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ABSTRACT 

Objectives 

This study explored the architecture of a machine learning application in a Brain Computer Interface 

(BCI) system and experimented various classification algorithms in a P300 Speller BCI.  

Methods 

This study used the P300 Speller BCI datasets from the BCI Competition. The datasets were pre-

processed and segmented for analysing and fitting purpose. Wyrm Python toolbox and Scikit-learn 

Python package were used to help with the exploration. Various classifiers were also experimented: 

Linear Discriminant Analysis (LDA), Gradient Boosting, Ada Boost, K-neighbours, Decision Tree, 

Random Forest, Quadratic Discriminant Analysis (QDA), Linear Support Vector Classifier (SVC) and 

SVC. The predicted characters were compared with true labels downloaded from BCI Competition 

test results to calculate the percentage of correctly predicted characters. 

Results 

Main components of a machine learning architecture in a BCI system were explored: EEG signals 

pre-processing: artifacts removal, features selection, features extraction and predictive model 

training and results analysing. 

For the P300 Speller datasets explored in this study, LDA overall produced better results, with the 

best score at 94.5% while other classifiers were in a much lower range: <30%, except for the case of 

Linear SVC with 56% for subject A and 90% for subject B. All those results were observed without 

Principal component analysis (PCA) and used 64 channels. However, the accuracy dropped when 

testing with 8 channels, single channel and when testing with fewer trials. 

Conclusions 

Even though this study only explored machine learning architecture in Speller BCI systems, the 

knowledge and methodologies can be used to explore P300 BCIs in general. Some classification 

algorithms were tested, and among those, LDA from Wyrm Python toolbox produced the highest 

prediction score. However, future work is needed to improve accuracy when using fewer channels 

or fewer trials. 
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1. INTRODUCTION

In recent years, Brain-computer interface (BCI) has steadily become an attractive research field 

thanks to the rapid growth of technology and science discoveries regarding the human brain, with 

more than 100 active research groups and numerous articles on the topic (Konrad & Shanks, 2010; 

Wolpaw, 2007). For people with severe motor disabilities, Amyotrophic Lateral Sclerosis (ALS), 

severe cerebral palsy or any other paralysis, they are incapable of any motor functions. In some 

extreme cases, an individual who is completely paralysed or in completely locked-in syndrome may 

not even be able to perform any physical movements of the body (Schalk et al., 2004). That leaves 

the brain as the only way to communicate with the world. BCI systems, in this case, act as a bridge 

between the patients and the environment around them. BCI systems record the brain activities as 

electrical signals, process them then produce the closest actions that the patients want as digital 

commands to control the external devices (Brouwer & Van Erp, 2010; Nicolas-Alonso & Gomez-Gil, 

2012). Those commands can be as simple as move wheelchair forward, backward, stop or call some 

pre-defined phone number. A system as such would be incredibly helpful to people with disabilities 

and to people who take care of them (Nicolas-Alonso & Gomez-Gil, 2012). 

Figure 1: P300 Visual Speller System (Selim et al., 2009) 

In order to help the paralysed, the conventional BCI systems usually utilise some visual interface, a 

cursor or an on-screen keyboard. P300 Speller BCI is one famous example of such a BCI system 

(Selim et al., 2009) (see Figure 1). However, the idea of based on visual feedback can be improved 

further, as it has its limitations: force user to maintain visual attention to the screen, and it can be 

tiresome after some time. Thus, it leads to wonder, a P300 BCI system if done right, can reduce the 

Image removed due to copyright 
restriction 
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physical efforted required to interact with the system and can still be comfortable after long time 

usage. A vibration-based stimulation P300 BCI, a vibrotactile BCI, can be the key to this question. A 

vibrotactile P300 BCI uses vibrotactile stimuli to provide feedback through the output of sensors 

(Chatterjee et al., 2007). Users only need to attend to the stimulation on the part of the body where 

the sensor is located (see Figure 2). This type of interaction eliminates the environmental impact 

and helps reduce the tediousness of long-time usage. 

Figure 2: Vibrotactile stimulation hardware with 16 active EEG electrodes on the cap, EEG amplifier and 

vibrotactile stimulators (six coin motors) on the neck (Leeb et al., 2013) 

On the high level, BCI systems work by taking brain signals collected by some electrophysiological 

monitoring method, process the data, use machine learning algorithms to best translate the 

processed signals to digital commands that the patients want to control the external device. To 

collect brain signals, there are several popular electrophysiological methods being used, such as 

electroencephalography (EEG), electrocorticography (ECoG), functional magnetic resonance 

imaging (fMRI), positron emission tomography (PET) or magnetoencephalography (MEG) 

(Hassanien, 2014), but EEG has gained its popularity over other methods and has been used in 

various research experiments and applications (Nicolas-Alonso & Gomez-Gil, 2012; Ramadan & 

Vasilakos, 2017). 

Playing an essential role of any BCI systems is machine learning algorithms to process data and 

classify brain signal patterns and from that convert to computer-ready commands like move 

forward, backward or stop (Selim et al., 2009). Some well-known algorithms applied in BCI are 

Image removed due to copyright restriction 
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Bayesian linear discriminant analysis (BLDA), linear support vector machine (SVM), Fisher linear 

discriminant analysis (FLDA), generalised Anderson's task linear classifier (GAT), linear discriminant 

analysis (LDA). According to the performance test carried out by Selim, Wahed and Kadah in 2009 

in BCI Competition III, BLDA and SVM achieved the highest accuracy overall for the tested subjects. 

BLDA achieved on average 75% at 5th sequence, 98% at 15th sequences while SVM scored 75% and 

97% respectively (Selim et al., 2009). 

Raw brain signals contain not only stimuli response signals but also other bio-signals and noise 

interference such as muscle signals, eye movements, outside sounds, changes in environment or 

electricity background noise (Selim et al., 2009). That makes the results of recording brain signal 

activities more troublesome, as these results are the input for machine learning algorithms. If the 

data sources are not good and fit for feature extraction purpose, classification methods will not be 

able to train the model correctly, hence not able to render expected prediction with accuracy and 

relevance. Therefore, various methods for averaging input data and generalisation are also needed 

to ensure the essential outcome of machine learning algorithms. 

The original approach of the thesis was to explore machine learning architecture in a vibrotactile 

BCI system. Unfortunately, due to Covid-19 global pandemic situation, all workplaces, universities 

and schools were closed (Looi & Pring, 2020; Peters, 2020), the research team could not perform 

testing and data recording for vibrotactile BCI on the Flinders University’s laboratory. The BCI 

Competition III dataset II (hereinafter referred to as P300 Speller datasets) are used instead for the 

purpose of exploring EEG signals and exploring machine learning algorithms. Even though the 

features in Speller BCI and vibrotactile BCI are different, they do share the same approach to explore 

and analyse EEG signals and build up a machine learning application’s architecture. Thus, the results 

from exploring Speller BCI system can be used in future research on vibrotactile BCI system when 

the research team have vibrotactile datasets ready. 

This study highlighted foundation understandings of EEG, BCI, machine learning. It then explored 

the architecture of a machine learning application in a BCI system as well as tested some popular 

machine learning classification algorithms on P300 Speller BCI datasets. Finally, the results and 

future research approaches were discussed.  
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2. LITERATURE REVIEW

2.1. EEG 

2.1.1. Brainwaves 

As a BCI system’s essential purpose is to translate brain activities to digital commands, it first needs 

to understand and be able to process brain activities. Neural impulses are generated when neurons 

received stimuli. Stimuli can be under different forms, such as visual (sight), auditory (sound), tactile 

(touch) stimuli (Galun, 2012). When neurons received such stimuli, they trigger a series of processes 

known as depolarisation, repolarisation, and hyperpolarisation (Lerner, 2014). These processes 

constitute an action potential. An action potential is a temporary change in the voltage between the 

inside and outside of the neural cell from the resting potential (Lerner, 2014). This change in voltage 

is very minimal, measured in millivolts (mV), and is approximately 100mV when it changes from the 

resting membrane potential -70 mV to about +30 or +40 mV . It also handles the task of transmitting 

information among nerves, produces brief voltage fluctuations that help transmit electrical signals 

to all brain neurons (Burgess & Gruzelier, 1993). However, as individual neurons can trigger neural 

impulses to respond to stimuli, there must be a way for the brain to acknowledge and decide on 

what to do, different neurons must be in communication. Such connections are referred to as 

clusters or neural networks. When different neurons inside a cluster trigger responses to stimuli at 

approximately the same time, macroscopic oscillations, or brain waves are produced (da Silva, 

1991). 

Brain activities are generally characterised by a mix of brain waves. Depending on the physical 

activities of the human host, one type of brain wave can predominate other brain waves. There are 

five brain wave frequency bands: delta, theta, alpha, beta and gamma, as shown in Figure 3. 

Delta waves 

Delta waves range from 1Hz to 4Hz and the slowest brain waves. They are generated in deep 

meditation and dreamless sleep (Bhat, 2018). 

Theta waves 

Theta waves are in the range of 3Hz-8Hz. Theta waves are present during sleep and relaxation (Bhat, 

2018). 
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Alpha waves 

Alpha waves range from 8Hz to 12Hz. Alpha waves occur when the brain is in resting state (Bhat, 

2018). 

Beta waves 

Beta waves are in the range of 12Hz-38Hz. Beta waves are observed in a normal, conscious state of 

the brain (Bhat, 2018). 

Gamma waves 

Gamma waves are in the range of 38Hz-70Hz and are the fastest brain waves and are generated 

during higher levels of consciousness, mental activities (Tatum  IV, Do, 2014) or during muscle 

activity at 100-200 times the magnitude of brain waves (Whitham et al., 2007). 

Figure 3. Brain wave frequencies (Abhang, 2016) 

2.1.2. Neuroimaging methods 

As BCI systems convert brain signals to user commands, they need a system to record and keep 

track of all changes in brain activities. Modern non-invasive neuroimaging methods allow scientists 

and researchers to address this big task without invading the patients by injecting/implanting the 

electrodes directly onto the brain. It is especially important in the science of language acquisition 

Image removed due to copyright restriction 
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and human brain development, as now researchers can study the brain structure and its changes 

when children learn to talk, read, write and grow up (Kovelman, 2012). 

There are two main non-invasive neuroimaging methods: the method that measures changes of 

electrical signals in brain activities, electrophysiological, and the other that measures changes in 

blood flow of the brain, hemodynamic  (Kovelman, 2012). Because electrical signals are fast, thus 

electrophysiological methods, such as electroencephalography (EEG) and 

magnetoencephalography (MEG), provide excellent temporal resolution (milliseconds). However, 

such methods are much weaker than hemodynamic methods in terms of spatial resolution due to 

the uncertainty of the location of ERP sources (Luck, 2005). Thus, such methods like ERP are better 

for research on the temporal aspect of neural activities, not for spatial, location aspect of brain 

activities.  

On the other hand, hemodynamic measures such as fMRI, PET and fNIRS (functional Near-Infrared 

Spectroscopy) are limited by the blood-oxygen-level dependence (BOLD) response. Thus 

hemodynamic methods are poorer temporal resolution compared to ERP, range from 2 to 5 seconds 

(Friston, 2009). However, hemodynamic measures produce a much better spatial resolution 

compared to ERP, as blood flow changes are slow and sustained. That makes hemodynamic a well-

suited method for researching on the location of neural activities  (Kovelman, 2012). 

Out of those conventional neuroimaging methods, EEG is the most commonly used method for BCIs 

(Nicolas-Alonso & Gomez-Gil, 2012; Ramadan & Vasilakos, 2017). EEG method is non-invasive, 

requires relatively cheap hardware, provides high portability and is safer to users. These are very 

important as one of the issues with applying BCI in real life is that existing systems are usually 

complicated, expensive and not at a portable level that is convenient to physically disabled users 

(Figure 1). 

2.1.3. Brain signals classifications 

The brain control signals can be classified into some main types: Spontaneous Signal, Visual Evoked 

Signal (VEP) and Hybrid Signal (Ramadan & Vasilakos, 2017). Spontaneous Signals are the brain 

signals that are generated without external stimulations. Motor and sensorimotor rhythms, Slow 

Cortical Potentials (SCP) and Non-motor cognitive tasks are some of the most recognised 

Spontaneous signals (Ramadan & Vasilakos, 2017).   
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On the other hand, VEP refers to the brain signals that get generated unconsciously when there are 

external stimulations to the human body. P300 and Steady-state Evoked Potentials (SSEP) are some 

well-known VEPs (Ramadan & Vasilakos, 2017). P300 is the brain signal elicited approximately 

300ms after the subject attends to an infrequent stimulus (Birbaumer et al., 1999; Sutton et al., 

1965). P300 and P300-based BCIs will be discussed more in depth in Section 2.2.4. SSEP refers to 

the steady-state responses that are elicited when attending to external stimuli, can be visual, 

auditory or somatosensory stimuli (Bera, 2015; Pritchard, 1981). A steady-state visual evoked 

potentials (SSVEP) BCI typically asks users to attend on one of the visually flickering items, e.g. boxes 

of letters on screen. SSVEP-based BCI has gained more and more attraction recently, thanks to its 

less demanding on user-training and high information transfer rate (ITR) (Chen et al., 2015; Gao et 

al., 2014; Wang et al., 2008). ITR was first described by Wolpaw et al. as a metric to determine the 

performance of BCI systems (Wolpaw et al., 2002). For comparison, the ITR of Farwell and 

Donchine’s P300 Speller (Farwell & Donchin, 1988) was around 30 bits per minute (bpm) (Gao et al., 

2014; Wolpaw et al., 2002), while some SSVEP BCIs can achieve much higher ITR at 105 bpm (Chen 

et al., 2014). 

Different types of signals and their characteristics, advantages as well as disadvantages are 

described in Table 1 below.  

Table 1: Control Signals Summary (Ramadan & Vasilakos, 2017) 

2.1.4. EEG 

As mentioned in section 2.1.2 above, electroencephalogram (EEG) is the most common method to 

record brain waves in BCI systems  (Kovelman, 2012). EEG was first recorded on human by Hans 

Berger in 1924, even though the first findings of electrical activities of the brain on animal were by 

Richard Caton in 1875, Adolf Beck in 1890 (Coenen et al., 2014). EEG is a non-invasive method where 

Table removed due to copyright restriction 
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electrodes are placed on an EEG cap to capture brain signals. Through the electrodes, the voltage 

changes caused by different activities within neurons of the brain are recorded under digital 

waveform as seen in Figure 4.  

Since then there are many studies on EEG and its applications in various fields in medical and 

research (Abiri et al., 2019; Black et al., 2017; da Silva, 1991; Rutkowski, 2016).  

Figure 4: EEG Artifacts Detection (Benito Núñez, 2011) 

Electrodes are placed on an EEG cap (Figure 5) in different positions that expect signals from 

respective brain areas in those locations. Electrodes are typically small devices, usually metal, that 

conduct the pathway for potential electrocortical from the scalp to a recording machine. Electrodes 

can be wired or wireless, can be dry or wet - require some special kind of gel to help boost up the 

signal transmission (Chi & Cauwenberghs, 2010; Grummett et al., 2015; Lopez-Gordo et al., 2014; 

Mathewson et al., 2017). When the electrical waves reach the electrodes on the EEG cap, those 

electrical waves can push or pull electrons on the metal part of the electrodes. Each pair of 

electrodes are connected to a differential amplifier. As the voltages of original brain waves are 

insignificant, those amplifiers magnify the voltages so the output can be recorded. Typically, EEG 

signals of an adult range from 10µV to 100µV (Aurlien et al., 2004). An integrated voltmeter is used 

to measure the fluctuations of push-pull between any two electrodes over a period of time, the 

result of this process is the EEG (Tatum  IV, Do, 2014) as seen in Figure 4. 

