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Dissertation Summary 

Chronic insomnia is a pervasive and burdensome sleep disorder that is not 

being adequately treated at present in Australia. There is a need for practical yet 

effective treatments for insomnia to address this serious personal and societal 

burden. Intensive Sleep Retraining (ISR) is a brief but effective laboratory-based 

behavioural treatment for sleep onset insomnia that involves a series of rapid sleep 

onsets facilitated by near-total sleep deprivation. In conjunction with Re-Time Pty. 

Ltd., we have developed a wearable device called THIM which promises to 

administer ISR in the home environment. To successfully administer ISR, THIM must 

be able to accurately estimate sleep onset and wake the patient at the appropriate 

time to achieve rapid sleep onsets. Additionally, THIM can passively monitor sleep 

and wakefulness during the sleep period. If THIM accurately monitors sleep, this 

data could be incorporated into insomnia treatment. This dissertation discussed the 

development and accuracy of THIM for estimating sleep onset and for monitoring 

nocturnal sleep and wakefulness compared to the gold standard of objective sleep 

measurement, polysomnography (PSG).  

Chapter 2 was the first systematic review to examine the accuracy of 

wearable devices for the estimation of sleep onset latency (SOL) compared to PSG. 

The review concluded that devices measuring behavioural sleep onset were most 

suitable for the administration of ISR because they consistently overestimated PSG-

determined SOL, but with little variability between individuals compared to other 

wearable devices. This finding justified the method that THIM relies upon to estimate 

sleep onset for the purposes of ISR: the measurement of behavioural 

responsiveness to minimal intensity vibratory stimuli. 

Chapter 3 described the development and accuracy of the THIM device for 



ix 
 

estimating SOL in comparison to PSG. From the findings of Study 1, the THIM 

algorithm was refined and its accuracy confirmed in Study 2. THIM showed much 

closer agreement to PSG than other behavioural devices that use auditory stimuli 

and larger hand/wrist movements as behavioural responses. The final version of the 

algorithm had a discrepancy with PSG-SOL of less than one minute on average, 

which was consistent across two nights of testing. THIM appears to be accurate 

enough to administer ISR, but its accuracy for individuals with insomnia needs to be 

investigated in future research. 

Chapter 4 presented a quantitative electroencephalography analysis of the 

data from Chapter 3 to characterise sleep microstructure through a more fine-

grained lens than traditional 30-second epoch sleep staging. This study was the first 

to examine the correspondence between sleep microstructure and responses to 

minimal intensity vibratory stimuli during the process of falling asleep. The findings 

indicated that participants had increases in higher frequency brainwaves (alpha, 

sigma and beta) when they responded to the vibratory stimulus and increases in 

delta activity when they did not respond to the stimulus across all sleep stages. This 

suggests that a shift to wakefulness or an arousal occurred prior to, or coincident 

with, the onset of the vibratory stimulus, which may explain why participants 

responded to the stimulus. Thus, THIM was able to detect brief arousals during sleep 

stages that traditional sleep scoring criteria would overlook, which were a common 

occurrence during N1 sleep. THIM is accurate for detecting brief periods of 

wakefulness. These findings further supported the conceptualisation of N1 sleep as 

a transitional, fluctuating state between wake and sleep. 

 Chapter 5 described the refinement of the THIM sleep tracking function. It 

was the first study to test the accuracy of THIM for estimating sleep and wakefulness 
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over a nocturnal sleep period compared to PSG. THIM was similar in accuracy for 

estimating sleep and wake compared to wrist-based actigraphy devices. However, 

THIM showed a greater tendency to underestimate total sleep and overestimate total 

wake compared to other actigraphy devices. There was high variability in the 

accuracy of THIM between individuals, yet this was not explained by whether 

participants were good or poor sleepers. 

Chapter 6 extended the findings of Chapter 5 by examining the consistency in 

the accuracy of THIM over three nights compared to PSG. THIM showed 

consistently high sensitivity, specificity and accuracy compared to PSG across all 

nights. However, THIM produced consistently and significantly lower estimations of 

sleep efficiency due to higher estimations of wake after sleep onset. The 

improvement of the accuracy of THIM for estimating wake is required to render the 

device useful for objective sleep monitoring. 

Together, the findings of this dissertation indicate that THIM may be able to 

successfully administer ISR. The findings also suggest that improvements to the 

THIM sleep tracking algorithm are required for the device to provide accurate 

enough sleep tracking data to support the treatment of insomnia. Future research is 

required to investigate the efficacy of THIM-administered ISR and the accuracy of 

THIM sleep tracking in the home environment for individuals with insomnia. The 

long-term goal of this research program is to create an effective yet practical device 

to support the treatment of insomnia. This dissertation is the proof-of-concept step in 

the development of THIM.  
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Chapter 1: Introduction and Dissertation Aims 

Chronic Insomnia 

Chronic insomnia is the persistent inability to sleep despite adequate sleep 

opportunity, leading to negative daytime consequences. According to the 

International Classification of Sleep Disorders (ICSD-3), a diagnosis of Chronic 

Insomnia Disorder requires that the individual experiences insomnia symptoms and 

associated daytime impairments, such as fatigue and mood disturbances, at least 

three times per week, persisting for at least three months (American Academy of 

Sleep Medicine, 2014; Roth, 2007). Difficulties in initiating sleep within 30 minutes 

after attempting sleep is referred to as sleep onset insomnia (Freedman & Sattler, 

1982). Additional presentations of insomnia include difficulties maintaining sleep 

(sleep maintenance insomnia, characterised by >30 minutes of wakefulness after 

sleep onset) and difficulties with waking too early from sleep (early morning 

awakening insomnia). Some patients may experience one or a combination of these 

sleep difficulties and the ICSD-3 does not differentiate between these presentations 

in the diagnosis of Chronic Insomnia Disorder (American Academy of Sleep 

Medicine, 2014). The diagnostic criteria also do not differentiate between primary 

and secondary insomnia, recognising that insomnia, regardless of the cause, is a 

serious burden that warrants treatment in its own right.  

Chronic insomnia is the most common sleep disorder (referred herein as 

insomnia) and is associated with serious adverse health consequences (Deloitte 

Access Economics, 2017). The prevalence of insomnia is difficult to determine 

because epidemiological studies have produced a range of estimations, with this 

variability potentially explained by the use of various criteria to define insomnia. 

When using the ICSD-3 criteria, an estimated 11.3% of the Australian population 
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experience insomnia (Deloitte Access Economics, 2017). This compares to an 

estimate of 20% for insomnia prevalence in Australia (Adams et al., 2017). The 

prevalence of insomnia in Australia is comparable to similar countries, including New 

Zealand (Arroll et al., 2012), Spain (Ohayon & Sagales, 2010), and the UK (Morphy, 

Dunn, Lewis, Boardman, & Croft, 2007). People with insomnia typically experience 

dysphoria, fatigue and reduced quality of life (Benca, 2005; Kyle, Morgan, & Espie, 

2010). There is also increasing awareness of medical comorbidities associated with 

insomnia, including a 2.1 times greater risk of depression (Baglioni et al., 2011), and 

more frequent health problems and hospitalisations (Wade, 2010). Insomnia is also 

associated with reduced work productivity (Daley et al., 2009b). Adams et al. (2017) 

observed that 20% of those with insomnia reported missing 1-2 workdays in the past 

month. Similarly, Reynolds et al. (2017) reported from the same Australian survey 

that 29% of adults reported making errors at work due to sleepiness or sleep 

problems. It is clear that insomnia has a substantial impact on health and work 

productivity.  

Insomnia is also a serious economic burden. In 2016-2017, the estimated cost 

of inadequate sleep in Australia was $66.3 billion ($8,968 per person with 

inadequate sleep) comprised of $26.2 billion in direct costs (Deloitte Access 

Economics, 2017). This is higher than previous estimates of approximately $36 

billion in Australia in 2013, with a third of that attributable to insomnia, or 

approximately $8,000/year per person with insomnia (Hillman & Lack, 2013). These 

are comparable to global estimates, such as approximately $5,010/year per person 

with insomnia in North America (Daley, Morin, LeBlanc, Grégoire, & Savard, 2009a). 

Given the associated personal and societal costs, insomnia is a substantial burden 

that warrants the development of effective and accessible treatments to adequately 
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address the disorder. This project aims to reduce this personal and societal burden 

by delivering a device to effectively treat insomnia in the home environment. 

Current Treatments for Insomnia 

The most common medical treatment for insomnia is pharmacotherapy. In a 

recent survey of Australian family physicians, 90% of patients presenting with 

insomnia were prescribed medication, predominantly benzodiazepines (Miller et al., 

2017). Despite their frequent use, hypnotic medication is not best practice for 

insomnia (Riemann & Perlis, 2009). There are problems of tolerance, dependence, 

and side-effects such as rebound insomnia, deleterious effects on respiratory, 

hepatic, renal, and cardiac disorders, and daytime effects of dysphoric mood and 

sleepiness (Benca, 2005). Impaired motor and intellectual functioning are also 

experienced by individuals with insomnia, which is particularly problematic for older 

adults because this places them at a greater risk of falls (Stone, Ensrud, & Ancoli-

Israel, 2008). Epidemiological evidence suggests that chronic use of 

benzodiazepines provides little long-term benefit to sleep (Ohayon & Caulet, 1995), 

and is associated with increased morbidity and mortality (Kripke, 2016; Lovato & 

Lack, 2018). The prevalence of prescriptions for pharmacological treatments has 

remained constant since 2000, potentially due to their ease of use, perceived rapid 

treatment response, and dependency associated with long-term use (Miller et al., 

2017). These findings emphasise the need for practical but effective treatments for 

insomnia. 

The recommended first-line treatment for insomnia is Cognitive Behavioural 

Therapy for Insomnia ([CBT-I], Edinger & Carney, 2014; Morin & Espie, 2007; Perlis, 

Jungquist, Smith, & Posner, 2005). This treatment incorporates a range of cognitive 

and behavioural techniques, and Stimulus Control Therapy (SCT) is the most widely 
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studied and endorsed behavioural component (Bootzin & Epstein, 2011; Bootzin, 

1972). The aim of SCT is to decrease the duration of time spent awake in bed. 

Instructions include asking patients to only go to bed when they feel sleepy, to get 

out of bed if not asleep within 15 minutes, to go back to bed only when sleepy again, 

and to maintain the same wake-up time regardless of sleep duration. Complying with 

these instructions decreases total sleep time (TST) over the first few weeks of 

therapy (3-4 weeks), thereby increasing homeostatic sleep drive until eventually, 

sleep becomes inevitable. Following the SCT instructions is thought to extinguish the 

conditioned insomnia response that has become a habit learned through repeated 

failures to initiate sleep in the past (Lack, Scott, Micic, & Lovato, 2017; Perlis, Shaw, 

Cano, & Espie, 2011). Consequently, over time, the bedroom environment becomes 

conducive for sleep rather than wakefulness. 

The effectiveness of SCT, and indeed CBT-I, has been shown repeatedly in 

clinical trials (Espie, Lindsay, Brooks, Hood, & Turvey, 1989; Riedel et al., 1998). A 

recent meta-analysis including 87 randomised controlled trials reported that CBT-I is 

effective for treating insomnia, when utilising either the full CBT-I treatment package 

or the main behavioural components (van Straten et al., 2018). CBT-I results in 

moderate-large improvements in sleep onset latency (SOL), and small-moderate 

effects in TST and wake after sleep onset ([WASO], Morin et al., 1999; Smith et al., 

2002). Compared to pharmacological treatments, CBT-I produces comparable short-

term improvements in sleep, but a considerable advantage of CBT-I is that it results 

in greater long-term benefits beyond treatment (Morin, LeBlanc, Daley, Gregoire, & 

Merette, 2006). CBT-I is also effective for treating insomnia in the presence of other 

health conditions, including obstructive sleep apnea [OSA], Sweetman, Lack, 

Lambert, Gradisar, & Harris, 2017), many psychiatric conditions (Taylor & Pruiksma, 
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2014), and medical conditions in older adults (Lovato, Lack, Wright, & Kennaway, 

2014; McCurry, Logsdon, Teri, & Vitiello, 2007; Rybarczyk et al., 2005). 

Shifting insomnia healthcare practice towards CBT-I is a priority for sleep 

medicine. However, the main barrier to the achievement of this goal is the lack of 

resources available to treat patients using CBT-I. To undergo face-to-face CBT-I in 

Australia at present, patients experiencing insomnia symptoms typically visit their 

general practitioner in the first instance. After screening for potential physical health 

conditions or other sleep disorders, the physician may refer the patient to a sleep 

specialist. Waitlists to see sleep specialists can be lengthy and access to specialised 

sleep disorder specialists is limited in remote areas of Australia. Furthermore, few 

physicians are qualified to effectively deliver CBT-I. Of those sleep specialists who 

claim to treat insomnia, it is unknown whether they treat insomnia effectively, 

particularly whether they use CBT-I in an efficacious manner. Therefore, despite its 

high efficacy, CBT-I is not readily available to treat many individuals with insomnia. 

As such, many individuals seek - and/or their general practitioner recommends - 

pharmacological treatments, complementary alternative medicines, or sleep hygiene 

instructions that produce minimal long-term therapeutic benefits for insomnia (Chung 

et al., 2018; Miller et al., 2017; Wilt et al., 2016). Even though CBT-I is the 

recommended first line treatment for insomnia, the current healthcare model and 

lack of resources prevents this recommendation becoming a reality for the 

overwhelming majority of individuals with insomnia.  

Digital Treatments for Insomnia 

With the shortfall of necessary resources to effectively treat sleep disorders 

and a boom in the use of healthcare technology, there has been a rise in the number 

of digital sleep products available to consumers. These products span smartphone 



6 
 

applications, web-based programs, wearable devices, and ‘nearable’ devices placed 

near the sleeping individual (Bianchi, 2017). Many of these products claim to 

improve sleep, but few have robust empirical evidence publicly available to support 

their efficacy. These consumer sleep technologies (CSTs) are often classed as 

lifestyle/entertainment devices, thereby avoiding the need for validation data required 

for the approval of medical devices under the United States Food and Drug 

Administration regulatory authority. As such, claims of efficacy are often unsupported 

by evidence. 

Consumers may believe marketing claims and purchase products that do not 

effectively treat sleep and have the potential to cause harm. Gavriloff et al. (2018) 

gave individuals with insomnia sham feedback from a sleep tracking device following 

a night’s sleep. Those who received negative feedback (low sleep efficiency) had 

reduced daytime function (d = 0.79) and increased sleepiness and fatigue (d = 0.55) 

the following evening compared to those who received positive feedback (high sleep 

efficiency), indicating that inaccurate feedback provided by sleep trackers can impact 

daytime functioning. In a position statement regarding CST, the American Academy 

of Sleep Medicine (AASM) recommended that CSTs should be validated if this 

technology is to be used in the diagnosis or treatment of sleep disorders (Khosla et 

al., 2018). Similarly, the Sleep Research Society (SRS) have made 

recommendations on the conduct and reporting of studies attempting to validate 

CSTs in the hope of generating further research in this area (Depner et al., 2019). 

This dissertation is the first step in the validation of the THIM wearable device for 

treating insomnia. 

Some online CBT-I programs have strong empirical evidence available to 

support their efficacy. One popular internet-based treatment developed by insomnia 
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researcher, Colin Espie, is known as Sleepio (Sleepio, 2019). This treatment 

program delivers six weeks of CBT-I via web- and mobile-based platforms. 

Incorporating participants’ sleep diaries, the program tailors the treatment to the 

individuals’ current sleep and treatment goals. Participants are encouraged to 

contribute to the Sleepio community by seeking and providing feedback on chat 

forums with other Sleepio participants. In a large randomised controlled trial (N = 

164), Espie et al. (2012) reported greater improvements in sleep diary outcomes and 

daytime functioning for the Sleepio treatment group compared to a placebo imagery 

relief therapy group and a waitlist control group. Effects sizes for change from 

baseline to two-month follow-up for sleep efficiency (d = 1.37), total wake time (d = 

1.21) and SOL (d = 0.80) were similar to those found with face-to-face CBT-I (Espie 

et al., 2012). In relation to clinical significance, approximately 75% of those in the 

Sleepio treatment group had a sleep efficiency >80% post-treatment compared to 

approximately 30% and 20% in the imagery relief and waitlist control groups, 

respectively. In this study, 82% of participants completed the entire Sleepio program 

and 75% completed the two-month follow up assessment. Such high treatment 

adherence is considerably better than other studies investigating online CBT-I 

programs.  

While online CBT-I programs can produce substantial benefits in sleep, 

treatment adherence in other studies investigating these treatments are often 

unsatisfactory. Espie et al. (2019) observed small improvements in psychological 

wellbeing and quality of life measures for individuals using Sleepio compared to a 

sleep hygiene control group in a community sample of 1,000 adults. Of those 

randomly assigned to the Sleepio group, 80.8% logged on for at least one treatment 

session, but only 48.4% completed all 6 sessions. Freeman et al. (2017) found that 
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69% of participants in the Sleepio group completed at least one session and only 

18% completing all six sessions. Cheng et al. (2019) similarly observed that 38% of 

participants completed the Sleepio intervention.  

This trend for low treatment adherence with Sleepio is also found with other 

online treatment programs. SHUT-I (Sleep Healthy Using the Internet) is a similar 

six-week non-tailored CBT-I program (BeHealth Solutions, 2018; Thorndike et al., 

2008). In a randomised controlled trial of 303 adults with insomnia, SHUT-I produced 

substantial improvements in sleep outcomes that were maintained at 12-month 

follow up assessment, including in SOL, d = 1.41, and Insomnia Severity Index (ISI) 

questionnaire scores, d = 2.32 (Ritterband et al., 2017). At 12-month follow up, an 

intention to treat analysis revealed that 69.7% of the SHUTi group were classified as 

treatment responders (a reduction of >7 points on the ISI) compared to 43.0% of the 

patient education control group. However, treatment adherence was low, with only 

60.3% of participants assigned to SHUT-I completing the program. 

Considering that these programs are low cost and use less resources than 

face-to-face CBT-I, online CBT-I programs produce acceptable improvements in 

sleep. Coupled with practical administration, these programs may be useful to 

address the large-scale problem of providing effective insomnia treatment for little 

cost. In fact, Sleepio is now provided to England residents free-of-charge under the 

publicly-funded National Health Service (NHS North West London, 2018). However, 

low treatment adherence is an issue that needs to be resolved to improve treatment 

outcomes (Matthews, Arnedt, McCarthy, Cuddihy, & Aloia, 2013). 

One potential reason for low adherence is the inability of individuals to endure 

behavioural components of the therapy, such as SCT or sleep restriction therapy 

(SRT). Both of these behavioural treatments build homeostatic sleep drive over the 
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first 3-4 weeks of treatment to the point where sleeping in the bedroom environment 

becomes inevitable. This necessary lag in treatment response is associated with 

early treatment sleepiness, discomfort from sustained sleep loss and great difficulty 

in changing lifestyle habits (Kyle, Morgan, Spiegelhalder, & Espie, 2011). High levels 

of motivation are necessary to overcome these typical difficulties experienced in the 

first few weeks of treatment, but this high motivation is difficult to achieve and 

maintain throughout treatment. In clinical practice with the patient unsupervised at-

home, SCT often does not lead to the promised therapeutic benefits found in the 

closely supervised clinical trials (Matthews et al., 2013). Whilst clinicians may be 

able to provide the necessary support for many individuals to overcome these 

challenges in clinical practice, this degree of support is lacking in online treatment 

programs and may contribute to the low treatment adherence. 

Developing treatments that avoid these challenges by producing more rapid 

improvements in sleep would presumably be more acceptable to individuals, likely 

lead to greater treatment adherence, and thereby produce greater therapeutic 

benefits. Such rapid treatments would also require less support from clinicians, 

reducing the burden on public healthcare resources. Relatedly, the allure of 

pharmacological treatments for insomnia may partly be due to the rapid therapeutic 

response (Miller et al., 2017). The development of an effective yet rapid behavioural 

treatment would be a useful and welcome technique for clinicians, researchers and 

consumers wanting a practical insomnia treatment. 

Intensive Sleep Retraining  

Intensive Sleep Retraining (ISR) is a promising alternative to other 

behavioural treatments for insomnia. ISR is a brief but rigorous behavioural 

treatment involving near-total sleep deprivation over 24 hours to facilitate a series of 



10 
 

rapid sleep onsets (Harris, Lack, Kemp, Wright, & Bootzin, 2012; Harris, Lack, 

Wright, Gradisar, & Brooks, 2007). The patient is required to lie in bed and attempt to 

fall asleep. After a brief period of light sleep according to polysomnography ([PSG], 

in the order of 2-3 minutes of sleep), the patient is awoken and given feedback about 

how long it took them to fall asleep. This process is known as a sleep onset trial. The 

patient is subsequently instructed to remain awake until the next half-hour timepoint, 

before attempting to fall asleep again on the next trial. Since brief episodes of light 

sleep (< 3 minutes) do not reduce homeostatic sleep drive (Tietzel & Lack, 2002), 

sleep deprivation is effectively maintained over the whole retraining session. It is the 

deprivation of recuperative sleep combined with a high circadian drive for sleepiness 

during the early hours of the morning that cause patients to fall asleep more rapidly 

with each subsequent sleep onset trial. Consequently, patients who report average 

pre-treatment SOLs > 60 minutes are able to fall asleep in < 5 minutes on dozens of 

attempts during the retraining session. This is thought to retrain patients to fall 

asleep more quickly by extinguishing the conditioned cortical arousal response 

hypothesised to interfere with the attempt to initiate sleep in the home environment 

(Lack, Scott, & Lovato, 2019).  

Early pilot studies indicated that ISR produced immediate, significant and 

sustained improvements in sleep (Harris et al., 2007; Lack & Baraniec, 2002). For 17 

participants with sleep onset insomnia, ISR significantly reduced SOL by 30 minutes 

and increased TST by 65 minutes (Harris et al., 2007). These improvements were 

maintained at two-month follow up. Although the ISR procedure may appear vexing, 

and participants sometimes had trepidations about whether they could manage the 

sleep loss, what they mainly experienced was increased sleepiness. This was not an 

aversive experience for insomnia patients as they rarely felt the sleepiness they 
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desperately sought, mitigating the common fear that their sleep mechanism is 

irreparably broken. Many participants were pleased with the experience of falling 

asleep quickly and no participants in any subsequent laboratory studies withdrew 

during the treatment procedure (Harris et al., 2012; Harris et al., 2007; Lack & 

Baraniec, 2002). 

A randomised controlled trial compared the efficacy of ISR and SCT to a 

sleep hygiene control group (Harris et al., 2012). Seventy-nine individuals with 

chronic sleep onset insomnia were randomly allocated to four groups: ISR treatment 

group, SCT treatment group, a combined ISR followed by SCT treatment group, and 

a waitlist control group. Not only did ISR produce improvements that were as 

effective as what SCT achieved in four weeks, but it did so in as little as 24 hours. 

Treatment outcomes for the ISR group included a reduction in SOL (d = 0.61) and 

daytime impairment (d = 0.57), and an increase in TST (d = 0.53). Such a rapid 

treatment response is comparable to that promised by pharmacological treatments, 

yet ISR results in sustained improvements in sleep akin to CBT-I. At two-month 

follow up, 46.7% of participants in the ISR treatment group were classified as 

treatment responders, compared to 37.5% in the SCT group. The combination of ISR 

and SCT was particularly effective, with 61.1% of participants in this group identified 

as treatment responders at two-month follow up. 

In practice, ISR may be more achievable and motivating for those who are 

unable to comply with SCT instructions over the more prolonged treatment period or 

other behavioural treatments, potentially leading to greater treatment adherence and 

subsequently, therapeutic benefit. With its strong efficacy and rapid therapeutic 

effect, ISR could become the treatment of choice for clinicians and consumers, if it 

can be effectively translated to the home environment. 
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To date, ISR has been administered as a laboratory-based treatment that 

requires the patient to remain in a sleep laboratory for 24 hours whilst undergoing 

PSG recording. A trained sleep technician is required to monitor PSG in real time to 

detect sleep onset during each trial so that the patient can be woken at the 

appropriate time. The prompt detection of sleep onset and subsequent waking of the 

patient is necessary to maintain a high homeostatic sleep drive to ensure the 

continuation of the rapid sleep onset experiences thought to be essential to the 

efficacy of the treatment (Lack et al., 2019; Lack et al., 2017). Consequently, the 

laboratory-based ISR procedure is costly, impractical for widespread implementation 

and not readily available to most insomnia patients. An alternative administration 

method is needed to translate this rapid and effective behavioural treatment to the 

home environment to make it viable for addressing the insomnia burden on a large 

scale. 

Translation of Intensive Sleep Retraining to the Home Environment 

Sleep On Cue 

The Sleep On Cue smartphone application (app) was designed to translate 

the ISR protocol to the home environment (MicroSleep, 2015). To undergo ISR, the 

individual lies down in bed at their typical bedtime whilst holding their smartphone 

and wearing earphones, and attempts to fall asleep. The app emits a faint tone 

stimulus via the earphones approximately every 30 seconds and the individual is 

required to gently move the smartphone in response. When the individual fails to 

respond to the tone stimulus, the app assumes that they have fallen asleep and 

emits a strong vibration to wake the individual. The app and similar devices utilising 

the stimulus-response method of estimating sleep onset are known to be accurate 

compared to PSG. Behavioural responses to auditory stimuli tend to cease 2–3 
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minutes after the onset of electroencephalography (EEG) non-rapid eye movement 

Stage 1 (N1) sleep (Connelly, 2004; Lack & Mair, 1995; Scott, Lack, & Lovato, 

2018). Therefore, the individual is likely to experience the desired 2-3 minutes of light 

sleep before they are woken up: aligning with the laboratory-based ISR 

administration protocol. After the strong vibration has woken the individual, they have 

a short break before initiating the next trial, and this cycle continues overnight until 

the following morning. 

Because the administration of the ISR protocol is similar to the laboratory-

based method, the Sleep On Cue app should be successful in administering the ISR 

procedure in the patient’s home without the need for PSG or sleep technicians. The 

Sleep On Cue app developers have reported considerable anecdotal support from 

their customers, but experimental confirmation of treatment efficacy is still only 

preliminary. A pilot study compared sleep outcome measures at baseline to post-

treatment and four-week follow-up in twelve sleep onset insomnia patients (Mair, 

Scott, & Lack, 2020). The study also tested a modified ISR protocol whereby sleep 

onset trials were only separated by a brief six-minute break. Using this modified 

protocol, participants completed an average of 36.33 (SD = 6.72) trials within a 12-

hour nocturnal treatment session. Compared to baseline, strong improvements were 

demonstrated for SOL (d = 0.75), sleep efficiency (d = 0.77), and insomnia severity 

on the ISI (d = 1.82) at four weeks post-treatment (Mair et al., 2020). These effects 

are comparable to those of the earlier laboratory-based ISR studies. However, this 

study did not include a long-term follow up or a control group, so the cause of the 

observed improvements in sleep outcomes and whether these are maintained in the 

long-term are unclear. Nonetheless, it appears that Sleep On Cue-administered ISR 

can be used in the home environment with good adherence and without 
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experimenter supervision. 

