, and fi is the end time.

This work requires that intervals in the interval sequence are ordered by the end

times. As an example, an interval sequence consisting of five intervals in Fig-

ure 4.8 is written as E = 〈(1, A, 8), (8, C, 15), (3, B, 19), (23, C, 37)〉. A database

D = {E1, E2, · · · , Ek} is a set of interval sequences.

time

A
B

C C

1 83 15 19 23 37

Figure 4.8: Example of an interval sequence

Given an interval sequence, A1 temporal patterns are formulated using Allen’s

interval relations and have the following form:

(. . . ((A1 rel1 A2) rel2 A3) . . . relk−1 Ak),

where Ai is an event type and reli is a temporal relation between intervals as-

sociated with Ai and Ai+1. Since the sequence is ordered by the end times, the

possible set of relations is {before, equals, meets, overlaps, during, starts, fin-

ishes}. The size of a pattern is the number of events in the pattern. A pattern

with the size k is called the k-pattern. A1 patterns only allow the concatenation

of temporal relations on the right hand side. For example, for the sequence shown

in Figure 4.8, the resulting A1 pattern is ‘(((A meets C) overlaps B) before C)’

The support of an A1 pattern α is the fraction of all interval sequences in the

database D that contain α. An interval sequence contains a pattern α if all the

events in α also appear in the sequence with the same relations between them,

as defined in α. Given a minimum support minsup, a pattern α is frequent in D

if its support is greater than or equal to minsup. The task is to find all frequent

A1 patterns.

The algorithm to discover frequent A1 patterns is based on the Apriori algo-
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(12, A, 20), (22, B, 25), (29, C, 31), (28, D, 32)3

(8, A, 14), (9, B, 15), (19, C, 21), (16, D, 22)2

(5, A, 10), (8, B, 12), (16, C, 18), (14, D, 20), (17, B, 22)1

Interval sequenceSeq-id

(1, 5, 10)
(2, 8, 14)
(3, 12, 20)

A

(1, 8, 12)
(1, 17, 22)
(2, 9, 15)
(3, 22, 25)

B

(1, 16, 18)
(2, 19, 21)
(3, 29, 31)

C

(1, 14, 20)
(2, 16, 22)
(3, 28, 32)

D

(a) Example of interval sequence database 

(b) The database represented as item_list 

(1, 14, 20)
(2, 16, 22)
(3, 28, 32)

(1, 5, 22)
(3, 12, 25)

(1, 5, 12)
(2, 8, 15)

C during DA before BA overlaps B

(c) Part of frequent 2-pattern item_list

Figure 4.9: An interval sequence database and fragment of mining process

rithm (Agrawal & Srikant 1994). However, instead of using the horizontal format,

the algorithm transforms the database into the vertical data format similar to the

one used in the SPADE algorithm (Zaki 2001) (See Chapter 2.2.4). In this ver-

tical data format, each event type is associated with a list of triples containing

sequence-id (sid), start time, and end time. In this work, such a list is called an

item list. Figure 4.9(a) shows an example of a database containing four interval

sequences, each being ordered by the end times. In Figure 4.9(b), the database

has been transformed into vertical data format containing the item lists of items

in the database.

The proposed algorithm consists of several iterations. Each iteration, say

iteration k, starts with a seed set of frequent patterns found in the previous

iteration, Fk−1. This set is used for generating a set of candidate patterns, by

adding one atomic event in F1 to patterns in the seed set Fk−1. The item list
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of a candidate k-pattern is determined by merging (union) the item lists of its

generating patterns (in F1 and Fk−1). Similar to the SPADE algorithm, the use

of vertical data format allows the algorithm to count the support of a candidate

pattern by counting the number of distinct sequence-id in its item list. The

candidates that have sufficient support become the frequent k-patterns. Figure

4.9(c) shows the item lists of three frequent patterns of size 2 (when the minsup

= 50%). The algorithm terminates when it cannot find any frequent k-patterns

at the end of the current pass.

Papapetrou et al. (2005) studied the discovery of frequent arrangements from

interval sequence databases described above. In contrast to the previous model,

their framework requires that the intervals in a sequence are ordered by the start

times. For example, a sequence in Figure 4.8 is represented as E = 〈(1, A, 8),

(3, B, 19), (8, C, 15), (23, C, 37)〉. Moreover, this work only considers five types

of temporal relations between two intervals: meets, matches, overlaps, contains,

and follows as shown in Figure 4.10. The notation follow(A,B) in the figure is

read as B follows A.

Meet(A, B)

Match(A, B)

Overlap(A, B)

Contain(A, B)

Follow(A, B)

Relations
BA

AB

A || B

A | B

A > B

A → B

Abbreviations

Figure 4.10: Five relations used in arrangements

An arrangement A is defined as A = {E , R}, where E is a set of n event

intervals that occur in A, and R = {r(Ei, Ej) | ∀i < j, i = 1, . . . , (n − 1), j =

2, . . . , n}. Each r(Ei, Ej) ∈ R defines a temporal relation between Ei and Ej,

where r ∈ {meets, matches, overlaps, contains, follows}. The size of an arrange-

ment A is equal to |E| = n. An arrangement of size n is called n-arrangement.

For example, consider two arrangements shown in Figure 4.11. The first arrange-
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ment on the left has R = {overlap(A,B), follow(A,C), follow(B,C)}, while the

second has R = {overlap(A,B), follow(A,C), overlap(B,C)}.

Given an interval sequence, the sequence contains an arrangement A = {E ,

R}, if all events in A also appear in the sequence with the same relation between

them, as defined in R. Based on this definition, an interval sequence shown in

Figure 4.8 contains an arrangement in Figure 4.11(a), but it does not contain

the one in Figure 4.11(b). The support of an arrangement is the fraction of all

sequences in the database that contain the arrangement.

A

B

C

time

A

B

C

(a) (b)
time

Figure 4.11: Two arrangements of size 3

Given a minimum support threshold minsup, an arrangement is frequent in

the sequence database D if its support exceeds minsup. The mining problem is

to discover all frequent arrangements in the interval sequence database D.

The authors propose two algorithms for discovering frequent arrangements.

The algorithms use a tree-based enumeration structure, called an arrangement

enumeration tree, similar to the one introduced by Bayardo (1998). The breadth

first search (BFS) based approach uses an arrangement enumeration tree to dis-

cover the set of frequent arrangements. The depth first search (DFS) based

method further improves the performance of BFS by reaching longer arrange-

ments faster and eliminating the need for examining smaller subsets of these

arrangements.

4.5 Summary

This chapter has provided a survey of previous studies on the discovery of tem-

poral patterns from interval data. Despite its importance, this area has not
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received enough attention from researchers. Essentially, there are two types of

interval data model on which the mining methods can be applied, namely a long

interval sequence, and a set of short interval sequences. While most previous

pattern discovery methods use Allen’s temporal interval relations, its subset or

its extensions, others employ other interval operators such as the UTG and the

TSKR.

This thesis contributes to this area by proposing the discovery of richer tempo-

ral association rules from interval sequence databases (Winarko & Roddick 2005,

Winarko & Roddick 2007). The richer temporal association rules are formulated

using the pattern formulation proposed by Höppner (2001). The algorithm called

ARMADA is proposed to discover the rules. The discovery of richer temporal

association rules is presented in the next chapter (Chapter 5).



Chapter 5

ARMADA: Mining Richer

Temporal Association Rules

This chapter considers the discovery of richer temporal association rules from a

database that contains a set of interval sequences. Discovering temporal rules

from interval-based sequential data is certainly more complex and requires a

different approach from mining patterns from point-based sequential data, such

as mining sequential patterns or episodes. An interval has duration and therefore

the generated patterns have different semantics than simply before and after.

In this chapter, a new algorithm called ARMADA is proposed for discovering

richer temporal association rules. ARMADA first generates temporal patterns

by extending the MEMISP algorithm (Lin & Lee 2002) for mining sequential

patterns (see Chapter 2.2.6). After the temporal patterns have been found, they

are then can be used to generate temporal rules called richer temporal association

rules. This work is different from the work of Höppner (2001), which discovers

temporal rules from a long sequence of intervals rather than from a set of interval

sequences.

The chapter is organised as follows. Section 5.1 defines the problem of dis-

covering richer temporal association rules. Section 5.2 describes ARMADA for

discovering the rules from interval sequence databases. Section 5.3 discusses the

95
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maximum gap time constraint. Section 5.4 evaluates the algorithm by running

several sets of experiments.

5.1 Problem Statement

This section defines the problem of discovering richer temporal association rules

from interval sequence databases. In order to make this chapter self-contained,

the definition of state sequences and (normalized) temporal patterns already men-

tioned in Chapter 4.3 is repeated here.

Definition 5.1 (State sequence) Let S denote the set of all possible states.

A state s ∈ S that holds during a period of time [b, f) is denoted as (b, s, f),

where b is the start-time and f is the end-time. The (b, s, f) is called a state

interval. A state sequence on S is a series of triples defining state intervals

〈(b1, s1, f1), (b2, s2, f2), . . . , (bn, sn, fn)〉, where bi ≤ bi+1 and bi < fi.

Definition 5.2 (Temporal pattern) Given n state intervals (bi, si, fi), 1 ≤ i ≤

n, a temporal pattern of size n is defined by a pair (s, M), where s : {1, . . . , n} → S

maps index i to the corresponding state, and M is an n×n matrix whose elements

M [i, j] denote the relationship between intervals [bi, fi) and [bj, fj). The size of a

temporal pattern α is the number of intervals in the pattern, denoted as dim(α).

If the size of α is n, then α is called a n-pattern.

As for Höppner (2001), the model proposed in this chapter also uses normal-

ized temporal patterns. Given a state sequence, a normalized temporal pattern

can be created by sorting the state intervals in the sequence lexicographically (by

the start time, end time, and state). As was mentioned in the previous chapter,

normalized temporal patterns only require seven relations out of thirteen Allen’s

relations, namely, before (b), meets (m), overlaps (o), is-finished-by (fi), contains

(c), equals (=), and starts (s), as shown in Figure 5.1. The first five relationships

are when the start times differ. In this case, the ordering is based on the start
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times. If both intervals are identical, the ordering is based on the states, which

results in A equals B, instead of B equals A. If the start times are the same and

the end times are different, the ordering is based on the end times.

A before B

A meets B

A overlaps B

A is-finished-by B

A contains B

A equals B

A starts B

 A  B 
Time

Figure 5.1: Seven relations used in normalized temporal patterns

As an example, Figure 5.2 shows three normalized temporal patterns, each

with its corresponding instance of pattern. In the remainder of this thesis, for

brevity, labels on the rows of the matrix are not shown when writing a normalized

temporal pattern, because they are always similar to the column labels. Besides

that, the value of elements under the diagonal elements of the matrix is replaced

with a symbol ‘*’ as in the normalized temporal pattern these values are not

considered.

Definition 5.3 (Subpattern) A temporal pattern α = (sα, Mα) is a subpattern

of β = (sβ, Mβ), denoted α v β, if dim(sα, Mα) ≤ dim(sβ, Mβ) and there is an

injective mapping π : {1, . . .,dim(sα, Mα)} → {1, . . .,dim(sβ, Mβ)} such that

∀i, j ∈ {1, . . .,dim(sα, Mα)}:

sα(i) = sβ(π(i)) ∧Mα[i, j] = Mβ[π(i), π(j)]

Informally, a temporal pattern α is a subpattern of β if α can be obtained

by removing some states (and the corresponding relationships) from β. Consider

the pattern in Figure 5.2. A pattern α1 is a subpattern of α2, but it is not a

subpattern of α3. The pattern α1 can be obtained by removing a state D and its
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A
B

D
C

time

A
B

time

A
B

D

time

=*

b=

BA

�1 =

=**

m=*

bb=

DBA

�2 =

*

=

b

b

C

=**

c**

b=*

bo=

DBA

�3 =

Figure 5.2: Three normalized temporal patterns

corresponding relationships from α2, on the other hand, removing states C and

D, and their corresponding relationships from α3 would not result in α1.

Definition 5.4 (Database) Given a temporal database D = {t1 . . . tn}, each

record ti consists of a client-id, a temporal attribute, a start-time, and an end-

time, where start-time < end-time. It is assumed that the interval between the

start-time and end-time, indicating the interval during which the record values

are valid, is a relatively short interval (as compared to the total period under

analysis). Each client-id can be associated with more than one record.

In most databases, several temporal attributes can be recorded. Each of these

attributes represents a different temporal dimension of the data. For example, in a

medical database the date of birth of a patient, the dates of medical examinations,

the dates of important medical incidents and other dates concerning different

facts of the evolution of the health of a patient can be recorded (Koundourakis

& Theodoulidis 2002). In these cases, one or more temporal attributes can be

picked as the target of the mining process.
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If all records in the database D with the same client-id are grouped together

and ordered by increasing start-time, the records associated with a single client

can be regarded as a state sequence and D would have one such sequence corre-

sponding to each client. Each state sequence is called the client state sequence

(or client sequence for short). As a result, the database D can be viewed as a set

of client sequences.

As an example, consider a temporal database D shown in Figure 5.3, which

stores a list of clinical records. Each record contains a patient-id, a disease-code

and a pair of ordered time points, indicating the period during which the patient

exhibited a given disease. The last column in the table visualises the relative

position of intervals associated with the diseases. In the different format, the

database contains four client sequences (one for each patient-id), namely d1, d2,

d3, and d4. The state intervals in each client sequence have been sorted on the

start-time, the end-time, and the disease-code.

The definition of support is different from the one defined in Höppner (2001).

In this work, the support for a temporal pattern is defined as the fraction of

client sequences in the database which contain the pattern, not as the number of

windows in which the pattern can be observed.

Definition 5.5 (Support) Given a database D, a client sequence d ∈ D con-

tains a pattern α = (sα, Mα) if (sα, Mα) v (sd, Md), where (sd, Md) is a pattern

that represent the relationships between intervals in the client sequence. The

support of a pattern α is defined as sup(α) = |Dα|
|D| , where |Dα| is the number

of client sequences that contain the pattern α, and |D| is the number of client

sequences in the database D.

Definition 5.6 (Frequent temporal pattern) Given a minimum support min-

sup, a pattern is called frequent if its support is greater than or equal to minsup.

For example, a temporal pattern (A overlaps B) is contained in client se-

quences d1 and d3, but (A before B) is not. Using a minsup of 40%, the set of all



CHAPTER 5. ARMADA: MINING RICHER TAR 100

14
13
13
22

8
10
10
15

D
C
G
F

2
2
2
2

16
21
27
28

12
13
20
19

7
10
12
22
20

End 
time

Relative position of intervals in each sequence

8
18
24
25

B
A
D
E

4
4
4
4

6
7
14
17

A
B
D
C

3
3
3
3

2
5
5
16
18

A
E
B
D
C

1
1
1
1
1

Start 
time

Disease
code

Patient-id

D
C
G

F

D
C

A
E

B

C
D

A
B

B

D
E

A
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d4
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d2

d1

(8, B, 16), (18, A, 21), (24, D, 27), (25, E, 28)

(6, A, 12), (7, B, 13), (14, D, 20), (17, C, 19)

(8, D, 14), (10, C, 13), (10, G, 13), (15, F, 22)

(2, A, 7), (5, E, 10), (5, B, 12), (16, D, 22), (18, C, 20)

Figure 5.3: Example database consisting of clinical records

frequent temporal patterns are shown in Table 5.1.