Image removed due to copyright 
restriction 
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Figure 5: EEG caps (Marini et al., 2019) 

There are a few international system standards for how to position EEG electrodes to achieve best 

EEG result, such as 10/20, 10/10 or 10/5 systems (Jurcak et al., 2007). While 10/20 system has been 

in use since the early days for a relatively small number of electrodes, 21 (Klem et al., 1999), the 

newer extensions namely 10/10 and 10/5 systems were proposed to solve the problem of having 

many electrodes, up to 81 for 10/10 system and more than 300 electrodes for 10/5 system, and 

higher spatial resolution (Jurcak et al., 2007). Locations of electrodes in 10-20 and 10-10 systems 

can be seen in Figure 6. Electrodes are labelled by the area of the brain that it is positioned to read 

data from, Fp for pre-frontal, F for fontal, T for temporal, P for parietal, O for occipital, C for central. 

“z” is also used for reference or measurement. For numbers, even numbers are for electrodes 

positioned on the right side of the head while odd numbers are for electrodes positioned on the left 

side of the head (Jurcak et al., 2007). It’s worth noting that for extension systems like 10-10 or 10-5 

systems, a new naming system called Modified Combinatorial Nomenclature (MCN) is used to name 

the positions of the electrodes with a few new letters like AF, FC, FT, CP, TP and PO for intermediate 

positions (Acharya et al., 2016). 

As mentioned above, EEG has numerous advantages when compared with other methods such as 

excellent temporal resolution (really fast), more economical as costs for hardware are usually lower 

(Vespa  Paul et al., 1999), completely non-invasive as the electrodes are placed on the cap to be 

worn on the head, not like ECoG electrodes are implanted on the cortical surface of the brain , 

requiring medical operations. However, EEG has its disadvantages and limitations, such as low 

spatial resolution, setup time for the recording takes time as many electrodes need to be cleaned, 

applied gels or pastes and placed onto the precise locations of head areas to maximise accuracy and 

minimise noises of the signals recorded. One more weakness of EEG method is that all the signals 

come through the electrodes, there can be other biological artifacts, or noises produced together 

Image removed due to copyright 
restriction 
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with the stimuli signals, make it hard to differentiate which one is the genuine responses of the 

brain to stimuli. This is known as the signal-to-noise ratio (Schlögl et al., 2002), signal-to-noise high 

means there are too many noises. As such, more efforts for pre-processing and analysing raw data 

coming from EEG method are necessary to extract useful data for the BCI systems. 

Figure 6: EEG electrode 10-20 system (left) and EEG electrode 10-10 system (right) (Benito Núñez, 2011) 

As can be observed in Figure 4, EEG method recording can produce unwanted EEG signals, known 

as EEG artifacts, such as muscular or eye blink artifacts (Burgess & Gruzelier, 1993). This is because 

the electrodes record all the fluctuations in electrical signals happening inside the brain, which may 

contain several undesirable signals from both physiological and extra-physiological sources (Burgess 

& Gruzelier, 1993). Those unwanted signals can be the movement of body parts (muscular artifacts), 

cardiac artifacts or environmental artifacts like power line electromagnetic or fluorescent lights 

(Thorp & Steinmetz, 2008). These noises need to be filtered out so the output EEG signals can be as 

clean as possible to be credible input of BCI systems. 

2.1.5. Independent Component Analysis 

There are several approaches to help with the above problem of EEG artifacts, such as Independent 

Component Analysis (ICA) (Delorme et al., 2001; Whitmer et al., 2010), Principal Component 

Analysis (PCA) (Abdi & Williams, 2010) and regression methods (Makeig et al., 1996). Among those 

Image removed due to copyright restriction 
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approaches, ICA has proven to be more reliable and provide better quality than PCA and regression 

methods (Brown et al., 2001; McMenamin et al., 2010; Plöchl et al., 2012). 

Independent component analysis (ICA) is a signal processing technique to be used as a common 

approach to reduce noises from EEG output by finding the hidden independent components. Using 

ICA can help separate the different components/sources produced in EEG output so that the neural 

and non-neural activities are distinguishable for further processing, typically ignore the non-neural 

activities and only keep neural ones (Delorme et al., 2001).  

2.1.6. Principal Component Analysis 

Principal component analysis (PCA) is a commonly used multivariate technique in EEG processing 

for dimensionality reduction. PCA accomplishes that by analysing the similarities between data 

points from given datasets to extract distinctive information, only keep the important information, 

describe them by inter-correlated quantitative dependent variables and represent them as principal 

components (Abdi & Williams, 2010). After PCA, the data will be represented by a lower dimension 

space, and this helps all further processing and classifications perform faster in both time and space 

(Abdi & Williams, 2010). 

2.2. BCI 

2.2.1. BCI Overview 

Brain-computer interface (BCI) system is a combination of hardware and software to form a 

communication channel between the brain and the outside world without any human interference. 

The first research on BCI was carried out by researchers at the University of California and first 

published in 1973 (Vidal, 1973). It was also the first time the term “Brain-computer interface”, or 

BCI, was used to address the study subject, making its author, Professor Vidal of University of 

California widely accepted as the inventor of BCI. Since then, BCI has become one of the most 

attractive fields in research and science (Haider & Fazel-Rezai, 2017), mostly in laboratories, to help 

people with severe motor disabilities, Amyotrophic Lateral Sclerosis (ALS), cannot move any parts 

of the body. BCI systems support patients by allowing them to use only their brain to “control 

things”, or in more details, use their brain to think or react to some stimulus, then the BCI systems 

pick up the changes in their brain signal via some recording method, pre-process the brain signal 
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data to extract useful features and use machine learning algorithms to predict the commands that 

patients expect. A general diagram of how a BCI system works is described in Figure 7.  

2.2.2. BCI system structure 

One BCI system typically consists of following major parts: signal acquisition and conditioning, 

feature extraction and classification, feedback loop and an external device (Edlinger et al., 2012). 

Signal acquisition refers to the process of recording brain signals (Edlinger et al., 2012). One example 

of BCI system is described in Figure 2, a vibrotactile stimulation hardware with 16 active EEG 

electrodes on an EEG cap, an EEG amplifier and vibrotactile stimulator (six coin motors) on the neck. 

All these hardware and setup are for recording EEG signals through the electrodes on the cap, then 

those EEG signals will be amplified and digitised. The vibrotactile stimulators in this example are 

used for triggering the stimuli, which in turn trigger the responses from the brain. 

Figure 7. Diagram of a BCI system (Wolpaw et al., 2002) 

Image removed due to copyright restriction 
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Signal processing consists of two parts: feature extraction and translation algorithm (Wolpaw et al., 

2002). EEG signals output of the signal acquisition step are the input of this step where the signals 

are passed through to the BCI hardware, usually a computer, with algorithms configured to pre-

process data, remove noises, extract features and train the classifier by the processed EEG data 

(Edlinger et al., 2012). All these steps are done in the machine learning component of the BCI 

system. The output of this step is a digital command to be sent to the external device to perform 

actual actions. 

When the machine learning component produces a predicted digital command, it sends that 

command to the external device so that the device can perform the action that the user wants 

(Edlinger et al., 2012). This external device can be a wheelchair or a screen, and it is pre-programmed 

to respond to actions such as calling a phone number, moving the wheelchair forward or typing a 

character on a screen. 

2.2.3. BCI software platforms 

There exists many publicly available software platforms to support the development of BCI. Some 

commonly used are BCI2000, OpenViBE, TOBI, BCILAB, BCI++, xBCI, OpenBCI and BF++. Those 

platforms include algorithms and modules necessary for BCI systems like data acquisition,  signal 

processing, a wide range of classification and regression methods. A summary of those BCI software 

platforms is available in Table 2.
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Table 2. BCI Software platforms (Ramadan & Vasilakos, 2017) 

Table removed due to copyright restriction 
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2.2.4. P300-based BCI 

P300 Event-related Potentials (ERP) 

P300 ERP was first mentioned by (Sutton et al., 1965) as the positive deflection of voltage in EEG 

recording that occurs approximately 300 milliseconds after a stimulus is triggered (Birbaumer et al., 

1999; Sutton et al., 1965). There have been many research since then on P300 ERP to explore its 

characteristics and further utilise it on studying the human brain, especially to apply in BCIs (Haider 

& Fazel-Rezai, 2017; Hoffmann et al., 2008; Krusienski et al., 2008; Polikoff et al., 1995; Sellers & 

Donchin, 2006). 

P300-based BCIs allow users to interact with BCI systems by responding to external stimuli, either 

visual, auditory or tactile. When the user focuses on the stimulus, the brain signal responses usually 

occurs roughly 300 milliseconds after the stimuli triggered, which can be easily detected on the EEG 

reading. It was observed that in some cases, the latency after the triggering of the stimuli could be 

in the range from 250 to 750 milliseconds (Polich, 2007). 

Oddball paradigm 

As mentioned above, the P300 ERP can be observed from EEG recording, but only when the subject 

focuses (actively engages) in the target. That can be focusing on character “A” on a matrix of 

characters on screen in a Speller system (see Figure 1 for Speller BCI), or focusing on the left-hand 

vibration pad instead of the right-hand vibration pad, depending on the target of the required task. 

How oddball paradigm works is that an infrequent target is presented on top of frequent standard 

stimuli in the background (Polich, 2007). This procedure is referred to as oddball paradigm 

(Kaufmann et al., 2013). When the subject responds to the target stimulus and not the standard 

stimuli, the P300 ERP can be observed by time-locking the target stimulus with EEG signals and 

measuring the amplitude in μV and the latency in milliseconds (Polich, 2007). 

Visual BCIs 

Visual BCIs are more popular and attract more researches compare to the other types. Visual BCIs 

usually work by showing the task on a screen, can be a matrix of characters or a list of images. P300 

Speller BCI is the most used application of Visual BCI where a matrix of characters appears on a 

screen (see Figure 1 for an example of a Speller BCI). The characters then will flash by a group of 

columns and rows (Farwell & Donchin, 1988). User will be asked to only focus and respond on only 
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one character at a time before the BCI system changes to a new one. Figure 8 shows an example of 

P300-evoked EEG signal recorded in P300 Speller system. 

Figure 8: P300-evoked brain signal response measured in P300 Speller system (Yoo, 2017) 

Such Visual BCIs usually achieve higher prediction accuracy than auditory or tactile BCIs (Chang et 

al., 2013). However, it brings up several problems such as it requires patients to look at the screen 

for a long time while scanning the rows and columns. That causes nauseous and makes patients feel 

isolated from the world as they cannot take their eyes off the screen (Brunner et al., 2010), 

especially for Locked-in Syndrome users who are in total paralysis except that they can control only 

vertical eye movement (Bauer et al., 1979). 

Auditory BCIs 

Auditory BCI systems use sound with different volume, pitch and direction as the stimuli (Caglayan 

& Arslan, 2012; N J Hill et al., 2005). User will be tasked to only respond to a specific sound volume, 

pitch, direction or combination of those configurations. Auditory BCIs can solve the gaze-dependent 

problem that Visual BCIs have, but at the current state, auditory BCIs have not reached the accuracy 

level as of Visual BCIs (Chang et al., 2013), even though they are getting more attention in the 

research field (Caglayan & Arslan, 2012; Chang et al., 2013; N J Hill et al., 2005). 

Tactile BCIs 

Tactile BCIs utilise the tactile sensory by having tactors placed on the skin of the body. The stimuli 

are through triggering a touch-like stimulus, e.g. a vibration pad vibrates on the left arm, neck, hands 

(Brouwer & Van Erp, 2010; Kaufmann et al., 2013). User is tasked to focus on a target location (e.g. 

left arm) and ignore the rest. A prominent sub-type of Tactile BCI is Vibrotactile BCI. 

Vibrotactile BCIs 

Image removed due to 
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A vibrotactile BCI uses vibration stimuli to provide feedback through the output of sensors and is 

gaze-independent (Chatterjee et al., 2007), patients do not need to focus continuously on some 

screen but only need to attend to the vibration stimuli (Figure 2). An example of vibration stimuli 

setup is in Figure 17 where four vibration pads are attached on a user’s hand with hardware to 

control the triggering of such vibration. Each pad is programmed as a representation of an action 

the user wants to perform, for example: to spell a character, call a phone number or to move 

wheelchair forward. All the vibration stimuli are recorded and time-locked together with EEG signals 

to generate final EEG datasets to be used in BCI system to detect the EEG signals’ deflections on pair 

with the vibration stimuli. From that, the BCI system can determine which sensor pad the user most 

likely focused on, which translates to which action he wanted to perform. 

2.3. Machine Learning 

2.3.1. Machine Learning Overview 

Ever since the invention of the computer and the rapid development of computational technologies, 

the question “Can machines think?” had been around for centuries. Alan Turing described 

characteristics of a thinking machine and the implications in building such machine in his paper in 

1950 (Harnad, 2006). Even though Arthur Samuel first used the term Machine Learning (ML) in 1959 

(Samuel, 1988), but a more formal and accepted definition of machine learning was from a 

computer scientist named Mitchell at Carnegie Mellon University (Mitchell & Learning, 1997). In 

Mitchell’s definition, “A computer program is said to learn from experience E with respect to some 

class of tasks T and performance measure P if its performance at tasks in T, as measured by P, 

improves with experience E” (Mitchell & Learning, 1997). Machine learning is considered a subset 

of artificial intelligence which utilises various algorithms to build a model using training data, to 

achieve the outcome of making predictions while there is no explicit command programmed to 

perform the task (Bishop, 2006; Samuel, 1988). 

An example of machine learning is to determine if an image is a dog or a cat. A selection of images 

of dog and cat will be collected for the training purpose. There are several types of training such as 

supervised learning where the training data contains both the image and its label (cat or dog); 

unsupervised learning where the training data only contains the image, not the label; or semi-

supervised learning where the training data is incomplete, a part of the data does not have the 

output with it. Each training method works differently, but the common output is that the input 
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data set is provided so that machine learning algorithms can create a mathematical model. This 

model can predict if any future input image will be a dog or a cat with some probability level in 

percentage. See Figure 9 for an example of a machine learning algorithm applied in a mobile 

application to predict if an image is a dog or a cat. 

Figure 9:  An example from an implementation of Machine Learning in an iOS application by the author to 

classify whether an object in an image is a dog or a cat. The machine learning algorithm predicted a Dog 

from the example image with probability 100% 

Machine learning and data mining are two terms that usually confuse many adopters and 

researchers who show interest in the artificial intelligence area. They share some commonalities 

such as they use roughly the same methodology to produce the result, including pre-processing 

input data, using algorithms to classify data and create a model using the training data and finally 

yield the prediction or decision result. Machine learning uses some of data mining methods for 

unsupervised learning, and data mining also uses various machine learning methods. However, 

there are a few fundamental differences between the two in the goal and knowingness of the 

training data. Data mining works with unknown features (properties) from the training data and 

focuses on the discovery part . The knowledge and relationships between objects, properties in data 

mining data set are usually not yet defined, hence the need to discover any useful information that 

can infer how two or more properties of the data link to the others. On the other hand, machine 

learning works with known features to reach the goal of delivering a prediction or decision. 