While Sleep On Cue can effectively administer the ISR protocol, there are 

issues pertaining to the user experience of the app. The use of tone stimuli is 

problematic because the stimulus should be maintained at the lowest perceptible 

intensity to minimise disruption, whilst remaining perceptible to the individual so they 

can initiate the required behavioural response. Maintaining this intensity using a tone 

stimulus emitted via earphones is difficult, as they may (and often did during testing) 

become dislodged overnight (Mair et al., 2020). Perhaps most problematic is the 

requirement that the individual holds their smartphone whilst undergoing the ISR 

procedure. The individual is required to move their phone with a back-and-forth 

motion of the wrist in response to the tone stimuli. The effort and motor activity 

required to produce this response may contribute to unnecessarily prolonged 

wakefulness during the ISR protocol, reducing the efficacy of the treatment due to 

less time for rapid sleep onset opportunities. Many individuals also do not like having 

their smartphone in the bedroom environment while they are attempting sleep. 

Overcoming these issues may create a more user-friendly experience, potentially 

leading to greater treatment adherence and satisfaction. 

THIM  

In close collaboration with Re-Time Pty. Ltd., we designed the THIM wearable 

device: a device that promises to administer ISR in the home environment. The 

individual connects THIM to the accompanying smartphone application via Bluetooth 

to instruct the device to administer ISR. THIM then administers the ISR protocol 

independently of the smartphone, meaning that individuals do not need to have their 

smartphone in the bedroom environment. The individual places THIM on the index 

finger of their dominant hand (see Figure 1-1) and attempts to fall asleep in bed 
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starting at their typical bedtime. The device emits a low intensity, short duration 

vibration approximately every 30 seconds to which the individual responds by 

tapping their finger. If THIM detects a response to the vibration, the device infers that 

the individual is awake and when they fail to respond to two consecutive stimuli, 

THIM assumes they have fallen asleep. Once THIM detects sleep onset, the device 

emits a high intensity vibration to wake the individual and signal the end of the sleep 

onset trial. After a five-minute break, THIM emits another high intensity vibration to 

signal that the individual should return to bed and attempt another trial. The 

retraining session continues for a duration of time specified by the individual during 

the configuration. Once this specified duration elapses, THIM begins the final sleep 

onset trial but once it determines sleep onset, it will not emit the high intensity alarm 

vibration. Instead, the individual sleeps uninterrupted until the morning. In many 

ways, the THIM-administered ISR protocol is designed to align with the laboratory-

based and the Sleep On Cue-administered ISR protocols, with the individual falling 

asleep and waking up shortly thereafter on multiple occasions during the one 

overnight retraining session. 

 
Figure 1-1. THIM placed on a sleeping individual, printed with permission. 

For THIM to effectively administer ISR, it is crucial that the patient is woken at 
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the appropriate time relative to the onset of N1 sleep. Disturbing the patient too early 

may cause them to not experience sleep onset. Waking the patient too late may 

result in the individual experiencing enough sleep to significantly reduce sleep 

pressure, decreasing the likelihood of falling asleep quickly on subsequent trials. 

This is supported by studies investigating the consequences of brief naps, which 

have consistently found that 5-10 minutes of sleep can significantly reduce objective 

and subjective sleepiness post-nap (Brooks & Lack, 2006; Hilditch, Centofanti, 

Dorrian, & Banks, 2016; Tietzel & Lack, 2002). Because the rapid nature of the sleep 

onsets is thought to be the most therapeutic element of ISR, longer SOLs would 

presumably reduce the efficacy of the treatment (Lack et al., 2019). To wake the 

individual at the appropriate time, it is therefore essential that THIM can accurately 

detect sleep onset. Like Sleep On Cue, THIM utilises the stimulus-response method 

of estimating sleep onset. The accuracy of this method and its practicality for 

administering ISR is desirable compared to other objective methods used by other 

wearable devices, as will be discussed in Chapter 2. 

While similar devices are accurate for measuring sleep onset using the 

stimulus-response method, THIM differs from previously tested devices in potentially 

important ways. THIM uses vibratory stimuli while other devices use auditory stimuli 

(Mair, 1994; Ogilvie, Wilkinson, & Allison, 1989; Scott et al., 2018), thereby relying 

on different information processing pathways for perception with reductions in 

perceptibility potentially occurring at differing time points during the onset of sleep. 

THIM also requires an easy-to-exert finger twitch behavioural response while other 

devices require more onerous hand/arm movements (Kuderian, Ogilvie, McDonnell, 

& Simons, 1991; Mair, 1994; Scott et al., 2018), which may become less possible to 

exert sooner into the onset of sleep than finger twitches. Furthermore, algorithm 
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parameters such as the stimulus duration, stimulus intensity and the number of 

consecutively missed responses to stimuli to register sleep onset may all differ from 

previously tested devices. These aspects may mean that the accuracy of THIM for 

estimating sleep onset differs from similar devices despite utilising the same 

underlying rationale that the cessation of behavioural responsiveness to external 

stimuli indicates sleep onset. The first aim of this dissertation was to refine and test 

the accuracy of THIM’s sleep onset detection algorithm by comparing its estimations 

of sleep onset to the gold standard of objective sleep measurement, PSG. This aim 

is achieved in Chapters 3 and 4. 

Sleep Tracking 

THIM is entering a marketplace flooded with consumer sleep products. Health 

conscious and technology-savvy individuals regularly quantify and monitor their 

health and wellbeing, including their sleep (Robbins, Krebs, Rapoport, Jean-Louis, & 

Duncan, 2018). Individuals collect sleep data such as TST and sleep efficiency, 

which they can monitor for long-term trends. The Quantified Self Movement is a term 

coined to describe the growing trend of individuals using technology to quantify and 

monitor their health and wellbeing (Swan, 2012). This movement is a major 

contributor to the rapid growth of the CST industry, with one popular CST brand 

earning $US248 million in revenue in the first quarter of 2018 (Sawh, 2018). 

However, sales of these devices have slowed in recent years and long-term use of 

these devices are dwindling (Statista, 2020). One potential reason for this is that 

individuals, while initially intrigued by their sleep data, do not see the purpose of 

tracking sleep in the long-term, as merely tracking sleep does not lead to 

improvements in sleep (Russo & Bianchi, 2017). 

During the treatment of insomnia, it is advantageous to measure sleep to 



18 
 

monitor the patient’s response to treatment. In clinical practice, patients may 

complete sleep diaries to subjectively monitor their sleep and inform treatment. Over 

the long-term, individuals may struggle to consistently maintain a sleep diary. The 

use of CSTs to track sleep in the long-term may have greater adherence than sleep 

diaries. Sleep tracker data could also be automatically integrated into online 

treatment programs, without the need for user input, leading to greater 

personalisation of the treatment program and potentially greater therapeutic 

outcomes. There are many advantages and potential uses for CSTs in the treatment 

and management of insomnia and many other sleep disorders (Watson, Lawlor, & 

Raymann, 2019), with the main limitation being the validation of the current 

technology (Khosla et al., 2019). Therefore, a worthwhile goal for sleep medicine is 

the validation and incorporation of objective sleep measurements into online 

insomnia treatment programs. 

Some online insomnia treatment programs incorporate sleep data to tailor the 

treatment instructions, including Sleepio which utilises subjective sleep diary data 

and objective data collected from a popular sleep tracker. However, for sleep 

trackers to be useful for this purpose, the device must provide accurate sleep data. 

The accuracy of the vast majority of sleep trackers is unknown as many companies 

do not publish their validation research, if they have indeed tested the product. 

Nonetheless, recent findings suggest that actigraphy may be useful for monitoring 

sleep for individuals with insomnia (Hamill et al., 2020; Kahawage, Jumabhoy, 

Hamill, de Zambotti, & Drummond, 2019). 

The THIM device has many functions, not just the administration of ISR. THIM 

has the capacity to passively track sleep using the well-established actigraphy 

method, facilitate the optimal power nap, and emit a smart alarm to wake individuals 
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during light stages of sleep in the morning. While all functions require refinement and 

validation to ensure that the device is executing them appropriately, it is beyond the 

scope of this dissertation to investigate the power napping and smart alarm functions 

of the THIM device. However, the sleep tracking function will be investigated in this 

dissertation. This was to further the long-term goal of incorporating the sleep tracking 

function into a comprehensive mobile-based treatment of insomnia that utilises 

THIM-administered ISR. Therefore, the second and final aim of this dissertation is to 

develop and assess the accuracy of the THIM sleep tracking algorithm compared to 

PSG. This aim is achieved in Chapters 5 and 6.  

Dissertation Aims 

The aims of this dissertation were to develop and test the accuracy of the 

THIM wearable device 1) for estimating sleep onset, and 2) for estimating sleep and 

wakefulness during the nocturnal sleep period. Both the ISR and sleep tracking 

functions of the THIM device are being developed and assessed in this dissertation 

because they are necessary components to achieving the long-term goal of the 

effective and practical online treatment of insomnia. 

Chapter 2 summarised the ability of current wearable technology to measure 

sleep onset. The review systematically identified studies which examined the 

accuracy of practical sleep wearable devices for estimating sleep onset. The aim 

was to identify the most suitable objective sleep measurement method for 

administering ISR in the home environment. 

Chapter 3 discussed the development and accuracy of the THIM stimulus-

response algorithm for estimating SOL. The aim was to refine the algorithm to 

ensure that it can accurately estimate sleep onset compared to PSG. 

The aim of Chapter 4 was to further investigate the correspondence between 
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PSG and THIM estimations of SOL through quantitative electroencephalography 

(qEEG) analysis. 

Chapter 5 shifts focus by describing the development of the THIM sleep 

tracking function. The main aim was to investigate whether THIM can accurately 

track sleep using actigraphy compared to PSG. 

Relatedly, Chapter 6 aimed to assess the consistency in the accuracy of 

THIM for monitoring sleep over multiple nights compared to PSG. 

Chapter 7 discussed the findings of this dissertation, their implications for 

sleep research and healthcare practice, and directions for future research into ISR 

and the THIM device. 

Methodology Justification 

The methodology of this research is discussed throughout the following 

chapters. However, the reasoning behind three methodological decisions are 

discussed here as they 1) relate to all studies described in this dissertation, and 2) 

are particularly important for the interpretation of the aims and findings of this 

dissertation. 

Terminology: Accuracy versus Validity 

This dissertation discusses the accuracy of the THIM device. The theoretical 

concept of accuracy refers to the degree to which the measure, THIM, aligns with the 

gold standard measure, PSG (Streiner & Norman, 2006). This differs from validity, 

which refers to the extent to which the measure represents what it is supposed to 

measure for a specific purpose (Messick, 1995). The goal of the validation of THIM is 

to assess whether the device can successfully administer ISR. Assessing the 

accuracy of the device is the first step in reaching this goal by confirming that THIM 

can substitute for PSG to monitor nocturnal sleep and wakefulness. Further testing 
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will be required to confirm the validity of the device for administering ISR, as is 

discussed in Chapter 7. Such testing would need to determine whether patients can 

adhere and follow instructions for THIM-administered ISR in the uncontrolled home 

environment and whether this would lead to improvements in insomnia symptoms. 

This dissertation presents findings about the accuracy, not the validity, of the THIM 

device for estimating sleep onset and for monitoring sleep and wakefulness. 

Polysomnography as the Gold Standard Measure of Sleep 

To assess the accuracy of THIM, the device’s estimations of sleep and wake 

were compared to those derived from standardised PSG scoring criteria (American 

Academy of Sleep Medicine, 2018), except for Chapter 4 which involved a qEEG 

analysis. Despite limitations of this approach (Tryon, 2004), PSG is the current gold-

standard method of objectively measuring sleep and is the recommended 

comparison to assess the validity of wearable devices (Depner et al., 2019). An 

alternative gold-standard sleep measure is self-reported sleep (i.e. sleep diaries). 

Whilst understanding the correspondence between THIM and self-reported sleep is 

important for some applications, including for the treatment of insomnia, this was not 

our focus. The goal was to develop a device that could substitute PSG and assess 

objective sleep, not subjective sleep, for the specific purposes of ISR and monitoring 

of objective sleep in the home environment. For these purposes, PSG scoring 

criteria is the gold-standard measure to which THIM should be compared to 

ascertain whether the device can suitably perform these purposes.  

Good and Poor Sleepers Sample 

All studies described in this dissertation tested THIM with samples of good 

and poor sleepers (subthreshold clinical insomnia). The decision was made to recruit 

this sample rather than individuals with insomnia. Whilst the long-term goal is to use 
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THIM in clinical practice for the treatment of insomnia, THIM is currently available to 

the general population. Thus, the device’s ISR and sleep tracking functions will likely 

be used largely by individuals without clinical insomnia, at least in the short-term 

before its potential implementation in healthcare practice. As such, we decided to 

assess the accuracy of THIM with a sample of individuals who have varied sleep 

quality that is more representative of the sleep quality found in the general 

population (Adams et al., 2017). This was to ensure that THIM could conduct these 

functions appropriately with the population that are likely to implement THIM first. To 

achieve the long-term goal of using THIM specifically for the treatment of insomnia, 

the device will need to be tested with an insomnia sample. Due to resource 

restrictions, this was not possible within the scope of this dissertation. Nonetheless, 

the relevance of the findings for individuals with insomnia is discussed throughout 

this dissertation where appropriate.  
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Abstract 

The accurate estimation of sleep onset is required for many purposes, 

including the administration of a behavioural treatment for insomnia called Intensive 

Sleep Retraining, facilitating power naps, and conducting objective daytime 

sleepiness tests. Specialised equipment and trained individuals are presently 

required to administer these applications in the laboratory: a costly and impractical 

procedure which limits their utility in practice. A wearable device could be used to 

administer these applications outside the laboratory, increasing accessibility. This 

systematic review aimed to identify practical wearable devices that accurately 

estimate sleep onset. The search strategy identified seventy-one articles which 

compared estimations of sleep onset latency from wearable devices against 

polysomnography. Actigraphy devices produced average estimations of sleep onset 

latency that were often not significantly different from polysomnography, but there 

was large inter-individual variability depending on participant characteristics. As 

expected, electroencephalography-based devices produced more accurate and less 

variable estimates. Devices that measured behavioural aspects of sleep onset 

consistently overestimated polysomnography-determined sleep onset latency, but to 

a comparatively low degree. This sleep measurement method could be deployed in a 

simple wearable device to accurately estimate sleep onset and administer Intensive 

Sleep Retraining, power naps, and objective daytime sleepiness tests outside of the 

laboratory setting. 

Keywords: sleep; sleep onset; insomnia; power naps; Intensive Sleep 

Retraining; wearable technology; consumer sleep technology; polysomnography; 

actigraphy; systematic review.  
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There are many reasons why researchers, clinicians and consumers want to 

accurately measure sleep in the home environment. In particular, some applications 

require the accurate estimation of sleep onset. One such application is to administer 

a novel behavioural treatment for insomnia called Intensive Sleep Retraining (ISR): a 

brief but effective treatment involving near-total sleep deprivation to retrain the 

patient to fall asleep more quickly (Harris et al., 2012; Harris et al., 2007). To 

undergo ISR, the patient is required to lie down in bed and attempt to fall asleep. 

After a brief period of light sleep in the order of 2-3 minutes according to 

polysomnography (PSG), the patient is awoken and given feedback about how long 

it took them to fall asleep. The patient is subsequently instructed to remain awake for 

a brief period, before attempting to fall asleep again on the next trial. Since brief 

episodes (< 3 minutes) of light sleep do not reduce homeostatic sleep drive (Tietzel 

& Lack, 2002), sleep deprivation is effectively maintained over the whole, traditionally 

24-hour, retraining session. It is the deprivation of recuperative sleep combined with 

a high circadian drive for sleepiness during the early hours of the morning that cause 

patients to fall asleep more rapidly with each subsequent sleep onset trial. 

Consequently, patients who report average pre-treatment sleep onset latencies 

(SOLs) > 60 minutes are able to fall asleep in < 5 minutes on dozens of attempts 

during the retraining session. The series of rapid sleep onsets is thought to 

extinguish the conditioned cortical arousal response hypothesised to interfere with 

the attempt to initiate sleep in the home environment (Lack et al., 2017).  

 For ISR to be administered appropriately in the home environment, it is 

essential that sleep onset is measured accurately. As described, current ISR 

procedures requires the patient to undergo PSG in the sleep laboratory (Harris et al., 

2012; Harris et al., 2007). The prompt waking of the patient shortly after sleep onset 
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is thought to be necessary for achieving the strong therapeutic effect (Lack et al., 

2017). If the patient is disturbed before sleep is established, the patient will not have 

the experience of having attained sleep and that particular sleep ‘onset’ trial is 

unlikely to produce any therapeutic benefit. If the patient is woken too late and has 

experienced >5 minutes of sleep, then sleep pressure would be somewhat alleviated 

and they would be expected to take longer to fall asleep in subsequent trials (Brooks 

& Lack, 2006; Hayashi, Motoyoshi, & Hori, 2005). Furthermore, as this treatment is 

conducted over a finite period of time, delayed awakenings past the point of sleep 

onset would reduce the number of rapid sleep onset and retraining experiences 

during the treatment period, which could reduce treatment efficacy. Additionally, 

learning theory would suggest that longer SOLs may reinforce, or at least fail to 

diminish or reduce the intensity of, the conditioned insomnia response. Therefore, 

the successful administration of ISR in the home environment requires that the 

administration tool accurately estimates sleep onset to wake them at the appropriate 

time, ideally after 2-3 minutes of sleep, but after no more than five minutes of sleep. 

Similarly, the accurate measurement of sleep onset is required to facilitate 

power naps. Brief naps have consistently been shown to reduce both subjective and 

objective sleepiness and improve daytime functioning, including fatigue, attention, 

and memory (Brooks & Lack, 2006; Hilditch, Dorrian, & Banks, 2017; Takahashi, 

Fukuda, & Arito, 1998). Very brief naps (less than five minutes sleep duration) do not 

lead to significant improvements in alertness, while longer naps (30 minutes or 

longer sleep duration) result in sleep inertia upon waking that reduces immediate 

daytime functioning delaying the beneficial effects of the nap(Lovato & Lack, 2010a). 

Naps of ~10 minutes sleep duration are optimal because they avoid the detrimental 

effects of sleep inertia but significantly improve daytime functioning immediately after 
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waking, which are sustained for up to three hours (Brooks & Lack, 2006; Hilditch et 

al., 2016). To nap for 10 minutes at present, people may set an alarm to wake them 

after a pre-determined duration of time. This requires the individual to estimate how 

long it will take them to fall asleep but if this estimate is not fulfilled, they will fail to 

obtain the optimal 10-minutes of sleep. A device that could accurately detect sleep 

onset and wake the individual after the appropriate duration of sleep could allow 

individuals to experience the strongest and most consistent improvements in daytime 

functioning from power naps in their home or work environment. This is an obvious 

benefit in today’s culture with many experiencing daytime impairments from 

inadequate nocturnal sleep, and for the many shift workers wanting to counteract 

fatigue (Hilditch et al., 2017). 

There are also potential diagnostic uses for a device that could accurately 

estimate sleep onset. The multiple sleep latency test (MSLT) and maintenance of 

wakefulness test (MWT) are objective daytime sleepiness tests which involve 

measuring SOL (Carskadon, 1986). These tests are used to objectively measure 

excessive daytime sleepiness used for the diagnosis of sleep disorders such as 

obstructive sleep apnea, idiopathic hypersomnolence, and narcolepsy. Currently, 

these tests are conducted in the sleep laboratory with specialised equipment and 

trained individuals required to administer the protocol. As a result, both tests are not 

widely used in healthcare practice to measure excessive daytime sleepiness, with 

clinicians opting in favour of subjective sleepiness measures (Johns, 1991) that have 

their limitations and correlate weakly with MSLTs (Benbadis et al., 1999; Sangal, 

Mitler, & Sangal, 1999). It is desirable to develop an alternative method of 

administering MSLTs and MWTs outside the laboratory setting that utilises fewer 

healthcare resources. For these tests to be administered appropriately, SOL needs 
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to be measured to a high degree of accuracy to make appropriate decisions for 

patient care. A device that could accurately estimate sleep onset would be useful for 

this purpose. Similarly, an accurate device could also be useful to reduce costs of 

laboratory-based research, such as for conducting constant routine protocols where 

SOL is used as a measure of sleep propensity (Gradisar & Lack, 2004). 

These applications have been administered previously using PSG, which is 

considered to be the gold standard method of objective sleep measurement 

(Hirshkowitz, 2017). PSG measures the physiological changes that occur during the 

transition from wake to sleep, including brain waves (electroencephalography, EEG), 

eye movements (electrooculography, EOG) and muscle activity (electromyography, 

EMG). Since the early twentieth century, researchers have observed physiological 

activity around sleep onset using PSG to better understand sleep by distinguishing it 

from wakefulness (Kleitman, 1929; Loomis, Harvey, & Hobart, 1935). Sleep onset is 

currently understood to be a complex transitional process involving physiological, 

behavioural and psychological changes that begins during relaxed wakefulness and 

ends in undeniable and sustained sleep (Carskadon & Dement, 2017; Ogilvie, 2001). 

As the individual relaxes, alpha waves subside as low voltage, mixed frequency 

theta waves emerge sometimes accompanied by slow rolling eye movements and a 

decrease of EMG activity indicating the onset of N1 sleep. This is usually followed by 

signs of Non-Rapid Eye Movement Stage 2 sleep (N2): k-complexes and sleep 

spindles. These physiological changes during N1 and N2 sleep coincide with 

behavioural concomitants of sleep onset, including reduced responsiveness towards 

auditory and visual stimuli, characteristic visual imagery, and an increasing likelihood 

of the perception of having fallen asleep if awoken around N2-sleep onset 

(Guilleminault, Phillips, & Dement, 1975; Ogilvie et al., 1989; Yang, Han, Yang, Su, 
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& Lane, 2010). These changes occur gradually, and individuals may fluctuate 

between sleep and wakefulness before finally entering sustained sleep. 

While sleep onset is a complex process, current standardised PSG scoring 

criteria defines sleep onset as a specific point along the continuum (American 

Academy of Sleep Medicine, 2018). PSG N1-sleep onset is scored when EEG alpha 

comprise less than 50% of the 30-second epoch, which is typically accompanied by 

reductions in muscle tone and slow eye movements (American Academy of Sleep 

Medicine, 2018; Carskadon & Dement, 2017). This point is difficult to score 

especially for people with little alpha waves, even for experienced sleep technicians 

(Rosenberg & Van Hout, 2013). Nonetheless, PSG is the most accepted method 

researchers and clinicians have at their disposal for measuring objective sleep. 

There are many practical limitations to PSG which limit its usefulness, 

particularly for measuring sleep in the home environment. PSG requires specialised 

equipment and trained people to administer, which is time consuming and 

expensive. Even though ambulatory PSG devices can be used in the home 

environment, the equipment and consumables are expensive and not readily 

available for use in many situations, or for many individuals. Aside from cost, people 

having their sleep monitored via PSG are often inconvenienced by having to attend a 

sleep laboratory to be setup for ambulatory monitoring and experience discomfort 

whilst attempting to sleep, at least on the first night. Many of these limitations are 

exacerbated when attempting to monitor sleep over multiple nights. In response, 

alternative methods and devices have been developed to measure sleep, many of 

which can be used practically outside the laboratory. 

Previous literature reviews have summarised the validity of devices for 

objectively measuring sleep (Evenson, Goto, & Furberg, 2015; Van den Water, 
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Holmes, & Hurley, 2011). Van den Water et al. (2011) systematically reviewed the 

validity of devices for measuring objective sleep, including research-grade and 

consumer wearable and non-wearable sleep devices. The authors concluded that 

actigraphy devices were the most appropriate device for measuring sleep outside of 

the laboratory setting because they are the most widely used and validated method 

of sleep measurement. However, Van den Water et al. (2011) noted that further 

validation could indicate that other devices are more accurate than actigraphy 

devices. Similarly, Evenson et al. (2015) systematically reviewed the validity and 

reliability of consumer wearable sleep devices, including the popular Fitbit and 

Jawbone devices. These devices tended to overestimate sleep and underestimate 

wakefulness across the sleep period: a common finding of actigraphy-based devices. 

Importantly, these reviews have not specifically focused on the measurement of 

sleep onset. 

A review of the accuracy of wearable sleep devices for estimating sleep onset 

is warranted because the accurate measurement of this sleep parameter in particular 

is crucial, specifically for the purposes of administering ISR, power naps, and 

daytime sleepiness tests outside the laboratory setting. Furthermore, the consumer 

sleep technology (CST) space in particular is evolving rapidly, as is research into the 

accuracy of these devices (Bianchi, 2017). This warrants an updated review of the 

evidence regarding the accuracy of wearable devices, focusing specifically on sleep 

onset.  

The present study has two aims: 

1) Use a systematic approach to evaluate the evidence of the accuracy of 

wearable devices for measuring SOL in adults compared to PSG. 

2) Identify existing wearable devices and objective sleep measurement 
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methods that could be used to administer ISR, power naps and daytime 

sleepiness diagnostic tests outside the laboratory setting. 

Method 

This review was conducted in accordance with the PRISMA (preferred 

reporting items for systematic reviews and meta-analyses) guidelines (Moher, 

Liberati, Tetzlaff, Altman, & The, 2009). 

Search Strategies 

The database search strategy incorporated relevant title/abstract key words 

and medical subject headings (MeSH) or equivalent subject headings under three 

broad categories: sleep onset (‘sleep latency’, ‘sleep onset period’, etc.), 

measurement (‘validity’, ‘detect’, etc.) and devices (‘actigraphy’, ‘mobile app’, 

‘tracker’, etc.). See Appendix 1 for the specific keywords and subject headings used 

to search in each database. The initial search strategy was developed in PubMed 

and translated to the remaining databases. On 12th June 2018, searches were 

conducted in PubMed, Web of Science, SCOPUS, PsycINFO and CINAHL 

EBSCOhost databases. Search results were restricted to articles published in 

English.  

Additional search strategies included screening the reference lists of included 

articles and consulting with collaborators to identify relevant articles not captured by 

the database search strategy. These additional strategies were completed by 23rd 

July 2018. 

Study Selection 

After de-duplication, articles were screened according to the selection criteria 

summarised in Table 2-1 by the primary author, HS. The selection criteria were 

designed to include articles that assessed objective sleep wearable devices and 
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compared them to the gold-standard method, PSG. Articles that assessed the 

accuracy of the device using the same sample used to develop the algorithms (i.e. 

not an independent validation sample) were excluded. 

Table 2-1. Study selection criteria. 

