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Summary

Joint models for longitudinal and time-to-event data have been applied in many different
fields of statistics and clinical studies. My interest is in modelling the relationship between
event time outcomes and internal time-dependent covariates. In practice, the longitudinal
responses often show non-linear and fluctuated curves. Therefore, the main aim of this
thesis is to use penalized splines with a truncated polynomial basis to parameterise the
non-linear longitudinal process. Then, the linear mixed effects model is applied to subject-
specific curves and to control the smoothing. The association between the dropout process
and longitudinal outcomes is modeled through a proportional hazard model. Two types
of baseline risk functions are considered, namely a Gompertz distribution and a piecewise
constant model. The resulting models are referred to as penalized spline joint models;
an extension of the standard joint models. The expectation conditional maximization
(ECM) algorithm is applied to estimate the parameters in the proposed models. To
validate the proposed algorithm, extensive simulation studies were implemented followed
by a case study. Simulation studies show that the penalized spline joint models improve
the existing standard joint models.

The main difficulty that the penalized spline joint models have to face with is the com-
putational problem. The requirement for numerical integration becomes severe when
the dimension of random effects increases. In this thesis, a modified two-stage approach
has been proposed to estimate the parameters in joint models. This approach not only
improves a previous two-stage approach but also allows for the application of extended
joint models with a high dimension of random effects in the longitudinal submodel. In
particular, in the first stage, the linear mixed effects models (LMEs) and best linear
unbiased predictors (BLUPs) are applied to estimate parameters in the longitudinal sub-
model. Then, in the second stage, an approximation of the fully joint log-likelihood is
proposed using the estimated values of these parameters from the longitudinal submodel.
The survival parameters are estimated by maximizing the approximation of the fully joint



log-likelihood. Simulation studies show that the modified two-stage approach performs
well, especially when the dimension of the random effects in the penalized splines joint
models increases.

Finally, a Bayesian approach is applied to estimate the parameters in the penalized splines
joint models. This approach provides alternative ways to infer the uncertainties of the
parameters in the penalized splines joint models. Moreover, this approach can avoid
approximations resulting from calculating multiple integrals in the frequentist approach.
The Markov chain Monte Carlo (MCMC) algorithm is proposed containing the Gibbs
sampler (GS) and Metropolis Hastings (MH) algorithms to sample for the target condi-
tional posterior distributions. Extensive simulation studies were implemented to validate
the proposed algorithm. In addition, the prior sensitivity analysis for the baseline haz-
ard rate and association parameters is performed through simulation studies and a case
study. The results show that the fully Bayesian approach produces reliable estimates and
complete inferences for the parameters in the penalized splines joint models.
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1. Introduction

Chapter 1

Introduction

In follow-up type of studies, there are different types of response variables collected for
each individual. They are longitudinal outcomes which are measured on each subject
repeatedly, and the time when the subject meets an event of particular interest. There
are many research questions focusing on the association between longitudinal data and
survival time in clinical, epidemiological and educational studies. In many clinical studies,
the researchers want to evaluate the impact of biomarkers for their prognostic capabili-
ties on survival time outcomes. Tsiatis et al. (1995) investigated the association between
the number of CD4-lymphocyte and the time to death in an acquired immune deficiency
syndrome (AIDS) study. The link between serum bilirubin level and survival time was
investigated in liver cirrhosis studies (Rizopoulos, 2011; Ding and Wang, 2008). In addi-
tion, there has been interest in the interrelation between these two types of data in other
fields. For instance, the environmental factors or seasonal patterns may be associated
with the occurrence of some types of diseases such as asthma or depression (Rizopoulos,
2012; Kalbfleisch and Prentice, 2002).

Joint models aim to measure the association between survival time and longitudinal re-
sponses. These models can be used to better estimate the survival and longitudinal
processes as well as evaluating their association. There are different types of longitudi-
nal covariates and there is a demand on modelling survival time and trajectory for each
individual. Therefore, flexible joint models are introduced to suit each type of longi-
tudinal covariate and parameterize individual curves (Cox, 1972, 1975; Andersen et al.,
1993; Rizopoulos, 2012; Tsiatis and Davidian, 2004). In addition, different approaches
and techniques need to be considered to estimate parameters for joint models (Cox and
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Hinkley, 1979; Tsiatis and Davidian, 2001; Rizopoulos, 2011; Ibrahim et al., 2005; Gould
et al., 2014).

Cox (1972, 1975) introduced joint models using proportional hazard models. The Cox
model has been, and remains, a very popular joint model to deal with time-independent
covariates using a partial likelihood approach. However, the Cox model contains many
disadvantages for handling time-dependent covariates (Cox, 1972). Time-dependent co-
variates are also divided into two types which are external and internal covariates. Cox
(1975) extended his method to handle the external longitudinal covariates. These models
are known as the extended Cox models, which also use the partial likelihood approach
for estimation (Cox, 1975; Cox and Hinkley, 1979; Cox and Oakes, 1984; Andersen et al.,
1993).

Another category of time-dependent covariates is internal longitudinal outcomes, which
can be found in many clinical studies. The extended Cox model using a partial likelihood
approach can cause large biases and poor coverage properties for handling internal co-
variates Sweeting and Thompson (2011); Tsiatis and Davidian (2004). Rizopoulos (2012)
proposed standard joint models postulating from the proportional hazard model. He used
the full likelihood approach to estimate the parameters in the joint models. This approach
performs acceptably better for handling internal covariates compared to the Cox model
and the extended Cox model (Rizopoulos, 2012; Gould et al., 2014).

In the full likelihood approach, the whole history of biomarkers influences the survival
function. Thus, it is important to obtain good models for longitudinal data in order to
estimate the survival time accurately. Moreover in practice, subject-specific trajectories
may show non-linear curves for a long period of measurement. Estimating parameters
for standard joint models is often quick and easy. However, they may not fit non-linear
longitudinal data and especially cannot handle smoothing. This potential problem can be
addressed by proposing an appropriate longitudinal submodel to handle non-linear longi-
tudinal data Gould et al. (2014); Tsiatis and Davidian (2004). In this thesis, we mainly
focus on modelling the association between the internal non-linear longitudinal outcomes
and event-time outcomes as well as parameter estimation using different approaches.

This thesis introduces penalized spline joint models to handle non-linear longitudinal
outcomes in Chapter 3. These models are not only a good fit for non-linear longitudinal
data, but can also control the roughness of fit for the individual curves. To estimate the
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parameters in these models, the full likelihood approach is applied. Particularly, param-
eter estimation is obtained by using the expectation conditional maximization (ECM)
algorithm. These models can improve the biases and the goodness of fit compared to
the standard linear joint models. However, the penalized spline joint models can become
complicated quickly when the number of knots in the longitudinal submodel increases.
The full likelihood approach can lead to a computational problem for which the algorithm
takes a long time to converge.

To deal with this computational problem, in this thesis, a modified two-stage approach
is proposed in Chapter 4. We introduce an algorithm to estimate the parameters for the
penalized spline joint models. This approach allows the allocation of as many knots as
possible to the penalized spline joint models. In addition, this approach not only reduces
the time for convergence but also has biases comparable to the full likelihood approach.

Finally, to avoid the approximation from calculating multiple integrals in the frequentist
approach, and to quantify uncertainty using a probability density function for the penal-
ized spline joint models, a fully Bayesian approach is applied to the penalized spline joint
models in Chapter 5. In this approach, based on the likelihood function, we formulate the
joint posterior distribution. The main algorithm using the Metropolis Hastings (MH) and
Gibbs sampler (GS) algorithms is proposed to sample the parameters for the penalized
spline joint models. In addition, prior sensitivity analysis is performed to confirm the re-
sults of the inferences based on different prior distributions of some important parameters
in joint models.

In summary, the original contributions of this thesis include:

(i) The introduction of penalized spline joint models for non-linear longitudinal data
and time-to-event data; In particular, we implement penalized splines using a truncated
polynomial basis for the longitudinal submodel (Section 3.2);

(ii) The three approaches being proposed for estimating parameters for penalized spline
joint models namely the ECM full likelihood approach (Section 3.3), the modified two-
stage approach (Sections 4.2 and 4.3) and the fully Bayesian approach (Sections 5.3 and
5.4);

(iii) Extensive simulation studies in Sections 3.4, 4.4 and 5.5 to validate the three ap-
proaches in (ii);
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(iv) Random effects misspecification analysis for the modified two-stage approach (Section
4.5);

(v) A prior sensitivity analysis for the Bayesian approach (Section 5.6);

(vi) The R codes written for the three approaches.

To achieve these aims, this thesis is organized into six chapters as follows: Chapter 1 is
this introductory chapter. The background for longitudinal analysis, survival analysis and
joint modelling are introduced in Chapter 2. The frequentist and Bayesian approaches
for joint models are also reviewed in this chapter. Penalized splines models are proposed
in Chapter 3. In this chapter, we also introduce the ECM algorithm and a set of R code
written to estimate the parameters in the proposed joint models. The modified two-stage
approach is introduced in Chapter 4. In this chapter, a proposed two-stage algorithm is
also presented and a set of R code is provided. Intensive simulation studies are conducted
to compare with the full likelihood approach. Chapter 5 uses a fully Bayesian approach
to estimate parameters in the penalized joint models. The Markov chain Monte Carlo
(MCMC) method is applied to sample parameters. Finally, conclusions about the main
results obtained in this thesis, remaining problems and future research for joint models
are discussed in Chapter 6.
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Chapter 2

Literature Review

Longitudinal data and survival data frequently occur together in practice. As an example,
in many medical studies, patients’ information such as CD4 cell counts, serum bilirubin
level, etc, are collected repeatedly to be associated with survival time. Recently, a large
number of studies investigate the link between a true potential biomarker and survival
time Cox (1972); Tsiatis and Davidian (2001); Rizopoulos (2012); Ding and Wang (2008);
Ibrahim et al. (2005). Joint models for longitudinal data and time-to-event data aim to
measure the association between the longitudinal marker level and event times. These
models can be used to obtain a good fit for the longitudinal process and better prediction
for the survival process.

There are two important submodels used to build the joint models. These are the linear
mixed-effects model and the relative risk model. In this chapter, the background for
longitudinal data analysis is first presented in Section 2.1 followed by survival data analysis
in Section 2.2. In particular, linear mixed effects models and penalized spline longitudinal
models are reviewed for longitudinal data. Cox and extended Cox models are presented
for survival analysis. Furthermore, we review the standard joint models for longitudinal
and survival data in the literature that have used a frequentist approach to estimate the
parameters in the joint models in Section 2.3. At the end, a Bayesian approach, which
can be considered to be an alternative method to estimate the parameters in the joint
models, is presented in Section 2.4.

2.1 Longitudinal data analysis

Longitudinal data is correlated data measured repeatedly at different time points. This
type of data is commonly found in many different fields of quantitative research, especially
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in health sciences. To analyse this type of data, well-fitting models and methods are
proposed to be able to make inferences for population means and individual means at
specific time points. The analysis also investigates the change of these means over time
(Cox and Hinkley, 1979; Singer and Willett, 2003).

Longitudinal data analysis has been long developed in the literature. Hand and Crow-
der (1996), Verbeke and Molenberghs (2000), Diggle et al. (2002) and Molenberghs and
Verbeke (2005) provided overviews of the theory for longitudinal data that focus on multi-
variate regression models and multivariate analysis of variance. Rao (1997), Fitzmaurice
et al. (2004), Gelman and Hill (2007) and McCulloch et al. (2008) showed differences
between longitudinal data analysis assuming correlated observations and cross sectional
data analysis assuming independent observations. They also presented methods for es-
timating parameters in different longitudinal regression models. Many modern methods
have been developed for analysing data from longitudinal studies and many packages
for implementing these methods are available for various software environments(Pinheiro
et al., 2014; Bates et al., 2011; Venables and Ripley, 2013; Rice and Wu, 2001).

In longitudinal data regression, subject-specific trajectories can either be linear or non-
linear curves. There have been numerous studies that have analysed non-linear longitu-
dinal datasets. The relationship between CD4 cell counts and time in the AIDS dataset
(Abrams et al., 1994) showed lightly non-linear curves for five repeated measurements.
Many profiles in primary biliary cirrhosis data and liver cirrhosis data showed obviously
non-linear serum bilirubin levels and prothrombin indexes in time (Andersen et al., 1993;
Murtaugh et al., 1994).

To model subject-specific curves having a non-linear response profile over time, the linear
mixed effects models and penalized spline regression models for longitudinal data can be
used. Linear mixed effects models are effective in estimating not only the population
mean but also the individual trajectories as they change over time. These models were
investigated by Hand and Crowder (1996), Verbeke and Molenberghs (2000), Fitzmaurice
et al. (2004), Ruppert et al. (2009), Jiang (2010), McCulloch and Neuhaus (2011) and
Wakefield (2013). In these textbooks, linear mixed effects models for different types of
longitudinal data and methods of estimation are provided. Moreover, penalized spline
regression models were introduced by Wahba (1990), Eilers and Marx (1996), Currie and
Durban (2002), Durban et al. (2005), Ruppert et al. (2003) and Harrell (2015) to handle
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non-linear longitudinal data and smoothing.

2.1.1 Linear mixed effects models

2.1.1.1 Models

Let yij denote the response variable for the ith individual (i = 1, .., n) at the jth occasion
(j = 1, ..., ni). Here, ni is the number of measurements for the ith subject. The vector of
the ith individual is denoted by yi = (yi1, ..., yini

). The mean at the jth occasion is denoted
by µij = E(yij). The covariance between yij and yik is denoted by cov(yij, yik) = σjk =
E {(yij − µij)(yik − µik)}. According to Verbeke and Molenberghs (2000) and Fitzmaurice
et al. (2004), the linear mixed effects model can be written as

yi = X iβ +Zibi + εi .

Here, X i is a (ni × p) matrix of covariates of fixed effects, Zi is a (ni × q) matrix of
covariates of random effects. The columns of the matrix Zi are a subset of the columns
of the matrix X i (q ≤ p). The term X iβ is assumed to be shared by all individual.
The term Zibi captures the differences between the mean response of the population and
individual response trajectories over time. β is a (p× 1) coefficient vector of fixed effects,
and bi is a (q × 1) vector of random effects.

There are some key assumptions for the linear mixed effects models (Hand and Crowder,
1996; Fitzmaurice et al., 2004). The first assumption is that the vector of random effects,
bi, is assumed to have a multivariate normal distribution (MVN ) with mean zero and
covariance matrix G. This means E(bi) = 0 and cov(bi) = G, i = 1, ..., n. The second
assumption is that the vector of errors, εi, is also assumed to have a multivariate nor-
mal distribution with mean zero and covariance matrix Ri. This means E(εi) = 0 and
cov(εi) = Ri, i = 1, ..., n.

Based on these assumptions, the conditional expectation of yi given bi, is E(yi|bi) =
X iβ + Zibi and the conditional covariance of yi, given bi, is cov(yi|bi) = cov(εi) = Ri.
In addition, the population mean of yi is

E(yi) = µi = E(E(yi|bi))

= E(X iβ +Zibi)

= X iβ +ZiE(bi) = X iβ ,
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and the covariance of yi, denoted as ∑i, has the form
∑

i = cov(yi) = cov(Zibi) + cov(εi)

= Zicov(bi)ZT
i + cov(εi)

= ZiGZ
T
i +Ri .

2.1.1.2 Parameter estimation

The estimation of the linear mixed-effects models is based on the maximum likelihood
(ML) for the fixed effects, the restricted maximum likelihood (REML) for the covariance
matrix ∑i and the best linear unbiased predictor (BLUP) for random effects (Hand and
Crowder, 1996; Fitzmaurice et al., 2004; Verbeke and Molenberghs, 2000; Wakefield, 2013).
By assuming that the repeated measurements in the longitudinal outcome are independent
of each other, the log-likelihood function of the linear mixed effects models has the form

l(θ) =
n∑
i=1

log p(yi;θ) ,

where θ =
(
βT ,

∑
i

)
denotes the full parameter vector of the models, and

p(yi;θ) = (2π)−ni/2|
∑

i|−1/2 exp
{
−1

2(yi −X iβ)T∑−1
i (yi −X iβ)

}
.

Here |A| denotes the determinant of the matrixA. According to Verbeke and Molenberghs
(2000) and Fitzmaurice et al. (2004), assuming ∑i is known, the maximum likelihood
estimator of the vector of the fixed effects, β, has a closed form

β̂ =
(

n∑
i=1
XT

i

∑−1
i X i

)−1 n∑
i=1
XT

i

∑−1
i yi . (2.1.1)

The estimated covariance matrix of the coefficient vector β is

ˆvar(β̂) =
(

n∑
i=1
XT

i

∑−1
i X i

)−1

.

According to Fitzmaurice et al. (2004) and Hand and Crowder (1996), the maximum
likelihood estimate of cov(yi) = ∑

i is biased on small samples. Hence, the restricted
maximum likelihood method is recommended for estimating ∑

i. In particular, if the
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coefficient vector, β, is given, the estimate of ∑i is obtained by maximizing the slightly
modified log-likelihood function having the form

l(G,Ri) =− 1
2 log

∣∣∣∣∣
n∑
i=1
XT

i

∑ −1
i X i

∣∣∣∣∣− 1
2 log

n∑
i=1

∣∣∣∑ i

∣∣∣
− 1

2

n∑
i=1

{
(yi −X iβ)T

∑ −1
i (yi −X iβ)

}
.

(2.1.2)

Finally, following Verbeke and Molenberghs (2000) and Fitzmaurice et al. (2004), the
estimator of the vector of the random effects using the best linear unbiased predictors
(BLUPs) is denoted as b̂i. Based on the assumptions for the linear mixed effects models,
we have  bi

εi

 ∼MVN
 0

0

 ,
 G 0

0 Ri

 .

We note that  yi
bi

 =
 X iβ

0

+
 Zi I

I 0

  bi
εi

 .
Therefore,  yi

bi

 ∼MVN
 X iβ

0

 ,
 Zi I

I 0

 G 0
0 Ri

 ZT
i I

I 0


∼MVN

 X iβ

0

 ,
 ZiGZ

T
i +Ri ZiG

GZT
i G

 .

The BLUP estimator of bi is b̂i which has the form

b̂i = E(bi|yi) = GZT
i (ZiGZ

T
i +Ri)−1(yi −X iβ)

= GZ ′i
∑−1
i (yi −X iβ) ,

where ∑−1
i = (ZiGZ

T
i +Ri)−1. The estimate for the variance of the random effects and

the error terms has the form

ˆvar(θ̂bi,εi
) =

{
E

(
− ∂2l(θ)
∂θTbi,εi

∂θbi,εi

|θbi,εi
=θ̂bi,εi

)}
.

According to Fitzmaurice et al. (2004), the BLUP estimator of the random effects has the
following properties:

i. b̂i is a linear function of yi;
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ii. b̂i is unbiased for bi so that E(b̂i − bi) = 0;

iii. var(b̂i−bi) is no larger than the var(b̃i−bi) where b̃i is any other linear and unbiased
predictor.

2.1.2 Penalized spline longitudinal models

When subjects show non-linear longitudinal trajectories, it is necessary to consider flexible
non-linear regressions. Penalized spline regression models are considered as extensions of
linear regression models to handle such non-linear longitudinal relationships (Ruppert
et al., 2003; Currie and Durban, 2002; Durban et al., 2005; Wahba, 1990). These models
have become effective ways of handling highly non-linear trajectories, especially when a
large number of knots are inserted into the model.

Recall that yij denotes the longitudinal response for the ith subject , i = 1, ..., n which is
measured at time point tij, j = 1, ..., ni . According to Ruppert et al. (2009), the general
spline model of degree p has the form

yij = f(tij) = β0 + β1tij + ...+ βpt
p
ij +

K∑
k=1

upk(tij −Kk)p+ + ε(tij) , (2.1.3)

where the set
{

1, tij, ..., tpij, (tij −K1)p+, ..., (tij −KK)p+
}
is known as the truncated power

basis of degree p, and the function (.)+ is defined by (x)+ = max(0, x), for all real x.
The vector βT = (β0, ..., βp, up1, ..., upK) is the ((p+K + 1)× 1) row vector of coefficients.
Moreover, K1, ...,KK are fitted K knots. The assumption for the measurement error is
normal distribution ε(tij) ∼ N (0, σ2

ε). Now, we write the model (2.1.3) in matrix notation
as:

y = Xβ + ε , (2.1.4)

where

y =


y11
...

ynnn

 , X =


X1
...
Xn

 ,

X i =


1 ti1 t2i1 · · · tpi1 (ti1 −K1)p+ · · · (ti1 −KK)p+
... ... ... ... ... ... ... ...
1 tini

t2ini
· · · tpini

(tini
−K1)p+ · · · (tini

−KK)p+

 .
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Two problems need to be carefully considered in Model (2.1.3). The first is that this model
may cause roughness of the fit. If there is a large set of knots inserted into the model, the
fitted function can have small random fluctuations. The second is that the nonparametric
function f(.) is for the population mean and does not depend on the individual. Therefore,
the model in (2.1.3) needs to be extended to model subject specific curves.

The roughness of the fit is due to the existence of too many knots in the model, which can
lead to an over-fitted function (Good and Gaskins, 1971). To solve this problem, Ruppert
et al. (2003) suggested that all the knots be retained, but the coefficients of the knots
be constrained. This will restrict the influence of the variables (x − Kk)p+ and will lead
to smoother spline functions. Hence, the estimation problem is to choose β to minimize
‖ y −Xβ ‖2 with constraints on the upk.

Alternatively, suppose we define D to be the (K + p+ 1)× (K + p+ 1) diagonal matrix
with the form

D =



0 . . . 0 0 . . . 0
... . . . ... ... ... ...
0 . . . 0 0 · · · 0
0 · · · 0 11 · · · 0
... ... ... ... . . . ...
0 0 0 0 0 1K


=
 0p+1×p+1 0p+1×K

0K×p+1 1K×K

 .

Following this, the problem is to choose β to minimize ‖ y−Xβ ‖2 subject to βTDβ ≤ C.
By using a Lagrange multiplier argument, this is equivalent to choosing β to minimize

‖ y −Xβ ‖2 +λβTDβ , (2.1.5)

for a suitable number λ ≥ 0. The term λβTDβ is called a roughness penalty, and λ

is known as the smoothing parameter. The amount of smoothing is controlled by λ.
Ordinary least squares corresponds to λ = 0, where the upk are unrestricted. When λ is
taken as a positive finite value, this leads to smaller estimates of the upk and the effects
of (x − Kk)p+ are then less. When we take λ to be very large, the effects of the knots
diminishes and the model becomes the least squares line.

To determine the smoothing parameter λ, Ruppert et al. (2003) and Durban et al. (2005)
considered penalized splines as mixed models. In particular, we have the form of the
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general spline models as in (2.1.3). First we define βT = [β0, ..., βp] as a ((p+ 1)× 1) row
vector of fixed effects, and bT = [up1, ..., upK ] as a (K × 1) row vector of random effects.
The mixed effects regression model is then given by

y = Xβ +Zb+ ε , (2.1.6)

where

X =


X1
...
Xn

 , Z =


Z1
...
Zn

 ,

X i =


1 ti1 t2i1 · · · tpi1
... ... ... ... ...
1 tini

t2ini
· · · tpini

 , Zi =


(ti1 −K1)p+ · · · (ti1 −KK)p+

... ... ...
(tini
−K1)p+ · · · (tini

−KK)p+

 .
The matrices X and Z are respectively designed matrices of fixed effects covariates and
random effects covariates. We assume that y | b ∼ MVN (Xβ + Zb, σ2

εI) and b ∼
MVN (0, σ2

uI).

Under these assumptions, the log-likelihood function of the model has the form

log {p(y, b; θ)} = log {p(y | b; θ)p(b; θ)}

= log
[

1√
2πσε

exp

{
‖ y −Xβ −Zb ‖2

σ2
ε

}
1√

2πσu
exp

{
‖ b ‖2

σ2
u

}]
.
(2.1.7)

Therefore, for the model in (2.1.6), the main aim is to obtain the estimate for the unknowns
β and b that minimizes

1
σ2
ε

‖ y −Xβ − Zb ‖2 + 1
σ2
u

‖ b ‖2 . (2.1.8)

By comparing equations (2.1.5) and (2.1.8), the smoothing parameter is obtained as
λ = σ2

ε

σ2
u
.

To specify the individual curves, Ruppert et al. (2003) and Durban et al. (2005) presented
flexible models for which each individual has its own function. The penalized spline model
for subject-specific curves has the form

yij = f(tij) + gi(tij) + ε(tij), ε(tij) ∼ N (0, σ2
ε),

gi(tij) = bi0 + bi1tij + bi2t
2
ij + ...+ bipt

p
ij +

K∑
k=1

vipk(tij −Kk)p+ ,
(2.1.9)
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where the f(.) function is as in (2.1.3). This model can be described in the mixed model
framework as

y = Xβ +Zb+ ε ,

where

X =


X1
...
Xn

 ,Z =



Z1 X1 0 . . . 0 Z1 0 . . . 0
Z2 0 X2 . . . 0 0 Z2 . . . 0
... ... ... . . . ... ... ... ... ...
Zn 0 0 . . . Xn 0 0 . . . Zn

 ,

X i =


1 ti1 t2i1 · · · tpi1
... ... ... ... ...
1 tini

t2ini
· · · tpini

 , Zi =


(ti1 −K1)p+ · · · (ti1 −KK)p+

... ... ...
(tini
−K1)p+ · · · (tini

−KK)p+

 .
bT = (up1, ..., upK , b10, ..., b1p, ..., bn0, ..., bnp, v1p1, ..., v1pK , ..., vnpK , ..., vnpK) ,

βT = (β0, ..., βp) .

Ruppert et al. (2003) assumed that (bi0, ..., bip)T ∼ MVN (0,∑) and vipk follows an uni-
variate normal distribution (UVN ), vipk ∼ UVN (0, σ2

v). Then, the covariance matrix of
the random effects is

G = cov(b) =


σ2
uI 0 0
0 block

∑
1≤i≤m

0

0 0 σ2
vI

 .

2.2 Survival analysis of event time data

Recently, survival analysis has been developed extensively in the literature and has been
widely used especially in clinical and epidemiological studies. These studies aim to analyze
the time until a specified event of interest happens. Cox (1972, 1975), Cox and Hinkley
(1979) and Cox and Oakes (1984) introduced a very popular Cox model for survival data.
These models assume that time independent covariates have an effect on the hazard
function for an event.

Along this line, Kalbfleisch and Prentice (2002); Hougaard (2000); Klein and Moeschberger
(2005) provided a general theory for event time data with the survival distributions and
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basic statistical tools for their analysis. Andersen et al. (1993) and Aalen et al. (2008)
presented a more theoretical analysis for the Cox model using martingales and counting
processes. Another trend for survival analysis focuses on statistical modelling and esti-
mating techniques (Therneau and Grambsch, 2000; Ibrahim et al., 2005; Rizopoulos, 2012,
2010, 2014). They proposed more flexible joint models for different types of longitudinal
data and a censoring mechanism as well as estimation methods.

In this section, we present the basic functions and the special features of survival data
(Kalbfleisch and Prentice, 2002; Andersen et al., 1993) in Sections 2.2.1 and 2.2.2. In
addition, we review the famous Cox model for time independent covariates and extended
Cox models for time dependent covariates (Cox, 1972, 1975; Cox and Hinkley, 1979; Cox
and Oakes, 1984) in Section 2.2.3.

2.2.1 Basic functions of survival data

Let T denote the random variable of failure times, which is assumed continuous. The
three equivalent functions that are usually used to define the distribution function of
survival time T are: the survival function S(t), the probability density function f(t) and
the hazard function h(t). According to Cox and Oakes (1984) and Aalen et al. (2008),
the definition of the survival function is

S(t) = Pr(an individual survives longer than t)

= Pr(T > t) =
∞̂

t

f(s)ds .

Let F (t) be the cumulative distribution function for survival time T . Then

S(t) = 1− F (t) .

In addition, if the hazard function is defined as

h(t) = lim
4t→0

Pr(t ≤ T < t+4t|T ≥ t)
4t

, t > 0 ,

the relationship between the survival function S(t), the probability density function f(t)
and the hazard function h(t) can be written as

h(t) = f(t)
S(t) = f(t)

1− F (t)

= −S
′(t)
S(t) = − d

dt
logS(t) ,

14
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where S ′(t) is the first derivative of the survival function S(t). The cumulative hazard
function H(t) is

H(t) =
tˆ

0

h(x)dx = − logS(t) .

Hence, the survival function can be written in terms of the cumulative hazard function as

S(t) = exp {−H(t)} = exp

−
tˆ

0

h(x)dx

 .

2.2.2 Exogenous and endogenous covariates

When survival function S(t) is assumed to have a specific parametric form associating
with a longitudinal submodel, estimations for parameters of interest are usually based on
the likelihood function (Rizopoulos, 2012). In the maximum likelihood method, there are
different treatments for different types of covariates in the longitudinal submodel. Here,
we present the two different categories of time dependent covariates and the estimation
techniques for these covariates will be introduced in the following sections.

We let the time-dependent covariate for the ith subject at time t be denoted by yi(t). We
let Yi(t) = {yi(s), 0 ≤ s < t} denote the covariate history of the ith subject up to time t.
According to Kalbfleisch and Prentice (2002), the exogenous covariates are the covariates
satisfying the condition:

Pr (s ≤ Ti < s+ ds|Ti ≥ s,Yi(s)) = Pr (s ≤ Ti < s+ ds|Ti ≥ s,Yi(t)) , (2.2.1)

for all s, t such that 0 < s ≤ t, and ds→ 0. An equivalent definition is

Pr (Yi(t)|Yi(s), Ti ≥ s) = Pr (Yi(t)|Yi(s), Ti = s) , s ≤ t . (2.2.2)

On the other hand, endogenous time-varying covariates are the ones that do not satisfy
the condition in (2.2.1). In particular,

Pr (Yi(t)|Yi(s), Ti ≥ s) 6= Pr (Yi(t)|Yi(s), Ti = s) , s ≤ t .