Machine learning and its applications have been growing dramatically in numerous fields, including 

both science and commercial usage. Some applications include computer vision to recognise text 

and object from image, video; speech recognition to transcribe speech (audio) to text, even 

translate in real-time; detect credit card fraud, behaviour forecasting, and much more. Almost all 

industries make use of machine learning at some level to perform predictive analysis tasks to assist 
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in making faster, better decisions. Agriculture uses Precision agriculture concept to optimise 

decision support system (McBratney et al., 2005). Financial markets use predictive modelling system 

to predict prices or trading (Qiao & Beling, 2016). BCI systems use machine learning to translate 

brain signals to digital commands to control external devices to help patients with severe motor 

function disability, like a P300 Speller system (Figure 1). With the growth of technology and the era 

of Big Data, more and more massive datasets with both structured and unstructured data need 

machine learning to generate useful predictive analysis. 

Some more examples of Machine Learning being used in nowadays daily life are Google Mail’s spam 

detection. Complicated machine learning algorithms are used by Google engineers to classify if one 

coming email is considered a spam email or not and send it to the junk folder if the predicted 

outcome is yes. Google Mail even learns from user’s behaviour and decisions, that if it detected an 

email as spam but user later un-spams it, the algorithms take this decision as new input for training 

the model. Another application of machine learning that people use every day is the intelligent 

assistant on most iPhones, Siri. The machine learning algorithms are well integrated into Siri service, 

users only need to talk to Siri, and it intelligently and correctly recognises the commands, even 

though the voice commands can be different each time. For example, “What time is it”, “tell me 

time”, “what is the current time” all can be understood the same way by Siri. All these are possible 

by using machine learning techniques. In the e-commerce websites, one thing surfers will usually 

see is a “Recommendation List” section or “Inspired by your browsing history” list as Amazon.com 

names it. In this section, the websites based on the user’s web activities (how long they stay in one 

page, scroll how many times, the mouse is in which area of the website, visited which types of 

products) then use machine learning algorithms to analyse and predict the list of products with high 

probability that users will purchase. 

2.3.2. Machine Learning Paradigms 

There are typically three main types that are being used widely: supervised learning, unsupervised 

learning and reinforcement learning: 

Supervised learning 

Supervised learning means the input data set, or training data set, are labelled with the expected 

outcome. With both input X, output Y provided and the label mapping from X to Y before the 

learning, the task of a supervised learning model is to learn the “how” of the mapping in order to 
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infer the testing data set (Alpaydin, 2014). Take the example in Section 2.3.1 about machine learning 

algorithm to predict an image is a dog or a cat. For supervised learning, the training set will include 

both the images of dogs and cats, together with the labels clearly stating each of the images is a dog 

or a cat. The outcome is included in the training data set. The classifier learns that to create the 

predictive model. Then this new model can be used to predict and tell if any new image is a dog or 

a cat (Figure 9). Supervised learning algorithm includes classification for use when an object needs 

to be categorised into a specific group of a set of groups, and regression for when estimating a 

relationship between a dependent variable and at least one independent variable (Alpaydin, 2014). 

Unsupervised learning 

On the contrary to supervised learning which has all the objects labelled, unsupervised learning 

does not have the outputs, just the objects. From the objects, unsupervised learning algorithms 

analyse the data, find similarities and categorise data into groups or clusters (Alpaydin, 2014). Base 

on such identified similarities and categorised clusters, new objects are analysed and predicted 

based on how many similarities they share with the predictive model. In unsupervised learning 

methods, data mining techniques are usually employed to analyse data to find hidden patterns or 

unknown relationships between properties of data. 

One interesting example of unsupervised learning model is finding the most potential group of 

customers from an e-commerce website’s data (Alpaydin, 2014). The website has information on 

customers, their transactions history and their buying behaviours. In this case, there are no clearly 

defined outputs such as finding the top age range or top cities of the customers. The task of the 

unsupervised learning model is to analyse all that information and to find the hidden relationships 

between all the demographic information and purchasing behaviours (Alpaydin, 2014). It can be 

customers who are in a specific age group, are working in a specific occupation, living in a specific 

part of the city, or any combination of those with any other information.  

Reinforcement learning 

Another machine learning model is reinforcement learning where the output is not a labelled class 

or clusters of data input but a sequence of actions. In this case, the outcome of a sequence of actions 

is more important than one single action alone (Alpaydin, 2014). One interesting application of 

reinforcement learning is Game playing, chess game, for example. The rules of chess game are 

simple to play, but the vast number of possibilities that each move can generate make it difficult for 
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algorithms to play well. After every move, the algorithms will have to calculate all the possible 

moves after that and the likely outcomes towards winning or losing. That process repeats after each 

turn because the game state can change dramatically after that turn. In such case, the 

reinforcement learning model needs to calculate all possible moves ahead not just one single move 

and choose the best outcome towards winning. 

2.3.3. Machine learning popular algorithms 

As a result of learning from the training dataset, a mathematical model is created to make 

predictions. There are different ways the machine learning models can be created by how they 

interact with the input data and how the learning process is. Below are some commonly used 

machine learning algorithms. 

Linear Regression 

Linear regression models relationship between a dependent variable 

and independent variables by a linear approach (Stigler, 1981). The 

simplest case is simple linear regression when there is only one 

predictor (independent) variable and only one response (dependent) 

variable (Godfrey, 1985). When there are more than one predictor 

variables, the multiple linear regression can be used to analyse the 

relationship among those independent variables and predict the 

response approach (Breiman & Friedman, 1997). 

Logistic Regression 

Logistic regression uses a logistic function to model the relationship between a categorical response 

variable and predictor variables (Berkson, 1944; Cramer, 2002). An example is to predict if it will 

rain tomorrow. This is a binary logistic regression where the response variable only has 2 possible 

values: rain or not, pass or fail grade, a picture of cat or dog, etc. There are other types of logistic 

regression: multi-nominal logistic regression and ordinal logistic regression. For multi-nominal 

logistic regression, categorial response can be of 3 or more possible values and there is no ordering 

among the values (Cramer, 2002). Some examples include predicting what character from a 

handwriting or predicting what University a student will choose based on his/her age, gender, 

average grade. In those cases, there is no ordering among the response values. However, for ordinal 

logistic regression, categorical possible values are in order (Cramer, 2002). Predicting the rating a 

Figure 10. Regression Algorithms 

(Brownlee, 2019) 
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consumer will rate a restaurant (1-10) or predicting the final exam grade (High Distinction, 

Distinction, Credit, Pass, Fail) are some examples of ordinal logistic regression. 

Decision Tree 

Decision tree learning takes use of a decision tree data structure as a 

predictive model to reach the prediction (Breiman, 1984; Friedman et 

al., 1996). A decision tree is an organisation of tree-like items that 

includes all the decisions and their outcomes, including chance events, 

costs (Breiman, 1984). It represents a path from general to more 

specific conditions, like the way that humans make decisions. In a 

decision tree, all options, events and chances are nicely visualised, 

make it easy for the new prediction to walk through the tree step by 

step (Kretowski, 2019). Given its intelligibility and simplicity, decision trees are ranked one of the 

most popular machine learning and data mining algorithms (Holzinger, 2015; X. Wu et al., 2008). 

Random Forest 

Random Forest is an ensemble machine learning method which produces the output (either for a 

classification or regression problem) by constructing a multitude of many decision trees and 

aggregating those decision trees (Ho, 1998, 1995). In Random Forest, random sampling of subsets 

of data are used and processed in parallel, called Bagging, whereas in the other ensemble technique, 

Boosting, one decision tree learns from one other tree to determine the features and the prediction 

results (Breiman, 1996; Ho, 1995; Opitz & Maclin, 1999).  

Bayesian Algorithms 

A Bayesian Network is also referred to by Bayes Network, Belief 

network or probabilistic directed acyclic graphical model. A Bayesian 

Network bases on several inter-influential variables and predicts the 

result based on probabilities (Bell, 2020). For example, a Bayesian 

network can be used to predict the probabilities of some diseases 

based on some set of symptoms.  

SVM (Support Vector Machine) 

Figure 11. Decision Tree 

Algorithms (Brownlee, 2019) 

Figure 12. Bayesian Algorithms 

(Brownlee, 2019) 
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SVM works by using the input dataset to teach the algorithm to classify unseen data point. Input 

dataset will be classified into classes by plotting as points in a n-dimension space (with n being the 

number of features of the dataset) and finding a hyperplane to separate the data points of different 

classes (Boser et al., 1992; Cortes & Vapnik, 1995; Drucker et al., 1997). SVM algorithms are widely 

used in various applications such as text categorisation, hand-writing recognising, image 

classification, stock market forecast (Anaissi et al., 2017; Fu et al., 2014; Hao et al., 2009; Z. Li et al., 

2002; Qi et al., 2014; X. Wu et al., 2008; M.-D. Yang et al., 2010).   

K-Nearest Neighbours (KNN)

K-Nearest Neighbours (KNN) algorithm works by storing all the input

data points and classifying the new unseen data directly by the closest

class among its nearest k input data points (neighbours) (Altman, 1992;

Dudani, 1976; Y. Yang, 1999), hence the name. Due to its nature of not

pre-training data, KNN consumes large computational power when

classifying new data and may have bias problem if the class distribution

is heavily unbalanced (John Lu, 2010). However, normalisation the

input data and assigning weights to each point based on its distance to

the new point can help improve its accuracy and performance

considerably (John Lu, 2010).

Dimensionality Reduction Algorithms 

Dimensionality Reduction algorithms’ task is to reduce the number of 

features, or variables, before going through the fitting and training 

process (Alpaydin, 2014). The input data may have too many variables 

that are not correlated to the problem. Therefore, they are redundant 

and should be removed. By doing that, the more important features that 

correlate and contribute to the classification or regression problem are 

kept. Some popular dimensionality reduction algorithms include 

Independent component analysis (ICA) and Principal component analysis 

(PCA) which are discussed in sections 2.1.5 and 2.1.6 respectively. 

Gradient Boosting 

Figure 13. K-Nearest 

neighbours algorithm 

(Brownlee, 2019) 

Figure 14. Dimensionality 

Reduction Algorithms 

(Brownlee, 2019) 
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Like Random Forest, Gradient Boosting is an ensemble machine learning algorithm and it works by 

combining the results of other estimators/prediction models to produce a better one. However, 

while Random Forest builds model through independent trees, Gradient Boosting adds a weak 

model iteratively to a stage-wise additive model to continuously optimise/minimising loss function 

(Friedman, 2001; Mason et al., 2000). Gradient Boosting follows greedy approach, once a new weak 

model is added, all previous models stay untouched and are never changed again.  

Artificial neural network (ANN) 

Artificial neural network (AAN) models how the neurons in a brain connect and work with each 

other. Hecht-Nielsen defined AAN as “a computer system made up of a number of simple, highly 

interconnected processing elements, which process information by their dynamic state response to 

external inputs” (Hecht-Nielsen, 1989). The AAN network is essentially a network of inputs and 

outputs, much like the neurons in a brain connecting with each other, forming tens of billions of 

interconnected structures (Bell, 2020). Artificial neural networks are used for a variety of different 

tasks due to its capacity to process large data volume with high speed such as computer vision, 

speech recognition or medical diagnosis (Bell, 2020).  

One popular approach takes use of AAN is Deep learning, which comprises of multiple hidden layers 

in an AAN (Lee et al., 2009). 

Figure 15. Left: Artificial Neural Network Algorithms. Right: Deep Learning Algorithms (Brownlee, 2019) 

2.4. Machine learning in BCI 

In EEG-based BCIs, the training data set is the recorded EEG signals. These signals contain both EEG 

signals and different noises such as muscle signals, eye movements, outside sounds, changes in 

environment, electricity background noise (Selim et al., 2009; Vidal, 1973). Classifying these mixed 

signals is a challenging problem, not just because of the noises but also because the signals vary 
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from subject to subject. It means some subjects produce EEG signals clearer than others. That causes 

issues for the machine learning algorithms as the training data is either too noisy or too biased, 

underfit or overfit. To deal with this problem, various techniques have been employed to process 

and classify raw EEG signals.  

For the motor-imagery BCIs, one important part of processing data is to determine the 

spatiotemporal filters which later will be used as feature extractors (Müller et al., 2008). Common 

spatial pattern (CSP) is the most commonly used and very efficient algorithm for this exact purpose. 

To get to that point, CSP has attracted a lot of research effort on extending and improving the 

algorithm (Lemm et al., 2005; Ramoser et al., 2000; Tomioka et al., 2007). CSP algorithm works by 

finding and separating multivariate signals into subcomponents which maximise the variance of 

signals of one condition and minimise variances of another (Koles et al., 1990).  Using CSP, Ramoser 

et al. were able to get an accuracy level of more than 90% on single-trial EEG measurements in a 

motor-imagery-based BCI (Ramoser et al., 2000). 

However, (J. Li & Zhang, 2010) pointed out that CSP does not work well with EEG classification 

problems in motor-imagery BCIs. Li & Zhang listed a few shortcomings, most importantly that CSP 

is more a decomposition technique than a classification one, and CSP usually requires a large 

number of channels, which is not ideal. Li & Zhang also proposed a new tensor-based scheme to 

help with the discriminative feature extraction. In their proposal, a regularised tensor discriminant 

analysis (RTDA) algorithm is used to extract multi-way subspace from EEG data. The result was 

auspicious that the number of used channels can be reduced to only two channels with close to 

lossless in performance (J. Li & Zhang, 2010). 

Even though various researches have been done to test the effectiveness of motor-imagery BCIs 

and have some positive results (Kübler et al., 2005; Lemm et al., 2005; J. Li & Zhang, 2010; 

Pfurtscheller & Neuper, 2001), motor-imagery BCIs didn’t work well with subjects who were 

completely locked-in according to research done by (N Jeremy Hill et al., 2006). There are more and 

more efforts spent on the P300 event-related potential control-signal to improve detection ability 

or develop new applications (Krusienski et al., 2008; Piccione et al., 2006; Polikoff et al., 1995; Sellers 

& Donchin, 2006). Hoffmann et al. in 2008 tested a P300 paradigm using six different images flashing 

and various number of electrodes (4, 8, 116, 32) (Hoffmann et al., 2008). The authors used Bayesian 

Linear Discriminant Analysis (BLDA) and Fisher’s Linear Discriminant Analysis (FLDA) as classifiers. 

Even though FLDA, due to the small sample size problem, showed poorer result compared to BLDA, 
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but both of the classification methods still achieved relatively higher than other P300 BCI systems 

for disabled users. Hoffmann et al. also tested the predictions with various configurations for 

electrodes, with 4, 8, 16, and 32 electrodes. For FLDA, accuracy slightly decreased when there were 

more than 8 electrodes in use. On the opposite, BLDA algorithm saw a small increase when there 

were 16 or 32 electrodes. 