Definition 5.7 (Richer temporal association rule) A richer temporal asso-

ciation rule is an expression β → α, where α and β are frequent temporal patterns

such that β @ α. The confidence of the rule β → α is defined as

conf(β → α) =
sup(α)

sup(β)

Consider frequent patterns β =


A B

= o

∗ =

 and α =


A B D

= o b

∗ = b

∗ ∗ =

, where β @ α

and each has the support of 50% (see Table 5.1). A rule β → α can be generated

with the confidence of 100%. The rule can be interpreted as if A overlaps B
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occurs, then it is highly likely that D will also occur after A and B.

Given a database D, the problem of mining richer temporal association rules

is to generate all richer temporal association rules that have confidence greater

than or equal to the user-specified minimum confidence minconf.

5.2 ARMADA - Mining Richer Temporal Associ-

ation Rules

As in the mining of association rules (Agrawal & Srikant 1994), the mining of

richer temporal association rules can be decomposed into two subproblems, first,

to find all frequent temporal patterns that have support above the minimum sup-

port and, second, to generate the rules from the frequent patterns. Section 5.2.1

describes ARMADA for discovering frequent temporal patterns, assuming that the

database fits into memory. Section 5.2.2 outlines the method for discovering fre-

quent temporal patterns from large databases that do not fit in memory. Then,

the method to generate the rules is given in Section 5.2.3.

5.2.1 Discovering Frequent Temporal Patterns

ARMADA discovers frequent temporal patterns in three steps. First, the algo-

rithm reads the database into memory. While reading the database, it counts

the support of each state and generates frequent 1-patterns. The algorithm then

constructs an index set for each frequent 1-pattern and finds frequent patterns

using the state sequences indicated by elements of the index set. Finally, using a

recursive find-then-index strategy, the algorithm discovers all temporal patterns

from the in-memory database. Each of these steps is described below. As an

illustration, the algorithm is used to discover frequent patterns from an example

database shown in Figure 5.3 and a minimum support minsup of 40%. Pseudo

code of ARMADA is shown in Algorithm 5.1.
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Definition 5.8 (Prefix pattern) Given a pattern ρ, where dim(ρ) = n, and a

frequent state s in the database, a pattern ρ′ of size (n + 1) can be formed by

adding the s as a new element to ρ and setting the relationships between s and

each element of ρ. The frequent state s is called stem of the pattern ρ′ and ρ is

the prefix pattern (prefix for short) of ρ′.

Input: : a temporal database D, minsup
Output: : all frequent normalized temporal patterns
1: read D into MDB (in-memory database) to find all frequent states
2: for each frequent state s do
3: form a pattern ρ = 〈s〉, output ρ
4: construct ρ-idx = CreateIndexSet(s, 〈 〉, MDB)
5: call MineIndexSet(ρ, ρ-idx)
6: end for

Algorithm 5.1: Pseudo code of ARMADA

Step 1 - Reading the Database into Memory

In this first step, the algorithm reads the database D into memory, which will

be referred to as MDB hereafter. While reading each client sequence from the

database, the algorithm computes the support count of every state, then finds the

set of all frequent states. From the example database, the algorithm finds frequent

states A, B, C, D, and E. The state A is supported by 3 client sequences, i.e.,

the client sequences d1, d3, and d4. Each of these states will become a frequent

patterns of size 1 (see Table 5.1).

Similar to the sequential patterns, the set of all frequent patterns can be

grouped into several groups such that the patterns within a group share the same

prefix. For example, from the set of frequent 1-patterns found in this step, the

set of all frequent patterns can be grouped into five groups according to the five

prefix patterns: 〈A〉, 〈B〉, 〈C〉, 〈D〉, and 〈E〉. Each group of frequent patterns

then can be discovered by constructing corresponding index set and mining each

recursively, as shown in the following steps.
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Step 2 - Constructing the Index Set

Let ρ′ be a pattern formed by combining a prefix pattern ρ and a stem s. An

index set ρ′-idx is a collection of client sequences that contain a pattern ρ′. Each

element of the index set contains three fields, namely, ptr cs, a intv, and pos.

The ptr cs is a pointer to the client sequence, a intv is a list of intervals in the

client sequence which produce a pattern ρ′, and pos is the first occurring position

of s in the client sequence with respect to ρ. The pseudo code for constructing

the index set is shown in Algorithm 5.2. The third parameter in the algorithm,

range-set, is a set of client sequences for indexing, whose value is either MDB or

an index set.

1: // Construct the index set ρ′-idx
2: // ρ′ is a pattern formed by combining ρ and s
3: // range-set is a set of client sequences for indexing
4: CreateIndexSet(s, ρ, range-set):
5: for each client sequence d in range-set do
6: if range-set = MDB then
7: start-pos = 0
8: else
9: start-pos = pos

10: end if
11: for pos = (start-pos+1 ) to |d| do
12: if stem state s is first found at position pos in d then
13: insert (ptr cs, a intv, pos) to the index set ρ′-idx, where ptr cs points to d
14: end if
15: end for
16: end for
17: return index set ρ′-idx

Algorithm 5.2: Pseudo code for constructing an index set

Step 3 - Mining Patterns from the Index Set

Given an index set ρ-idx, the goal of mining the index set ρ-idx is to find stems

with respect to the prefix ρ. Any state in the indexed client sequences whose

position is larger than the value of pos could be a potential stem (with respect to

ρ). Thus, for every client sequences in ρ-idx, the algorithm increases the support

count of such state by one. Afterward, the algorithm determines which of the
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states are frequent and become stems. Each of these stems will be combined with

the prefix ρ to generate a frequent pattern ρ′. Then, recursively, the index set

ρ′-idx is constructed and mined until no more stem can be found. The pseudo

code for mining an index set is shown in Algorithm 5.3.

1: // Mine patterns from an index set ρ-idx
2: MineIndexSet(ρ, ρ-idx):
3: for each d pointed by index elements of ρ-idx do
4: for pos = pos + 1 to |d| in d do
5: count(s) = count(s) + 1, where s is a potential stem state
6: end for
7: end for
8: find S = the set of stems s
9: for each stem state s ∈ S do

10: output the pattern ρ′ by combining prefix ρ and stem s
11: call CreateIndexSet(s, ρ, ρ-idx) // to construct the index set ρ′-idx
12: call MineIndexSet(ρ′, ρ′-idx) //to mine patterns with index set ρ′-idx
13: end for

Algorithm 5.3: Pseudo code for mining an index set

d4

d3

d2

d1

(8, B, 16), (18, A, 21), (24, D, 27), (25, E, 28)

(6, A, 12), (7, B, 13), (14, D, 20), (17, C, 19)

(8, D, 14), (10, C, 13), (10, G, 13), (15, F, 22)

(2, A, 7), (5, E, 10), (5, B, 12), (16, D, 22), (18, C, 20)

2

1

1

(18, A, 21)

(6, A, 12)

(2, A, 7)

d4

d3
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(8, D, 14), (10, C, 13), (10, G, 13), (15, F, 22)

(2, A, 7), (5, E, 10), (5, B, 12), (16, D, 22), (18, C, 20)

2

3

(6, A, 12), (7, B, 13)

(2, A, 7), (5, B, 12)

(a) <A>-idx

=*

o=

BA

-idx(b)

MDB

MDB

Figure 5.4: Example of index sets

The following example illustrates the discovery of all frequent patterns having

prefix 〈A〉 using steps 2 and 3. Using step 2, the algorithm constructs the index

set 〈A〉-idx, by calling CreateIndexSet(A, 〈 〉, MDB). The resulting index set is

shown in Figure 5.4(a). As shown in the figure, the index set 〈A〉-idx contains

a set of client sequences that support 〈A〉. The value of pos of an index element
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pointing to d1 is set to 1 because, with respect to the current prefix ρ = 〈 〉, in

d1 a stem A is found at position 1. Analogously, in d3 and d4, a stem A is found

at positions 1 and 2, respectively. The a intv contains an interval corresponding

to a pattern ρ = 〈A〉. Note that d2 is not pointed to by any pointer in the index

set because it does not contains a stem A (w.r.t prefix ρ = 〈 〉).

Using step 3, the algorithm mines 〈A〉-idx to find all stems with respect to the

prefix 〈A〉, by calling MineIndexSet(〈A〉, 〈A〉-idx). Each client sequence pointed

by the index element is processed, by checking any state interval appearing after

the pos position. The first element of 〈A〉-idx, which points to d1, has the value

of pos 1. Thus the search for potential stems only focus on the state intervals

occurring after position 1. As a result, the algorithm increases the support count

of a potential stem E for a potential pattern p2E =


A E

= o

∗ =

 by one. There are

also potential stems B for a pattern p2B, D for a pattern p2D, and C for a pat-

tern p2C , where p2B =


A B

= o

∗ =

, p2D =


A D

= b

∗ =

, and p2C =


A C

= b

∗ =

,

respectively. Using the same process, the algorithm performs the support count

for the states occurring after position 1 and 2 at the client sequences d3 and

d4, respectively. After validating the support counts, the resulting stems are B

(sup = 50%), C (sup = 50%), and D (sup = 75%).

The process continues by recursively constructing and mining an index set ρ′-

idx, where ρ′ is formed by combining the prefix ρ = 〈A〉 and s ∈ {B, C, D}. Let

first consider combining the prefix ρ = 〈A〉 and s = B. A pattern ρ′ =


A B

= o

∗ =


is outputted, and an index set ρ′-idx is constructed by calling CreateIndexSet(B,

〈A〉, 〈A〉-idx ). The resulting index set is shown in Figure 5.4(b). When the

procedure is called, the value of the third parameter, range-set, is the index set

〈A〉-idx, not the MDB. It means that in creating ρ′-idx, the algorithm only needs
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to consider the set of client sequences in 〈A〉-idx (i.e., d1, d3, and d4), rather

than all client sequences in MDB. With respect to the prefix 〈A〉, a stem B is

at position 3 in d1 and 2 in d3. These values are stored at the field pos of the

elements of the index set. The interval values of a state B in d1 and d3 are added

to the array a intv. There is no entry created for d4 because it does not support

a pattern ρ′. After creating ρ′-idx, the index set 〈A〉-idx is not discarded but it is

stored for later use. Mining the index set ρ′-idx, the algorithm find stems C and

D, which will form patterns p3C =


A B C

= o b

∗ = b

∗ ∗ =

 and p3D =


A B D

= o b

∗ = b

∗ ∗ =

,

respectively.

The recursive process continues on the prefix ρ =


A B

= o

∗ =

 and a stem

s ∈ {C, D}. Taking the prefix ρ and a stem C, the algorithm outputs a pattern

ρ′ = p3C , and constructs ρ′-idx. The algorithm mines ρ′-idx, but it cannot find

stems. Therefore, the recursive processing of the prefix ρ and a stem C cannot

go further. The algorithm now considers the prefix ρ and a stem D. A pattern

ρ′ = p3D is outputted, then after creating and mining ρ′-idx, a stem C is found.

Continue the recursive process by taking the prefix ρ = p3D and a stem C,

the algorithm outputs a pattern ρ′ and creates an index set ρ′-idx, where ρ′ =



A B D C

= o b b

∗ = b b

∗ ∗ = c

∗ ∗ ∗ =

. The mining of ρ′-idx finds no more stems, so the recursive

process cannot continue. At this stage, the algorithm has finished processing of

the prefix ρ = 〈A〉 and a stem B.

Therefore, the algorithm now has to repeat the process by considering the

prefix ρ = 〈A〉 and the remaining stems found during the mining of 〈A〉-idx, i.e.,
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stems C and D. To make it short, the processing of ρ = 〈A〉 and a stem C would

generate a frequent pattern


A C

= b

∗ =

. Similarly, the processing of ρ = 〈A〉 and

a stem D would result in temporal patterns


A D

= b

∗ =

 and


A D C

= b b

∗ = c

∗ ∗ =

. At

this stage, the processing of a stem A with the prefix ρ = 〈 〉 has finished. All

frequent patterns having the prefix 〈A〉 have been found. Other frequent patterns

can be discovered by recursively applying steps 2 and 3 on stems B, C, D, and

E with prefix ρ = 〈 〉.

5.2.2 Handling Large Databases

The above algorithm only works if the database fits into memory. If the database

is too large to fit into memory, the frequent temporal patterns are discovered

by partition-and-validation technique, as shown in Algorithm 5.4. First, the

database is partitioned so that each partition can be processed in memory by

ARMADA. In order to be frequent in the database, a temporal pattern has to be

frequent in at least one partition. Therefore, the set of potential frequent patterns

can be obtained by collecting the discovered patterns after running ARMADA on

these partitions. The next step is the validation step, in which the actual frequent

patterns can be identified through support counting against the data sequences

with only one extra database pass. Therefore, ARMADA requires two passes of

database scan to mine large databases that do not fit into memory.

5.2.3 Generating Temporal Association Rules

After all frequent temporal patterns have been discovered, temporal association

rules can be generated from the patterns. Algorithm 5.5 shows the generation of
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Input: a database D, minsup
Output: a set of frequent temporal patterns F
1: for each partition Di ⊂ D do
2: Fi = ARMADA(Di, minsup)
3: end for
4: C = ∪nFi

5: for each sequences d ∈ D do
6: Increment support count of all c ∈ C contained in d
7: end for
8: F = {c ∈ C| sup(c) ≥ minsup}
Algorithm 5.4: Pseudo code of ARMADA for processing large databases

richer temporal association rules from a set of frequent patterns.

Input: a set F of all frequent patterns, minconf
Output: a set of temporal association rules
1: for all α ∈ F do
2: for all β @ α do
3: if sup(α)

sup(β)
≥ minconf then

4: Generate the rule β → α
5: end if
6: end for
7: end for

Algorithm 5.5: Pseudo code for generating richer temporal association rules

5.3 Maximum Gap Time Constraint

As with all temporal data mining algorithms, ARMADA can easily generate a

very large number of frequent temporal patterns. One of the reasons is that

in the above model, time gaps between intervals in the temporal patterns are

not specified so that some uninteresting patterns are likely to appear. As an

example, consider the database in Figure 5.3, in which without specifying the

maximum gap, a temporal pattern (A before C) is frequent with the support

of 50% (see Table 5.1). However, this pattern may be insignificant because the

time gap between states A and C is too wide. Therefore, this model introduces

a maximum gap time constraint to reduce the number of generated patterns and

reinforce the significance of mining results.
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Definition 5.9 (Maximum gap) Let α be a state sequence containing n state

intervals (bi, si, fi), where 1 ≤ i ≤ n, bi ≤ bi+1 and bi < fi. The time gap

between state intervals i and j, for i < j, is defined as gap(i, j) = bj − fi. The

maximum gap of the sequence α is defined as δ(α) = max{gap(i, j)|i < j, i =

1, . . . , (n− 1) and j = 2, . . . , n}.

gap(1,2)= b2 -� f1

s2

s1 b2 f2

b1 f1 s1

s2

gap(1,3)

s3

gap(1,2) gap(2,3)

The maximum gap is gap(1,3) 

: positive value : negative value

Figure 5.5: Determining gap and maximum gap in the state sequence

Figure 5.5 provides an example of determining the gap between two state

intervals and the maximum gap in the sequence containing three state intervals.

The figure shows that even though the absolute value of gap(1, 3) is the smallest,

but it is considered as the maximum gap of the sequence, because it is the only

gap with a positive value.