Based on the definitions in (2.2.1) and (2.2.2), the future path of exogenous covariates up
to time t ≥ s does not affect the hazard rate at time s. Its value at any time t is predicted
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before t. Moreover, under the conditions (2.2.1) and (2.2.2), one can define the survival
function conditional on the covariate path

Si (t|Yi(t)) = Pr (Ti > t|Yi(t))

= exp

−
t̂

0

hi (s|Yi(s)) ds

 .
(2.2.3)

According to Kalbfleisch and Prentice (2002) and Rizopoulos (2012), there are some im-
portant features of endogenous covariates which are different from exogenous covariates.
Firstly, the future path of endogenous covariates is not predictable. The second is that its
value at time point t shows the survival of the subject at this time. In particular, when
failure is defined as the death of the subject,

Si (t|Yi(t)) = Pr (T ∗i > t|Yi(t)) = 1 , (2.2.4)

if yi(t−ds) is given with ds→ 0. Due to this feature, the log-likelihood based on f(t) and
S(t) is not suitable for endogenous covariates. Another feature of endogenous covariates
is that they contain measurement errors.

2.2.3 The Cox and extended Cox models

The Cox and extended Cox models are the models which were proposed to link between
exogenous covariates and survival time using proportional hazards models (Cox, 1972).
The Cox model handles independent time covariates whereas the extended Cox model han-
dles external time-dependent covariates. For both models, the partial likelihood method
is usually implemented to estimate the parameters in the models.

Suppose that there are n subjects in the longitudinal data and survival data. The observed
failure time for the ith subject is denoted as Ti = min(T ∗i , Ci). Here, T ∗i is the true survival
time and Ci denotes the censoring time for the ith subject (i = 1, ..., n). An event indicator
is also defined as δi = I(T ∗i ≤ Ci) in survival data. The longitudinal data consists of the
measurements of the subjects.

The proportional hazards model proposed by Cox (1972) has the form

h(t | z) = h0(t) exp(z1β1 + ...+ zpβp)

= h0(t) exp(zTβ) .
(2.2.5)
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Here, h0(t) is the hazard at baseline, z is a p × 1 vector of covariates and β is a p × 1
vector of regression coefficients. Obviously,

h(t|z = 0) = h0(t) .

h0(t) can be interpreted as the hazard function for the population of subjects with z = 0.

According to Cox (1972, 1975), the partial likelihood function, PL(.), can be written as

PL(β) =
n∏
i=1

 exp(zTi β)
n∑
l=1

exp(zTl β)Yl(ti)


δi

.

Here, t1, ..., tn define the distinct death times and Yi(t) denotes the indicator for whether
or not the ith individual is at risk at time t. It can be seen that the value of the covariates
are only required at the event times, and these covariates are independent of time in the
Cox model. Therefore, the model cannot handle the time dependent covariates.

The Cox model was then extended to handle external time-dependent covariates using a
counting process as in Cox and Hinkley (1979); Cox and Oakes (1984); Andersen et al.
(1993). In the counting process notation, the event process for the ith subject is written
as {Ni(t), Yi(t)}, where Ni(t) denotes the number of events for subject i by time t, and
Yi(t) denotes the indicator for whether or not the ith individual is at risk at time t. The
extended Cox model is written as

hi(t | Yi(t),wi) = h0(t)Yi(t) exp
{
γTwi + αyi(t)

}
. (2.2.6)

Here, h0(t) is the hazard at baseline, and wi is a vector of baseline covariates. Further-
more, Yi(t) = {mi(s), 0 ≤ s < t} denotes the history of the true unobserved longitudinal
process up to time t.

Estimation of γ and α in (2.2.6) is based on the partial likelihood function (Kalbfleisch
and Prentice, 2002) that can be written as

PL(γ, α) =
n∏
i=1

∏
{all grid point u}

 Yi(u) exp
{
γTwi + αyi(u)

}
n∑
l=1
Yl(u) exp {γTwl + αyl(u)}


dNi(u)

.

Here, the time axis is broken into a grid of points. We can choose the grid points dense
enough so that at most one death can occur within any interval. Equivalently, the partial
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log-likelihood function can be rewritten as

log(PL(γ, α)) =
n∑
i=1

∞̂

0

log
{
Yi(t) exp

{
γTwi + αyi(t)

}}

− log
[
n∑
l=1
Yl(t) exp

{
γTwl + αyl(t)

}]dNi(t).

2.3 Standard joint models for longitudinal and time-

to-event data

2.3.1 Standard joint models

Longitudinal data and survival data are usually recorded together in practice. In many
biomarker research and clinical studies, endogenous time-dependent covariates have been
recorded along with the survival time. However, the extended Cox models are only suitable
to handle exogenous time-dependent covariates. A number of statisticians have recently
paid attention to the association between endogenous time-dependent covariates and sur-
vival data. The joint modelling framework was introduced in order to handle this primary
interest. This modelling framework was proposed by Faucett and Thomas (1996); Tsiatis
and Davidian (2001); Henderson et al. (2000); Tsiatis et al. (1995); Rizopoulos (2012).
They not only develop the statistical modelling but also show different methods for pa-
rameter estimation. Faucett and Thomas (1996) and Rizopoulos (2014) used a Bayesian
approach whereas Tsiatis et al. (1995), Tsiatis and Davidian (2001) and Rizopoulos (2012)
proposed the frequentist approach.

In this section, we review the standard joint models for longitudinal and time-to-event
data. This review includes the two submodels within the joint models: the survival and
longitudinal submodels. Following this, parameter estimation using a classical approach
is then reviewed. In particular, we provide a full likelihood approach for estimating
parameters in the joint models (Rizopoulos, 2012, 2010, 2011; Henderson et al., 2000).
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2.3.1.1 The survival submodel

Recall the notions presented in Section 2.2.3. T ∗i denotes the true event time for the ith

subject, Ti is the observed event time, which is the minimum of the censoring time Ci, and
T ∗i and δi = I(T ∗i ≤ Ci) is the event indicator. Tsiatis and Davidian (2001) and Rizopoulos
(2012) introduced the new term mi(t), which is the true unobserved longitudinal value of
the ith subject at time t. Then they defined the proportional hazards model to link the
hazard rate and mi(t). The risk model has the form

hi(t|Mi(t),wi) = lim
dt→0

Pr {t ≤ T ∗i < t+ dt|Mi(t),wi} /dt

= h0(t) exp
{
γTwi + αmi(t)

}
, t > 0 ,

(2.3.1)

where Mi(t) = {mi(s), 0 ≤ s < t} denotes the history of mi(t) up to time point t, h0(.)
denotes the baseline hazard function, and wi is the vector of baseline covariates. The
parameters γ and α quantify the effect of baseline covariates and the longitudinal outcome
to the risk of an event. Using the relation between the hazard function, the survival
function and the cumulative hazard function, we have

Si(t|Mi(t),wi) = Pr(T ∗i > t|Mi(t),wi)

= exp

−
t̂

0

h0(s) exp
{
γTwi + αmi(s)

}
ds

 .
(2.3.2)

We need to discuss the form for the baseline hazard function, h0(t), in order to have the
complete form of the risk model in (2.3.1). In the standard survival analysis, h0(t) has a
completely unspecified form (Cox and Oakes, 1984). However, within the joint modelling
framework, the form of h0(t) needs to be specified in order to calculate the standard errors
of parameter estimates.

There are two simple options that usually work quite satisfactorily in practice for defining
h0(.). The first option is to choose a standard distribution for the hazard rate at the base-
line. Typical distributions used for h0(t) are the exponential distribution, the Gompertz
distribution, and the Weibull distribution Cox and Oakes (1984); Crowther and Lambert
(2013). The second option is to use a semiparametric approach for the hazard rate at
the baseline. Among these are the piecewise-constant and regression splines approaches
Rizopoulos (2012); Ibrahim et al. (2005).
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2.3.1.2 The longitudinal submodel

Let yi(t) denote the observed longitudinal value for the ith subject at time t. All mea-
surements for the ith subject are {yi(tij), j = 1, ..., ni}. According to Tsiatis et al. (1995);
Tsiatis and Davidian (2001); Rizopoulos (2010), the association between yi(t) and mi(t)
is defined through the longitudinal submodel as

yi(t) = mi(t) + εi(t), εi(t) ∼ N (0, σ2
ε)

mi(t) = XT
i (t)β +ZT

i (t)bi

bi ∼MVN (0,D) ,

(2.3.3)

where X i(t) is a designed matrix of covariates of fixed effects and Zi(t) is a designed
matrix of covariates of random effects. In addition, β is a coefficient vector of fixed effects
and bi is a vector of random effects. Moreover, we assume that the error term, εi(t),
follows a normal distribution with mean 0 and variance σ2

ε . The measurement error is
independent of the random effects bi which follows the multivariate normal distribution
with mean 0 and covariance matrix D.

2.3.2 Frequentist inference

In frequentist approaches, the Cox and extended Cox methods as presented in Section
2.2.3 are some of the simplest methods for estimating paramaters in the joint models. In
these methods, the estimation for parameters is based on maximizing the partial likeli-
hood function. However, there are assumptions for these models which cause bias and
are unrealisitic (Sweeting and Thompson, 2011; Rizopoulos, 2012). The time-dependent
covariates are assumed to be constant in the interval between the visiting times. Time-
dependent covariates are predicted processes and measured without error. In this section,
we present two more classical approaches for joint models, namely an ordinary two-stage
approach and a full likelihood approach.

2.3.2.1 An ordinary two-stage approach

An ordinary two-stage approach has been investigated in Tsiatis et al. (1995); Tsiatis and
Davidian (2001); Bycott and Taylor (1998). In this approach, there are two stages for
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estimating parameters in the standard joint models. In the first stage, they used the
linear mixed effects model to fit only the longitudinal process. The maximum likelihood
estimation and the BLUPs are used to estimate the longitudinal coefficients and random
effects. Then, in the second stage, the longitudinal fitted values are considered as covari-
ates in the survival submodel. The partial likelihooad approach is applied to estimate the
survival cofficients and the hazard rate at baseline.

In the first stage, the fitted longitudinal model has a form

m̂i(t) = XT
i (t)β̂ +ZT

i (t)b̂i .

In the second stage, the partial likelihood has a form

log(PL(γ, α)) =
n∑
i=1

∞̂

0

log
{
Ri(t)exp

{
γTwi + αm̂i(t)

}}

− log
[
n∑
l=1
Rl(t)exp

{
γTwl + αm̂l(t)

}]dNi(t) .

Here, Ri(t) = 1 if the ith subject is at risk at time t. Otherwise, Ri(t) = 0.

Since the estimated longitudinal process, m̂i(t), is continuous throughout time, the grid
points can be choosen as fine as required. Therefore, the assumption of constant lon-
gitudinal measurements between the visiting times is weakened. The another obvious
advantage of using a two-stage approach is its quick implementation. Tsiatis et al. (1995)
used standard linear mixed effects and survival software for the first stage and the second
stage respectively. However, this approach has problems when subjects suffer informa-
tive drop-out. Moreover, the method strongly depends on the normality assumptions for
random effects and error terms in the first stage. The drawbacks of this approach were
discussed in detail by Tsiatis and Davidian (2001); Sweeting and Thompson (2011).

2.3.2.2 A full likelihood approach

To define the joint likelihood function for the standard joint models as in Section 2.3.1,
some key assumptions for random effects and the visiting process have been proposed by
Rizopoulos (2012). One assumption is that the vector of time-dependent random effects
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bi has an effect on both the longitudinal and survival processes. Formally,

p(Ti, δi,yi|bi;θ) = p(Ti, δi|bi;θ)p(yi|bi;θ)

p(yi|bi;θ) =
∏
j

p {yi(tij)|bi;θ} ,
(2.3.4)

where θ = (θTt ,θTy ,θTb ) denotes the full parameter vector, with θt = (γT , α, θTh0)T denoting
the parameters for the survival outcome, θy the parameters for longitudinal outcomes,
and θb the variance matrix of random effects. In addition, the censoring mechanism and
the visiting process are assumed to be independent of the true event times and future
longitudinal measurements.

Under these assumptions, the log-likelihood function of the joint models has the form

log p(Ti, δi,yi;θ) = log
ˆ
p(Ti, δi,yi|bi;θ)dbi

= log
ˆ
p(Ti, δi|bi;θ)

∏
j

p {yi(tij)|bi;θ}
 p(bi;θb)dbi . (2.3.5)

Here, the conditional density for the survival part has the form

p(Ti, δi|bi;θ) = hi(Ti|M(Ti);θt, β)δiSi(Ti|M(Ti);θt, β)

=
[
h0(Ti)exp

{
γTwi + αmi(Ti)

}]δi exp

−
Tiˆ

0

h0(s)exp
{
γTwi + αmi(s)

}
ds

 .

(2.3.6)
On the other hand, the density for the longitudinal part with the random effects is given
by

p(yi|bi;θ) =
∏
j

p {yi(tij)|bi;θ} p(bi;θb)

= (2πσ2)−
ni
2 exp(− ‖ yi −Xiβ − Zibi ‖2 /2σ2

ε)

× (2π)−
qb
2 det(D)−1/2 exp(−bTi D−1bi/2) ,

(2.3.7)

where qb denotes the dimension of the random effects bi.
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The observed data score vector for the joint models can be written as

S(θ) =
∑
i

∂

∂θT
log
ˆ
p(Ti, δi | bi;θt,β)p(yi | bi;θy)p(bi;θb)dbi

=
∑
i

1
p(Ti, δi,yi;θ)

∂

∂θT

ˆ
p(Ti, δi | bi;θt,β)p(yi | bi;θy)p(bi;θb)dbi

=
∑
i

1
p(Ti, δi,yi;θ)

ˆ
∂

∂θT
p(Ti, δi | bi;θt,β)p(yi | bi;θy)p(bi;θb)dbi

=
∑
i

ˆ
∂

∂θT
log {p(Ti, δi | bi;θt,β)p(yi | bi;θy)p(bi;θb)}

× p(Ti, δi | bi;θt,β)p(yi | bi;θy)p(bi;θb)
p(Ti, δi,yi; θ)

dbi

=
∑
i

ˆ
∂

∂θT
log {p(Ti, δi | bi;θt,β)p(yi | bi;θy)p(bi;θb)} p(bi | Ti, δi,yi;θ)dbi .

(2.3.8)
To estimate the parameters in model (2.3.1), Rizopoulos (2010, 2011) used the EM algo-
rithm. In particular, to derive the maximum likelihood estimates in (2.3.1), the algorithm
obtained the parameter estimates θ̂ which maximize instead the expected value of the
complete data log-likelihood at the iih iteration of

Q(θ|θ(it)) =
∑
i

ˆ
log (p(Ti, δi,yi, bi;θ)).p(bi|Ti, δi,yi;θ(it))dbi

=
∑
i

ˆ
(log p(Ti, δi|bi;θ) + log p(yi|bi;θ) + log p(bi;θ)) p(bi|Ti, δi,yi;θ(it))dbi .

(2.3.9)

To support this approach, Rizopoulos (2010) introduced the popular R package JM in
which the standard joint models are used to fit for the longitudinal and time-to-event
data. This full likelihood approach provides better results in the frequentist approaches
for joint models (Sweeting and Thompson, 2011; Gould et al., 2014). For linear longitudi-
nal simulated data, Sweeting and Thompson (2011) showed that this approach provides
unbiased results compared to the Cox model approach and ordinary two-stage approach.

However, there are some disadvantages which these joint models have to deal with. Com-
putational complexity is one of the problems. The multi-integrals in (2.3.9) do not usually
have closed form solutions. The computational burden will increase dramatically when the
dimension of the random effects is large Rizopoulos (2011). Because of this, the maximum
dimension of random effects in the JM package is set to four (Rizopoulos, 2010). Another
problem is that flexible joint models are required when subject-specific trajectories show
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non-linear curves over time (Gould et al., 2014). Furthermore, overfitting problems also
need to be considered in the joint modelling framework.

2.4 Bayesian inference

There are some advantages in applying a Bayesian approach compared to a frequentist
approach for the joint models. In the frequentist approach for the joint models presented
in Section 2.3, the parameter estimations are based on the joint likelihood function. This
approach has to handle multiple integrals with respect to the random effects appearing
in the two submodels. This can lead to computational complexity as noted previously
(Rizopoulos, 2012).

In a Bayesian approach, the asymptotic approximations for the integral solution are not
needed. Instead, the parameters are estimated using a set of Markov chain Monte Carlo
(MCMC) algorithms to approximate the joint posterior distribution Ibrahim et al. (2005);
Huang (2009). A Bayesian approach provides a more straightforward way to estimate
parameters in terms of computational implementation. In addition to this, the parameters
in the joint models are treated as unknown constants in the frequentist approach. A
Bayesian approach considers all unknown quantities in the joint model as random variables
(Gelman et al., 1995). Therefore, the joint posterior distribution for parameters is sampled
to quantify uncertainties using a Bayesian approach. Another advantage of a Bayesian
approach is that historical information of subjects can be easily added to the inference
procedure(Gould et al., 2014).

In this section, we first review the Bayes’ rule following Geman and Geman (1984), Gel-
man et al. (1995), Robert and Casella (2004), Brooks et al. (2011), Wakefield (2013)
and Rizopoulos (2014). Following the work of these authors, the prior distribution, the
posterior distribution and the proposal distribution for joint models are also presented.
Finally, the MCMC algorithms will be introduced based on Metropolis et al. (1953),
Hastings (1970), Cox and Hinkley (1979).
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2.4.1 Bayes’ rule

Let θ = (θ1, ..., θp)T denote the unknown parameter vector of the joint model and let
y = (y1, ..., yn)T be the vector of the observed data. According to Cox and Hinkley
(1979); Robert and Casella (2004); Gelman et al. (1995); Wakefield (2013); Brooks et al.
(2011), Bayes’ rule is presented as in the following equation

p(θ|y) = p(y|θ)p(θ)
p(y) , (2.4.1)

where the normalizing constant is

p(y) =
ˆ
θ

p(y|θ)p(θ)d(θ) .

Here, p(θ|y) is the joint posterior probability distribution of θ given the observed data y,
the joint prior distribution is p(θ), and the joint likelihood function is p(y|θ). By ignoring
the normalizing constant, equation (2.4.1) can be rewritten as

p(θ|y) ∝ p(y|θ)p(θ) . (2.4.2)

Equivalently,
posterior ∝ likelihood× prior . (2.4.3)

To make inferences through a Bayesian approach, there are three basic steps that need
to be implemented (Gelman et al., 1995). Setting up a full probability joint model is
the first step. Here, the joint model from (2.3.1) and (2.3.3) is chosen. Calculating and
interpreting the joint posterior is the second step. The third step is checking the fit of
the model.

In the second step, to calculate the joint posterior distribution, we first obtain the joint
likelihood function and specify the joint prior distributions for parameters in the model.
Then, the joint posterior distribution is derived using (2.4.3). In this step, when all
conditional posterior distributions derived from a joint posterior distribution have closed
forms, we can then sample parameters directly. However, when some or all of the condi-
tional posterior distributions have non-standard forms, we need to implement algorithms
to sample parameters having a conditional posterior as a stationary distribution. Before
detailing the algorithms, the joint likelihood function, the prior distribution and the joint
posterior distribution will be derived in the following sections.
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2.4.2 The posterior distributions for the joint models

According to Rizopoulos (2014), the joint likelihood function of the joint model in (2.3.1)
and (2.3.3) has the form

p(T, δ,y|θ, b) =
n∏
i=1
p(Ti, δi|bi,θ)p(yi|bi,θ)

=
n∏
i=1

ni∏
j=1
p(Ti, δi|bi;θ)p(yij|bi;θ) .

The joint posterior distribution is defined as

p(θ, b|T, δ,y) ∝
n∏
i=1

ni∏
j=1
p(Ti, δi|bi;θ)p(yij|bi;θ)p(bi;θ)p(θ) ,

where p(θ) is the joint prior distribution for the parameter vector in the joint model.
Specification of the prior distribution is important for defining the conditional posterior
distribution.

In general, there are three types of prior distribution for which we can choose for the
parameters (Gelman et al., 1995; Wakefield, 2013; Robert and Casella, 2004):

(i) Conjugate prior

When the prior information about the parameters in the model is limited, the prior
distribution for a parameter is chosen from a parametric family such that the conditional
posterior distribution also belongs to this family. These families are called conjugate prior
families. The main reason for choosing conjugate priors is because they usually lead to
the standard form for the conditional posterior distributions.

(ii) Non-informative prior

When the information about the parameters in the models is not available, the non-
informative priors are defined by a Bayesian approach. These prior distributions can be
chosen from either proper or improper distributions which contain no special interest for
the parameters.

Reference priors, proposed by ?, provide another non-informative priors choice. A refer-
ence prior p(.) is the distribution which maximizes the expected Kullback-Leibler infor-
mation, where the expected Kullback-Leibler information has the form
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K(f, g) =
ˆ

log
[
p(θ|x)
p(θ)

]
p(θ|x)dθ .

(iii) Informative prior

An informative prior contains specific and definite information about the parameters in
the model. This information can be determined from previous experiments or from an
expert. This informative prior can also come from the literature or explicitly from an
earlier posterior distribution.

2.4.3 Markov chain Monte Carlo (MCMC) methods

In this section, the definition of Markov chain will be introduced based on Robert and
Casella (2004), Gelman et al. (1995), (Brooks et al., 2011) and Wakefield (2013). More-
over, we review the well-known ergodic theorem in this section. This theorem provides
conditions for a Markov chain to work for Monte Carlo integration.

2.4.3.1 Markov chain

Let X be a random variable with state space χ, and let B(χ) be the σ−algebra of χ.
According to Robert and Casella (2004) and Gelman et al. (1995), the definitions for a
Markov chain are presented as follows

Definition 1: A transition kernel is a function K defined on χ× B(χ) such that

i) ∀x ∈ χ, K(x, .) is a probability measure

ii) ∀A ∈ B(χ), K(., A) is measurable.

Definition 2: Given a transition kernel K, a sequence θ0, θ1, ..., θt, ... of random variables
is a Markov chain if, for any t, the conditional distribution of θt+1 given θ0 = x0, θ1 =
x1, ..., θt−1 = xt−1, θt = xt equals the conditional distribution of θt given θt = xt . That is

p(θt+1 ∈ A|θ0 = x0, θ1 = x1, ..., θt−1 = xt−1, θt = xt) = p(θt ∈ A|θt = xt)

=
ˆ
A

K(xt, x)dx, for ∀t.
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2.4.3.2 Ergodic theorem for Markov chains

If a Markov chain is ergodic, it converges to its unique stationary distribution. This allows
the Markov chain to be sampled via the stationary distribution. The subsections below
present the four conditions for a Markov chain to be ergodic (irreducibility, aperiodicity,
positive recurrence, and reversibility) and the ergodic theorem itself.

Irreducibility:

Given a measure ϕ, the Markov chain (θt) with transition kernel K(x, y) is ϕ−irreducible
if, for every A ∈ B(χ) with ϕ(A) > 0, there exists n such that Kn(x,A) > 0 for all x ∈ χ.

Aperiodicity:

The period of a state x is defined as

d(x) = g.c.d{m ≥ 1;Km(x, x) > 0} ,

where g.c.d is the greatest common denominator. A Markov chain is aperiodic if all states
have period 1.

Positive recurrence:

A Markov chain is recurrent if the chain will return to every state in a finite number of
steps, with probability 1.

Reversibility:

A Markov chain with transition kernel K satisfies the detailed balance condition if there
exists a probability density function f such that

K(y, x)f(y) = K(x, y)f(x) .

Then the density f is the invariant density of the chain and the chain is reversible.

Ergodic theorem: If (θt) is aperiodic, irreducible, positive recurrent with invariant
distribution f then

1
T

T∑
t=1
g(θt)→

ˆ
θ

g(θ)f(θ)dθ as T →∞ .

This theorem guarantees that a Markov chain satisfying the three conditions will converge
to its unique stationary distribution. The following section introduces algorithms to
sample a Markov chain from a stationary distribution.
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2.4.3.3 MCMC algorithms

A MCMC method is used to sample for the parameters from a target distribution f . The
target distribution is built from the conditional posterior distribution which has either a
standard form or a non-standard form. The MCMC method produces an ergodic Markov
chain (θt) with a stationary distribution f . After iterating until the chain converges, we
can then use the chain to produce samples for the parameters.

In this section, we present the two well-known algorithms in MCMC, namely the Gibbs
sampler (GS) algorithm and the Metropolis Hastings (MH) algorithm. The GS algorithm
generates a Markov chain from the distribution of each parameter conditioned on the
current estimated value of the other parameters. This means that the GS algorithm is
used in the case that the conditional posterior distribution has a standard form. If the
conditional posterior distribution does not have a standard form or is difficult to sample
from, then we use the MH algorithm.

Let θ = (θ1, ..., θp)T be the vector of parameters in the model and let y be the observed
data. According to Geman and Geman (1984), Gelman et al. (1995) and Brooks et al.
(2011), the GS algorithm produces a Markov chain associated with the standard posterior
distribution f through the following steps:

Step 1 : Initialise θ(0) = (θ(0)
1 , ..., θ(0)

p )

Step 2 : For t = 1 to T do

2.1: Sample θ(t)
1 from f(θ1|θ(t−1)

2 , ..., θ(t−1)
p ,y)

2.2: Sample θ(t)
2 from f(θ2|θ(t)

1 , θ
(t−1)
3 ..., θ(t−1)

p ,y)

.....

2.3: Sample θ(t)
p from f(θp|θ(t)

1 , θ
(t)
2 ..., θ

(t)
p−1,y)

Step 3 : End for

Another MCMC algorithm is the MH algorithm introduced by Metropolis et al. (1953)
and Hastings (1970). This algorithm produces a Markov chain associated with the target
distribution f and the proposal distribution q. Here, the target distribution f does not
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have a standard form. This algorithm becomes more complex when the dimension of
the parameter vector is large. The MH algorithm for a parameter of one dimension is
presented through the following steps:

Step 1 : Initialise θ(0)

Step 2 : For t = 1 to T do

Step 3 : Given the current parameter value θ = θ(t), propose θ′ from the proposal dsitri-
bution q(θ′|θ(t))

Step 4: Calculate acceptance probability α(θ(t) → θ′) = f(θ′)q(θ(t)|θ′)
f(θ(t))q(θ′|θ(t))

Step 5 : Simulate u from uniform distribution from 0 to 1, u ∼ U(0, 1)

5.1: If α(θ(t) → θ′) > u, then set θ(t+1) = θ′

5.2: Else, set θ(t+1) = θ(t)

Step 6 : End for

From the two algorithms, we can see that the GS algorithm is a simple case of MH when
the acceptance rate is equal 1. Finally, to prove that the Markov chains produced by the
MH algorithm or the GS algorithm are reversible and converge to the target distribution,
Robert and Casella (2004) presented the following theorem.

Theorem: Let (θt) be the chain produced by the Metropolis-Hastings algorithm. For
every conditional posterior distribution f

a) The kernel of the chain satisfies the detailed balance condition with f .

b) f is a stationary distribution of the chain.

2.4.3.4 Choices for the proposal distribution.

There are several ways to choose the proposal distribution to ensure that the whole
parameter space is explored. In this section, we will review the two popular choices of the
proposal distribution for a continuous parameter state space (Robert and Casella, 2004;
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Wakefield, 2013; Gelman et al., 1995). They are a symmetric random walk Metropolis-
Hastings and an independent Metropolis-Hastings algorithm.

Random walk Metropolis-Hastings

A random walk is a sequence of random variables (θt) which satisfies

θt+1 = θt + εt ,

where εt is generated independently of θt+1, θt, ..., θ0. If the distribution of εt is symmetric
about 0, the sequence is called a symmetric random walk.

The symmetric random walk is the most popular choice of a proposal distribution for a
continuous parameter, especially a normal random walk. This is because this proposal
distribution satisfies the following properties (Gelman et al., 1995):

i) It is easy to propose a new value from a current value;

ii) It is easy to compute the acceptance rate. In particular, the acceptance rate for a
normal random walk has the form

α(θt → θt+1) = min
{
f(θt+1)
f(θt)

, 1
}

;

iii) The distance for each jump depends on the variance of a proposal distribution.

Independent Metropolis-Hastings

The proposed parameter value does not depend on the current state of the chain (Gelman
et al., 1995). If we denote the proposed distribution q following the distribution q ∼ g(y),
then the acceptance probability in the MH algorithm is calculated as

α(θt → θt+1) = min
{
f(θt+1)g(θt)
f(θt+1)g(θt+1) , 1

}
.

The convergence properties of the MH chain follow the properties of the distribution g.
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Chapter 3

Penalized Spline Joint Models for Lon-
gitudinal and Time-to-event Data: An
ECM Approach

3.1 Introduction

Joint models for longitudinal data and time-to-event data are aimed to measure the as-
sociation between the longitudinal marker level and the hazard rate for an event. Lon-
gitudinal data are collected repeatedly for several subjects. In this data, there are two
types of covariates, namely, time-independent covariates and time-dependent covariates.
Furthermore, there are two different categories of time-dependent covariates, namely, ex-
ternal and internal covariates. In clinical studies, internal time-dependent longitudinal
outcomes are often applied to monitor disease progression and failure time.

In modern survival analysis, the Cox models have been a very popular joint model for time-
independent covariates (Cox, 1972). These models measure the effect of time-independent
covariates on the hazard rate for an event. Subsequently, the extended Cox models were
developed for external time-dependent covariates. However, these latter models cannot
handle longitudinal biomarkers. Therefore, Rizopoulos (2012) introduced joint models for
internal time-dependent covariates and the risk for an event based on linear mixed-effects
models and relative risk models.

The basic assumption for the standard joint models proposed by Rizopoulos (2012) is that
the hazard rate at a given time of the dropout process is associated with the expected
value of the longitudinal responses at the same time. The whole history of longitudinal
responses has an influence on the survival function. Thus, it is crucial to obtain good
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estimates for the subject-specific trajectories in order to have an accurate estimation of the
survival function. In addition, an important feature we need to account for is that many
observations in the sample often show non-linear and fluctuated longitudinal trajectories
in time. Each observation has its own trajectory. Therefore, flexibility is needed for
subject-specific longitudinal submodels in the joint models to improve the predictions.

There are several previous efforts to model flexibly the subject-specific longitudinal pro-
files in the joint models. Brown et al. (2005) applied B-splines with multidimensional
random effects. In particular, Brown et al. (2005) assumed that both subject and popu-
lation trajectories have the same number of basis functions. By doing this, the number of
parameters in the longitudinal submodel is reasonably large. If we have to deal with the
roughness of the fit for this model, the computational problems increase especially when
the dimension of the random effects vector is large. Ding and Wang (2008) proposed
the use of B-splines with a single multiplicative random effect, to link the population
mean function with the subject-specific profile. This simple model allows an easy esti-
mation of parameters, however it may not be appropriate for many practical applications
(Rizopoulos, 2011). Rizopoulos (2011); Crowther and Lambert (2013) have considered
more flexible models using natural cubic splines with the expansion of the random effects
vector. The roughness of the fit is not mentioned in these models.