Borghini et al. even though did not test as low as 8 electrodes, but also proved that decreasing the 

number of electrodes from 64 down to 19 and the accuracy outcome still maintained of 99% 

(Borghini et al., 2014).  Research done by Fukuzumi et al. also followed this approach and found that 

from the 32 electrodes, only 7 electrodes had remarkable reactions to evoked related potentials, 

CP5, CP6, T5, T6, PO3, PO4 and any one electrode in the remaining. It means that dataset from only 

7 electrodes should be enough for the training and classification purposes (Fukuzumi et al., 2014). 

To summarise from these results, it is proven that for P300-based BCIs, the number of electrodes 

can be as low as 8 and still can achieve good enough accuracy. 

One of the advantages that P300-based BCIs have over other BCI systems is that it requires less time 

of the subjects in training. A patient with disabilities on a wheelchair, they communicate with the 

wheelchair by a BCI system. They will not want to wait for minutes or hours while the system 

processes data, trains the model, gives prediction then executes commands to move the wheelchair 

forward or backward. Applications like this require a BCI system to be fast in real-time without 

significant delay or long training period. Variety of researches have been pushing the theory and 

practical applications of single-trial extraction (Daly et al., 2010; Hoffmann et al., 2008; Lelievre et 

al., 2013; Müller et al., 2008). The results have been promising. Lelièvre et al. used linear support 

vector machine (SVM) classifier in a single trial P300 classification on a moving sound stimuli BCI; 

and achieved significantly higher accuracy in comparison with the classic stepwise linear 

discriminant analysis (SWLDA) classifier (Lelievre et al., 2013) (see Figure 16). 
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Figure 16: Single-trial BCI-Speller classification using Linear SVM classifier 

vs classic SWLDA classifier (Lelievre et al., 2013) 

In the vibrotactile BCI field, Yao et al. conducted an interesting experiment to test the performance 

between imagined sensation and vibrotactile stimuli BCI systems where one group of subjects 

performed some task (focus attention on a particular body part) with assistant from actual 

vibrotactile stimulation. The other group performed the task totally by imagining it, there was no 

stimulation involved (Yao et al., 2019). The result indicated that the subjects who imagined, or 

thought, recorded a comparable accuracy with the group with actual stimulation, both reached 

75%. The advantage of imaged-sensation-based BCIs is that it is free and independent from 

stimulation. Users only need to imagine or think about it. The result of this research can be the 

foundation for future research to improve the accuracy further and make more applications out of 

this new BCI paradigm. 

Even though the study above suggests some interesting direction for future approach, but more 

studies need to be undertaken to prove its reliability before there can be real-life applications. Up 

to date, there are not many studies on vibrotactile stimulation BCI systems. One of the reasons may 

be that visual P300 type is easier to engage and because P300 visual Speller is the most popular 

application of P300 BCIs. However, for P300 Speller system, users must look at the screen for a long 

period. After some time, users can get fatigued or tired because of too much eye movement. That 

gives opportunities for future research to work more on vibrotactile P300 BCIs, especially in the 

machine learning perspective. 

Image removed due to copyright restriction 
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3. METHODOLOGIES

3.1. Original Vibrotactile BCI approach 

As mentioned in Section 1, the original idea behind this study was to explore machine learning 

aspect of vibrotactile BCIs. The procedure of the research was described in Figure 18. 

The recording of EEG was planned to take place in Flinders University Laboratory facility inside a 

Faraday cage (see Figure 17). Vibration tactors would be placed on the subject’s arm. The 

monitoring/capturing hardware and the computer outside of the cage would capture the data 

coming from inside the cage. This setup would allow monitoring and recording EEG data for the 

experiment with as little as possible contamination to the data. After that, EEG signals recorded and 

time-locked with vibration triggers would be recorded in Matlab application (Matlab, The 

Mathworks, Natick, Massachussetts, USA). The output of this process would be “.mat” files 

containing the EEG recorded together with mapping labelled targets/nontargets to be used as 

training datasets for machine learning algorithms. 

Figure 17. Left: Signal acquisition setup in Faraday cage located at Flinders University. 

Right: Placement of vibration tactors on subject’s arm 

The focus of this study was to use machine learning algorithms to explore EEG signals and build 

prediction models to predict the correct tactor that the subject paid attention to. As mentioned in 

Section 1 about the Covid-19 situation preventing the research team from carrying out such Signal 

acquisition, the P300 Speller datasets were used because they share the same data type “.mat” and 
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the analysing and processing of the EEG data would be closely related since they both base on P300 

oddball paradigm. 

Figure 18. BCI research Steps. Icon made by Smashicons, Freepik from www.flaticon.com 

3.2. About P300 Speller datasets 

In the experiment carried out for the BCI Competition III dataset II (http://bbci.de/competition), 

BCI2000 system was used for signal acquisition of two subjects A and B when performing task on a 

Speller BCI. The task was to spell the given word one character at a time by focusing on each 

character out of 36 characters appeared in a matrix. For each character, each column and row of 

the matrix 6x6 was intensified (flashed) randomly at a rate of 5.7Hz. The 12 intensifications for each 

character (6 columns, 6 rows) were repeated 15 times. After that, the screen was blank (no 

intensification) for 2.5 seconds to let the subject know that character was done and prepare to focus 

on the next character. 

The P300 Speller datasets contain training and testing datasets for each subject in Matlab “.mat” 

format. The training set is for the task of spelling 85 characters and the testing set is for the same 

task with 100 characters. The training dataset contains the correct label in the “TargetChar” variable. 

In contrast, the testing dataset doesn’t. However, we downloaded the true labels results from the 

Competition website to calculate the accuracy of predictive models on the testing datasets. 

The recorded data used 64-channel EEG cap following 10-20 system (see Figure 6), was bandpass 

filtered from 0.1-60Hz and then digitised at 240Hz. The details about P300 Speller datasets can be 

seen in Appendix A: P300 Speller BCI Competition Dataset. 
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3.3. Results analysing 

The output of this study is a machine learning application architecture with classification results to 

predict the characters from the P300 Speller testing datasets. Since we have the true labels of both 

training and testing datasets, the accuracy will be calculated by comparing the number of correct 

characters predicted with the true labels in percentage. For example, if the predicted labels are 

“HEPVO” and the true labels are “HELLO”, there are 3 correct characters out of total 5 characters, 

so the accuracy is 3/5 = 60%. 

3.4. Software and tools 

Python is amongst the most popular programming languages, and a dominant choice for machine 

learning (Shukla & Parmar, 2016; Unpingco, 2019).  Scikit-learn is a free Python package providing a 

wide range of machine learning algorithms, data analysing and processing in neuroscience 

(Pedregosa et al., 2011; Scikit-Learn, n.d.; Unpingco, 2019). 

Wyrm is an open-source Python toolbox that provides convenient methods for faster and easier BCI 

development (Venthur et al., 2015).  This study used many supporting methods from this toolbox 

for loading EEG, data segmentation and pre-processing. 

The wyrm Python toolbox (hereinafter referred to as Wyrm) provides its own implementation of 

LDA classifier. We will use this LDA classifier as exploration following the examples given in its official 

Github repository (https://github.com/bbci/wyrm) and then compare with some other classifiers 

from Scikit-learn. 

4. EXPERIMENTS

4.1. Data pre-processing 

The EEG data are loaded using Wyrm’s loading method. After loaded, the data are converted to 

Wyrm’s Data type which is a series of continuous EEG stream in {time, channel} format with position 

of the stimuli in the data stream marked. The markers are based on the “Flashing” data from the 

dataset. A 5th order Butterworth bandpass 30Hz low-pass filter is used to remove unwanted EEG 

artifacts (Zhu et al., 2010). 
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To process further, this continuous data stream needs to be segmented to epochs of 700ms. Here 

we picked 700ms because even though the ERP responses occur approximately 300ms after the 

onset of stimulus, this delay varies from 250ms to 750ms due to many factors (Polich, 2007).  Figure 

19 plots the P300 ERP in 2 channels FCz and Cz where the deflections are prominent after a delay of 

around 280ms-300ms after stimulus onset (time = 0). 

Figure 19. P300 ERP from the EEG training datasets 

Next step is to reduce dimensionality using PCA. Using Scikit-learn support to create a PCA with 

configuration to retain 95% of the variance. Only training datasets are used for feature reduction. 

The classifiers will be tested in several experiments: with PCA, without PCA, and for each 

with/without PCA, perform training on 64 channels, 8 channels (FCz, C3, Cz, C4, CP1, CPz, CP2, Pz) 

and single channel Cz. 

Table 3. Dimensionality reduction with PCA for each subject. 

For a/b (-x%): a is the number of features after reduction, b is before reduction, x is the percentage of 

features reduced. 

Channels used Subject A Subject B 

64 channels 132/896 (-85%) 87/896 (-90%) 

8 channels 21/112 (-81%) 21/112 (-81%) 

Cz channel 8/14 (-43%) 8/14 (-43%) 
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4.2. Classifications 

For classification, the classifiers used for exploration are listed in Table 4. The reason we picked 

those classifiers is they are among the most commonly used in machine learning. The last one is 

Wyrm’s LDA while the rest we use built-in support from Scikit-learn. 

Table 4. Classifiers used 

Classifiers used Configurations 

GradientBoostingClassifier learning_rate=0.1 

AdaBoostClassifier n_estimators=100, random_state=0 

KNeighborsClassifier k = 3 

DecisionTreeClassifier 

Default scikit-learn configurations: 
criterion='gini', splitter='best', max_depth=None, 
min_samples_split=2, min_samples_leaf=1, 
min_weight_fraction_leaf=0.0, 
max_features=None, random_state=None, 
max_leaf_nodes=None, 
min_impurity_decrease=0.0, 
min_impurity_split=None, class_weight=None, 
ccp_alpha=0.0 

RandomForestClassifier n_estimators=100 

LinearDiscriminantAnalysis solver='svd' 

QuadraticDiscriminantAnalysis 
Default scikit-learn configurations:  
priors=None, reg_param=0.0, 
store_covariance=False, tol=0.0001 

LinearSVC max_iter=10000 

SVC C=10,  gamma='auto' 

Wyrm-LDA Use shrinkage covariance estimation 

Same subject training is the focus of this study; thus, the training dataset of each subject is used to 

train the classifiers of that subject. The predicted result of each classifier is used in combination with 

other 14 intensification outputs (each row or column is intensified 15 times) to choose the most 

probable row and column that subject paid attention to. From the predicted row and column, the 
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predicted letter can be extracted from the letter matrix 6 rows x 6 columns. For each character, 

prediction result for each intensification (repetition) is calculated based on the features of all past 

intensifications of that character. For example, there are 15 intensifications (of randomly 

intensification 6 rows and 6 columns) for character “A”, the prediction result for the 5th 

intensification is calculated using features of all intensifications from the 1st to the 5th intensification. 

80% of data from training set are used for training the classifiers, then the classifiers are tested 

against the whole training dataset and testing dataset in several configurations: with PCA, without 

PCA, use 64 channels, 8 channels (FCz, C3, Cz, C4, CP1, CPz, CP2, Pz) and single channel (Cz). The 

charts comparing classifiers are provided below, details will be discussed in Section 5. 

4.2.1. With PCA 

Use all 64 channels 

For training dataset of subject A, Decision Tree, SVC and Random Forest classifiers produced the 

highest accuracy, 100% only after 4 repetitions. First repetition (single trial), those 3 classifiers got 

more than 50%. On the other hand, LDA (Scikit-learn), LinearSVC and Gradient Boosting produced 

poor results, around 10-15%.  

Figure 20. Classifiers Accuracy on Training dataset Subject A, 64 channels, with PCA 
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However, when testing against the Testing dataset, LDA (Wyrm) was the best classifier at 82% while 

the rest performed poorly, less than 20%, some are 5% or less (RandomForest, LinearSVC, 

KNeighbors). 

Figure 21. Classifiers Accuracy on Testing dataset Subject A, 64 channels, with PCA 

Like subject A, Decision Tree, SVC and Random Forest, together with QDA are the best classifiers 

when training with subject B training dataset. For subject B testing dataset, LDA (Wyrm) achieved 

72%, considerably higher than all other classifiers (below 20%). 

Figure 22. Classifiers Accuracy on Training dataset Subject B, 64 channels, with PCA 
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Figure 23. Classifiers Accuracy on Testing dataset Subject B, 64 channels, with PCA 

 

Use 8 channels 

 

Figure 24. Classifiers Accuracy on Training dataset Subject A, 8 channels, with PCA 
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Figure 25. Classifiers Accuracy on Testing dataset Subject A, 8 channels, with PCA 

 

 

Figure 26. Classifiers Accuracy on Training dataset Subject B, 8 channels, with PCA 
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Figure 27. Classifiers Accuracy on Testing dataset Subject B, 8 channels, with PCA 

Use single channel (Cz) 

Figure 28. Classifiers Accuracy on Training dataset Subject A, single channel Cz, with PCA 
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Figure 29. Classifiers Accuracy on Testing dataset Subject A, single channel Cz, with PCA 

Figure 30. Classifiers Accuracy on Training dataset Subject B, single channel Cz, with PCA 
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Figure 31. Classifiers Accuracy on Testing dataset Subject B, single channel Cz, with PCA 

 

4.2.2. Without PCA 

Use all 64 channels 

When using all 64 channels and without PCA, the number of features is large, the space and time 

needed to train and test models were significantly longer than when having lower number of 

features by PCA.  
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Figure 32. Classifiers Accuracy on Training dataset Subject A, 64 channels, without PCA 

Figure 33. Classifiers Accuracy on Testing dataset Subject A, 64 channels, without PCA 
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Figure 34. Classifiers Accuracy on Training dataset Subject B, 64 channels, without PCA 

 

 

Figure 35. Classifiers Accuracy on Testing dataset Subject B, 64 channels, without PCA 
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Use 8 channels 

Figure 36. Classifiers Accuracy on Training dataset Subject A, 8 channels, without PCA 

Figure 37. Classifiers Accuracy on Testing dataset Subject A, 8 channels, without PCA 
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Figure 38. Classifiers Accuracy on Training dataset Subject B, 8 channels, without PCA 

 

 

Figure 39. Classifiers Accuracy on Testing dataset Subject B, 8 channels, without PCA 
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Use single channel Cz 

 

Figure 40. Classifiers Accuracy on Training dataset Subject A, channel Cz, without PCA 

 

 

Figure 41. Classifiers Accuracy on Testing dataset Subject A, channel Cz, without PCA 
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Figure 42. Classifiers Accuracy on Training dataset Subject B, channel Cz, without PCA 

Figure 43. Classifiers Accuracy on Testing dataset Subject B, channel Cz, without PCA 
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5. DISCUSSION 

It is evident that LDA (Wyrm) classifier produced the best results in all cases. The highest accuracy 

achieved is 94.5% on average of both subjects when not doing PCA after 15 repetitions. When doing 

PCA, the highest accuracy is 76% and 72% for subject A and B respectively after 15 repetitions. 

Applying PCA to reduce dimensionality causes the prediction performance to be slightly lower than 

without applying PCA, however still in the acceptable range. Applying PCA helped reduce the feature 

dimensionality (see Table 3) which improved the time and memory space needed to classify data 

(Abdi & Williams, 2010). This study performed offline BCI therefore the need for saving time and 

memory may not be critical. However, for online BCI systems where shorter calibration time is 

needed (Zhu et al., 2011), features dimensionality reduction has proven to be useful (Lenhardt et 

al., 2008; D. Wu, 2017). 