Definition 5.10 (Containment) Given a user specified maxgap, a client se-

quence d contains a pattern α = (sα, Mα) if (sα, Mα) is a subpattern of (sd, Md),

and the maximum gap of state intervals that take part in the pattern α is less

than or equal to maxgap.

When the maximum gap constraint is specified, a client sequence that previ-

ously supports (contains) a pattern may no longer support it. As an example,

consider a client sequence d1 in Figure 5.3. Originally this client sequence sup-

ports a pattern (B before D). If the maximum gap constraint is imposed by taking

maxgap = 2, the sequence no longer supports the pattern because the maximum
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gap of state intervals involved in the pattern is bigger than maxgap (the gap

between B and D is equal to 4). This is also the case for a client sequence d4.

Note that if the value of maxgap is a positive integer, the constraint only

affects intervals that have temporal relation before. Setting the maxgap = ∞

results in the original model as described in Section 5.1, where there is no time

constraint specified.

To mine frequent patterns with the maximum gap constraint, the algorithm

discussed in Section 5.2.1 can still be applied but it has to be modified so that

when searching for stems it also checks the gap between intervals. The method

to generate temporal rules from frequent pattern described in Section 5.2.3 is

still applicable because the property that if a pattern p is frequent then so all its

subpatterns still holds.

5.4 Evaluation

To assess the performance of the proposed algorithm, ARMADA was implemented

in Java on a 2.4GHz Athlon PC with 512MB of RAM running Windows 2000 Pro-

fessional. The user interface of ARMADA is presented in Appendix B.1. Several

experiments were conducted using the synthetic and real datasets.

5.4.1 Experiments on Synthetic Data

The synthetic data generation program takes five parameters, namely, the number

of client sequences (|D|), average size of client sequences (|C|), number of maximal

potentially frequent temporal patterns (NP ), average size of potentially frequent

temporal patterns (|P |), and number of states (N). The data generation model

is based on the one used for mining association rules (Agrawal & Srikant 1994)

with some modification to model the interval sequence database.

The synthetic data generation procedure can be outlined as follows. First,
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a random pool of potentially frequent patterns are created. The number of po-

tentially frequent patterns is NP . A potential frequent pattern is generated by

first picking the size of the pattern (the number of states in the pattern) from a

Poisson distribution with mean equal to |P |. Then, each state in the pattern is

chosen randomly (from N state types). The temporal relations between consecu-

tive states are also determined randomly. Since the normalized temporal patterns

are used (see Section 5.1), the temporal relations are chosen from the set {before,

meets, overlaps, is-finished-by, contains, starts, equals}. If the pattern contains

two similar consecutive states, their temporal relation is set to before. Each state

in the pattern is then assigned an interval value according to its temporal relation

with the state that comes before it. The interval value of the first state in the

pattern is chosen randomly. Second, after all potentially frequent patterns are

generated, an interval sequence database D is generated, consisting of |D| client

sequences. Each client sequence is generated by first determining its size, which

is picked from a Poisson distribution with mean equal to |C|. Then, each client

sequence is assigned a series of potentially frequent patterns. More detail about

the data generator is presented in Appendix B.2.

In this evaluation, four sets of experiments were performed, by varying the

minimum supports, the maximum gaps, the number of states, and the size of

databases (number of sequences). In each set of experiments, the processing times

of the algorithm and the number of generated frequent patterns were recorded.

First, the effect of varying minimum support on the the processing times was

investigated. Three datasets were used, each has the value of N = 1000 and NP

= 2000. The values of |C| and P | were varied, using three values of |C|: 10, 15,

and 20, and two values of |P |: 3 and 5. The number of client sequences |D| was

set to 10,000. The algorithm was run on each dataset, by varying the values of

minimum support from 0.05% to 0.14%, and setting the value of maximum gap

to 100 time units.

Figure 5.6 shows the number of generated patterns and the processing times as
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the values of minimum support decreases. As expected, as the minimum support

decreases, the processing times increase for all datasets (Figure 5.6(a)). This is

because as the minimum support decreases, the number of generated patterns

increases (Figure 5.6(b)), resulting in increasing processing times. The dataset

with longer sequences requires more processing times compared to that with

shorter sequences. Consider the dataset C20-P3 (Figure 5.6(a)), even though its

generated patterns are not always the highest, its processing times are the highest

for all values of minimum support.

(a) (b)

Figure 5.6: Effect of decreasing minimum support

(a) (b)

Figure 5.7: Effect of increasing maximum gap

The second set of experiments looked into the effect of varying maximum gap
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on the processing times. In these experiments, the datasets used were the same

as in the previous experiments. However, these experiments set the value of min-

imum support constant at 0.05%, but varied the values of maximum gap from 10

to 100 time units. As shown in Figure 5.7(a), the processing times increase as the

values of maximum gap increase. Similar to the previous experiments, when the

maximum gap increases, more frequent patterns will be generated (Figure 5.7(b)),

which resulting in increasing processing times. The dataset with longer sequences

requires more processing times compared to that with shorter sequences.

For the third set of experiments, two sets of datasets were used. The first

set has |C| = 10 and |P | = 5, while the second set has |C| = 15 and |P | = 5.

The database size was constant at |D| = 50,000 and the value of NP = 2000.

The values of minimum support and maximum gap were set to 0.05% and 100,

respectively. Figure 5.8 shows the processing times and the number of generated

patterns when the number of states (N) is increased from 1000 to 10,000. It can

be seen in Figure 5.8(a) that the processing times increase as the number of states

is increased. However, the number of generated patterns tends to decrease as the

number of states increases (Figure 5.8(a)).

(a) (b)

Figure 5.8: Effect of increasing number of states

The last set of experiments investigated how the algorithm scales up as the

size of the database (|D|) increases. Similar to the previous experiments, two sets
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of datasets were used, the first one has |C| = 10 and |P | = 5, while the second

one has |C| = 15 and |P | = 5. All datasets have the values of NP = 2000 and

N = 1000. The minimum support was set to 0.05% and the maximum gap was

set to 100. Figure 5.9(a) shows the algorithm scales up linearly as the size of

databases increases from 10K to 100K, regardless of fluctuation on the number

of generated patterns.

(a) (b)

Figure 5.9: Effect of increasing database size

5.4.2 Experiments on Real Data

In addition to using synthetic datasets, we have also performed a series of ex-

periments on a real dataset. The dataset is the ASL database created by the

National Center for Sign Language and Gesture Resources at Boston University,

which is available online at: http://www.bu.edu/asllrp/. The Sign-Stream(TM)

database used in the experiment contains a set utterances, where each utterance

associates a segment of video with a detailed transcription. Every utterance can

be considered as a state sequence which contains a number of ASL gestural and

grammatical fields (e.g. eye-brow raise, head tilt forward, wh-question), each one

occurring over a time interval. The overall list of field names and labels included

in the database are given in Table 5.2 (Papapetrou 2006).

In this experiments, the algorithm was run on the subsets of sentences from
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Table 5.2: List of field names and labels

Fields Fields Names Fields Tables
Head position head pos: tilt fr/bk hp: tilt fr/bk s

head pos: turn hp: turn
head pos: tilt side hp: tilt side
head pos: jut hp: jut

Head movement head mvmt: nod hm: nod
head mvmt: shake hm: shake
head mvmt: side to side hm: side< − >side
head mvmt: jut hm: jut

Body body lean body lean
body mvmt body mvmt
shoulders shoulders

Eyes, Nose, and Mouth eye brows eye brows
eye gaze eye gaze
eye aperture eye apert
nose nose
mouth mouth
English mouthing English mouthing
cheeks cheeks

Neck neck neck
Grammatical information negative negative

wh question wh question
yes-no question yes-no question
rhetorical question rhq
topic/focus topic/focus
conditional/when cond/when
relative clause rel. clause
role shift role shift
subject agreement subj agr
object agreement obj agr
adverbial adv

Part of Speech POS POS
Non-dominant POS POS2

Gloss Fields main gloss main gloss
non-dominant hand gloss nd hand gloss

Text Fields English translation english english
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the database: those that contained marking of a negation, and another that

contained marking of wh-question. The first dataset contains 65 state sequences

(utterances), while the second dataset contains 730 state sequences, with an aver-

age number of items per sequence equal to 26 and 32 respectively. The algorithm

has been tested by varying supports from 5% to 15% and setting the maximum

gap to 200. The processing times of the algorithm and the number of generated

frequent patterns were recorded. The experimental results are shown in Figure

5.10. As shown in Figures 5.10(a), the processing times increase for both datasets

as the minimum support decreases. As in the case of synthetic data above, as the

minimum support decreases the number of generated patterns increases (Figure

5.10(b)), resulting in increasing processing times. The dataset with longer and

more sequences requires more processing times compared to that with shorter and

less sequences. As can be seen from the figures, even though the WH-question

data always has lower number of generated patterns than the Negation data, the

processing times of the former are mostly higher than that of the latter.

(a) (b)

Figure 5.10: Effect of decreasing minimum support (ASL database)
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5.5 Summary

This chapter has presented the discovery of richer temporal association rules

from interval sequence database. A new algorithm, ARMADA, is proposed to

discover the rules. The algorithm utilizes a simple index advancing to grow

longer temporal patterns from the shorter frequent ones, so that it does not

require candidate generation or database projection. The algorithm has been

implemented, and several sets of experiments have been conducted to evaluate

the performance of the algorithm. The algorithm looks promising as a method for

discovering richer temporal association rules from interval sequence databases. In

addition, this chapter has also proposed a maximum time constraint to reduce

the number of patterns generated by the algorithm, which in turn reduce the

number of generated rules.

As for other techniques for rule discovery, ARMADA could generate a large

number of rules. Finding interesting rules is a difficult task when the number of

rules is large. This problem is made worse as richer temporal association rules

have more complex structure than, for example, association rules. This thesis

addresses this problem by proposing a retrieval system to facilitate the finding of

interesting rules from a set of discovered rules. The retrieval system is described

in Chapter 7.



Chapter 6

Review of Set and Sequence

Retrieval

The retrieval of data objects on set-valued attributes (for short set retrieval) is an

important research topic with wide areas of applications. A significant amount of

today’s stored data consists of records with set-valued attributes (i.e. attributes

that are sets of items). Set-valued attributes are extensively used in object-

oriented databases to represent an object’s multivalued attribute (Ishikawa, Kita-

gawa & Ohbo 1993), in multimedia databases representing objects inside an im-

age (Rabitti & Zezula 1990), and in data mining applications representing basket

market data (Morzy & Zakrzewicz 1998). Although advanced database systems,

such as nested relational or object-oriented database systems, provide the means

to store set-valued attributes in the databases, they do not provide language

primitives or indexes to process and query such attributes. Furthermore, some

of the existing index structures proposed in the database literature, for example,

(B+ trees (Comer 1979) and R trees (Guttman 1984), etc.), are not designed to

fully support set value manipulation in general. Therefore, new types of index

structure have been proposed in the literature to support queries on set-valued

attributes, namely, signature files and inverted files.

One of application domains that would benefit from the possibility of per-

119
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forming efficient querying on sets is data mining. Several data mining techniques

rely on excessive set processing, especially in the case of mining association rules

using the Apriori family of algorithms. Shifting these computations from the

data mining algorithms to the database engines could result in considerable time

savings. Efficient set retrieval is also useful during pattern post-processing for

the selection of discovered association rules according to user-defined criteria, or

for the querying of the database against association rules to identify transactions

that satisfy certain criteria. Recently the set retrieval using signature files has

also been used as a basis for sequential patterns retrieval.

In order to provide the support for the retrieval of richer temporal association

rules described in Chapter 7, this chapter reviews current work on set retrieval

using inverted files and signature files. In addition, this chapter also reviews

sequential pattern retrieval using signature files. The chapter is organised as

follows. Section 6.1 defines different types of queries normally used in the set

retrieval. Section 6.2 describes the retrieval of sets using inverted files. Section

6.3 discusses the basic concept of signature files for set retrieval, followed by the

discussion of false drop probability (Section 6.4), and signature file organisations

(Section 6.5). Section 6.6 describes the sequential pattern retrieval using signature

files.

6.1 Types of Queries in Set Retrieval

Formally, set retrieval is defined as retrieval of data objects based on the set pred-

icates from a large number of set-valued objects stored in the database (Kitagawa

& Fukushima 1996). The most common class of queries used in set retrieval is

subset queries that search for sets that contain the query set. However, in ad-

dition to the subset queries, set retrieval also needs to support superset queries,

that is, queries looking for subsets of the query set. Furthermore, retrieving sets

equal to a query set, i.e., equality queries, though a more simple case, is also

considered.
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In the data mining field, an example of data models supporting set values

and their retrieval is a market basket data, shown in Figure 6.1. The database

contains four transactions, each of which is tagged with the transaction identi-

fier (TID). ITEMS is a set attribute and represents the set of items bought in

each transaction. In this case, each ITEMS attribute value is called a target set.

Suppose a query set Q = {pen, book}, a subset query ITEMS ⊇ Q retrieves

transactions that contain both pen and book. Superset queries retrieve all trans-

actions that are proper subset of the query set. If the query set Q is a set of

products on sale, a superset query ITEMS ⊆ Q can be used to find the trans-

actions that are entirely included in the reduced product set. Equality queries

retrieve transactions equal to the query set.

pen, eraser3

pen, book4

pen, eraser, ink2

pen, pencil, book1

ITEMSTID

Figure 6.1: Example of market basket database

A formal definition of these set queries is given below. To simplify the dis-

cussion, without loss of generality, the focus is only on the set-valued attribute

of data objects; other attributes, if available, are ignored.

Definition 6.1 (Set queries) Let D be a collection of target sets, each associ-

ated with the data object identifier. Let T and Q denote the target set and query

set, respectively. The commonly used queries in set retrieval are as follows.

1. Subset query (T ⊇ Q): Find target sets in D that have the query set as a

subset.

2. Superset query (T ⊆ Q): Find target sets in D that are subset of the query

set.

3. Equality query (T ≡ Q): Find target sets in D equal to the query set.
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6.2 Set Retrieval using Inverted Files

Inverted files have been used extensively in text retrieval (Moffat & Zobel 1996,

Zobel, Moffat & Ramamohanarao 1998). Their main application is for supporting

partial match retrieval, which is basically subset queries. This section describes

the use of inverted files for supporting set retrieval. Given a collection of target

sets, D, an inverted file consists of a directory containing all distinct values in D

and, for each value in the directory, an inverted list that stores a list of references

to all occurrences of this value in the database, that is a list of references to

target sets containing the value. Consider the market basket data containing

four transactions and five items in Figure 6.1. Using this database an inverted

file index can be created and is shown in Figure 6.2. An interted list of an item is

presented as 〈n; tid1, · · · , tidn〉, where n is the number of transactions in which an

item appears, followed by transaction identifiers (tids). As shown in the figure,

the inverted list of the item book is 〈2; 1, 4〉 because it appears in two transactions,

namely, transactions 1 and 4. If D contains a large number of items, the search

values in the directory are usually stored in the B-tree.