The original contributions in this chapter include the new approaches to model non-
linear shapes of subjects-specific evolutions for joint models by extending the standard
joint models of Rizopoulos (2012). In particular, we implement penalized splines using a
truncated polynomial basis for the longitudinal submodel. Following this, the linear mixed
effects approach is applied to model the individual trajectories and impose smoothness
over adjacent coefficients respectively. The ECM algorithm for this proposed model is
designed for parameter estimation. In addition to this, corresponding standard errors are
calculated using the observed information matrix. However, as the matrices of random
effects covariates in our models are different from the matrices of random effects covariates
in the standard joint models, the JM package of Rizopoulos (Rizopoulos, 2010) cannot be
used for our models. Therefore, a set of R codes – as part of the original contributions –
was written for the penalized spline joint models to implement the proposed procedures
on the extensive simulation studies and case studies.

This chapter is organized as follows. Section 3.2 describes the penalized splines with trun-
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cated polynomial basis for the joint models. In this section, the two models are specified
as a penalized spline joint model with hazard rate at baseline having Gompertz distribu-
tion (referred to as Model 1) and a penalized spline joint model with a piecewise-constant
baseline risk function (referred to as Model 2). The joint likelihood, score functions and
the ECM algorithm for estimation are presented in Section 3.3. Then we validate the
proposed algorithm using extensive simulation studies and apply it to a case study based
on AIDS data in Section 3.4. Finally, Section 3.5 gives concluding remarks.

3.2 The penalized spline joint models

In this section, we introduce the joint models using penalized splines with truncated
polynomial basis. The proposed parametrization is based on the standard joint models
of Rizopoulos (2012) and the regression model of a longitudinal response using penalized
splines.

The notation in this section is taken from Rizopoulos (2012). Let T ∗i be the true survival
time and Ci be the censoring time for the ith subject (i = 1, ..., n). Ti denotes the observed
failure time for the ith subject (i = 1, ..., n), which is defined as Ti = min(T ∗i , Ci). If an ith

subject is not censored, this means that we have observed its survival time, so Ti ≤ Ci.
If an ith subject is censored, this means that we lose its follow up, or the subject has
died from other causes, in this case Ti > Ci. Furthermore, we define the event indicator
as δi = I(T ∗i ≤ Ci). In this thesis, we only consider noniformative right censoring. The
observed data for survival outcome are (Ti, δi), i = 1, ..., n.

For a longitudinal response, suppose that we have n subjects in the sample and the actual
observed longitudinal data for the ith subject at time point t is yi(t). We measure the
ith subject at ni time points. Thus, the longitudinal data consists of the measurements
yij = {yi(tij), j = 1, ..., ni} taken at time points tij. We denote the true and unobserved
value of the longitudinal outcome at time t as mi(t). We assume that the relation between
yi(t) and mi(t) is

yi(t) = mi(t) + εi(t) , (3.2.1)

where εi(t) ∼ N (0, σ2
ε).
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In penalized spline regression models (Ruppert et al., 2003; Durban et al., 2005), the
observed longitudinal covariate is modelled using truncated power functions with a general
power basis of degree p. Moreover, the longitudinal response is also parameterized as
a linear mixed effects model to specify the individual curves and impose the amount
of smoothing. As a result, the coefficients of the knots will be constrained to handle
smoothing. In particular, the longitudinal submodel for the ith subject at time point tij
is

yij = f(tij) + gi(tij) + εi(tij), εi(tij) ∼ N (0, σ2
ε),

f(tij) = β0 + β1tij + ...+ βpt
p
ij +

K∑
k=1

upk(tij −Kk)p+,

gi(tij) = vi0 + vi1tij + vi2t
2
ij + ...+ vipt

p
ij +

K∑
k=1

wipk(tij −Kk)p+ .

(3.2.2)

Here, the set
{

1, tij, ..., tpij, (tij −K1)p+, ..., (tij −KK)p+
}
is known as the truncated power

basis of degree p. Moreover, K1, ...,KK are K fitted knots, chosen following Ruppert et al.
(2003), Chapter 5. The function f(.) is the smooth function which reflects the overall
trend of the population. The functions gi(.) are the smooth functions that reflect the
individual curves. To constrain the coefficient of knots, the vector (up1, ..., upK)T in the
function f(.) is treated as random effects. Therefore, βT = (β0, ..., βp) is a ((p+1)×1) row
vector of fixed effects and bTi = (up1, ..., upK , vi0, ..., vip, wip1, ..., wipK) is a ((p+2K+1)×1)
vector of random effects for the ith subject. The assumptions for the random effects for
the ith subject are (vi0, ..., vip)T ∼ MVN (0,∑) , upk ∼ UVN (0, σ2

u), wipk ∼ UVN (0, σ2
w)

and they are independent of one another. We can now rewrite (3.2.2) as

yi(tij) = f(tij) + gi(tij) + εi(tij)

= β0 + β1tij + β2t
2
ij + ...+ βpt

p
ij +

K∑
k=1

(upk + wipk)(tij −Kk)p+

+ vi0 + vi1tij + vi2t
2
ij + ...+ vipt

p
ij + εi(tij) .

(3.2.3)

Let uipk = upk+wipk and note that uipk ∼ UVN (0, σ2
u+σ2

w). In order to allow greater flex-
ibility, we assume that (uip1, ..., uipK)T ∼ MVN (0,D), where D = Diag(D11, ..., DKK).
By doing this, the dimension of the vector of random effects, bTi = [ vi0, ..., vip uip1, ..., uipK ],
decreases to ((p+K + 1)× 1). Consequently, the dimension of the multi-integrals in the
log-likehood function in (3.3.2) also decreases. This presentation is crucial for reducing
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the computational problems while coding. The model in (3.2.3) now becomes:

yi(tij) = f(tij) + gi(tij) + εi(tij)

= β0 + β1tij + β2t
2
ij + ...+ βpt

p
ij +

K∑
k=1

uipk(tij −Kk)p+

+ vi0 + vi1tij + vi2t
2
ij + ...+ vipt

p
ij + εi(tij) .

(3.2.4)

The model in (3.2.4) can be rewritten in matrix notation as:

y = Xβ +Zb+ ε , (3.2.5)

where

X =


X1
...
Xn

 , Z =



X1 0 . . . 0
0 X2 . . . 0
... ... . . . ...
0 0 . . . Xn

Z1 0 . . . 0
0 Z2 . . . 0
... ... . . . ...
0 0 . . . Zn

 ,

X i =


1 ti1 t2i1 · · · tpi1
... ... ... ... ...
1 tini

t2ini
· · · tpini

 , Zi =


(ti1 −K1)p+ · · · (ti1 −KK)p+

... ... ...
(tini
−K1)p+ · · · (tini

−KK)p+

 ,

bT = (v10, ..., v1p, ..., vn0, ..., vnp, u1p1, ..., u1pK , ..., unp1, ..., unpK) ,

βT = (β0, ..., βp) .

Here, y is the
(

n∑
i=1
ni × 1

)
matrix of observed longitudinal data;X is the

(
n∑
i=1
ni × (p+ 1)

)
matrix of fixed effect covariates; Z is the

(
n∑
i=1
ni × (p+K + 1)n

)
matrix of random effect

covariates and ε is the
(

n∑
i=1
ni × 1

)
matrix of error.

Postulating a proportional hazard model, the penalized spline joint model for longitudinal
and time to event data is defined by

hi(t | Mi(t),wi) = lim
dt→0

Pr {t ≤ T ∗i < t+ dt | T ∗i ≥ t,Mi(t),wi} /dt

= h0(t) exp
{
γTwi + αmi(t)

}
,

(3.2.6)

where h0(t) is the hazard at baseline and wi is a vector of baseline covariates (such as
treatment indicator, gender of a patient, etc). Furthermore,Mi(t) = {mi(s), 0 ≤ s < t}
denotes the history of the true unobserved longitudinal process up to time point t.
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Using (3.2.5), the longitudinal submodel for the ith subject is given by
yi(t) = mi(t) + εi(t), εi(t) ∼ N (0, σ2

ε)

mi(t) = XT
i (t)β +XT

i (t)vi +ZT
i (t)ui

vi ∼MVN (0,∑), ui ∼MVN (0,D) ,

(3.2.7)

where the covariance matrix of random effects bTi = (vi0, ..., vip, uip1, ..., uipK) is given as

G = Cov(bi) =
 ∑ 0

0 D

 .
To complete the specification of the model in (3.2.6), we now need to define the form for
the baseline risk function h0(.). Motivated by the fact that in real life, h0(.) is usually
unknown. Two options are adopted to determine the form of the function h0(.) in this
chapter. Firstly, a standard option is to use a known parametric distribution for the risk
function. For this option, the Gompertz distribution is chosen. Secondly, the piecewise
constant model is chosen when h0(.) is considered completely unspecified.

Therefore, the proposed penalized spline joint models considered in this chapter are as
follows:

Model 1 : Penalized spline joint model with hazard rate at baseline having a Gompertz
distribution 

hi(t | Mi(t),wi) = λ1 exp(λ2t) exp
{
γTwi + αmi(t)

}
mi(t) = XT

i (t)β +XT
i (t)vi +ZT

i (t)ui .
(3.2.8)

Model 2 : Penalized spline joint model with a piecewise-constant baseline risk function
hi(t | Mi(t),wi) =

Q∑
q=1
ξqI(νq−1 < t ≤ νq) exp

{
γTwi + αmi(t)

}
mi(t) = XT

i (t)β +XT
i (t)vi +ZT

i (t)ui ,
(3.2.9)

where 0 = ν0 < ν1 < ... < νQ denotes a split of the time scale, with νQ being larger than
the largest observed time, and ξq denotes the value of the baseline hazard in the interval
[νq−1, νq). In both models, X i, Zi, β, vi and ui are given as in (3.2.5).
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3.3 Parameter estimation

After defining the two penalized spline joint models in Section 3.2, we present the joint
likelihood and score functions for the parameters in the models. Following this, the ECM
algorithm is explained in detail.

3.3.1 Likelihood and score functions

Following Rizopoulos (2012), both the longitudinal and survival processes contain the
vector of time-independent random effects bi. This means that

p(Ti, δi,yi|bi;θ) = p(Ti, δi|bi;θ)p(yi|bi;θ)

p(yi|bi;θ) =
∏
j

p {yi(tij)|bi;θ} ,
(3.3.1)

where θ = (θTt ,θTy ,θTb )T denotes the full parameter vector with θt = (γT , α, θTh0)T denoting
the parameter vector for the survival outcomes. Furthermore, θy = (βT , σ2

ε)T is the
parameter vector for longitudinal outcomes and θb = vech(G) is the vector-half of the
variance matrix of random effects. In addition, we assume that the hazard rate at time t,
conditional on the covariate path, depends on the current value of longitudinal outcomes.
The censoring mechanism is independent of the true event times and future longitudinal
measurements. Under these assumptions, the log-likelihood formulation of the penalized
spline joint models can be written as

l(θ) = l(θ | Ti, δi,yi)

=
∑
i

log
ˆ
bi

p(Ti, δi | bi;θt,β)p(yi | bi;θy)p(bi;θb)dbi ,
(3.3.2)

where the conditional density for the survival part has the form

p(Ti, δi | bi;θt,β) = h(Ti | Mi(Ti),wi;θt,β)δiS(Ti | Mi(Ti),wi;θt,β)

=
[
h0(Ti) exp

{
γTwi + αmi(Ti)

}]δi exp

−
Tiˆ

0

h0(s) exp
{
γTwi + αmi(s)ds

} .
(3.3.3)
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Moreover, the density for the longitudinal part with the random effects is given by

p(yi|bi;θy)p(bi;θb)=
∏
j

p {yi(tij)|bi;θy} p(bi;θb)

= 1
(2πσ2

ε)
ni
2

exp
{
−‖ yi(tij)−X

T
i (tij)β −XT

i (tij)vi −ZT
i (tij)ui ‖2

2σ2
ε

}

× (2π)−
qb
2 det(G)−1/2 exp(−bTi G−1bi/2) ,

(3.3.4)
where qb denotes the dimensionality of the random effects vector.

We consider the log-likelihood of (Ti, δi, yi, bi) over the unknowns θt, θy and θb

log l(θ | Ti, δi,yi, bi) = log p(Ti, δi | bi;θt,β) + log p(yi | bi;β) + log p(bi;G) .

The function for maximizing the log-likelihood involves the density function of the survival
time and the least squares with a penalty term, which is

log p(Ti, δi | bi;θt,β)−(yi −X iβ −X ivi −Ziui)T (yi −X iβ −X ivi −Ziui)
σ2
ε

−bTi G−1bi .

(3.3.5)
According to Ruppert et al. (2003), the term σ2

εb
T
i G

−1bi is called a roughness penalty and
the variance components matrix is defined as F = σ2

εG
−1. Using a Lagrange multiplier

argument, the variance components matrix is the condition to constrain the coefficients of
the knots ui. These restrict the influence of the variables (t−Kk)p+ and lead to smoother
spline functions.

Using (3.3.2), the score vector for the penalized spline joint models can be expressed as:

S(θ) =
∑
i

∂

∂θT
log
ˆ
p(Ti, δi | bi;θt,β)p(yi | bi;θy)p(bi;θb)dbi

=
∑
i

ˆ
∂

∂θT
log {p(Ti, δi | bi;θt,β)p(yi | bi;θy)p(bi;θb)} .p(bi | Ti, δi,yi;θ)dbi .

(3.3.6)
The requirement for numerical integration with respect to the random effects is one of
the main difficulties in the joint models (Rizopoulos, 2012). The maximum likelihood
estimation (MLEs) is typically obtained using standard maximisation algorithms such as
the expectation maximization algorithm or the Newton-Raphson algorithm.
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3.3.2 The ECM algorithm

The EM algorithm has been widely used in joint models, such as the standard joint model
of Rizopoulos (Rizopoulos, 2012) and the generalised linear mixed joint model (Viviani
et al., 2014). The ECM algorithm is a natural extension of the EM algorithm for which the
maximisation process on the M-step is conditional on some functions of the parameters
under estimation. It can also reduce computer time. The ECM algorithm following
McLachlan and Krishnan (2007) will be used to obtain the maximum likelihood estimates
of the penalized spline joint models in this chapter.

In these models, the random effects bi are considered to be missing data. Hence, it is
difficult to estimate directly the parameter vector θ that maximizes the observed data
log-likelihood l(θ) in (3.3.2). Alternatively, we can estimate the parameter vector θ that
maximizes the expected value of the complete data log-likelihood which is

E
{

log p(Ti, δi,yi, bi;θ)|Ti, δi,yi;θ(it)
}
,

where θ(it) is the parameter vector given at the ith iteration.

The following are the steps of this algorithm.

Step 1 : Initialization

First initialise the parameters. We assume that there are m parameters in the models and
the starting value of the parameter vector is θ(0) = (θ(0)

1 , ..., θ(0)
m ). Based on these initial

values, we calculate the log-likelihood using (3.3.2).

Step 2 : The E-step for the penalized joint models

Fill in the missing data and replace the log-likelihood function of the observed data with
the expected function of the complete data log-likelihood as follows

Q(θ|θ(it)) =
∑
i

ˆ
log {p(Ti, δi,yi, bi;θ)} .p(bi|Ti, δi,yi;θ(it))dbi

=
∑
i

ˆ
(log p(Ti, δi|bi;θ) + log p(yi|bi;θ) + log p(bi;θ)) .p(bi|Ti, δi,yi;θ(it))dbi .

(3.3.7)
Step 3 : The conditional M-step for the penalized joint models
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This step is implemented in 4 stages as follows:

3.1 Given the current value of the parameter vector at the ith iteration θ(it) =
(θ(it)

1 , θ
(it)
2 , ..., θ(it)

m ), calculate the log-likelihood l(θ(it)) = ∑
i

log
´
bi
p(Ti, δi,yi, bi;θ(it))dbi.

3.2 Propose the new value for the first parameter θ(prop)
1 which maximizes Q(θ|θ(it)).

Then calculate the log-likelihood l(θ(prop)) where θ(prop) = (θ(prop)
1 , θ

(it)
2 , ..., θ(it)

m ).

3.3 Set θ(it)
1 = θ(prop) if l(θ(prop)) ≥ l(θ(it)), otherwise set θ(it)

1 = θ(it).

3.4 Similarly, based on the value of the parameter vector θ(it)
1 , update the new value

for the second parameter, continue updating until the last parameter, θ(it)
m , and then set

θ(it+1) = θ(it)
m .

Step 4 : Iterate steps 2-3 until the algorithm converges numerically.

To update the new values for parameters in the conditional M-step, we have the closed-
form estimates for the measurement error variance σ2

ε and the covariance matrix of the
random effects respectively by maximizing the expected function Q(θ|θ(it)). Unfortu-
nately, we cannot obtain closed-form expressions for the remaining parameters. Thus we
employ the one-step Newton-Raphson approach to get the updates for β(it+1), γ(it+1),
α(it+1) and θ(it+1)

h0 respectively as detailed in Appendix A.2.

Following Louis (1982), standard errors for the parameter estimates can be calculated by
using the estimated observed information matrix

ˆvar(θ̂) =
{
I(θ̂)

}−1
,

where
I(θ̂) = −

n∑
i=1

∂Si(θ)
∂θ

|θ=θ̂ .

3.4 Empirical results

This section presents two simulation studies for Model 1 in (3.2.8), whereas Model 2
in (3.2.9) will be applied to a case study only. In Section 3.4.1, we simulate data from
Model 1 with three internal knots in the longitudinal submodel and Gompertz distribution
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for the baseline risk function. In Section 3.4.2, we simulate data from Model 1 having
Gompertz distribution for the baseline risk function and non-linear logarithm subject-
specific trajectories. The ECM algorithm, written in R code, is applied to estimate the
true values of parameters in both cases. These procedures for Model 1 and Model 2 are
then applied to AIDS data in Section 3.4.3. Model comparison between Model 1, Model 2
and Rizopoulos’s standard joint model (as Model 3) for the AIDS data will be presented
at the end of this section.

3.4.1 Simulation study 1

3.4.1.1 Data description

Recall the penalized spline joint Model 1 of (3.2.8) with three internal knots in longitudinal
submodel and the Gompertz distribution for the baseline risk function in the form

hi(t) = h0(t)exp(γxi + α(mi(t))) = λ1exp(λ2t)exp {γxi + αmi(t)} . (3.4.1)

Here h0(t) is the hazard function at baseline having Gompertz distribution, xi is the
baseline covariate and mi(t) denotes the true and unobserved value of the longitudinal at
time t. The form of mi(t) is given by

mi(t) = β0 + β1t+ ui1(t−K1)+ + ui2(t−K2)+ + ui3(t−K3)+ + vi0 , (3.4.2)

where bi = (u11, u12, u13, vi0)T is the vector of random effects and is assumed to have a nor-
mal distribution with mean zero and diagonal covariance matrixD = Diag(D11, D22, D33, D44).
K1,K2,K3 denote the three internal knots put into the model. The observed longitudinal
value at time point t for the ith subject is of the form

yi(t) = mi(t) + εi(t) , (3.4.3)

where the error variable εi(t) is assumed to come from a normal distribution with mean
zero and variance σ2.

The vector of all the parameters θ for the models in (3.4.1) and (3.4.2) is θ = (θTt ,θTy ,θTb )T ,
where θt = (γ, α, λ1, λ2)T denotes the parameter vector for the survival outcomes. Fur-
thermore, θy = (β0, β1, σ

2
ε)T is the parameter vector for longitudinal outcomes and θb = D

is the variance matrix of random effects.
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To simulate the observed survival time Ti of the joint model in (3.4.1), we applied the
methods adapted by Bender et al. (2005), Austin (2012) and Crowther and Lambert (2013)
to generate the true survival time. The detail of simulating survival time is presented in
Appendix A.3. We further assumed that the censoring mechanism is exponentially dis-
tributed with parameter λ. The observed survival time was the minimum of the censoring
time and the true survival time. We generated the survival time Ti for n = 500 subjects
with the parameters: β0 = 5, β1 = 2, λ1 = 0.1, λ2 = 0.5, γ = 0.5,α = 0.05, δ = 2 and
D = Diag(2, 2, 2, 4). Then we generated the longitudinal responses mi(t) using (3.4.2).
The simulated model is therefore

hi(t) = 0.1exp(0.5t)exp {0.5xi + 0.05mi(t)}

mi(t) = 5 + 2t+ ui1(t− 1)+ + ui2(t− 2)+ + ui3(t− 3)+ + vi0 .
(3.4.4)

The sample of simulated data is presented in Appendix A.1. The curve of the Kaplan-
Meier estimate for the survival function of simulated data (left panel) and the longitudinal
trajectories for the whole simulated sample (right panel) are presented in Figure 3.1. The
dashed lines in the left panel correspond to the 95% pointwise confidence intervals (CIs).
It is clear from the plot of the Kaplan-Meier estimator that the survival probability starts
from 1 and decreases gradually until the 5th month of the study. It is nearly zero after
6 months or so. The right panel is the longitudinal trajectories for the first 100 subjects
reflecting the form as in (3.4.2).

3.4.1.2 Parameter estimation

The ECM algorithm, as described in Section 3.3.2, was implemented to estimate all pa-
rameters in (3.4.1). The initial values of the parameters were set at β0 = 1, β1 = 1, λ1 =
0.05, λ2 = 0.1, γ = 0.1, α = 0.01, σ = 1, D11 = 3, D22 = 3, D33 = 3, D44 = 3 respec-
tively. However, these initial values can also be set randomly. The traces of each of these
parameters are presented in Figures 3.2 and 3.3 respectively, which show how the algo-
rithm updates new values of the parameters. They also demonstrate the convergence of
the algorithm after 10 to 20 iterations. In particular, the parameters β0, β1, λ2, α, σ, D22

and D33 converge linearly to the true values while the parameters λ1, γ, D11, and D44

oscillate before converging to the true values.
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Figure 3.1: The Kaplan-Meier estimate of the survival function of the simulated data of
(3.4.1) (left panel). Longitudinal trajectories of the first 100 subjects from the simulated
sample of (3.4.2) (right panel).

Figure 3.2: The traces plot of the parameters β0, , β1, λ, γ andα for 100 iterations.

We ran the simulation for 30 independent samples with different sample sizes (n =
200, 300, and 500). Then, the means, standard deviations (SD) and mean square er-
rors (MSE) of parameters were calculated and are presented in Table 3.1. The point
estimates of each parameter are reasonably close to the true values when the sample sizes
are 300 and 500. This is also supported by the values of the SD and the MSE which
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Figure 3.3: The traces of the parameters σ, D11, D22, D33, D44 for 100 iterations.

Table 3.1: Summary statistics for parameter estimation of the simulated data of the model
in (3.4.4) for different sample sizes.

Parameter True n = 200 n = 300 n = 500
value

Estimate SD MSE Estimate SD MSE Estimate SD MSE

β0 5 4.21 0.72 0.76 4.68 0.50 0.32 5.10 0.30 0.27
β1 2 1.69 0.75 0.57 1.86 0.75 0.28 2.10 0.57 0.18
λ1 0.1 0.12 0.13 0.00 0.12 0.12 0.00 0.11 0.10 0.00
λ2 0.5 0.50 0.15 0.02 0.57 0.14 0.01 0.48 0.14 0.02
γ 0.5 0.50 0.17 0.03 0.49 0.12 0.04 0.51 0.09 0.01
α 0.05 0.03 0.04 0.00 0.04 0.05 0.00 0.04 0.04 0.00
σ 2 2.06 0.13 0.01 2.02 0.06 0.00 2.02 0.06 0.00
D11 2 2.87 0.92 0.62 2.59 0.73 0.53 2.27 0.80 0.22
D22 2 2.03 0.42 0.16 2.21 0.46 0.23 2.10 0.43 0.05
D33 2 2.10 0.37 0.17 0.34 0.50 0.34 2.22 0.59 0.10
D44 4 5.24 1.82 0.76 4.32 0.74 0.60 4.24 0.63 0.18

decrease gradually when the sample size increases. In addition to this, we compared the
parameter estimates for different censoring rates (20% and 40%) for a sample size of 500
(Appendix A.4). The result shows that when the sample size is large the censoring rate
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has little influence on the estimates.

3.4.2 Simulation study 2

3.4.2.1 Data description

We performed a simulation study on the proportional hazard model having a Gompertz
distribution at baseline and non-linear subject-specific trajectory. In particular, the model
was of the form

hi(t) = h0(t)exp(γxi + α(mi(t))) = λ1exp(λ2t)exp {γxi + αmi(t)} , (3.4.5)

where h0(t) is the hazard function at baseline having Gompertz distribution, xi is baseline
covariate and mi(t) denotes the true and unobserved value of the longitudinal at time t.
The observed longitudinal value at time point t for the ith subject had the non-linear form

yi(t) = mi(t) + εi(t)

= 5log(1 + t) + bi1t+ bi0 + εi(t) ,
(3.4.6)

where εi(t) ∼ N(0, σ2). In the model of (3.4.6), the mean longitudinal response of
the population was assumed to have a non-linear logarithmic curve. Different subjects
were assumed to have different intercepts and slopes. In particular, we assumed that
bi = (bi0, bi1)T had a bivariate normal distribution with mean µ = (3, 2) and covariance
matrix D = Diag(1, 1). The true values of the other parameters in the model were
λ1 = 0.01, λ2 = 0.1, γ = 0.5, α = 0.2, σ = 2 respectively. In addition, the censoring
mechanism was assumed to be exponentially distributed with parameter λ = 0.25.

Based on the model in (3.4.5) and simulation study 1, we simulated survival times Ti for
500 subjects with a 35% censoring rate. In particular, the end time for the study was
5 months. All subjects alive at the end of the study (i.e time 5) were assumed to be
censored. This design reflected many clinical studies in real life (Burton et al., 2006). In
this sample, there were 329 uncensored subjects and 1387 observations for 500 subjects.
For each subject, 1-5 longitudinal measurements were recorded. On average, there were 3
longitudinal measurements per subject. In Figure 3.4, the Kaplan-Meier estimate for the
survival curve is presented for the simulated data with 95% pointwise CIs in the left panel.
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Moreover, the subject-specific longitudinal profiles for six selected subjects is drawn in
the right panel. It can be seen that some of the subjects in this dataset showed non-linear
evolutions in their longitudinal values. Each subject had its own trajectory.

Figure 3.4: Kaplan-Meier estimate of the survival function of the simulated data of (3.4.5)
(left panel). Longitudinal trajectories for the six randomly selected subjects of (3.4.6)
(right panel).

3.4.2.2 Parameter estimation

We used Model 1 in (3.4.1) and in (3.4.2) to handle the non-linear longitudinal trajectory
in the simulated data in (3.4.5). In this model, we put three internal knots at 25%, 50%
and 75% respectively of the follow up time. Then, the ECM algorithm as explained in
Section 3 was implemented once again to estimate all parameters in the model.

The results for parameter estimation are presented in Table 3.2. The means, standard
deviations and 95% CIs of the parameter estimates are calculated for 30 independent
samples. The point estimates for λ1, λ2 , γ, α, σ

2 are reasonably close to the true values.
Similarly, the 95% CIs include the true values of λ1, λ2 , γ, α, σ

2.

Based on the estimated values of parameters, we regenerated the estimated survival time
by approximating values of random effects from a linear mixed effects function. The detail
of the generation is explained in Appendix A.3. Then, we used the Kaplan-Meier estimate
to compare the survival function of the simulated dataset (the black solid line) and the
estimated survival function (the dashed line), which are presented in the left panel of
Figure 3.5.
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Table 3.2: Summary statistics for parameter estimation of the simulated data of the model
in (3.4.1) and (3.4.2).

Parameter True value Estimate SD 95% CI
β0 - 3.399 0.673 [3.158;3.640]
β1 - 4.330 0.142 [4.280;4.380]
λ1 0.01 0.013 0.021 [0.007;0.021]
λ2 0.1 0.083 0.184 [0.017;0.148]
γ 0.5 0.640 0.386 [0.486;0.778]
α 0.2 0.186 0.142 [0.136;0.237]
σ 2 1.993 0.061 [1.971;2.015]
D11 - 0.977 0.190 [0.909;1.044]
D22 - 1.365 0.183 [1.300;1.430]
D33 - 1.976 0.154 [1.921;2.031]
D44 - 1.393 0.196 [1.322;1.463]

In addition, we plotted the smooth and predicted longitudinal profiles for 12 patients
chosen randomly in the right panel of Figure 3.5. The dot points are the true observed
longitudinal values from the simulated data. The solid lines are the smooth longitudinal
profiles of the true observed longitudinal values using the Loess smoother and the dashed
lines are the predicted profiles of 12 randomly selected individuals. It is clear that the
Kaplan-Meier estimates from the simulated data overlaps the Kaplan-Meier estimates
based on the predicted value in the left panel of Figure 3.5. The penalized spline regression
model in (3.2.8) is a good fit for subject-specific curves in the right panel of Figure 3.5.

3.4.2.3 Model comparison

We applied Model 1 in (3.4.1) and the standard joint model of Rizopoulos to one set of
simulated data. The ECM algorithm, as described in Section 3.3.2, was again implemented
to estimate all parameters. The standard Gauss Hermite method with ten quadrature
points was used to calculate the integrals in the log-likelihood function. The fitted models
were as follows:

Fitted model 1: The penalized spline joint model with the hazard function at baseline
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Figure 3.5: Kaplan-Meier estimates of the survival function from simulated failure times
(the solid line) with 95% CIs (dot lines), fromModel 1 (3.4.1) (the dashed line) (left panel).
Observed longitudinal trajectories (the solid line) and predicted longitudinal trajectories
(the dashed line) for the twelve randomly selected subjects (right panel).

having Gompertz distribution had the form
ĥi(t) = 0.0152 exp(0.1123t) exp {0.6319xi + 0.1824m̂i(t)}

m̂i(t) = 3.4396 + 4.3587t+ ûi1(t−K1)+ + ûi2(t−K2)+ + ûi3(t−K3)+ + v̂i0 .

Fitted model 2: The standard joint model of Rizopoulos had the form

ĥi(t) = ĥ0(t) exp {0.5622xi + 0.2750m̂i(t)}

m̂i(t) = 3.4432 + 4.2567t+ b̂0i + b̂1it

ĥ0(t) =
7∑
q=1
ξ̂qI(νq−1 < t ≤ νq) .