Article Criteria 

Original, full text, peer-reviewed articles 
Written in English 

Sample Characteristics Criteria 

Adult, human sample 
Sample size ≥ 10 

Tested Device Criteria 

Tested a device that used an objective method purporting to measure sleep 
Wearable device that is practical for use outside the laboratory 
Does not require expert knowledge or an extensive setup procedure. For 
instance, placing EEG electrodes at measured points on the scalp. 

Accuracy Criteria 

Tested against PSG in an independent sample 
Data is presented pertaining to sleep onset 

EEG = electroencephalography, PSG = polysomnography 

Data Extraction 

Key data fields were identified for extraction by HS. These fields included 

relevant study information (year, setting, study location), sample characteristics (age, 

gender, sleep characteristics), device specifications (type of device tested, algorithm, 

PSG scoring criteria) and any data relating to SOL. The statistics reported in the 

articles varied widely and included correlation coefficients, intra-class correlations, 

mean discrepancies between PSG and the tested device, and Bland-Altman plot 

values. The relevant data was extracted and inserted into summary tables (Tables 

A2, A3 and A4 in the Appendix).  
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Results 

The PRISMA flow diagram in Figure 2-1 outlines the selection of studies at 

each stage of screening. The database search strategy identified a total of 4,200 

articles and an additional 10 articles were found through other strategies. After 

removing duplicates, 1,855 records remained. 1,706 records were excluded after 

preliminary screening of the titles and abstracts, and a further 78 records were 

excluded during the full text screening (see Figure 2-1 for reasons for exclusion). A 

total of 71 articles met the selection criteria for inclusion in this review.  

 
Figure 2-1. PRISMA flowchart detailing the study selection process. 

Table A2 (see Appendix) presents detailed information relating to the sample, 

test setting and PSG specifications used in each study. Most studies were conducted 

 
Records identified through 

database searching 
(n = 4,200) 

Additional records identified 
through other sources 

(n = 10) 

Records after duplicates removed 
(n = 1,855) 

Records screened 
(n = 1,855) 

Records excluded 
(n = 1,706) 

Full-text articles assessed 
for eligibility 

(n = 149) 

Full-text articles excluded, 
 with reasons 

(n = 78) 
7 Not a full paper (abstract only) 
1 Duplicate record 
10 Sample size <10 
1 Not an adult sample 
12 Not an objective wearable device  
12 Not practical for use at home 
14 Not validated against PSG in a 
 sample not used to develop 
 the algorithm 
21 No sleep onset data reported 

Studies included in 
qualitative synthesis 

(n = 71) 
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with young healthy individuals, those with sleep disorders or individuals with other 

significant physical or mental health conditions. Testing was typically conducted in 

the sleep laboratory with participants allowed their typical nocturnal sleep 

opportunity. 

Methods used by the Wearable Devices 

The wearable devices used a wide range of methods of estimating sleep 

onset, from relatively complicated physiology-based methods incorporating many 

signals to simple behaviour-based methods. The most common method of 

estimating sleep used by the tested devices was actigraphy, which comprised 75% 

of all devices tested in the included articles (Chae et al., 2009; Dunican et al., 2018; 

Rupp & Balkin, 2011). This method utilises in-built accelerometers to measure body 

movement to infer sleep and wakefulness (Sadeh & Acebo, 2002). Little/no 

movement is scored as sleep and a greater degree of movement is inferred as 

wakefulness. Devices also used physiology-based methods (15.9% of devices 

tested) including headbands that measured brain waves (Cellini, McDevitt, Ricker, 

Rowe, & Mednick, 2015; Kaplan, Wang, Loparo, Kelly, & Bootzin, 2014). Some 

devices incorporated both actigraphy and various physiological signals (6.8% of 

devices tested), such as EEG, heart-rate variability and eye movements (Edinger, 

Means, Stechuchak, & Olsen, 2004; Fonseca et al., 2017). Behavioural methods 

(2.3% of devices tested) included measuring behavioural responses to auditory 

stimuli and depressing a micro-switch (Hauri, 1999; Scott et al., 2018). Table A3 (see 

Appendix) provides information pertaining to the tested device specifications for each 

article in greater detail. 

Accuracy of the Wearable Devices 

Data pertaining to the accuracy of the tested devices is summarised in Table 
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A4 (see Appendix), grouped by the objective sleep measurement method used by 

the wearable device (actigraphy, actigraphy plus a physiological signal, physiology-

based devices, and behaviour-based devices). 

Actigraphy Devices 

The accuracy of actigraphy devices is grouped by the characteristics of the 

sample, the device model and the algorithm used to derive sleep and wakefulness. 

Previous reviews have identified these factors as important influences on the 

accuracy of wearable devices for estimating sleep and wakefulness (Evenson et al., 

2015; Van den Water et al., 2011). Figure 2-2 shows mean discrepancies between 

actigraphy device-derived SOL and PSG-determined SOL, as will be discussed in 

greater detail in the following sections.
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Figure 2-2. Graphical representation of the mean discrepancies between PSG-SOL and actigraphy-SOL.  
The type of marker indicates sample characteristics. Negative values on the x axis indicate underestimations of actigraphy-derived SOL, 
positive values indicate overestimations of actigraphy-derived SOL compared to PSG. Error bars represent one standard deviation, 
where available. If a study tested the accuracy of multiple algorithms on the same dataset, only the most accurate algorithm was chosen 
for inclusion in this figure. * indicates studies that tested multiple algorithms. 
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Healthy participants 

Studies conducted with healthy sleepers (Cellini, Buman, McDevitt, Ricker, & 

Mednick, 2013; Chakar et al., 2017; De Souza et al., 2003; Fonseca et al., 2017; 

Fuller, Juliff, Gore, Peiffer, & Halson, 2017; Gruwez, Libert, Ameye, & Bruyneel, 

2017; Kanady, Drummond, & Mednick, 2011; Kosmadopoulos, Sargent, Darwent, 

Zhou, & Roach, 2014; Markwald, Bessman, Reini, & Drummond, 2016b; Matsuo et 

al., 2016; Nakazaki et al., 2014; O’Hare et al., 2015; Paquet, Kawinska, & Carrier, 

2007; Pigeon et al., 2018; Reid & Dawson, 1999; Rupp & Balkin, 2011; Sargent, 

Lastella, Halson, & Roach, 2016; Scatena et al., 2012; Shambroom, Fabregas, & 

Johnstone, 2012; Slater et al., 2015; Tonetti, Pasquini, Fabbri, Belluzzi, & Natale, 

2008) reported mean discrepancies between PSG and the actigraphy device-

identified sleep onset ranging from an underestimation of 15.1 minutes to an 

overestimation of 23.2 minutes. Standard deviations ranged from 3.6 to 37.8 minutes 

suggesting that even amongst healthy populations, the variability in estimations from 

actigraphy devices can be substantial. Intra-class correlations ranged from -0.07 to 

0.56, and Pearson correlations ranged from no correlation, r = .01, to strong positive 

correlations, r = 0.73.  

Sleep disorders 

Several studies examined the accuracy of actigraphy devices exclusively in 

samples with sleep disorders. Insomnia was the most common sleep disorder 

investigated in the included articles (Choi, Kang, Sung, & Joo, 2017; Cook, Prairie, & 

Plante, 2017; Lichstein et al., 2006; McCall & McCall, 2012; Mundt et al., 2016; 

Sivertsen et al., 2006; Taibi, Landis, & Vitiello, 2013; Vallieres & Morin, 2003). These 

studies generally showed that actigraphy devices underestimated SOL compared to 

PSG. Mean discrepancies ranged from -4.19 to -14.16 minutes (SD = 11.77-21.59), 

though few studies reported this statistic (Cook et al., 2017; McCall & McCall, 2012; 
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Taibi et al., 2013; Vallieres & Morin, 2003). One study reported a strong intra-class 

correlation of .70 (Choi et al., 2017), while Pearson correlations ranged from no 

correlation (r = .08) to a non-significant, weak correlation (r = .31). McCall and 

McCall (2012) tested the accuracy of an actigraphy device with individuals 

diagnosed with both Insomnia and Major Depressive Disorders. The authors 

observed a mean discrepancy between PSG and actigraphy of -4.19 minutes, 

though this was not a significant difference. There was a small, significant correlation 

between PSG and actigraphy-SOL, r = .31 (McCall & McCall, 2012). 

Two studies were conducted with obstructive sleep apnea (OSA) patients 

(Chae et al., 2009; Dick et al., 2010b) and one study with those with sleep-

disordered breathing more generally (Choi et al., 2017). Dick et al. (2010b) found 

that an actigraphy device significantly underestimated SOL compared to PSG, 

despite a strong positive correlation between the two measures, r = .89. For those 

with sleep-disordered breathing, Choi et al. (2017) found that actigraphy estimates of 

SOL did not significantly differ from PSG-SOL, but with no significant correlation 

between them.  

Some studies investigated the accuracy of actigraphy devices with samples of 

both healthy participants and those with sleep disorders (de Zambotti, Claudatos, 

Inkelis, Colrain, & Baker, 2015a; de Zambotti, Goldstone, Claudatos, Colrain, & 

Baker, 2018; Hedner et al., 2004; Kang et al., 2017; Kuo et al., 2017; Sanchez-

Ortuno, Edinger, Means, & Almirall, 2010; Wang et al., 2008). Neither Kang et al. 

(2017) nor Sanchez-Ortuno et al. (2010) found actigraphy devices to be more or less 

accurate for estimating SOL for the insomnia groups compared to the healthy 

groups. Similarly, Wang et al. (2008) found no significant differences between PSG-

SOL and actigraphy-SOL for either the healthy or OSA groups. However, Hedner et 
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al. (2004) found that actigraphy significantly overestimated SOL compared to PSG in 

groups with mild and moderate OSA. Although, no differences were found in the 

healthy or severe OSA groups. Interestingly, de Zambotti et al. (2018) found that 

actigraphy significantly underestimated SOL compared to PSG in healthy 

participants, but no significant difference in those with Periodic limb movements of 

sleep (PLMS). It is important to note that only nine participants had PLMS in this 

study, so replication is required with a larger sample to make confident conclusions. 

Synthesising these findings, the available evidence suggests that the accuracy of 

actigraphy for estimating SOL does not differ between healthy participants and those 

with sleep disorders. 

Other health conditions 

Studies that included those with mental health conditions showed generally 

little difference between PSG and actigraphy-determined SOL (Baandrup & Jennum, 

2015; Cole, Kripke, Gruen, Mullaney, & Gillin, 1992; Cook et al., 2017; Kaplan et al., 

2014). Kaplan et al. (2014) and Baandrup and Jennum (2015) found no significant 

differences between PSG-SOL and actigraphy-SOL for people with bipolar disorder 

and bipolar/schizophrenia disorder, respectively. Cook et al. (2017) found a 

research-grade actigraphy device significantly underestimated SOL in those with 

Major Depressive Disorders, but a consumer actigraphy device did not differ from 

PSG when using the default scoring algorithm. 

The accuracy of actigraphy devices for estimating SOL has also been tested 

in those with injuries, diseases or disabilities which impact motor movement (Alsaadi 

et al., 2014; Blackwell, Ancoli-Israel, Redline, & Stone, 2011; Laakso, Leinonen, 

Lindblom, Joutsiniemi, & Kaski, 2004; Maglione et al., 2013). When the most 

accurate algorithm scoring parameters were set, actigraphy-SOL did not significantly 



40 
 

differ from PSG-SOL for men with osteoporotic fractures (Blackwell et al., 2011) or 

individuals with Parkinson’s disease (Maglione et al., 2013). Whereas, Laakso et al. 

(2004) found an actigraphy device to greatly underestimate SOL compared to PSG 

for individuals with sleep disorders comorbid with motor disabilities (M = -152, SD = 

194): a much greater underestimation than found from those with sleep disorders (M 

= -48, SD = 62) or able-bodied participants (M = -6, SD = 7). Correlations between 

PSG and the actigraphy device-derived SOL were strong for the able-bodied, r = .82, 

and sleep-disordered groups, r = .73, but weak and not significant for the individuals 

with sleep disorders comorbid with motor disabilities, r = .17. 

Community samples 

Two studies have tested actigraphy with representative community samples. 

Dunican et al. (2018) included 50 middle-aged adults of varying health whom were 

participating in a larger longitudinal study, whereas Zinkhan et al. (2014) recruited a 

convenience sample of residents from four German cities aged 18-75 years old (N = 

100). Both studies found reasonably small mean discrepancies between actigraphy 

devices and PSG (M range = 6.4 - 22). However, variability was considerably larger 

than found in other studies with actigraphy devices, with standard deviations ranging 

from 18.2 to 74. No potential explanations were found for this high degree of 

variability in either study. 

In summary, the findings suggest that actigraphy devices underestimate SOL, 

typically within 10 minutes of PSG-SOL. However, variability in the discrepancy with 

PSG was high, as indicated by large standard deviations. The accuracy of actigraphy 

devices can differ depending on the characteristics of the sample. As shown in 

Figure 2-2, there is the greatest variability in studies with community samples, with 

the least variability typically observed with healthy, good sleepers. 
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Actigraphy algorithms 

Whilst actigraphy devices have the same underlying rationale that motion 

equates to sleep/wake state, there may be differences in accuracy between 

actigraphy models. Thirteen studies used at least two different actigraphy devices 

simultaneously (Alsaadi et al., 2014; Cellini et al., 2013; Cook et al., 2017; Cook, 

Prairie, & Plante, 2018; Dunican et al., 2018; Gruwez et al., 2017; Kang et al., 2017; 

Kosmadopoulos et al., 2014; Matsuo et al., 2016; Pigeon et al., 2018; Rupp & Balkin, 

2011; Tonetti et al., 2008; Zinkhan et al., 2014). Most of these studies have tested 

Philips Actiwatch devices (10/13 studies), with mean discrepancies ranging from a 

2.3-minute overestimation to a 14-minute underestimation. In recent years, Fitbit 

devices using the optimal algorithm settings have shown promising validity for 

estimating SOL compared to the accuracy of Actiwatch devices (Cook et al., 2017; 

Kang et al., 2017). Not all actigraphy devices are comparable, despite similarities in 

hardware and using the same underlying rationale of measuring sleep. 

The scoring parameters and algorithms used to determine sleep and 

wakefulness may produce the discrepancy in accuracy between different actigraphy 

models. De Souza et al. (2003) compared the accuracy of two commonly-used 

algorithms, the Cole-Kripke (Cole et al., 1992) and the Sadeh et al. (Sadeh, Sharkey, 

& Carskadon, 1994) algorithms. The authors observed that the algorithms were 

comparable in accuracy for estimating SOL with healthy individuals. Paquet et al. 

(2007) also tested four different actigraphy algorithms, finding that the accuracy of 

the algorithms did not vary considerably between the experimental conditions of 

nocturnal sleep, daytime recovery sleep, and daytime recovery sleep after 

consuming caffeine.  

However, the accuracy of actigraphy devices is impacted by the scoring 

parameter settings. Blackwell et al. (2011) tested the accuracy of three different 
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modes for accumulating the accelerometer data: zero crossing mode (the number of 

instances that the accelerometer waveform crosses zero), time above threshold 

(duration of time that the waveform is above a certain threshold), and proportional 

integration mode (the area under the curve of the waveform). The zero crossing 

mode showed a higher mean discrepancy for estimating SOL compared to PSG (M = 

17.56, SD = 51.37) than the proportional integration mode (M = -2.77, SD = 22.03) 

and time above threshold mode (M = -2.43, SD = 27.82). 

Similarly, Matsuo et al. (2016) showed that the threshold setting for the 

amount of movement required to score an epoch as wakefulness impacted the 

accuracy of a device. SOL estimates ranged from 15.00 minutes (SD = 3.67) for a 

low threshold to 8.50 minutes (SD = 3.09) for a high threshold. Chae et al. (2009) 

tested the accuracy of a research-grade device in people either with OSA or a 

combination of OSA and PLMS. The authors varied the number of ‘immobile 

minutes’ required to estimate actigraphy-derived SOL: a common scoring parameter 

used in the algorithms of many research-grade actigraphy devices. This change in 

algorithm setting greatly impacted the accuracy of the actigraphy device with SOL 

estimates ranging from 3.59 (SD = 4.05) to 44.61 minutes (SD = 66.67). Five 

immobile minutes was optimal for estimating SOL, while Insana, Glowacki, and 

Montgomery-Downs (2011) and Maglione et al. (2013) found 10 immobile minutes to 

produce more accurate estimates of SOL for first-time parents experiencing 

disrupted sleep and for those with Parkinson’s disease, respectively. This suggests 

that not only does the accuracy of actigraphy devices depend upon the scoring 

parameters, but also that the optimal setting depends on the characteristics of the 

individual. 

Studies that have tested various algorithms and scoring parameters have 
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mostly utilised research-grade actigraphy devices. Few studies have conducted 

similar testing with consumer actigraphy devices as the algorithms are often 

proprietary and unavailable to researchers. Cook et al. (2017) found that Fitbit Flex 

devices using the ‘normal’ algorithm settings as set through the accompanying online 

software were more accurate for estimating SOL than the ‘sensitive’ algorithm setting 

for individuals with Major Depressive Disorder. Similarly, Kang et al. (2017) found 

higher intra-class correlations for the ‘normal’ settings compared to the ‘sensitive’ 

settings for both good sleepers and individuals with insomnia. 

Actigraphy Devices: The Next Generation 

The latest actigraphy models incorporate additional physiological signals into 

the sleep scoring algorithms to improve the accuracy of the devices. An increasingly 

common addition to new consumer actigraphy devices is photoplethysmography 

(PPG). This method involves emitting light onto the skin and measuring changes in 

light absorption to measure heart rate and heart rate variability. Fonseca et al. (2017) 

compared the accuracy of an actigraphy device with PPG and a device without PPG 

for estimating SOL in healthy individuals. The mean discrepancy and standard 

deviation between the device and PSG for the actigraphy plus PPG device (M = 

−7.48, SD = 6.64) was slightly lower than the actigraphy-only device (M = −8.59, SD 

= 9.05). This suggests that incorporating this physiological signal may improve the 

accuracy of actigraphy devices. 

Hedner et al. (2011) investigated the accuracy of a similar wrist-worn device 

called the Watch-PAT, which is used to detect sleep-disordered breathing. The 

device measures various signals including peripheral arterial tone (PAT), actigraphy, 

pulse rate and oximetry. This device significantly underestimated SOL by 

approximately seven minutes compared to PSG, yet there was a reasonably high 
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degree of correspondence between the two measures (r = .57). 

Other actigraphy devices have combined head movements with EOG to 

estimate sleep. Ajilore, Stickgold, Rittenhouse, and Hobson (1995) found one such 

device produced estimations of SOL that were not significantly different from PSG, 

whereas Edinger et al. (2004) found a similar device gave significantly higher 

estimations of SOL compared to PSG. The divergent results could be explained by 

differences between the wearable devices and their algorithms: Ajilore et al. (1995) 

conducted testing with the Nightcap device, while Edinger et al. (2004) used the 

REMview device. 

Some devices have incorporated EEG signals with actigraphy (Fietze et al., 

2015; Finan et al., 2016). Finan et al. (2016) tested a device that combined two EEG 

channels (AF7, AF8) and head movement. The authors observed that the automatic 

scoring algorithm and manual scoring performed by two experts on data from this 

device were similar in accuracy for estimating SOL. However, both the automatic 

and the manual scoring methods significantly underestimated SOL compared to 

PSG (automatic: M = 5.00, SD = 5.52; manual: M = 4.82, SD = 6.18). Fietze et al. 

(2015) observed that combining one EEG channel (F4-M1) with actigraphy resulted 

in a high degree of correspondence with PSG (r = .98) and a small mean bias (M = 

3, SD = 6). The addition of chin EMG and EOG channels did not improve the 

accuracy of the device for estimating SOL. It is important to note that the wearable 

device data was manually scored by a qualified scorer using standardised PSG 

criteria (Rechtschaffen & Kales, 1968). Whether a similar degree of accuracy could 

be obtained when using an automatic scoring algorithm with this particular device is 

yet to be shown. Nonetheless, the standard deviation for the mean discrepancy in 

estimations was considerably smaller in Fietze et al. (2015) than found with 
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actigraphy devices, suggesting that incorporating EEG signals may reduce the 

variability in the accuracy of the estimations made by actigraphy-based devices. 

Physiology-based Devices 

Some wearable devices tested in the included studies have relied solely on 

physiological signals to estimate sleep. These devices typically measure EEG, such 

as the discontinued Zeo wireless system (Cellini et al., 2015; Griessenberger, Heib, 

Kunz, Hoedlmoser, & Schabus, 2013; Kosmadopoulos et al., 2014; Markwald et al., 

2016b; Shambroom et al., 2012; Tonetti et al., 2013), the Zmachine (Kaplan et al., 

2014), and the Sleep Profiler (Lucey et al., 2016). These devices are relatively 

accurate for estimating SOL. Studies have reported a high degree of 

correspondence between these devices and PSG, with intra-class correlations 

ranging from .42 to .67. While these devices have significantly underestimated SOL 

in some studies (Cellini et al., 2015; Kosmadopoulos et al., 2014; Markwald et al., 

2016b), other studies have reported no significant difference between the two 

measures (Myllymaa et al., 2016; Shambroom et al., 2012; Tonetti et al., 2013). 

More complex devices have incorporated multiple physiological signals. For 

instance, Senny et al. (2012) tested a device that measured mandible movements, 

oxygen saturation and nasal airflow. The device significantly overestimated SOL 

compared to PSG across all sleep disorder groups, with mean discrepancies ranging 

from 29.7 to 36.1 minutes. Standard deviations for each sleep disorder group were 

large, ranging from 59.5 to 88.7. This indicates large variation in the accuracy of this 

device across sleep pathologies. Contrastingly, White, Gibb, Wall, and Westbrook 

(1995) tested the device with the most complex setup included in this review: the 

NightWatch system. This device measures EOG, leg movement, oxygen saturation, 

nasal airflow, chest and abdominal wall motion, body position, movement and heart 
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rate. The incorporation of many signals resulted in similar estimations of SOL (M = 

14, SE = 2) compared to PSG (M = 15, SE = 3), and a medium degree of 

correspondence, r = .54 [.22, .76]. Nonetheless, the incorporation of many 

physiological signals may not always result in greater accuracy than other devices 

which rely on one signal. 

Behavioural Devices 

Two studies tested devices which utilise behavioural methods of estimating 

SOL. Hauri (1999) tested a device similar to a stop-watch, whereby the participant is 

required to continuously depress a switch on the device to keep the counter running. 

When the participant relaxes their finger to the point where the switch is no longer 

depressed, the counter stops, displaying SOL. Hauri (1999) observed that despite a 

reasonable degree of correspondence between the device and N1-SOL (r = .60), this 

device significantly overestimated N1-SOL by 15.1 minutes. The cessation of muscle 

tension aligned closely with the onset of sustained PSG sleep, defined as 10 minutes 

of uninterrupted sleep (mean discrepancy of -1.8 minutes), r = .98. 

We have previously tested the accuracy of a smartphone application for 

estimating SOL (Scott et al., 2018). This application measured behavioural 

responses to tone stimuli to estimate sleep onset, with the cessation of responses to 

the stimuli indicating that the participant had fallen asleep. Similar to Hauri (1999), 

the lowest mean discrepancy (M = 0.81, SD = 1.96) and highest degree of 

correspondence (r(s) = .92) between the smartphone application and PSG was 

observed for the onset of PSG-N2 sleep. The relatively small standard deviation for 

the mean discrepancies indicates that there was little variability in the accuracy of 

the smartphone application across the sample of healthy participants. However, the 

smartphone application was still accurate at estimating N1-SOL with a mean 
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discrepancy of 3.17 minutes (SD = 3.04) and high degree of correspondence 

between the two measures, r(s) = .79. 

Comparison across Sleep Measurement Methods 

Figure 2-3 is a chart of the reported mean discrepancies between the tested 

device and PSG across all types of sleep measurement devices reviewed in this 

article. As previously discussed, actigraphy device estimations of SOL are often not 

significantly different from PSG, but the standard deviations indicate large inter-

individual variability in the discrepancies with PSG, the extent of which depends on 

the characteristics of the individual. Actigraphy devices that incorporated 

physiological signals may improve the variability of SOL estimates. EEG devices 

produced less variable estimates, particularly for those with sleep disorders. Unlike 

other devices included in this article, behavioural devices consistently overestimated 

N1-SOL, but to a comparatively small degree and with low variability in the 

discrepancy of their estimates compared to PSG. 
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Figure 2-3. Representation of the mean discrepancies between PSG and each device, separated by type of sleep measurement device. 
The type of marker indicates sample characteristics. Negative values on the x axis indicate underestimations of device-derived SOL, 
positive values indicate overestimations of device-derived SOL compared to PSG. Error bars represent one standard deviation, where 
available. If a study tested the accuracy of multiple algorithms on the same dataset, only the most accurate algorithm was chosen for 
inclusion in this figure. * indicates studies that tested multiple algorithms. 

 



49 
 

Discussion 

This review summarised the literature about the accuracy of practical 

wearable devices estimating SOL. Several devices were identified that measure 

physiological and behavioural processes to estimate sleep. Actigraphy-based 

devices were the most common type of device and the included articles indicated 

that these devices err on the side of underestimating SOL. This is not surprising 

considering that these devices base SOL estimation on a reduction in movement, 

and these reductions tend to occur before the onset of sleep (Pollak, Tryon, 

Nagaraja, & Dzwonczyk, 2001). However, this rationale assumes that a reduction in 

movement before sleep onset is systematic and occurs similarly across individuals 

(Tryon, 2004). If this were true, then actigraphy algorithms could account for this 

systematic bias to provide more accurate estimations of sleep onset. The findings of 

this review suggest that the reduction in movement is not systematic across the 

population as variability in accuracy between individuals was high, particularly for 

individuals with sleep-disorders or other health conditions. This was further 

highlighted in the findings of studies conducted with community samples (Dunican et 

al., 2018; Zinkhan et al., 2014). The large variability in discrepancy with PSG 

indicates an element of unpredictability in the actigraphy data that has not yet been 

explained. Until individual differences can be accounted for in actigraphy algorithms, 

the accuracy of actigraphy devices and their algorithms will vary considerably across 

individuals.  

Presumably in an effort to reduce this variability and measure sleep more 

accurately, some actigraphy devices have incorporated additional physiological 

signals. The rationale behind this decision is that incorporating additional signals, 

which are more sensitive to changes in sleep depth, will result in more accurate 
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estimations of sleep and wakefulness. Some devices have combined actigraphy with 

EEG, PAT or PPG: techniques that have existed for decades yet have not been 

practical to administer until the more recent developments of small, simple sensors. 

Evidence that is publicly available to support the accuracy of these devices is 

growing and appears to be promising (Fonseca et al., 2017). Staying at the fore-front 

of consumer sleep product development is a goal for sleep medicine, which can be 

achieved by working with companies in the development of this technology, and 

importantly, by disseminating evidence of the accuracy of these devices to the 

awaiting populations of researchers, clinicians and tech-savvy consumers. 