Helmer and Moerkotte (1999) have adapted inverted files for set retrieval and

modified the inverted list by also storing the cardinality of the target set with

each target set reference, so that set queries can be answered more efficiently by

using the cardinalities as a quick pre-test. As an example, the inverted list of the

item book becomes 〈2; (1, 3), (4, 2)〉.

pen

ink

pencil

eraser

book

Directory Inverted List

�4; 1, 2, 3, 4�

�1; 2�

�1; 1�

�2; 2, 3�

�2; 1, 4�

Figure 6.2: Inverted file of the market basket database

After an inverted file has been built, subset queries can be processed as follows:
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for each item in the query set the appropriate list is fetched, and then all those

lists are intersected. The result of intersection contains a list of references to

sets that contains the query set. The equality queries are processed the same

way as with subset queries, but can be improved by eliminating all references

to target sets whose cardinality is not equal to the query set cardinality. When

evaluating superset queries, all lists associated with the values in the query set

are retrieved. Then the number of occurrences of each reference appearing in the

retrieved lists is counted. A reference whose number of occurrences is not equal

to the cardinality of its set is eliminated. The existence of such a reference means

that the reference appears in the lists associated with the values that are not in

the query set, so that its set cannot be a subset of the query set

Helmer and Moerkotte (1999) compare the performance of three signature-

based indexes against that of the inverted file index in processing equality, subset

and superset queries. They conclude that the inverted file index structure dom-

inated other index structures for subset and superset queries in terms of query

processing time. Kouris et al. (2004) have used the inverted file index to im-

prove the performance of an Apriori-based algorithm in discovering association

rules. The index is accessed during support counting so that instead of reading

the original database, the mining algorithm scans the inverted file index stored in

memory. Tuzhilin and Liu (2002) use inverted file indexing scheme for querying

multiple sets of discovered association rules. A comparison between inverted files

and signature files is also studied by Zobel et al. (1998) and Carterette and Can

(2005).

6.3 Set Retrieval using Signature Files

The purpose of using signature files in set retrieval is to filter out the non-

qualifying data objects. The basic idea is to represent the set-valued attribute of

data objects into bit patterns, called signatures, and store them in a separate file

which acts as a filter to eliminate the non-qualifying data objects when process-
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ing set queries. A signature failing to match the query signature guarantees that

the corresponding object can be ignored. Therefore, unnecessary object access is

prevented. Since direct set comparisons are very expensive, using signatures as

filters can speed up query processing in set retrieval.

6.3.1 Methods for Generating Set Signatures

In set retrieval with signature files, a target signature is generated for each target

set and stored in the signature file. A number of signature generation methods

have been proposed by Faloutsos and Chistodoulakis (1987) in the context of text

retrieval. These methods are Word Signatures (WS), Superimposed Coding (SC),

Bit-Block Compresion (BC), and Run Length Encoding (RL). The description of

each method for generating target signatures is given below.

1. Word signature (WS). In the WS method each element of the target set

is hashed into a bit pattern of a certain length. These patterns, called word

signatures, are then concatenated to form the target signature.

2. Superimposed Coding (SC). In the SC method, each element in a target

set is hashed to a binary bit pattern called an element signature. All element

signatures have F bit length, and exactly m bits are set to ‘1’, where m < F .

F is called the length of a signature, while m is called the weight of an

element signature. Then, a target signature is obtained by bit-wise OR-ing

(superimposed coding) element signatures of all the elements in the target

set.

3. Bit-Block Compression (BC). The signature extraction process for BC

is similar to SC. The difference is that the original size (length) of the

signature, designated as B, is large, and for each element of a target set

only one bit is set to ‘1’ (i.e., m = 1). As a result, the bit vector B of the

set signature is sparse. Therefore, before storing the signature, B is divided

into groups of consecutive bits of size b and compressed.
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4. Run Length Encoding (RL). The RL method is similar to both SC and

BC. It differs from BC only in the compression method. RL records the

distances between the positions of bits with value ‘1’.

Of these four methods, the most commonly used method in set retrieval is the

superimposed coding (Helmer & Moerkotte 1999, Ishikawa et al. 1993, Tousidou,

Bozanis & Manolopoulos 2002, Morzy & Zakrzewicz 1998). Therefore, for the rest

of this chapter, unless stated otherwise, it will be assumed that the superimposed

coding is used to generate set signatures. Figure 6.3 illustrates the generation of

set signature using the superimposed coding when the value of F = 8 and m = 2.
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Figure 6.3: Generating signature using superimposed coding

Property 6.1 (Properties of set signatures) Let sig(s) and sig(t) be signa-

tures of sets s and t, respectively. Set signatures have three properties, as follows:

1. s ⊇ t → sig(s) ∧ sig(t) = sig(t)1

2. s ⊆ t → sig(s) ∧ sig(t) = sig(s)

3. s = t → sig(s) = sig(t)

These properties are useful during the processing of set queries because they

can be used as a quick pre-test to determine whether a target set satisfies a query

1The symbol ∧ denotes the bit-wise AND operation.
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condition or not (see Section 6.3.2 below).

6.3.2 Processing Set Queries

The processing of set queries with signature files is conducted in two steps. In

the first step, called the filtering step, a query signature is generated from the

query set (in the same way as the target signature). Then, each target signature

in the signature file is examined over the query signature for potential match.

The corresponding target set becomes a drop if the target signature satisfies the

following condition (according to the type of the query):

1. T ⊇ Q: target signature ∧ query signature = query signature.

2. T ⊆ Q: target signature ∧ query signature = target signature.

3. T ≡ Q: target signature = query signature.

A target set that becomes a drop has a potential to satisfy the query condition.

On the other hand, a target set whose signature does not satisfy the condition

can be ignored because it will not satisfy the query condition. The second step

is the false drop resolution. Each drop is retrieved and examined to see whether

it actually satisfies the query condition. Drops that fail the test are called false

drops, while the qualified data objects are called actual drops.

As an example, consider four transactions and their signatures in Figure 6.3.

Given a target set Q = {pen, book}, the subset query is to find all transactions

that contain the target set Q. From the figure, the signature of Q is ‘01010100’

(the fourth transaction). After matching the target signatures against the query

signature for a condition ‘target signature ∧ query signature = query signature’,

transactions 1, 2, and 4 satisfy the condition and become drops. Further examina-

tion results in transactions 1 and 4 that actually satisfy the query condition, that

is, they contain a query set Q. On the other hand, transaction 2 does not contain

the query set. Transactions 1 and 4 are called actual drops, while transaction 2

is called a false drop.
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6.4 False Drop Probability

False drops occur due to the collision of set signatures and depend solely on

the method to generate signatures and not on other factors such as signature file

organisation. False drops not only affect the number of block accesses (I/O time),

but also affect the CPU time in order to decide whether a target set should be

returned to the user. Therefore, one of the problems of the signature file methods

is how to control the false drops. The number of false drops is usually measured

using false drop probability. Suppose Fd is the false drop probability, Fd is defined

as:

Fd =
false drops

N − actual drops
(6.1)

where N is the total number of target sets.

A number of studies have addressed the problem of estimating the false drop

probability (Faloutsos & Christodoulakis 1987, Zezula & Tiberio 1990, Kitagawa,

Fukushima, Ishikawa & Ohbo 1993). The estimated value of Fd is useful in the

optimisation of signature file parameters. The more accurate the estimation of

Fd, the better the estimation of signature file parameters, which in turn provides

superior performance in real applications.

Faloutsos and Christodoulakis (1987) have analysed the false drop probabil-

ity of the four signature extraction methods. However, they do not consider

storage structures and their effects on the query processing performance. Such

comparison is presented by Zezula and Tiberio (1990).

Kitagawa et al. (1993) have derived formulas to estimate the false drop proba-

bility for each type of set query defined in Section 6.1 under superimposed coding.

Assuming that all target sets have the same cardinality Dt, the false drop prob-
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Table 6.1: Symbols

Symbol Definition
F Size of signature (in bits)
m Weight of a signature element
Dt Cardinality of a target set T
Dq Cardinality of a query set Q
m̄ Weight of every target or query signature

ability for each query is given in the following formula:

T ⊇ Q : Fd ≈
(
1− e−

mDt
F

)mDq

(6.2a)

T ⊆ Q : Fd ≈
(
1− e−

mDq
F

)mDt

(6.2b)

T ≡ Q : Fd =
1

F Cm̄

(6.2c)

Table 6.1 provides the meaning of symbols used in the formulas.

The value of Fd would be minimum (optimal) for the following value of m

(Kitagawa et al. 1993):

T ⊇ Q : mopt =
F ln 2

Dt

(6.3a)

T ⊆ Q : mopt =
F ln 2

Dq

(6.3b)

T ≡ Q : mopt =
F ln 2

Dt

(6.3c)

6.5 Signature File Organisation

If the false drop rate is low, the number of accesses to the storage level can

be reduced. However, the efficiency of filtering is determined mainly by the

storage structures of signature files that support the filtering process. A number

of approaches have been proposed in signature file organisations, and in general

can be classified into four categories, namely, sequential, bit-slice, hierarchical, and

partitioned signature file organisations. The following four subsections describe
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each of these signature file organisations.

6.5.1 Sequential Organisation

The Sequential Signature File (SSF) is the simplest file structure, in which signa-

tures are stored sequentially in the signature file. Figure 6.4 shows SSF consisting

of N signatures with F = 8. SSF is easy to implement and requires low storage

space and low update cost. However, during the retrieval, a full scan of the signa-

ture file is required. That is, in processing subset, superset, and equality queries,

every signature in the signature file needs to be accessed (sequentially) to deter-

mine which signature qualifies. The performance of SSF is not dependent on the

query signature weight, but linearly dependent on the size of the file. Therefore,

SSF works well for a data file with a small size, however, its performance becomes

a problem when the size of a data file is large.
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Figure 6.4: SSF file organisation

6.5.2 Bit-Sliced Organisation

A variation of sequential file organisation, known as bit-slice file organisation,

has been proposed to avoid reading unnecessary bits from the file and to improve

the performance of SSF. Robert (1979) introduces the Bit-Slice Signature File

(BSSF), which stores signatures in a column-wise manner. For a set of signatures

of length F , BSSF uses F files (called bit-slice files), one for each bit position of
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the set signatures. The structure of BSSF for N signatures and F = 8 is shown

in Figure 6.5. The advantage of such an arrangement is that during retrieval

only a part of the F bit-slice files have to be scanned. Given a query signature

‘1001 0100’, to process the subset query only three bit-slices corresponding to bit

position of ‘1’ in the query signature need to be accessed. On the other hand, to

process the superset query five bit-slices corresponding to bit position of ‘0’ need

to be accessed. As a result, the search cost of BSSF is lower than that of SSF,

while its update cost is more expensive because an insertion of a new signature

requires about F disk accesses (one for each bit-slice file). Therefore, BSSF is

more suitable for stable files or archives.
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Figure 6.5: BSSF file organisation

While the performance of SSF is not dependent on the weight of the query

signature, the performance of BSSF is dependent on it. In processing subset

queries, as the weight of the signature becomes smaller, the number of bit-slices

which needs to be scanned decreases. This generally leads to reduction of retrieval

cost. In contrast, in processing superset queries, the cost reduction becomes

generally larger as the weight of the signature becomes bigger.

Therefore, to achieve optimal performance when processing both subset and

superset queries, these conflicting requirements should be compromised. As an

approach to this problem, Kitagawa and Fukushima (1996) propose the Com-

posite Bit-Sliced Signature File (C-BSSF). In C-BSSF, each signature S is a

concatenation of two sub-signatures S1 and S2, whose design parameters are de-



CHAPTER 6. REVIEW OF SET AND SEQUENCE RETRIEVAL 131

termined independently of each other. Therefore, C-BSSF can be regarded as a

concatenation of two BSSFs with different design parameters sharing the same

OID file. C-BSSF becomes BSSF when F1 = 0 or F2 = 0.

Several other improvements of BSSF have also been proposed, by means of ver-

tical or horizontal decomposition. Lin and Faloutsos (1992) propose the Frame-

Sliced Signature File (FSSF), in which each signature of length F is vertically

decomposed into k frames of s bits each (k ·s = F ). The set signature is generated

as follows: for each element in the set, n (n ≤ k) distinct frames are selected and

m bit positions are set to ‘1’ in each selected frame by using a hash function. In

processing a subset query, for example, if there are only nq frames which include

‘1’ in the query signature, then only the nq frames out of k need to be looked up

to find drops. As a result, the vertical decomposition in FSSF contributes to the

reduction of the signature look-up cost. In processing a superset query, similar

reduction can be achieved by focusing on bit positions set to ‘0’ in the query

signature. When s = 1, namely each frame has one bit length, FSSF becomes

BSSF. In general, the retrieval cost of FSSF is lower than that of BSSF, while

update is rather expensive in FSSF.

Kitagawa et al. (1996) propose the Partitioned Frame-Sliced Signature File

(P-FSSF) which combines the vertical decomposition of FSSF and the horizontal

decomposition of the FP-partitioned signature file (Lee & Leng 1989). The stor-

age space of the signature file is horizontally decomposed into partitions and each

partition is vertically decomposed into frame-slices. Each frame-slice corresponds

to one disk page. For subset queries, the vertical decomposition of FSSF attains

much cost reduction when the query signature weight is small, while horizontal

decomposition of the FP-partitioned signature file is effective when the query

signature weight is large. As for superset queries, FSSF gives much contribution

when the query signature weight is large, while the FP-partitioned signature file

is effective when the query signature weight is small. Therefore, by incorporat-

ing both vertical and horizontal decomposition schemes, P-FSSF is more efficient

than both FSSF and the FP-partitioned signature file.



CHAPTER 6. REVIEW OF SET AND SEQUENCE RETRIEVAL 132

6.5.3 Hierarchical Organisation

The bit-slice approach still needs to examine every signature in the file but only

a part of it. In order to avoid reading every signature in the signature file, the

hierarchical file organisation uses several levels of signatures. The higher levels

perform coarse filtering before the signature on the lower levels are consulted.

An example of hierarchical file organisation is S-tree (Deppisch 1986). An S-

tree is a height balanced dynamic tree (all leaves are on the same level) similar to a

B+-tree (Comer 1979). The leaves of the tree store the target signatures, while its

internal nodes store signatures that are formed by superimposing the signatures

of their children nodes. The S-tree is defined by two integer parameters K and

k. The root can accommodate at least two and at most K signatures, whereas

all other nodes can accommodate at least k and at most K signatures. The tree

height for n signatures is at most h = dlogkn− 1e (Tousidou, Nanopoulos &

Manolopoulos 2000). Figure 6.6 shows the structure of S-tree that contains 15

target signatures with the value of K = 4 and k = 2.
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Figure 6.6: Structure of S-tree (K=4 and k=2)

Given a query signature sig(Q), the query processing on S-tree starts by com-

paring the query signature to the signatures store in the root. More than one

signature may satisfy this comparison. The process is repeated recursively to

access all child nodes whose signatures match and go down to the leaf nodes.
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For subset and equality queries, signatures in the root and other internal nodes

are considered match with the query signature if sig(Q) ⊆ sig(child node). For

superset queries, there has to be a nonempty intersection, i.e., |sig(Q) ∩ sig(child

node)| ≥ k. At the leaf nodes all data items whose signatures match with the

query signature are fetched and verified. Matching signatures in leaf nodes are

determined by the appropriate bitwise operation (see Property 6.1).

6.5.4 Partitioned Organisation

The partitioned file organisation approach avoids reading every signature by

grouping the signatures into several partitions such that all signatures in a par-

tition hold the same part, called the signature key. The signature key used is

usually a substring of the signature. By partitioning the signatures, some of the

partitions need not to be searched during the execution of a query, so that the

number of accesses can be reduced.