Here 0 = ν0 < ν1 < ... < ν7 denotes a split of the time scale, with ν7 being larger
than the largest observed time, and ξq denotes the value of the baseline hazard in the
interval [νq−1, νq). Six internal knots were placed at equally spaced percentiles of the
observed event times. The values of the baseline hazard in the seven intervals were
log ξ̂1 = −4.6227, log ξ̂2 = −5.2289, log ξ̂3 = −5.2196, log ξ4 = −5.5471, log ξ̂5 = −5.7326,
log ξ̂6 = −6.5182 and log ξ̂7 = 0.3027 respectively.

The two most commonly used information criteria are the Akaike’s Information Criterion
(AIC; Akaike (1974)) and the Bayesian Information Criterion (BIC;Schwarz (1978)). Un-
der these definitions, a model having smaller values of AIC or BIC is considered a better
model.
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Table 3.3: The maximized log-likelihood, AIC and BIC values for a simulated data.

Log-Likelihood AIC BIC
Model 1 -4169.314 8360.628 8406.238
Model 2 -4179.370 8376.739 8439.959

The maximized values of the log-likelihood function, AIC values and BIC values of the
two fitted models are presented in Table 3.3. The results show that the log-likelihood of
the penalized spline joint models (fitted model 1) is larger than the log-likelihood value
of fitted model 2. This leads to the result that both AIC and BIC values of fitted model
1 are less than the values of fitted model 2. These results confirm that the proposed
models can improve the standard joint model and can be effective approaches to handle
non-linear longitudinal data.

In summary, simulation studies showed the stability of the algorithm and the goodness
of fit of the penalized spline models. From simulation study 1, it was shown that the
updating process through the ECM algorithm converged quickly to the true values of the
parameters. In addition to this, simulation study 2 showed that the model could well
predict the survival function and individual trajectories.

3.4.3 The AIDS data

3.4.3.1 Data description

In the AIDS dataset, there were 467 patients with advanced human imminodeficiency virus
infection during antiretroviral treatment who had failed or were intolerant to zidovudine
therapy. Patients in the study were randomly assigned to receive either the didanosine
drug (ddI ) or the zalcitabine drug (ddC ). CD4 cells are a type of white blood cells made in
the spleen, lymph nodes, and thymus gland and are part of the infection-fighting system.
CD4 cell counts were recorded at the time of study entry as well as at 2, 6, 12, and 18
months thereafter. Details regarding the design of this study can be found in Abrams
et al. (1994). By the end of the study, 188 patients had died, resulting in about 59.7%
censoring. There were 1405 longitudinal responses recorded.
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Figure 3.6: Kaplan-Meier estimate of the survival function of the AIDS data (left panel).
Longitudinal trajectories for CD4 cell count of the first 100 patients for two groups (right
panel).

Previously, Rizopoulos (2012) used his standard joint model for the AIDS data in which
the variability between subjects mostly depends on the intercept of the longitudinal sub-
model. However, the model could not predict observed longitudinal data accurately.
When the time unit was changed from month to year in the data, the variability between
subjects depended not only on the intercept but also on the slope of the longitudinal
submodel. In addition, the longitudinal trajectories plot shows many non-linear curves as
depicted in the right panel of Figure 3.6.

Given the nonlinearity, it is appropriate to apply our models, Model 1 and Model 2, to the
AIDS data. In particular, we used the two joint models in (3.2.8) and (3.2.9) with three
internal knots placed at 25%, 50% and 75% respectively of the observed failure times for
the hazard rate at baseline. Then, the ECM algorithm was implemented to estimate all
parameters in the two models. A summary of statistics for parameter estimation using
Model 1 and Model 2 is presented in Table 3.4.

Following Rizopoulos (2012), in Model 1 and Model 2, the univariate Wald tests were
applied for the fixed effects β = (β0, β1)T in the longitudinal submodel, the regression
coefficient γ and the association parameter α respectively. The results from Table 3.4 show
that the point estimates of β0, β1, γ, α are all statistically significant for both models at
a significance level of 5%.
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Table 3.4: Summary statistics for parameter estimation of the AIDS data of Model 1 and
Model 2 respectively.

Model 1 Model 2

Par Estimate Std.err z-value p-value Par Estimate Std.err z-value p-value

β0 7.87 0.06 127.07 <0.001 β0 7.81 0.07 114.34 <0.001
β1 -1.69 0.11 -14.77 <0.001 β1 -1.62 0.12 -12.99 <0.001
γ 0.22 0.11 2.06 0.039 γ 0.31 0.10 3.03 0.002
α -0.20 0.01 -15.84 <0.001 α -0.24 0.01 -18.15 <0.001
λ1 1.68 0.07 λ1 1.04 0.11
λ2 0.33 0.00 λ2 1.79 0.23
σ 2.36 0.36 λ3 1.38 0.38
D11 2.18 0.14 λ4 1.67 0.42
D22 1.04 0.07 λ5 2.48 0.66
D33 0.85 0.06 σ 2.62 0.45
D44 11.87 0.78 D11 1.02 0.07

D22 0.97 0.06
D33 0.99 0.07
D44 11.40 0.75

We applied the Kaplan-Meier estimate of the survival function from the observed survival
time (the light solid line) and the dotted lines correspond to 95% pointwise CIs in Figure
3.7 (left panel). The predicted survival function from Model 1 is the dashed line and
the predicted survival function from Model 2 is the bold solid line. The plots show that
Model 2 works very well in this case (Figure 3.7). Moreover, Model 2 is preferred in
practice because h0(.) is usually considered as unspecified in order to avoid the impact of
misspecifying the distribution of survival times.

Based on the model for longitudinal regression in (3.4.2), we draw the smooth and pre-
dicted longitudinal profiles for 12 patients from the AIDS dataset as depicted in Figure
3.7 (right panel). The dot points are the true observed longitudinal values. The solid
lines are the smooth longitudinal profiles using the Loess smoother and the dashed lines
are the predicted profiles. Most of the predicted profiles are quite close to the observed
ones.
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Figure 3.7: Kaplan-Meier estimates of the survival function from observed failure times,
from Model 1 and from Model 2 (left panel). Observed longitudinal trajectories (the solid
line) and predicted longitudinal trajectories (the dashed line) for the twelve randomly
selected patients (right panel).

3.4.3.2 Model comparison

Recall the penalized spline joint Model 1, Model 2 and Rizopoulos’s standard joint model
used for AIDS data. The ECM algorithm as described in Section 3.2 was implemented to
estimate all parameters. The standard Gauss Hermite method with ten quadrature points
was used to calculate the integrals in the log-likelihood function in Model 1 and Model
2. For Rizopoulos’s joint models (Model 3), the JM package in R language was used to
estimate the parameters using the adaptive Gauss Hermite method with five quadrature
points to calculate the integrals in the log-likelihood function. The fitted models were as
follows:

Fitted model 1 : The penalized spline joint model with the hazard function at baseline
having the Gompertz distribution in which parameter estimates were taken from the left
panel of Table 3.4 had the form

ĥi(t) = 1.68 exp(0.33t) exp {0.22drugddI − 0.2m̂i(t)}

m̂i(t) = 7.87− 1.69t+ ûi1(t−K1)+ + ûi2(t−K2)+ + ûi3(t−K3)+ + v̂i0 .

Fitted model 2 : The penalized spline joint model with the hazard function at baseline
having piecewise constant function in which parameter estimates were taken from the
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right panel of Table 3.4 had the form

ĥi(t) = ĥ0(t) exp {0.31drugddI − 0.24m̂i(t)}

m̂i(t) = 7.81− 1.61t+ ûi1(t−K1)+ + ûi2(t−K2)+ + ûi3(t−K3)+ + v̂i0

ĥ0(t) =
5∑
q=1
λ̂qI(νq−1 < t ≤ νq) ,

where the three internal knots in the baseline hazard rate were placed at 25%, 50%, 75%
of the observed failure times. The values of the baseline hazard in the five intervals were
λ̂1 = 1.04, λ̂2 = 1.79, λ̂3 = 1.38, λ̂4 = 1.68 and λ̂5 = 2.48.

Fitted model 3 : The standard joint model of Rizopoulos (2012) in which parameter esti-
mates were taken from Section 4.2 of Rizopoulos (2012) had the form

ĥi(t) = ĥ0(t) exp {0.33drugddI − 0.29m̂i(t)}

m̂i(t) = 7.22− 0.19t+ 0.01t ∗ drugddI + b̂0i + b̂1it

ĥ0(t) =
7∑
q=1
ξ̂qI(νq−1 < t ≤ νq) .

Here 0 = ν0 < ν1 < ... < ν7 denotes a split of the time scale, with ν7 being larger than
the largest observed time, and ξq denotes the value of the baseline hazard in the interval
[νq−1, νq). Six internal knots were placed at equally spaced percentiles of the observed
event times. The values of the baseline hazard in the seven intervals were log ξ̂1 = −2.54,
log ξ̂2 = −2.27, log ξ̂3 = −1.96, log ξ4 = −2.5, log ξ̂5 = −2.42, log ξ̂6 = −2.4 and log ξ̂7 =
−2.42 respectively.

The maximized value of the likelihood function, AIC value and BIC values of the three
models are presented in Table 3.5. The results show that the penalized spline joint models
(Model 1 and Model 2) improved the log-likelihood when there are three internal knots
in the longitudinal submodel. In a similar way, both AIC and BIC values of fitted models
1 and 2 are significantly lower than the values of fitted model 3. These results confirm
that the proposed models can improve the standard joint models. Between fitted models
1 and 2, the fitted model 2 is a preferred model for the AIDS data.
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Table 3.5: The maximized log-likelihood, AIC and BIC values for AIDS data.

Log-Likelihood AIC BIC
Model 1 -4236.063 8494.126 8539.736
Model 2 -4201.639 8431.278 8489.327
Model 3 -4328.261 8688.523 8754.864

3.5 Discussion

In this chapter, two joint models using a penalized spline with a truncated polynomial
basis have been proposed to model non-linear longitudinal outcomes and time-to-event
data. The use of a truncated polynomial basis gives an intuitive way to model non-linear
longitudinal outcomes. By adding penalties for the coefficients of the knots and using
linear mixed effects models, the smoothing is controlled and the individual curves are
specified.

The main findings we may derive from this chapter are at least four-fold: (i) the ECM
algorithm provides a reasonably quick convergence algorithm for the proposed models;
(ii) the fitted joint models are able to measure the association between the internal time-
dependent covariates and the risk of an event; (iii) the two models provide a good pre-
diction for both the longitudinal and survival functions, as indicated by empirical results
and (iv) the two models can improve the standard joint models as evidenced in the case
study.

The limitations of this study are at least three-fold: (i) the number of internal knots is
limited to three due to computational costs; (ii) the polynomial power functions can form
an ill-conditioned basis for the models and (iii) the estimation results are sensitive when
both random effects and error are not normally distributed.

Based on the limitations, future work will focus on using new methods for approximating
the integrals to reduce the computational problems or relaxing the normality assumption.
A modified two-stage approach is introduced in Chapter 4 to solve this problem. Further-
more, we will apply a different basis for joint models, that is the penalized B-spline. In
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terms of parameter estimation, we are looking at a different approach to estimate the pa-
rameters in the models using a Bayesian approach, via MCMC algorithms. This problem
will be addressed in Chapter 5.
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Chapter 4

A Modified Two-stage Approach for
Joint Modelling of Longitudinal and
Time-to-event Data

4.1 Introduction

Joint models for longitudinal and time-to-event data are used to link survival outcomes
with longitudinal measurements in order to obtain better insight into both processes. In
modern survival analysis, the Cox and the extended Cox models have been widely re-
ported in the literature. Proportional hazard models introduced by Cox (1972) have been
commonly used for their ability to associate the hazard for an event and covariates. The
baseline hazard function in these models is usually considered to be non-parametric. Cox
(1975) showed that the partial likelihood can be used to estimate the regression coeffi-
cients. A survival package for the Cox models (Therneau, 2014) is also now available in
R. However, this approach assumes that the time-dependent covariates are predictable
processes and measured without error (Cox 1975;Kalbfleisch and Prentice 2002). With
these assumptions, the Cox model only just worked for handling time-independent covari-
ates and external time-dependent covariates. For internal time-dependent covariates, this
approach can cause bias and poor coverage properties (Sweeting and Thompson, 2011;
Rizopoulos, 2012).

In a joint modelling framework, there are many papers in the literature that deal with
internal time-dependent covariates. Standard joint models assume that the hazard rate
at a given time of the dropout process is associated with the expected value of the longi-
tudinal responses at the same point in time. This also means that the survival function
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depends on the entire longitudinal trajectory. As a result, random effects appear in both
longitudinal and survival processes. In order to estimate parameters in these models, the
full likelihood approach, which uses shared random effects in the longitudinal and survival
submodels, is implemented (Rizopoulos, 2012).

According to Gould et al. (2014) and Sweeting and Thompson (2011), the full likelihood
approach is an effective way to investigate the relationship between longitudinal and time-
to-event data. However, when the subject-specific trajectories show non-linear curves,
longitudinal submodels in the joint model need to be parameterised non-linearly to avoid
biases (Rizopoulos, 2011, 2012). This can lead to an increase in the dimension of random
effects. As a result, the computational problem becomes significantly more complex when
dealing with multi-integrals from the joint log-likelihood function and the survival function
respectively. A quick and approximate method for estimation is required to reduce the
computational problem and to allow for an easier way to handle extended joint models.

The two-stage approach has been investigated previously by Bycott and Taylor (1998), Self
and Pawitan (1992), Tsiatis et al. (1995), and Dafni and Tsiatis (1998). The advantage of
this approach is that it can solve the problems of computational complexities in the shared
random effects of joint models by using standard mixed-effects and survival software in
R in two steps. Firstly, the longitudinal data is fitted. Secondly, the fitted values of the
longitudinal process are used as covariates in the joint model. The Cox model is used in
the second stage to estimate the survival parameters. This two-stage approach can reduce
biases compared with the Cox model approach. However, there still remain more biases
compared with the shared random effects approach (Sweeting and Thompson, 2011; Ye
et al., 2008). The drawbacks are that the use of the Cox model in the second stage can
cause biases, and also that the whole history of the true unobserved longitudinal processes
is not used for estimating the survival function (Tsiatis and Davidian, 2004; Sweeting and
Thompson, 2011).

The original contributions in this chapter include a new way of estimating parameters for
the survival process to reduce the bias in the two-stage approach. In particular, in the
first stage, estimated values of parameters in the longitudinal submodel are obtained using
linear mixed effects model procedures. As a result, the true unobserved longitudinal data
can be evaluated continuously over time, and the whole longitudinal history will be ac-
counted for when estimating the survival function. In the second stage, an approximation
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of the expected likelihood function for the complete data is proposed and is used to obtain
estimates for the survival process. This approach can improve the previous two-stage ap-
proach by eschewing the use of the Cox model in the second stage. The whole history of
the true unobserved longitudinal processes is involved for estimating the survival function.
Moreover, this estimation is close in spirit to the full likelihood approach in the sense that
the expected likelihood function of the complete data is maximized. The computational
gains are obvious because the multi-integral calculations of the joint log-likelihood func-
tion are avoided. Standard mixed effects software is implemented for the first stage to
estimate the parameters of the longitudinal process. The modified two-stage approach is
described in detail in Sections 4.2 and 4.3. Extensive simulation studies are presented in
Section 4.4 to compare the performance of the ordinary two-stage approach, the modified
two-stage approach and the full likelihood approach respectively. As the proposed method
is new, R code is written for the second stage to estimate the parameters of the survival
process. Another original contribution in this chapter is Section 4.5 which presents the
impact of the misspecifying random effects distribution through a simulation study as
well as the impact under different censoring rates and different measurement intervals.

This chapter is organized as follows: Section 4.2 describes the ordinary two-stage ap-
proach, the full likelihood approach and the modified two-stage approach for joint mod-
els. Parameter estimation for the modified two-stage approach is presented in Section 4.3.
Simulation studies are conducted in Section 4.4.1 to compare the bias and the accuracy
between the three approaches. Moreover, we validate the proposed two-stage approach for
penalized spline joint models with high dimension of random effects in Section 4.4.2 and
then we apply the method to AIDS data in Section 4.4.3. Random effects misspecification
analysis is presented in Section 4.5. Finally, Section 4.6 is the discussion.

4.2 The modified two-stage approach

In this section, we recall the notation from Chapter 3. Suppose that there are n subjects
in the longitudinal data and survival data. The observed failure time for the ith subject
is denoted as Ti = min(T ∗i , Ci). Here, T ∗i is the true survival time and Ci denotes the
censoring time for the ith subject (i = 1, ..., n). An event indicator is also defined as
δi = I(T ∗i ≤ Ci) in survival data. The longitudinal data consists of the measurements of
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the ith subject yij = {yi(tij), j = 1, ..., ni} taken at time points tij.

The penalized spline joint models for longitudinal data and time to event data in Chapter
3 is postulated from a proportional hazard model to be of the form

hi(t | Mi(t),wi) = lim
dt→0

Pr {t ≤ T ∗i < t+ dt | T ∗i ≥ t,Mi(t),wi} /dt

= h0(t) exp
{
γTwi + αmi(t)

}
.

(4.2.1)

Here h0(t) is the hazard at baseline and wi is a vector of baseline covariates (such as
treatment indicator, gender of a patient, etc). Furthermore,Mi(t) = {mi(s), 0 ≤ s < t}
denotes the history of the true unobserved longitudinal process up to time point t.

The longitudinal submodel for the ith subject is given by
yi(t) = mi(t) + εi(t), εi(t) ∼ N (0, σ2

ε)

mi(t) = XT
i (t)β +XT

i (t)vi +ZT
i (t)ui

vi ∼MVN (0,∑), ui ∼MVN (0,D) ,

(4.2.2)

whereX i is the
(

n∑
i=1
ni × (p+ 1)

)
matrix of fixed effects; Zi is the

(
n∑
i=1
ni × (p+K + 1)n

)
matrix of random effects defined as in (3.2.5). The vector β is the vector of coefficients
whereas the vector of random effects for the ith subject, defined by bi, are considered to be
latent variables. We assume that the random effects vector follows a multivariate normal
distribution with mean zero and covariance matrix G = Cov(bi). The covariance matrix
of random effects bTi = (vi0, ..., vip, uip1, ..., uipK) is given by

G = Cov(bi) =
 ∑ 0

0 D

 .
Before presenting the modified two-stage approach for joint models, we first describe in
more detail the ordinary two-stage and the full likelihood approaches in the following
sections. We have briefly reviewed the two approaches in a general setting in Sections
2.3.2.1 and 2.3.2.2.

4.2.1 Ordinary two-stage approach for joint models

First, we present the existing ordinary two-stage approach proposed by Tsiatis et al.
(1995) and Dafni and Tsiatis (1998) to estimate the parameters in the joint models. In this
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approach, the longitudinal model is fitted separately first. Hence, the longitudinal fitted
values, m̂i(t), are considered to be covariate in the fitted joint model. Tsiatis et al. (1995)
replaced the hazard function hi(t | Mi(t),w) in (4.2.1) by the function hi(t | Mi(t),w).
Here,Mi(t) denotes the history of the true unobserved longitudinal responses at the grid
points up to time t of the ith subject andMi(t) = {mi(t1), ..., m(tj), tj ≤ t}. Then the
partial likelihood is applied to estimate the survival coefficients and the hazard at baseline.
More specifically, in the first stage, the linear mixed effects regressions are fitted to the
longitudinal data. The fitted value for the ith subject at time t is m̂i(t) = XT

i (t)β̂ +
XT

i (t)v̂i +ZT
i (t)ûi, where XT

i (t)β̂ is the fitted mean response and XT
i (t)v̂i +ZT

i (t)ûi is
the fitted subject deviation from the mean at time t. In the second stage, the estimates
of the survival coefficients, γ and α, in (4.2.1) are obtained by maximizing the partial
likelihood. The partial likelihood has the form

PL(γ, α) =
n∑
i=1

∞̂

0

Ri(t)
{
γTωi + αm̂i(t)

}

− log
∑

j

Ri(t) exp
{
γTωi + αm̂i(t)

}dNi(t).

(4.2.3)

Here, Ni(t) is the number of events for the ith subject at time t , and Ri(t) is the indicator
function of the risk process. If the ith subject is at risk at time t, Ri(t) = 1. Otherwise,
Ri(t) = 0. In addition, using the estimates of the survival coefficients, an estimator for
the cumulative hazard function at baseline is given by

Ĥ0(t) =
∑
x<t

 dN(x)
n∑
i=1
Ri(t) exp

{
γ̂Tωi + α̂m̂i(t)

}
 . (4.2.4)

Here dN(t) denotes the number of events for the whole sample at time t. This estimator
is referred to as the Breslow estimator. One of the advantages of this approach is that it
is quick to implement when standard mixed effects software is used for the first stage and
survival software is used for the second stage. However, this approach can lead to biases
and poor coverage properties (Sweeting and Thompson, 2011). This is mainly due to
the fact that survival software implementations are usually based on the assumption that
the time-dependent covariates remain constant between examination times. According to
Rizopoulos (2012), this assumption is not appropriate and is unrealistic for many internal
time-dependent covariates. In addition, if the fitted longitudinal values are used at the
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grid points in the partial likelihood function, the survival function does not depend on the
whole history of the true unobserved longitudinal data. This can lead to a poor estimate
of the survival function Si(t).

4.2.2 The full likelihood approach for joint models

In the penalized spline joint model (4.2.1), the hazard rate at time t is assumed to de-
pend on the true unobserved longitudinal response at time t. Because of the relationship
between the hazard function and survival function, the whole covariate history Mi(t)
affects both the survival and the likelihood functions. This assumption is the impor-
tant difference between the full likelihood approach and the ordinary two-stage approach.
Moreover, the vector of the random effects bi is assumed to be underlying in both the
longitudinal and the survival processes (Rizopoulos, 2012). Under these assumptions, the
log-likelihood formulation of the joint models can be written as

l(θ) =
∑
i

log p(Ti, δi,yi;θ)

=
∑
i

log
ˆ
bi

p(Ti, δi,yi, bi;θ)dbi

=
∑
i

log
ˆ
bi

p(Ti, δi | bi;θt,β)p(yi | bi;θy)p(bi;θb)dbi .

(4.2.5)

The notation θ = (θTt ,θTy ,θTb )T denotes the full parameter vector with θt = (γT , α, θTh0)T

denoting the parameter vector for the survival outcomes. θy = (βT , σ2
ε)T is the parameter

vector for longitudinal outcomes, and θb = G. Following Rizopoulos (2012), the observed
data score vector for the joint models can be written as:

S(θ) =
∑
i

∂

∂θT
log
ˆ
p(Ti, δi | bi;θt,β)p(yi | bi;θy)p(bi;θb)dbi

=
∑
i

1
p(Ti, δi,yi;θ)

∂

∂θT

ˆ
p(Ti, δi | bi;θt,β)p(yi | bi;θy)p(bi;θb)dbi

=
∑
i

1
p(Ti, δi,yi;θ)

ˆ
∂

∂θT
p(Ti, δi | bi;θt,β)p(yi | bi;θy)p(bi;θb)dbi

=
∑
i

ˆ
∂

∂θT
log {p(Ti, δi | bi;θt,β)p(yi | bi;θy)p(bi;θb)}

× p(Ti, δi | bi;θt,β)p(yi | bi;θy)p(bi;θb)
p(Ti, δi,yi; θ)

dbi

=
∑
i

ˆ
∂

∂θT
log {p(Ti, δi | bi;θt,β)p(yi | bi;θy)p(bi;θb)} p(bi | Ti, δi,yi;θ)dbi .

(4.2.6)
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To estimate the parameters in model (4.2.1), the ECM algorithm is implemented as in
Section 3.3.2. In particular, to derive the maximum likelihood estimates in (4.2.5), the
algorithm obtains the parameter estimates of θ̂ which maximize instead the expected
value of the complete data log-likelihood at the ith iteration of

Q(θ|θ(it)) =
∑
i

ˆ
log (p(Ti, δi,yi, bi;θ)).p(bi|Ti, δi,yi;θ(it))dbi

=
∑
i

ˆ
(log p(Ti, δi|bi;θ) + log p(yi|bi;θ) + log p(bi;θ)) p(bi|Ti, δi,yi;θ(it))dbi .

(4.2.7)
Therefore, it is clear that the complexity of the estimation comes from calculating the
multi-integrals in (4.2.7). The multi-integrals with respect to the random effects are
in the complete data log-likelihood function and the uni-integrals are in the survival
functions. As these integrals do not have closed form solutions, we employed standard
Gaussian quadrature rules to approximate the values of the integrals. Obviously, the
computational burden increases when the dimension of random effects and the number
of quadrature points increase. It is very time-consuming for the algorithm in (3.3.2) to
converge when handling non-linear longitudinal data in the JM package of (Rizopoulos,
2010) and described in Chapter 3.

4.2.3 Approximations for parameter estimates and the complete

data log-likelihood

In this section, we introduce the following theorem to show the properties of the approx-
imations. These approximations, denoted by ≈, will be used in the modified two-stage
approach being proposed in Section 4.2.4.

Theorem 1. Denote θ̂ = (θ̂Tt , θ̂
T

y , θ̂
T

b )Tas the estimator obtained from the joint model in
(4.2.1) and θ̃ = (θ̃Ty , θ̃

T

b )T as the estimator obtained from the linear mixed effects model
in (4.2.2). As min(ni)→∞, the following results hold:

a) Pr(
∥∥∥θ̂b − θ̃b∥∥∥ > ε)→ 0

b) Pr(
∥∥∥θ̂y − θ̃y∥∥∥ > ε)→ 0

c) S(θt) = ∂
∂θt
l(θ) ≈ ∑

i

∂
∂θt

log p(Ti, δi, b̃i;θt,θy) and

65



4. A modified two-stage approach

E(log(p(Ti, δi,yi, bi; θ̂))) ≈ ∑
i

log p(Ti, δi, b̃i; θ̂t, θ̃y) + log p(yi, b̃i; θ̃y) + log p(b̃i; θ̃bi
) ,

where b̃i = arg max
b

{
log p(yi, b; θ̃y)

}
and ‖.‖ denotes the Euclidean vector norm.

Proof. a) From the Bayesian central limit theorem (Cox and Hinkley, 1979), it follows
that as min(ni)→∞,

p(bi|Ti, δi, yi;θ) p→ N (b̃i, H̃i
−1) ,

p(bi|yi;θ) p→ N (b̃i, H̃i
−1) ,

(4.2.8)

where b̃i = arg max
b

{
log p(yi, b; θ̃y)

}
and H̃i

−1 = −∂log p(yi|b;θ̃y)
∂b∂bT |b=b̃i

.

By (4.2.6), the score functions with respect to θb from the joint model, Sjm(θb), and from
the linear mixed effects model, Slmm(θb), can be written as

Sjm(θb) =
∑
i

ˆ
∂

∂θb
log {p(bi;θb)} p(bi | Ti, δi,yi;θ)dbi ,

Slmm(θb) =
∑
i

ˆ
∂

∂θb
log {p(bi;θb)} p(bi | yi;θ)dbi .

Set
Sq(θb) =

∑
i

ˆ
∂

∂θb
log {p(bi;θb)} p(bi; b̃i, H̃i

−1)dbi.

Thus, as min(ni)→∞,
Sjm(θb)

p→ Sq(θb),

Slmm(θb)
p→ Sq(θb) .

(4.2.9)

Furthermore,

‖Sjm(θb)− Slmm(θb)‖ ≤ ‖Sjm(θb)− Sq(θb)‖+ ‖Sq(θb)− Slmm(θb)‖ . (4.2.10)

By (4.2.10), for any ε > 0, the following can be obtained

{‖Sjm(θb)− Slmm(θb)‖ > ε} ⊃
{
‖Sjm(θb)− Sq(θb)‖ >

ε

2

}
∪
{
‖Sq(θb)− Slmm(θb)‖ >

ε

2

}
.

Therefore,

Pr {‖Sjm(θb)− Slmm(θb)‖ > ε} ≤ Pr
{
‖Sjm(θb)− Sq(θb)‖ >

ε

2

}
+ Pr

{
‖Sq(θb)− Slmm(θb)‖ >

ε

2

}
.
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Combined with (2.2.2),

Pr {||Sjm(θb)− Slmm(θb)|| > ε} → 0 .

Equivalently, the maximum likelihood estimator for θb from the joint model and from the
linear mixed effects model converge in probability as min(ni)→∞,

P r(|θ̂b − θ̃b| > ε)→ 0 .

b) The convergence is proved in Rizopoulos (2011).

c) By (4.2.5), the score function with respect to θt has the form

S(θt) = ∂

∂θt
l(θ) =

∑
i

ˆ
∂

∂θt
log p(Ti, δi|bi;θ)p(bi|Ti, δi,yi;θ(it))dbi.

Moreover, by (4.2.9), as min(ni)→∞,

S(θt)
p→
∑
i

ˆ
∂

∂θt
log p(Ti, δi|bi;θ)p(bi; b̃i, H̃i

−1)dbi ≈
∑
i

∂

∂θt
log p(Ti, δi, b̃i;θt,θy).

In addition to this, the expected function of the complete data log-likelihood at θ̂ has the
form

E(log (p(Ti, δi,yi, bi; θ̂))) =
∑
i

ˆ
log (p(Ti, δi,yi, bi; θ̂)).p(bi|Ti, δi,yi; θ̂)dbi

=
∑
i

ˆ (
log p(Ti, δi|bi; θ̂) + log p(yi|bi; θ̂) + log p(bi; θ̂)

)
× p(bi|Ti, δi,yi; θ̂)dbi .

(4.2.11)
By (2.2.2), (4.2.11) and by the results from (a) and (b),

E(log (p(Ti, δi,yi, bi; θ̂))) p→
∑
i

ˆ (
log p(Ti, δi|bi; θ̂t, θ̂y) + log p(yi|bi; θ̂y) + log p(bi; θ̂bi

)
)

× p(bi; b̃i, H̃i
−1)dbi

≈
∑
i

log p(Ti, δi, b̃i; θ̂t, θ̃y) + log p(yi, b̃i; θ̃y) + log p(b̃i; θ̃bi
) ,

as min(ni)→∞.
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4.2.4 A modified two-stage estimation approach

To avoid the weaknesses of the ordinary two-stage approach proposed by Tsiatis et al.
(1995), we propose a modified two-stage approach. Here, we use the fitted values of the
parameters in the longitudinal process and then approximate the expected function of
the complete data log-likelihood. Instead of using the partial likelihood to estimate the
regression coefficients of the relative risk model, we apply the approximation method for
the full likelihood approach. The one-step Newton-Raphson update is implemented in
the second stage.