The BBCI competition on the same P300 Speller datasets with accuracy after 15 repetitions are 

96.5%, 90.5% and 90% respectively1. Comparing to those results, LDA (Wyrm), at 94.5%, performed 

very close to the 1st winner. Interestingly, while our Linear SVM reached an average of 73% without 

PCA and only 4.5% with CPA, the 1st winner’s model used Linear SVM could achieve 96.5%2. Alain 

Rakotomamonjy, author of the 1st winner model, performed a channel selection to pick the best 

channels susceptible to P300 ERP out of 64 channels. The result highlights the importance of channel 

selection procedure to eliminate spurious channels, reduce number of features while increase 

recognition performance, which will be clearer when we consider the accuracy results of 8 channels 

and 1 channel. 

When performing the tests with only 8 channels or 1 channel (Cz), LDA (Wyrm) classifier also 

reached significant scores compared to other classifiers. For single channel (Cz), it scored 76% and 

75% for subject A and B respectively. For 8 channels, it scored 60% for subject A but only 3% for 

subject B, indicating that some of 8 channels did not perform well for subject B and should be 

 

1 http://www.bbci.de/competition/iii/results/index.html#albany 
2 http://www.bbci.de/competition/iii/results/albany/AlainRakotomamonjy_desc.txt 
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removed from classification. Channel selection approaches mentioned by (Colwell et al., 2014; 

Khairullah et al., 2020) can be used in future research to help improve this situation. 

However, some classifiers like Random Forest, AdaBoost or Gradient Boosting did not perform well. 

While they may perform relatively well against training dataset, they got notably low accuracy 

scores when predicting the testing dataset. When performing on 8 channels and 1 channel (Cz), the 

performance dropped significantly for both with PCA and without PCA. This could be due to the 

unbalanced weighted features problem among channels, suggesting that the 8 selected channels 

may not be the set of channels that gives the best performance. (Colwell et al., 2014; Khairullah et 

al., 2020) have conducted studies into this channel selection problem and their approaches can be 

used in this study to select the most performant channels. However, the focus of this study is to 

explore machine learning aspect of BCI system and try out different classification methods, thus 

future research is needed to investigate the issue and improve the accuracy for single trial cases and 

fewer than (or maximum) 8 channels.  

The gap between prediction results against Training and Testing datasets can be seen across almost 

all classifiers. Many of classifiers performed well against training set but did very poorly against the 

testing dataset. One possibility is that classifiers are overfitted, meaning the models have too many 

parameters that correspond too closely to the training dataset, therefore they cannot predict future 

data reliably (Dietterich, 1995; Yeom et al., 2018). Analysing confusion matrix and loss matrix can 

also help to analyse the misclassifications (Kuncheva, 2014). 

6. CONCLUSION

This study explored BCI systems and its related aspects, including brain waves, EEG, P300 oddball 

and more. Machine learning architecture in a BCI system was explored, and common machine 

learning algorithms were experimented on P300 Speller datasets. The results show that the LDA 

classifier from Wyrm Python toolbox achieved the highest performance, at 94.5% after 15 

repetitions. 

Accuracy scores when applied PCA were lower than when not applied PCA. Without PCA, LDA 

(Wyrm) scored 94% and 95% for subject A and B respectively, but when applying PCA, the scores 

were 76% and 72%. This is consistent with the results from study conducted by (Selim et al., 2009) 

where Selim et al. tested Bayesian linear discriminant analysis (BLDA) with and without PCA. 
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However, due to the inaccuracy when experimented with fewer trials and fewer channels, there is 

a possibility that the data were contaminated by muscular movement. Future work is needed to 

explore that aspect to remove artifacts and apply a suitable channel selection approach to improve 

the accuracy of the models. 

7. REFERENCES

Abdi, H., & Williams, L. J. (2010). Principal component analysis. Wiley Interdisciplinary Reviews: 
Computational Statistics, 2(4), 433–459. https://doi.org/10.1002/wics.101 

Abhang, P. A. (2016). Introduction to EEG- and speech-based emotion recognition (B. Gawali & S. Mehrotra 
(Eds.)). Amsterdam, Netherlands : Academic Press. 

Abiri, R., Borhani, S., Sellers, E. W., Jiang, Y., & Zhao, X. (2019). A comprehensive review of EEG-based brain–
computer interface paradigms. Journal of Neural Engineering, 16(1), 011001. 
https://doi.org/10.1088/1741-2552/aaf12e 

Acharya, J. N., Hani, A. J., Cheek, J., Thirumala, P., & Tsuchida, T. N. (2016). American Clinical Neurophysiology 
Society Guideline 2: Guidelines for Standard Electrode Position Nomenclature. Neurodiagnostic Journal, 
56(4), 245–252. https://doi.org/10.1080/21646821.2016.1245558 

Alpaydin, E. (2014). Introduction to machine learning (Third edit). Cambridge, Massachusetts : MIT Press. 

Altman, N. (1992). An Introduction to Kernel and Nearest-Neighbor Nonparametric Regression. The American 
Statistician, 46(3), 175. 

Anaissi, A., Khoa, N. L. D., Rakotoarivelo, T., Alamdari, M. M., & Wang, Y. (2017). Self-advised incremental 
one-class support vector machines: An application in structural health monitoring. In Lecture Notes in 
Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in 
Bioinformatics) (Vol. 10634, pp. 484–496). https://doi.org/10.1007/978-3-319-70087-8_51 

Aurlien, H., Gjerde, I. O., Aarseth, J. H., Eldøen, G., Karlsen, B., Skeidsvoll, H., & Gilhus, N. E. (2004). EEG 
background activity described by a large computerized database. Clinical Neurophysiology, 115(3), 665–
673. 

Bauer, G., Gerstenbrand, F., & Rumpl, E. (1979). Varieties of the locked-in syndrome. Journal of Neurology, 
221(2), 77–91. https://doi.org/10.1007/BF00313105 

BCI Competition III: Results. (n.d.). Retrieved August 7, 2020, from 
http://www.bbci.de/competition/iii/results/index.html#albany 

Bell, J. (2020). Machine learning: hands-on for developers and technical professionals. John Wiley & Sons. 

Benito Núñez, I. M. (2011). EEG artifact detection. 

Bera, T. K. (2015). Noninvasive electromagnetic methods for brain monitoring: a technical review. In Brain-
Computer Interfaces (pp. 51–95). Springer. 

Berkson, J. (1944). Application of the Logistic Function to Bio-Assay. Journal of the American Statistical 
Association, 39(227), 357–365. https://doi.org/10.1080/01621459.1944.10500699 

Bhat, D. S. (2018). Assessing Performance of Detectors of High Frequency Oscillations in EEG Signals. 
University of Texas at El Paso. 

Birbaumer, N., Ghanayim, N., Hinterberger, T., Iversen, I., Kotchoubey, B., Kübler, A., Perelmouter, J., Taub, 
E., & Flor, H. (1999). A spelling device for the paralysed. Nature, 398(6725), 297–298. 



 58 

Bishop, C. M. (2006). Pattern recognition and machine learning. springer. 

Black, C., Voigts, J., Agrawal, U., Ladow, M., Santoyo, J., Moore, C., & Jones, S. (2017). Open Ephys 
electroencephalography (Open Ephys+ EEG): a modular, low-cost, open-source solution to human 
neural recording. Journal of Neural Engineering, 14(3), 35002. 

Borghini, G., Astolfi, L., Vecchiato, G., Mattia, D., & Babiloni, F. (2014). Measuring neurophysiological signals 
in aircraft pilots and car drivers for the assessment of mental workload, fatigue and drowsiness. 
Neuroscience & Biobehavioral Reviews, 44, 58–75. 

Boser, B., Guyon, I., & Vapnik, V. (1992). A training algorithm for optimal margin classifiers (pp. 144–152). 
https://doi.org/10.1145/130385.130401 

Breiman, L. (1984). Classification and regression trees. In J. H. (Jerome H. . Friedman, R. A. Olshen, & C. J. 
Stone (Eds.), Regression trees. Belmont, Calif. : Wadsworth International Group. 

Breiman, L. (1996). Bagging Predictors. Machine Learning, 24(2), 123–140. 
https://doi.org/10.1007/BF00058655 

Breiman, L., & Friedman, J. H. (1997). Predicting multivariate responses in multiple linear regression. Journal 
of the Royal Statistical Society: Series B (Statistical Methodology), 59(1), 3–54. 

Brouwer, A.-M., & Van Erp, J. B. F. (2010). A tactile P300 brain-computer interface. Frontiers in Neuroscience, 
4, 19. 

Brown, G. D., Yamada, S., & Sejnowski, T. J. (2001). Independent component analysis at the neural cocktail 
party. Trends in Neurosciences, 24(1), 54–63. 

Brownlee, J. (2019, August 12). A Tour of Machine Learning Algorithms. 
https://machinelearningmastery.com/a-tour-of-machine-learning-algorithms/ 

Brunner, P., Joshi, S., Briskin, S., Wolpaw, J. R., Bischof, H., & Schalk, G. (2010). Does the p300 speller depend 
on eye gaze? Journal of Neural Engineering, 7(5), 56013. https://doi.org/10.1088/1741-
2560/7/5/056013 

Burgess, A., & Gruzelier, J. (1993). Individual reliability of amplitude distribution in topographical mapping of 
EEG. Electroencephalography and Clinical Neurophysiology, 86(4), 219–223. 

Caglayan, O., & Arslan, R. B. (2012). P300 based auditory visual brain computer interface (pp. 1–4). 
https://doi.org/10.1109/SIU.2012.6204826 

Chang, M., Nishikawa, N., Struzik, Z., Mori, K., Makino, S., Mandic, D., & Rutkowski, T. (2013). Comparison of 
P300 Responses in Auditory, Visual and Audiovisual Spatial Speller BCI Paradigms. ArXiv.Org. 
https://doi.org/10.3217/978-3-85125-260-6-156 

Chatterjee, A., Aggarwal, V., Ramos, A., Acharya, S., & Thakor, N. V. (2007). A brain-computer interface with 
vibrotactile biofeedback for haptic information. Journal of Neuroengineering and Rehabilitation, 4(1), 
40. 

Chen, X., Chen, Z., Gao, S., & Gao, X. (2014). A high-ITR SSVEP-based BCI speller. Brain-Computer Interfaces, 
1(3–4), 181–191. https://doi.org/10.1080/2326263X.2014.944469 

Chen, X., Wang, Y., Nakanishi, M., Gao, X., Jung, T.-P., & Gao, S. (2015). High-speed spelling with a noninvasive 
brain-computer interface.(PNAS PLUS: NEUROSCIENCE). Proceedings of the National Academy of 
Sciences of the United States, 112(44), E6058. https://doi.org/10.1073/pnas.1508080112 

Chi, Y. M., & Cauwenberghs, G. (2010). Wireless non-contact EEG/ECG electrodes for body sensor networks. 
2010 International Conference on Body Sensor Networks, 297–301. 

Coenen, A., Fine, E., & Zayachkivska, O. (2014). Adolf Beck: a forgotten pioneer in electroencephalography. 
Journal of the History of the Neurosciences, 23(3), 276–286. 

Colwell, K. A., Ryan, D. B., Throckmorton, C. S., Sellers, E. W., & Collins, L. M. (2014). Channel selection 



59 

methods for the P300 Speller. Journal of Neuroscience Methods, 232, 6–15. 
https://doi.org/10.1016/j.jneumeth.2014.04.009 

Cortes, C., & Vapnik, V. (1995). Support-Vector Networks. Machine Learning, 20(3), 273–297. 
https://doi.org/10.1023/A:1022627411411 

Cramer, J. (2002). The Origins of Logistic Regression (Vols. 02-119/4). Tinbergen Institute. 

da Silva, F. L. (1991). Neural mechanisms underlying brain waves: from neural membranes to networks. 
Electroencephalography and Clinical Neurophysiology, 79(2), 81–93. 

Daly, I., Williams, N., Nasuto, S. J., Warwick, K., & Saddy, D. (2010). Single trial BCI operation via Wackermann 
parameters. 2010 IEEE International Workshop on Machine Learning for Signal Processing, 409–414. 

Delorme, A., Makeig, S., & Sejnowski, T. (2001). Automatic artifact rejection for EEG data using high-order 
statistics and independent component analysis. Proceedings of the Third International ICA Conference, 
9–12. 

Dietterich, T. (1995). Overfitting and undercomputing in machine learning. ACM Computing Surveys (CSUR), 
27(3), 326–327. 

Drucker, H., Surges, C. J. C., Kaufman, L., Smola, A., & Vapnik, V. (1997). Support vector regression machines. 
In Advances in Neural Information Processing Systems (pp. 155–161). 

Dudani, S. A. (1976). The Distance-Weighted k-Nearest-Neighbor Rule. IEEE Transactions on Systems, Man, 
and Cybernetics, SMC-6(4), 325–327. https://doi.org/10.1109/TSMC.1976.5408784 

Edlinger, G., Rizzo, C., & Guger, C. (2012). Brain Computer Interface (K.-P. Hoffmann & R. S. Pozos (Eds.)). 
Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-74658-4_52 

Farwell, L. A., & Donchin, E. (1988). Talking off the top of your head: toward a mental prosthesis utilizing 
event-related brain potentials. Electroencephalography and Clinical Neurophysiology, 70(6), 510–523. 
https://doi.org/10.1016/0013-4694(88)90149-6 

Friedman, J. H. (2001). Greedy Function Approximation: A Gradient Boosting Machine. The Annals of 
Statistics, 29(5), 1189–1232. 

Friedman, J. H., Kohavi, R., & Yun, Y. (1996). Lazy decision trees. AAAI/IAAI, Vol. 1, 717–724. 

Friston, K. J. (2009). Modalities, modes, and models in functional neuroimaging. Science, 326(5951), 399–
403. 

Fu, Y.-W., Chen, H.-L., Chen, S.-J., Shen, L. M., & Li, Q. Q. (2014). A new evolutionary support vector machine 
with application to parkinson’s disease diagnosis. In Lecture Notes in Computer Science (including 
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (Vol. 8795, pp. 42–
49). 

Fukuzumi, S., Yamaguchi, H., Tanaka, K., Yamazaki, T., Yamanoi, T., & Kamijo, K. (2014). A New Computational 
Method for Single-Trial-EEG-Based BCI BT  - Human Interface and the Management of Information. 
Information and Knowledge Design and Evaluation (S. Yamamoto (Ed.); pp. 148–156). Springer 
International Publishing. 

Galun, R. (2012). Sensory physiology and behavior (Vol. 15). Springer Science & Business Media. 

Gao, S., Wang, Y., Gao, X., & Hong, B. (2014). Visual and Auditory Brain–Computer Interfaces. IEEE 
Transactions on Biomedical Engineering, 61(5), 1436–1447. 
https://doi.org/10.1109/TBME.2014.2300164 

Godfrey, K. (1985). Simple linear regression in medical research. New England Journal of Medicine, 313(26), 
1629–1636. 