Lee and Leng (1989) propose the FP-partitioned signature file and examine

several methods of partitioning static signature file. The basic idea of the FP-

partitioned signature file is to decompose the set of signatures into partitions

using the fixed number of prefix bits as a key. For example, when a two-bit prefix

is used as a key, there are four partitions corresponding to ‘00’ through ‘11’.

Since the main implementation problem of any partitioned organisation is the

definition of keys, this work proposes three partitioning schemes with different key

specifications, namely Fixed Prefix, Extended Prefix, and Floating Key. There has

been an attempt to make these schemes dynamic (Lee & Leng 1990). However,

the way of determining the keys still remains static, which limits the dynamic

features of the file organisations.

Another partitioning scheme is Quickfilter (Rabitti & Zezula 1990, Zezula,

Rabitti & Tiberio 1991), which is supported by the dynamic storage structure

linear hashing (Litwin 1980). The signature key is defined as the h-bit or the

(h − 1)-bit suffix of the signature. The value of h varies with the size of the
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file, N , according to the relationship 2h−1 < N ≤ 2h. Quickfilter considers any

signature key as a binary number, the value of which determines the partition

number into which the signature is stored.

Helmer and Moerkotte (1999) propose the Extendible Signature Hashing (ESH)

similar to Quickfilter. However, instead of using linear hashing, ESH uses ex-

tendible hashing (Fagin, Nievergelt & Strong 1979) as the underlying hashing

scheme. ESH consists of two parts, a directory and buckets. The buckets are

used to store the signatures of target sets. Given a target signature, a bucket

that stores the signature is determined by looking at a d-bit prefix of the target

signature. Each possible bit combination of the prefix corresponds to an entry

in the directory pointing to the corresponding bucket. As a result, for the d-bit

prefix the directory has 2d entries.

6.6 Sequential Pattern Retrieval

Set retrieval with signature files described above does not consider the order of

items within the sets, as in the case of indexing/retrieval of sequential patterns.

To overcome this limitation, a new approach has been proposed for the retrieval

of sequential patterns (Zakrzewicz 2001, Morzy, Wojciechowski & Zakrzewicz

2001, Nanopoulos, Zakrzewicz, Morzy & Manolopoulos 2003). The basic idea

is to convert the sequential patterns into sets, called equivalent sets, that can

accommodate not only the items in sequences but also the ordering of the items.

After that, the same steps used in the set retrieval (Section 6.3) can be applied

on the equivalent sets.

6.6.1 Representing Sequential Patterns as Sets

In order to represent sequential patterns in equivalent sets, two mapping function

are required: item mapping and order mapping functions. Both functions are

defined below.
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Definition 6.2 (Item mapping) Let I be a set of items. An item mapping

function f(i) is a function that transforms item i ∈ I to into an integer value.

For example, for I = {a, b, c, d, e}, the mapping f(a) = 1, f(b) = 2, f(c) = 3,

f(d) = 4, and f(e) = 5 can be used.

Definition 6.3 (Order mapping) An order mapping function g(x, y) is a func-

tion that map a sequential pattern of the form 〈(x)(y)〉 (i.e., x before y, denoted

as x < y) into an integer value.

Since a function g takes into account the ordering of items, it should have a

property that g(x, y) 6= g(y, x). As an example, if g(x, y) = 6 · f(x) + f(y), then

g(a, b) = 6 and g(b, a) = 13. The use of a constant value 6, which is one larger

than the largest f(x), will guarantee that g(x, y) 6= g(y, x), for all x, y ∈ I.

Definition 6.4 (Equivalent Set) Given a sequential pattern p = 〈X1X2 . . . Xn〉,

where Xi is an element of the sequence, the equivalent set E(p) of p is defined as:

E(p) =

( ⋃
x∈X1,...,Xn

{f(x)}

)⋃( ⋃
x,y∈X1,...,Xn,x<y

{g(x, y)}

)
,

For example, let p = 〈(ab)(c)(d)〉 be a sequential pattern. Using the mapping

functions that described above, the equivalent set E(p) of p is:

E(p) ={f(a), f(b), f(d), f(d)}

∪ {g(a, c), g(b, c), g(a, d), g(b, d), g(c, d)}

={1, 2, 3, 4} ∪ {9, 15, 10, 16, 22}

={1, 2, 3, 4, 9, 15, 10, 16, 22}

An equivalent set is the union of two sets: the one resulting by considering

each element separately and the other from considering pairs of items between

different elements of a sequence. The equivalent set has the property that for two
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sequential patterns p and q if q is contained in p, then E(q) ⊆ E(p). Therefore, by

representing sequential patterns as equivalent sets, the sequential pattern retrieval

problem can be solved using techniques employed in set retrieval described in the

previous sections.

6.6.2 Partitioning Equivalent Sets

The size of an equivalent set quickly increases when the number of the origi-

nal sequence elements increases. A partitioning technique is proposed to divide

an equivalent set into a collection of smaller subsets. It is expected that by

partitioning equivalent sets, the resulting signatures would have smaller colli-

sion probability and fewer false drops, which in turn can reduce data scan cost

(Zakrzewicz 2001, Morzy et al. 2001).

Definition 6.5 (Partitioning of equivalent sets) Given a user-defined value

β, the equivalent set E of a sequential pattern p is partitioned into a collection

of E1, . . . , Ek subsets by:

1. dividing p into p1, . . . , pk subsequences, such that
k⋃

i=1

pi = p, pi ∩ pj = for

i 6= j, and

2. having Ei be the equivalent set of p1, where |Ei| < β, 1 ≤ β ≤ k.

Suppose p is a sequential pattern, then the partitioning of its equivalent set

is processed as follows. At the beginning, the first element of p becomes the first

element of p1. Then, as long as the equivalent set of p1 has a length smaller

than β, the following elements of p are included in p1. When this condition

does not hold, a new subsequence, p2, is started. The same process continues

until all the elements of p have been examined. As an example, given p =

〈(ab)(c)(d)(af)(b)(e)〉 and β = 10, the result of partitioning is p1 = 〈(ab)(c)(d)〉

and p2 = 〈(af)(b)(e)〉. In this case, |E(p1)| = 9 and |E(p2)| = 9. Notice that

|E(p1)|+ |E(p2)| is smaller than |E| = 32.
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The relation between two partitioned sequential patterns is as follows. Sup-

pose a sequential pattern p is partitioned into p1, . . . , pk. Given a sequential

pattern q, q is contained in p if there exists a partitioning of q into q1, . . . , qm

such that q1 is contained in pi1 , q2 is contained in pi2 ,. . . , qm is contained in pim ,

and i1 < i2 < . . . < im.

6.7 Summary

This chapter has provided a survey of previous work on set retrieval with inverted

files and signature files. There are many studies concerning inverted file and

signature file techniques. This review focuses on the most relevant topics related

to our research. Many interesting issues related to application of signature files,

for example wireless broadcasting and filtering (Lee & Lee 1999), indexing and

retrieval in OODBs (Lee & Lee 1992, Nørv̊ag 1999, Chen 2004), and time series

indexing (André-Jönsson & Badal 1997), could not be included in this survey.

In addition, this chapter has also reviewed the method for sequential pattern

retrieval which is based on the method of set retrieval using signature files.



Chapter 7

Retrieval of Discovered Temporal

Rules

7.1 Importance of Post-Processing Discovered

Rules

Many rule discovery algorithms in data mining generate a large number of rules,

often greatly exceeds the size of the underlying database, and only a small fraction

of that large volume of rules is of any interest to the user (Imielinski & Virmani

1998). It is generally understood that interpreting the discovered rules to gain

a good understanding of the domain is an important phase of the knowledge

discovery process. However, when there are a large number of generated rules,

identifying and analysing interesting rules become difficult. Providing the user

with a list of rules ranked by their confidence and support might not be a good way

of organizing the set of rules as this method would overwhelm the user. Besides,

not all rules with high confidence and support are interesting. The rules with

high confidence and support can fail to be interesting for several reasons, that

is, they correspond to prior knowledge or expectation, they refer to uninteresting

attributes or attributes combinations, and they are redundant (Klemettinen et al.

138
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1994). Therefore, to be useful, a data mining system must manage the large

amount of generated rules by offering flexible tools for further selecting rules.

Several approaches for post-processing discovered association rules have been

reported. One approach is to group ‘similar’ rules among the discovered rules

(Toivonen, Klemettinen, Ronkainen, Hatonen & Mannila 1995, Lent, Swami &

Widom 1997, Liu et al. 1999, Liu, Hu & Hsu 2000). This approach works well

for a moderately large number of rules. However, for a larger number of rules it

will produce too many clusters.

A more flexible approach is by identifying the rules that are of special im-

portance to the user through templates or data mining queries. This approach

can complement the rule grouping approach. Templates have been used to spec-

ify interesting and uninteresting classes of rules (association and episode rules)

(Klemettinen et al. 1994). The importance of data mining queries has been high-

lighted by Imielinski and Mannila (1996) by introducing the concept of Inductive

Databases, in which Knowledge and Data Discovery Management Systems (KD-

DMS) manage KDD applications just as DBMSs successfully manage business

applications. In addition to allowing the user to query the data, KDDMS also

give the users the ability to query patterns, rules, and models extracted from

these data.

Several query languages have been proposed in the literature that provide

the user the ability to query the data, for example, Mine-Rule (Meo, Psaila &

Ceri 1996), DMQL (Han et al. 1996), and OLE DB (Netz, Chaudhuri, Fayyad

& Bernhardt 2001). However, these languages are not designed for querying the

discovered rules, but for generating rules from the data. A more powerful data

mining query language called MSQL is proposed, which can be used not only for

rule generation, but also for querying the discovered rules (using SelectRules op-

erator) (Imielinski & Virmani 1999). A comparative study on Mine-Rule, DMQL,

OLE DB, and MSQL is presented by Botta et al. (2004). They conclude that

one of the main limits of the four languages is the weak support of rule post-
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processing. Their post-processing capabilities are limited to a few predefined

built-in primitives. Tuzhilin & Liu (2002) have proposed Rule-QL for querying

multiple sets of association rules and developed efficient algorithms for processing

the queries.

This chapter deals with the post-processing problem of richer temporal associ-

ation rules, an area in which little research to date has been conducted. In partic-

ular, this chapter focuses on developing a retrieval system that can be utilised for

facilitating the selection of interesting rules during the post-processing of a large

set of discovered richer temporal association rules. In this chapter, the general

framework of the post-processing model is described. This chapter also proposes

a query language TAR-QL for specifying the criteria of rules to be retrieved.

The query language specification is based on the subset of Rule-QL, extended

by adding several additional operators and functions to deal with richer tempo-

ral association rules. The major part of this chapter concentrates on developing

low-level methods for evaluating queries involving rule format conditions. In or-

der to improve the performance of the methods, the indexing technique based on

signature files is proposed.

When processing queries on a small database of rules, sequential scanning of

the rules followed by straightforward computations of query conditions is ade-

quate. But as the database grows, this procedure can be too slow, and indexes

should be built to speed up the queries. The problem is to determine what types

of indexes are suitable for improving queries involving the rule format conditions.

As discussed in Chapter 6, signature files have been used for supporting set and

sequence retrieval. In richer temporal association rules, the antecedent and con-

sequent of a rule are normalized temporal patterns, which can be considered as

an extended form of sequences. Therefore, signature files are a suitable indexing

methods for the rules.

The rest of the chapter is organized as follows. Section 7.2 defines terms

used in the chapter. Section 7.2 describes the general framework of the post-
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processing model. Section 7.4 defines basic queries that can be applied to the

database of rules. Section 7.5 describes the method to construct the signature

files. In Section 7.6, methods for processing the queries with signatures files are

developed. Section 7.7 presents experiment results of the proposed methods.

7.2 Definitions

The rule set, called rulebase, contains richer temporal association rules generated

from the database of interval sequences using ARMADA described in Chapter 5.

Let R be a rulebase, then R contains the rules of the form β → α, where α and β

are normalized temporal patterns such that β @ α (see Definition 5.7). Each rule

is associated with at least the support and confidence values. In this chapter,

a temporal pattern β is called LHS (left-hand side) of the rule, while α is RHS

(right-hand side) of the rule.

It was mentioned in Chapter 4.3 that a normalized temporal pattern does

not contain temporal extensions because it has been abstracted from the time

intervals in a specific interval sequence. Normalized temporal patterns are defined

over a set of state S and a set of interval relations {equals (=), contains (c), is-

finished-by (fi), starts (s), overlaps (o), meets (m), before (b)}. Let Rel = {=,

c, fi, s, o, m, b} be the set of these seven relations. As an example, Figure 7.1

presents four normalized temporal patterns and two richer temporal association

rules generated from the patterns. It is assumed that the temporal patterns are

defined over a set of states S = {A, B, C, D}.

7.3 Framework of the Post-processing

The KDD process and methodology discussed in Fayyad et al. (1996) underline

the importance of interaction and iteration. Typically, the iterative process oc-

curs between the discovery and presentation phases, as shown in Figure 7.2(a).
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r1: p1 � p3 [sup = 0.60, conf = 0.80]

r2: p2 � p4 [sup = 0.75, conf = 0.75]

Figure 7.1: Example of temporal patterns and temporal rules

This chapter adopts a different approach introduced by Klementtinen (1996) and

illustrated in Figure 7.2(b). This approach puts the emphasis of the iteration

process on the presentation phase. Two reasons to justify this approach are men-

tioned in Klementtinen (1996). First, in exploratory data analysis, it can be hard

to specify beforehand what is considered interesting. If the goal is to discover

previously unknown information, this can only be achieved by iterative explo-

ration. Second, pattern generation is often time consuming. Although many

efficient algorithms exist, the pattern discovery phase is still a barrier for smooth

interaction.

The framework has been used to support interactive exploration of large col-

lection of association and episode rules generated from telecommunication alarm

databases (Klemettinen et al. 1996). The approach uses templates to make a

selection from a rulebase, as well as to eliminate a selection from consideration.

In Tuzhilin and Adomavicius (2002), the use of templates is extended to the

biological domain to address the problem of analysing very large numbers of

discovered rules in the generated from microarray data. When there are multi-
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Figure 7.2: Classical vs proposed approaches

ple sets of discovered rules that have been generated over several time periods,

this framework can be employed for analysing the behavior of rules (Baron &

Spiliopoulou 2001, Liu, Ma & Lee 2001, Tuzhilin & Liu 2002).

In the context of richer temporal association rules, the framework is schemati-

cally shown in Figure 7.3. As shown in the figure, the framework puts the empha-

sis on the rule presentation phase where interesting rules iteratively can be found

without repeating rule discovery phase that is more time consuming. The rule-

base is generated at once with ARMADA, and the iteration is performed mostly

in the presentation phase through the retrieval system that provides facilities for

selecting interesting rules.

RulebaseDatabase

Mining algorithm
(ARMADA)

Retrieval system

Presentation phaseDiscovery phase

Query result

Query input

Figure 7.3: The post-processing framework

In order to be useful for a wide range of rule retrieval scenarios, the retrieval

system should provide flexible accesses to the rulebase. Although the templates

are useful for specifying the criteria of association rules to be retrieved, they are

not fully suitable for the richer temporal association rules, due to the complex
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format of the rules. As an alternative, this chapter considers the use of query

languages for selecting the rules. It was mentioned above that although several

data mining query languages have been proposed, most of them are designed for

rule mining and only a few provide enough support of rule retrieval. In contrast

to this trend, the query language required in this framework is only to facilitate

the retrieval of rules from the rulebase and is never concerned with the mining

data itself. Rule-QL (Tuzhilin & Liu 2002) is one of the languages satisfying this

requirement.

