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Summary

As demand for water resources intensifies, quantification of surface water-groundwater
interaction has become increasingly important for effective water resource management.
Various hydraulic and tracer techniques have been developed for quantifying these exchanges,
each sensitive to particular scales or modes of exchange. In order to capture the entire
spectrum of exchange fluxes in any given system, it is often necessary to employ several of
these methods. Chapter 1 outlines the need for new methods, with different sensitivities than
previously published methods, which will be valuable additions to the suite of available
techniques. In this thesis, two new techniques are presented, using gas tracers to quantify

1) hyporheic exchange in losing streams, and 2) groundwater discharge to gaining streams.
Additionally, groundwater age indicators and noble gases are applied in a novel setting to

guantify the re-circulation of groundwater associated with mine dewatering operations.

Chapter 2 presents a new method for quantifying hyporheic exchange in losing streams based
on measurements of radon-222 along the stream. A longitudinal mass balance approach is
used to interpret measurements of streamflow and radon along the stream in terms of
hyporheic (beneath the stream) and parafluvial (beside the stream) exchange fluxes. The
results of this new method are compared to two existing methods; streambed radon
disequilibrium and transient storage modeling of the breakthrough curves of an injected
tracer. Transient storage modeling characterized rapid hyporheic exchange with a mean
residence time of 4 minutes, storage zone area of 0.6 m® and storage exchange flux of

224 m* d™. This is consistent with the results of the streambed radon disequilibrium method,
which suggest that the rapidly flushed hyporheic zone was at most 0.1 m thick. In contrast, the
radon influx of 5.4 x 10 Bq m™ d™ was dominated by (280%) long-path parafluvial exchange
with residence times of days, spatial scales of tens to hundreds of metres, and an exchange
flux on the order of 10m?* d™. The new radon-based method is particularly sensitive to return
flow paths on spatial scales of tens of meters, with sub-surface residence times of days or
more, which were not captured by the pre-existing methods. Concurrent application of this
new method, with existing methods using injected tracers, will provide a more complete

estimate of the spectrum of return flows in losing stream systems.

In Chapter 3, the application of carbon-14 (*C) in dissolved inorganic carbon (DIC) as a tracer
of groundwater discharge to gaining streams is presented. A mass balance model for **C in DIC
is developed, which allows for the isotopic equilibration rate to be expressed as an effective



transfer velocity for **C in DIC. A controlled experiment was conducted over 72 days to
quantify the rate of isotopic equilibration of **C in DIC in groundwater exposed to the
atmosphere. The method was then tested at an artificial groundwater discharge zone in the
Pilbara region of Western Australia. The effective transfer velocities of these systems were as
expected based on the pH and gas transfer velocity of CO, with values of 0.013 and

0.025 m d* respectively. The method was then applied across a previously mapped spring
discharge zone in the Daly River, in northern Australia. The 1€ activity of DIC in the stream
decreased from 83 to 76 pMC across the major discharge zone, which was used to estimate
the '*C activity of the discharging groundwater at between 60 and 66 pMC. The effective
transfer velocity was estimated at between 0.09 and 0.15 m d?, which is between 8 and 13%
larger than would be expected based on the gas transfer velocity of CO, and pH of this system.
This increased rate of equilibration, above that predicted by carbonate speciation, is likely to
be driven by in-stream CO, production through biotic respiration or the conversion of
dissolved organic carbon to DIC. In spite of these additional sources of DIC in the stream, the
signal of groundwater discharge in stream **C activity persisted for at least tens of kilometers.
This persistence of the changes in **C activity caused by groundwater discharge over longer
distances than other gaseous tracers allows for a larger spatial sampling interval and may allow

for smaller groundwater fluxes to be quantified than is possible with other gaseous tracers.

In Chapter 4, groundwater age indicators (**C and CFC-12) and noble gases are used as tracers
of recharge by surplus mine water that is discharged to streams. In environments where
groundwater is effectively re-circulated, quantification of the relative proportions of natural
and anthropogenic recharge can be difficult. Groundwater age indicators, in particular gases,
are likely to be more sensitive tracers of recharge than stable isotopes or chloride in this
setting. This is because, unlike stable isotopes or chloride, they undergo a process of
equilibration with the atmosphere, and historical atmospheric concentrations are known.
Ternary mixing fractions were calculated based on **C and CFC-12 concentrations measured
along three transects of piezometers perpendicular to the creeks, and from dewatering wells.
The three end-members were defined to reflect the historical atmospheric concentrations of
these tracers, and the history of mining operations. Uncertainty in calculated mixing fractions
was estimated using a Monte Carlo approach. Recharge by mine water that had been
discharged to the creeks was present in all samples, with the largest proportions within 250 m
of the creeks. These results are supported by seepage estimates based on the chloride mass
balance along the creeks, which suggests that between 85 and 90% of mine water discharged

to the creeks recharges the aquifer. Based on the duration of discharge, recharge by mine



water is predicted to extend between 110 and 730 m from the creeks. Ternary mixing ratios in
dewatering wells suggest that recharge by mine water accounted for between 10 and 87 % of
water currently abstracted by dewatering wells. These results are supported by estimates of
excess air and terrigenic helium-4 amounts, with correlations between the amount of mine
water and excess air, and the amount of regional groundwater and terrigenic helium-4. These
methods could also be used to quantify recharge associated with agricultural irrigation or
wetland supplementation and will be most successful when the duration of the activity is

short, relative to the timescale of variation in atmospheric tracer concentrations.

Chapter 5 discusses how the new methods demonstrated in this thesis can be used in
conjunction with pre-existing methods to improve field-based estimates surface water-
groundwater interaction. Future work will involve the further validation of these new methods

and their application at other field sites.
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