Grummett, T. S., Leibbrandt, R. E., Lewis, T. W., DeLosAngeles, D., Powers, D. M. W., Willoughby, J. O., Pope, 
K. J., & Fitzgibbon, S. P. (2015). Measurement of neural signals from inexpensive, wireless and dry EEG



60 

systems. Physiological Measurement, 36(7), 1469–1484. https://doi.org/10.1088/0967-
3334/36/7/1469 

Haider, A., & Fazel-Rezai, R. (2017). Application of P300 event-related potential in brain-computer interface. 
Event-Related Potentials and Evoked Potentials. InTech, 19–38. 

Hao, P., Ying, D., & Longyuan, T. (2009). Application for Web Text Categorization Based on Support Vector 
Machine (Vol. 2, pp. 42–45). https://doi.org/10.1109/IFCSTA.2009.132 

Harnad, S. (2006). The annotation game: On Turing (1950) on computing, machinery, and intelligence. In The 
Turing test sourcebook: philosophical and methodological issues in the quest for the thinking computer. 
Kluwer. 

Hassanien, A. E. (2014). Brain-Computer Interfaces: Current Trends and Applications (J. Kacprzyk, L. C. Jain, A. 
E. Hassanien, & A. T. Azar (Eds.); 2015th ed., Vol. 74). Cham: Springer International Publishing.
https://doi.org/10.1007/978-3-319-10978-7

Hecht-Nielsen, R. (1989). Neural network primer: part i. AI Expert, 4–51. 

Hill, N J, Lal, T. N., Bierig, K., Birbaumer, N., & Schölkopf, B. (2005). An auditory paradigm for brain-computer 
interfaces. In Advances in Neural Information Processing Systems. 

Hill, N Jeremy, Lal, T. N., Schroder, M., Hinterberger, T., Wilhelm, B., Nijboer, F., Mochty, U., Widman, G., 
Elger, C., & Scholkopf, B. (2006). Classifying EEG and ECoG signals without subject training for fast BCI 
implementation: comparison of nonparalyzed and completely paralyzed subjects. IEEE Transactions on 
Neural Systems and Rehabilitation Engineering, 14(2), 183–186. 

Ho, T. K. (1998). The random subspace method for constructing decision forests. IEEE Transactions on Pattern 
Analysis and Machine Intelligence, 20(8), 832–844. https://doi.org/10.1109/34.709601 

Ho, T. K. (1995). Random decision forests. 1, 278–282 vol.1. https://doi.org/10.1109/ICDAR.1995.598994 

Hoffmann, U., Vesin, J.-M., Ebrahimi, T., & Diserens, K. (2008). An efficient P300-based brain–computer 
interface for disabled subjects. Journal of Neuroscience Methods, 167(1), 115–125. 

Holzinger, A. (2015). Data Mining with Decision Trees: Theory and Applications. Online Information Review, 
39(3), 437–438. https://doi.org/10.1108/OIR-04-2015-0121 

John Lu, Z. Q. (2010). The Elements of Statistical Learning: Data Mining, Inference, and Prediction. In Journal 
of the Royal Statistical Society: Series A (Statistics in Society) (Vol. 173, Issue 3, pp. 693–694). 
https://doi.org/10.1111/j.1467-985X.2010.00646_6.x 

Jurcak, V., Tsuzuki, D., & Dan, I. (2007). 10/20, 10/10, and 10/5 systems revisited: their validity as relative 
head-surface-based positioning systems. Neuroimage, 34(4), 1600–1611. 

Kaufmann, T., Holz, E., & Kübler, A. (2013). Comparison of tactile, auditory, and visual modality for brain-
computer interface use: a case study with a patient in the locked-in state   . In Frontiers in Neuroscience 
(Vol. 7, p. 129). https://www.frontiersin.org/article/10.3389/fnins.2013.00129 

Khairullah, E., Arican, M., & Polat, K. (2020). Brain-computer interface speller system design from 
electroencephalogram signals with channel selection algorithms. Medical Hypotheses, 141, 109690. 
https://doi.org/https://doi.org/10.1016/j.mehy.2020.109690 

Klem, G. H., Lüders, H. O., Jasper, H. H., & Elger, C. (1999). The ten-twenty electrode system of the 
International Federation. Electroencephalogr Clin Neurophysiol, 52(3), 3–6. 

Koles, Z. J., Lazar, M. S., & Zhou, S. Z. (1990). Spatial patterns underlying population differences in the 
background EEG. Brain Topography, 2(4), 275–284. 

Konrad, P., & Shanks, T. (2010). Implantable brain computer interface: Challenges to neurotechnology 
translation. Neurobiology of Disease, 38(3), 369–375. https://doi.org/10.1016/j.nbd.2009.12.007 

Kovelman, I. (2012). Neuroimaging Methods (pp. 43–59). Oxford, UK: Wiley-Blackwell. 



 61 

https://doi.org/10.1002/9781444344035.ch4 

Kretowski, M. (2019). Evolutionary Decision Trees in Large-Scale Data Mining (Vol. 59). Springer. 

Krusienski, D. J., Sellers, E. W., McFarland, D. J., Vaughan, T. M., & Wolpaw, J. R. (2008). Toward enhanced 
P300 speller performance. Journal of Neuroscience Methods, 167(1), 15–21. 

Kübler, A., Nijboer, F., Mellinger, J., Vaughan, T. M., Pawelzik, H., Schalk, G., McFarland, D. J., Birbaumer, N., 
& Wolpaw, J. R. (2005). Patients with ALS can use sensorimotor rhythms to operate a brain-computer 
interface. Neurology, 64(10), 1775–1777. 

Kuncheva, L. I. (Ludmila I. (2014). Combining pattern classifiers : methods and algorithms (2nd ed.). Hoboken, 
New Jersey : Wiley. 

Lee, H., Grosse, R., Ranganath, R., & Ng, A. Y. (2009). Convolutional deep belief networks for scalable 
unsupervised learning of hierarchical representations. Proceedings of the 26th Annual International 
Conference on Machine Learning, 609–616. 

Leeb, R., Gwak, K., & Kim, D.-S. (2013). Freeing the visual channel by exploiting vibrotactile BCI feedback. 
2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society 
(EMBC), 3093–3096. 

Lelievre, Y., Washizawa, Y., & Rutkowski, T. M. (2013). Single trial BCI classification accuracy improvement 
for the novel virtual sound movement-based spatial auditory paradigm. 2013 Asia-Pacific Signal and 
Information Processing Association Annual Summit and Conference, 1–6. 

Lemm, S., Blankertz, B., Curio, G., & Muller, K.-R. (2005). Spatio-spectral filters for improving the classification 
of single trial EEG. IEEE Transactions on Biomedical Engineering, 52(9), 1541–1548. 

Lenhardt, A., Kaper, M., & Ritter, H. J. (2008). An Adaptive P300-Based Online Brain–Computer Interface. IEEE 
Transactions on Neural Systems and Rehabilitation Engineering, 16(2), 121–130. 
https://doi.org/10.1109/TNSRE.2007.912816 

Lerner, K. L. (2014). Action Potential (pp. 34–36). 

Li, J., & Zhang, L. (2010). Regularized tensor discriminant analysis for single trial EEG classification in BCI. 
Pattern Recognition Letters, 31(7), 619–628. 

Li, Z., Tang, S., & Wang, H. (2002). Pairwise coupling support vector machine and its application on 
handwritten digital recognition (Vol. 2, pp. 1194–1198 vol.2). 
https://doi.org/10.1109/ICCCAS.2002.1178997 

Looi, J. C. L., & Pring, W. (2020). Private metropolitan telepsychiatry in Australia during Covid-19: current 
practice and future developments. Australasian Psychiatry, 1039856220930675. 
https://doi.org/10.1177/1039856220930675 

Lopez-Gordo, M. A., Sanchez-Morillo, D., & Valle, F. P. (2014). Dry EEG electrodes. Sensors, 14(7), 12847–
12870. 

Luck, S. J. (Steven J. (2005). An introduction to the event-related potential technique. Cambridge, Mass. : MIT 
Press. 

Makeig, S., Bell, A. J., Jung, T.-P., & Sejnowski, T. J. (1996). Independent component analysis of 
electroencephalographic data. Advances in Neural Information Processing Systems, 145–151. 

Marini, F., Lee, C., Wagner, J., Makeig, S., & Gola, M. (2019). A comparative evaluation of signal quality 
between a research-grade and a wireless dry-electrode mobile EEG system. Journal of Neural 
Engineering, 16(5), 54001. 

Mason, L., Baxter, J., Bartlett, P., & Frean, M. (2000). Boosting algorithms as gradient descent. In Advances in 
Neural Information Processing Systems (pp. 512–518). 

Mathewson, K. E., Harrison, T. J. L., & Kizuk, S. A. D. (2017). High and dry? Comparing active dry EEG 



62 

electrodes to active and passive wet electrodes. Psychophysiology, 54(1), 74–82. 

McBratney, A., Whelan, B., Ancev, T., & Bouma, J. (2005). Future directions of precision agriculture. Precision 
Agriculture, 6(1), 7–23. 

McMenamin, B. W., Shackman, A. J., Maxwell, J. S., Bachhuber, D. R. W., Koppenhaver, A. M., Greischar, L. 
L., & Davidson, R. J. (2010). Validation of ICA-based myogenic artifact correction for scalp and source-
localized EEG. Neuroimage, 49(3), 2416–2432. 

Mitchell, T. M., & Learning, M. (1997). Mcgraw-hill science. Engineering/Math, 1, 27. 

Müller, K.-R., Tangermann, M., Dornhege, G., Krauledat, M., Curio, G., & Blankertz, B. (2008). Machine 
learning for real-time single-trial EEG-analysis: from brain–computer interfacing to mental state 
monitoring. Journal of Neuroscience Methods, 167(1), 82–90. 

Nicolas-Alonso, L. F., & Gomez-Gil, J. (2012). Brain computer interfaces, a review. Sensors, 12(2), 1211–1279. 

Opitz, D., & Maclin, R. (1999). Popular ensemble methods: An empirical study. Journal of Artificial Intelligence 
Research, 11, 169–198. 

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., 
Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., & Duchesnay, 
E. (2011). Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res., 12, 2825–2830.

Peters, R. (2020). Reflections on COVID-19 in Sydney, Australia. City & Society, 32(1), n/a-n/a. 
https://doi.org/10.1111/ciso.12267 

Pfurtscheller, G., & Neuper, C. (2001). Motor imagery and direct brain-computer communication. 
Proceedings of the IEEE, 89(7), 1123–1134. 

Piccione, F., Giorgi, F., Tonin, P., Priftis, K., Giove, S., Silvoni, S., Palmas, G., & Beverina, F. (2006). P300-based 
brain computer interface: reliability and performance in healthy and paralysed participants. Clinical 
Neurophysiology, 117(3), 531–537. 

Plöchl, M., Ossandón, J. P., & König, P. (2012). Combining EEG and eye tracking: identification, 
characterization, and correction of eye movement artifacts in electroencephalographic data. Frontiers 
in Human Neuroscience, 6(2012), 278. https://doi.org/10.3389/fnhum.2012.00278 

Polich, J. (2007). Updating P300: an integrative theory of P3a and P3b. Clinical Neurophysiology : Official 
Journal of the International Federation of Clinical Neurophysiology, 118(10), 2128–2148. 
https://doi.org/10.1016/j.clinph.2007.04.019 

Polikoff, J. B., Bunnell, H. T., & Borkowski Jr, W. J. (1995). Toward a P300-based computer interface. RESNA’95 
Annual Conference and RESNAPRESS and Arlington Va, 178–180. 

Pritchard, W. S. (1981). Psychophysiology of P300. Psychological Bulletin, 89(3), 506. 

Qi, Z., Chang, Z., Song, H., & Zhang, X. (2014). Application of support vector machine in the decision-making 
of maneuvering. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial 
Intelligence and Lecture Notes in Bioinformatics) (Vol. 8631, Issue 2, pp. 352–358). 
https://doi.org/10.1007/978-3-319-11194-0_27 

Qiao, Q., & Beling, P. (2016). Decision analytics and machine learning in economic and financial systems. 
Formerly The Environmentalist, 36(2), 109–113. https://doi.org/10.1007/s10669-016-9601-x 

Ramadan, R. A., & Vasilakos, A. V. (2017). Brain computer interface: control signals review. Neurocomputing, 
223, 26–44. https://doi.org/10.1016/j.neucom.2016.10.024 

Ramoser, H., Muller-Gerking, J., & Pfurtscheller, G. (2000). Optimal spatial filtering of single trial EEG during 
imagined hand movement. IEEE Transactions on Rehabilitation Engineering, 8(4), 441–446. 
https://doi.org/10.1109/86.895946 

Rutkowski, T. M. (2016). Robotic and virtual reality BCIs using spatial tactile and auditory oddball 



 63 

paradigms.(Report). Frontiers in Neurorobotics, 10. https://doi.org/10.3389/fnbot.2016.00020 

Samuel, A. L. (1988). Some Studies in Machine Learning Using the Game of Checkers. II—Recent Progress. In 
Computer Games I (pp. 366–400). Springer New York. https://doi.org/10.1007/978-1-4613-8716-9_15 

Schalk, G., McFarland, D. J., Hinterberger, T., Birbaumer, N., & Wolpaw, J. R. (2004). BCI2000: A general-
purpose brain-computer interface (BCI) system. IEEE Transactions on Biomedical Engineering, 51(6), 
1034–1043. https://doi.org/10.1109/TBME.2004.827072 

Schlögl, A., Slater, M., & Pfurtscheller, G. (2002). Presence research and EEG. Proceedings of the 5th 
International Workshop on Presence, 1, 9–11. 

Scikit-learn. (n.d.). Retrieved June 22, 2020, from https://scikit-learn.org/stable/ 

Selim, A. E., Wahed, M. A., & Kadah, Y. M. (2009). Machine learning methodologies in P300 speller Brain-
Computer Interface systems (pp. 1–9). 

Sellers, E. W., & Donchin, E. (2006). A P300-based brain–computer interface: Initial tests by ALS patients. 
Clinical Neurophysiology, 117(3), 538–548. https://doi.org/10.1016/j.clinph.2005.06.027 

Shukla, X. U., & Parmar, D. J. (2016). Python - A comprehensive yet free programming language for 
statisticians. Journal of Statistics and Management Systems, 19(2), 277–284. 
https://doi.org/10.1080/09720510.2015.1103446 

Stigler, S. M. (1981). Gauss and the Invention of Least Squares. The Annals of Statistics, 9(3), 465–474. 
https://doi.org/10.1214/aos/1176345451 

Sutton, S., Braren, M., Zubin, J., & John, E. R. (1965). Evoked-potential correlates of stimulus uncertainty. 
Science (New York, N.Y.), 150(3700), 1187–1188. https://doi.org/10.1126/science.150.3700.1187 

Tatum  IV, Do, W. O. (2014). Handbook of EEG Interpretation, Second Edition. (2nd ed..). New York: Springer 
Publishing Company. 

Thorp, C. K., & Steinmetz, P. N. (2008). Interference and noise in human intracranial microwire recordings. 
IEEE Transactions on Biomedical Engineering, 56(1), 30–36. 

Tomioka, R., Aihara, K., & Müller, K.-R. (2007). Logistic regression for single trial EEG classification. Advances 
in Neural Information Processing Systems, 1377–1384. 