However, since Rule-QL is specifically designed for association rules, it must

be extended to deal with richer temporal association rules. Therefore, in this

chapter, a query language TAR-QL is proposed as a query specification language

for selecting richer temporal association rules. TAR-QL is based on the subset

of Rule-QL, extended by adding several additional operators and functions to

deal with richer temporal association rules. The complete language specification

of TAR-QL is given in Appendix C. However, for the purpose of discussing the

proposed indexing method that supports the query evaluation, the structure of a

basic TAR-QL query together with examples are presented in Section 7.4 below.

7.4 Types of Queries on Temporal Rules

This section describes basic queries that can be applied to the rulebase. As

illustration the queries are expressed in SQL-like expressions of the proposed

TAR-QL language. The syntax of the basic queries is:

SELECT r

FROM Rulebase r

WHERE Conditional_Expression

The FROM clause specifies the rulebase over which the queries are performed,

r is the rule variable defined over the rulebase, and the SELECT clause selects the
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variable that satisfies the condition of the WHERE clause. Three types of simple

conditions after the WHERE clause are pruning conditions, rule state conditions,

and rule format conditions.

Pruning conditions

These conditions enable the user to express queries involving attributes of rules,

such as support, confidence, and size of rules. These could have the format:

Rule_funct(r) <rel_op> const,

where Rule funct is one of the functions defined on a rule such as SUP, CONF,

SIZE LHR, and SIZE RHS defining support, confidence, and the size of a rule

(the number of states in the rule). The rel op is one of the relational operators

≤, ≥, <, >, =, and const is a constant.

Query 7.1 Find rules from the rulebase whose support is greater than 50% and

confidence is greater than 70%, and whose number of states on the RHS of the

rule is fewer than 4.

SELECT r

FROM Rulebase r

WHERE SUP(r) > 50% AND CONF(r) > 70%

AND SIZE_RHS(r) < 4

Using the set of rules in the Figure 7.1, this query results in a rule r1.

Rule state conditions

The rule state conditions allow the user to specify that a rule’s LHS/RHS must

contain a given set of states, be a subset of a given set of states, or be equal to a

set of given states. These conditions have the format:
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states_funct(r) <set_op> const,

where state funct is either the STATES LHS or STATES RHS defining the set

of states on the LHS or RHS of the rule. The set op is one of the set operators

SUPERSET OF, SUBSET OF and EQUAL. The const is a set of states. The

SUPERSET OF, SUBSET OF, and EQUAL operators, respectively, correspond

to the subset, superset, and equality queries defined in Definition 6.1 (Chapter

6).

Query 7.2 Find rules from the rulebase whose the RHS of the rule contains a

set {A, B, D}.

SELECT r

FROM Rulebase r

WHERE STATES_RHS(r) SUPERSET_OF {A, B, D}

The above query results in rules r1 and r2 because the right-hand sides of r1

and r2, i.e. p3 and p4, respectively, contain a set {A, B, D}. When the state funct

is used, the LHS/RHS of the rule is considered as a set of states, in which the

order of the states and the relationships between states in the LHS/RHS of the

rules are ignored.

Rule format conditions

These conditions allow the user to specify that a rule’s LHS/RHS must contain a

temporal pattern, be contained in a temporal pattern, or be equal to a temporal

pattern. They have the format:

L|RHS(r) <pat_op> const,

where L|RHS(r) is either the LHS or the RHS of the rule r, pat op is one of

the temporal pattern containment operators CONTAINS, CONTAINED IN and

EQUAL. The const is a temporal pattern.
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Query 7.3 Find rules from the rulebase whose the RHS of the rule contains a

pattern


A B

= b

∗ =

.

SELECT r

FROM Rulebase r

WHERE RHS(r) CONTAINS TO_PATTERN(<A, B>, <b>)

In this query, TO PATTERN is a function to convert a pair containing a list of

states and a list of relationships to a normalized temporal pattern. This function

simplifies the writing of queries involving rule format conditions. In the query

above, TO PATTERN(〈A, B〉, 〈b〉) represents a pattern


A B

= b

∗ =

. This query

produces a rule r1 as a result.

A complex conditional expression can be defined in terms of these simple

conditional expressions. Accordingly, the processing of complex conditional ex-

pressions relies on that of the simple ones. Generally, queries involving several

conditional expressions have many evaluation options and finding an efficient

query plan constitutes a significant challenge. This is a problem of query optimi-

sation, which will be considered in the future work. This chapter focuses on the

methods for evaluating the simple conditional expressions.

The query containing pruning conditions as in Query 7.1 can be processed

more efficiently by using B+ trees as indexes on the supports or confidences of the

rules in the rulebase. On the other hand, the query involving rule state conditions

as shown in Query 7.2 contains comparisons between sets. For example, to solve

Query 7.2, the set of states in the RHS of rules needs to be checked if it contains

a constant set {A, B, C}. In order to speed up this process, inverted files or

signature files described in Chapter 6 can be utilized to index the LHS and/or

RHS of the rules according to the needs.
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In contrast, the evaluation of queries involving rule format conditions as in

Query 7.3 requires comparisons between temporal patterns on the LHS/RHS of

the rules against a constant pattern. A Temporal pattern not only contains a

set of states, but also a set of relationships between states corresponding to the

ordering of states within the pattern. Therefore, inverted file or signature file

access methods cannot be directly applied to the temporal patterns, because

these set-oriented techniques do not consider the ordering of states.

Since B+ trees are straightforward and set-oriented methods of inverted files

and signature files have been described in Chapter 6, the remainder of this chapter

focuses on developing the index scheme to efficiently evaluate the containment

predicates CONTAINS, CONTAINED IN and EQUAL.

In order to simplify the discussion and without loss of generality, the problem

of finding rules that satisfy the rule format conditions is reformulated as the

problem of finding temporal patterns that satisfy the following queries.

Definition 7.1 (Content-based queries on temporal patterns) Let D be

a temporal pattern database, and q be a query pattern. The three types of

queries on temporal pattern are:

1. Subpattern queries: find those patterns in D that contain q, that is, all

p ∈ D such that p w q.

2. Superpattern queries: find those patterns in D that are contained in q,

that is, all p ∈ D such that p v q.

3. Equality queries: find those patterns in D equal to q, that is, all p ∈ D

such that p = q.

In this new problem formulation, a database D represents a set of temporal

patterns from LHS/RHS of the rules, and a query pattern q represents a constant

pattern that comes after the containment operators. The subpattern, superpat-

tern, and equality queries correspond to operators CONTAINS, CONTAINED N,

and EQUAL, respectively. In order to speed up the query evaluation, the signa-
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ture files are used to index the target patterns stored in D. Section 7.5 describes

the method to construct signature files from this collection of temporal patterns.

In Section 7.6, methods for evaluating the queries using the signature files are

developed.

7.5 Constructing Signature Files

Signature files store the signatures of temporal patterns. The signature of a

temporal pattern is created by converting the temporal pattern into an equivalent

set from which the signature is then generated. The idea is based on the previous

work (Morzy et al. 2001, Nanopoulos et al. 2003, Zakrzewicz 2001) in which the

signature of a sequential pattern is generated by first converting the sequential

pattern into its equivalent set (see Chapter 6.6).

7.5.1 Converting Temporal Patterns to Equivalent Sets

Two functions are required to create the equivalent set of a temporal pattern. The

first function is used to map a set of states in the pattern into a set of integers,

while the second one maps the relationships between states into integers. These

two functions are defined in the following.

Definition 7.2 (State mapping) Given a set of states S, a state mapping func-

tion f(x) is a function which transforms a state type x ∈ S into an integer value,

such that f(x) 6= f(y) for x 6= y, where x, y ∈ S.

Let a set of states S = {A, B, C,D}. An example of a simple state mapping

function f(x) can be defined as f(A) = 1, f(B) = 2, f(C) = 3, and f(D) = 4.

This function maps each state into a unique value.

Definition 7.3 (Relationship mapping) Given a set of states S and a set of

relations Rel, a relationship mapping g(x, y, r) is a function which transforms a

relationship (x r y) into an integer value, where x, y ∈ S , and r ∈ Rel.
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It is desirable to have a unique mapping for each relationship. However,

designing such mapping is not trivial. Therefore, it is sufficient to have a function

g such that g(x, y, r) 6= g(y, x, r) for any x, y ∈ S, r ∈ Rel. Consider a function

g(x, y, r) = h(r) · f(x) + f(y), where f is a state mapping function, and h is

a function that maps r ∈ Rel into an integer. Let define h(r) as: h(=) = N ,

h(c) = 2N , h(fi) = 3N , h(s) = 4N , h(o) = 5N , h(m) = 6N , and h(b) = 7N ,

where N is the number of states in S. Using this definition of h, g will have the

property that g(x, y, r) 6= g(y, x, r) for any x, y ∈ S, r ∈ Rel. For example, if

S = {A, B, C,D} and f is defined above, then g(A, B, b) = (28 × 1) + 2 = 30,

and g(B, A, b) = (28× 2) + 1 = 57, which results in g(A, B, b) 6= g(B, A, b).

Having defined mapping functions f and g, the equivalent set of a temporal

pattern can be defined using these two functions.

Definition 7.4 (Equivalent set) Given a temporal pattern p of size k, Sp =

〈s1, . . . , sk〉 is the list of states in p, and Mp is a k × k matrix whose element

Mp[i, j] denotes the relationship between states si and sj in Sp. The equivalent

set of p, E(p), is defined as:

E(p) =

(
k⋃

i=1

{f(si)}

)⋃(
k−1⋃
i=1

k⋃
j=i+1

{g(si, sj, r)}

)

where r = Mp[i, j].

For example, using the mapping functions f and g in the previous example,

the equivalent set of patterns p1 and p3 (Figure 7.1) can be computed as follows:

E(p1) = {(f(A)} ∪ {f(B)} ∪ {(g(A, B, b)} = {1, 2, 30}

E(p3) = {(f(A)} ∪ {f(B)} ∪ {f(D)} ∪ {(g(A, B, b)}∪

{(g(A, D, b)} ∪ {(g(B, D, m)}

= {1, 2, 4, 30, 32, 52}
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Table 7.1: Equivalent sets and signatures of temporal patterns

Pattern Equivalent set Signature

p1 {1, 2, 30} 0100 0110
p2 {1, 2, 22} 0100 0110
p3 {1, 2, 4, 30, 32, 52} 0101 0111
p4 {1, 2, 3, 4, 22, 31, 32, 59, 60, 28} 1101 1111

Equivalent sets of the other temporal patterns are shown in the second column

of Table 7.1.

It can be observed that if a temporal pattern is a subpattern of another pattern

then the equivalent set of the first pattern is a subset of the second pattern’s

equivalent set. For example, p1 is a subpattern of p3, therefore, E(p1) ⊆ E(p3)

(Table 7.1). This property is formalized in the following.

Property 7.1 Given two temporal patterns p, q, and the corresponding equiv-

alent sets E(p) and E(q), the following properties hold for any two temporal

patterns and their equivalent sets:

1. p w q → E(p) ⊇ E(q)

2. p v q → E(p) ⊆ E(q)

3. p = q → E(p) = E(q)

7.5.2 Converting Equivalent Sets to Signatures

Using the superimposed coding method, the signature of an equivalent set E is

an F -bit binary number created by bit-wise union (OR) of all element signatures

in E. Each element signature has F -bit length and m-bits are set to ‘1’. For

example, given F = 8 and m = 1, the signature of element e ∈ E is an 8-bit binary

number that can be computed by a hash function hash(e) = 2(e mod F ). For the

set E(p3) = {1, 2, 4, 30, 32, 52}, its element signatures are hash(1) = 00000010,

hash(2) = 00000100, hash(4) = 00010000, hash(30) = 01000000, hash(32) =
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00000001, and hash(52) = 00010000. The signature of E(p3) is computed using

the bit-wise union of all these element signatures, and the resulting signature is

‘01010111’. Using the same method, the signatures of the other temporal patterns

are shown in the third column of Table 7.1.

Property 7.2 Given two equivalent sets E(p) and E(q), and their correspond-

ing signatures sigp and sigq, the signatures of equivalent sets have the following

properties:

1. E(p) ⊇ E(q) → sigp ∧ sigq = sigq

2. E(p) ⊆ E(q) → sigp ∧ sigq = sigp

3. E(p) = E(q) → sigp = sigq

Combining Properties 7.1 and 7.2, the relations between temporal patterns

and their signatures are expressed in the following properties.

Property 7.3 Given two equivalent sets p and q, and their corresponding sig-

natures sigp and sigq, these signatures have the following properties:

1. p w q → sigp ∧ sigq = sigq

2. p v q → sigp ∧ sigq = sigp

3. p = q → sigp = sigq

As an example, consider temporal patterns p1 and p3, where p1 v p3. It can

be seen from Table 7.1 that sigp1 ∧ sigp3 = 01000110 ∧ 01010111 = 01000110,

which is the value of sigp1 .

Using these methods, the signature file of temporal patterns in database D

can be created as follows. For each temporal pattern p ∈ D, its equivalent set

E(p) is calculated, then its signature Ep is generated. This signature, together

with the temporal pattern identifier (pid), is inserted into the signature file. The

actual insertion depends on the signature file organization. For example, for SSF

the signature is appended to the end of the file, while for BSSF each signature
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bit is appended to the end of the corresponding bit-slice file. Only the signatures

are stored in the signature file, while the equivalent sets are only to facilitate the

computation of signatures. This procedure is outlined in Algorithm 7.1.

Input: A database D of temporal patterns
Output: SignatureFile
1: for each p ∈ D do
2: E(p) = Equivalent Set(p)
3: sigp = Signature(E(p))
4: Insert 〈sigp, pidp〉 into SignatureFile
5: end for
6: return SignatureFile

Algorithm 7.1: Constructing a signature file of temporal patterns

7.6 Processing of Queries using Signature Files

This section describes the processing of subpattern, superpattern, and equality

queries using signature files. In addition, it defines a similarity measure of tem-

poral patterns that can be used to limit the query result and to cluster the rules.

Similar to the processing of set-based queries with signature files, the process-

ing of temporal pattern queries also consists of two steps, filtering and false drop

resolution steps. The process is depicted in Figure 7.4 (adopted from Zezula et

al. (1991)).

7.6.1 Subpattern Queries

Given a temporal pattern database D and a query pattern q, the algorithm for

evaluating subpattern queries is called evaluateSubPattern(D, q), which finds

temporal patterns in D that contain q. If the signatures are stored in SSF,

evaluateSubPattern(D, q) is presented in Algorithm 7.2. The equivalent set,

E(q), of q is first calculated, and then a query signature sigq is formed. Each

target signature sigp in SSF is then examined against the query signature sigq.

If the target signature satisfies the search condition sigp ∧ sigq = sigq (the first
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Figure 7.4: Processing temporal pattern query using signature files

property in Property 7.3), the corresponding temporal pattern becomes a drop

and its identifier is added to the pattern-id (or PID)-list. Then, during false drop

verification, each drop is checked to determine if it actually satisfies the query

condition.

On the other hand, if the signatures are stored in BSSF, evaluateSubPat-

tern(D, q) proceeds in a slightly different way, and is shown in Algorithm 7.3.

