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Summary 

Modelling studies often separate surface water and groundwater, despite the known 

connection between the two. Physically based, fully integrated hydrological codes 

that simulate both surface and subsurface processes have proved useful for capturing 

the complex dynamics of entire catchments in a single model. While the coupling of 

surface and subsurface hydrologic processes in these codes is a major advantage, few 

studies address the impacts of the coupling method on dynamic catchment processes 

such as overland flow, streamflow generation and solute transport. This thesis 

examines the implementation of surface-subsurface coupling approaches in fully 

integrated codes, evaluates their controls on simulating integrated flow and solute 

transport, and provides guidance for model users.  

The influence of a commonly used approach to couple surface and subsurface flows 

(first-order exchange coefficient; FOEC) is systematically explored in the first half 

of this thesis using different hydrological scenarios of overland flow generation, 

infiltration, and exfiltration. In a mesh-centred code (HydroGeoShpere), results 

converge on the more accurate, but more computationally intensive, continuity of 

pressure coupling approach as the coupling length parameter (le) within the FOEC is 

decreased. Lower le values are required for infiltration under Hortonian conditions, in 

lower permeability soils, and to capture the initiation of overland flow. A threshold 

value of le is found to be equal to rill storage, above which inaccurate simulations 

can occur.  

The FOEC approach is explored further with an analysis of its numerical 

implementation in a block-centred code (MODHMS), where a half-cell distance 
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separates the surface and uppermost subsurface nodes. Defining the FOEC based on 

the uppermost grid size inhibits accurate prediction of infiltration and the time to 

initiate overland flow under Hortonian conditions. Increasing the FOEC 

independently of the grid allows for accurate simulation of infiltration, but not the 

timing of overland flow. The addition of a thin layer at the surface improves model 

accuracy substantially. 

In the second half of the thesis, the effects of solute dispersion across the surface-

subsurface interface, versus within the subsurface, on integrated solute transport and 

tracer hydrograph separation are evaluated. In 2D hypothetical hillslopes, the pre-

event water contribution from the tracer-based separation agrees well with the 

hydraulically determined value of pre-event water, despite dispersion occurring in 

the subsurface. In this case, subsurface dispersion parameters have little impact on 

the tracer-based separation results. The pre-event water contribution from the tracer-

based separation is larger when dispersion across the surface-subsurface interface is 

considered. In a 3D catchment model, solute discharge is compared to field 

measurements during a rainfall event. Adding solute transport into a fully integrated 

3D flow model can improve the assessment of internal model dynamics, but 

transport results are highly sensitive to model parameters and must be interpreted 

with caution.  

The results of this thesis show that although fully integrated codes do not require an 

explicit boundary condition between the surface and subsurface, the coupling 

parameters can highly influence both the integrated and distributed response of flow 

and solute transport. As such, it is important that these parameters are carefully 

chosen and sensitivity analyses be performed to ensure robust model performance.  
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