Some devices identified in this review are essentially simplified, portable PSG 

devices, and as such, estimation of SOL from these devices closely aligned with 

PSG-SOL (Cellini et al., 2015; Kaplan et al., 2014; Tonetti et al., 2013). Importantly, 

variability in the accuracy of these devices is low between individuals. However, not 

all physiology-based devices produced accurate estimates of SOL (Senny et al., 

2012), and these devices and their associated consumables are considerably more 

expensive than other wearables devices. Nonetheless, the limited number of 

research studies included in this review indicate that physiology-based devices may 

accurately estimate sleep onset, but more research is required.  

Some devices rely on behavioural indices of sleep onset. These methods are 

not new. In fact, researchers used these methods as the basis for developing the 

scoring criteria for PSG (Dement & Kleitman, 1957; Loomis et al., 1935). As a 

consequence, studies have consistently found a high degree of correspondence 

between these behavioural devices and PSG-SOL, with small discrepancies in the 

order of 2-3 minutes (Connelly, 2004; Mair, 1994; Scott et al., 2018). Behavioural 

devices consistently overestimate SOL because lowered awareness and ability to 
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perform simple motor actions, either by depressing a switch or responding to a 

stimulus, does not cease until late-N1 or early N2 sleep (Ogilvie & Wilkinson, 1988; 

Ogilvie et al., 1989). Therefore, these behavioural methods tend to slightly 

overestimate N1-sleep onset, but inter-individual variability is low.  

Actigraphy devices have the most empirical evidence publicly available across 

diverse populations, however, these devices are not suitable for the administration of 

ISR, power napping, and daytime sleepiness tests. To administer these applications, 

sleep onset needs to be determined shortly after it occurs so that the individual can 

be woken at the appropriate moment. This is particularly important for the 

administration of ISR, because the treatment requires that the individual maintains 

high homeostatic sleep drive (Lack et al., 2017). Since a sleep duration of 5-10 

minutes can reduce sleep pressure (Brooks & Lack, 2006), sleep onset must be 

detected and the individual woken after <5-10 minutes of sleep during ISR. Similarly, 

an additional 5-10 minutes of sleep during a power nap can reduce the benefits to 

daytime functioning immediately post-waking (Brooks & Lack, 2006; Hayashi et al., 

2005), or increase their SOL on subsequent tests during MSLTs, potentially 

impacting diagnosis. Actigraphy devices are therefore not suitable because they 

typically do not achieve this required degree of accuracy across all individuals, 

particularly for individuals with sleep disorders or serious health conditions: the 

populations that may benefit most from the applications dependent on accurate 

estimation of sleep onset. Furthermore, actigraphy devices typically score sleep 

onset as the first epoch of a sustained period of immobility (often 5 or 10 immobile 

minutes) and therefore cannot detect sleep onset immediately but require the 

elapsed confirmatory immobility period (Chae et al., 2009).  

Similarly, EEG-based devices using manual scoring or automatic scoring 
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algorithms rarely produce sleep data in real-time, as this largely occurs 

retrospectively. Furthermore, these devices are expensive and relatively difficult to 

operate, limiting their usefulness. Whilst these methods and devices may be 

appropriate for passively tracking sleep for some purposes, they are not appropriate 

methods for administering ISR, power naps and daytime sleepiness tests.  

Behavioural devices could be appropriate for these purposes outside the 

laboratory setting. Of particular advantage is that these devices provide an almost 

instantaneous detection of sleep onset. Hauri (1999) tested a device that displayed 

SOL on the display of the device immediately after sleep onset occurred. Similarly, 

the smartphone application tested by Scott et al. (2018) required two consecutive 

missed responses to stimuli to occur before determining sleep onset. As stimuli 

occurred approximately 30 seconds apart, sleep onset was scored quickly after it 

occurred. These devices are also relatively inexpensive and simple to operate. The 

rapid, accurate detection of sleep onset means that these simple behavioural 

devices may be suitable for the administration of ISR, power naps, and daytime 

sleepiness tests. 

One potential challenge is that these devices may alter SOL: the presence of 

the stimulus and the required movement response may promote prolonged 

wakefulness. If the stimuli can be calibrated to a just perceptible level, and the 

degree of movement required as a response can be reduced to a minimal level, then 

a device may be able to overcome this limitation. More research is required to 

resolve this challenge and to make strong conclusions about the accuracy of these 

devices. 

As with the other devices discussed, these behavioural devices also tend to 

overestimate sleep onset. This is more desirable for the administration of ISR, power 
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naps and daytime sleepiness tests than underestimating sleep onset. If an individual 

experiences 2-3 minutes of light sleep before being woken up during ISR, then sleep 

pressure is unlikely to significantly reduce. Similarly, an additional 2-3 minutes of 

sleep may not greatly impact subsequent daytime functioning for a power nap 

(Lovato & Lack, 2010a), or the diagnosis for a daytime sleepiness test. Whereas, if a 

device detected sleep onset before an individual had fallen asleep on the vast 

majority of occasions (e.g. actigraphy devices), then the device may intervene too 

early. This would be particularly problematic for the administration of ISR because an 

individual may be disturbed before they have fallen asleep, wasting a sleep onset 

trial and presumably reducing the efficacy of the treatment. The overestimation of 

SOL by behavioural devices seems relatively systematic with little variability between 

individuals (Scott et al., 2018). More research is required to test these devices with 

individuals with various sleep disorders to determine whether accuracy is impacted 

by sleep characteristics. This could lead to the development of a device capable of 

performing these functions reliably and effectively outside the laboratory setting.  

Whilst the accurate estimation of sleep onset is essential to develop a device 

for use outside the laboratory, it is not the only important consideration. For 

researchers, clinicians and consumers to make use of sleep wearable devices, the 

device must be practical and user-friendly. Consumer wearable sleep devices have 

set the expectation that these devices are simple to setup and operate, inexpensive, 

comfortable to wear, have a long battery life, a user-friendly interface on a 

smartphone application or computer software, and do not require specialised 

knowledge to understand and make use of the results. The more complex and 

expensive a device, the less practical it becomes for lay people to use. But, the less 

accurate the device, the less useful it is for consumers, researchers and clinicians. 
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This has been a somewhat overlooked requirement in the development and 

marketing of some devices, particularly those targeted towards consumers. There is 

an opportunity for the sleep research community to work alongside industry to 

develop technology for specific applications with a reach beyond what may be 

achievable by the community alone, to the benefit of the general population. 

Synthesising the findings of 71 articles was challenging because different 

articles have reported different statistics, and many studies only reported statistics 

regarding correspondence and not agreement between the PSG and the wearable 

device. Correlations test an association (correspondence) between two variables. 

Whereas, agreement indicates the degree of concordance between two 

assessments that are measuring the same variable: in this case, SOL. A high 

correlation, or association, does not always equate to high agreement. For example, 

Figure 2-4 is of two Bland-Altman plots illustrating a hypothetical scenario where 

correspondence is equal for both plots (r = .94). However, agreement is higher in plot 

(b) compared to plot (a), as indicated by the bias being closer to zero and the 

narrower levels of agreement (± 1.96 SDs). Some studies included in this review 

reported Bland-Altman plots, but the majority of studies reported correspondence 

statistics, which limited our ability to determine and compare the accuracy of the 

wearable devices. Relatedly, many studies did not report device specifications which 

are known to impact the accuracy of devices, such as the algorithm and scoring 

parameters (de Zambotti, Cellini, Goldstone, Colrain, & Baker, 2019). It is also 

important to note that only practical wearable devices were included in this review 

and as such, non-wearable devices may exist that have more robust evidence to 

support their accuracy. 
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Figure 2-4. Bland-Altman plots of two different scenarios indicating the level of agreement 
between PSG and a wearable device. 
The grey dashed line indicates bias between the two measurements. The black 
dashed lines indicate the upper and lower levels of agreement. The dotted black line 
is the trend line. 
Conclusion 

This review used a systematic approach to investigate the accuracy of 

wearable devices for measuring sleep onset compared to PSG for the first time. 
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Several types of devices were identified, including the most widely used method, 

actigraphy, as well as physiological and other behavioural measurement devices. 

For administering ISR, power naps and daytime sleepiness tests outside the 

laboratory setting, behavioural devices were identified as the most suitable type of 

device. These devices provide accurate estimations of SOL without the limitations of 

the other types of devices, namely the need for manual and/or retrospective scoring, 

or large variability in accuracy across individuals. As we begin to understand the 

ramifications of consumer sleep devices providing inaccurate data to consumers 

(Gavriloff et al., 2018), it is imperative that consumer sleep devices are refined to be 

as accurate as possible and provide valuable feedback to consumer, clinicians and 

researchers. The sleep research community are encouraged to collaborate with 

industry to refine current technologies, the goal being to develop accurate sleep 

wearable devices that can not only provide useful feedback but can also help poor 

sleepers improve their sleep. Clinicians, researchers and health-conscious 

consumers look forward to the development of a simple, accurate device to translate 

the findings of sleep research from the laboratory to the home environment. 
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Practice Points 

(1) The accuracy of wearable devices for estimating sleep onset varies by the 

objective measurement method employed by the device, participant characteristics, 

and algorithm specifications. 

(2) Behaviour-based wearable devices may be most suitable for the purposes 

of administering Intensive Sleep Retraining, power naps, and daytime sleepiness 

tests. 

Research Agenda 

In the future, we need to work with industry to develop and refine practical 

wearable devices which: 

(1) Provide accurate estimations of sleep onset with little variability across 

individuals. 

(2) Administer Intensive Sleep Retraining, power naps, and daytime 

sleepiness tests practically outside the laboratory setting. 

(3) Are accurate enough for these purposes with the specific populations they 

are designed to be used with, e.g. test with an insomnia sample for administering 

Intensive Sleep Retraining. 
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Abstract 

THIM is a wearable device that is designed to administer a behavioural 

insomnia treatment called Intensive Sleep Retraining. To achieve this, it is imperative 

that THIM can accurately estimate sleep onset. This article presents two studies that 

aimed to develop the THIM sleep onset detection algorithm compared to 

polysomnography (PSG). Twelve (Study 1) and twenty (Study 2) individuals slept 

overnight in the sleep laboratory on two nights, one week apart. On both nights, 

participants underwent THIM-administered sleep onset trials for four hours with 

simultaneous PSG recording. During these trials, participants attempted to fall 

asleep whilst using THIM. Once THIM determined sleep onset, the device woke 

them up. In Study 1, there was no significant difference between PSG (M = 1.94 min, 

SD = 1.32) and THIM-sleep onset latency (M = 2.05, SD = 1.38) on the first night, p 

= .40, with similar findings on the second night, p = .07. On 23.74% of trials, PSG-

sleep onset could not be determined before THIM ended the trial. With a revised 

THIM algorithm in Study 2, there was no significant difference between PSG (M = 

3.41, SD = 2.21) and THIM-sleep onset latency (M = 3.65, SD = 2.18), p = .25. There 

were significantly less trials where PSG-sleep onset had not occurred (10.24%), p = 

.04. The revised THIM algorithm was accurate at estimating sleep onset latency in 

average sleepers. Future research will investigate whether THIM is similarly accurate 

for individuals with insomnia to determine whether the device can administer 

Intensive Sleep Retraining appropriately. 

Keywords: sleep onset latency; Intensive Sleep Retraining; wearable 

technology; consumer sleep technology; polysomnography; actigraphy. 
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Accurate objective measurement of sleep onset latency (SOL) is required for 

a variety of research and clinical purposes. For instance, Intensive Sleep Retraining 

(ISR) is a behavioural treatment for insomnia that involves repeatedly falling asleep 

and waking up shortly thereafter over the course of one overnight session (Harris et 

al., 2012; Harris et al., 2007). Additionally, brief daytime sleeps such as power naps 

or sleep diagnostic tests like the Multiple Sleep Latency Test (MSLT) involve 

achieving a precise amount of sleep (Carskadon, 1986; Lovato & Lack, 2010b). 

These three purposes require the accurate detection of sleep onset so that the 

individual can be awoken after the appropriate duration of sleep. Yet, the accurate 

estimation of sleep onset in the home environment is difficult, with the accuracy of 

popular actigraphy-based wearable devices varying widely across individuals (Scott, 

Lack, & Lovato, 2019). This limits the translation of these purposes beyond the sleep 

laboratory. The current article investigated the accuracy of a new wearable device 

for estimating SOL, which may be used to implement these purposes outside the 

laboratory setting. 

THIM is a new consumer sleep device worn like a ring (Re-Time, 2016). To 

estimate SOL, THIM administers brief, low intensity vibrations at intervals averaging 

30 seconds apart. The individual is required to respond to the vibrations by tapping 

their finger. When the individual does not respond to two consecutive vibrations, the 

device infers that they have fallen asleep. Thus, the device can estimate sleep onset 

in real time shortly after it occurs. THIM can also be programmed to wake the 

individual after a pre-specified duration of sleep. This means that THIM is capable of 

administering ISR, power naps, and daytime diagnostic tests (e.g. the MSLT) outside 

of the laboratory and without the need for expensive equipment or trained individuals 

to setup, administer or score the data. However, the accuracy of THIM for estimating 
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sleep onset is currently unknown and must be tested to ensure that it can conduct 

these applications appropriately. 

THIM uses the stimulus-response method to estimate sleep onset. The 

scoring criteria for polysomnography (PSG) was developed in part by examining 

electroencephalography (EEG) changes that occur with the cessation of behavioural 

responses to external stimuli (Dement & Kleitman, 1957; Loomis et al., 1935). 

Hence, this behavioural method of estimating sleep onset corresponds highly with 

PSG-defined sleep onset, with responses to stimuli typically ceasing between late-

N1 sleep and N2-sleep onset (Ogilvie, 2001; Ogilvie et al., 1989). There is often little 

individual variability in the accuracy of SOL estimations from these devices because 

the ability to perceive a stimulus and produce a simple motor movement in response 

does not vary considerably across individuals, especially when the stimulus is 

delivered at an individually-tailored minimal intensity (Mair, 1994; Ogilvie et al., 1989; 

Scott et al., 2018). Therefore, THIM is predicted to estimate SOL accurately 

compared to PSG, with an expected discrepancy of 2-3 minutes in line with similar 

devices. 

Whilst similar devices using the stimulus-response method are accurate for 

estimating SOL, THIM differs from previously tested devices in ways that may affect 

its accuracy. Devices tested in previous research have typically administered 

auditory stimuli perceived through the auditory perception pathway (Cohen, Bennur, 

Christison-Lagay, Gifford, & Tsunada, 2016), whereas vibratory stimuli emitted from 

THIM are perceived through the somatosensory system (Abraira & Ginty, 2013; 

Kaas, 2012). Whether these pathways show similar inhibition across the sleep onset 

period is currently unknown.  

MacLean, Arnedt, Biedermann, and Knowles (1992) tested the discrepancy 
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between PSG-sleep onset and behavioural responses (depression of a switch) to a 

hand-held device that administered vibratory stimuli. The authors found no significant 

differences between PSG and the hand-held device for estimating SOL. However, 

the vibratory stimuli were not calibrated to a minimally perceptible level: the 

vibrations were delivered at five standard deviations above participant’s waking 

threshold. Therefore, responsiveness to minimal intensity tactile stimuli - as utilised 

by THIM - during the sleep onset period is yet to be tested. Furthermore, THIM 

requires a simple finger tap response to the vibratory stimuli whereas other devices 

require larger hand/wrist movements (Mair, 1994; Ogilvie et al., 1989; Scott et al., 

2018). Individuals may be able to exert finger taps into deeper stages of sleep than 

more onerous movements that are inhibited earlier by loss of muscle tension. Other 

slight variations in the algorithms between THIM and other devices may exist that 

could impact its accuracy, such as the stimulus intensity, the stimulus duration, and 

the interval between stimuli. It is therefore important to test the accuracy of THIM for 

estimating sleep onset as its accuracy may differ from similar devices. 

A potential, currently untested limitation of devices that use the stimulus-

response method is the effect of learning on the device’s accuracy. When using 

THIM, finger tap responses are elicited frequently in response to vibratory stimuli. 

Over repeated use, the finger taps may become an automatic response to stimuli 

that the individual could produce without conscious awareness of the stimuli 

occurring. Under classical conditioning theory, the finger tap response would 

become a conditioned response to the vibratory stimuli after many paired repetitions 

over time. This would be problematic if the conditioned finger tap response could 

occur during deeper stages of sleep, potentially causing THIM to increasingly 

overestimate SOL with repeated use. Therefore, it is important to investigate whether 
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the accuracy of THIM reduces after repeated use. 

The current article summarises the development of the THIM device for 

estimating SOL in comparison to the gold standard objective measure of sleep, PSG. 

Two studies will be presented. The aim of the first study was to test the accuracy of 

the initial THIM algorithm for estimating SOL with healthy individuals. The findings 

informed modifications to the algorithm, with the aim of the second study to assess 

the accuracy of the revised THIM algorithm with a larger independent sample. 

Rather than discussing the proprietary THIM algorithms, we aim to describe the 

research that informed the refinement of the algorithm to the point where THIM could 

reliably provide accurate estimations of SOL. We also conducted secondary 

analyses to determine whether the accuracy of THIM is affected by previous use - 

indicative of potential learning effects. Additionally, we examined whether the 

accuracy of THIM varies between individuals with good or poor sleep, with a sample 

that represented the variability of sleep patterns found in the general population. 

Study 1: Method 

Participants 

Ethics approval was obtained from the Flinders University Social and 

Behavioural Research Ethics Committee, South Australia. Potential participants were 

recruited via advertisements on community noticeboards and social media. Eligibility 

criteria was as follows: 

1. Self-reported average habitual bedtime between 22:00-00:00 and wake up 

time between 06:00-08:00; 

2. Fluent in English; 

3. No self-reported diagnosis of a physical or mental health condition; 

4. No active nicotine or illicit substance use, or alcohol (>10 standard drinks 
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p/wk) or caffeine (>250 mg p/day) dependence; 

5. No consumption of medications known to interfere with sleep; 

6. No overnight shift work or trans-meridian travel within the last two months; 

7. Not pregnant or lactating. 

The screening questionnaires comprised of the Insomnia Severity Index ([ISI], 

Morin, Belleville, Bélanger, & Ivers, 2011) and the Pittsburgh Sleep Quality Index 

(PSQI), Buysse, Reynolds, Monk, Berman, & Kupfer, 1989) to assess sleep 

schedules and insomnia symptomology, as well as a health and lifestyle 

questionnaire to assess physical and mental health conditions, medication use, 

caffeine/alcohol/nicotine consumption, and recent overseas travel.  

Thirteen healthy individuals met eligibility criteria, but one participant withdrew 

after participating in Night 1. The final sample comprised on twelve individuals, see 

Table 3-1 for participant characteristic information. Scores on the ISI indicated that 

five participants had subthreshold levels of insomnia and were categorised as poor 

sleepers (ISI score ≥ 7), and seven were good sleepers (ISI score < 7).  
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Table 3-1. Descriptive characteristics for participants in Study 1. 

Characteristic Result (N = 12) 

Age, mean (SD), y 24.92 (6.05) 

Sex, No. (%) 
Men 
Women 

 
3 (25) 
9 (75) 

Weekly alcohol consumption, No. (SD) 0.75 (0.97) 

Daily caffeine consumption, No. (SD) 1.29 (1.05) 

Sleep characteristics 
Good sleepers 

(N = 7) 
Poor sleepers 

(N = 5) 

ISI, mean (SD) 2.14 (1.57) 11.00 (3.39) 

PSQI, mean (SD) 3.26 (1.50) 7.40 (3.29) 

Habitual Bedtime, mean (SD), min 22:38 (28.44) 22:36 (31.64) 

Habitual Wake Up Time, mean (SD), min 07:10 (24.41) 07:30 (20.42) 

Habitual TST, mean (SD) hrs 8.11 (1.02) 7.10 (1.52) 
ISI = Insomnia Severity Index, N = sample size, PSQI = Pittsburgh Sleep Quality 

Index, SD = standard deviation, TST = total sleep time. 

Design 

This study employed a within-groups quasi-experimental design. All 

participants slept overnight in the sleep laboratory on three nights as part of a larger 

THIM project. The current study only concerns data from Night 2 and Night 3. On 

both nights, participants underwent sleep onset trials administered by THIM with 

simultaneous PSG recording. The predictor variable was PSG-SOL during each trial 

and the primary outcome variable was THIM-derived SOL. 

Materials 

Polysomnography 

PSG was recorded using Compumedics Grael 4K PSG:EEG devices 

(Compumedics, Victoria, Australia). Six EEG (F3-M2, F4-M1, C3-M2, C4-M1, O1-
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M2, O2-M1), reference and ground, right and left electrooculography (EOG), chin 

electromyography (EMG), and electrocardiography (ECG) sites were sampled at 

256Hz. PSG data was scored using Profusion Compumedics software (v4.0) by a 

qualified, independent sleep technician. In accordance with AASM scoring criteria 

(American Academy of Sleep Medicine, 2018), PSG-SOL was defined as the time 

between the start of the attempt to sleep (beginning of the sleep onset trial) and the 

first epoch of any stage of sleep during the trial. 

THIM 

THIM (firmware v1.0.3) is a small, ring-like device worn on the index finger of 

the dominant hand. To setup THIM, the device was connected via Bluetooth to the 

accompanying smartphone application (v1.0.1) using an Apple iPhone 5s model 

(iOS 8.0). Participants started a sleep onset trial by tapping their index finger on 

which THIM was placed onto their thumb, twice in quick succession (see Figure 3-1). 

During the trials, the device emitted low intensity, short duration vibratory stimuli at 

non-regular intervals (averaging 30 seconds apart). The intensity of the vibrations 

was individually calibrated to the minimum level that the participant could 

consistently respond to whilst awake using the threshold hunting procedure outlined 

in the THIM smartphone application. Participants were required to respond to the 

vibratory stimuli by tapping their index finger once onto their thumb, with responses 

detected by the device’s accelerometer. If participants failed to respond to two 

consecutive vibratory stimuli, the device inferred that sleep onset had occurred and it 

emitted a high intensity alarm vibration to wake them up, signalling the end of the 

trial. Shortly afterwards (approximately 1-2 minutes later), participants attempted 

another trial. THIM’s estimations of SOL is the time from the beginning of the trial to 

slightly before the time of the first of the two consecutively-missed vibratory stimuli. 
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Figure 3-1. Illustration of the finger tap motion with the THIM device. 

To monitor THIM, we mounted a small piezo-electric sensor to the side of the 

THIM device using adhesive tape. This sensor was inputted into a channel on the 

PSG device. From this sensor, we observed four events of interest: vibrations 

emitted from THIM, finger taps as responses to the vibrations, as well as the 

beginning (the double-tap motion) and end (the high-intensity alarm vibration) of 

each trial. These four events were scored manually on the Profusion Compumedics 

software by two scorers (HS and AW). If the events of interest on the sensor data 

were obscured by body movements, the trial was removed from analysis. The sensor 

data allowed the PSG and THIM data to be precisely time-locked, reducing error of 

measurement. The interrater reliability on 10 randomly selected nights of data 

exceeded 95% agreement between the two scorers.  

Procedure 

Home Testing 

Participants completed a sleep diary based on the Consensus Sleep Diary 

(Carney et al., 2012) and wore an actigraphy device (Actiwatch-2, Philips 

Respironics) every day for one week to monitor their sleep pattern prior to the first 

laboratory night. Participants’ average bedtimes and wake up times were calculated 

from the sleep diary to inform the timing of the study protocol. The actigraphy data 

corroborated the bedtimes and wake up times reported in the sleep diaries. 
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Laboratory Night 1 

The first night was an adaptation night to help participants become 

accustomed to sleeping in the laboratory environment with the sleep monitoring 

equipment. Participants went to bed at their typical bedtime and slept overnight 

whilst monitored by PSG and THIM. They were awoken at their typical wake up time 

when both devices were removed, and participants left the sleep laboratory. 

Participants continued to wear the Actiwatch-2 device during the subsequent day to 

confirm that they did not nap prior to Night 2.  

Laboratory Night 2 

Participants arrived at the sleep laboratory at approximately 20:00 and were 

setup for overnight PSG recording. The THIM device was placed on the participant’s 

index finger on their dominant hand along with a piezo-electric sensor secured to the 

side of the device. After setting the vibratory stimulus intensity, participants received 

instructions from research assistants on how to operate THIM. See Appendix 5 for 

this procedure.  

An hour before participants’ bedtime, they began THIM-administered sleep 

onset trials that continued for four hours, three hours past their habitual bedtime. 

Compliance was confirmed by qualified research assistants observing participants 

via video recording and the THIM sensor data in real-time. Once THIM determined 

sleep onset during the final trial, instead of emitting a high intensity alarm vibration, 

the device let them sleep uninterrupted until they spontaneously awoke in the 

morning. All devices except the Actiwatch-2 device were removed and participants 

returned home. 

Home Testing 

Between Night 2 and Night 3, participants completed sleep diaries and wore 

the Actiwatch-2 device every day for another week. 
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Laboratory Night 3 

Participants returned to the sleep laboratory to undergo the same testing 

protocol as experienced on Laboratory Night 2.  

Data Analysis 

The mean PSG and THIM estimations of SOL was calculated in minutes from 

each trial, separately for each individual, before averaging together for Nights 2 and 

3. Paired samples t-tests were then conducted to test whether THIM significantly 

underestimated or overestimated SOL compared to PSG, separately for both 

laboratory nights. The mean discrepancies between PSG and THIM were calculated 

for each individual separately. Then, these individual means were averaged together 

for each night so that each individual contributed equal weighting to the overall 

mean. Positive mean discrepancy values meant that THIM overestimated SOL, 

whereas negative values indicated that THIM underestimated SOL compared to 

PSG. 

The level of agreement between PSG and THIM was assessed with Bland-

Altman plots, which shows the discrepancy between PSG and THIM-SOL (y axis) 

against PSG N1 SOL (x axis) across all trials on each (Bland & Altman, 1986). This 

involved calculating the mean difference (bias) and the limits of agreement (± 1.96 

SD of the mean difference) between these measures. The r squared value for the 

linear regression line and coefficient p value are reported in the figures. Some 

datapoints represent many overlapping values. 

To examine differences in the accuracy of THIM after repeated use which 

may indicate a learning effect, a paired samples t-test was conducted to compare the 

discrepancies between PSG and THIM-SOL on Night 2 versus Night 3. Additionally, 

paired samples t-tests were conducted to compare differences in the discrepancy 
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between PSG and THIM-SOL on Night 2 versus Night 3 for each trial (e.g. on the 

first, second, third trial, etc.). To examine the impact of participants’ sleep quality on 

the accuracy of THIM, an independent samples t-test was conducted to determine 

whether the discrepancy between PSG and THIM differed between good or poor 

sleepers, separately for Night 2 and Night 3. 