Unpingco, J. (2019). Python for Probability, Statistics, and Machine Learning (2nd ed. 20). Cham : Springer 
International Publishing : Imprint: Springer. 

Venthur, B., Dähne, S., Höhne, J., Heller, H., & Blankertz, B. (2015). Wyrm: A Brain-Computer Interface 
Toolbox in Python. Neuroinformatics, 13(4), 471–486. https://doi.org/10.1007/s12021-015-9271-8 

Vespa  Paul, M., Nenov  Val, R., & Nuwer  Marc, R. (1999). Continuous EEG Monitoring in the Intensive Care 
Unit: Early Findings and Clinical Efficacy. Journal of Clinical Neurophysiology, 16(1), 1–13. 
https://doi.org/10.1097/00004691-199901000-00001 

Vidal, J. J. (1973). Toward direct brain-computer communication. Annual Review of Biophysics and 
Bioengineering, 2, 157. 

Wang, Y., Gao, X., Hong, B., Jia, C., & Gao, S. (2008). Brain-computer interfaces based on visual evoked 
potentials: Feasibility of practical system designs. IEEE Engineering in Medicine and Biology Magazine, 
27(5), 64–71. https://doi.org/10.1109/MEMB.2008.923958 

Whitham, E., Pope, K., Fitzgibbon, S., Lewis, T., Clark, C. R., Loveless, S., Broberg, M., Wallace, A., 
DeLosAngeles, D., Lillie, P., Hardy, A., Fronsko, R., Pulbrook, A., & Willoughby, J. (2007). Scalp electrical 
recording during paralysis: Quantitative evidence that EEG frequencies above 20Hz are contaminated 
by EMG. Clinical Neurophysiology : Official Journal of the International Federation of Clinical 
Neurophysiology, 118, 1877–1888. https://doi.org/10.1016/j.clinph.2007.04.027 

Whitmer, D., Worrell, G., Stead, M., Lee, I. K., & Makeig, S. (2010). Utility of independent component analysis 



64 

for interpretation of intracranial EEG. Frontiers in Human Neuroscience, 4, 184. 
https://doi.org/10.3389/fnhum.2010.00184 

Wolpaw, J. R. (2007). Brain-computer interfaces as new brain output pathways. Journal of Physiology, 579(3), 
613–619. https://doi.org/10.1113/jphysiol.2006.125948 

Wolpaw, J. R., Birbaumer, N., Mcfarland, D. J., Pfurtscheller, G., & Vaughan, T. M. (2002). Brain–computer 
interfaces for communication and control. Clinical Neurophysiology, 113(6), 767–791. 
https://doi.org/10.1016/S1388-2457(02)00057-3 

Wu, D. (2017). Online and Offline Domain Adaptation for Reducing BCI Calibration Effort. IEEE Transactions 
on Human-Machine Systems, 47(4), 550–563. https://doi.org/10.1109/THMS.2016.2608931 

Wu, X., Kumar, V., Ross Quinlan, J., Ghosh, J., Yang, Q., Motoda, H., McLachlan, G., Ng, A., Liu, B., Yu, P., Zhou, 
Z.-H., Steinbach, M., Hand, D., & Steinberg, D. (2008). Top 10 algorithms in data mining. An International 
Journal, 14(1), 1–37. https://doi.org/10.1007/s10115-007-0114-2 

Yang, M.-D., Huang, K.-S., Lin, J.-Y., & Liu, P. (2010). Application of support vector machines to airborne hyper-
spectral image classification. In Lecture Notes in Electrical Engineering (Vol. 67, pp. 439–444). 
https://doi.org/10.1007/978-3-642-12990-2_50 

Yang, Y. (1999). An Evaluation of Statistical Approaches to Text Categorization. Information Retrieval, 1(1), 
69–90. https://doi.org/10.1023/A:1009982220290 

Yao, L., Sheng, X., Mrachacz-Kersting, N., Zhu, X., Farina, D., & Jiang, N. (2019). Sensory Stimulation Training 
for BCI System Based on Somatosensory Attentional Orientation. IEEE Transactions on Biomedical 
Engineering, 66(3), 640–646. https://doi.org/10.1109/TBME.2018.2852755 

Yeom, S., Giacomelli, I., Fredrikson, M., & Jha, S. (2018). Privacy Risk in Machine Learning: Analyzing the 
Connection to Overfitting. 2018 IEEE 31st Computer Security Foundations Symposium (CSF), 268–282. 
https://doi.org/10.1109/CSF.2018.00027 

Yoo, Y. (2017). Sequential detection of P300 waves for high-throughput brain-computer interfaces. 
International Journal of Fuzzy Logic and Intelligent Systems, 17(2), 68–75. 

Zhu, D., Garcia Molina, G., Mihajlovic, V., Aarts, R. M., & Stephnidis, C. (2011). Online BCI implementation of 
high-frequency phase modulated visual stimuli (S. P. Systems, A. array signal processing, & B. D. Lab 
(Eds.)). 

Zhu, D., Molina, G. G., Mihajlovic, V., & Aarts, R. M. (2010). Phase synchrony analysis for SSVEP-based BCIs 
(Vol. 2, pp. V2-329-V2-333). https://doi.org/10.1109/ICCET.2010.5485465 



65 

8. APPENDICES

Appendix A: P300 Speller BCI Competition Dataset 

Content removed due to copyright restriction. Content of P300 Speller BCI Dataset in 
BCI Competition can be downloaded at http://www.bbci.de/competition/iii/desc_II.pdf  



66 

This page is intentionally left blank.

Content removed due to copyright restriction. Content of P300 Speller BCI Dataset in BCI 
Competition can be downloaded at http://www.bbci.de/competition/iii/desc_II.pdf  



67 

This page is intentionally left blank.

Content removed due to copyright restriction. Content of P300 Speller BCI Dataset in BCI 
Competition can be downloaded at http://www.bbci.de/competition/iii/desc_II.pdf  



68 

This page is intentionally left blank.

Content removed due to copyright restriction. Content of P300 Speller BCI Dataset in BCI 
Competition can be downloaded at http://www.bbci.de/competition/iii/desc_II.pdf  



69 

This page is intentionally left blank.

Content removed due to copyright restriction. Content of P300 Speller BCI Dataset in BCI 
Competition can be downloaded at http://www.bbci.de/competition/iii/desc_II.pdf  



70 

Appendix B: Python code used in this study 

Some methods are based on Wyrm Python toolbox with some modifications to adapt to the study. 

The full source code is publicly available at https://gitlab.com/nguy1025/speller-bci 

Define constants 

ELOC = 'data/BCI_Comp_III_Wads_2004/eloc64.txt' 

TRAIN_A = 'data/BCI_Comp_III_Wads_2004/Subject_A_Train.mat' 
TRAIN_B = 'data/BCI_Comp_III_Wads_2004/Subject_B_Train.mat' 

TEST_A = 'data/BCI_Comp_III_Wads_2004/Subject_A_Test.mat' 
TEST_B = 'data/BCI_Comp_III_Wads_2004/Subject_B_Test.mat' 

TRUE_LABELS_A = 
'WQXPLZCOMRKO97YFZDEZ1DPI9NNVGRQDJCUVRMEUOOOJD2UFYPOO6J7LDGYEGOA5VHNEHBTXOO1TDOILUEE5B
FAEEXAW_K4R3MRU' 
TRUE_LABELS_B = 
'MERMIROOMUHJPXJOHUVLEORZP3GLOO7AUFDKEFTWEOOALZOP9ROCGZET1Y19EWX65QUYU7NAK_4YCJDVDNGQX
ODBEV2B5EFDIDNR' 

MATRIX = ['abcdef', 
'ghijkl', 
'mnopqr', 
'stuvwx', 
'yz1234', 
'56789_'] 

# Features we care about 
MARKER_DEF_TRAIN = {'target': ['target'], 'nontarget': ['nontarget']} 
MARKER_DEF_TEST = {'flashing': ['flashing']} 

N_INTENSIFY = 15  # 15 intensifications of row/column 
N_STIMULI = 12  # 12 stimuli of each character 

SEG_IVAL = [0, 700]  # The interval in milliseconds to cut around the markers 

Load data 

def load_mat_data(filename): 
    STIMULUS_CODE = { 

# cols from left to right 
1: "agmsy5", 
2: "bhntz6", 
3: "ciou17", 
4: "djpv28", 
5: "ekqw39", 
6: "flrx4_", 
# rows from top to bottom 
7: "abcdef", 
8: "ghijkl", 
9: "mnopqr", 
10: "stuvwx", 
11: "yz1234", 
12: "56789_" 
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    } 

    # load the matlab data 
    data_mat = spio.loadmat(filename) 
    # load the channel names (the same for all datasets 
    eloc_file = ELOC 
    with open(eloc_file) as fh: 

data = fh.read() 
    channels = [] 
    for line in data.splitlines(): 

if line: 
chan = line.split()[-1] 
chan = chan.replace('.', '') 
channels.append(chan) 

    # fix the channel names, some letters have the wrong capitalization 
    for i, s in enumerate(channels): 

s2 = s.upper() 
s2 = s2.replace('Z', 'z') 
s2 = s2.replace('FP', 'Fp') 
channels[i] = s2 

    # The signal is recorded with 64 channels, bandpass filtered 
    # 0.1-60Hz and digitized at 240Hz. The format is Character Epoch x 
    # Samples x Channels 
    data = data_mat['Signal'] 
    n_channels = len(channels) 
    data = data.astype('double') 

    # For each sample: 1 if a row/colum was flashed, 0 otherwise 
    flashing = data_mat['Flashing'].reshape(-1) 
    #flashing = np.flatnonzero((np.diff(a) == 1)) + 1 
    tmp = [] 
    for i, _ in enumerate(flashing): 

if i == 0: 
tmp.append(flashing[i]) 
continue 

if flashing[i] == flashing[i-1] == 1: 
tmp.append(0) 
continue 

tmp.append(flashing[i]) 
    flashing = np.array(tmp) 
    # For each sample: 0 when no row/colum was intensified, 
    # 1..6 for intensified columns, 7..12 for intensified rows 
    stimulus_code = data_mat['StimulusCode'].reshape(-1) 
    stimulus_code = stimulus_code[flashing == 1] 
    # 0 if no row/col was intensified or the intensified did not contain 
    # the target character, 1 otherwise 
    stimulus_type = data_mat.get('StimulusType', np.array([])).reshape(-1) 
    # The target characters 
    target_chars = data_mat.get('TargetChar', np.array([])).reshape(-1) 
    fs = 240  # Frequency samples 
    data = data.reshape(-1, n_channels) 
    timeaxis = np.linspace( 

0, data.shape[0] / fs * 1000, data.shape[0], endpoint=False) 
    dat = Data(data=data, axes=[timeaxis, channels], names=[ 

'time', 'channel'], units=['ms', '#']) 
    dat.fs = fs 
    # preparing the markers 
    target_mask = np.logical_and((flashing == 1), (stimulus_type == 1)) if len( 

stimulus_type) > 0 else [] 
    nontarget_mask = np.logical_and( 

(flashing == 1), (stimulus_type == 0)) if len(stimulus_type) > 0 else [] 
    flashing = (flashing == 1) 
    flashing = [[i, 'flashing'] for i in timeaxis[flashing]] 
    targets = [[i, 'target'] for i in timeaxis[target_mask]] 
    nontargets = [[i, 'nontarget'] for i in timeaxis[nontarget_mask]] 
    dat.stimulus_code = stimulus_code[:] 
    stimulus_code = zip([t for t, _ in flashing], [ 

STIMULUS_CODE[i] for i in stimulus_code]) 
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    markers = flashing[:] 
    markers.extend(targets) 
    markers.extend(nontargets) 
    markers.extend(stimulus_code) 
    dat.markers = sorted(markers[:], key=lambda x: x[0]) 
    dat.target_chars = target_chars 
    return dat 

Define functions 

def standardise_data(feature_vector, scaler, is_training): 

    X = feature_vector.data 
    y = feature_vector.axes[0] 

    # Fit on training set only 
    if is_training: 

scaler.fit(X) 

    X = scaler.transform(X) 
    # update value of pre-processed X 
    feature_vector.data = X 

    return feature_vector 

def pca_apply(pca, feature_vector, is_training): 

    X = feature_vector.data 
    y = feature_vector.axes[0] 

    print('pca_clean transform data isTraining {} shape BEFORE {}'.format( 
is_training, X.shape)) 

    if is_training: 
pca.fit(X) 

    X = pca.transform(X) 
    # update value of pre-processed X 
    feature_vector.data = X 
    print('pca_clean transform data isTraining {} shape AFTER {}'.format( 

is_training, X.shape)) 

    return feature_vector 

def ica_apply(ica, feature_vector, is_training): 

    X = feature_vector.data 
    y = feature_vector.axes[0] 

    print('ICA transform data isTraining {} shape BEFORE {}'.format( 
is_training, X.shape)) 

    if is_training: 
ica.fit(X) 

    X = ica.transform(X) 
    # update value of pre-processed X 
    feature_vector.data = X 
    print('ICA transform data isTraining {} shape AFTER {}'.format( 

is_training, (X.shape))) 

    return feature_vector 
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def preprocessing_simple(dat, ica, pca, scaler, is_training, MRK_DEF, *args, 
**kwargs): 
    fs_n = dat.fs / 2 
    b, a = proc.signal.butter( 

5, [30 / fs_n], btype='low')  # filter low-pass 30Hz 
    dat = proc.filtfilt(dat, b, a) 

    # Subsample the data to 20 Hz. 
    dat = proc.subsample(dat, 20) 

    # Convert a continuous data object to an epoched one. 
    epo = proc.segment_dat(dat, MRK_DEF, SEG_IVAL) 

    feature_vector = proc.create_feature_vectors(epo) 

    if scaler is not None: 
feature_vector = standardise_data(feature_vector, scaler, is_training) 

    if pca is not None: 
feature_vector = pca_apply(pca, feature_vector, is_training) 

    if ica is not None: 
feature_vector = ica_apply(ica, feature_vector, is_training) 

    return feature_vector, epo 

# ## Method to process prediction 
def process_prediction(fv, y_pred, nrepetition, true_label): 
    label_len = len(true_label) 

    # unscramble the order of stimuli 
    unscramble_idx = fv.stimulus_code.reshape( 

label_len, N_INTENSIFY, N_STIMULI).argsort() 
    static_idx = np.indices(unscramble_idx.shape) 
    y_pred = y_pred.reshape(label_len, N_INTENSIFY, N_STIMULI) 
    y_pred = y_pred[static_idx[0], static_idx[1], unscramble_idx] 

    y_pred = y_pred[:, :nrepetition, :] 

    # destil the result of the nrepetition runs 
    y_pred = y_pred.sum(axis=1) 

    y_pred = y_pred.argsort() 

    cols = y_pred[y_pred <= 5].reshape(label_len, -1) 
    rows = y_pred[y_pred > 5].reshape(label_len, -1) 
    text = '' 
    for i in range(label_len): 

row = rows[i][-1]-6 
col = cols[i][-1] 
letter = MATRIX[row][col] 
text += letter 

    print 
    print('---Constructed labels: %s' % text.upper()) 
    print('---True labels : %s' % true_label) 
    a = np.array(list(text.upper())) 
    b = np.array(list(true_label)) 
    accuracy = np.count_nonzero(a == b) / len(a) 
    print('---Accuracy: %.1f%%' % (accuracy * 100)) 
    return accuracy 
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Prepare and pre-process data 