The search condition sigp∧ sigq = sigq cannot be used, since the target signature

sigp is scattered across bit-slice files. Instead, the bit-slices corresponding to the

bit positions set to ‘1’ in sigq are retrieved, and then a bit-wise intersect (bit-

wise AND) operation is performed on the retrieved bit-slices. The corresponding

temporal pattern becomes a drop if the resulting bit entry is equal to ‘1’, and its

identifier is added to the PID-list. The false drop resolution step is the same as

in SSF.

7.6.2 Superpattern Queries

Let evaluateSuperPattern(D, q) be the algorithm for evaluating superpattern

queries, that is, for finding temporal patterns in D that are contained in q. If SSF
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Input: Temporal pattern database D, a query pattern q
Output: AnswerSet
1: E(q) = Equivalent Set(q)
2: sigq = Signature(E(q))
3: for each 〈sigp, pidp〉 ∈ SSF do
4: if sigp ∧ sigq = sigq then
5: Add pidp into PID-list
6: end if
7: end for
8: for each pidp in PID-list do
9: Retrieve p from D

10: if p w q then
11: Add p into AnswerSet
12: end if
13: end for
14: return AnswerSet

Algorithm 7.2: Pseudo code of evaluateSubPattern using SSF

Input: Temporal pattern database D, a query pattern q
Output: AnswerSet
1: E(q) = Equivalent Set(q)
2: sigq = Signature(E(q))
3: Retrieve the bit-slices corresponding to the bit position set to ‘1’ in sigq

4: Perform bit-wise intersect operation on the retrieved bit-slices
5: for each entry where ‘1’ is set in the resulting intersect bit slice do
6: Add the corresponding pidp into PID-list
7: end for
8: for each pidp in PID-list do
9: Retrieve p from D

10: if p w q then
11: Add p into AnswerSet
12: end if
13: end for
14: return AnswerSet

Algorithm 7.3: Pseudo code of evaluateSubPattern using BSSF
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is used, the algorithm is similar to evaluateSubPattern in Algorithm 7.2 except

the search condition sigp ∧ sigq = sigq (line 4) is replaced with sigp ∧ sigq = sigp,

and the query condition p w q (line 10) is replaced with p v q.

If BSSF is used, the evaluateSubPattern retrieves bit-slices corresponding to

the bit positions set to ‘0’ in sigq, and performs bit-wise union (bit-wise OR)

operation on them. The corresponding temporal pattern becomes a drop if the

resulting bit entry equals ‘0’. Each drop is then validated with respect to the

query condition p v q. The pseudo code of evaluateSuperPattern on BSSF is

shown in Algorithm 7.4.

Input: Temporal pattern database D, a query pattern q
Output: AnswerSet
1: E(q) = Equivalent Set(q)
2: sigq = Signature(E(q))
3: Retrieve the bit-slices corresponding to the bit position set to ‘0’ in sigq

4: Perform bit-wise union operation on the retrieved bit-slices
5: for each entry where ‘0’ is set in the resulting union bit slice do
6: add the corresponding pidp into PID-list
7: end for
8: for each pidp in PID-list do
9: Retrieve p from D

10: if p v q then
11: Add p into AnswerSet
12: end if
13: end for
14: return AnswerSet

Algorithm 7.4: Pseudo code of evaluateSuperPattern using BSSF

7.6.3 Equality Queries

Let evaluateEquality(D, q) be the algorithm for processing equality queries. Using

SSF, the algorithm follows the Algorithm 7.2, except that the search condition

sigp ∧ sigq = sigq is replaced with sigp = sigq, and the query condition p w q is

replaced with p = q.
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When BSSF is used, the algorithm requires accesses to all bit-slice files, not

only part of them. In order to decide if sigp = sigq, each bit of sigq must be

compared with corresponding bit of sigp which is stored in different bit-slice files.

This is only possible by accessing all bit-slice files.

7.6.4 Temporal Pattern Similarity

This subsection defines similarity measure for the normalized temporal patterns.

To my knowledge, no similarity measures have been defined for the patterns. In

order to define the similarity measure of the patterns, three properties must be

considered:

1. Temporal patterns are variable-length objects that cannot be represented

in a k-dimensional metric space,

2. Each pattern contains a list of states, and

3. Each pattern contains a set of state relationships.

The similarity measure is defined based on the measure known in the literature

as the Jaccard coefficient of two sets, which expresses the fraction of elements of

common to both sets. The Jaccard coefficient is not a metric1. Nevertheless,

a distance function can be defined in terms of the similarity as d(A,B) = 1 -

sim(A,B), and it is easy to show that such a distance function is indeed a metric.

Given two temporal pattern α and β, let Sα and Sβ denote a set of states

in α and β, respectively. The similarity between patterns α and β is defined in

Equation (7.1).

sim(α, β) =
|Sc|+ |Rc|√

(N s
α + N r

α)×
(
N s

β + N r
α

) (7.1)

In the equation (7.1), |Sc| = |Sα ∩ Sβ| is the number of common states in α

and β, and |Rc| represents the number of common relationships. N s
α represents

1metric is a function m(.,.) which is non-negative, symmetry, m(x,y) = 0 iff x = y, and
satisfies the triangle inequality.
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the number of states (size) of α, and N r
α represents the number of relationships

in α. For a temporal pattern α of size n, N s
α = n and N r

α = n(n−1)
2

. The value of

sim(α, β) will be 1 if α = β, but it will be 0 if they do not have common states.

As an example, consider temporal patterns p2 and p4 in Figure 7.1. The sets

Sp2 = {A, B} and Sp4 = {A, B, C,D}, so |Sp2 ∩ Sp4| (the number of common

states) = 2. The patterns only have 1 common relationship, that is, the rela-

tionship (A before B). The value of N s
p2

= 2, N r
p2

= 1, N s
p4

= 4, and N r
p4

= 6.

Therefore, the similarity between patterns p2 and p4 can be computed as:

sim(p2, p4) =
2 + 1√

(2 + 1)× (4 + 6)
≈ 0.548

By using Equation (7.1), the similarity matrix of four temporal patterns in

Figure 7.1 is:

SIM =



p1 p2 p3 p4

p1 1 0.667 0.707 0.365

p2 0.667 1 0.471 0.548

p3 0.707 0.471 1 0.516

p4 0.365 0.548 0.516 1


Let d(x, y) be a distance between temporal patterns x and y defined as

d(x, y) = 1 − sim(x, y). The distance function d is a metric, because it has

the following properties:

1. Non-negative: d(x, y) ≥ 0.

2. Symmetry: d(x, y) = d(y, x).

3. Identity: d(x, y) = 0 iff x = y.

4. Triangle inequality: d(x, y) ≤ d(x, z) + d(z, y).

This measure can used to limit the number of rules resulted from the query

processing. For example, given that a subpattern query generates n temporal pat-

terns containing the query pattern q, the k-nearest subpattern query can choose
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Table 7.2: Parameters

Symbol Definition
F Size of signature (in bits)
m Weight of a signature element
N Number of states
|Ds| Size of sequence database
|C| Average size of sequences
|D| Size of temporal pattern database
|T | Average size of temporal patterns
Q Size of a query pattern

k of n temporal patterns that are most similar to q, where k < n. In addition, it

can also be utilised as a distance function in the temporal rule clustering.

7.7 Experiments

To assess the performance of the proposed methods, the evaluateSubPattern,

evaluateSuperPattern, and evaluateEquality were implemented on SSF and BSSF

signature files. In addition, sequential versions of the methods (SEQ) were also

implemented as baseline methods, which process queries by sequentially retrieving

the target pattern (without using index) from the database and comparing it

against the query pattern. All programs are written in Java Language. The

experiments were conducted on synthetic datasets on an 2.4GHz Athlon PC with

512MB of RAM running Windows 2000 Professional.

The following subsections show the performance of evaluateSubPattern and

evaluateSuperPattern for processing subpattern and superpattern queries, respec-

tively. Update cost is not considered as it is assumed that the index is only cre-

ated once after frequent patterns have been generated by a data mining process.

Experimental parameters are listed in Table 7.2.

The temporal pattern database was generated using ARMADA from an in-

terval sequence database Ds containing 10,000 interval sequences (|Ds|), with
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average length of 10 (|C|), and 100 different types of state (N). Using the min-

imum support of 0.08% and maximum gap of 200, ARMADA generated a set

of 106,409 frequent temporal patterns. A temporal pattern database D is popu-

lated from this set of temporal patterns. First, the size of temporal pattern t was

determined randomly from a Poisson distribution with mean equal to |T |. Then,

a temporal pattern of size t is randomly picked from the set of frequent temporal

patterns, and added it to the database D.

To guarantee that the evaluated queries do not return an empty result set,

query patterns were generated as follows. For subpattern queries, a temporal

pattern of size 5 with the highest support in D was selected, then the states from

the pattern starting from the last state were individually removed, resulting in

a set of five queries. A similar method is performed for superpattern queries by

selecting a temporal pattern of size 10 to generate a further set of five queries.

7.7.1 Effect of Signature Size on the Number of False

Drops

This experiment observed how the size of the signature affects the number of

false drops in evaluateSubPattern and evaluateSuperPattern. It also determined

the optimal parameters for each query type in the experimental environment,

particularly the values of F and m. As can be seen from Equation (6.3) of

Chapter 6, the false drop probability depends on F , m, and the cardinalities of

the query set and target set. The value of m was set to 1 and the value of F

increased until no further performance improvement could be perceived. The size

of the database |D| = 50, 000, the average size of temporal pattern |T | = 5, and

the number of states N = 100. The size of signature F was varied from 8 to 128

bits. The number of false drops was measured.

Figures 7.5(a) and 7.5(b) show the number of false drops for evaluateSubPat-

tern and evaluateSuperPattern, respectively. The number of false drops is similar

for both SSF and BSSF, since it does not depend on the signature file structures.
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(a) evaluateSubPattern (b) evaluateSuperPattern

Figure 7.5: Effect of signature size on the number of false drops

As can be seen, the number of false drops consistently decreases as the size of the

signature increases and the number of false drops is also influenced by the size of

the query pattern. For evaluateSubPattern (Figure 7.5(a)), the larger the query

pattern, the lower the number of false drops. Conversely, the larger the query

pattern, the higher the number of false drops for evaluateSuperPattern (Figure

7.5(b)). The best recorded performance improvement were achieved with a sig-

nature size between 16 and 32 bits, at which point the number of false drops

decreases significantly.

7.7.2 Effect of Signature Size on Query Processing Time

This experiment used the above dataset to compare the relative performance of

the evaluateSubPattern and evaluateSuperPattern on SEQ, SSF, and BSSF. Each

method was run on each of the queries used in the previous experiment. Figure

7.6(a) shows the total time required by evaluateSubPattern, while Figure 7.6(b)

shows the total time required by evaluateSuperPattern.

The figures show that the query processing times of both methods on SSF and

BSSF are proportional with the number of false drops from previous experiments.

Both methods gain the best performance improvement when the size of signature

is between 16 and 32. Both methods perform better on BSSF. For small values of
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(a) evaluateSubPattern (b) evaluateSuperPattern

Figure 7.6: Effect of signature size on query processing time

(a) evaluateSubPattern (b) evaluateSuperpattern

Figure 7.7: Effect of database size on query processing time

F , the query processing times of both methods are almost similar on SEQ, SSF,

and BSSF. This is because when F ≤ 8 the number of false drops becomes so

high that when SSF and BSSF are used, the algorithms have to retrieve almost

all patterns in the database during the verification step. Finally, both methods

show a marked improvement on SSF and BSSF over SEQ.
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7.7.3 Effect of Database Size on the Query Processing

Time

In order to observe how the methods scale with respect to the database size, five

datasets were generated in which |T | = 5, and N = 100. The size of database |D|

was varied from 10,000 to 100,000. Both methods were run on each dataset using

two values of F (32 and 64 bits). Figure 7.7(a) shows the total time required by

evaluateSubPattern on SEQ, SSF 32 bits, SSF 64 bits, BSSF 32 bits, and BSSF

64 bits to process five queries. Figure 7.7(b) shows the total time required by

evaluateSuperPattern to process five queries.

In general, the processing times are proportional to the database size. Both

methods remain the slowest on SEQ, but show the fastest or the best scaling

behaviour on BSSF.

7.8 Summary

This chapter has presented the retrieval system, which facilitates the selection of

interesting rules in the post-processing of discovered richer temporal association

rules. The general framework of the post-processing model is described. In order

to provide flexible accesses to the rulebase, a query language TAR-QL is proposed

for expressing queries on richer temporal association rules. This chapter has

developed and implemented low-level techniques for evaluating queries involving

rule format conditions. These techniques utilize signature files to improves the

performance of the query evaluation. The experiment results show that those

that are based on BSSF perform better than the ones that are based on SSF, but

both are better than sequential methods.

This chapter does not discuss the presentation of the rules after they have

been retrieved. In the post-processing of discovered rules, the presentation of

the rules is as important as the rule retrieval. Appropriate rule presentation

methods can provide a better understanding of the rules so that the finding of
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interesting rules can be as easy as possible. Various methods have been proposed

for visualising association rules generated by data mining algorithms (Hofmann,

Siebes & Wilhelm 2000, Ong, Ong & Lim 2002, Wong, Whitney & Thomas 1999)

The application of these methods to richer temporal association rules needs a

further investigation, which is the subject of this thesis’s future work.



Chapter 8

Conclusions

This thesis has studied the discovery of temporal patterns and rules from se-

quential data. Numerous previous studies have concentrated on the discovery of

patterns in event sequence data, such as the discovery of temporal association

rules, sequential patterns, episodes, and periodic patterns. In contrast, despite

its promising applications, the pattern discovery from interval sequence data has

received little attention, and many issues have not been fully explored. In this

thesis, three main issues related to the pattern discovery from interval sequence

data have been addressed. The first issue is the problem of defining structure

for interesting patterns in interval sequence data. The second is the need for

the efficient algorithms for the discovery of patterns in interval sequence data,

while the third is the analysis of the discovered patterns to identify potentially

interesting patterns.

The results that have been achieved so far include a problem formulation for

the discovery of richer temporal association rules, a novel algorithm for discover-

ing the rules, a high-level language for specifying retrieval tasks concerning the

discovered rules, and low-level methods for evaluating queries involving rule for-

mat conditions. Moreover, this thesis has also made a contribution in the area

of pattern discovery from event sequence data, by proposing a new type of rules

called inter-transaction relative temporal association rules.
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In this chapter, Section 8.1 provides a discussion of the major contributions

of this thesis and differences to other work. Section 8.2 provides a discussion of

several future research directions for extending this thesis.

8.1 Contributions

Discovery of Temporal Rules

In order to address the problem of defining pattern structure, this thesis has

formulated the problem of discovering richer temporal association rules from in-

terval sequence databases. The richer temporal association rules are formulated

using the pattern formulation proposed by Höppner (2001). However, our work

is different from the work of Höppner, because the richer temporal association

rules are mined from a set of interval sequences, instead of a long sequence of

intervals.

This thesis deals with the second issue by developing an efficient algorithm,

ARMADA, for discovering richer temporal association rules. ARMADA does not

require candidate generation, rather it utilizes a simple index to grow longer

temporal patterns from the shorter frequent ones. In the process of growing the

patterns, ARMADA only considers those client sequences indicated by a current

index set, instead of searching on every client sequence in the database. It is true

that extra storage is needed to store the index set, in addition to the memory

allocated for the database. However, the size of the index set reduces as the

prefix pattern to create the index set increases. Moreover, the proposed algorithm

requires at most two database scans. When the database is too large to fit into

memory, the algorithm divides the database into several partitions and mines

each partition. A second pass of the database is then required to validate the

true patterns in the database. Additionally, this thesis introduces a maximum

gap time constraint that can be used to remove insignificant patterns, which in

turn can reduce the number of frequent patterns and richer temporal association
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rules generated by the algorithm.