More specifically, the two stages are as follows:

Stage 1: Fit the linear mixed effects regression for the longitudinal data. In this stage,
the coefficient of fixed effects, the variance matrix and the best linear unbiased predictors
(BLUPs) of the random effects are obtained. As a result, m̂i(t) can be evaluated continu-
ously throughout time. This stage can be conducted using linear mixed effects models as
described by Laird and Ware (1982) and using software provided by Lindstrom and Bates
(1988). In particular, we obtain θ̃y and θ̃b by maximizing the restricted log-likelihood
function

l(θy,θb) = −1
2

n∑
i=1

log |XT
i V

−1
i X i| −

1
2

n∑
i=1

log |V i| −
1
2

n∑
i=1

(yi −X iβ)T V −1
i (yi −X iβ) ,

(4.2.12)
where V i =

[
X i Zi

]
G
[
X i Zi

]T
+ σ2

εIni
, Ini

is an ni × ni identity matrix. Given
θ̃y , the estimated random effects vector, b̃i = [ ṽi0, ..., ṽip ũip1, ..., ũipK ]T , is obtained
from the formula of the best linear unbiased predictor

b̃i = E(bi|yi) = G
[
X i Zi

]T
V −1

i (yi −X iβ). (4.2.13)

The fitted longitudinal submodel has the form

ŷi(t) = m̂i(t) + εi(t) = XT
i (t)β̃ +

[
X i(t) Zi(t)

]T
b̃i + εi(t) . (4.2.14)

Stage 2: A joint model is fitted using the fitted values of the parameters in stage 1 in the
form

hi(t) = h0(t) exp(γTwi + αm̂i(t))

m̂i(t) = XT
i (t)β̃ +

[
X i(t) Zi(t)

]T
b̃i .

(4.2.15)
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From Theorem 1, the approximation of the expected function of the complete data log-
likelihood at θ̂ is

E(log (p(Ti, δi,yi, bi; θ̂))) ≈
∑
i

log p(Ti, δi, b̃i; θ̂t, θ̃y) + log p(yi, b̃i; θ̃y) + log p(b̃i; θ̃bi
) ,

(4.2.16)
as min(ni) → ∞. We estimate the parameter for survival process by maximizing the
approximation of the expected function of the complete data log-likelihood

∑
i

log p(Ti, δi, b̃i;θt, θ̃y) + log p(yi, b̃i; θ̃y) + log p(b̃i; θ̃bi
) .

Here, the density function of survival time is given by

p(Ti, δi | b̃i, θ̃y;θt) = h(Ti | Mi(Ti),wi, β̃;θt)δiS(Ti | Mi(Ti),wi, θ̃y;θt)

=
[
h0(Ti) exp

{
γTwi + αm̂i(Ti)

}]δi

× exp

−
Tiˆ

0

h0(s) exp
{
γTwi + αm̂i(s)

}
ds

 .

(4.2.17)

Moreover, the density function for the longitudinal part given the random effects has the
form

p(yi|b̃i; θ̃y)p(b̃i; θ̃bi
) =

∏
j

p
{
yi(tij)|b̃i; θ̃y

}
p(b̃i; θ̃bi

)

=
ni∏
j=1

1
(2πσ̃ε2)

ni
2

exp

−
‖ yi(tij)−XT

i (tij)β̃ +
[
X i(tij) Zi(tij)

]T
b̃i ‖2

2σ̃ε2


× (2π)−

qb
2 det(G̃)−1/2 exp(−b̃Ti G̃

−1
b̃i/2) .

(4.2.18)

4.3 Parameter estimation

In this section, we summarise the proposed two-stage estimation approach to estimate
the parameters in the model (4.2.1).

Two-stage maximum likelihood method
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Stage 1: Use standard mixed effects software to obtain the estimates of θ̃y, θ̃bi
and b̃i

respectively.

Stage 2: Estimate the parameters of survival process via one-step of the Newton-Raphson
algorithm. In this stage, the steps are as follows:

Step 1: First initialise the parameters of the survival process.

Assume that there are m parameters in the survival vector θt and the starting value of the
parameter vector is θ(0)

t = (θ(0)
1 , ..., θ(0)

m ). Based on these initial values and the estimates
of θ̃y, θ̃bi

and b̃i in Stage 1, calculate

l(θ(0)
t ) =

∑
i

log p(Ti, δi,yi, b̃i;θ
(0)
t , θ̃y)

=
∑
i

log p(Ti, δi, b̃i;θ(0)
t , θ̃y) + log p(yi, b̃i; θ̃y) + log p(b̃i; θ̃bi

) .

Step 2: Updating parameters

2.1 Given the current value of parameter vector at the ith iteration θ(it)
t = (θ(it)

1 , θ
(it)
2 , ..., θ(it)

m ),
calculate the log-likelihood

l(θ(it)
t ) =

∑
i

log p(Ti, δi,yi, b̃i;θ
(it)
t , θ̃y, θ̃bi

) .

2.2 Propose a new value for the first parameter θ(∗)
1 . Then, calculate the log-likelihood

l(θ(∗)
t ) where θ(∗)

t = (θ(∗)
1 , θit2 , ..., θ

it
m).

2.3 Set θ(it)
t = θ

(∗)
t if l(θ(∗)

t ) ≥ l(θ(it)
t ), otherwise set θ(it)

t = θ
(it)
t .

2.4 Similarly, based on the value of the parameter vector θ(it)
t , update the new value

for the second parameter and continue updating for the last parameter and set θ(it+1)
t .

Step 3: Iterate Step 2 until the algorithm converges numerically.

The commonly used criteria for the convergence of the iterations are

l(θ(it+1))− l(θ(it)) < ε
(
|l(θ(it)) + ε|

)
,

where θ(it) denotes the parameter values at the ith iteration, the value of ε is chosen at
about 10−8.
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We employ the one-step Newton-Raphson approach to get the updated γ(it+1),α(it+1) and
θ

(it+1)
h0 . In particular,

S(θt) =
∑
i

∂

∂θt
log

{
p(Ti, δi, b̃i;θt, θ̃y, θ̃bi

)
}

θ̂
(it+1)
t = θ̂t

(it)
−

∂S(θ̂t
(it))

∂θt

−1

S(θ̂t
it)) .

(4.3.1)

The components of the core vector corresponding to θt have the following forms:

S(γ) = ∑
i
wi

[
δi − exp(γTwi)

] Tí

0
h0(s) exp

{
α(XT

i (t)β̃ +
[
X i(s) Zi(s)

]T
b̃i)
}
ds ,

S(α) =
∑
i

δi

{
XT

i (Ti)β̃ +
[
X i(Ti) Zi(Ti)

]T
b̃i)
}

− exp(γTwi)
∂

∂α


Tiˆ

0

h0(s) exp
{
α(XT

i (s)β̃ +
[
X i(s) Zi(s)

]T
b̃i)
}
ds

 ,

S(θh0(t)) =
∑
i

δi
∂ log h0(Ti;θh0(t))

∂θTh0(t)

− exp(γTwi)
∂

∂θTh0(t)


Tiˆ

0

h0(s) exp
{
α(XT

i (s)β̃ +
[
X i(s) Zi(s)

]T
b̃i)
}
ds

 .

4.4 Empirical results

In order to compare the performance of the ordinary two-stage approach, the modified
two-stage approach and the full likelihood approach, two sets of simulation studies were
carried out in this section. In simulation study 1, linear longitudinal and survival data
were generated with different censoring rates and measurement occasions. The biases
and accuracy of estimates were assessed for the three approaches. In simulation study
2, non-linear longitudinal and survival data were generated. The extended joint model
using penalized splines was implemented. The results show that the modified two-stage
approach can estimate the survival function well because it can handle a large dimension
of random effects. In addition, the extended joint model using penalized splines and the
proposed two-stage approach were applied to the AIDS data in a case study.
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4.4.1 Simulation study 1

We performed a simulation study on the joint model for linear longitudinal and survival
data, which has the form

hi(t) = h0(t) exp(γxi + α(mi(t))) = λ exp {γxi + αmi(t)} . (4.4.1)

Here h0(t) is the hazard function at baseline having an exponential distribution, xi is the
baseline covariate. The form of the true and unobserved value of the longitudinal at time
t, mi(t), is given by

mi(t) = β0 + β1t+ uio + ui1t , (4.4.2)

where bi = (ui0, ui1)T is the vector of random effects and is assumed to have a normal
distribution.

To simulate the observed survival time Ti of the joint model in (4.4.1), we applied the
methods adopted by Bender et al. (2005), Austin (2012) and Crowther and Lambert
(2013) to generate the true survival time. In particular, based on the relation between
the survival function Si(t), the cumulative hazard function Hi(t) and the cumulative
distribution Fi(t),

Si(t) = exp(−Hi(t)) = 1− Fi(t) . (4.4.3)

Following (4.4.3), we set
u = 1− Fi(Ti) , (4.4.4)

where u is a random variable with u ∼ U(0, 1). The true survival time t is the solution of
the equation

U = exp(−Hi(t)) = exp

−
t̂

0

hi(s)ds

 .

We assumed further that the censoring mechanism was exponentially distributed. The
observed survival time was the minimum between the censoring time and the true survival
time. We generated the survival time Ti for n = 500 subjects. The true values of the
parameters were β0 = 5, β1 = 2, λ = 0.1, γ = 0.5, α = 0.05, D11 = 1, D12 = 0.5 and
D22 = 1. Then we generated true longitudinal responsesmi(t) using (4.4.2). The observed
longitudinal value at time point t for the ith subject was generated from

yi(t) = mi(t) + εi(t) , (4.4.5)
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where εi(t) ∼ N(0, σ2). The true value of σ was 2.

We considered first the case where the censoring rate was 40% and the longest survival
time was 8 years. For measurements taken every six months, 1981 longitudinal responses
were recorded. On average, there were four longitudinal measurements per subject. For
measurements taken every year, there were 1106 observations for 500 subjects. On av-
erage, there were 2 longitudinal measurements per subject. The three approaches were
implemented to estimate the parameters in the hazard model (4.4.1). For the ordinary
two-stage approach, the linear mixed effects and survival softwares were used for the first
stage and the second stage respectively. For the full likelihood approach, Rizopoulos’s JM
package using the adaptive Gaussian method with five quadrature points was applied. For
the modified two-stage approach, R code implementing the algorithm in Section 4.3 was
applied.

The bias, standard error (SE) and mean square error (MSE) of the estimates are presented
for 6 monthly measurement over 100 simulations (Table 4.1). Because the first stages of
the ordinary and proposed two-stage approaches are the same, therefore, the estimates of
the parameters in the longitudinal submodel are similar. However, the estimates of the
parameters in the survival submodel are significantly different. The biases for the hazard
rate at baseline, λ, and the survival coefficients, γ, α, of the proposed two-stage approach
reduced significantly, nearly ten times compared to the ordinary two-stage approach. In
addition, the mean square errors (MSE) for these parameters of the proposed two-stage
approach is also remarkably lower than the ordinary two-stage approach.

The results in Table 4.1 also show that the biases of the estimates for the proposed
two-stage and the full likelihood approaches are small and comparable with each other.
However, the biases for λ, α, σ2, D12, and D22 of the proposed two-stage approach are
slightly smaller than the full likelihood approach. Moreover, MSE and SE of the estimates
obtained by the proposed two-stage approach are less compared with the full likelihood
approach except for the parameters D12 and σ. Note that there is no multi-integral
calculation with respect to random effects in the proposed two-stage approach. The
average computing time in a single dataset for the proposed two-stage approach was 69.9
s (with standard deviation of 11.65 s). This average computing time was slightly less than
the average computing time for the full likelihood approach using the adaptive Gaussian
method with ten quadrature points, which was 77.4 s (with standard deviation of 11.4 s).
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Similar results were found for yearly measurements (Table 4.2).

Table 4.1: Summary statistics for parameter estimation of the simulated data of the model
in (4.4.1) for 6 monthly measurements.

Parameter True The ordinary two-stage The modified two-stage
value approach approach

Bias SE MSE Bias SE MSE

λ 0.2 0.0592 0.0013 0.0037 0.0021 0.0033 0.0011
γ 0.5 0.1750 0.0145 0.0513 0.0075 0.0130 0.0168
α 0.05 0.0090 0.0313 0.0010 0.0006 0.0016 0.0003
β0 5 0.0207 0.0090 0.0086 0.0224 0.0077 0.0063
β1 2 0.0559 0.0085 0.0103 0.0482 0.0089 0.0102
σ 2 0.0023 0.0038 0.0015 0.0027 0.0042 0.0017
D11 1 0.0006 0.0115 0.0130 0.0016 0.0110 0.0120
D12 0.5 0.0031 0.0213 0.0449 0.0085 0.0199 0.0394
D22 1 0.0228 0.0088 0.0082 0.0059 0.0098 0.0095

Parameter True value The full likelihood approach

Bias SE MSE

λ 0.2 0.0024 0.0041 0.0017
γ 0.5 0.0067 0.0134 0.0177
α 0.05 0.0034 0.0022 0.0005
β0 5 0.0123 0.0081 0.0066
β1 2 0.0129 0.0102 0.0104
σ 2 0.0038 0.0038 0.0014
D11 1 0.0006 0.0217 0.0465
D12 0.5 0.0235 0.0164 0.0271
D22 1 0.0164 0.0195 0.0378
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Table 4.2: Summary statistics for parameter estimation of the simulated data of the model
in (4.4.1) for yearly measurements.

Parameter True The ordinary two-stage The modified two-stage
value approach approach

Bias SE MSE Bias SE MSE

λ 0.2 0.0183 0.0017 0.0064 0.0006 0.0035 0.0012
γ 0.5 0.1279 0.0510 0.0284 0.0005 0.0170 0.0171
α 0.05 0.0031 0.0035 0.0012 0.0010 0.0017 0.0003
β0 5 0.0116 0.0101 0.0103 0.0066 0.0080 0.0063
β1 2 0.0773 0.0109 0.0177 0.0781 0.0113 0.0188
σ 2 0.0039 0.0072 0.0052 0.0011 0.0066 0.0043
D11 1 0.01965 0.0166 0.0275 0.0064 0.0149 0.0220
D12 0.5 0.01663 0.0265 0.0698 0.0305 0.0274 0.0753
D22 1 0.0017 0.0105 0.0109 0.0233 0.0111 0.0128

Parameter True value The full likelihood approach

Bias SE MSE

λ 0.2 0.0103 0.0048 0.0024
γ 0.5 0.0014 0.0110 0.0120
α 0.05 0.0022 0.0024 0.0006
β0 5 0.0026 0.0094 0.0087
β1 2 0.0020 0.0095 0.0089
σ 2 0.0163 0.0075 0.0058
D11 1 0.0740 0.0324 0.0948
D12 0.5 0.0015 0.0209 0.0433
D22 1 0.0080 0.0194 0.0375

We now consider the second case of the censoring rate being 20% and the longest survival
time was 13 years. In this case, the proposed two-stage approach was applied to estimate
parameters in model (4.4.1) with different measurement times. For measurements taken
every 6 months, 2340 longitudinal responses were recorded. On average, there were 5
longitudinal measurements per subject. For measurements taken every year, there were
1331 observations for 500 subjects. On average, there were 4 longitudinal measurements
per subject. For measurements taken every four years, there were 573 observations for
500 subjects. On average, there was 1 longitudinal measurement per subject.

The bias, SE and MSE of the estimates are presented for every six months, one year and
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four years of measurement in Table 4.3. The bias and accuracy of the estimates were lower
when longitudinal data was measured every 6 months and every 1 year. When follow-
up examinations decreased, the estimates were more biased and less accurate, especially
for the parameters of the longitudinal submodel. However, even when the measurement
interval was four years, the biases for survival parameters only increased by around 1%
compared with measurements taken every six months. These results show the reliability
and accuracy of the proposed two-stage.

Table 4.3: Summary statistics for parameter estimation of the simulated data of the model
in (4.4.1) for different measurements times.

Parameter True value Every 6 months Every 1 year

Bias SE MSE Bias SE MSE

λ 0.2 0.0018 0.0034 0.0011 0.0068 0.0034 0.0012
γ 0.5 0.0074 0.0162 0.0261 0.0076 0.0153 0.0232
α 0.05 0.0020 0.0016 0.0003 0.0024 0.0017 0.0003
β0 5 0.0065 0.0077 0.0059 0.0134 0.0092 0.0086
β1 2 0.0442 0.0076 0.0076 0.0723 0.0105 0.0162
σ 2 0.0033 0.0036 0.0013 0.0132 0.0067 0.0046
D11 1 0.0050 0.0108 0.0116 0.0105 0.0163 0.0263
D12 0.5 0.0463 0.0163 0.0284 0.0336 0.0281 0.0795
D22 1 0.0155 0.0061 0.0039 0.0156 0.0155 0.0158

Parameter True value Every 4 year

Bias SE MSE

λ 0.2 0.0110 0.0040 0.0017
γ 0.5 0.0092 0.0120 0.0143
α 0.05 0.0038 0.0015 0.0002
β0 5 0.0117 0.0093 0.0087
β1 2 0.2186 0.0146 0.0689
σ 2 0.1756 0.0315 0.1291
D11 1 0.1838 0.0425 0.2130
D12 0.5 0.0978 0.0385 0.1567
D22 1 0.0221 0.0135 0.0185
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4.4.2 Simulation study 2

The second simulation study was made on a proportional hazard model having a Gompertz
distribution at baseline and non-linear subject-specific trajectories (Huong et al., 2016). In
this simulated data, we did not limit the end time of the study and longitudinal responses
were recorded at the time of study entry as well as at every year thereafter. The joint
model has the form

hi(t) = h0(t) exp(γxi + α(mi(t))) = λ1 exp(λ2t)exp(γxi + α(mi(t))) . (4.4.6)

Here h0(t) is the hazard function at baseline having a Gompertz distribution, xi is the
baseline covariate and mi(t) denotes the true and unobserved value of the longitudinal at
time t. The observed longitudinal value at time point t for the ith subject is

yi(t) = mi(t) + εi(t)

= 5 log(1 + t) + bi1t+ bi0 + εi(t) ,
(4.4.7)

where εi(t) ∼ N(0, σ2). In the model (4.4.7), we simulated the mean longitudinal response
in the population having non-linear logarithmic curve. Different subjects were assumed
to have different intercepts and slopes. In particular, it was assumed that bi = (bi0, bi1)T

having a bivariate normal distribution with mean µ = (3, 2) and covariance matrix D = 1 0
0 1

. The true values of the other parameters put into the model were λ1 = 0.01, λ2 =

0.1, γ = 0.5, α = 0.2, σ = 2.

Based on the model in (4.4.6), we simulated the survival time T for 500 subjects in which
the end time for the study was not limited. In this sample, there were 229 uncensored
subjects comprising 45.8% of the whole sample. There were 1687 observations for 500
subjects. For each subject, 1-10 longitudinal measurements were recorded. On average,
there were 4 longitudinal measurements per subject. In Figure 4.1, the Kaplan-Meier
estimate for survival curve is presented for the simulated data of the model (4.4.6) with
95% pointwise CIs. Moreover, the subject-specific longitudinal profiles for six randomly
selected subjects are drawn in the right panel. It can be seen that some of the subjects
in this dataset show non-linear evolutions in their longitudinal values. Each subject has
its own trajectory.
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Figure 4.1: Kaplan-Meier estimate of the survival function of the simulated data of (4.4.6)
(left panel). Longitudinal trajectories for the six randomly selected subjects of (4.4.7)
(right panel).

Penalized spline regression was used to handle the non-linear longitudinal trajectory in
the simulated data. The penalized spline submodel has the following form

mi(t) = β0+β1t+ui0+ui1(t−K1)++ui2(t−K2)++ui3(t−K3)++...+uip(t−KK)+ , (4.4.8)

whereXT
i (t) = [1, t], ZT

i (t) = [1, (t−K1)+, ..., (t−KK)+]. The set {1, t, (t−K1)+, ..., (t−
KK)+} is known as the truncated power basis of degree 1. The vector βT = [β0, β1] is
called the vector of coefficients and K1, ...,KK are K fitted knots. We define the vector of
random effects for subject i as bTi = (ui0, ui1, ui2, ..., uiK). We assumed that the random
effects vector follows a multivariate normal distribution with mean zero and covariance
matrix G = cov(bi).

Firstly, the lme function in R was used to estimate parameters in the longitudinal sub-
model. Table 4.4 presents the log-likelihood and AIC values for longitudinal process in
stage 1 when we put 1 knot, 2 knots, 3 knots, 4 knots and 5 knots into the longitudinal
submodel. The results show that the log-likelihood values increase when the number of
knots increase. The trend of AIC values is opposite to the log-likelihood values. However,
the AIC value for 4 knots is lower than the AIC value for 5 knots, therefore it is the lowest
value. According to this result, we should fit the longitudinal submodel with 4 knots at
20%, 40%, 60% and 80% of the follow-up times.

In the first stage, we fitted the joint model in (4.4.7) with 4 knots in the longitudinal
submodel. The estimated values from the longitudinal submodel were then put into the
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Table 4.4: The log-likelihood and AIC values.

one knot two knots three knots four knots five knots

LogLik -3134.166 -3116.687 -3111.307 -3106.1 -3104.351
AIC 6280.332 6251.375 6248.614 6248.199 6252.702

Table 4.5: Summary statistics for parameter estimation of the simulated data of the model
in (4.4.9).

Parameter True value Estimate SD 95% CI
β0 - 3.3437 0.2226 [3.2820;3.4054]
β1 - 4.4793 0.2400 [4.4202;4.5533]
λ1 0.01 0.0215 0.0432 [0.0095;0.0334]
λ2 0.1 0.0899 0.1055 [0.0607;0.1192]
γ 0.5 0.5391 0.2458 [0.4710;0.5057]
α 0.2 0.1947 0.0896 [0.1698;0.2195]
σ 2 1.9682 0.1848 [1.9169;2.0194]

joint model. The joint model in (4.4.6) was in the form

hi(t) = λ1 exp(λ2t) exp(γxi + α(m̂i(t)))

m̂i(t) = 3.3487 + 4.4703t+ ûi0 + ûi1(t− 0)+ + ûi2(t− 1)+ + ûi3(t− 2)+ + ûi4(t− 3)+ .

(4.4.9)
In the second stage, the algorithm in Section 4.3 was implemented to estimate the pa-
rameters λ1, λ2, γ and α.

The results for parameter estimation are presented in Table 4.5. The estimated mean, SD
and 95% CIs of parameter estimates are calculated for 50 independent samples. It can
be seen that the point estimates for λ1, λ2, γ, α and σ are reasonably close to the true
values. Similarly, the 95% CIs include the true values of λ1, λ2, γ, α and σ.

Based on the estimated values of parameters, we generated the estimated survival time.
Then we used the Kaplan-Meier estimates to compare between the survival function from
the simulated dataset (the black solid line) and the estimated survival function from the
joint model in (4.4.6) (the dashed line) as presented in the left panel of Figure 4.2. It
is clear that the Kaplan-Meier estimates from simulated data overlapped well with the
Kaplan-Meier estimates based on the predicted values from the beginning of the study
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to the end of the study. In the right panel of Figure 4.4.7, we also draw the smooth
and predicted longitudinal profiles for 12 patients chosen randomly. The dot points are
the true observed longitudinal values from the simulated data. The solid lines are the
smooth longitudinal profiles of the true observed longitudinal values created using the
Loess smoother and the dashed lines are the predicted profiles of 12 randomly selected
individuals. It can be seen that the penalized spline regression model in (4.4.7) provides
a good prediction for the subject-specific curves.

Figure 4.2: Kaplan-Meier estimates of the survival function from simulated failure times
(the solid line) with 95% CIs (dot lines), from model in (4.4.9) (the dashed line) (left
panel). Observed longitudinal trajectories (the solid line) and predicted longitudinal tra-
jectories (the dashed line) for the twelve randomly selected patients (right panel).

4.4.3 The AIDS data

The penalized spline joint model was applied to the AIDS dataset. The design of this
study can be found in Abrams et al. (1994) and the details of this study were presented
in Section 3.4.3. In the penalized spline joint model, we put three internal knots in the
longitudinal submodel at 25%, 50% and 75% of follow-up time. We assumed that the
hazard rate at baseline has a Gompertz distribution. The joint model has the form

hi(t) = h0(t)exp(γxi + α(mi(t))) = λ1exp(λ2t)exp(γxi + α(mi(t))) . (4.4.10)

Here the observed longitudinal value at time point t for the ith subject is

yi(t) = mi(t) + εi(t)

= β̂0 + β̂1t+ ûi0 + ûi1(t−K1)+ + ûi2(t−K2)+ + ûi3(t−K3)+ + εi(t) .
(4.4.11)
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Table 4.6: Summary statistics for parameter estimation of the simulated data of the model
in (4.4.10).

Parameter Estimate Std.err z-value p-value
β0 2.5080 0.0303 82.8690 <0.0001
β1 -0.3938 0.0297 -13.2396 <0.0001
λ1 0.4060 0.0303 13.4164 <0.0001
λ2 0.5813 0.0907 6.4099 <0.0001
γ 0.2204 0.0502 2.3986 0.01645
α -0.1955 0.0319 -6.1274 <0.0001
σ 0.3627 - - -

From the assumptions of the proposed two-stage approach, the estimates are sensitive to
the normal assumptions for random effects and error terms. By the fact that the CD4
cell counts had a distribution skewed to the right, we transform the CD4 cell counts into
the square root of the CD4 cell counts. In addition to this, the time unit is changed from
months to years in the data. Finally, the algorithm in Section (4.3) is applied to estimate
the parameters in the model (4.4.10). The estimated parameters are shown in Table 4.6.
The standard errors of the estimates are small and the point estimates are statistically
significant at a 5 % significance level.

We draw the Kaplan-Meier estimates of the survival function from the observed survival
time (the light solid line) and the dot lines correspond to 95% pointwise CIs in Figure
4.3 (left panel). The predicted survival function from the model in (4.4.10) is the dashed
line. In the right panel of Figure 4.3, we also draw the smooth and predicted longitudi-
nal profiles for nine patients chosen randomly. It is shown that the proposed two-stage
approach can predict well both the survival function and the subject-specific longitudinal
trajectories.
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Figure 4.3: Kaplan-Meier estimates of the survival function from observed failure times
(the solid line) with 95% CIs (dot lines), from model (4.4.10) (the dashed line) (left panel).
Observed longitudinal trajectories (the solid line) and predicted longitudinal trajectories
(the dashed line) for the nine randomly selected patients (right panel).

4.5 Random effects misspecification analysis

The joint modelling framework is based on the assumption that the random effects have
multinormal distribution with mean zero and covariance matrix G. However, the validity
of this assumption is misspecified in practice. The estimation for the parameters in the
joint models depends on this assumption. Therefore, this misspecification of the random
effects can affect the parameter estimates in the joint models using the full likelihood
approach.

In this section, we investigate the impact of misspecifying the random effects distribution
through a simulation study. In particular, two mixture distributions are considered for
the random effects. The first distribution is the bimodal mixture distribution and the
second distribution is the unimodal skewed mixture distribution. In addition, we also
consider the impact under different censoring rates and different measurement intervals.
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4.5.1 Study set-up

We generated the longitudinal and survival data from the join model

hi(t | Mi(t),wi) = h0(t) exp
{
γTwi + αmi(t)

}
= λ exp

{
γTwi + αmi(t)

}
,

(4.5.1)

where h0(t) has exponential distribution and the longitudinal submodel has the form

mi(t) = β0 + β1t+ ui0 + ui1t . (4.5.2)

In the first case, a bimodal mixture distribution is considered having the form

0.4×N
{

(−2,−2)T ,D
}

+ 0.6×N
{

(1.333, 1.333)T ,D
}
, (4.5.3)

where D =
 2 0.5

0.5 1

. In the second case, a unimodal skewed mixture distribution is

considered having the form

0.7×N
{

(−1, 1)T ,D
}

+ 0.3×N
{

(2.333,−2.333)T ,D
}
, (4.5.4)

whereD =
 2 0.5

0.5 1

. The two dimensional pictures for the random effects distribution

are presented in Figures 4.4 and 4.5.

The steps for generating the data are as in Section 4.1. The true values for the parameters
in the joint model are λ = 0.2, γ = 0.5, α = 0.05, β0 = 5, β1 = 2. The observed
longitudinal value for the ith subject at time point t has the form

yi(t) = mi(t) + εi(t) ,

where the measurement error is assumed to have normal distribution with mean is 0 and
variance σ = 2.

Based on the model in (4.5.1), we simulated the survival time for 500 subjects. The
censoring mechnism had an exponential distribution. Here, we considered two cases.
When the censoring rate was 40%, the longitudinal measurement were taken every one
year and maxi(ni) = 11. When the censoring rate was 40%, the longitudinal measurement
were taken every four years and max i(ni) = 3.
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Figure 4.4: The contour plot for the bimodal mixture distribution for the random effects
in (4.5.3).

Figure 4.5: The contour plot for the unimodal skewed mixture distribution for the random
effects in (4.5.4).
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4.5.2 Results

We generated 50 independent datasets from Model 1 in (4.5.1) for different random effects
distributions and measurement intervals. The means of the estimates, SD and 95% CIs
using the full likelihood approach are presented in Table 4.7. In this table, the 40%
censoring rate, the large ni case and the small ni case were considered. The estimates
when the random effects vector has a bimodal mixture distribution are presented in the
upper half and the estimates when the random effects vector has a unimodal skewed
mixture distribution are presented in the lower half.

In the upper half, we can see that when max i(ni) is large, the impact of misspecifying
the random effects distribution is very minor for all of the parameters. The estimates
for the survival parameters, λ, γ and α, are slightly different for both the large ni case
and the small ni case. When max i(ni) is large, the estimates for the survival parameters
are better and it is very close between the bimodal mixture random effects and Gausian
random effects.

In the other hand, the longitudinal paramters, β0, β1 and σε are affected when max i(ni)
is small. The bias and the accuracy of these parameters for the small ni case are greater
than in the large ni case, especially for the error measurement σε. In particular, the bias
and variation for the measurement error increase when max i(ni) decreases. In the lower
half, the results are the same with the random effects having a unimodal skewed mixture
distribution for the the large ni case and the small ni case. These results again show that
when max i(ni) is large the joint modelling can reduce the impact of the misspecifying
random effects distribution.
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Table 4.7: Summary statistics for parameter estimation of the simulated data of the
model in (4.5.1) for 40% censoring rate and different measurement intervals. The upper
half contains the results for the random effects having a bimodal mixture distribution,
whereas the lower half contains the results for the random effects having a unimodal
skewed mixture distribution.