Study 1: Results 

First Sleep Onset Trial Night 

On laboratory Night 2, there was no significant difference between the mean 

PSG-SOL (M = 1.94 min, SD = 1.32) and mean THIM-SOL (M = 2.05 min, SD = 

1.38), t(11) = -0.88, p = .40, d = .08. The mean discrepancy between PSG and 

THIM-SOL on this night was low, M = 0.08 min, SD = 0.49. The level of agreement 

between PSG and THIM-SOL on Night 2 is illustrated in Figure 3-2. As shown by the 

narrow levels of agreement, there is little variability in the discrepancy between PSG 

and THIM-SOL across the 411 trials. Furthermore, the discrepancy between PSG 

and THIM is consistent across trials with increasing latency duration, as indicated by 

the blue trendline. Of note, are data points above the upper limit of agreement that 

seem to depict trials where participants were responding to THIM’s vibratory stimuli 

for 5+ mins into PSG-sleep. Closer inspection of these trials revealed that 

participants did not remain asleep after the first epoch of PSG-sleep in these trials: 

participants were fluctuating between wake and N1 sleep during this time. 
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Figure 3-2. Bland-Altman plot indicating agreement between PSG and THIM-sleep onset 
latency on Night 2.  
The solid black line indicates the mean difference, the dotted red lines indicate the 
upper and lower limits of agreement and the dotted blue line is the linear trendline. 
Second Sleep Onset Trial Night 

There was no significant difference between mean PSG-SOL (M = 1.40 min, 

SD = 0.64) and mean THIM-SOL (M = 2.12 min, SD = 1.71) on laboratory Night 3, 

t(11) = -2.02, p = .07. Despite a medium effect size, d = 0.56, the mean discrepancy 

between PSG and THIM-SOL on this night was still relatively low, M = 0.57 min, SD 

= 1.10. Figure 3-3 is a Bland-Altman plot illustrating the level of agreement between 

PSG and THIM-SOL across all Night 3 trials. Similar to Figure 3-2, the variability in 

the discrepancy between PSG and THIM-SOL across 527 trials is low. Figure 3-3 

also shows trials where participants were responding to THIM’s vibratory stimuli 

whilst fluctuating between wake and N1 sleep (points above the upper limit of 

agreement). 

 

R2 = .04 
p < .001 
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Figure 3-3. Bland-Altman plot indicating agreement between PSG and THIM-sleep onset 
latency on Night 3.  
The solid black line indicates the mean difference, the dotted red lines indicate the 
upper and lower limits of agreement and the dotted blue line is the linear trendline. 
Learning Effects 

A paired samples t-test indicated that there was no significant difference in the 

mean discrepancy between PSG and THIM-SOL on Night 2 compared to Night 3, 

t(11) = -1.90, p = .08. There was a medium effect size, d = 0.57. Paired samples t-

tests revealed no significant differences in the discrepancy between PSG and THIM 

on Night 2 versus Night 3 for any trial (e.g. on the first, second, third trial, etc.), p > 

.10. The accuracy of THIM compared to PSG appears to remain high and does not 

significantly decrease, even after repeated use. 

Good and Poor Sleeper Comparison 

An independent samples t-test revealed that there was no significant 

difference in the mean discrepancy between PSG and THIM-SOL on Night 2 for 

good sleepers (M = 0.06 min, SD = 0.44) compared to poor sleepers (M = 0.09 min, 

 

R2 = .01 
p = .007 
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SD = 0.60), t(10) = -0.11, p = .92, d = 0.08. Similarly, there was no significant 

difference in the mean discrepancy on Night 3 between good sleepers (M = 0.34 

min, SD = 0.21) and poor sleepers (M = 0.88 min, SD = 1.75), t(4.08) = -0.68, p = 

.53, although there was a medium effect size, d = 0.48. Therefore, the accuracy of 

THIM does not appear to differ between good and poor sleepers. 

THIM False Positive Trials 

Due to a slight delay between THIM-sleep onset and the end of the trial, there 

were some occasions where THIM underestimated sleep onset but PSG-sleep onset 

was reached before THIM ended the trial, as shown in Figures 3-2 and 3-3. 

However, it became apparent that there was a considerable proportion of sleep 

onset trials during which PSG-sleep onset had not occurred before THIM estimated 

sleep onset and ended the trial. Because a PSG-SOL datapoint was unavailable for 

those trials, and it could not be predicted, they were excluded from the above 

analyses. On average, PSG-sleep onset had not occurred in an average of 15.42 

(SD = 16.22, 31.04% of Night 2 trials) of Night 2 trials per participants where THIM 

had detected sleep onset. Similarly, there was an average of 8.92 ‘false positive’ 

trials (SD = 9.82, 16.88%) per participant on Night 3. There was no significant 

difference between Nights 2 and 3 on the number of false positive trials, t(11) = 1.47, 

p = .17, d = 0.49. 

There are several possible reasons for the THIM determination of sleep onset 

when participants were still awake according to PSG. One potential explanation is 

that participants did not respond to the vibratory stimulus because they did not 

perceive it. However, this was not the case for the majority of these false positive 

trials. Participants did not respond to either of the last two consecutive vibratory 

stimuli for 28.42% of these false positive trials on Night 2 and 42.00% of these trials 
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on Night 3. In other words, participants had indeed responded to one or both of the 

last two consecutive vibratory stimuli before the trial ended, but the device had not 

registered the response. This was true for the majority of false positive trials on both 

Night 2 (71.58%) and Night 3 (58.00%).  

To register as a legitimate response to vibratory stimuli, finger tap responses 

had to meet timing and intensity criteria. In order to exclude any spontaneous, 

random finger twitches, a time window following the stimulus was established during 

which the response had to occur to meet the valid response criterion. THIM failed to 

detect 42.02% on Night 2 and 48.77% on Night 3 of responses that occurred just 

beyond the time window. Therefore, a majority of the finger tap responses on Night 2 

and Night 3 occurred within the required time window yet were not registered by 

THIM. This is presumably because the finger taps were not vigorous enough to 

exceed the accelerometer threshold criterion required to register as a legitimate 

response. 

Study 1: Discussion 

The aim of Study 1 was to test the accuracy of THIM for estimating SOL 

against PSG. Overall, there was strong agreement between THIM and PSG, 

regardless of sleeper type (good or poor sleeper status) and repeated use (Night 2 

versus Night 3). Having said this, THIM had estimated sleep onset and prematurely 

ended the trial before PSG-sleep onset criteria were met on a considerable number 

of trials. This is an issue for two reasons. Firstly, we needed to exclude these trials 

from analysis: 23.74% of trials across Night 2 and Night 3. This undermined our 

ability to make strong conclusions about the accuracy of THIM. Secondly, this issue 

is problematic for the administration of many functions, including ISR. If THIM 

determined that the patient had fallen asleep and ended the trial when they were still 
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awake, then the trial would be a wasted retraining opportunity as presumably, sleep 

onset must occur during the trial to obtain therapeutic benefit. Of greater concern, 

the patient may perceive that they are unsuccessful at the treatment if they correctly 

perceive that they were awake during these trials and may subsequently doubt their 

ability to asleep. Whilst ISR is a behavioural treatment for insomnia, the experience 

of rapidly falling asleep on multiple occasions may be therapeutic in a cognitive 

sense by reassuring the patient that their sleep mechanism is not ‘broken’, and they 

retain the ability to sleep. 

Consequently, we made recommendations to the manufacturers of THIM, Re-

Time Pty. Ltd., about potential modifications to the THIM algorithm. The 

recommendations included reducing the threshold accelerometer intensity required 

for a legitimate finger twitch and expanding the time window during which such a 

response could occur to include the full distribution of reaction times to the vibratory 

stimuli observed in Study 1. The company incorporated these modifications into a 

revised algorithm, which we tested in the second study to determine whether the 

issue had been resolved.  

Study 2: Method 

The study design, materials, study protocol, and data analysis plan of the 

second study were identical to the first study, except that we tested the revised 

version of THIM (firmware v1.0.4) with a larger, independent sample. 

Participants 

Participants of the second study were required to meet the same eligibility 

criteria as participants in the first study. Twenty healthy individuals met eligibility 

criteria and consented to participate. ISI scores at screening indicated that ten 

participants had subthreshold levels of insomnia and were categorised as poor 
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sleepers (ISI score ≥ 7), and ten were good sleepers (ISI score < 7). See Table 3-2 

for participant characteristic information and a comparison between the Study 1 and 

Study 2 samples. There were no significant differences on the participant 

characteristics between the two samples.  
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 Table 3-2. Participant characteristics for Study 2 compared to Study 1. 

Characteristic Study 1 (N = 12) Study 2 (N = 20) Comparison between 
Studies 

Age, mean (SD), y 24.92 (6.05) 23.58 (4.89) t(30) = 0.68, p = .50 

Sex, No. (%) 
Men 
Women 

 
3 (25) 
9 (75) 

 
7 (35) 

13 (65) 

 
χ(1) = 1.66, p = .20 

Weekly alcohol 
consumption,  
No. (SD) 

0.75 (0.97) 1.60 (1.79) t(29.80) = -1.51, p = .14 

Daily caffeine 
consumption,  
No. (SD) 

1.29 (1.05) 1.89 (1.47) t(30) = -1.20, p = .24 

Sleep 
characteristics 

Good 
sleeper 
(N = 7) 

Poor 
sleeper 
(N = 5) 

Good 
sleeper 
(N = 10) 

Poor 
sleeper 
(N = 10) 

 

ISI, mean (SD) 2.14 
(1.57) 

11.00 
(3.39) 

2.00 
(1.15) 

11.70 
(3.86) t(30) = -0.51, p = .62 

PSQI, mean (SD) 3.26 
(1.50) 

7.40 
(3.29) 

3.10 
(1.73) 

8.30 
(3.09) t(30) = -0.56, p = .58 

Habitual Bedtime, 
mean (SD), min 

22:38 
(28.44) 

22:36 
(31.64) 

22:45 
(64.58) 

23:02 
(68.41) t(28.93) = -1.01, p = .32 

Habitual Wake 
Time, mean (SD), 
min 

07:10 
(24.41) 

07:30 
(20.42) 

07:27 
(61.27) 

07:56 
(72.23) t(26.93) = -1.47, p = .15 

Habitual TST, 
mean (SD) hrs 

8.11 
(1.02) 

7.10 
(1.52) 

8.05 
(0.83) 

7.10 
(1.58) t(30) = 0.24, p = .82 

ISI = Insomnia Severity Index, N = sample size, PSQI = Pittsburgh Sleep Quality 

Index, SD = standard deviation, TST = total sleep time. 

Study 2: Results 

First Sleep Onset Trial Night 

One PSG recording failed due to technical error and thus, this night’s data is 

only based upon 19 participants. With the revised THIM algorithm, there was still no 
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significant difference between PSG (M = 3.41 min, SD = 2.21) and THIM estimations 

of mean SOL (M = 3.65 min, SD = 2.18) on laboratory Night 2, t(18) = -1.18, p = .25, 

d = 0.11. There was a small mean discrepancy between the two measures, M = 0.24 

min, SD = 0.90. As shown in Figure 3-4, there was strong agreement between PSG 

and THIM-SOL across 535 trials. 

 
Figure 3-4. Bland-Altman plot indicating agreement between PSG and THIM-SOL on Night 2 
for Study 2 data.  
The solid black line indicates the mean difference, the dotted red lines indicate the 
upper and lower limits of agreement and the dotted blue line is the linear trendline. 
Second Sleep Onset Trial Night 

Unlike Night 2, on Night 3 there was a significant difference between PSG (M 

= 3.93 min, SD = 3.32) and THIM-SOL (M = 4.75 min, SD = 3.85). THIM significantly 

overestimated SOL compared to PSG, t(19) = -2.78, p = .01, d = 0.23. However, the 

effect size and mean discrepancy between PSG and THIM was still low, M = 0.82 

min, SD = 1.31. Figure 3-5 continued to show strong agreement between PSG and 

THIM across 578 trials, as evident by the narrow levels of agreement. 

 

R2 = .02 
p = .004 
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Figure 3-5. Bland-Altman plot indicating agreement between PSG and THIM-SOL on Night 3 
for Study 2 data.  
The solid black line indicates the mean difference, the dotted red lines indicate the 
upper and lower limits of agreement and the dotted blue line is the linear trendline. 
Comparison between THIM algorithms 

The goal of revising the THIM algorithm was to reduce the number of THIM 

false positive trials. With the revised algorithm, there was a mean of 4.05 false 

positive trials (SD = 3.76) per participant on Night 2 and 2.53 trials (SD = 2.09) per 

participant on Night 3, or 10.24% of trials overall.  

We conducted an independent samples t-test to determine whether the issue 

occurred in less trials with the revised THIM algorithm compared to the original 

algorithm. There was a significantly lower number of false positive trials with the 

revised algorithm compared to the original algorithm on Night 2, t(11.75) = 2.39, p = 

.04, and Night 3, t(11.57) = 2.24, p = .046. The effect sizes were large for Night 2, d 

= 1.09, and Night 3, d = 1.04. Considering that the issue occurred in a smaller 

minority of trials in Study 2, it appears that the modifications made to the THIM 

 

R2 = .03 
p < .001 
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algorithm largely resolved this issue without substantially increasing the mean 

discrepancy between THIM and PSG. 

Learning Effects 

As in Study 1, there was no significant difference between the mean 

discrepancy of PSG and THIM-SOL on Night 2 compared to Night 3, t(18) = -1.84, p 

= .08, although there was a medium effect size, d = 0.51. Additional paired samples 

t-tests revealed no significant differences in the discrepancy between PSG and THIM 

on Night 2 versus Night 3 on any trial, p > .13. Therefore, the accuracy of THIM does 

not appear to significantly reduce after repeated use. 

Good and Poor Sleeper Comparison 

An independent samples t-test showed no significant difference in the mean 

discrepancy between PSG and THIM-SOL on Night 2 for good sleepers (M = 0.45 

min, SD = 0.88) compared to poor sleepers (M = 0.55 min, SD = 0.68), t(17) = -0.28, 

p = .78, d = 0.13. Similarly, there was no significant difference in the mean 

discrepancy on Night 3 between good sleepers (M = 0.89 min, SD = 1.65) and poor 

sleepers (M = 0.87 min, SD = 1.06), t(18) = 0.03, p = .98, d = 0.01. This is further 

evidence to suggest that sleeper type does not affect the accuracy of THIM. 

Study 2: Discussion 

The aims of both studies were to assess the accuracy of THIM for estimating 

SOL compared to PSG. Study 1 tested the original THIM algorithm and Study 2 

tested a THIM algorithm that was modified based on the findings from Study 1. 

THIM-SOL showed strong agreement with PSG N1-SOL, for both good and poor 

sleepers and even after repeated use (Night 2 compared to Night 3). The revised 

THIM algorithm also largely resolved an issue found in Study 1 where THIM 

estimated that sleep onset had occurred in trials where PSG-sleep onset criteria 
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were not yet met. Therefore, the revised algorithm was an improvement upon the 

original algorithm and the device appeared to remain accurate for estimating SOL. 

THIM had considerably closer agreement with PSG-N1 sleep onset compared 

to other wearable devices (Cellini et al., 2013; Chae et al., 2009). The next 

generation of actigraphy devices that incorporate information from additional 

sensors, such as heart rate variability, appear to have greater accuracy compared to 

standard actigraphy devices (de Zambotti et al., 2018; Fonseca et al., 2017). 

However, THIM shows greater agreement with PSG for estimating SOL than these 

multi-sensor devices. In fact, THIM produced comparable accuracy to simplified 

EEG-based devices (Cellini et al., 2015; Kaplan et al., 2014; Markwald, Bessman, 

Reini, & Drummond, 2016a).  

THIM also showed closer agreement with PSG N1 sleep onset than similar 

devices that also use the stimulus-response method of sleep onset estimation (Mair, 

1994; Ogilvie et al., 1989). This may be due to differences in the stimulus type. THIM 

uses vibratory stimuli, which is perceived via a different sensory processing pathway 

compared to the auditory stimuli utilised by similar devices (Cohen et al., 2016; 

Kaas, 2012). It is more likely that the difference in accuracy between THIM and 

similar devices is due to the stimulus type rather than due to other variations 

between devices. It was evident from the piezo-electric motion sensor data collected 

during Study 2 that once participants entered PSG N1 sleep, they ceased 

responding to the vibratory stimuli. This suggests that participants either a) did not 

perceive the vibratory stimulus and remained totally asleep, or b) the individual 

stirred from sleep slightly, but the vibratory stimulus was not salient enough to 

arouse the individual enough to produce a finger tap response. A quantified EEG 

analysis comparing brainwave activity before and after a vibratory stimulus would 
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shed light on whether participants aroused at all to vibratory stimuli during N1 sleep. 

Either way, it appears that the type of stimulus to which participants respond may 

impact the accuracy of stimulus-response devices. Future research could directly 

compare the use of different types of low intensity stimuli to determine when each 

sensory system is inhibited during the sleep onset period. 

An important limitation to consider is that the PSG data was scored by only 

one qualified sleep technician in the current study. The interrater reliability of N1-

sleep onset in particular is relatively low (Rosenberg & Van Hout, 2013). This adds to 

the error of measurement in the gold-standard measure that should be considered 

when interpreting the findings of the current study. 

Investigating the accuracy of THIM for individuals with insomnia is particularly 

important for the administration of ISR because the device may be less accurate with 

this population. In line with the neurocognitive model of insomnia (Perlis, Giles, 

Mendelson, Bootzin, & Wyatt, 1997), individuals with insomnia may have abnormally 

sensitive/acute sensory and information processing during the sleep onset period. 

Increased sensory responsivity may mean that people with insomnia perceive 

vibratory stimuli beyond N1-sleep onset more so than average sleepers. 

Consequently, THIM may overestimate SOL to a greater extent for those with 

insomnia compared to good sleepers. The current studies did not include individuals 

with insomnia, but there was no significant difference in the accuracy of THIM 

between good and poor sleepers. However, neither of the two studies presented 

were adequately powered to detect small differences between groups that may be 

relevant. Furthermore, insomnia-related arousal may not be present for those 

identified as having poor sleep: this conditioned arousal is theorised to develop over 

time (Perlis, Smith, & Pigeon, 2005), whereas poor sleep in general may be episodic 
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in nature (Perlis et al., 2019).Therefore, the accuracy of THIM should be investigated 

with individuals with insomnia in future research. 

Conclusion 

This article showcased the development of the THIM algorithm for estimating 

SOL in comparison to PSG. Study 1 showed that there was high agreement between 

THIM and PSG. However, on a considerable percentage of trials, THIM determined 

that the participant had fallen asleep when they were still awake according to PSG 

scoring criteria. This led to modifications to the THIM algorithm and Study 2 showed 

that the revised algorithm had similarly high agreement with PSG but with a 

considerably lower percentage of false positive trials. Additionally, repeated use and 

sleeper type (good or poor sleeper) did not impact the accuracy of THIM in either 

study. More research is needed to investigate whether other individual 

characteristics affect the accuracy of THIM, particularly a diagnosis of insomnia. 

Collaborating with industry resulted in the development of an accurate device that 

may allow for the widespread implementation of many research and clinical 

applications - to the benefit of patients, researchers, and clinicians wanting to 

improve sleep. 
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Abstract 

Behavioural responses to auditory stimuli cease in late N1-sleep or early N2 

sleep. Yet, responsiveness to minimal intensity tactile stimuli and the 

correspondence with sleep microstructure during the sleep onset period is unknown. 

The aim of the current study was to investigate sleep microstructure when participant 

behaviourally responded to minimal intensity vibratory stimuli compared to when 

participants did not respond to stimuli during the sleep onset period.  

Eighteen participants wore a device that emitted vibratory stimuli to which 

individuals responded by tapping their index finger. A Fast-Fourier Transform using 

multitaper-based estimation was applied to the electroencephalography signal in 5-

second epochs. Participants exhibited increases in higher frequencies five seconds 

before and immediately after the stimulus presentation when they responded to the 

stimulus compared to when they did not respond during all sleep stages. They also 

had greater delta power after stimulus onset when they did not respond to stimuli 

presented in N1- and N2-sleep compared to when they did respond. Participants 

responded to a significantly greater proportion of stimuli in wake compared to in N1-

sleep, p < .001, d = 2.38, which was also significantly greater than the proportion of 

responses in N2-sleep, p < .001, d = 1.12. 

Participants showed wake-like sleep microstructure when they responded to 

stimuli, and sleep-like microstructure when they did not respond during any sleep 

stage. This study adds to the body of evidence that characterises N1 sleep as a 

transitional period between sleep and wake containing rapid fluctuations between 

these two states. 

Keywords: wearable technology; consumer sleep technology; sleep onset 

period; electroencephalography; sleep stages; quantitative EEG.  
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Sleep onset is considered to be not a specific point in time, but rather a 

transitional period between wakefulness and sleep. Whilst there is debate about 

when the sleep onset period begins and ends, much of the literature suggests that 

the onset of N1-and N2-sleep are the start and end points of this transition 

(Carskadon & Dement, 2017; Ogilvie, 2001). During this period, a variety of 

physiological, behavioural and psychological changes occur, not necessarily at the 

same time. However, this complexity is not reflected in traditional 

electroencephalography (EEG) sleep scoring criteria (American Academy of Sleep 

Medicine, 2018). According to this criteria, N1-sleep onset is defined as a reduction 

in alpha to less than 50% of the 30-second epoch. Thus, standardised criteria do not 

capture many of the physiological, behavioural or psychological changes that 

characterise the process of falling asleep. 

The correspondence between behavioural indications of sleep and changes in 

physiology were utilised to develop the EEG scoring criteria (Dement & Kleitman, 

1957; Loomis et al., 1935). As such, there is strong agreement between these two 

measures. For instance, reduced responsiveness to minimal intensity external stimuli 

typically occurs in late-EEG N1 sleep or early N2 sleep (Harsh, Voss, Hull, 

Schrepfer, & Badia, 1994; Ogilvie et al., 1989; Scott et al., 2018), at which point, 

individuals have reduced awareness of the external environment (Bonnet, 1986; 

Oniz, Inanc, Guducu, & Ozgoren, 2016). Reduced awareness is likely due to an 

increase in the threshold needed to perceive a stimulus around N2 sleep (Bonnet & 

Moore, 1982; Rechtschaffen, Hauri, & Zeitlin, 1966) although an intense or salient 

enough stimulus may still elicit a response after this point (Blume et al., 2017; Perrin, 

García-Larrea, Mauguière, & Bastuji, 1999). Lauerma, Kaartinen, Polo, Sallinen, and 

Lyytinen (1994) found that the probability of behaviourally responding to an auditory 
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stimulus was 12.2% in N2 sleep and 61.7% in N1 sleep compared to 84.8% in wake. 

Czisch et al. (2002) found that there was reduced activation in the auditory cortex 

during N1 and N2 sleep. Together, these findings suggest that responses to auditory 

stimuli are less likely but still possible after N1 sleep onset, with responses after this 

point potentially coinciding with brief awakenings or arousals (Ogilvie, Simons, 

Kuderian, MacDonald, & Rustenburg, 1991). 

Previous research investigating behavioural responsiveness to external 

stimuli during the sleep onset period have largely been conducted with minimal 

intensity auditory stimuli (Kuderian et al., 1991; Ogilvie et al., 1989; Scott et al., 

2018). Only one previous study has examined behavioural responsiveness to 

vibratory stimuli during the sleep onset period (MacLean et al., 1992). The authors 

found that individuals were much less likely to respond in N1 and N2 sleep than 

during wake. However, the vibratory stimuli were presented at an intensity of five 

standard deviations above waking threshold. Nonetheless, we expected similar 

findings when testing correspondence between EEG-sleep onset and a behavioural 

device that used behavioural responses to minimal intensity vibratory stimuli. Our 

research produced an unexpected finding: the cessation of responses to vibrations 

aligned much more closely with EEG N1-sleep onset than responses to auditory 

stimuli. We found an average discrepancy of 0.24 minutes (SD = 0.90) between N1-

sleep onset and behavioural sleep onset on the first night of testing and a 

discrepancy of 0.82 minutes (SD = 1.31) on the second night (see Chapter 3).  

There are three possible reasons for this surprising finding with vibratory 

stimuli. Firstly, participants may have had a lack of awareness of stimuli presented 

after N1-sleep onset. Secondly, participants may have been marginally aware of 

stimuli after N1-sleep onset, but the vibrations were not salient enough to arouse the 
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individual to produce a finger tap response. Thirdly, participants may have been 

aware of the stimuli, but they could not produce the required behavioural response 

due to the inhibition of muscle activity associated with N1-sleep onset (Fogel et al., 

2005; Mezzanotte, Tangel, & White, 1996). 

In this study, EEG was scored in 30-second epochs in accordance with 

standardised criteria that allows a significant minority of the epoch to be in another 

state. With such an imprecise determination of sleep/wake state, the participants’ 

immediate state at the moment that a stimulus occurred could not be determined. To 

overcome this limitation, the current study extends the analysis of EEG data to shed 

light on the correspondence between responsiveness to minimal intensity vibratory 

stimuli and sleep microstructure during the sleep onset period. QEEG analysis was 

conducted on 5-second windows to characterise sleep microstructure through a 

finer-grained analysis than traditional EEG sleep staging. The aim was to compare 

sleep microstructure when the participant produced a behavioural response versus 

when they did not behaviourally respond to minimal intensity vibratory stimuli that 

were administered around the sleep onset period. In line with previous research into 

the correspondence between sleep microstructure and behavioural responsiveness 

(Prerau et al., 2014), we predicted that alpha activity would have attenuated, and 

lower frequency activity will have intensified when people failed to respond to the 

vibratory stimulus. 

Method 

Participants 

The study protocol was described previously in Study 2, Chapter 3. Briefly, 

twenty individuals met eligibility criteria and completed this study. However, two 

participants were excluded from this analysis due to low quality polysomnography 
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(PSG) recordings on greater than 25% of at least one of the two laboratory nights of 

interest (Nights 2 and 3). Therefore, the findings of this study pertain to 18 

individuals (see participants characteristics in Table 4-1). These healthy individuals 

had good or poor sleep (N = 9 for both groups) as defined by scores on the Insomnia 

Severity Index ([ISI], good sleepers ISI < 7, poor sleepers ISI ≥ 7). 

Table 4-1. Descriptive statistics for participants characteristics. 