Although the discussion of richer temporal association rules has been done

in the context of interval sequence data from the medical domain, the proposed

concept is quite general and is applicable to the interval-based data from other

domains. However, the usefulness of richer temporal association rules for repre-

senting temporal knowledge requires further investigation, by mining the rules

from real datasets.

In the area of pattern discovery from event sequence data, this thesis has in-

troduced a new type of rule called inter-transaction relative temporal association

rules. In order to discover the rules, a set of frequent relative itemsets are first

generated using the algorithm similar to the AprioriAll algorithm. Some modifi-

cations to the AprioriAll algorithm have been introduced to improve the perfor-

mance of the algorithm. However, this work also shows that basing the algorithm

on more efficient algorithms, such as the ideas contained in the FP-Growth algo-

rithm (Han, Pei & Yin 2000) or other ideas of improving Apriori-based algorithms

proposed by Bodon (2003) could be used instead.

Retrieval of Discovered Temporal Rules

In order to deal with the post-processing problem of richer temporal association

rules, this thesis has proposed a retrieval system that can be utilised for facili-

tating the selection of interesting rules during the post-processing of a large set

of discovered richer temporal association rules. As the first step toward reali-

sation of a such retrieval system, the general framework of the post-processing

model in which the retrieval system will be employed has been described. The

post-processing framework puts the emphasis on the rule presentation step of the

KDD process, where interesting rules iteratively can be found, without repeating

the rule discovery step that is more time consuming. However, it should be noted

that the rule discovery step can still be performed if it is considered necessary.

In addition, this thesis has proposed a query language TAR-QL for specifying
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the criteria of the rules to be retrieved. TAR-QL has been based on the subset

of Rule-QL (Tuzhilin & Liu 2002), extended by adding several additional opera-

tors and functions to deal with richer temporal association rules. Furthermore,

this thesis has developed low-level methods for evaluating queries involving rule

format conditions. In order to improve the performance of the methods, the in-

dexing technique based on signature files has been proposed. Although, the use

of signature files as access methods in set and sequence retrieval is not new (see

Chapter 6), this thesis has shown that signature files can be extended to support

the retrieval of richer temporal association rules.

Finally, this thesis has developed similarity measure for temporal patterns,

which is defined based on the Jaccard coefficient of two sets. Although the pro-

posed measure itself is not a metric, the distance function derived from it is.

This measure can be used to limit the number of rules resulted from the query

processing or to cluster the rules based on the similarity of their antecedents or

consequents.

8.2 Future Research Directions

The work presented in this thesis points to several directions for future research.

One of the directions to be undertaken by the author includes an application to

real-world problem domains and enhancements to the interface to facilitate the

discovery of temporal patterns and rules. Ideally, a temporal mining algorithms

should understand all types of relationship and convention, thus other work that

could be considered is the link between relative relationships and the use of either

accepted calendars (for example, the work of Hamilton and Randall (2000) and

others) and/or mixing references to relative time with those of absolute time.

Another direction is to make the retrieval system more functional in support-

ing the post-processing of discovered richer temporal association rules. Two areas

of extension present themselves. First, the development of TAR-QL parser for



CHAPTER 8. CONCLUSIONS 169

syntactic and semantic analysis of the queries. The parser is also used for building

the parse tree for the query and calling the appropriate query processing meth-

ods. Second, the development of rule presentation component for presenting the

rules resulting from the query. The rule presentation should be done in such a

way that finding interesting rules is as easy as possible, for example, through rule

visualisation. Visualisation has been an important part of data mining because

human have remarkable abilities to spot hidden patterns (Shneiderman 1996).

Although several methods have proposed for visualising association rules, there

has not been a lot of research effort in the data mining community targeted to

visualization of temporal patterns or rules.

Another possible direction is to extend TAR-QL, and hence the retrieval sys-

tem, for querying multiple rulebases. Currently, the retrieval system is designed

for the retrieval of rules from one set of discovered rules. When the system has the

capability to query multiple rulebases, it can be used for analysing the behavior of

the rules over a number of time periods (Liu et al. 2001, Zhao & Liu 2001, Baron

& Spiliopoulou 2001). For example, assuming that the discovered rules for each

month are stored in a separate rulebase, one type of query is to find the rules

that are stable over several months. Another example is to find rules whose con-

fidences and/or support are ‘growing’ or ‘diminishing’. These types of queries are

important as data mining is increasingly used in the production mode (Tuzhilin

& Liu 2002).
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Publications Resulting from This

Thesis

The following publications have resulted from material presented within this the-

sis. Publications 1 relates to material presented in Chapters 2.1 and initial work

of Chapter 3. Publication 2 contains early work of Chapter 5. Publication 3 is an

an extended version of publication 2 and contains most of the material presented

in Chapter 5.

1. Winarko, E. and Roddick, J.F. (2003). Relative Temporal Association Rule

Mining. Proc. of the 2nd Australasian Data Mining Workshop (ADM’03),

Canberra. Simoff, S. J., Williams, G. J. and Hegland, M., Eds., University

of Technology, Sydney. 121-142.

2. Winarko, E. and Roddick, J.F. (2005). Discovering Richer Temporal As-

sociation Rules from Interval-based Data. Proc. of the 7th International

Conference on Data Warehousing and Knowledge Discovery - DaWaK’05,

Copenhagen, Denmark. Lecture Notes in Computer Science, 3589. Tjoa,

A. M. and Trujillo, J., Eds., Springer. 315-3251.

1Selected as one of the best papers
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3. Winarko, E. and Roddick, J.F. (2007). ARMADA - An Algorithm for Dis-

covering Richer Relative Temporal Association Rules from Interval-based

Data. Data and Knowledge Engineering 63. 76-90.
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Rule Discovery System

B.1 ARMADA

In order to facilitate the mining of temporal patterns and richer temporal asso-

ciation rules, a simple interface to the ARMADA has been developed. A brief

description of the interface and the way it can be used is given below. The

interface is shown in Figure B.1 and contains two main areas:

• The left panel contains the controls for selecting input databases, setting

the minimum support, maximum gap and minimum confidence, generating

and displaying temporal patterns and richer temporal association rules.

• The right panel contains two areas for displaying the generated temporal

patterns (top area) and temporal rules (lower area). Initially, the generated

temporal patterns are stored in the file and only their summary is displayed.

If the user wants to browse the patterns, she/he has to use the ‘Show

Patterns’ control to display the patterns from the file. This is also the case

for the temporal rules.
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Figure B.1: Screen shot of the ARMADA interface

B.2 Interval Data Generator

This sections describes in more detail the synthetic data generation program

to generate interval-based datasets used in the experiments in Chapter 5. The

generator requires five main parameters shown in table B.1. The other two pa-

rameters, the correlation and the corruption, are normally always set to 0.5. The

correlation value is the mean correlation between the frequent patterns, and the

corruption value is the mean of the corruption coefficient indicating how much a

frequent pattern will be corrupted before being used. The generator user interface

is shown in Figure B.2.

|D| Number client sequences
|C| Average size of client sequences
|P | Average size of potentially frequent patterns
NP Number of potentially frequent patterns
N Number of states

Table B.1: Parameters

In generating the dataset, the generator first creates a random pool of poten-

tially frequent patterns that will be used in the generation of client sequences.
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Figure B.2: Screen shot of the data generator interface

The number of potentially frequent patterns is NP . A frequent pattern is gener-

ated by first picking the size of the pattern (the number of states in the pattern)

from Poisson distribution with mean µ equal to |P |. The type of states is chosen

randomly (from N state types). Then, in order to form a pattern, temporal re-

lations between consecutive states are determined randomly. Assuming that the

normalized temporal patterns is used, the temporal relations are chosen from the

set {before, meets, overlaps, is-finished-by, contains, starts, equal}. Each state in

the pattern is then assigned an interval value according to its temporal relation

with the state that comes before it. The interval value of the first state in the

pattern is chosen randomly. If the pattern contains two similar consecutive states,

their temporal relation is always set to before. To generate a client sequence, the

generator first determines the size of the client sequence. The size is picked from

a Poisson distribution with mean µ equal to |C|. Each client sequence is assigned

a series of potentially frequent patterns.

The database that contains generated client sequences is stored in an ASCII

file. The file is structured into two parts. The first part contains a list of state

types, each preceded by their coding number starting from 1 and on a separate

line, as follows:
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1 S1

2 S2

3 S3

The second part is opened by a BEGIN DATA line and closed by an END DATA

line. Each line between these two lines represents a transaction and contains a list

of four integers representing client-id, start time, end time, state code number.

Several transactions with the same value of client-id form a client sequence. The

following example shows the database of two client sequences containing five

transactions. The first three transactions form a sequence of client-id 1, and the

last two transactions form a sequence of client-id 2. The first transaction of a

client-id 1 has a state S2 holds during a period of time [3, 7). Similarly, the last

transaction of a client-id 2 has a state S3 holds during a period of time [11, 14).

1 S1

2 S2

3 S3

BEGIN_DATA

1 3 7 2

1 7 10 1

1 12 16 3

2 6 9 2

2 11 14 3

END_DATA
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TAR-QL Query Language

This appendix describes the specification of TAR-QL query language.

SELECT [FUNCT]r

FROM Rulebase r

[WHERE {pruning_condition|rule_state_condition|

rule_format_condition}

[{AND|OR} {pruning_condition|rule_state_condition|

rule_format_condition}] ...

]

[GROUP BY {LHS|RHS|SUPPORT|CONFIDENDE}]

[HAVING condition]

[ORDER BY {LSIZE|RSIZE|SUPPORT|CONFIDENCE} [DESC|ASC]]

In the above description, the FROM clause specifies the rulebase over which

the queries are performed, r is the rule variable defined over the rulebase, and the

SELECT clause selects the variable that satisfies the condition of the WHERE

clause. The optional FUNCT specifies aggregation operations over the resulting

set of rules.
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Aggregate Functions

A number of aggregate functions exist: COUNT, MAX, MIN, and AVG. These

functions can be used in the SELECT clause or in a HAVING clause which will

be discussed later. The description of the functions is as follows.

• COUNT: returns the number of rules in the resulting set of rules,

• AVG CONF, AVG SUP, AVG LSIZE, AVG RSIZE: return the average lev-

els of confidence, support, and the size of rules’ LHS/RHS in the resulting

set,

• MAX CONF, MAX SUP, MAX LSIZE, MAX RSIZE: return the maximum

values of confidence, support, and the size of rules’ LHS/RHS in the result-

ing set,

• MIN CONF, MIN SUP, MIN LSIZE, MIN RSIZE: return the minimum

values of confidence, support, and the size of rules’ LHS/RHS in the answer

set.

Conditional Expressions

Three types of conditions after the WHERE clause are: pruning conditions, rule

state conditions, and rule format conditions.

Pruning conditions

The pruning conditions are used to specify queries involving rule attributes, such

as support, confidence, the size of rules, and the name of states. They have the

following format:

Rule_funct(r) <rel_op> const

The Rule funct is one of the following defined functions:

• CONF(r): returns the confidence value of the rule r,
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• SUP(r): returns the support value of the rule r,

• SIZE LHS(r): returns the number of states of the rule r left-hand side,

• SIZE RHS(r): returns the size of the rule r right-hand side,

• STATE LHS(r, n): returns the n-th state of the rule r left-hand side,

• STATE RHS(r, n): returns the n-th state of the rule r right-hand side.

The rel op is one of the relational operators ≤, ≥, <, >, and =. The const is

a constant.

Query C.1 Find rules whose support is greater than 50% and confidence is

greater than 70%.

SELECT r

FROM Rulebase r

WHERE SUP(r) > 50% AND CONF(r) > 70%

Query C.2 Find rules whose number of states on the LHS of the rules is fewer

than 4 and second state on the RHS of the rules is ‘B’.

SELECT r

FROM Rulebase r

WHERE SIZE_LHS(r) < 4

AND STATE_RHS(r, 2) > ‘B’

Rule state conditions

The rule state conditions allow the user to specify that the rule’s LHS/RHS (left-

hand side/right-hand side) must contain a certain set of states, be a subset of a

given set of states, or be equal to a set of given states. These conditions have the

format:

states_funct <set_op> const,
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The states funct is one of the following defined functions:

• STATES LHS(r): returns the set of states of the rule r left-hand side,

• STATES RHS(r): returns the set of states of the rule r right-hand side.

The set op is one of the set operators SUPERSET OF, SUBSET OF and

EQUAL. The const is a set of states.

Query C.3 Find rules whose the RHS of the rule contains a set {A, B, D}.

SELECT r

FROM Rulebase r

WHERE STATES_RHS(r) SUPERSET_OF {A, B, D}

Rule format conditions

The rule format condition allows the user to specify that the rule’s LHS/RHS

must contain a temporal pattern, be contained in a temporal pattern, or be equal

to a temporal pattern. It has the format:

pattern_funct <pat_op> const

The pattern funct is one of the following two defined functions:

• LHS(r): returns the left-hand side of the rule r,

• RHS(r): returns the right-hand side of the rule r.

The pat op is one of the temporal pattern containment operators CONTAINS,

CONTAINED IN and EQUAL. The const is a temporal pattern constant.

In order to simplify the writing of temporal patterns in the query, a func-

tion TO PATTERN is introduced to convert a pair containing a list of states

and a list of relationships to a normalized temporal pattern. As an exam-

ple, TO PATTERN(〈A, C, B, D〉, 〈o, b, m, b, b, o〉) represents a pattern



APPENDIX C. TAR-QL QUERY LANGUAGE 180



A C B D

= o b b

∗ = m b

∗ ∗ = o

∗ ∗ ∗ =

.

Query C.4 Find rules whose the RHS of the rule contains a pattern


A B D

= o b

∗ = m

∗ ∗ =

.

SELECT r

FROM Rulebase r

WHERE RHS(r) CONTAINS TO_PATTERN(<A, B, D>, <o, b, m>)

Grouping and Ordering Rules

The GROUP BY clause can be used to group the resulting rules based on various

grouping criteria. After the rules have been grouped, aggregate functions can

be applied to the individual group. Four keywords that can be used with the

GROUP BY clause are LHS, RHS, SUPPORT, and CONFIDENDE, for grouping

rules based on the structure of LHS/RHS of the rules, support, and confidence.

Query C.5 Find average confidence of rules that have similar structure on their

left-hand side.

SELECT AVG_CONF(r)

FROM Rulebase r

GROUP BY LHS

Sometimes we want to retrieve the values of aggregate functions only for

groups that satisfy certain conditions. HAVING clause is used to eliminate all
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the groups for which the conditional expression of the HAVING clause does not

evaluate to TRUE.

Query C.6 For each group of rules on which there are more than four rules, find

average confidence of rules in the group.

SELECT AVG_CONF(r)

FROM Rulebase r

GROUP BY LHS

HAVING COUNT > 4

The ORDER clause specifies an order for displaying the resulting set. The

ORDER BY LSIZE, ORDER BY RSIZE, ORDER BY SUPPORT, and ORDER

BY CONFIDENCE are used to order rules based on the sizes of LHS and RHS of

the rules, support, and confidence, respectively. Furthermore, the resulting rules

may be sorted in ascending (ASC) or descending (DESC) order.
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