Bimodal mixture Every 1 year Every 4 years

Parameter True Mean SD 95% CI Mean SD 95% CI
λ 0.2 0.226 0.041 [0.164;0.326] 0.239 0.047 [0.164;0.327]
γ 0.5 0.488 0.114 [0.260;0.716] 0.460 0.119 [0.237;0.703]
α 0.05 0.035 0.019 [0.001;0.072] 0.035 0.014 [0.002;0.073]
β0 5 5.074 0.158 [4.761;5.389] 4.896 0.291 [4.762;5.416]
β1 2 1.847 0.201 [1.564;2.144] 1.757 0.278 [1.546;2.298]
σ 2 2.171 0.210 [1.885;2.261] 2.232 0.408 [1.964;2.371]

Unimodal skewed mixture Every 1 year Every 4 years

Parameter True Mean SD 95% CI Mean SD 95% CI
λ 0.2 0.221 0.039 [0.162;0.312] 0.242 0.042 [0.170;0.331]
γ 0.5 0.486 0.111 [0.241;0.694] 0.467 0.113 [0.260;0.711]
α 0.05 0.036 0.016 [0.005;0.066] 0.031 0.018 [0.002;0.070]
β0 5 5.009 0.159 [4.775;5.244] 5.092 0.160 [4.771;5.409]
β1 2 1.886 0.201 [1.534;2.110] 1.816 0.243 [1.501;2.269]
σ 2 2.093 0.264 [1.858;2.184] 2.231 0.471 [1.812;2.448]

4.6 Discussion

In this chapter, a modified two-stage approach has been proposed to estimate parameters
in the joint models for longitudinal and survival data. This approach can reduce the
computational challenges by avoiding the calculation for multi-integrations in the full
likelihood approach. This allows the application of extended longitudinal submodels with
a high dimension of random effects in joint models to handle non-linear longitudinal
data. Moreover, in our proposed two-stage model, survival parameters are estimated by
maximizing the approximation of the fully log-likelihood function of joint models. By
doing this, the proposed two-stage approach improves on weaknesses of the existing two-
stage approach and reduces biases. In addition, in simulation studies and a case study,
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this approach performs very well and is comparable to the full likelihood approach.

Simulation study 1 shows that the proposed two-stage approach has reduced the biases
and improved the accuracy quite significantly for the parameters in the survival submodels
compared to the ordinary two-stage approach. This simulation study also shows compa-
rable results with the proposed two-stage approach and the full likelihood approach for
the bias and the accuracy respectively. Note that when the dimension of random effects
increases, the running time for the two-stage approach is noticeably less than for the full
likelihood approach. This is because of the avoidance of the multi-integral calculation
by using the LMEs and BLUPs. Moreover, the results also show that the proposed two-
stage approach is reliable for estimating the survival parameters when we change the time
interval of measurements.

Simulation study 2 and the case study show that the proposed two-stage approach can
allow the application of the extended joint models with a high dimension of random
effects. The better the longitudinal submodel that can be fitted, the better the model
can predict the survival functions and subject-specific trajectories. In addition to these
findings, the effect of misspecification of the random effects distribution can be reduced
when the number of measurements from the longitudinal process increases.

There are at least three limitations to this approach. Firstly, the prediction of random
effects using BLUPs depends critically on the assumption of normally distributed random
effects and error terms. Secondly, the uncertainty in the longitudinal submodel estima-
tions does not affect the estimation of the survival submodel. In addition, the highly
informative dropout can cause biases on estimating parameters in the longitudinal sub-
model. To overcome these problems, transformations for longitudinal covariates need to
be considered to satisfy the normal assumption. The variability of the estimates from the
first stage can properly be taken into account by using the Monte Carlo method proposed
in Chapter 5.
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Chapter 5

Parameter Estimation for The Penal-
ized Spline Joint Models: A Bayesian
Approach

5.1 Introduction

In classical analysis, estimates are usually based on the likelihood function. To apply
the full likelihood approach for estimating parameters in the joint models as presented
in Chapter 3, we have to deal with multi-integrals with respect to the random effects.
This can lead to computational complexity and unstable estimations (Rizopoulos, 2012).
In this chapter, we will apply a fully Bayesian approach for the penalized spline joint
models. In this approach, the asymptotic approximations for the integral solution are not
needed (Ibrahim et al., 2005; Geman and Geman, 1984; Gelman et al., 1995). Instead,
parameters in the joint models are sampled through target posterior distributions. By
doing this, the uncertainties of parameters can be fully inferred through their marginal
posterior densities. In addition, this approach can make good use of historical data
embedded in their priors (Gould et al., 2014).

Recently, there are different Bayesian statistical methods for joint models. Faucett and
Thomas (1996); Wang and Taylor (2001) implemented a Bayesian method for the joint
model having a mixed-effects longitudinal submodel and piecewise-constant hazard rate
at baseline. Faucett and Thomas (1996) introduced non-informative priors for all the
parameters. In particular, improper uniform priors are specified for the fixed-effects and
random effects and improper priors are specified for the remainder of the parameters.
The estimates for all unknown parameters are obtained using Gibbs Sampling. Wang
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and Taylor (2001) also applied a random effects model with univariate distribution and
include an integrated Ornstein-Uhlenbeck longitudinal submodel. This method adds more
flexibility to the subject-specific curves, but it can cause an increase in the number of
parameters (Tsiatis and Davidian, 2004; Gould et al., 2014).

To relax the assumption for the random effects in (2.3.3), Brown and Ibrahim (2003)
introduced a mixture of Dirichlet process models (DPM) for the joint models. They
used a quadrature form for the longitudinal submodel. However, to provide a good fit
to the non-linear longitudinal data, Brown et al. (2005) and Rizopoulos (2014) applied a
Bayesian approach to joint models having a B-spline longitudinal submodel. Brown et al.
(2005) chose the proper prior distributions that conjugate to the likelihood. Then, the GS
algorithm is applied to obtain samples from the posterior distribution. Rizopoulos (2014)
proposed a Bayesian approach for the joint models having a generalized linear mixed
effects model. The MH and slice sampling algorithms were used to sample parameters.

In this chapter, a fully Bayesian approach is proposed for the penalized spline joint mod-
els introduced in Chapter 3. Firstly, we take full advantage of the ordinary two-stage
approach in order to define the prior distributions for the parameters in the joint model
(Rizopoulos, 2014). To implement a Bayesian approach, the joint posterior distribution
of the joint model is derived using the proposed prior distributions. A set of MCMC algo-
rithms is then proposed to sample parameters from the conditional posterior distributions
(Metropolis et al., 1953; Hastings, 1970; Geman and Geman, 1984). In particular, the
random walk MH algorithms are applied to sample for survival coefficients and longitu-
dinal coefficients and independent MH algorithms are implemented for sampling random
effects. The GS algorithms are used to sample for the measurement errors and the random
effects precision matrix. Before presenting the statistical inferences, we also implement
the Gelman and Rubin and the Geweke diagnostics to check for the convergence of the
chains.

The prior distributions that are chosen for unknown parameters can have an impact on
inferences (Gelman et al., 1995; Wakefield, 2013). Therefore, a prior sensitivity analysis
needs to be conducted to validate statistical inferences using Bayesian approach. In the
joint modelling framework, the hazard rate at baseline is an unspecified part. There is
minimal information for parameters in the hazard function at baseline. In addition, the
association parameter between longitudinal data and survival data is the most important
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parameter to evaluate the impact of subject specific information on its survival time. In
this thesis, we conduct a prior sensitivity analysis on these key parameters.

In summary, the original contributions in this chapter include:

(i) The detail derivation of joint and conditional posterior distributions of the parameters
in the proposed model in Section 5.3;

(ii) The MCMC main algorithm in Section 5.4 which consists of the random walk MH
algorithms for survival coefficients and longitudinal coefficients; the independent MH
algorithms for sampling random effects and the GS algorithms for the measurement errors
and the random effects precision matrix;

(iii) Extensive simulation studies in Section 5.5 to validate the proposed MCMC algo-
rithms in (ii);

(iv) A prior sensitivity analysis for the parameter of hazard at baseline and the association
parameter between longitudinal data and survival data of the proposed model in Section
5.6.

This chapter is organized as follows. Section 5.2 describes the penalized spline joint model
through a three-stage hierarchical model. In this section, two specific joint models are
introduced. Prior distributions, likelihood functions and the joint posterior distribution
are detailed in Sections 5.3. In Section 5.4, a set of MCMC algorithms is introduced. We
then apply the proposed algorithms to extensive simulations studies in Section 5.5. The
prior sensitivity analysis is presented in Section 5.6 followed by a case study in Section
5.7. The conclusion is discussed in Section 5.8.

5.2 A three-stage hierarchical for the penalized spline

joint models

First recall the notation and models introduced in Section 3.2. There are n subjects in
the longitudinal data and survival data. The observed failure time for the ith subject
is denoted as Ti = min(T ∗i , Ci). Here, T ∗i is the true survival time and Ci denotes the
censoring time for the ith subject (i = 1, ..., n). An event indicator is defined as δi =
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I(T ∗i ≤ Ci) in survival data. The longitudinal data consists of the measurements of the
ith subject yij = {yi(tij), j = 1, ..., ni} taken at time points tij. Therefore, the observed
data for the joint models consists of a count of the number of (Ti, δi, yi), i = 1, .., n.

Using the penalized spline joint models in Chapter 3, the joint model for longitudinal
data and time to event data is postulated from a proportional hazard model of the form

hi(t | Mi(t),wi) = lim
dt→0

Pr {t ≤ T ∗i < t+ dt | T ∗i ≥ t,Mi(t),wi} /dt

= h0(t) exp
{
γTwi + αmi(t)

}
.

(5.2.1)

Here, h0(t) is the hazard at baseline and wi is a vector of baseline covariates. Further-
more,Mi(t) = {mi(s), 0 ≤ s < t} denotes the history of the true unobserved longitudinal
process up to time t. The longitudinal submodel can be written as

yi(t) = mi(t) + εi(t), εi(t) ∼ N (0, σ2
ε)

mi(t) = XT
i (t)β +XT

i (t)vi +ZT
i (t)ui

vi ∼MVN (0,∑), ui ∼MVN (0,D) .

(5.2.2)

Here, we set bi = (vTi ,uTi )T which is the random effects vector of the joint model. We
assume that the random effects vector follows a normal distribution with mean 0 and
covariance matrix G, bi ∼MVN (0,G). Here,

G = Cov(bi) =
 ∑ 0

0 D

 .
Given the random effects, the longitudinal process is assumed to be independent with
the event time process. Moreover, the longitudinal responses of each subject are assumed
independent. In particular, the joint likelihood function of observed survival times and
observed longitudinal outcomes is shown to be

p(Ti, δi,yi|bi,θ) = p(Ti, δi|bi,θ)p(yi|bi,θ) ,

p(yi|bi,θ) =
ni∏
j=1
p(yij|bi,θ) ,

(5.2.3)

where θ = (θTt ,θTy ,θTb )T denotes the full parameter vector with θt = (γT , α,θTh0)T de-
noting the parameter vector for the survival outcomes. Furthermore, θy = (βT , σ2

ε)T is
the parameter vector for longitudinal outcomes and θb = G is the vector of the variance
matrix of random effects.
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It is important to take into account the domain of the full parameter vector in order to
determine prior and posterior distributions in a Bayesian setting. The elements of the
parameter vector of the hazard at baseline, θh0 , are positive real values. In addition, the
regression coefficients in the survival submodel, γ, α and the regression coefficients in the
longitudinal submodel, β are real values. The variance for the error measurement, σ2

ε , is
always positive while the variance matrix of random effects, G, has positive values on the
main diagonal and real numbers elsewhere.

The function h0(.) is the unknown part in the joint model. Thus, to specify the model
in (5.2.1), we need to determine the form of the function h0(.). In this chapter, standard
options with known parametric distributions are used for the risk function at baseline (?).
The exponential and Gompertz distributions are chosen.

There are two models used for the simulation study in this chapter. The first joint
model (Model 1) is the linear joint model having the exponential baseline hazard function.
The second model (Model 2) is the penalized spline joint model having the Gompert
distribution at baseline. In particular, Model 1 is of the form

hi(t | Mi(t),wi) = h0(t) exp
{
γTwi + αmi(t)

}
= λ exp

{
γTwi + αmi(t)

}
,

(5.2.4)

where
yi(t) = mi(t) + εi(t)

mi(t) = β0 + β1t+ ui0 + ui1t .
(5.2.5)

Here, the random effects vector bi = (ui0, ui1)T is assumed to have normal distribution

with mean 0 and variance matrix G =
 G11 G12

G21 G22

.
Model 2 has the form

hi(t | Mi(t),wi) = h0(t) exp
{
γTwi + αmi(t)

}
= λ1 exp(λ2t) exp

{
γTwi + αmi(t)

}
,

(5.2.6)

where
yi(t) = mi(t) + εi(t)

mi(t) = β0 + β1t+ ui0 + ui1t+
K∑
k=2

uik(t−Kk)+ .
(5.2.7)
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Here, the random effects vector bi = (ui0, ui1, ui2, ..., uiK)T is assumed to have a nor-
mal distribution with mean 0 and variance matrix G = Diag(G00, G11, G22, ..., GKK).
K2, K3,..., KK are the fitted knots.

FollowingWakefield (2013), the models can be rewritten in a hierarchical setting as follows:

Likelihood:
p(Ti, δi,yi|θ, bi) , i = 1, .., n .

Random effects prior:
p(bi|G) , i = 1, .., n .

Hyperprior:
p(θ) = p(θTt ,θTy ,θTb )T .

5.3 Bayesian analysis

5.3.1 Prior distributions

Recall the full parameter vector of the joint model θ = (θTt ,θTy ,θTb )T . Following Wakefield
(2013), Robert and Casella (2004) and Rizopoulos (2014), we assume the independence
of the priors. The joint prior distribution, p(θ), can be written as

p(θ) = p(θh0 ,γ, α,β, σ
2
ε ,G)

= p(θh0)p(γ, α)p(β, σ2
ε)p(G)

= p(θh0)p(γ)p(α)p(β)p(σ2
ε)p(G) .

(5.3.1)

The individual prior distributions for survival part have the form

p(θh0) ∼MVN (µθh0
,
∑
θh0

) ,

p(γ) ∼MVN (µγ ,
∑
γ) ,

p(α) ∼ UVN (µα, σ2
α) .

(5.3.2)

The individual prior distributions for longitudinal part have the form

p(σ2
ε) ∼ IG(a0, b0) ,

p(β) ∼MVN (µβ,
∑
β) .

(5.3.3)
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Here, IG(a0, b0) is the inverse Gamma distribution with shape parameter a0 and rate
parameter b0. In addition, the prior specification for G has two options according to
Wakefield (2013). If G is a diagonal matrix with elements σ2

k , k = 1, ..., q, the prior
distribution for G has the form

p(σ2
1, ..., σ

2
q ) =

q∏
k=1
IG(ak, bk) . (5.3.4)

If G is a non-diagonal matrix, the inverse Wishart distribution is the conjugate prior for
G. In particular,

p(G−1) ∼ IWq+1(r,R−1) . (5.3.5)

Here, IWq+1(r,R−1) is the inverse Wishart distribution with scale matrixR and r degrees
of freedom. (q + 1) is the dimension of random effects.

5.3.2 Likelihood function

According to Section 3.3, the joint likelihood function for the penalized spline joint model
has the form of

p(T, δ,y|θ, b) =
n∏
i=1
p(Ti, δi|bi,θ)p(yi|bi,θ)

=
n∏
i=1

ni∏
j=1
p(Ti, δi|bi;θ)p(yij|bi;θ)

=
n∏
i=1

[
h0(Ti) exp

{
γTwi + αmi(t)

}]δi exp

−
Tiˆ

0

h0(s)exp
{
γTwi + αmi(s)ds

}
×

n∏
i=1

ni∏
j=1

1
(2πσ2

ε)
1
2

exp
{
−(yi(tij)−mi(tij))2

2σ2
ε

}
.

(5.3.6)
Here, we define the likelihood functions for Model 1 and Model 2 for later use in the
simulation study.

For Model 1, the conditional density function for the survival part has the form

p(Ti, δi | bi;θt,β) = h(Ti | Mi(Ti),wi;θt,β)δiS(Ti | Mi(Ti),wi;θt,β)

=
[
h0(Ti) exp

{
γTwi + αmi(t)

}]δi

× exp

−
Tiˆ

0

h0(s)exp
{
γTwi + αmi(s)ds

} ,
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where
mi(t) = β0 + β1t+ ui0 + ui1t .

The density function for the longitudinal part with the given random effects is

p(yi|bi;θy) =
ni∏
j

p {yi(tij)|bi;θy}

=
ni∏
j=1

1
(2πσ2

ε)
1
2

exp
{
−(yi(tij)− (β0 + β1tij + ui0 + ui1tij))2

2σ2
ε

}
.

For Model 2, the conditional density function for the survival part has the form of

p(Ti, δi | bi;θt,β) = h(Ti | Mi(Ti),wi;θt,β)δiS(Ti | Mi(Ti),wi;θt,β)

=
[
h0(Ti) exp

{
γTwi + αmi(t)

}]δi

× exp

−
Tiˆ

0

h0(s)exp
{
γTwi + αmi(s)ds

} ,
where

mi(t) = β0 + β1t+ ui0 + ui1t+
K∑
k=2

uik(t−Kk)+ .

The density function for the longitudinal part with the given random effects is

p(yi|bi;θy) =
ni∏
j

p {yi(tij)|bi;θy}

=
ni∏
j=1

1
(2πσ2

ε)
1
2

exp


−

(
yi(tij)−

(
β0 + β1tij + ui0 + ui1t+

K∑
k=2

uik(tij −Kk)+

))2

2σ2
ε


.

5.3.3 Posterior distribution for the parameters

Using the prior distribution in (5.3.1) and the likelihood function in (5.3.6), the joint
posterior distribution for the parameters (θ, b) is obtained using

p(θ, b|T, δ,y) ∝ p(T, δ,y|θ, b)p(θ, b)

∝
n∏
i=1
p(Ti, δi|bi,θ)p(yi|bi,θ)p(bi|θ)p(θ)

∝
n∏
i=1

ni∏
j=1
p(Ti, δi|bi,θ)p(yijbi,θ)p(bi|θ)p(θh0)p(γ)p(α)p(β)p(σ2

ε)p(D) .
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Applying (5.3.2), (5.3.3) and (5.3.4), the joint posterior distribution for (θ, b) in Model 1
has the form

p(θ, b|T, δ,y) ∝
n∏
i=1

[
h0(Ti) exp

{
γTwi + αmi(t)

}]δi

× exp

−
Tiˆ

0

h0(s)exp
{
γTwi + αmi(s)ds

}
×

n∏
i=1

ni∏
j=1

1
(2πσ2

ε)
1
2

exp

−
(
yi(tij)−XT

i (tij)β −XT
i (tij)vi −ZT

i (tij)ui
)2

2σ2
ε


× |G|

−1
2 exp

{
−1

2(bi)TG(bi)
} ∣∣∣∑θh0

∣∣∣−1
2 exp

{
−1

2(θh0 − µθh0
)T∑−1

θh0
(θh0 − µθh0

)
}

×
∣∣∣∑γ

∣∣∣−1
2 exp

{
−1

2(γ − µγ)T∑−1
λ (γ − µγ)

}
(5.3.7)

× (2πσα)− 1
2 exp

{
− 1

2σ2
α

(α− µα)2
}
×
∣∣∣∑β

∣∣∣−1
2 exp

{
−1

2(β − µβ)T∑−1
β (β − µβ)

}

× ba0
0

Γ(a0)
(
σ2
ε

)−a0−1
exp(−b0

σ2
ε

)× |G|(r−q)/2 exp
[
−1

2tr(GR)
]
.

In a similar way, using (5.3.2), (5.3.3) and (5.3.5), the joint posterior distribution for (θ, b)
in Model 2 has the form

p(θ, b|T, δ,y) ∝
n∏
i=1

[
h0(Ti) exp

{
γTwi + αmi(t)

}]δi

×
n∏
i=1

exp

−
Tiˆ

0

h0(s)exp
{
γTwi + αmi(s)ds

}
×

n∏
i=1

ni∏
j=1

1
(2πσ2

ε)
1
2

exp

−
(
yi(tij)−XT

i (tij)β −XT
i (tij)vi −ZT

i (tij)ui
)2

2σ2
ε


× |G|

−1
2 exp

{
−1

2(bi)TG(bi)
} ∣∣∣∑θh0

∣∣∣−1
2 exp

{
−1

2(θh0 − µθh0
)T∑−1

θh0
(θh0 − µθh0

)
}

×
∣∣∣∑γ

∣∣∣−1
2 exp

{
−1

2(γ − µγ)T∑−1
λ (γ − µγ)

}
× (2πσα)− 1

2 exp
{
− 1

2σ2
α

(α− µα)2
} ∣∣∣∑β

∣∣∣−1
2 exp

{
−1

2(β − µβ)T∑−1
β (β − µβ)

}

× ba0
0

Γ(a0)
(
σ2
ε

)−a0−1
exp(−b0

σ2
ε

)×
q∏

k=1
τk
ak−1 exp(−bkτk) ,

(5.3.8)
where τk = 1/σ2

k for k = 1, ..., q.

The joint posterior distributions for (θ, b) in (5.3.7) and (5.3.8) are not in the standard
forms. Therefore, it is difficult to sample from the joint posterior distribution directly.
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In order to sample each parameter from the joint model, we need to define the target
distribution for each of the parameters using their conditional posterior distributions.
Based on the joint posterior distribution in (5.3.7) and (5.3.8), the conditional posterior
distribution for each of the parameters in the joint models is derived as follows.

Using (5.3.7), the conditional posterior distribution for the parameters in the baseline
hazard function, θh0 , has the form

p(θh0|θ(−θh0), b, T, δ,y) ∝
n∏
i=1

[
h0(Ti) exp

{
γTwi + αmi(t)

}]δi

×
n∏
i=1

exp

−
Tiˆ

0

h0(s) exp
{
γTwi + αmi(s)ds

}
∣∣∣∑θh0

∣∣∣−1
2 exp

{
−1

2(θh0 − µθh0
)T∑−1

θh0
(θh0 − µθh0

)
}
,

(5.3.9)

where the notation θ(−θi) means all of the parameters in the joint model except for θi.

Using (5.3.7), the conditional posterior distribution for the regression coefficients, (γ, α),
in the survival submodel has the form

p(γ, α|θ(−γ,−α), b, T, δ,y) ∝
n∏
i=1

exp
{
γTwi + αmi(t)

}δi exp

−
Tiˆ

0

exp
{
γTwi + αmi(s)ds

}
×
∣∣∣∑γ

∣∣∣−1
2 exp

{
−1

2(γ − µγ)T∑−1
λ (γ − µγ)

}
× (2πσα)− 1

2 exp
{
− 1

2σ2
α

(α− µα)2
}
.

(5.3.10)
In a similar way, the conditional posterior distribution for the regression coefficients β in
the linear mixed effects submodel has the form

p(β|θ(−β), b, T, δ,y) ∝
n∏
i=1

exp
{
γTwi + αmi(t)

}δi exp

−
Tiˆ

0

exp
{
γTwi + αmi(s)ds

}
×

n∏
i=1

ni∏
j=1

exp

−
(
yi(tij)−XT

i (tij)β −XT
i (tij)vi −ZT

i (tij)ui
)2

2σ2
ε


×
∣∣∣∑β

∣∣∣−1
2 exp

{
−1

2(β − µβ)T∑−1
β (β − µβ)

}
.

(5.3.11)
The prior distribution of σ2

ε is an inverse gamma distribution with a scale of a0 and a
shape of b0 as in (5.3.3), which is the conjugate prior distribution. In particular, by setting
τ = 1/σ2

ε and N =
n∑
i=1
ni, the posterior distribution of τ is proportional to
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p(τ |θ(−τ), b, T, δ,y) ∝
n∏
i=1

ni∏
j=1

1
σε

exp

−
(
yi(tij)−XT

i (tij)β −XT
i (tij)vi −ZT

i (tij)ui
)2

2σ2
ε


× τa0−1 exp(−b0τ)

∝ τN/2+a0−1 exp(−b0τ)

× exp

−
τ
n∑
i=1

ni∑
j=1

(
yi(tij)−XT

i (tij)β −XT
i (tij)vi −ZT

i (tij)ui
)2

2

 .

(5.3.12)
The result is that the conditional posterior distribution of τ = 1/σ2

ε is distributed as
G(α∗, β∗) where

α∗ = a0 + N

2 ,

β∗ = b0 +

n∑
i=1

ni∑
j=1

(
yi(tij)−XT

i (tij)β −XT
i (tij)vi −ZT

i (tij)ui
)2

2 .

The conditional posterior distribution for random effects bi in the linear mixed effects
submodel has the form

p(bi|θ(−bi), T, δ,y) ∝ exp
{
γTwi + αmi(t)

}δi exp

−
Tiˆ

0

exp
{
γTwi + αmi(s)ds

}

×
ni∏
j=1

1
(2πσ2

ε)
1
2

exp

−
(
yi(tij)−XT

i (tij)β −
[
XT

i (tij) ZT
i (tij)

]
bi
)2

2σ2
ε


× |G|

−1
2 exp

{
−1

2(bi)TG(bi)
}
.

(5.3.13)
There are two options for choosing the conjugate prior distribution of variance matrix G.
These are when G is a diagonal matrix and when G is a non-diagonal matrix. Therefore,
we propose two conditional posterior distributions for matrix G .

In the case when G is a non-diagonal matrix, the conjugate prior distribution for G is a
Wishart distribution as in (5.3.5). In particular, the distribution of G−1 has the form

p(G−1) = c−1|G−1|(r−q)/2 exp
[
−1

2tr(G
−1R)

]
, (5.3.14)

where
c = 2r(q+1)/2Γq(r/2)|R−1|r/2,
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with
Γq(r/2) = π(q−1)q/4

q∏
j=1

Γ[(r + 1− j)/2] .

Using (5.3.14), the conditional posterior distribution for G−1 is proportional to

p(G−1|θ(−G−1), b, T, δ,y) ∝
n∏
i=1
p(bi|G−1)p(G−1)

∝
n∏
i=1
|G|

−1
2 exp(−1

2b
T
i G

−1bi)|G−1|(r−q)/2 exp
[
−1

2tr(G
−1R)

]

= |G−1|(n+r−q)/2 exp
{
−1

2tr
(
G−1

[
n∑
i=1

(bibTi ) +R
])}

.

(5.3.15)
Moreover,

bTi G
−1bi = tr[bTi G−1bi] = tr[G−1bib

T
i ]. (5.3.16)

From (5.3.15) and (5.3.16), we have

p(G−1|θ(−G−1), b, T, δ,y) ∝ |G−1|(n+r−q)/2 exp
{
−1

2tr
(
G−1

[
n∑
i=1

(bibTi ) +R
])}

.

(5.3.17)
The conditional posterior distribution for G−1 has the standard form

G−1|θ(−G−1), b, T, δ,y ∼ Wq

n+ r,

(
R+

n∑
i=1

(bibTi )
)−1

 . (5.3.18)

In the second case when G is a diagonal matrix with elements σ2
k, k = 1, ..., q, the conju-

gate prior distribution for G has the form

p(σ2
1, ..., σ

2
q ) =

q∏
k=1
IG(ak, bk) .

Set τk = 1/σ2
k for k = 1, ..., q. The conditional posterior distribution for G−1 has the

standard form

p(G−1|θ(−G−1), b, T, δ,y) = p
(
τ1, ..., τq|θ(−τ1,...,−τq), T, δ,y

)
∝

n∏
i=1
p(bi|G−1)

q∏
k=1

p(τk)

∝
n∏
i=1
|G|

−1
2 exp(−1

2b
T
i D

−1bi)
q∏

k=1
τk
ak−1 exp(−bkτk)

=
q∏

k=1
τk
n/2+ak−1 exp(−bkτk) exp

{
n∑

i=1
(− 1

2b
T
i biτk)

}

=
q∏

k=1
τk
n/2+ak−1 exp

{
−
(
bk + 1

2

n∑
i=1
bTi bi

)
τk

}
.

(5.3.19)
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Therefore,

τ1, ..., τq|θ(−τ1,...,−τq), T, δ,y ∼
q∏

k=1
G(a∗k, b∗k) ,

where
a∗k = ak + n

2 ,

b∗k = bk + 1
2

n∑
i=1
bTi bi .

In summary, we have four groups of parameter vectors having non-standard conditional
posterior distributions. They are the conditional posterior distributions for parameters
in the baseline hazard function, θh0 , the regression coefficients in the survival submodel,
(γ, α), the regression coefficients in the linear mixed effects submodel, β, and the random
effects in the linear mixed effects submodel, bi. We also have two groups of parameter
vectors having standard conditional posterior distributions. They are the conditional pos-
terior distributions for the parameters of error terms, σ2

ε , and variance matrix of random
effects, G. Henceforth, to sample for parameters in the joint model in (5.2.1), we imple-
ment the MH algorithm for the four groups of parameters vectors having non-standard
conditional posterior distributions and the GS algorithm for the two groups of the pa-
rameter vectors having standard conditional posterior distributions.

5.4 The main algorithm

In order to simulate the parameters of the joint model, a set of MCMC algorithms is im-
plemented in the proposed main algorithm. In particular, the GS algorithms are employed
using the standard conditional posterior distributions from Section 5.3.3. For parameters
having a non-standard conditional posterior distribution, we use MH algorithms. The
main algorithm for the penalized spline joint model is described. Some sub-algorithms
will be detailed separately.