Characteristic 
Good sleepers 

(N = 9) 
Poor sleepers 

(N = 9) 
Total Sample 

(N = 18) 

Age, mean (SD), y 24.54 (5.47) 22.57 (4.46) 25.56 (4.95) 

Sex, No. (%) 
Men 
Women 

 
4 (44) 
5 (56) 

 
3 (33) 
6 (67) 

 
7 (39) 

11 (61) 

BMI, mean (SD) 24.34 (2.21) 24.13 (4.14) 24.23 (3.22) 

Lifestyle characteristics    

Weekly alcohol consumption, 
No. (SD) 1.56 (1.74) 1.33 (1.94) 1.44 (1.79) 

Daily caffeine consumption, 
No. (SD) 2.00 (1.58) 2.00 (1.50) 2.00 (1.50) 

Sleep characteristics    

ISI, mean (SD) 2.22 (0.97) 11.89 (4.04) 7.06 (5.73) 

PSQI, mean (SD) 3.22 (1.79) 8.22 (3.27) 5.72 (3.63) 

Habitual Bedtime, mean time 
(SD, min) 22:53 (61.60) 23:16 (53.35) 23:04 (57.37) 

Habitual Wake Up Time, 
mean time (SD, min) 07:27 (64.97) 07:58 (75.92) 07:43 (70.76) 

Habitual total sleep time, 
mean hrs (SD) 7.89 (0.70) 7.00 (1.64) 7.44 (1.30) 

BMI = body mass index, ISI = Insomnia Severity Index, N = sample size, PSQI = 

Pittsburgh Sleep Quality Index, SD = standard deviation, TST = total sleep time. 
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Design and Study Procedure 

This study employed a within-groups quasi-experimental design. To 

summarise, participants slept in the sleep laboratory on three nights after screening 

and consent. The current study only concerns data from Night 2 and Night 3. On 

both nights, participants arrived at the sleep laboratory at approximately 20:00 and 

were setup for overnight PSG recording. The THIM device was placed on the 

participant’s index finger of their dominant hand along with a piezo-electric sensor. 

After setting the vibratory stimulus intensity to the lowest perceptible level, 

participants were taught how to operate the THIM device (see Appendix 5 for this 

procedure). An hour before participants’ typical bedtime, they began THIM-

administered sleep onset trials that continued for four hours. During these trials, 

THIM administered brief (≈ 500ms), minimal intensity vibratory stimuli. Participants 

were asked to respond to these stimuli by tapping their index finger against their 

thumb. Qualified research assistants observed participants via video recording and 

monitored the THIM sensor data in real-time to confirm compliance. After four hours 

of trials, participants slept uninterrupted until the morning when all devices were 

removed, and participants returned home. 

The predictor variable for the current study was whether participants 

responded or did not respond to the vibratory stimulus during each sleep stage and 

the primary outcome variables were percentage change in EEG power (μV2) from 

baseline in the delta, theta, alpha, sigma, and beta frequency bands before and after 

the onset of the THIM vibratory stimulus. 

Materials 

THIM 

As described in Chapter 3, THIM (firmware v1.0.4) is a device worn on the 

index finger of the dominant hand. To commence a sleep onset trial, participants 
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tapped their finger onto their thumb twice in quick succession. THIM then emitted low 

intensity, short duration vibratory stimuli, averaging 30 seconds apart. The intensity 

of the vibratory stimulus was calibrated to the minimum level that the participant 

could consistently respond to whilst awake using the threshold hunting procedure in 

the THIM smartphone application. Participants responded to the vibratory stimulus 

by tapping their index finger once onto their thumb. If participants failed to respond to 

two consecutive stimuli, the device inferred that sleep onset had occurred and 

subsequently emitted a high intensity alarm vibration to wake them up, signalling the 

end of the trial. Shortly afterwards (approximately 1-2 minutes later), participants 

initiated another trial.  

From a small piezo-electric sensor attached to the side of THIM, four events 

of interest were manually scored: vibrations emitted from THIM, finger taps as 

responses to the vibrations, the beginning (the double-tap motion) and the end (the 

high-intensity alarm vibration) of each trial. If the sensor data were obscured by body 

movements, the trial was removed from analysis. Agreement between the two 

scorers (HS and AW) exceeded 95% on 10 randomly selected nights of data. 

Polysomnography 

PSG was recorded using Compumedics Grael 4K PSG:EEG devices 

(Compumedics, Victoria, Australia). Six EEG sites (F3-M2, F4-M1, C3-M2, C4-M1, 

O1-M2, O2-M1), reference and ground, and right and left electrooculography (EOG) 

were sampled at 512Hz, whilst chin electromyography (EMG), and 

electrocardiography (ECG) sites were sampled at 256Hz. PSG data was scored in 

accordance with AASM scoring criteria (American Academy of Sleep Medicine, 

2018) using Profusion Compumedics software (v 4.0) by a qualified, independent 

sleep technician blind to the THIM sensor data. 
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Quantitative EEG Analysis 

All PSG data was exported into European Data Format (EDF) for analysis 

along with scored sleep stage files using Compumedics Profusion software (v 4.0). 

This algorithm applied a Fast-Fourier Transform FFT using multitaper-based 

estimation (Prerau, Brown, Bianchi, Ellenbogen, & Purdon, 2017), on non-

overlapping 5-second epochs on the C3-M1 signal. These epochs began 15 seconds 

before the onset of the stimulus, with zero representing stimulus onset (-15 seconds, 

-10 seconds, -5 seconds, 0 seconds, 5 seconds, 10 seconds and 15 seconds). 

Absolute power in five frequency bands – delta (0.5-4.5Hz), theta (4.5-8Hz), alpha 

(8-12Hz), sigma (12-15Hz), and beta (15-32Hz) – were calculated in the five-second 

epochs.  

The algorithm automatically identified noisy epochs using previously validated 

methods (D’Rozario et al., 2015), which were subsequently removed from analysis. 

See Table 4-2 for the number and percentage of epochs removed from analysis for 

each sleep stage. With the remaining epochs, the power in each frequency band at 

baseline (epochs before stimulus onset) was averaged across every trial, separately 

for each individual. The absolute power in each frequency band during the 5-second 

epochs were then divided by this baseline for each individual to evaluate the change 

in power from baseline. This step standardised the power density across individuals. 

Next, the average spectral power in the frequency bands during each five-second 

epoch was calculated separately for wake, N1 and N2 sleep epochs scored using 

AASM criteria for analysis. 
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Table 4-2. Sum and percentage of noisy epochs removed from analysis. 

Nights 
Sleep stage, no. (%) 

Total 
Wake N1  N2  

Night 2 145 (3.78) 10 (1.12) 11 (1.22) 166 (2.95) 

Night 3 162 (3.80) 20 (2.09) 11 (1.18) 193 (3.14) 

Total 307 (3.79) 30 (1.62) 22 (1.20) 359 (3.05) 
N1 = Non-rapid eye movement Stage 1, N2 = Non-rapid eye movement Stage 2. 

Data Analysis 

Linear Mixed Modelling (LMM) were conducted to investigate the spectral 

power in each frequency band before and after the onset of the THIM vibratory 

stimuli when participants responded versus when they did not respond to the 

stimulus. LMM analyses used a first-order autoregressive covariance structure. 

Fixed factors were the laboratory night (Night 2 and Night 3), sleep stage (wake, N1 

or N2), time (the five-second epochs), and whether participants behaviourally 

responded or not to the stimulus. Participant ID was identified as the random 

intercept. Spectral power data was log10 transformed to meet assumptions of 

normality. Where appropriate, post hoc comparisons were conducted with the 

Bonferroni correction and Cohen’s d was calculated and interpreted according to 

standard criteria (Cohen, 2013). All analyses were conducted in IBM SPSS (v 23). 

A repeated measures Analysis of Variance (ANOVA) was conducted to 

determine whether the proportion of stimuli that participants responded to 

significantly differed across sleep stages. To test this, the proportion of stimuli that 

participants responded to out of all stimuli presentations in that sleep stage were 

calculated separately for each participant and averaged together. 

Results 

The following findings are based on 11,777 stimuli presentations across both 
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laboratory nights. See Table 4-3 for the number of stimuli presented for each 

participant, separated by sleep stage and whether they did or did not respond to the 

stimulus.  
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Table 4-3. Number of stimuli that participants responded and did not respond to during each 
sleep stage across both laboratory nights. 

Participant 
Responded to stimulus Did not respond to stimulus 

Wake N1  N2  Total Wake N1  N2  Total 

1 633 37 0 670 64 40 0 104 

2 387 88 42 517 51 62 70 183 

3 388 47 45 480 14 26 63 103 

4 538 19 6 563 8 18 5 31 

5 532 47 28 607 32 43 37 112 

6 390 35 19 444 27 42 81 150 

7 392 60 17 469 39 89 81 209 

8 480 118 38 636 29 46 33 108 

9 306 47 27 380 51 87 113 251 

10 354 50 101 505 16 19 69 104 

11 452 64 37 553 38 77 52 167 

12 329 78 101 508 32 31 99 162 

13 545 49 53 647 31 29 88 148 

14 521 53 46 620 14 16 63 93 

15 220 75 108 403 35 37 91 163 

16 178 19 2 199 111 74 44 229 

17 656 73 10 739 18 22 21 61 

18 119 41 47 207 69 91 92 252 

Total 7420 1000 727 9147 679 849 1102 2630 

 91.62% 54.08% 39.75%  8.38% 45.92% 60.25%  

N1 = Non-rapid eye movement Stage 1, N2 = Non-rapid eye movement Stage 2. 

Figures represent data from both laboratory nights combined as the four-way 

interactions were not significant. 
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Sleep microstructure and behavioural responsiveness 

Four-way interactions between laboratory night, sleep stage, time, and 

behavioural responsiveness to the stimuli were investigated with LMMs, separately 

on each frequency band. The four-way interactions were not significant across any 

frequency band, p > .26. The three-way interactions of time, sleep stage and 

responsiveness to the stimulus were significant on delta, p = .005 , alpha, p < .001, 

sigma, p < .001, and beta, p < .001, but not significant on theta, p = .32. For 

completeness, the results pertaining to the theta band will be presented, but not 

discussed in detail. These three-way interactions indicate that, collapsed across both 

nights, the interaction between time (5-second epochs) and behavioural responses 

versus non-responses to vibratory stimuli on the power in these frequency bands 

significantly differs by sleep stage. As such, the sleep microstructure when 

participants responded versus did not respond to vibratory stimuli are discussed 

separately for each sleep stage below. 

Responsiveness to Stimuli during Wake 

Figure 4-1 below shows the differences in power in each frequency band 

when participants responded versus when they did not respond to the vibratory 

stimulus during 30-seconds epochs scored as wake. Pairwise comparisons indicated 

that participants had significantly higher alpha power in all three epochs before 

stimulus onset when they responded to the stimulus versus when they did not 

respond, p < .01, d > 0.38. This would suggest that participants were ‘more awake’ 

when they responded to the stimulus compared to when they did not respond during 

wakefulness. Participants also had significantly higher delta, p = .01, d = 0.31, and 

sigma power, p = .04, d = 0.14, in the 15-second epoch before stimulus onset when 

they responded to the stimulus compared to when they did not respond during wake. 
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However, these differences were not significant in the 10-second and 5-second 

epochs before stimulus onset.  

At stimulus onset (0-second epoch), there was greater alpha frequency power 

when participants responded to the stimulus compared to occasions where they did 

not respond, p < .001, d = 1.20. This increase in power persisted into the 5-second 

epoch, p = .006, d = 0.52, but was not significantly different at the 10-second epoch 

after stimulus onset, p = .08. At 15 seconds after stimulus onset, there was 

significantly greater delta, p = .004, d = 0.81, and theta power, p = .04, d = 0.63, on 

occasions where participants did not respond compared to occasions where they did 

respond to stimuli during the 30-second epochs scored as wake. Participants may 

have begun to enter sleep on the occasions where they did not respond to the 

vibratory stimulus during the 30-second “wake” epochs, suggesting that their lack of 

behavioural and physiological response to the stimulus may have been due to 

acutely reduced wakefulness. 

 
 
 
 
 
 

* * 
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Figure 4-1. Power in delta, theta, alpha, sigma and beta frequency bands when participants 
responded (black line) versus when they did not respond (grey line) to the vibratory 
stimulus during wake.  
* indicates p < .05. Bars indicate 95% confidence intervals. The dotted line indicates 
baseline power. Figures represent data from both laboratory nights combined as the 
four-way interactions were not significant. 

* 

* 



100 
 

Responsiveness to Stimuli during N1 sleep 

Figure 4-3 below shows the differences in power in each frequency band 

when participants responded versus when they did not respond to the vibratory 

stimulus during N1 sleep. Pairwise comparisons indicated that participants had 

significantly higher alpha, p < .001, d = 2.17, and beta power, p < .001, d = 2.33, in 

the five seconds before stimulus onset on occasions when they responded to the 

stimulus compared to when they did not respond during N1 sleep. This suggests that 

participants were ‘more awake’ before the stimulus occurred when they responded to 

the stimulus versus when they did not respond in N1 sleep. 

At stimulus onset, participants had higher theta, p = .002, d = 0.64, alpha, p < 

.001, d = 1.67, sigma, p < .001, d = 1.52, and beta power, p < .001, d = 2.25, when 

they responded to the stimulus compared to when they did not respond during 

epochs scored as N1 sleep. This increase suggests that a shift to wakefulness or an 

arousal/movement occurred at or in the five seconds before stimulus onset. At 5, 10, 

and 15 seconds after stimulus onset, participants had significantly lower sigma 

power when they responded to the stimulus compared to when they did not respond, 

but this was a small effect, p < .003, d > 0.32. Participants also had significantly 

lower theta, p = .002, d = 1.18, and beta power, p = .02, d = 0.31, at the 10-second 

epoch after stimulus onset when they responded to the stimulus compared to 

occasions where they did not respond. There were no significant differences in alpha 

power at 5, 10, and 15 seconds after stimulus onset when participants responded 

versus when they did not respond to the stimulus, p > .08. 

Participants had higher delta power, p = .002, d = 0.48, when they did not 

respond to the stimulus versus when they did respond during epochs scored as N1 

sleep. This higher power in delta continued in the 5-, 10-, and 15-second epochs 

after stimulus onset, p < .001, d > 0.30. As in N2 sleep, this pattern suggests that 
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participants did not respond to the stimulus in N1 sleep because they were in deeper 

sleep, or at least at a lower level of arousal. 
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Figure 4-3. Power in delta, theta, alpha, sigma and beta frequency bands when participants 
responded (black line) versus when they did not respond (grey line) to the vibratory 
stimulus during N1 sleep. 
* indicates p < .05. Bars indicate 95% confidence intervals. The dotted line indicates 
baseline power. Figures represent data from both laboratory nights combined as the 
four-way interactions were not significant. 

Responsiveness to Stimuli during N2 sleep 

Figure 4-2 below shows the differences in power in each frequency band 

when participants responded versus when they did not respond to the vibratory 

stimulus during epochs scored as N2 sleep. Pairwise comparisons indicated no 

significant differences between responses versus non-responses to vibratory stimuli 

in power in the epochs before stimulus onset (-15, -10 and -5 seconds), p > .06. The 

exception was higher alpha power in the 5-second epoch before stimulus onset 

when participants responded to the stimulus versus when they did not respond 

during N2 sleep, p = .006, d = 1.14.  

At stimulus onset during N2 sleep, when participants responded to stimuli 

they had higher theta, p = .009, d = 0.55, alpha, p < .001, d = 1.16, sigma, p = .005, 

d = 1.02, and beta power, p < .001, d = 1.22, compared to when they did not 

respond. As in N1 sleep, this increase in higher frequencies suggests a shift to wake 

* 

* 

* 
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or an arousal/movement coinciding with the presentation of the stimulus and 

response. This pattern reverses at 5, 10 and 15-seconds after stimulus onset. 

Participants had significantly lower theta, p < .02, d > 0.05, alpha, p < .03, d > 0.20, 

sigma, p < .001, d > 0.53, and beta power, p < .002, d > 0.20, during these epochs 

when they responded to the stimulus compared to when they did not respond. 

However, these effect sizes were relatively small compared to those found for 

changes immediately before and at the onset of the stimulus. 

At stimulus onset, participants had higher delta power when they did not 

respond to the stimulus versus when they did respond, p = .004, d = 0.19. This 

pattern continued through the 5-second, p < .001, d = 2.18, 10-second, p < .001, d = 

1.21, and 15-second epochs after stimulus onset, p = .001, d = 0.81. This finding 

would suggest that participants sustained sleep after the stimulus was presented, 

which is consistent with their failure to respond. 
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Figure 4-2. Power in delta, theta, alpha, sigma and beta frequency bands when participants 
responded (black line) versus when they did not respond (grey line) to the vibratory 
stimulus during N2 sleep. 
* indicates p < .05. Bars indicate 95% confidence intervals. The dotted line indicates 
baseline power. Figures represent data from both laboratory nights combined as the 
four-way interactions were not significant. 
Comparison of Behavioural Responsiveness between Sleep Stages 

A repeated measures ANOVA revealed that mean proportion of responses to 

vibratory stimuli differed significantly between sleep stages, F(2, 32) = 149.11, p < 

* 
* * * 

* 

* 
* * 
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.001. Post hoc tests using the Bonferroni correction indicated that the mean 

proportion of responses to stimuli was significantly higher in wake (M =0.90, SD = 

0.11) compared to the mean proportion of responses in N1-sleep (M =0.56, SD = 

0.17), p < .001, d = 2.38, and N2-sleep (M =0.38, SD = 0.15), p < .001, d = 3.95. The 

mean proportion of responses was also significantly higher in N1-sleep compared to 

N2-sleep, p < .001, d = 1.12. 

Discussion 

This study was the first to investigate the correspondence between sleep 

microstructure and behavioural responsiveness to minimal intensity vibratory stimuli 

presented during the sleep onset period. During epochs scored as wake, participants 

behaviourally responded to the majority of stimuli presentations. This was coupled 

with increased alpha before and immediately after stimulus onset compared to when 

participants did not respond to the stimulus during epochs scored as wake. Fifteen 

seconds after stimulus onset, greater delta and theta power was observed when 

participants did not respond to the stimulus. Together these findings suggest that 

their lack of response was due to participants being closer to initiating sleep on the 

few occasions where they did not respond to stimuli during epochs scored as wake 

compared to occasions when they did respond. 

Participants responded to much less stimuli during N2. The difference 

between whether participants behaviourally responded to the vibratory stimulus or 

not may be whether they had increases in alpha and higher frequencies at stimulus 

onset. A response to the stimulus was typically precipitated by signs of wakefulness 

before stimulus onset during N2 sleep. Therefore, participants appeared to be ‘more 

awake’ before stimulus presentation. The increase in theta and sigma power may 

have been due to increases in alpha brainwaves that were captured in these 
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frequency bands instead of the alpha band by the quantitative 

electroencephalography (qEEG) analysis. If this shift to higher frequencies did not 

occur (as was the case for the majority of stimuli presentations during N2 sleep), 

participants did not respond to the stimulus. Instead, they experienced higher delta 

activity. This may indicate the presence of a k-complex or other phenomenon, but 

our analysis is unable to confirm this and would require greater precision of 

measurement to test appropriately than was obtained in the current study. Thus, a 

behavioural response to a vibratory stimulus during wake or N2 sleep coincided with 

wake-like brain qEEG and a lack of response to the stimulus coincided with more 

sleep-like qEEG. 

The findings for N1 sleep support the conceptualisation of this sleep stage as 

a transitional period between sleep and wake (De Gennaro, Ferrara, & Bertini, 2001; 

Gorgoni, D’Atri, Scarpelli, Ferrara, & De Gennaro, 2019; Ogilvie, 2001; Prerau et al., 

2014). During N1 sleep, participants showed a similar pattern in the frequency bands 

compared to N2 sleep. If participants did not respond to the stimulus, they exhibited 

higher delta activity, signalling that they were ‘more asleep’, which may be why they 

did not respond to the stimulus. If participants responded to the stimulus, they had 

increases in higher frequencies immediately before and after stimulus onset. This 

signals that they were ‘more awake’, which may explain why they responded to the 

stimulus. Yet, the repeated measures ANOVA revealed that this occurred much 

more frequently in epochs scored as N1 sleep compared to those scored as N2 

sleep. Together, these findings illustrate that participants regularly exhibited both 

wake and sleep-like physiological (power spectral analyses) and behavioural 

responsiveness to vibratory stimuli during N1 sleep. This adds to the body of 

evidence suggesting that N1 sleep is dynamic and transitional between - and 
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exhibits signs of both – wake and sleep.  

This study has implications for the use of behavioural responsiveness to 

minimal intensity vibratory stimuli to estimate sleep onset. When participants 

responded to the stimulus during sleep, their brain activity indicated the occurrence 

of an arousal, suggesting that the arousal precipitating the stimulus was necessary 

for the individual to respond. A criticism of using responses to external stimuli to 

estimate sleep onset is that the presentation of stimuli may disrupt the process of 

falling asleep and prolong wakefulness (Casagrande, De Gennaro, Violani, Braibanti, 

& Bertini, 1997; Ogilvie, 2001). Yet, these findings indicate that disruption to minimal 

intensity vibratory stimuli rarely occurs once participants enter sustained sleep (N2 

sleep), and participants that responded to the stimulus had typically experienced a 

brief arousal before the stimulus presentation. Furthermore, when participants 

responded to the stimulus during ‘sleep’, their frequency power largely returned to 

baseline by the 10-second or 15-second epoch after stimulus onset. This indicates 

that, if the stimulus arouses the individual, their sleep resumes within a short period 

of time. It is therefore unlikely that the presentation of minimal intensity vibratory 

stimuli would significantly disrupt the process of falling asleep.  

Our previous analyses found strong correspondence between PSG-sleep 

onset and behavioural responsiveness to THIM (see Chapter 3). The current study 

suggests that these findings may have been due to participants being unaware of the 

stimulus after PSG-sleep onset. The current study also supports the findings that 

behavioural responses to vibratory stimuli are closely associated with EEG activity. 

In this study, behavioural responses occurred during brief arousals in N1- and N2-

sleep that had been overlooked when the EEG was scored according to the AASM 

scoring criteria (Hertig-Godeschalk et al., 2019). Therefore, THIM detected signs of 
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wakefulness during these brief arousals that the current PSG scoring criteria does 

not, rendering the device highly accurate for estimating wakefulness/brief arousals 

from sleep. 

Conclusion 

This article was the first to examine responsiveness to vibratory stimuli and 

sleep microstructure during the sleep onset period. Across all sleep stages, 

responses to vibratory stimuli corresponded with increases in higher frequencies 

indicative of wakefulness. Whereas, a lack of response to vibratory stimuli coincided 

with higher delta activity, signalling greater sleep depth. The difference between 

states was the percentage of response to stimuli: responses were frequent in wake, 

common in N1 sleep, and uncommon in N2-sleep. Both wake and sleep-like 

behavioural and brain responses regularly occurred in N1-sleep. This further 

supports the theory that N1 sleep is a fluctuating and transitional state between wake 

and sustained sleep.  
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Abstract 

THIM is a new wearable device worn on the finger that can passively monitor 

sleep and wakefulness overnight using actigraphy. This article showcases the 

development of the THIM sleep tracking algorithm (Study 1), and the test of its 

accuracy against polysomnography (PSG) with a small independent sample of good 

and poor sleepers (Study 2). The accuracy of THIM was also compared to two 

popular actigraphy devices, Fitbit and Actiwatch devices. 

Twenty-five (Study 1) and twenty (Study 2) individuals slept overnight in the 

sleep laboratory on one night. Participants slept from their typical bedtime to their 

typical wake up time with simultaneous recording from PSG and the THIM, Fitbit and 

Actiwatch actigraphy devices.  

In both studies, THIM had lower sensitivity (M = 0.89, SD = 0.06 in Study 2) 

compared to the Actiwatch (M = 0.95, SD = 0.04) and Fitbit devices (M = 0.96, SD = 

0.04), p < .001, d > 1.18, yet THIM had higher specificity (M = 0.59, SD = 0.18). 

There were no significant differences between PSG and THIM in either study for 

sleep onset latency, total sleep time, wake after sleep onset, or sleep efficiency, p > 

.06. Yet, there was high variability in the accuracy of all three actigraphy devices 

between individuals that was not explained by sleep quality. 

Together, these studies suggest that THIM is capable of accurately monitoring 

sleep and wake overnight in good and poor sleepers. Future research will examine 

the accuracy of THIM for monitoring sleep in people with insomnia. 

Keywords: wearable technology; consumer sleep technology; 

polysomnography; actigraphy; sleep parameters; validation. 
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There are many uses for a sleep wearable device that can accurately 

estimate objective sleep in the home environment. For researchers, an accurate 

sleep tracker would enable research studies that are currently resource-heavy to be 

conducted more practically, including observational studies to explore sleep health 

with big data (Kuula et al., 2019; Ong, Tandi, Patanaik, Lo, & Chee, 2019). For 

clinicians, an accurate sleep tracker may represent a substantially cheaper 

alternative to PSG for the monitoring of certain sleep disorders. For consumers, an 

accurate sleep tracker may allow individuals to monitor their sleep and benefit from 

individualised programs that incorporate their sleep tracker data and make 

recommendations to improve their sleep health. For individuals with insomnia, an 

accurate sleep tracker could assess the degree to which patients adhere with 

prescribed time in bed in the case of monitoring adherence to behavioural 

treatments. It is imperative that sleep trackers are accurate to ensure that any 

decisions made based on this data are appropriate, which is of even greater 

importance for diagnostic and treatment-related purposes. This article describes the 

development and accuracy of a new consumer sleep tracker, called THIM, for 

estimating sleep and wakefulness while in bed across the intended sleep period. 

THIM passively estimates sleep and wakefulness using actigraphy (Re-Time, 

2016), which is a method employed in many research and consumer sleep trackers. 

These typically wrist-worn devices contain an in-built accelerometer that quantifies 

wrist movement (Sadeh & Acebo, 2002). Individuals tend to remain relatively 

immobile when sleeping and move their limbs to a greater extent when awake. 

However, individuals also tend to lie still in bed whilst awake, particularly when they 

are close to initiating sleep (Pollak et al., 2001). It is therefore unsurprising that these 

devices tend to overestimate sleep and underestimate wakefulness in most 
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individuals (Van den Water et al., 2011). This can be particularly true for individuals 

that typically spend considerable durations of time in bed awake but inactive, such 

as those with insomnia (Silvertsen et al., 2006; Vallières & Morin, 2003). For this 

reason, the accuracy of THIM will be examined with both good and poor sleepers to 

identify significant differences that may exist between groups. 

Despite their limitations, actigraphy devices have their advantages. Firstly, 

these devices are simple to operate – the individual simply wears the device whilst in 

bed. Secondly, the devices are relatively non-intrusive and therefore unlikely to alter 

sleep parameters by their use, whereas PSG is known to produce a disturbance of 

sleep on at least the first night of use (Agnew, Webb, & Williams, 1966). Thirdly, the 

devices can be used over multiple nights in the home environment and, fourthly, 

without the need for trained individuals to setup the device or manually score the 

data. Fifthly, they are less expensive than PSG devices. Therefore, actigraphy 

devices are a more practical alternative to PSG for objective sleep monitoring. 

Improving the accuracy of these devices would minimise their only disadvantage and 

make them more suitable for a variety of research and clinical purposes. 

Whilst the actigraphy method does have limited sensitivity for estimating 

wakefulness, placing the device in a different body location to the traditional wrist 

placement may improve accuracy. The wrist was selected when actigraphy was 

developed in the 1980s because it could accommodate the relatively bulky devices 

at the time. Once algorithms were developed for scoring sleep from wrist 

movements, the wrist location perpetuated despite recent technology allowing 

miniaturisation of actigraphy to a smaller location, such as the finger. Wrist 

actigraphy devices typically only detect significant body movements involving the 

forearm. An actigraphy device placed on the finger may be able to detect much 
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smaller movements from the hand and finger that occur during wakefulness and light 

stages of sleep, such as finger twitches (Reiter, Roach, Sargent, & Lack, 2020). 