 
# # pre-process data 
training_set = [TRAIN_A, TRAIN_B] 
testing_set = [TEST_A, TEST_B] 
labels = [TRUE_LABELS_A, TRUE_LABELS_B] 
 
dat_training = [load_mat_data(training_set[0]), load_mat_data(training_set[1])] 
dat_test = [load_mat_data(testing_set[0]), load_mat_data(testing_set[1])] 
 
# # select channels we want 
# CHANNELS = ['Cz'] 
CHANNELS = ["FCz", "C3", "Cz", "C4", "CP1", "CPz", "CP2", "Pz"] 
dat_training = [proc.select_channels( 
    dat_training[0], CHANNELS), proc.select_channels(dat_training[0], CHANNELS)] 
dat_test = [proc.select_channels( 
    dat_test[0], CHANNELS), proc.select_channels(dat_test[0], CHANNELS)] 
 
scaler = [StandardScaler(), StandardScaler()] 
# scaler = [None, None] 
 
# choose the minimum number of principal components such that 95% of the variance is 
retained. 
pca = [PCA(0.95), PCA(0.95)] 
# pca = [None, None] #choose the minimum number of principal components such that 95% 
of the variance is retained. 
# pca = [PCA(n_components=10), PCA(n_components=10)] 
 
# ica = [FastICA(n_components=100,max_iter=1000, tol=0.005), 
FastICA(n_components=100,max_iter=1000, tol=0.005)] 
ica = [None, None] 
 
fv_epo_train = [preprocessing_simple(dat_training[0], ica[0], pca[0], scaler[0], True, 
MARKER_DEF_TRAIN), preprocessing_simple( 
    dat_training[1], ica[1], pca[1], scaler[1], True, MARKER_DEF_TRAIN)] 
fv_epo_test = [preprocessing_simple(dat_test[0], ica[0], pca[0], scaler[0], False, 
MARKER_DEF_TEST), preprocessing_simple( 
    dat_test[1], ica[1], pca[1], scaler[1], False, MARKER_DEF_TEST)] 
 
fv_train = [x[0] for x in fv_epo_train] 
epo_train = [x[1] for x in fv_epo_train] 
 
fv_test = [x[0] for x in fv_epo_test] 
epo_test = [x[1] for x in fv_epo_test] 
 
 

 

Prepare classifiers 

 
lda_covs = [None, None]  # classifiers 
 
for subject in range(2): 
    # train the lda with Covarience https://scikit-
learn.org/stable/modules/covariance.html 
    cfy = proc.lda_train(fv_train[subject]) 
 
    print('Training done for subject {}'.format(subject)) 
 
    # add to list of classifiers 
    lda_covs[subject] = cfy 
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# ## List of classifiers 
 
# Define list of classifiers 
classifiers = [ 
    [ 
        GradientBoostingClassifier(learning_rate=0.1), 
        AdaBoostClassifier(n_estimators=100, random_state=0), 
        KNeighborsClassifier(3), 
        DecisionTreeClassifier(), 
        RandomForestClassifier(n_estimators=100), 
        LinearDiscriminantAnalysis(), 
        QuadraticDiscriminantAnalysis(), 
        LinearSVC(max_iter=10000), 
        SVC(C=10, gamma='auto'), 
    ], 
    [ 
        GradientBoostingClassifier(learning_rate=0.1), 
        AdaBoostClassifier(n_estimators=100, random_state=0), 
        KNeighborsClassifier(3), 
        DecisionTreeClassifier(), 
        RandomForestClassifier(n_estimators=100), 
        LinearDiscriminantAnalysis(), 
        QuadraticDiscriminantAnalysis(), 
        LinearSVC(max_iter=10000), 
        SVC(C=10, gamma='auto') 
    ] 
] 
 
 

 

Train classifiers 

 
# ### Train data 
 
# split data 
log_cols = ['Accuracy', 'Classifier'] 
 
log_score_trainings = [] 
 
for subject in range(2): 
    print("Start Subject: {}".format(subject)) 
    fv = fv_train[subject] 
    X = fv.data 
    y = fv.axes[0] 
    X_train, X_test, y_train, y_test = train_test_split( 
        X, y, test_size=0.2, random_state=42) 
 
    log_score_training = pd.DataFrame(columns=log_cols) 
 
    for clf in classifiers[subject]: 
        name = clf.__class__.__name__ 
 
        if name == "GradientBoostingClassifier": 
            name = "GradientBoostingClassifier" + "_" + str(clf.learning_rate) 
 
        if name == "LinearDiscriminantAnalysis": 
            name = "LinearDiscriminantAnalysis" + "_" + \ 
                clf.solver + "_Shrinkage:" + str(clf.shrinkage) 
 
        print("== Start Classifier: {}".format(name)) 
        clf.fit(X_train, y_train) 
 
        y_pred = clf.predict(X_test) 
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score = accuracy_score(y_test, y_pred) 

cm = confusion_matrix(y_test, y_pred) 
print(cm) 

TN = cm[1][1] 
FN = cm[0][1] 
TP = cm[0][0] 
FP = cm[1][0] 

print('TN: {}, FN: {}, TP: {}, FP: {}'.format(TN, FN, TP, FP)) 

# Sensitivity, hit rate, recall, or true positive rate 
TPR = TP/(TP+FN) 
# Specificity or true negative rate 
TNR = TN/(TN+FP) 
# Precision or positive predictive value 

   PPV = TP/(TP+FP) 
# Negative predictive value 
NPV = TN/(TN+FN) 
# Fall out or false positive rate 
FPR = FP/(FP+TN) 
# False negative rate 
FNR = FN/(TP+FN) 
# False discovery rate 
FDR = FP/(TP+FP) 

# Overall accuracy 
ACC = (TP+TN)/(TP+FP+FN+TN) 
print('\tAccuracy     : {:.2f}'.format(ACC)) 
print('\tPrecision    : {:.2f}'.format(PPV)) 
print('\tRecall : {:.2f}'.format(TPR)) 
F1 = 2*(PPV*TPR)/(PPV+TPR) 
print('\tF1 : {:.2f}'.format(F1)) 
BM = TPR + TNR - 1 
print('\tInformedness : {:.2f}'.format(BM)) 

print("== End Classifier: {}".format(name)) 
print("== -------------") 

log_entry = pd.DataFrame([[name, score*100]], columns=log_cols) 
log_score_training = log_score_training.append(log_entry, sort=False) 

    log_score_trainings.append(log_score_training) 

Test classifiers on Training datasets & plot results 

log_trainings = [] 

cols_repetitions = ["Repetition", "Accuracy", "ClfName"] 

for subject in range(2): 
    print("==== Start Subject: {}".format(subject)) 
    log_training_repeats = {} 
    labels_train = dat_training[subject].target_chars[0] 

    for clf in classifiers[subject]: 
name = clf.__class__.__name__ 

if name == "GradientBoostingClassifier": 
name = "GradientBoostingClassifier" + "_" + str(clf.learning_rate) 
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        if name == "LinearDiscriminantAnalysis": 
            name = "LDA_scikitlearn" 
 
        print("==== Start classifier: {}".format(name)) 
        y_pred = clf.predict(fv_train[subject].data) 
 
        log_training_repeat = pd.DataFrame(columns=cols_repetitions) 
        for repeat_idx in range(1, N_INTENSIFY + 1): 
            print("-- Repetition: {}".format(repeat_idx)) 
            name_repeat = name + "-" + str(repeat_idx) 
            score = process_prediction( 
                fv_train[subject], y_pred, repeat_idx, labels_train) 
            log_entry = pd.DataFrame( 
                [[repeat_idx, score*100, name]], columns=cols_repetitions) 
            log_training_repeat = log_training_repeat.append( 
                log_entry, sort=False) 
 
        log_training_repeats[name] = log_training_repeat 
 
        print("==== End classifier: {}".format(name)) 
 
    # append LDA cov 
    name = 'LDA_wyrm' 
    # add LDA cov estimator 
    print("==== Start classifier: {}".format(name)) 
    y_pred = proc.lda_apply(fv_train[subject], lda_covs[subject]) 
    log_training_repeat = pd.DataFrame(columns=cols_repetitions) 
    for repeat_idx in range(1, N_INTENSIFY + 1): 
        print("-- Repetition: {}".format(repeat_idx)) 
        name_repeat = name + "-" + str(repeat_idx) 
        score = process_prediction( 
            fv_train[subject], y_pred, repeat_idx, labels_train) 
        log_entry = pd.DataFrame( 
            [[repeat_idx, score*100, name]], columns=cols_repetitions) 
        log_training_repeat = log_training_repeat.append(log_entry, sort=False) 
 
    log_training_repeats[name] = log_training_repeat 
 
    log_trainings.append(log_training_repeats) 
 
# ### Plot results of each repetitions for subject A 
 
sns.set_style("whitegrid") 
plt.figure(figsize=(8, 6)) 
 
marker = itertools.cycle( 
    ('o', 'v', '^', '<', '>', 's', '8', 'p', 'X', 'D', "*")) 
 
ax = plt.gca() 
ax.set_prop_cycle(None)  # if matplotlib <1.5 use set_color_cycle 
 
log_training_repeats = log_trainings[0] 
for clf_name in log_training_repeats: 
    log_training_repeat = log_training_repeats.get(clf_name) 
 
    color = next(ax._get_lines.prop_cycler)['color'] 
    plt.plot('Repetition', 'Accuracy', data=log_training_repeat, label=clf_name, 
             linestyle='dashed', markeredgecolor='none',  marker=next(marker), 
color=color, markersize=12) 
 
# Put the legend out of the figure 
plt.legend(bbox_to_anchor=(1.05, 1), loc=2, 
           borderaxespad=0., prop={'size': 14}) 
plt.xticks(ticks=list(range(1, 16))) 
plt.xlabel('Repetitions') 
plt.ylabel('Accuracy %') 
plt.title('Classifier Accuracy TRAINING subject A') 
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plt.show() 
 
# ### Plot results of each repetitions for subject B 
 
sns.set_style("whitegrid") 
plt.figure(figsize=(8, 6)) 
 
ax = plt.gca() 
ax.set_prop_cycle(None)  # if matplotlib <1.5 use set_color_cycle 
 
log_training_repeats = log_trainings[1] 
for clf_name in log_training_repeats: 
    log_training_repeat = log_training_repeats.get(clf_name) 
    color = next(ax._get_lines.prop_cycler)['color'] 
    plt.plot('Repetition', 'Accuracy', data=log_training_repeat, label=clf_name, 
             linestyle='dashed', markeredgecolor='none',  marker=next(marker), 
color=color, markersize=12) 
 
# Put the legend out of the figure 
plt.legend(bbox_to_anchor=(1.05, 1), loc=2, 
           borderaxespad=0., prop={'size': 14}) 
plt.xticks(ticks=list(range(1, 16))) 
plt.xlabel('Repetitions') 
plt.ylabel('Accuracy %') 
plt.title('Classifier Accuracy TRAINING subject B') 
plt.show() 
 
 

 

 

Test classifiers on Testing datasets & plot results 

 
log_testings = [] 
 
for subject in range(2): 
    print("==== Start Subject: {}".format(subject)) 
    log_repeats = {} 
 
    for clf in classifiers[subject]: 
        name = clf.__class__.__name__ 
 
        if name == "GradientBoostingClassifier": 
            name = "GradientBoostingClassifier" + "_" + str(clf.learning_rate) 
 
        if name == "LinearDiscriminantAnalysis": 
            name = "LDA" 
 
        print("==== Start classifier: {}".format(name)) 
        y_pred = clf.predict(fv_test[subject].data) 
 
        log_repeat = pd.DataFrame(columns=cols_repetitions) 
        for repeat_idx in range(1, N_INTENSIFY + 1): 
            print("-- Repetition: {}".format(repeat_idx)) 
            name_repeat = name + "-" + str(repeat_idx) 
            score = process_prediction( 
                fv_test[subject], y_pred, repeat_idx, labels[subject]) 
            log_entry = pd.DataFrame( 
                [[repeat_idx, score*100, name]], columns=cols_repetitions) 
            log_repeat = log_repeat.append(log_entry, sort=False) 
 
        log_repeats[name] = log_repeat 



 79 

 
        print("==== End classifier: {}".format(name)) 
 
    # append LDA cov 
    name = 'LDA_wyrm' 
    # add LDA cov estimator 
    print("==== Start classifier: {}".format(name)) 
    y_pred = proc.lda_apply(fv_test[subject], lda_covs[subject]) 
    log_repeat = pd.DataFrame(columns=cols_repetitions) 
    for repeat_idx in range(1, N_INTENSIFY + 1): 
        print("-- Repetition: {}".format(repeat_idx)) 
        name_repeat = name + "-" + str(repeat_idx) 
        score = process_prediction( 
            fv_test[subject], y_pred, repeat_idx, labels[subject]) 
        log_entry = pd.DataFrame( 
            [[repeat_idx, score*100, name]], columns=cols_repetitions) 
        log_repeat = log_repeat.append(log_entry, sort=False) 
 
    log_repeats[name] = log_repeat 
 
    print("==== End classifier: {}".format(name)) 
    log_testings.append(log_repeats) 
 
sns.set_style("whitegrid") 
plt.figure(figsize=(8, 6)) 
 
# multiple line plot 
ax = plt.gca() 
ax.set_prop_cycle(None)  # if matplotlib <1.5 use set_color_cycle 
 
log_repeats = log_testings[0] 
for clf_name in log_repeats: 
    log_repeat = log_repeats.get(clf_name) 
    color = next(ax._get_lines.prop_cycler)['color'] 
    plt.plot('Repetition', 'Accuracy', data=log_repeat, label=clf_name, 
linestyle='dashed', 
             markeredgecolor='none',  marker=next(marker), color=color, markersize=12) 
 
# Put the legend out of the figure 
plt.legend(bbox_to_anchor=(1.05, 1), loc=2, 
           borderaxespad=0., prop={'size': 14}) 
plt.xticks(ticks=list(range(1, 16))) 
plt.xlabel('Repetitions') 
plt.ylabel('Accuracy %') 
plt.title('Classifier Accuracy TESTING subject A') 
plt.show() 
 
 
sns.set_style("whitegrid") 
plt.figure(figsize=(8, 6)) 
 
# multiple line plot 
ax = plt.gca() 
ax.set_prop_cycle(None)  # if matplotlib <1.5 use set_color_cycle 
 
log_repeats = log_testings[1] 
for clf_name in log_repeats: 
    log_repeat = log_repeats.get(clf_name) 
    color = next(ax._get_lines.prop_cycler)['color'] 
    plt.plot('Repetition', 'Accuracy', data=log_repeat, label=clf_name, 
linestyle='dashed', 
             markeredgecolor='none',  marker=next(marker), color=color, markersize=12) 
 
# Put the legend out of the figure 
plt.legend(bbox_to_anchor=(1.05, 1), loc=2, 
           borderaxespad=0., prop={'size': 14}) 
plt.xticks(ticks=list(range(1, 16))) 
plt.xlabel('Repetitions') 
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plt.ylabel('Accuracy %') 
plt.title('Classifier Accuracy TESTING subject B') 
plt.show() 