From the joint models in (5.2.4) and (5.2.6), the hazard rate at baseline directly and
significantly affects the hazard rate of each subject. Moreover, the baseline risk function
h0(.) is unspecified. In order to choose noninformative priors for the parameters of the
hazard rate at baseline, independent gamma distributions are implemented (Ibrahim et al.,
2005; Brown et al., 2005). However, for these chosen prior distributions, 400,000 iterations
were required to achieve convergence with a burning-in of 200,000 iterations. To reduce
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Main Algorithm

(1) Initialise θ(0)
t = (θ(0)

h0 ,γ
(0), α(0))T , θ(0)

y = (β(0), σ2
ε)T ,θ

(0)
b = G(0) and b(0)

either randomly or deterministically
(2) for t = 1 to T do

Given the current parameters of θ(t−1)
t ,θ(t−1)

y ,θ(t−1)
b and b(t−1)

(2.1) Simulate the parameters for survival part:
(i) MHθh0

step. Simulate the parameter vector, θh0 , in the baseline hazard
function using (5.3.9):

(θ(t)
h0 ) ∼ p(θh0|γ(t−1), α(t−1),β(t−i), σ2(t−1)

ε ,G(t−1), b(t−1), T, δ,y)
(ii)MHγ,α step. Simulate the parameter vector of the regression coefficients,

(γ, α), in the survival submodel using (5.3.10):
(γ, α)(t) ∼ p(γ, α|θ(t)

h0 ,β
(t−i), σ2(t−1)

ε ,G(t−1), b(t−1), T, δ,y)
(2.2) Simulate the parameters for the longitudinal part:

(i) MHβ step. Simulate the parameter vector of the regression coefficients,
β, in the longitudinal submodel using (5.3.11):

(β(t)) ∼ p(β|θ(t)
h0 ,γ

(t), α(t), σ2(t−1)
ε ,G(t−1), b(t−1), T, δ,y)

(ii)GSσ2
ε
step. Simulate the variance of error measurement, σ2

ε , using (5.3.12):
(σ2(t)

ε ) ∼ p(σ2
ε |θ

(t)
h0 ,γ

(t), α(t),β(t),G(t−1), b(t−1), T, δ,y)
(2.3) Simulate the parameters for the random effects as follows

(i)MHb step. Simulate the random effects using (5.3.13):
(b(t)) ∼ p(b|θ(t)

h0 ,γ
(t), α(t),β(t),G(t−1), σ2(t)

ε , T, δ,y)
(ii) GSG step. Simulate the variance matrix of the random effects
using (5.3.18) or (5.3.19):

(G(t)) ∼ p(G|θ(t)
h0 ,γ

(t), α(t),β(t), σ2(t)
ε , b(t), T, δ,y)

(3) end for

the size of MCMC sampling and achieve a faster convergence, we take advantage of the
fitted model for longitudinal data using the linear mixed effects model and the fitted
model for survival data using the Cox model.

First, in R, we run the lme and coxph functions separately for longitudinal data and
survival data. The estimated values from these functions are used to define the parameters
of the empirical Bayes prior distributions. In particular, the prior distributions for the
parameters in h0(t) have normal distributions with mean and variance defined from coxph
function. In addition to this, from these estimated values from the linear mixed effects
model and survival model, we define the means for the normal prior distributions of the
regression coefficients of the survival submodel and longitudinal submodel. To ensure the
flexibility as flat priors, the variances for the normal prior distributions are set 100 times

102



5. A Bayesian approach

the estimated variances using the lme and coxph functions.

To support the main algorithm, the MH steps for the parameters of the baseline hazard
function, the regression coefficients in the survival submodel, the regression coefficients in
the longitudinal submodel and random effects will be presented in detail in the following
sections. In addition, the acceptance probabilities and the proposal distribution will also
be addressed in these sub-algorithms.

5.4.1 MHθh0
step

Because the hazard baseline is considered to be unspecified in the joint model, we apply
the two-stage approach to identify the prior distribution for the parameters. In particular,
we first run a single MH algorithm to simulate samples for θh0 using the estimated values
from the linear mixed effects model and Cox model to choose a weakly informative priors
for the parameters. The mean of the priors for the baseline hazard parameters are the
mean of the MCMC samples. The variance of the priors for the baseline hazard parameters
is set at 100 times the variance of the MCMC samples. The MH acceptance ratio for θh0

is then calculated as

rθh0
=
p(θ(prop)

h0 |θ(−θh0 ), b, T, δ, y)q(θ(curr)
h0 |θ(prop)

h0 )
p(θ(curr)

h0 |θ(−θh0 ), b, T, δ, y)q(θ(prop)
h0 |θ(curr)

h0 )
. (5.4.1)

Here, θ(prop)
h0 and θ

(curr)
h0 are the proposed and current values of θh0 respectively and

p(θh0|θ(−θh0 ), b, T, δ, y) is the conditional posterior distribution for θh0 as in (5.3.9). More-
over, q(θ(prop)

h0 |θ(curr)
h0 ) is the proposal density for the baseline hazard parameter vector,

θh0 . We employ a multivariate normal distribution centred at the current value of θh0as
the proposal density for the baseline hazard parameter vector. The proposal distribution
for θh0 has the form

q(θ(prop)
h0 |θ(curr)

h0 ) ∼MVN (θ(curr)
h0 ,4θh0

I) , (5.4.2)

where 4θh0
is a tuning parameter and I is an identity matrix. With this choice for the

proposal distribution, the algorithm becomes the random walk MH algorithm (Geman and
Geman, 1984; Gelman and Hill, 2007). As a result, the ratio for the proposal densities is
always one.
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In the MH algorithm, the acceptance rate is one of the factors to check for the convergence
of a chain (Gelman et al., 1995). If the acceptance rate is too high, this means that most
of the proposed values are accepted. This can lead to a wiggle trace plot for a chain and
can be time consuming sampling for the entire parameter space. In the other hand, if the
acceptance rate is too low, only a few of the proposed values are accepted. The sample
will stay at the same level or it has large jumps. This can affect the convergence of a
chain. Therefore, a tuning parameter, 4θh0

, is chosen so that the desirable acceptance
rate is between 20% and 50 %

Wakefield (2013); Robert and Casella (2004).

The MH acceptance ratio has the form

rθh0
=

n∏
i=1

[{
h0(Ti)|θ(prop)

h0

}
exp

{
γTwi + αmi(Ti)

}]δi

n∏
i=1

[{
h0(Ti)|θ(curr)

h0

}
exp {γTwi + αmi(Ti)}

]δi

×
n∏
i=1

exp

−
Tiˆ

0

{
h0(s)|θ(prop)

h0 − h0(s)|θ(curr)
h0

}
exp

{
γTwi + αmi(s)

}
ds


×

exp
{
−1

2(θ(prop)
h0 − µθh0

)T∑−1
θh0

(θ(prop)
h0 − µθh0

)
}

exp
{
−1

2(θ(curr)
h0 − µθh0

)T∑−1
θh0

(θ(curr)
h0 − µθh0

)
} .

(5.4.3)

The sub-algorithm for the parameters at the baseline hazard θh0 is outlined as follows:

MHθh0
step: The single MH for hazard rate at baseline

1. Given the current state
(
θ

(t−1)
h0 ,γ(t−1), α(t−1),β(t−i), σ2(t−1)

ε ,G(t−1), b(t−1)
)

2. Propose a new parameter vector,θ(prop)
h0 , from proposal distribution

as in (5.4.2)
3. Calculate the acceptance probability, rθh0

, using (5.4.3)
4. Simulate u ∼ U(0, 1):

i. If rθh0
> u, then set θ(t)

h0 = θ
(prop)
h0

ii. Else, set θ(t)
h0 = θ

(t−1)
h0

5.4.2 MH (γ,α) step

The MH acceptance ratio for the parameters (γ, α) has the form

r(γ,α) = p(γ(prop), α(prop)|θ(−γ,−α), b, T, δ, y)q(γ(curr)|γ(prop))q(α(curr)|α(prop))
p(γ(curr), α(curr)|θ(−γ,−α), b, T, δ, y)q(γ(prop)|γ(curr))q(α(prop)|α(curr)) . (5.4.4)
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Here, γ(prop) , α(prop), γ(curr) and α(curr) are the proposed and current values of the
parameter vector γ and α respectively. The notation p(γ, α|θ(−γ,−α), b) is the condi-
tional posterior distribution for γ and α as in (5.3.10). Moreover, q(γ(prop)|γ(curr)) and
q(α(prop)|α(curr)) are the proposal densities for the coefficient vector of the survival part.
The proposal distributions for the parameter vector are chosen as follows

q(γ(prop)|γ(curr)) ∼MVN (γ(curr),4γV̂ ) ,

q(α(prop)|α(curr)) ∼ UVN (α(curr),4α) ,
(5.4.5)

where V̂ is the asymptotic variance-covariance matrix of the parameter vector γ from the
Cox model, 4γ and 4α are the tuning parameters. Based on the conditional posterior
in (5.3.10) and the proposal distribution in (5.4.5), the MH acceptance ratio for γ and α
has the form

r(γ,α) =

n∏
i=1

[
exp

{
(γ|γ(prop))wi + α(prop)mi(Ti)

}]δi

n∏
i=1

[exp {(γ|γ(curr))wi + α(curr)mi(Ti)}]δi

×

n∏
i=1

exp
(
−
Tí

0
exp

{
(γ|γ(prop))wi + α(prop)mi(s)ds

})
n∏
i=1

exp
(
−
Tí

0
exp {(γ|γ(curr))wi + α(curr)mi(s)ds}

)

×
exp

{
−1

2(γ(prop) − µγ)T∑−1
λ (γ(prop) − µγ)

}
exp

{
−1

2(γ(curr) − µγ)T∑−1
λ (γ(curr) − µγ)

}
× exp

{
−(αprop − µα)2

2σ2
α

+ (αcurr − µα)2

2σ2
α

}
.

(5.4.6)

The sub-algorithm for the parameters (γ, α) is now detailed as follows.

MH(γ,α): The single MH samplers for survival coefficients

1. Given the current state
(
θ

(t)
h0 ,γ

(t−1), α(t−1),β(t−1), σ2(t−1)
ε ,G(t−1), b(t−1)

)
2. Propose new values for the vector γ(prop) from proposal distribution

as in (5.4.5)
3. Propose new values for the vector α(prop) from proposal distribution

as in (5.4.5)
4. Calculate the acceptance probability, r(γ,α), using (5.4.6)
5. Simulate u ∼ U(0, 1):

i. If r(γ,α) > u, then set (γ(t), α(t)) = (γ(prop), α(prop))
ii. Else, set (γ(t), α(t)) = (γ(t−1), α(t−1))
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5.4.3 MHβ step

In a similar way, the MH acceptance ratio for the parameter vector β has the form

rβ = p(β(prop)|θ(−β), b, T, δ, y)q(β(curr)|β(prop))
p(β(curr)|θ−βi

, b, T, δ, y)q(β(prop)|β(curr))
. (5.4.7)

Here, β(prop) and β(curr) are the proposed and current values of the parameter vector β
respectively. The notation p(β|θ(−β), b, T, δ, y) is the conditional posterior distribution
for β as in (5.3.11). The proposal density for the coefficient vector of the longitudinal
part, q(β(prop)|β(curr)) is chosen as a multivariate normal distribution

q(β(prop)|β(curr)) ∼MVN (β(curr),4βŴ ) , (5.4.8)

where Ŵ is the asymptotic variance-covariance matrix of the parameter vector γ from
the linear mixed effects model and 4β is the tuning parameter. Based on the conditional
posterior in (5.3.11) and the proposal distribution in (5.4.8), the MH acceptance ratio for
the parameter vector β has the form

rβ =

n∏
i=1

[
exp

{
γTwi + α

(
mi(Ti)|β(prop)

)}]δi

n∏
i=1

[
exp

{
γTwi + α

(
mi(Ti)|β(curr)

)}]δi

×

n∏
i=1

exp
(
−
Tí

0
exp

{
γTwi + α

(
mi(s)|β(prop)

)
ds
})

n∏
i=1

exp
(
−
Tí

0
exp

{
γTwi + α

(
mi(s)|β(curr)

)
ds
})

×

n∏
i=1

ni∏
j=1

exp
{
−
(
yi(tij)−XT

i (tij)β(prop) −XT
i (tij)vi −ZT

i (tij)ui
)2
/2σ2

ε

}
n∏
i=1

ni∏
j=1

exp
{
−
(
yi(tij)−XT

i (tij)β(curr) −XT
i (tij)vi −ZT

i (tij)ui
)2
/2σ2

ε

}

×
exp

{
−(β(prop) − µβ)T∑−1

β (β(prop) − µβ)/2
}

exp
{
−(β(curr) − µβ)T∑−1

β (β(curr) − µβ)/2
} .

(5.4.9)

This step is summarized as follows.
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MHβ step: The single MH for longitudinal coefficients

1. Given the current state
(
θ

(t)
h0 ,γ

(t), α(t),β(t−1), σ2(t−1)
ε ,G(t−1), b(t−1)

)
2. Propose new values for the vector β(prop) from proposal distribution

as in (5.4.8)
3. Calculate the acceptance probability, rβ, using (5.4.9)
4. Simulate u ∼ U(0, 1):

i. If rβ > u, then set β(t) = β(prop)

ii. Else, set β(t) = β(t−1)

5.4.4 GSσ2
ε
and GSG steps

For the error parameter, σ2
ε , and the random effects matrix G, GS algorithms are used

to simulate these parameters. In particular, suppose that the current parameter vector is(
θ

(t)
h0 ,γ

(t), α(t),β(t), σ2(t−1)
ε ,G(t−1), b(t−1)

)
. We generate σ2(t)

ε directly from inverse gamma
distribution in (5.3.12).

σ2(t)
ε ∼ IG(α∗, β∗) ,

where

α∗ = a0 + N

2 ,

β∗ = b0 +

n∑
i=1

ni∑
j=1

(
yi(tij)−XT

i (tij)β(t) −XT
i (tij)v(t−1)

i −ZT
i (tij)u(t−1)

i

)2

2 .

Here, b(t−1) = (v(t−1)T
i ,u

(t−1)T
i )T and N =

n∑
i
ni.

For the random effects matrix, G, there are two cases. When G is a non-diagonal matrix,
we simulate G(t) from inverse Wishart distribution in (5.3.18). In particular,

G(t) ∼ IW q

n+ r,

(
R +

n∑
i=1

(b(t−1)
i b

(t−1)T
i )

)−1
 .

When the random effects matrix G = Diag(σ2
1, ..., σ

2
q ) is diagonal, we simulate G(t) from

the inverse gamma distribution as in (5.3.19). In particular,

(σ(t)2
1 , ..., σ(t)2

q ) ∼
q∏

k=1
IG(a∗k, b∗k) ,
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where
a∗k = ak + n

2 ,

b∗k = bk + 1
2

n∑
i=1
b

(t−1)T
i b

(t−1)
i .

5.4.5 MHb step

The MH acceptance ratio for the random effects b has the form

rb = p(b(prop)|θ, T, δ, y)q(b(curr)|b(prop))
p(b(curr)|θ, T, δ, y)q(b(prop)|b(curr))

. (5.4.10)

Here, b(prop) and b(curr) are the proposed and current values of the parameter vector of the
random effects b respectively. The notation p(T, δ,y|.) is the joint likelihood function and
p(b|θ, T, δ, y) is the conditional posterior distribution for b as in (5.3.13). The proposal
density for the coefficient vector of the longitudinal part, q(b(prop)|b(curr)) , chosen from
the independent MH (Rizopoulos, 2014) has the form

q(b(prop)|b(curr)) ∼MVN (0,4bQ̂) , (5.4.11)

where Q̂ is the asymptotic variance-covariance matrix of random effects b from the linear
mixed effects model, and 4b is the tuning parameter. Based on the conditional posterior
in (5.3.13) and the proposal distribution in (5.4.11), the MH acceptance ratio for the
parameter vector b has the form

rb =

n∏
i=1

[
exp

{
γTwi + α

(
mi(Ti)|b(prop)

i

)}]δi

n∏
i=1

[
exp

{
γTwi + α

(
mi(Ti)|b(curr)

i

)}]δi

×

n∏
i=1

exp
(
−
Tí

0
h0(t) exp

{
γTwi + α

(
mi(s)|b(prop)

i

)
ds
})

n∏
i=1

exp
(
−
Tí

0
h0(t) exp

{
γTwi + α

(
mi(s)|b(curr)

i

)
ds
})

×

n∏
i=1

ni∏
j=1

exp
{
−
(
yi(tij)−XT

i (tij)β −XT
i (tij)v(prop)

i −ZT
i (tij)u(prop)

i

)2
/2σ2

ε

}
n∏
i=1

ni∏
j=1

exp
{
−
(
yi(tij)−XT

i (tij)β −XT
i (tij)v(curr)

i −ZT
i (tij)u(curr)

i

)2
/2σ2

ε

}

× exp
{
−b

(prop)TG−1b(prop)

2 + b(curr)TG−1b(curr)

2

}
.

(5.4.12)
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For convenience, the sub-algorithm for the random effects b is outlined below.

MHb step: The single MH for random effects

1. Given the current state
(
θ

(t)
h0 ,γ

(t), α(t),β(t), σ2(t)
ε ,G(t), b(t−1)

)
2. Propose new values for the vector b(prop) from proposal distribution

as in (5.4.11)
3. Calculate the acceptance probability, rb, using (5.4.12)
4. Simulate u ∼ U(0, 1):

i. If rb > u, then set b(t) = b(prop)

ii. Else, set b(t) = b(t−1)

5.5 Empirical results

To validate the proposed algorithms in Section 5.4, it is crucial to implement extensive
simulation studies. In this section, we performed two simulation studies. In simulation
study 1, linear longitudinal and survival data in Model 1 were generated for which the
hazard rate at baseline had an exponential distribution and the covariance matrix of the
random effects was assumed to have a non-diagonal matrix form. In simulation study
2, we simulated data from Model 2. In this model, the hazard rate at baseline had a
Gompertz distribution and the covariance matrix of the random effects was assumed to
have diagonal matrix form. Three knots were inserted into the longitudinal submodel.

The algorithms in Section 5.4 were applied to estimate the parameters. Based on the
samples, we drew the trace plots and the density functions of the parameters in the
models. Before presenting the inferences, the Geweke and Gelman diagnostics were also
implemented to check the MCMC convergences. In addition, the biases and accuracy of
estimates were assessed for the two models.
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5.5.1 Simulation study 1

5.5.1.1 Data description

We generated the longitudinal and survival data from Model 1 in (5.2.4)

hi(t | Mi(t),wi) = h0(t) exp
{
γTwi + αmi(t)

}
= λ exp

{
γTwi + αmi(t)

}
,

(5.5.1)

where h0(t) has exponential distribution and the longitudinal submodel has the form

mi(t) = β0 + β1t+ ui0 + ui1t. (5.5.2)

Here, bi ∼ N(0,D), D =
 D11 D12

D21 D22

. The data is generated in a similar way as in

Section 4.1. The true values for the parameters in the joint model were λ = 0.2, γ = 0.5,
α = 0.05, β0 = 5, β1 = 2, D11 = 1, D22 = 1 and D12 = 0.5. The observed longitudinal
value for the ith subject at time point t has the form

yi(t) = mi(t) + εi(t) ,

where the measurement error is assumed to have normal distribution with mean 0 and
standard deviation σε = 2.

Based on the model in (5.5.1), we simulated the survival time for 500 subjects. The
longitudinal measurements were taken once per year. For each subject, there were between
1 and 10 longitudinal measurements recorded and 1106 observations made the sample.
On average, two longitudinal measurements were recorded per subject. The censoring
rate was 40% of the sample.

5.5.1.2 The convergence diagnostics

The MCMC chains were created using the algorithms as described in Section 5.4. We
used the Gelman and Rubin and the Geweke diagnostics to test for the convergence of
the MCMC chains for all the parameters (???). We ran five MCMC chains of length
100,000 with a thinning of 4 for which the first 20,000 iterations were discarded as burn-
in. The plots for Gelman and Rubin diagnostic are presented in Figure 5.1. A summary
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of MCMC convergence of the two diagnostics are also presented in Table 5.1. In the
Gelman and Rubin diagnostic tests, the potential scale reduction factors approach 1.
These confirm that the MCMC chains have converged to the joint posterior distribution
of the parameters. In the Geweke diagnostic tests, all of the standard Z-scores have
absolute values smaller than two (|Z| ≤ 2), which also indicates the convergence of the
MCMC chains.

Figure 5.1: The potential rate reduction factor plots of Gelman and Rubin diagnostic for
all the parameters in Model 1.
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Table 5.1: Summary of MCMC convergence diagnostic tests for all the parameters in
Model 1.

Gelman and Rubin diagnostic Geweke diagnostic

Potential scale reduction factors Fraction in 1st window 0.1
Point est. Upper C.I. Fraction in 2nd window 0.5

λ 1.02 1.06 λ -0.625
γ 1.00 1.01 γ 0.479
α 1.03 1.07 α 0.377
β0 1.01 1.01 β0 0.304
β1 1.00 1.03 β1 -0.653
σ2
ε 1.00 1.00 σ2

ε 0.250
D11 1.00 1.00 D11 0.212
D12 1.00 1.00 D12 0.582
D22 1.00 1.00 D22 0.555

Multivariable psrf 1.02

5.5.1.3 Parameter estimation

The algorithms as described in Section 5.4 were used to estimate the parameters in Model
1. We ran 100,000 iterations of the algorithm. The thinning was applied to reduce the
autocorelation in the samples. This means that we only kept the values from the samples
at particular steps. The convergence diagnostics tests confirmed the convergence of each
simulated sample to the stationary target distribution in the previous section. We kept
the last 5,000 iterations for making inferences. The traces of the parameter samples and
the posterior distributions are presented in Figures 5.2, 5.3 and 5.4 respectively. The
thick lines in the posterior distribution indicate the positions of the true values for each
parameter.
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Figure 5.2: MCMC traces and posterior distribution plots for the parameters λ, γ and α
in Model 1. The thick line indicates the position of the true value.
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Figure 5.3: MCMC traces and posterior distribution plots for the parameters β0, β1 and
σ in Model 1. The thick line indicates the position of the true value.
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Figure 5.4: MCMC traces and posterior distribution plots for the parameters D11, D12
andD22 in Model 1. The thick line indicates the position of the true value.

The acceptance rates for the MH algorithms were 33.67% for λ, 49.11% for γ, 31.66% for
α, 44.69% for β0 and 49.46% for β1. For all parameters in Figures 5.2, 5.3 and 5.4, the
samples mix well. Moreover, the trace plots have shown the stability of the MCMC chains
for each parameter and also demonstrate the convergence of the samples to the posterior
distributions. In general, the marginal posterior distributions have an unimodal type so
that one can infer information about the centre and the spread of each parameter.

The autocorrelation function (ACF) plots for all the parameters in Model 1 are presented
in Figure 5.5. In the figure, we can see that the ACF plots for all of the parameters decay
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relatively quickly to 0. These plots also show that the chains for all the parameters are
mixing well and the subsequent samples in the chains are independent as the lag increases.
Especially, the ACF plots for γ, β0, β1, σ2

ε , D11, D12 and D22 cut off at around lag 3 and
tend to towards zero until about 20 or 25 lags, while the ACF plots for λ and α decrease
exponentially to 0.

There are slow decaying autocorrelations for the parameters λ and α as depicted in Figure
5.5. This might be due to the impact of prior distributions on the autocorrelation. We
use flat prior distributions for both parameters in this analysis. In joint models, the
baseline hazard rate function is unspecified and the association parameter, α, has little
prior information. Therefore, a prior sensitivity analysis is performed for these parameters
in Section 5.6.
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Figure 5.5: ACF plots for all the parameters in Model 1.

In order to evaluate the accuracy of the estimates, we generated 50 independent datasets
from Model 1. The means of the estimates, 95% credible intervals (CrIs) and CrI per-
formance are presented in Table 5.2. Here, the coverage performance is the percentage
of true values that lie in the CrIs. In this table, the point estimates are reasonably close
to the true values for all the parameters. Moreover, the true values are also within their
95% CrIs.
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Table 5.2: Summary statistics for parameter estimation of the simulated data of the
models in (5.5.1) and (5.5.2).

Parameter True value Mean SD 95% CrI
λ 0.2 0.235 0.046 [0.159;0.469]
γ 0.5 0.473 0.103 [0.218;0.674]
α 0.05 0.035 0.018 [0.002;0.075]
β0 5 5.101 0.154 [4.782;5.414]
β1 2 1.876 0.228 [1.501;2.118]
σ 2 2.062 0.222 [1.898;2.177]
D11 1 0.911 0.454 [0.770;1.384]
D12 0.5 0.394 0.184 [0.271;0.761]
D22 1 0.843 0.743 [0.727;1.334]

5.5.2 Simulation study 2

5.5.2.1 Data description

We generated the longitudinal and survival data from Model 2 (5.2.6)

hi(t | Mi(t),wi) = h0(t) exp
{
γTwi + αmi(t)

}
= λ1 exp(λ2t) exp

{
γTwi + αmi(t)

}
.

(5.5.3)

Here, h0(t) has Gompertz distribution and the longitudinal submodel has the form

mi(t) = β0 + β1t+ ui0 +
3∑

k=1
uik(t−Kk)p+ . (5.5.4)

Recall that bi = (ui0, ui1, ui2, ui3)T is a vector of random effects for the ith subject. We
assume that the random effects, bi, follow a normal distribution with mean 0 and the
covariance matrix D = Diag(D11, D22, D33, D44). The steps of generating the data are
as presented in Section 4.1. The true values for the parameters were λ1 = 0.1, λ2 = 0.5
γ = 0.5, α = 0.05, β0 = 5, β1 = 2, D11 = 4, D22 = 2, D33 = 2 and D44 = 2. The observed
longitudinal value for the ith subject at time point t has the form

yi(t) = mi(t) + εi(t) ,

where the measurement error is assumed to have normal distribution with mean 0 and
standard deviation σε = 2.
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Based on the model in (5.5.3), we simulated the survival time for 500 subjects. The longi-
tudinal measurements were taken each year. For each subject, there were 1-5 longitudinal
measurements recorded with a total of 1387 observations for the sample. On average,
three longitudinal measurements were recorded per subject. The censoring rate was 35%
of the sample.

5.5.2.2 The convergence diagnostics

Before presenting the inferences for the parameters in Model 2, we report the convergence
diagnostic tests for the MCMC chains generated by the algorithms in Section 5.4. The
Gelman and Rubin and the Geweke convergence diagnostics were used to test for all
the parameters in Model 2. In the Gelman and Rubin test, five MCMC chains for each
parameter were simulated with 100,000 iterations. The thinning is 4 and the first 20,000
iterations were discarded as burn-in. The plots for the Gelman and Rubin diagnostic are
presented in Figures 5.6 and 5.7. A summary of the two diagnostics are also presented in
Table 5.3.

In the Gelman and Rubin diagnostic tests, the potential scale reduction factors for all
the parameters in Model 2 reduce quickly. They are very close to 1 when the iteration is
large. The multivariable potential scale reduction factors is 1.02. As a results of these,
the MCMC chains are diagnosed to converge to the conditional posterior distributions of
the parameters. The convergence of the MCMC chains are confirmed again in the Geweke
diagnostic tests, where the standard Z-scores all have absolute values smaller than two
(|Z| ≤ 2).
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Figure 5.6: The potential rate reduction factor plots from Gelman and Rubin diagnostic
for the parameters λ1, λ2, γ, α, β1 and β2 in Model 2.
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Figure 5.7: The potential rate reduction factor plots from Gelman and Rubin diagnostic
for the parameters σε, D11, D22, D33 and D44 in Model 2.
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Table 5.3: Summary of MCMC convergence diagnostic tests for all the paramters in Model
2.

Gelman and Rubin diagnostic Geweke diagnostic

Potential scale reduction factors Fraction in 1st window 0.1
Point est. Upper C.I. Fraction in 2nd window 0.5

λ1 1.02 1.06 λ1 -0.296
λ2 1.02 1.06 λ2 1.536
γ 1.00 1.01 γ 0.510
α 1.02 1.06 α -0.982
β0 1.00 1.01 β0 0.032
β1 1.00 1.00 β1 -0.270
σ2
ε 1.0 1.00 σ2

ε 0.167
D11 1.00 1.00 D11 -0.555
D22 1.0 1.00 D22 0.522
D33 1.0 1.00 D33 -0.208
D44 1.00 1.00 D44 0.478

Multivariable psrf 1.02

5.5.2.3 Parameter estimation

The algorithms as described in Section 5.4 were implemented to estimate the parameters
in Model 2. We also ran 100,000 iterations of the algorithm and kept the last 5,000
iterations for making inferences. The traces of the parameter samples and the posterior
distributions are presented in Figures 5.8, 5.9, 5.10 and 5.11. The thick lines in the density
functions show the true values of the parameters.
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Figure 5.8: MCMC traces and posterior distribution plots for the parameters λ1, λ2, and
γ in Model 2. The thick line indicates the position of the true value.
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Figure 5.9: MCMC traces and posterior distribution plots for the parameters α, β0 and
β1 in Model 2. The thick line indicates the position of the true value.
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Figure 5.10: MCMC traces and posterior distribution plots for the parameters σ2
ε , D11

and D22 in Model 2. The thick line indicates the position of the true value.

From Figures 5.8 and 5.9, the density functions of these samples show relatively unimodal
distributions. The true values of these parameters are around the center of the distri-
butions. From Figures 5.10 and 5.11, the samples were generated from GS algorithms.
Therefore, the acceptance rate is always 1. The density functions of these samples are
unimodal distributions in which the true values of the parameters are contained within the
three standard deviation range. For all parameters, the samples are distributed around
the mean and the trace plots are stable over time. These visually show that the MCMC
chains converge to the target posterior distributions.
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Figure 5.11: MCMC traces and posterior distribution plots for the parameters D33 and
D44 in Model 2. The thick line indicates the position of the true value.

The ACF plots for all of the parameters in Model 2 are presented in Figures 5.12 and
5.13. From the figures, we can see that in general, the ACF plots for all of the parameters
decrease quickly to 0. In particular, the ACF plots for the parameters of the hazard
rate at baseline, the coefficients of the longitudinal submodel and the coefficients of the
survival submodel decrease exponentially and go to 0 at around lag 5. The ACF plots for
σ2
ε , D11, D22, D33 and D44 cut off very quickly at around lag 3 and tend towards zero.

These plots show that the chains for all of the parameters mix well and the subsequent
samples in the chains are independent as the lag increases.
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Figure 5.12: ACF plots for the parameters λ1, λ2, γ, α, β1 and β2 in Model 2.

In order to evaluate the accuracy of the estimates, thirty independent datasets were
generate from Model 2. The means of the estimates, 95% CrIs and CrI performance are
presented in Table 5.4. In this table, the estimates for the parameters of the hazard rate
at baseline,λ1and λ2, are close to the true values. Moreover, the true values are within
their 95% CrIs and the CrI performances are more than 93%. Similarly, the estimates
for the coefficient parameters of the survival part, (γ, α), the coefficient parameters for
the longitudinal part, (β0, β1) and error measurement, σ2

ε , are all close to the true values.
The CrIs contain the true values of the parameters and the CrI performances are really
good, especially for the parameters λ1 and γ which have coverage percentages more than
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Figure 5.13: ACF plots for the parameters σ2
ε , D11, D22, D33 and β2 in Model 2.
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Table 5.4: Summary statistics for parameter estimation of the simulated data of the model
in (5.5.3) and (5.5.4).