THIM differs from most common sleep trackers because it is worn on the index finger 

as opposed to the wrist and may consequently be more accurate than wrist 

actigraphy devices. Research with similar finger-worn actigraphy device have found 

promising results for estimating sleep and wake (de Zambotti, Rosas, Colrain, & 

Baker, 2017). We therefore anticipate that THIM will be more accurate than wrist-

based actigraphy devices. 

Furthermore, the primary function of THIM is to treat insomnia by 

administering a brief but effective behavioural treatment called Intensive Sleep 

Retraining ([ISR], Harris et al., 2012; Lack et al., 2019). It would be advantageous to 

use one simple device to administer a treatment for insomnia and track sleep to tailor 

treatment instructions and monitor sleep improvements over time. If THIM was more 

accurate than current actigraphy devices, it may be useful for not only treating and 

monitoring sleep but also for obtaining a better representation of sleep in the home 

environment (Withrow, Roth, Koshorek, & Roehrs, 2019). 

This article described the development and accuracy of the THIM device for 

tracking sleep and wakefulness overnight compared to PSG. There will be two 

studies presented. Study 1 aimed to 1) develop the algorithm that THIM uses to track 

sleep and wakefulness, 2) test whether it performs comparably to other actigraphy 

devices, and 3) assess the impact of insomnia symptoms on device performance. 

This was investigated by dichotomising participants into good and poor sleeper 

groups based on their scores on the Insomnia Severity Index (ISI). The potential 

uses of THIM for these two groups differ, and therefore, it is more meaningful for the 

interpretation of the study findings to consider good and poor sleepers separately. 
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Study 2 provides preliminary evidence about the accuracy of THIM in an 

independent sample of healthy individuals with self-reported good or poor sleep. 

Study 1: Method 

Participants 

Ethics approval was obtained from the Flinders University Social and 

Behavioural Research Ethics Committee, South Australia. Participants were 

recruited via print and online advertisements and completed a battery of screening 

questionnaires to assess their eligibility. The screening questionnaires comprised of 

the ISI (Morin et al., 2011), and the PSQI (Buysse et al., 1989), to assess sleep 

patterns and symptoms of insomnia. A health and lifestyle questionnaire was 

administered to assess physical and mental health conditions, as well as lifestyle 

factors, such as medication use, caffeine/alcohol/nicotine consumption, and recent 

trans-meridian travel. Both good sleepers (ISI score < 7) and those with subthreshold 

clinical insomnia symptoms (ISI score 8-15), termed ‘poor sleepers’, were recruited 

for this study to develop the sleep tracking algorithm in a sample with varied sleep 

quality. Specific eligibility criteria were as follows: 

1. Self-reported average habitual bedtime between 22:00-00:00 and wake up 

time between 06:00-08:00; 

2. Fluent in English; 

3. No self-reported diagnosis of a physical or mental health condition; 

4. No active nicotine or illicit substance use, or alcohol (>10 standard drinks 

p/wk) or caffeine (>250 mg p/day) dependence; 

5. No consumption of medications known to interfere with sleep; 

6. No overnight shift work or trans-meridian travel within the last two months; 

7. Not pregnant or lactating. 
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After screening, 25 healthy individuals met the eligibility criteria. Twelve 

individuals participated in this study in June 2017 and 13 individuals participated 

from April-July 2018 as part of a larger laboratory study (described in Study 1, 

Chapter 3). See Table 5-1 for participant characteristic information.  

Table 5-1. Descriptive characteristics for participants in Study 1. 

Characteristic Good sleepers 
(N = 19) 

Poor sleepers 
(N = 6) 

Total Sample 
(N = 25) 

Age, mean (SD), y 25.20 (6.60) 25.92 (6.23) 25.38 (6.39) 

Sex, No. (%) 
Men 
Women 

 
10 (53) 
9 (47) 

 
0 (0) 

6 (100) 

 
10 (40) 
15 (60) 

BMI, mean (SD) 23.36 (3.10) 24.10 (4.50) 23.54 (3.40) 

Lifestyle characteristics    

Weekly alcohol 
consumption, No. (SD) 1.84 (2.52) 1.67 (1.97) 1.80 (2.36) 

Daily caffeine consumption, 
No. (SD) 1.45 (1.21) 1.67 (1.21) 1.50 (1.19) 

Sleep characteristics    

ISI, mean (SD) 1.74 (1.19) 10.67 (3.14) 3.88 (4.28) 

PSQI, mean (SD) 3.53 (1.54) 7.00 (3.16) 4.36 (2.48) 

Habitual Bedtime, mean 
time (SD, min) 22:47 (50.67) 22:35 (31.75) 22:44 (46.57) 

Habitual Wake Up Time, 
mean time (SD, min) 07:24 (54.08) 07:25 (24.31) 07:25 (48.14) 

Habitual total sleep time, 
mean hrs (SD) 7.96 (0.88) 7.17 (1.37) 7.77 (1.05) 

BMI = body mass index, ISI = Insomnia Severity Index, N = sample size, PSQI = 

Pittsburgh Sleep Quality Index, SD = standard deviation, TST = total sleep time. 

Study Design 

This was a within-groups quasi-experimental study. All participants slept 
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overnight in the sleep laboratory with polysomnography (PSG), THIM and two 

additional actigraphy devices, the Fitbit Flex and the Actiwatch devices, recording 

simultaneously. The degree of agreement was assessed between the three 

actigraphy devices and PSG. 

Materials 

Polysomnography 

PSG was recorded using Compumedics Grael 4K PSG:EEG devices 

(Compumedics, Victoria, Australia). Six electroencephalography (EEG) sites (F3-M2, 

F4-M1, C3-M2, C4-M1, O1-M2, O2-M1), reference and ground, right and left 

electrooculography (EOG), chin electromyography (EMG), and electrocardiography 

(ECG) sites were recorded in accordance with the 10-20 EEG placement system. An 

independent registered sleep technician blind to the output from the actigraphy 

devices scored the PSG data using Profusion Compumedics software (v 4.0) 

according to standardised AASM PSG scoring criteria (American Academy of Sleep 

Medicine, 2018). 

THIM 

THIM (firmware v 1.0.3) is a ring-like device worn on the middle phalanx of the 

index finger of the dominant hand. The device contains an in-built tri-axial 

accelerometer which measures acceleration (change of velocity). The device pre-

processes the raw acceleration values and stores an average value for each 30 

second epoch. To retrieve this data, the device is connected via Bluetooth to the 

accompanying THIM smartphone application (app). Data is sent to cloud-based 

servers for further processing, during which a sleep tracking algorithm is applied to 

score every 30-second epoch into sleep or wake. This information is subsequently 

displayed on the THIM app as key sleep parameters –total sleep time (TST), sleep 

onset latency (SOL), wake after sleep onset (WASO), and sleep efficiency - and as a 
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visual sleep hypnogram. 

For this study, the THIM smartphone app (v 1.0.1) was operated on an Apple 

iPhone 5s model (iOS 8.0 operating system) to send the 30-second epoch data to 

the cloud-based servers. At present, the epoch data is not accessible for download. 

The manufacturers of THIM, Re-Time Pty. Ltd., retrieved and forwarded the data to 

us for the purpose of this study. We then developed the THIM sleep tracking 

algorithm on this data, which is applied to the THIM data in the cloud-based servers 

(from firmware v 1.0.4).  

To create the algorithm, we first developed a smoothing function applied to 

pre-processed data (data after high and low pass filter processing) by iteratively 

adjusting the number of included previous and subsequent epochs and their 

weightings in the smoothing function until the algorithm reached high agreement with 

PSG for estimating sleep and wake periods. Secondly, a threshold applied to the 

epoch data to distinguish between sleep and wake epochs was identified by 

iteratively adjusting the threshold until acceptable sensitivity and specificity was 

reached across the whole sample. Thirdly, specific scoring criteria regarding the 

number of ‘wake’ epochs required to determine SOL and subsequent awakenings 

were iteratively adjusted until high correspondence was obtained between PSG and 

THIM across this sample. The algorithm cannot be discussed in greater detail as it is 

proprietary. 

Actiwatch Devices 

Developed by Philips Respironics, this device uses an internal tri-axial 

accelerometer to identify participants’ wrist movements in three-dimensional space. 

The Actiwatch Spectrum model was used to collect data in 2017 and the Actiwatch-2 

model for 2019, however these models perform equivalently (Respironics, 2009). 
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The devices were set up and the data was retrieved in 30-second epochs using the 

Actiware Sleep software (v 6.0.0, Philips Respironics, Bend, OR). The times in and 

out of bed were manually entered from the lights out/lights on times recorded on the 

laboratory night. The default software algorithm automatically scored the epochs by 

applying the medium threshold criterion and ‘10 immobile minutes’ scoring 

parameters. The sleep/wake epoch data was exported into Microsoft Excel for 

analysis.  

Fitbit Flex 

Similar to the Actiwatch device, the Fitbit Flex uses accelerometry to measure 

wrist movement. The device was operated using the Fitbit Flex smartphone app (v 

3.3.1) on the same Apple iPhone 5s model phone used to operate THIM. 

Participants’ age, gender, height and weight were entered into the Fitbit app before 

the laboratory nights commenced as it is unknown whether this information is 

incorporated into the proprietary Fitbit algorithm to estimate sleep and wakefulness. 

The sleep recording periods were manually initiated and terminated by tapping on 

the Fitbit device when the participants got in/out of bed. After the laboratory night, 

the ‘normal’ Fitbit algorithm setting was applied to score the data into 60-second 

epochs. The sleep/wake epoch data was retrieved via Squash Leagues 

(www.squashleagues.org/): a website independent of Fitbit that retrieves the epoch 

data from the Fitbit account, which was downloaded in a CSV format for analysis.  

Procedure 

Home Testing 

Participants completed an online sleep diary every morning for one week via 

Qualtrics software. This online diary is based on the Consensus Sleep Diary (Carney 

et al., 2012). Participants also wore the Actiwatch device every day during this week 

to corroborate the sleep diary information. 

http://www.squashleagues.org/
http://www.squashleagues.org/
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Laboratory Night 

Participants arrived at the Flinders University Sleep Research Laboratory at 

approximately 20:00. Participants were setup for overnight PSG recording. THIM 

was attached to the index finger on their self-reported dominant hand. The Fitbit Flex 

and Actiwatch devices were attached to the wrist of their non-dominant hand. 

Participants went to bed at their typical bedtime and woke up at their typical wake up 

time, as calculated from the previous week of sleep diaries. 

Statistical Analysis 

The accuracy of the three actigraphy devices (THIM, Fitbit Flex and 

Actiwatch) compared to PSG was analysed in accordance with recommended 

guidelines for device validation studies (de Zambotti et al., 2019; Depner et al., 

2019). Epoch-by-epoch analyses were conducted by calculating the sensitivity 

(proportion of epochs that the device scored as sleep when the individual was asleep 

according to PSG), specificity (proportion of epochs that the device scored as wake 

when the individual was awake according to PSG) and accuracy (proportion of 

correctly scored epochs) separately for each participant and averaging these values 

together for each actigraphy device. Linear Mixed Modelling (LMM) was performed 

to examine whether there were any significant differences between the actigraphy 

devices (the fixed effect) on sensitivity, specificity and accuracy (IBM SPSS, v 23). 

All LMM analyses used a first-order autoregressive covariance structure with device 

as a fixed effect. Where appropriate, post hoc comparisons were conducted with the 

Bonferroni correction. 

The limit of agreement between PSG and each actigraphy device was also 

analysed using Bland-Altman plots (Bland & Altman, 1986; Giavarina, 2015). These 

plots show the discrepancy between PSG and the device for each participant (y axis) 
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against PSG (x axis) on separate plots for each sleep parameter. The plots also 

display the overall mean difference (also known as the bias), standard deviation, and 

the lower and upper limits of agreement (± 1.96 SD of the mean difference).  

Estimations of the common sleep parameters were compared between each 

actigraphy device and PSG. For the actigraphy devices, TST was calculated from 

the sum of epochs that do not exceed the sensitivity threshold (i.e. epochs defined 

as sleep). SOL was calculated from the sum of epochs that exceeded the sensitivity 

threshold (i.e. wake epochs) between lights out and the first sleep epoch. WASO 

was calculated from the sum of wake epochs between the first epoch of sleep and 

lights on. Sleep efficiency was calculated by dividing TST by the total time spent in 

bed and multiplied by 100. PSG sleep parameters were defined according to 

established guidelines (American Academy of Sleep Medicine, 2018). LMM analyses 

examined whether there were any significant differences between actigraphy devices 

(the fixed effect) for estimating each sleep parameter (SOL, TST, WASO, and sleep 

efficiency). A statistically significant main effect for device was further examined 

using Bonferroni adjusted pairwise comparisons. 

Additional analyses included examining whether the type of sleeper (good or 

poor sleeper) impacted the accuracy of the actigraphy devices. Sleeper type was 

entered as a factor in all LMM analyses discussed above. Where the interaction 

between device and sleeper type was statistically significant, Bonferroni-adjusted 

pairwise comparisons were conducted to further investigate the effect. 

Study 1: Results 

Missing Data 

Four nights of Actiwatch data were missing due to battery difficulties. All 

nights of data were obtained with the THIM and Fitbit devices. 
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Epoch by Epoch Analysis 

The sensitivity, specificity and accuracy of each actigraphy device are 

presented in Table 5-2. As shown, all three actigraphy devices had high sensitivity. A 

LMM indicated that the sensitivities differed between devices, F(2, 68) = 21.16, p < 

.001. Post hoc tests showed that THIM had significantly lower sensitivity than the 

Actiwatch, p = .001, and the Fitbit Flex devices, p < .001. According to Cohen’s d 

criteria, the difference was large between THIM and the Actiwatch Spectrum, d = 

0.88, as well as between THIM and the Fitbit Flex device, d = 1.70. There was no 

significant difference between the Actiwatch and Fitbit Flex mean sensitivities, p = 

.07.  

Specificities also differed between devices, F(2, 68) = 12.11, p < .001. Post 

hoc tests indicated that THIM had a significantly higher specificity than the Actiwatch 

Spectrum device, p = .001, and the Fitbit Flex devices, p < .001. The effect sizes 

were large between THIM and the Actiwatch Spectrum, d = 1.23, as well as between 

the THIM and the Fitbit Flex devices, d = 1.26. However, there was no significant 

difference between the specificities for the Actiwatch and Fitbit Flex devices, p = .99. 

There were no significant differences in accuracy between devices, F(2, 68) = 0.49, 

p = .61. 

Table 5-2. Sensitivity, specificity and accuracy for each actigraphy device in Study 1. 

Device Sensitivity (SD) Specificity (SD) Accuracy (SD) 

THIM 0.91 (0.05) 0.59 (0.21) 0.85 (0.07) 

Actiwatch 0.95 (0.04) * 0.35 (0.18) * 0.85 (0.10) 

Fitbit Flex 0.98 (0.03) * 0.32 (0.22) * 0.87 (0.09) 
* p < .05 between THIM and device. SD = standard deviation. 

Sleep Parameter Estimations 

Table 5-3 presents the descriptive statistics on estimations of each sleep 
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parameter for each device. A LMM determined there were significant differences 

between devices for estimations of SOL, F(3, 92) = 6.39, p = .001. Post hoc 

comparisons indicated there were large significant differences between PSG and the 

Actiwatch device, p < .001, d = 1.31, and Fitbit Flex devices, p = .04, d = 0.77. There 

was no significant difference between PSG and THIM estimations of SOL, p = .99. 

Table 5-3. Sleep parameter descriptive statistics for PSG and the actigraphy devices in Study 
1. 

Sleep Parameter 
Actigraphy Device 

PSG THIM Actiwatch Fitbit Flex 

SOL, mean (SD), 
min 24.22 (19.98) 20.40 (21.46) 5.36 (3.77) * 11.64 (11.54) * 

TST, mean (SD), 
min 400.96 (67.02) 394.46 (48.72) 423.10 (51.00) 440.60 (45.06) 

WASO, mean 
(SD), min 48.06 (36.34) 58.38 (22.55) 38.00 (26.53) 19.60 (18.37) * 

Sleep efficiency, 
mean (SD), % 84.58 (11.10) 83.50 (7.56) 90.73 (6.04) 93.52 (5.10) * 

* p < .05 between PSG and actigraphy device. PSG = polysomnography, SD = 

standard deviation, SOL = sleep onset latency, TST = total sleep time, WASO = 

wake after sleep onset. 

There were significant differences for estimations of TST, F(3, 92) = 3.84, p = 

.01. However, post hoc comparisons indicated no significant differences between 

PSG and any of the actigraphy devices, p > .06. 

There were significant differences for WASO, F(3, 92) = 9.48, p < .001. Post 

hoc tests indicated a large significant difference between PSG and the Fitbit Flex 

device, p = .002, d = 0.99, but no significant differences between PSG and THIM, p = 

.99, or PSG and the Actiwatch device, p = .99. 

There were significant differences for sleep efficiency, F(3,92) = 9.27, p < 

.001. Post hoc comparisons indicated large significant differences between PSG and 
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the Fitbit Flex, p = .004, d = 1.04. There were no significant differences between 

PSG and THIM, p = .99, or the Actiwatch for estimations of sleep efficiency, p = .06. 

Bland-Altman Plots 

Figure 5-1 presents Bland-Altman plots for each actigraphy device on key 

sleep parameters. THIM had a mean bias closer to perfect agreement with PSG 

compared to the Actiwatch and Fitbit Flex devices. This suggests that THIM agrees 

more closely with PSG for estimating SOL compared to the Actiwatch and Fitbit Flex. 

Furthermore, THIM had a less steep slope for the line of best fit compared to the 

Actiwatch and Fitbit Flex, suggesting that the device was less likely to underestimate 

SOL to a greater extent as PSG-SOL increased. The limits of agreement range 

between 60.07 minutes for the Fitbit Flex to 72.56 minutes for the Actiwatch. 

The TST plots show that the mean biases for the Actiwatch and Fitbit Flex 

devices trends towards overestimation. Yet, considering the findings of the LMM 

analyses above, there is no significant difference between devices. All three devices 

have lines of best fit with steep negative slopes. The limits of agreement range 

between 139.34 minutes for the Actiwatch to 188.50 minutes for the Fitbit Flex. 

The WASO plots illustrate that THIM tends to overestimate WASO whilst the 

other devices tend to underestimate WASO. Yet, the LMM analyses indicate that 

only the Fitbit Flex produced significantly different estimates of WASO compared to 

PSG. All devices have lines of best fit with steep negative slopes. The limits of 

agreement range between 122.43 minutes for the Actiwatch device to 153.85 

minutes for the Fitbit Flex, potentially due to the presence of an outlier. 

The sleep efficiency plots illustrate that THIM had a small bias towards 

underestimating sleep efficiency, while the other devices overestimated sleep 

efficiency. Yet, the Fitbit Flex was the only device to produce significantly different 
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estimates of sleep efficiency compared to PSG. The limits of agreement range 

between 33.25% for the Actiwatch device to 43.19% for the Fitbit Flex. 
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Sleep Onset Latency 
(a) THIM 

 
(b) Actiwatch  

 
(c) Fitbit Flex 

 
  

R2 = .08 
p = .17 

R2 = .98 
p < .001 

R2 = .67 
p < .001 
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Total Sleep Time 
(a) THIM 

 
(b) Actiwatch  

 
(c) Fitbit Flex  

 
  

R2 = .47 
p < .001 

R2 = .46 
p = .001 

R2 = .55 
p < .001 
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Wake After Sleep Onset 
(a) THIM 

 
(b) Actiwatch  

 
(c) Fitbit Flex  

 
  

R2 = .64 
p < .001 

R2 = .54 
p < .001 

R2 = .78 
p < .001 
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Sleep Efficiency 
(a) THIM 

 
(b) Actiwatch 

 
(c) Fitbit Flex 

 
Figure 5-1. Bland-Altman plots showing the agreement between PSG and THIM, Actiwatch and 
Fitbit Flex devices separately on sleep onset latency, total sleep time, wake after sleep onset and 
sleep efficiency for Study 1.  
The solid black lines indicate the bias. The dashed red horizontal lines indicate the upper 
and lower limits of agreement, and the dotted blue lines are the lines of best fit.

R2 = .55 
p < .001 

R2 = .76 
p < .001 

R2 = .79 
p < .001 
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Good and Poor Sleeper Comparison. 

Table 5-4 contains the descriptive statistics for these secondary analyses. For 

sensitivity there was a statistically significant interaction between device and the type 

of sleeper, F(2,43.81) = 8.66, p = .001. Post hoc analyses revealed that sensitivity 

was significantly higher for good sleepers compared to poor sleepers for the THIM 

device, p < .001. This was a large effect, d = 1.50. There were no significant 

differences between good and poor sleepers for the sensitivity of the Actiwatch, p = 

.07, or the Fitbit Flex devices, p = .93. A LMM examining the interaction between 

device and sleeper type on specificity was not significant, p = .77. There was a 

statistically significant interaction between device and the type of sleeper on 

accuracy, F(2,42.55) = 6.44, p = .004. However, post-hoc comparisons between 

groups within devices were not significant, p > .12. 

LMM analyses determined whether there were any significant differences 

between good and poor sleepers on the mean discrepancies of the actigraphy 

devices for each sleep parameter. The descriptive statistics for these analyses are 

presented in Table 5-4. These LMM analyses found no significant interactions 

between device and the type of sleeper on SOL, p = .66, TST, p = .06, WASO, p = 

.08, or sleep efficiency, p = .08. 
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Table 5-4. Epoch-by-epoch and sleep parameter descriptive statistics comparing good and 
poor sleepers in Study 1. 

Variable 
Actigraphy Device 

THIM Actiwatch Fitbit Flex 

Epoch-by-epoch analyses 

Sensitivity, mean (SD) 
Good sleepers 
Poor sleepers 

 
0.92 (0.04) 

0.86 (0.04) * 

 
0.94 (0.04) 
0.98 (0.01) 

 
0.98 (0.03) 
0.98 (0.02) 

Specificity, mean (SD) 
Good sleepers 
Poor sleepers 

 
0.55 (0.22) 
0.68 (0.16) 

 
0.34 (0.15) 
0.45 (0.27) 

 
0.31 (0.19) 
0.37 (0.29) 

Accuracy, mean (SD) 
Good sleepers 
Poor sleepers 

 
0.86 (0.07) 
0.84 (0.04) 

 
0.84 (0.11) 
0.91 (0.04) 

 
0.86 (0.10) 
0.92 (0.03) 

Sleep parameters 

SOL discrepancy, mean (SD), min 

Good sleepers 
Poor sleepers 

-7.24 (13.12) 
7.00 (18.13) 

-21.31 (19.98) 
-9.90 (10.77) 

-14.45 (15.81) 
-6.66 (13.12) 

TST discrepancy, mean (SD), min 
Good sleepers 
Poor sleepers 

5.13 (40.91) 
-43.33 (25.73) 

33.61 (38.46) 
15.43 (21.20) 

45.13 (52.31) 
22.25 (27.75) 

WASO discrepancy, mean (SD), min 
Good sleepers  
Poor sleepers 

2.11 (35.93) 
36.33 (13.43) 

-12.38 (34.59) 
-7.25 (10.73) 

-32.16 (43.45) 
-16.75 (19.48) 

Sleep Efficiency discrepancy, mean (SD), % 
Good sleepers 
Poor sleepers 

1.39 (9.62) 
-8.91 (5.06) 

7.37 (9.23) 
3.19 (4.36) 

10.25 (12.05) 
4.77 (5.74) 

* p < .05 between good and poor sleepers with this device. SD = standard deviation, 

SOL = sleep onset latency, TST = total sleep time, WASO = wake after sleep onset. 

 



133 
 

Study 1: Discussion 

Study 1 aimed to develop the THIM sleep tracking algorithm and compare its 

accuracy to two popular actigraphy devices. The epoch-by-epoch analysis revealed 

that THIM was less sensitive for detecting sleep compared to the Fitbit Flex and 

Actiwatch devices but had higher specificity and comparable overall accuracy. 

Analysis of the sleep parameter estimations further demonstrated that THIM aligned 

closely with PSG, with no significant differences between THIM and PSG for any 

sleep parameter. In comparison, the Fitbit Flex and Actiwatch Spectrum devices’ 

estimations of SOL were significantly lower than PSG, and the Fitbit Flex’s 

estimations of WASO and sleep efficiency differed to PSG. Overall, these findings 

suggest that THIM has comparable accuracy to the Actiwatch and Fitbit Flex 

devices, with perhaps greater agreement with PSG for estimating key sleep 

parameters. However, the THIM sleep tracking algorithm was developed and 

optimised for estimating sleep and wake with this sample. As such, the device may 

not be as accurate with a different sample of healthy individuals. To draw stronger 

conclusions about the accuracy of THIM, the device needed to be tested with a 

separate sample. This was addressed in Study 2. 

This study examined whether this high variability across individuals evident on 

the Bland-Altman plots could be due to the type of sleeper (good or poor sleeper). 

There was only one significant difference between good and poor sleepers across 

the dependent variables for the actigraphy devices – THIM showed significantly 

lower sensitivity for poor sleepers. Nonetheless, sleeper characteristics is an 

important factor that has impacted the accuracy of actigraphy devices in previous 

research (Hedner et al., 2004; Van den Water et al., 2011), although some studies 

have found no significant differences between good sleepers and those with 
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insomnia (Kang et al., 2017; Sanchez-Ortuno et al., 2010). Further investigation is 

warranted to understand the suitability of THIM for monitoring the sleep of individuals 

with good or poor sleep.  

The aims of Study 2 were three-fold: to 1) test the accuracy of the THIM 

algorithm developed in Study 1 with an independent sample, 2) determine whether 

the device is more accurate than other actigraphy devices, and 3) investigate 

whether the accuracy of the actigraphy devices differ between good and poor 

sleepers. 

Study 2: Method  

This study tested the accuracy of the actigraphy devices with an independent 

sample. The Actiwatch Spectrum and Fitbit Flex devices were substituted with the 

updated Actiwatch-2 and Fitbit Alta devices. Other aspects of the study method are 

identical to the first study. 

Participants 

Participants met the same eligibility criteria as participants in the first study. 

Twenty-one healthy individuals participated in this study. However, one recording 

failed due to technician error with the PSG. As such, these findings are based on 20 

participants. See participant characteristic information in Table 5-5. 
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Table 5-5. Descriptive statistics for participant characteristics collected at screening in Study 
2. 