Parameter True value Mean SD 95% CrI CrI performance
λ1 0.1 0.115 0.017 [0.008;0.146] 96.67%
λ2 0.5 0.514 0.049 [0.415;0.614] 93.33%
γ 0.5 0.467 0.112 [0.250;0.697] 96.67%
α 0.05 0.034 0.012 [0.012;0.069] 93.33%
β0 5 5.015 0.319 [4.496;5.334] 90%
β1 2 1.983 0.356 [1.645;2.320] 93.33%
σ 2 2.251 0.176 [1.756;2.466] 96.67%
D11 4 4.082 0.523 [3.458;4.898] 92%
D22 2 2.369 0.383 [1.981;2.798] 90%
D33 2 2.502 0.243 [1.525;3.578] 90%
D44 2 1.932 0.807 [1.727;3.558] 86.67%

95%.

For the parameters of the random effects, D11 , D22 D33 and D44, the estimates are rel-
atively close to the true value. However, the 95% CrIs have large ranges and the CrI
performances for these parameters are lowest among all the parameters of Model 2. The
reason for this is that the dimension of random effects is larger in this simulation setting
than in the simulation study 1. According to Robert and Casella (2004), the indepen-
dent MH algorithms have a limitation in high-dimensional models where the forms of the
conditional posterior distributions are often complicated. This can affect the accuracy of
estimation and coverage performance. Moreover, the missing data affects the estimates
of the random effects when we put many knots into the model (Rizopoulos, 2012).

5.6 Prior sensitivity analysis

In this section, we conduct a prior sensitivity analysis for the parameter of the hazard
rate at baseline, λ, and the association parameter between longitudinal data and survival
data, α, of Model 1. The hazard rate at baseline, h0(t), is unspecified in the joint model.
Therefore, we have only a little information about the prior distribution of this parameter.
In addition, the hazard rate at baseline has a direct influence on the hazard rate function in
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Table 5.5: Summary of prior type for the baseline hazard rate, λ, and the association
parameter, α.

Prior type λ α Detail
I N (µ̃λ, 49σ̃2

λ) N (µ̃α, 49σ̃2
α) Relatively uninformative prior on λ and

relatively uninformative prior on α
II N (µ̃λ, 100σ̃2

λ) N (µ̃α, 49σ̃2
α) Flat prior on λ and

relatively uninformative prior on α
III N (µ̃λ, 49σ̃2

λ) N (µ̃α, 100σ̃2
α) Relatively uninformative prior on λ and

flat prior on α
IV N (µ̃λ, 100σ̃2

λ) N (µ̃α, 100σ̃2
α) Flat prior on λ and flat prior on α

the joint models. In addition, the association parameter is the most important parameter
for evaluating the link between longitudinal and survival data.

To choose the prior distribution for these parameters, we take full advantage of the ordi-
nary two-stage approach. In particular, the separate estimates from survival data are used
to define the mean and variance in the prior distributions of λ. We take the estimated
means, µ̃λ, and estimated variances, σ̃2

λ, of parameter λ from the ordinary two-stage ap-
proach. Note that these estimates are more biased than the full likelihood approach as
proved in Chapter 4 and in Sweeting and Thompson (2011). We choose the prior distribu-
tion for λ having a normal distribution N (µλ, σ2

λ). The prior mean, µλ, is the estimated
mean, µ̃λ, in the two-stage approach. The prior variance, σ2

λ, is chosen large enough to
have a relatively uninformative prior on λ. Here, for the sake of convinience, there are
two chosen prior variances which are 49 and 100 times the estimated variance, σ̃2

λ, in the
ordinary two-stage approach.

In a similar way, we employ the estimates from the coxph function for α and use them to
define the parameters in the prior distribution of α. The normal distribution N (µα, σ2

α)
is chosen for the prior distribution of α. The mean, µα, is chosen from the estimated
value, µ̃α . The variance, σ2

α, is chosen larger than the estimated variance, σ̃2
α, by 49 and

100 times. The prior distributions for λ and α are labeled from I to IV respectively and
summarized in Table 5.5.

In Table 5.7, the estimates of posterior means, standard deviation and 95% CrIs are
presented for priors I, II and III based on 50 independent samples. Note that, the estimates
for prior IV were presented previously in simulation study 1, Table 5.2. In general, the
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four priors performed very well and are comparable to each other. The estimated means of
all parameters are very close to the true values with reasonably small standard deviations.
In addition, the 95% CrIs include the true values for the four priors. This indicates that
the statistical inferences are insensitive to different types of priors of λ and α.

The coverage performances are presented in Table 5.6 for the four priors. The coverage
percentages for each parameter are comparable between the four priors. This again con-
firms that different types of prior distributions of λ and α do not evidently affect the
Bayesian inferences. In particular, for the survival parameters, λ, γ and α, the coverage
percentage is very high around 96% on average for the four priors. This also indicates the
accuracy of the estimates for these parameters through the algorithm in Section 5.4. For
longitudinal parameters, β0, β1and σ2

ε , the coverage is around 94% on average and 92%
on average for random effects, D11, D12 and D22.

Table 5.6: Coverage performance of Model 1 for different prior types.

Performance

Parameter Prior I Prior II Prior III Prior IV

λ 98% 98% 100% 98%
γ 96% 100% 96% 98%
α 94% 96% 98% 100%
β0 94% 94% 96% 96%
β1 94% 94% 94% 92%
σ 92% 94% 94% 94%
D11 96% 94% 94% 92%
D12 92% 94% 92% 92%
D22 90% 90% 92% 90%
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Table 5.7: Summary statistics for parameter estimation of the simulated data of Model 1
for different prior types.

Parameter True Prior I Prior II

Mean SD 95% CrI Mean SD 95% CrI

λ 0.2 0.217 0.032 [0.156;0.289] 0.215 0.034 [0.161;0.269]
γ 0.5 0.482 0.105 [0.258;0.710] 0.470 0.102 [0.247;0.696]
α 0.05 0.046 0.014 [0.014;0.077] 0.046 0.016 [0.007;0.071]
β0 5 5.084 0.185 [0.934;5.233] 5.062 0.154 [4.911;5.212]
β1 2 1.844 0.224 [1.758;2.193] 1.843 0.173 [1.789;2.196]
σ 2 2.071 0.331 [1.985;2.161] 2.069 0.207 [1.988;2.166]
D11 1 0.991 0.339 [0.829;1.175] 0.860 0.389 [0.700;1.199]
D12 0.5 0.478 0.210 [0.350;0.619] 0.518 0.196 [0.319;0.558]
D22 1 0.933 0.296 [0.780;1.107] 0.905 0.320 [0.738;1.148]

Parameter True Prior III Prior IV

Mean SD 95% CrI Mean SD 95% CrI

λ 0.2 0.213 0.057 [0.154;0.284] 0.235 0.046 [0.159;0.469]
γ 0.5 0.507 0.137 [0.282;0.733] 0.473 0.103 [0.218;0.674]
α 0.05 0.046 0.013 [0.015;0.077] 0.035 0.018 [0.002;0.075]
β0 5 5.035 0.133 [4.886;5.183] 5.101 0.154 [4.782;5.414]
β1 2 1.871 0.196 [1.787;2.195] 1.876 0.228 [1.501;2.118]
σ 2 2.089 0.217 [1.985;2.133] 2.062 0.222 [1.898;2.177]
D11 1 0.925 0.394 [0.774;1.185] 0.911 0.454 [0.770;1.384]
D12 0.5 0.409 0.182 [0.289;0.541] 0.394 0.184 [0.271;0.761]
D22 1 0.904 0.307 [0.756;1.173] 0.843 0.743 [0.727;1.334]

5.7 Case study

In this section, we consider liver cirrhosis data. In the liver cirrhosis dataset, there are 488
patients who are diagnosed with liver cirrhosis. The patients are divided randomly into
two groups. One group received prednisone and another receive a placebo. This study was
conducted from 1962 to 1974 in Copenhagen (Andersen et al., 1993). The prothrombin
index was recorded at 3, 6, 12 months and yearly thereafter. By the end of the study, 150
patients receiving the prednisone treatment died (63.3%) and 142 patients receiving the
placebo treatment died (56.6%). Resulting in a censoring rate at about 38.73%. There
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were 2968 longitudinal responses recorded, accounting for 64.22% of missing responses.

Model 1 in (5.2.4) and Model 2 in (5.2.6) were used to measure the association between
the log prothrombin index and the hazard rate. The algorithms described in Section 5.4
were used to estimate the parameters for Model 1 in (5.2.4) and for Model 2 in (5.2.6). We
ran 100,000 iterations with a thinning of 4 and kept the last 5,000 iterations for making
inferences.

First, the Gelman and Rubin convergence diagnostic were performed for the two models.
A summary of the potential scale reduction factors for all the parameters are presented
in Table 5.8. The results show that all the psrf point estimates for all the parameters are
less than 1.2. Moreover, these point estimates are below the upper confidence limits. The
results have confirmed that all chains have converged to the target posterior distributions.
In addition, the Gelman and Rubin plots, the trace plots and ACF plots for all parameters
in Model 1 and Model 2, presented in Appendix B, also confirm the convergences visually.

Table 5.8: Summary of MCMC convergence diagnostic tests for all of the parameters in
Model 1.

Model 1 Model 2

Potential scale reduction factors Potential scale reduction factors
Point est. Upper C.I. Point est. Upper C.I.

λ1 1.01 1.06 λ1 1.00 1.01
λ2 1.03 1.15 λ2 1.00 1.00
γ 1.01 1.03 γ 1.00 1.00
α 1.13 1.15 α 1.00 1.01
β0 1.16 1.17 β0 1.15 1.19
β1 1.00 1.00 β1 1.15 1.17
σ2
ε 1.00 1.00 σ2

ε 1.00 1.00
D11 1.00 1.00 D11 1.00 1.00
D12 1.0 1.00 D22 1.00 1.00
D21 1.0 1.00 D33 1.00 1.00

Multivariable psrf 1.15 Multivariable psrf 1.02

A summary of results for the parameter estimates for Model 1 and Model 2 are presented
in Table 5.9 and Table 5.10 respectively.

The fitted models are as follows:
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Table 5.9: Summary statistics for parameter estimation of the liver cirrhosis data of Model
1 (5.2.4).

Parameter Mean SD 2.5% 25% 50% 75% 97.5%
λ 4.236 0.237 3.726 4.115 4.246 4.373 4.705
γ 0.117 0.115 -0.113 0.040 0.115 0.195 0.345
α -0.773 0.022 -0.817 -0.788 -0.773 -0.758 -0.726
β0 4.207 0.006 4.196 4.203 4.208 4.211 4.220
β1 0.017 0.002 0.013 0.016 0.017 0.018 0.022
σ 0.876 0.011 0.854 0.868 0.876 0.883 0.897
D11 0.076 0.007 0.064 0.072 0.076 0.081 0.090
D12 0.001 0.001 -0.001 0.0002 0.0006 0.0011 0.0019
D22 0.002 0.001 0.0013 0.0015 0.0016 0.0017 0.0019

Table 5.10: Summary statistics for parameter estimation of the liver cirrhosis data of
Model 2 (5.2.6).

Parameter Mean SD 2.5% 25% 50% 75% 97.5%
λ1 4.102 0.262 3.645 3.916 4.088 4.275 4.667
λ2 0.011 0.009 0.001 0.003 0.007 0.015 0.034
γ 0.107 0.115 -0.123 0.029 0.107 0.187 0.329
α -0.788 0.019 -0.825 -0.801 -0.788 -0.774 -0.751
β0 4.281 0.006 4.268 4.276 4.281 4.285 4.293
β1 -0.036 0.002 -0.041 -0.037 -0.036 -0.035 -0.032
σ 0.697 0.005 0.688 0.694 0.697 0.700 0.706
D11 0.088 0.005 0.077 0.084 0.088 0.091 0.099
D22 0.379 0.024 0.333 0.363 0.379 0.395 0.429
D33 0.391 0.025 0.344 0.373 0.390 0.407 0.442
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Table 5.11: The log-likelihood, AIC and BIC values for the fitted model 1 and fitted
model 2.

Log-likelihood AIC BIC
Model 1 -1690.771 3399.542 3437.255
Model 2 -1678.019 3378.038 3424.131

• Fitted model 1: The parameter estimates are taken from Table 5.9. The joint model
with the hazard function at baseline having exponential distribution and linear mixed
effects longitudinal submodel has the form


ĥi(t) = 4.236 exp(0.117 ∗ Treat− 0.773 ∗ m̂i(t))

m̂i(t) = 4.207 + 0.017 ∗ t+ ûi0 + ûi1 ∗ t .

• Fitted model 2: The parameter estimates are taken from Table 5.10. The joint model
with the hazard function at baseline having Gompertz distribution and nonlinear mixed
effects longitudinal submodel has the form


ĥi(t) = 4.102 ∗ exp(0.011 ∗ t) exp(0.107 ∗ Treat− 0.788 ∗ m̂i(t))

m̂i(t) = 4.281− 0.036 ∗ t+ ûi1 ∗ (t−K1) + ûi2 ∗ (t−K2)6 + ûi3 ∗ (t−K3) ,

where the three fitted knots are placed at 25%, 50% and 75% of the observed times.

The maximized log-likelihood, AIC and BIC values of the two fitted models are presented
in Table 5.11. The results show that the fitted model 2 improved the log-likelihood when
we put knots in the longitudinal submodel. In a similar way, both the AIC and BIC
values of the fitted model 2 are lower than the fitted model 1. These results confirm that
the penalized spline joint model is the better fitted model.

5.8 Discussion

In this chapter, a fully Bayesian analysis was implemented for the penalized spline joint
models. We also proposed an algorithm which combines the GS, random walk MH and
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independent MH algorithms. A set of R code following the main algorithm was written for
the two joint models. In the first joint model, the random effects part has two dimensions
with a non-diagonal covariance matrix. In the second joint model, the random effects
part has four dimensions with a diagonal covariance matrix. To validate the proposed
algorithm, two simulation studies were implemented. The results show that: (i) the
computational task for this approach is feasible and simple because the algorithms avoid
multi-integral calculation; (ii) the uncertainties are inferred fully for each parameter in
the models.

Another important aim of this chapter was to assess the sensitivity to prior specification of
the baseline hazard rate parameter and association parameter. The results from the prior
sensitivity analysis show that the estimates are insensitive to different prior distributions
of these parameters. In addition, the coverage performances were extremely good for the
survival parameters under different prior specifications.

The drawbacks observed through the simulation studies were: (i) the computing time for
the Bayesian analysis was not yet efficient in time. This might be due to the fact that the
code was run on a normal desk computer with an Intel (R), Core(TM) i7-3770 CPU (3.40
GHz) and 8 GB RAM running Windows XP. We also had to run many MCMC iterations
for a long time to ensure the convergence to the target posterior distribution; (ii) when
the dimension of random effects was high, the independent MH algorithm led to a larger
variation in the parameter samples.
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Chapter 6

Summary and Future Direction

6.1 Achieved aims

The aims mentioned in Chapter 1 have been achieved through the exposition in Chapters
3, 4, and 5. In Chapter 3, the penalized spline joint models were introduced to handle
non-linear longitudinal and survival data. We also proposed a full likelihood approach
for estimating parameters in these joint models. Simulation studies showed that these
models can flexibly fit and well predict the association of the two types of data. The
original contributions in Chapter 3 are as follows:

(i) The two groups of penalized spline joint models were presented namely the penalized
spline joint models with hazard rate at baseline having a Gompertz distribution and the
penalized spline joint models with a piecewise-constant baseline risk function;

(ii) The parameter estimation for the penalized spline joint models was proposed. This
estimation method is viewed as the full likelihood approach;

(iii) The ECM algorithm is presented;

(iv) R code following the ECM algorithm was written for the two groups of penalized
spline joint models.

In Chapter 4, the theory for a new two-stage approach was introduced for penalized
spline joint models. The method can improve the computational problem of the full
likelihood method in Chapter 3 by approximating the log-likelihood function. Parameter
estimation was quick and effective compared to the ordinary two-stage approach and the
full likelihood approach in simulation studies. The following are the achievements from
this chapter:
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(i) A modified two-stage approach and an approximation theorem were proposed for the
penalized spline joint models;

(ii) The estimation algorithm was detailed in two stages for longitudinal parameters and
survival parameters;

(iii) The random effects misspecification analysis was investiagted;

(iv) R code was written and used for extensive simulation studies and a case study.

In Chapter 5, we applied a fully Bayesian approach to the penalized spline joint models.
This method avoided the multi-integral calculation from the full likelihood method and
the approximation from the two-stage method. Moreover, a sample of target posterior
distribution for each parameter is inferred using a combination of well known algorithms.
It can also open the way to reduce the impact of normality assumption for random effects
from Chapter 3 and Chapter 4. Specific contributions were:

(i) The joint prior distributions and joint posterior distributions for the penalized spline
joint models were proposed;

(ii) The main algorithm was presented with detailed sub-algorithms;

(iii) Prior sensitivity analysis was conducted for the parameter of baseline hazard rate
and the association parameter;

(iv) R code was written to check for the validity of the algorithm. Moreover, the code
was used for a case study.

6.2 Limitations

In summary, three approaches were proposed to estimates parameters for penalized spline
joint models namely, a full likelihood approach, a modified two-stage approach and a
fully Bayesian approach. In each approach, there are advantages and disadvantages for
estimating parameters in the penalized spline joint models. Through simulation studies
from the three main chapters, we observed some limitations for the penalized spline joint
models and for the proposed parameter estimation methods.
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The representation of the polynomial basis in the penalized spline joint models can give
an intuitive and easy way to model non-linear longitudinal covariates. However, there are
some drawbacks with the polynomial basis. For very nonuniform knots, the truncated
power functions may form an ill-conditioned basis De Boor (1978) and Dierckx (1995).
In this case, some of the basis functions become nearly linearly dependent on the others.
This leads to unsuitable numerical calculations. Moreover, in order to model for a non-
linear individual curve, a large number of knots need to be inserted into the longitudinal
submodel. The joint modelling becomes complicated very quickly with high dimensions
of random effects.

The maximisation of the observed data log-likelihood functions for the penalized spline
joint models is often intractable. Therefore, algorithms or special techniques need to be
applied to approximate the solution. In the full likelihood approach in Chapter 3, there
are no closed-form solutions to the integrals with respect to the random effects as well as
for the integrals with respect to time in the survival function under the ECM algorithm.
This leads to complicated computational problems. As a result, the algorithm is very
time consuming when dealing with high dimensions of random effects. Another drawback
for both the full likelihood method and the two-stage method is that the estimation
results depend too much on the normality assumptions of random effects and error terms.
In addition, the random effects and longitudinal parameters in the proposed two-stage
approach are estimated from the separate linear mixed model. This can cause biases when
data have high imformative dropout.

The fully Bayesian approach is also time consuming when flat prior distributions are
applied for parameters. The independent MH algorithm is used to update random effects
in the penalized spline joint models. However, this algorithm has limitations when the
dimension of random effects is large. In addition, the conditional posterior distribution
for random effects becomes complex in this case. These lead to inaccurate estimation for
the random effects and the standard deviation of the estimates is very large.

6.3 Future direction

Based on the above limitations, our future work will focus on more flexible penalized
joint models with a different basis to handle non-linear longitudinal data. The B-spline
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basis is one that can remove the problems associated with the polynomial basis. However,
the application of penalized B-splines for joint models will be more complex in terms of
modelling and estimating. In addition, missing data mechanisms need to be considered for
joint models in order to obtain accurate results. Different types of censoring mechanisms
need to apply different inferential procedures.

In the classical approach, the future work is on reducing computational complexity. New
approximation methods need to be applied for multi-integrals to minimize the errors and
convergence time. In addition, we will study the effects of random effects misspecification
on these new methods and try to relax the assumptions for the random effects distribution
and the error measurement distribution.

To improve the weaknesses in the modified two-stage approach, we will combine this
approach with regression calibration approaches. By doing this, the informative dropout
will be acounted for estimating the parameters in the longitudinal model. This approach
will be considered as an extension for the works of Ye et al. (2008) .

Based on the limitations of the Bayesian approach, new algorithms need to be proposed
for flexible penalized joint models to improve convergence time. We will focus on relaxing
the prior information of the random effects in our future work. Furthermore, we will
replace the independent MH algorithm to estimate the random effects precision matrix
with an effort to improve the biases and variation. The prior sensitivity analysis needs to
be extended for all of parameters in the joint models.
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Appendices

A. Appendices for Chapter 3

A.1 Simulated data of the penalized spline joint model

One sample of simulated data of the penalized spline joint model in (3.4.1) is presented
in Table A.1 for the first three patients. The subjects were measured bimonthly and the
entry time was 0 for all subjects. The Obstime variable includes the time points at which
these measurements were recorded. The Time variable includes the observed survival
times when the subject meets an event. x is a time-constant binary random variable with
parameter p = 0.5. Column y contains the longitudinal responses. The Death variable is
the event status indicator. This variable receives value 1 when the true survival time is
less than or equal to the censoring time and 0 otherwise. We define the four random effects
variables which are Z1 = (obstime−K1)+, Z2 = (obstime−K2)+, Z3 = (obstime−K3)+,
and Z4 = 1. For the longitudinal process, there are 1902 observations for 500 subjects.
For each subject, 1-7 longitudinal measurements are recorded. On average, there are four
longitudinal measurements per subject. For the event process, there are 297 subjects who
meet for an event which is equivalent to 59.4 % of the whole sample.

148



Appendix

Table A.1: A snapshot of simulated data for penalized spline joint model in (3.4.1).

Id Obstime Time x y Death Z1 Z2 Z3 Z4

1 0.0 4.97 0 1.41 1 0.0 0.0 0.0 1
1 0.5 4.97 0 6.45 1 0.0 0.0 0.0 1
1 1.0 4.97 0 4.10 1 0.0 0.0 0.0 1
1 1.5 4.97 0 1.50 1 0.5 0.0 0.0 1
1 2.0 4.97 0 4.07 1 1.0 0.0 0.0 1
1 2.5 4.97 0 6.16 1 1.5 0.5 0.0 1
1 3.0 4.97 0 3.60 1 2.0 1.0 0.0 1
1 3.5 4.97 0 8.32 1 2.5 1.5 0.5 1
1 4.0 4.97 0 6.32 1 3.0 2.0 1.0 1
2 0.0 2.79 0 6.81 1 0.0 0.0 0.0 1
2 0.5 2.79 0 7.77 1 0.0 0.0 0.0 1
2 1.0 2.79 0 9.75 1 0.0 0.0 0.0 1
2 1.5 2.79 0 11.04 1 0.5 0.0 0.0 1
2 2.0 2.79 0 7.20 1 1.0 0.0 0.0 1
3 0.0 1.90 0 -1.84 0 0.0 0.0 0.0 1
3 0.5 1.90 0 1.12 0 0.0 0.0 0.0 1
3 1.0 1.90 0 0.78 0 0.0 0.0 0.0 1

A.2 The updating rule for the parameters

The integrals with respect to the random effects in (3.3.7) do not have closed-form solu-
tions. Therefore, in this paper, we implement the Gaussian-Hermite quadrature rule as
in Rizopoulos (2011) to approximate the integrals. In our simulation study and R coding,
we use the Gaussian-Hermite quadrature rule with 10 quadrature points. The updating
formulas of the parameters in Step 3 have different forms for each parameter following
Rizopoulos (2012). We have the closed-form estimates for the measurement error variance
σ2
ε in the longitudinal model and the covariance matrix of the random effects as follows

Ĝ
(it+1) = 1

n

∑
i

ˆ
bTi bip(bi | Ti, δi,yi;θ(it))dbi = 1

N

∑
i

v
˜
b

(it)
i + ˜

b
(it)
i

˜
b

(it)
i

T

, (.1)

where b̃i = E(bi|Ti, δi,yi;θ) =
´
bip(bi|Ti, δi,yi;θ)dbi and ˜vbi = var(bi|Ti, δi,yi;θ) =´

(bi − b̃i)p(bi|Ti, δi,yi;θ)dbi. The updating formula for σ2
ε is

σ̂2
ε

(it+1) = 1
n

∑
i

ˆ
W TW p(bi | Ti, δi,yi;θ(it))dbi , (.2)
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whereW = yi−X iβ−X iui−Zivi. Unfortunately, we cannot obtain closed-form expres-
sions for the fixed effects β and the parameters of the survival submodel γ, α, andθh0 .
Thus we employ the one-step Newton-Raphson approach to obtain the updated β(it+1),
γ(it+1),α(it+1) and θ(it+1)

h0 . In particular,

S(θ) = ∂Q(θ|θ(it))
∂θ

θ̂
(it+1) = θ̂

(it)
−

∂S(θ̂(it))
∂θ

−1

S(θ̂(it)) ,
, (.3)

where S(θ) is the score vector corresponding to parameter θ and the score vector has the
form

S(θ) = ∂Q(θ|θ(it))
∂θ

=
∑
i

ˆ
∂

∂θT
log

{
p(Ti, δi | bi;θ(it))p(yi | bi;θ(it))p(bi;θ(it))

}
.p(bi | Ti, δi,yi;θ(it))dbi .

A.3 Simulating survival time

There are four cases for simulating survival time Ti of the model (3.4.1) as follows.

When the survival time t < K1, we calculate the cummulative hazard function Hi(t) =
t́

0
hi(s)ds. Based on the relation between the survival function Si(t), cummulative hazard

function Hi(t) and cummulative distribution Fi(t) , we have

Si(t) = exp(−Hi(t)) = 1− Fi(t) .

Following this result, we set
u = 1− Fi(Ti) ,

where u is a random variable with u ∼ U(0, 1). The survival time t is the solution of the
equation

U = exp(−Hi(t)) = exp(−
t̂

0

hi(s)ds) .

The condition t < K1 is equal to

−log(U) <
K1ˆ

0

h(s)ds .
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When K1 ≤ t < K2, we calculate the cummulative hazard function Hi(t) =
K1´
0
hi(s)ds +

t́

K1

hi(s)ds. The survival time t is the solution of the equation

U = exp

−

K1ˆ

0

hi(s)ds+
t̂

K1

hi(s)ds


 ,

where U is a value of u ∼ U(0, 1). The condition K1 ≤ t < K2 is equal to

− log(U) <
K1ˆ

0

hi(s)ds+
K2ˆ

K1

hi(s)ds .

When K2 ≤ t < K3, we calculate the cummulative hazard function Hi(t) =
K1´
0
hi(s)ds +

K2´
K1

hi(s)ds+
t́

K2

hi(s)ds . The survival time t is the solution of the equation

U = exp

−

K1ˆ

0

hi(s)ds+
K2ˆ

K1

hi(s)ds+
t̂

K2

hi(s)ds


 ,

where U is a value of u ∼ U(0, 1). The condition K2 ≤ t < K3 is equal to

−log(U) <
K1ˆ

0

hi(s)ds+
K2ˆ

K1

hi(s)ds+
K3ˆ

K2

hi(s)ds .

When K3 ≤ t, the cummulative hazard function has the form Hi(t) =
K1´
0
hi(s)ds +

K2´
K1

hi(s)ds+
K3´
K2

hi(s)ds+
t́

K3

hi(s)ds. The survival time t is the solution of the equation

U = exp

−

K1ˆ

0

hi(s)ds+
K2ˆ

K1

hi(s)ds+
K3ˆ

K2

hi(s)ds+
t̂

K3

hi(s)ds


 .
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A.4 Summary statistics for parameter estimation

Table A.2: Summary statistics for parameter estimation of the simulated data of the
model in (3.4.4) for different censoring rates.

Parameter True value Censored (20%) Censored (40%)
Estimate SD MSE Estimate SD MSE

β0 5 4.85 0.30 0.25 5.10 0.30 0.27
β1 2 1.86 0.45 0.20 2.10 0.57 0.18
λ1 0.1 0.13 0.12 0.00 0.11 0.10 0.00
λ2 0.5 0.52 0.07 0.00 0.49 0.14 0.02
γ 0.5 0.48 0.10 0.00 0.51 0.09 0.00
α 0.05 0.05 0.02 0.00 0.04 0.04 0.00
σ 2 2.02 0.05 0.00 2.02 0.06 0.00
D11 2 2.21 0.67 0.17 2.27 0.80 0.22
D22 2 2.16 0.27 0.09 2.10 0.43 0.05
D33 2 2.26 0.27 0.01 2.22 0.60 0.10
D44 4 4.20 0.53 0.20 4.24 0.63 0.18
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B. Plots for case study in Chapter 5.

B.1 Gelman and Rubin diagnostic plots in Model 1.

Figure B1.1: The potential rate reduction factor plots of Gelman and Rubin diagnostic
for all the parameters in Model 1.
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B.2 Gelman and Rubin diagnostic plots in Model 2.

Figure B2.1: The potential rate reduction factor plots of Gelman and Rubin diagnostic
for the parameters λ1, λ2, γ, α, β0 and β1 in Model 2.

Figure B2.2: The potential rate reduction factor plots of Gelman and Rubin diagnostic
for the parameters σ2

ε , D11, D22 and D33 in Model 2.
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B.3 ACF plots in Model 1 and Model 2.

Figure B3.1: ACF plots for all the parameters in Model 1.
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Figure B3.2: ACF plots for the parameters λ1, λ2, γ, α, β0 and β1 in Model 2.

Figure B3.3: ACF plots for the parameters σ2
ε , D11, D22 and D33 in Model 2.
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B.4 MCMC traces and posterior distribution plots in Model 1

and Model 2.

Figure B4.1: MCMC traces and posterior distribution plots for the parameters λ, γ, α
and β0 in Model 1.
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Figure B4.2: MCMC traces and posterior distribution plots for the parameters β1, σ2
ε ,

D11 and D212 in Model 1.

Figure B4.3: MCMC traces and posterior distribution plots for the parameter D22 in
Model 1.
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Figure B4.4: MCMC traces and posterior distribution plots for the parameters λ1, λ2 and
γ in Model 2.

Figure B4.5: MCMC traces and posterior distribution plots for the parameters α, β0 and
β1 in Model 2.
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Figure B4.6: MCMC traces and posterior distribution plots for the parameters σ2
ε , D11

and D22 in Model 2.

Figure B4.7: MCMC traces and posterior distribution plots for the parameter D33 in
Model 2.
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