Characteristic Good sleepers 
(N = 10) 

Poor sleepers 
(N = 10) 

Total Sample 
(N = 20) 

Age, mean (SD), y 24.86 (5.60) 21.88 (4.29) 23.22 (5.01) 

Sex, No. (%) 
Men 
Women 

 
3 (33) 
6 (67) 

 
3 (27) 
8 (73) 

 
6 (30) 

14 (70) 

BMI, mean (SD) 24.42 (2.25) 24.88 (3.95) 24.68 (3.22) 

Lifestyle characteristics    

Weekly alcohol consumption, 
No. (SD) 1.56 (1.74) 1.27 (1.79) 1.40 (1.73) 

Daily caffeine consumption, 
No. (SD) 1.72 (1.60) 1.91 (1.36) 1.83 (1.44) 

Sleep characteristics    

ISI, mean (SD) 1.89 (1.17) 11.36 (3.83) 7.10 (5.63) 

PSQI, mean (SD) 3.22 (1.79) 7.73 (3.50) 5.70 (3.61) 

Habitual Bedtime, mean time 
(SD), min 22:36 (61.68) 23:08 (67.43) 22:54 (65.50) 

Habitual Wake Up Time, 
mean time (SD), min 07:17 (53.21) 07:56 (68.54) 07:38 (64.26) 

Habitual TST, mean (SD), hrs 8.06 (0.88) 7.09 (1.50) 7.53 (1.32) 
BMI = body mass index, ISI = Insomnia Severity Index, N = sample size, PSQI = 

Pittsburgh Sleep Quality Index, SD = standard deviation, TST = total sleep time. 

Results 

Missing Data  

Due to battery issues, three nights of Actiwatch data were missing. All nights 

were recorded successfully with the THIM and Fitbit devices. 

Epoch by Epoch Analysis 

Table 5-6 presents the descriptive statistics for the epoch-by-epoch analyses 

with each actigraphy device. Despite high sensitivity, a LMM revealed that there 
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were significant differences between the devices, F(2, 54) = 14.52, p < .001. Post 

hoc tests showed that THIM had a significantly lower sensitivity than the Actiwatch-2, 

p < .001, d = 1.18, and Fitbit Alta devices, p < .001, d = 1.37. There was no 

significant difference between the Actiwatch-2 and Fitbit Alta devices, p = .99. 

Furthermore, a LMM indicated significant differences in the specificities 

between devices, F(2, 54) = 7.72, p = .001. Post hoc tests indicated that both THIM 

and the Actiwatch-2 had significantly higher specificities than the Fitbit Alta, p < .005, 

d = 1.11 and 1.05, respectively. There was no significant difference between THIM 

and the Actiwatch-2, p = .99. 

A significant main effect of device was found on accuracy, F(2, 54) = 5.14, p = 

.009. Post hoc tests indicated THIM had significantly lower accuracy than the 

Actiwatch-2, p = .01, but was not significantly different compared to the Fitbit Alta, p 

= .09. There was no significant difference between the Actiwatch-2 and Fitbit Alta 

devices, p = .99. 

Table 5-6. Sensitivity, specificity and accuracy for each actigraphy device in Study 2. 

Device Sensitivity (SD) Specificity (SD) Accuracy (SD) 

THIM 0.89 (0.06) 0.59 (0.18) 0.85 (0.06) 

Actiwatch-2 0.95 (0.04) * 0.59 (0.20)  0.91 (0.05) * 

Fitbit Alta 0.96 (0.04) * 0.39 (0.18) * 0.89 (0.07) 
* p < .05 between THIM and device. SD = standard deviation. 

Sleep Parameter Estimations 

Table 5-7 presents the descriptive statistics for the sleep parameter 

estimations. A LMM determined significant differences on estimations of SOL, F(3, 

73) = 4.07, p = .01. Post hoc comparisons indicated a large significant difference 

between PSG and the Actiwatch-2, p = .01, d = 1.41, and no significant differences 

between PSG and THIM, p = .99, or the Fitbit Alta, p = .81. There were no significant 
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differences on estimations of TST, F(3, 73) = 2.23, p = .75. There were significant 

differences on WASO, F(3, 73) = 7.44, p < .001. However, post hoc comparisons 

indicated that these significant differences were not between PSG and any of the 

actigraphy devices, p > .06. Similarly, there were significant differences on sleep 

efficiency, F(3, 73) = 6.95, p < .001, but post hoc comparisons indicated that there 

were no significant differences between PSG and any actigraphy device, p > .14. 

Table 5-7. Sleep parameter descriptive statistics for PSG and the actigraphy devices from 
Study 2. 

Sleep Parameter 
Actigraphy Device 

PSG THIM Actiwatch-2 Fitbit Alta 

SOL, mean (SD), 
min 21.68 (16.65) 19.15 (17.82) 4.53 (4.25) * 14.03 (19.22) 

TST, mean (SD), 
min 

424.60 
(48.73) 

403.25 
(46.15) 

434.35 
(46.66) 

438.05 
(43.54) 

WASO, mean 
(SD), min 40.68 (34.50) 64.55 (30.36)  45.03 (24.84) 22.28 (21.88) 

Sleep efficiency, 
mean (SD), % 87.36 (8.62) 82.93 (7.82)  89.88 (4.86) 92.33 (4.56) 

* p < .05 between PSG and actigraphy device. PSG = polysomnography, SD = 

standard deviation, SOL = sleep onset latency, TST = total sleep time, WASO = 

wake after sleep onset. 

Bland-Altman Plots 

Figure 5-2 presents Bland-Altman plots for each actigraphy device. Overall, 

the plots are similar to those found in Study 1. The SOL plots show that THIM has a 

mean bias in close agreement with PSG. The limits of agreement are similar 

between THIM (range: 58.17) and the Actiwatch-2 device (range: 58.16), with the 

Fitbit Alta device having wider limits of agreement (range: 93.64). THIM also has a 

less steep line of best fit compared to the Actiwatch-2 and Fitbit Alta devices, 

indicating less of a bias to increasingly underestimate SOL as PSG-SOL increases.  
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The TST plots indicate that both THIM and the Fitbit Alta devices have greater 

variability of agreement compared to the Actiwatch-2 device. THIM also appears to 

have a mean bias towards underestimating TST compared to the Actiwatch-2 device 

that shows a mean bias close to zero and the Fitbit Alta device that has a mean bias 

greater than zero. Yet, considering the findings above, these biases do not produce 

estimation of TST that are significantly different to PSG. The limits of agreement 

ranged between 112.61 minutes for the Actiwatch device to 193.39 minutes for the 

Fitbit Flex. 

The WASO plots illustrate limits of agreement that ranged between 113.49 

minutes for the Actiwatch device to 143.72 minutes for the THIM device. All devices 

have lines of best fit with steep negative slopes, suggesting a tendency to 

underestimate WASO to a greater extent as PSG-WASO increases in duration. 

The sleep efficiency plots further illustrate that the Actiwatch-2 produces 

estimates that agree more closely with PSG than the THIM and Fitbit devices, with a 

mean bias closer to zero. THIM has a mean bias below zero (underestimate sleep 

efficiency), whilst the Fitbit Alta has a mean bias above zero (overestimate sleep 

efficiency). Nonetheless, the findings of the LMM analyses above indicate that these 

biases do not produce estimation of sleep efficiency significantly different to PSG. 

The limits of agreement ranged between 20.45% for the Actiwatch device to 35.42% 

for the Fitbit Flex.
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Sleep Onset Latency 
(a) THIM 

 
(b) Actiwatch  

 
(c) Fitbit Alta 

 
  

R2 = .13 
p = .12 

R2 = .92 
p < .001 

R2 = .36 
p = .005 
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Total Sleep Time 
(a) THIM 

 
(b) Actiwatch  

 
(c) Fitbit Alta 

 
  

R2 = .27 
p = .02 

R2 = .02 
p = .56 

R2 = .37 
p = .005 
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Wake After Sleep Onset 
(a) THIM 

 
(b) Actiwatch  

 
(c) Fitbit Alta 

 
  

R2 = .41 
p = .002 

R2 = .35 
p = .01 

R2 = .60 
p < .001 
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Sleep Efficiency 
(a) THIM 

 
(b) Actiwatch  

 
(c) Fitbit Alta 

 
Figure 5-2. Bland-Altman plots showing the agreement between PSG and THIM, Actiwatch-2 and 
Fitbit Alta devices separately on sleep onset latency, total sleep time, wake after sleep onset and 
sleep efficiency for Study 2. 
The solid black lines indicate the bias. The dashed red horizontal lines indicate the upper 
and lower limits of agreement, and the dotted blue lines are the lines of best fit. 

R2 = .37 
p = .004 

R2 = .39 
p = .008 

R2 = .72 
p < .001 
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Good and Poor Sleeper Comparison 

Table 5-8 contains the descriptive statistics for LMM analyses conducted to 

determine whether there were any significant differences between good and poor 

sleepers on the sensitivity, specificity and accuracy of the actigraphy devices. The 

interactions between the actigraphy devices and sleeper type were not statistically 

significant for sensitivity, p = .78, specificity, p = .43, or accuracy, p = .37. 

The descriptive statistics for LMM analyses comparing mean discrepancies 

between PSG and each actigraphy device on the sleep parameters are also 

presented in Table 5-8. There were no significant interactions between device and 

sleeper type on SOL, p = .55, TST, p = .75, WASO, p = .47, or sleep efficiency, p = 

.95. 

  



144 
 

Table 5-8. Epoch-by-epoch and sleep parameter descriptive statistics comparing good and 
poor sleepers from Study 2.  

Variable 
Actigraphy Device 

THIM Actiwatch-2 Fitbit Alta 

Epoch-by-epoch analyses 

Sensitivity, mean (SD) 
Good sleepers 
Poor sleepers 

 
0.91 (0.05) 
0.87 (0.07) 

 
0.97 (0.01) 
0.94 (0.04) 

 
0.98 (0.01) 
0.94 (0.05) 

Specificity, mean (SD) 
Good sleepers 
Poor sleepers 

 
0.54 (0.16) 
0.63 (0.19) 

 
0.52 (0.15) 
0.64 (0.22) 

 
0.29 (0.10) 
0.47 (0.20) 

Accuracy, mean (SD) 
Good sleepers 
Poor sleepers 

 
0.87 (0.04) 
0.83 (0.07) 

 
0.91 (0.04) 
0.89 (0.05) 

 
0.90 (0.04) 
0.88 (0.08) 

Sleep parameters 
SOL discrepancy, mean min (SD) 

Good sleepers 
Poor sleepers 

-2.17 (13.56) 
-2.82 (16.46) 

-12.07 (8.65) 
-15.40 (18.34) 

-11.44 (8.95) 
-4.55 (31.57) 

TST discrepancy, mean min (SD) 
Good sleepers  
Poor sleepers 

-14.44 (24.75) 
-27.00 (58.04) 

14.36 (28.02) 
-8.10 (26.70) 

25.50 (28.84) 
3.59 (61.00) 

WASO discrepancy, mean min (SD) 
Good sleepers 
Poor sleepers 

16.61 (17.54) 
29.82 (47.13) 

-2.29 (20.77) 
18.95 (31.57) 

-19.67 (22.91) 
-17.36 (34.74) 

Sleep Efficiency discrepancy, mean % (SD) 
Good sleepers 
Poor sleepers 

-2.84 (4.95) 
-5.74 (11.46) 

2.87 (5.54) 
-0.78 (4.68) 

6.27 (5.97) 
3.89 (9.27) 

* p < .05 between good and poor sleepers with this device. SD = standard deviation, 

SOL = sleep onset latency, TST = total sleep time, WASO = wake after sleep onset. 

Study 2: Discussion 

The first aim of Study 2 was to test the accuracy of THIM with an independent 

sample. THIM had slightly lower sensitivity compared to the findings from Study 1, 
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reflecting a greater bias towards scoring an epoch as wake rather than sleep in this 

independent sample. However, this greater bias did not produce estimates of sleep 

parameters that significantly differed from PSG. The THIM Bland-Altman plots 

appeared comparable between Study 1 and Study 2, with relatively high variability in 

the discrepancy between PSG and each actigraphy device shown across all devices. 

Together, these findings suggest that THIM was similar in accuracy for estimating 

sleep and wake in the independent sample as the sample from which the algorithm 

was developed.  

The second aim of Study 2 was to compare the accuracy of THIM to the Fitbit 

Alta and Actiwatch-2 devices. THIM had lower sensitivity yet higher specificity than 

the Fitbit device. Overall, THIM had lower accuracy than the Acitwatch-2 device. The 

Bland-Altman plots also indicated that THIM had a bias towards underestimating 

TST and sleep efficiency, and overestimating WASO compared to the other two 

actigraphy devices. This contrasts previous research with similar actigraphy devices 

that demonstrate a bias towards overestimating sleep and underestimating wake 

(Bianchi, 2017; Evenson et al., 2015). This may be due to differences between 

algorithms or device placement, or both, between THIM and other actigraphy 

devices. 

Study 2 also aimed to determine whether there were any differences in the 

accuracy of these devices between good and poor sleepers. Similar to the findings of 

Study 1, there were no significant differences between good and poor sleepers for 

any of the dependent variables across actigraphy devices. This contrasts with 

previous research where actigraphy devices were less accurate for those with a 

range of sleep problems compared to good sleepers (Hedner et al., 2004). 

Nonetheless, as found in Study 1, there is still considerably high variability of 
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agreement on the Bland-Altman plots for all actigraphy devices. The limits of 

agreement ranged from a minimum of 58 minutes for SOL, 112 minutes for TST, 113 

minutes for WASO, and 20% for sleep efficiency across the actigraphy devices. 

Whilst there are no current recommendations about acceptable limits of agreement 

for actigraphy devices (de Zambotti et al., 2019) this degree of variability is 

presumably not acceptable to appropriately substitute for PSG, particularly when 

interpreting the data at the individual-level (Danzig, Wang, Shah, & Trotti, 2019). 

Additional individual characteristics that theoretically may explain high variability in 

the accuracy of actigraphy devices include age, gender, BMI, and the presence of 

sleep disorders (Danzig et al., 2019; de Zambotti et al., 2019). In additional LMM 

analyses, the main effects of gender and BMI were not significant across any of the 

sleep parameters, and therefore, these factors do not explain the variability in this 

sample. Due to none of the participants having a sleep disorder and a small age 

range, these factors are likely to have a small effect size in the current study.  

It is important to note the limitations of the current study. The PSG data was 

scored by one qualified sleep technician. The interrater reliability of PSG sleep 

scoring amongst qualified individuals can be low (Rosenberg & Van Hout, 2013), 

increasing the error of measurement of our gold standard measure. Additionally, the 

sample size was relatively low compared to other validation studies. This likely 

impacted our ability to detect differences in the accuracy of the actigraphy devices 

between groups (good and poor sleepers). These factors should be considered 

when interpreting and generalising the findings of the current study to the general 

population. 

Importantly, THIM has not been tested for people with insomnia and could be 

assessed in future research. Studies could also investigate night-to-night variability 
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in the accuracy of THIM, which is particularly important to assess since people with 

insomnia have high variability in sleep across nights (Buysse et al., 2010). 

Additionally, considering that people with insomnia experience different sleep quality 

in the sleep laboratory compared to their home environments (Edinger et al., 1997; 

Edinger et al., 2001), it is particularly important to test THIM in individuals’ homes. 

Future studies could also collect data from larger, more heterogenous samples to 

provide stronger conclusions about the accuracy of THIM than the present studies.  

Conclusion 

The two current studies aimed to develop (Study 1) and provide preliminary 

evidence for the accuracy (Study 2) of the THIM wearable device for estimating 

sleep and wakefulness. With an independent sample in Study 2, THIM had slightly 

lower sensitivity compared to the findings with the algorithm training sample in Study 

1. However, specificity remained relatively high compared to other actigraphy 

devices. The studies also examined whether THIM performed comparably to two 

popular actigraphy devices: the Actiwatch and Fitbit devices. In these preliminary 

studies, it appears that THIM is relatively similar in accuracy for estimating sleep and 

wake compared to the Actiwatch and Fitbit devices. However, THIM showed a 

tendency towards underestimating sleep and overestimating wakefulness. Whilst 

these studies did not find differences in the accuracy of actigraphy devices between 

good and poor sleepers, there was high variability in the devices’ accuracies 

between individuals that could be explored in future research. The accuracy of THIM 

for estimating sleep and wake in individuals with insomnia could also be explored to 

further the long-term goal of improving the treatment of insomnia.  
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Abstract 

In-laboratory validation studies of actigraphy devices have typically been 

performed on one night of data. The accuracy of actigraphy devices over multiple 

nights is largely unknown, particularly for consumer sleep trackers. The aim of this 

study was to evaluate the accuracy of the THIM wearable device for estimating sleep 

and wakefulness over three nights compared to polysomnography.  

Twenty individuals slept overnight in the sleep laboratory on three nights. The 

accuracy of THIM was assessed by conducting epoch by epoch analyses and 

examining agreement with polysomnography on sleep parameters. The degree of 

accuracy of THIM against polysomnography (PSG) was compared between nights. 

THIM demonstrated consistently high sensitivity (0.89) and specificity (range: 

0.42-0.59) across the three laboratory nights. There were no significant differences 

between PSG and THIM for estimations of total sleep time on any night, p > .23. 

However, THIM overestimated WASO compared to PSG on Night 1 (M difference = 

+23.88, SD = 36.66), p = .002, d = 0.74, and Night 2 (M difference = +23.03, SD = 

20.78), p = .004, d = 1.41. THIM also underestimated sleep efficiency on all three 

nights, p < .03, d > 0.54. There were no significant differences between good and 

poor sleepers on any accuracy variable, p > .14. 

The accuracy of THIM was consistent across nights, with the device showing 

a bias towards the overestimation of wakefulness. Future research could investigate 

the accuracy of wearable devices across multiple nights in a naturalistic environment 

to ascertain the usefulness of these devices for long-term monitoring in the home 

environment. 

Keywords: wearable technology; consumer sleep technology; 

polysomnography; actigraphy; activity-monitor; night-to-night variability.  
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The accurate estimation of objective sleep in the home environment is 

essential towards advancing sleep science and healthcare. Yet, the objective long-

term measurement of sleep is difficult to undertake in the home environment. It is 

desirable to monitor objective sleep over multiple nights to obtain an accurate 

assessment of individuals’ sleep as one night of data may not be representative of 

their typical sleep. This can be due to first night effects (Agnew et al., 1966) or large 

night-to-night variability in sleep quality, as is particularly the case for individuals with 

some sleep disorders, such as insomnia (Buysse et al., 2010). The gold-standard 

method of objective sleep measurement, PSG, is impractical for use over multiple 

nights outside the laboratory setting. PSG requires expensive equipment and 

specialised individuals to setup and score the data. Whilst simplified ambulatory 

PSG devices with automatic scoring algorithms overcome many limitations, these 

devices are still expensive and cumbersome to monitor sleep over multiple nights. 

Individuals are also unlikely to adhere to wearing PSG devices over a long period of 

time due to discomfort and the time required to setup and remove these devices.  

Actigraphy overcomes most of the disadvantages of PSG recording for long-

term sleep measurement in the home environment. The actigraphy method involves 

estimating sleep and wakefulness by measuring limb movement (Ancoli-Israel et al., 

2015; Sadeh & Acebo, 2002). Epochs with little/no movement are scored as sleep 

and larger movements are scored as wake. Thus, actigraphy devices are simple to 

score, require little action from the individual, are typically inexpensive and are 

practical to administer over long periods of time. Due to their ease of use and the 

substantial amount of valuable data that can be obtained from them, actigraphy 

devices have become a popular method of estimating sleep for researchers, 

clinicians and consumers (Bianchi, 2017). Current AASM clinical guidelines indicate 
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that research-grade actigraphy devices may be used to provide objective sleep 

metrics to assess and monitor treatment response under certain conditions (Smith et 

al., 2018). However, guidelines recommend against the use of consumer sleep 

trackers for similar purposes due to the lack of validation studies and regulation of 

the industry (Khosla et al., 2018). Nonetheless, sleep research has extensively 

utilised actigraphy devices. There is also a burgeoning market for consumer sleep 

trackers that estimate sleep, with consumers wanting to continuously monitor their 

sleep in an effort towards improving their health and wellbeing (Bianchi, 2017), 

although data from these devices may not always be helpful (Baker, 2020; Baron, 

Abbott, Jao, Manalo, & Mullen, 2017).  

Despite their widespread use for long-term sleep monitoring, there is little 

empirical evidence available about the accuracy of actigraphy devices for estimating 

sleep over multiple nights. Validation studies with research and consumer actigraphy 

devices are largely conducted on single nights in the sleep laboratory (Evenson et 

al., 2015; Van den Water et al., 2011). Few studies have investigated the accuracy 

of actigraphy devices over multiple nights (Hamill et al., 2020; Marino et al., 2013; 

Paquet et al., 2007; Sanchez-Ortuno et al., 2010). These studies largely find little 

variability in the accuracy of actigraphy devices for estimating sleep and wakefulness 

across multiple nights of typical sleep. However, the accuracy of actigraphy devices 

can vary with varying sleep quality between nights (Paquet et al., 2007). These 

studies are also largely conducted with research-grade actigraphy devices, and 

therefore the accuracy of consumer sleep trackers for estimating sleep over multiple 

nights compared to PSG is largely unknown. 

Additionally, night-to-night sleep can vary considerably within individuals, 

particularly for certain clinical populations such as those with insomnia (Buysse et 
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al., 2010). It is likely that the accuracy of consumer sleep trackers may differ across 

nights more so for some individuals (e.g. with poor sleep) than others. Therefore, it is 

important to understand the accuracy of consumer sleep trackers over multiple 

nights and between individuals varying in sleep quality, since these devices are 

currently being utilised to assess sleep patterns under these conditions. The aim of 

this study was to evaluate the night-to-night variability in the accuracy of a new 

consumer sleep tracker, the THIM device, for estimating sleep and wakefulness 

compared to PSG with both good and poor sleepers.  

Method 

Participants and Study Protocol 

The study protocol has been described previously in Study 2, Chapter 3. 

Briefly, twenty-one healthy individuals with good or poor sleep as defined by scores 

on the Insomnia Severity Index ([ISI], good sleepers ISI < 7, poor sleepers ISI ≥ 7) 

were recruited for this study. Participants slept overnight in the sleep laboratory on 

three occasions, however one poor sleeper withdrew after the first night. See Table 

6-1 for participant characteristics information. Night 1 was an adaptation night where 

participants slept from their typical bedtime until their typical wake up time. On the 

following night, Night 2, participants completed sleep onset trials as part of a larger 

research project with THIM unrelated to the current study (see Chapters 3 and 4). 

During these trials, participants repeatedly fell asleep but were woken up shortly 

thereafter for four hours, meaning that they achieved little sleep during this four-hour 

period. Participants then slept uninterrupted until they woke spontaneously in the 

morning. Night 3 occurred one week later and followed the same protocol as Night 2. 

Thus, participants experienced their typical sleep opportunity on Night 1 and 

experimentally restricted sleep opportunities on both Night 2 and Night 3. 
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Table 6-1. Participant characteristics for good sleepers, poor sleepers and the whole sample. 

Characteristic 
Good Sleepers 

(N = 10) 
Poor Sleepers 

(N = 11) 
Total Sample 

(N = 21) 

Age, mean (SD), y 24.90 (5.28) 21.88 (4.29) 23.32 (4.92) 

Sex, No. (%) 
Men 
Women 

 
4 (40) 
6 (60) 

 
3 (27) 
8 (73) 

 
7 (33.33) 

14 (66.67) 

BMI, mean (SD) 25.48 (3.97) 24.88 (3.95) 25.17 (3.87) 

Lifestyle characteristics    

Weekly alcohol 
consumption, No. (SD) 1.80 (1.81) 1.27 (1.79) 1.52 (1.78) 

Daily caffeine 
consumption, No. (SD) 1.85 (1.56) 1.91 (1.38) 1.88 (1.43) 

Sleep characteristics    

ISI, mean (SD) 2.00 (1.15) 11.36 (3.83) 6.90 (5.56) 

PSQI, mean (SD) 3.10 (1.73) 7.73 (3.50) 5.52 (3.61) 

Habitual Bedtime, mean 
time (SD), min 22:45 (64.59) 23:08 (67.43) 22:57 (65.66) 

Habitual Wake Time, 
mean time (SD), min 07:27 (61.27) 07:56 (68.54) 07:42 (65.51) 

Habitual TST, mean (SD), 
hrs 8.05 (0.83) 7.09 (1.50) 7.55 (1.29) 

BMI = body mass index, ISI = Insomnia Severity Index, N = sample size, PSQI = 

Pittsburgh Sleep Quality Index, SD = standard deviation, TST = total sleep time. 

On all three nights, PSG and THIM recorded sleep simultaneously. The 

accuracy of THIM compared to PSG on Night 1 has been discussed elsewhere (see 

Chapter 5), but this chapter will incorporate this data in order to examine the 

differences between the device’s accuracy across all three nights.  

THIM 

As described elsewhere, THIM is a ring-like device worn on the index finger of 
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the dominant hand. The device’s tri-axial accelerometer measures acceleration and 

stores an average value for each 30-second epoch. Participants started the sleep 

tracking function when they lay down in bed at lights out on Night 1 by tapping their 

index finger on which THIM was placed onto their thumb, twice in quick succession. 

On Night 2 and Night 3, the THIM sleep tracking function automatically began within 

several minutes after the last sleep onset trial. However, participants were already 

attempting to fall asleep (some had already fallen asleep) when the THIM sleep 

tracking function began. As such, the estimations of sleep onset latency (SOL) are 

misleading as the start of this period is not the start of their attempt to fall asleep, as 

is customary. Therefore, the THIM estimations of SOL will be presented but not 

discussed in great detail. Rather, the device’s estimates of other sleep parameters 

will be the main consideration in evaluating the accuracy of the device. 

To retrieve the THIM sleep tracking data, the data was transmitted via 

Bluetooth from the device to the THIM smartphone application (v 1.0.1, operated on 

an Apple iPhone 5s with an iOS 8.0 operating system). The data is then sent to 

cloud-based servers for scoring. The manufacturers of THIM, Re-Time Pty. Ltd., sent 

us the 30-second epoch data for analysis as this data is not currently accessible for 

download via the smartphone app. 

Statistical Analysis 

The accuracy of THIM compared to PSG across all three nights was 

assessed in accordance with proposed guidelines for device validation studies (de 

Zambotti et al., 2019; Depner et al., 2019). Epoch-by-epoch analyses were 

conducted to calculate the sensitivity (proportion of epochs that THIM scored as 

sleep when the individual was asleep according to PSG), specificity (proportion of 

epochs that THIM scored as wake when the individual was awake according to PSG) 
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and accuracy (proportion of correctly-scored epochs) separately for each participant 

and then averaged together. We then performed Linear Mixed Model (LMM) 

analyses to examine whether there were any significant differences on the 

sensitivity, specificity, and accuracy of THIM across the laboratory nights (IBM 

SPSS, v 23). All LMM analyses used a first-order autoregressive covariance 

structure with laboratory night as a fixed effect. Where appropriate, post hoc 

comparisons were conducted with the Bonferroni correction.  

Estimations of sleep parameters were compared between THIM and PSG, 

including total sleep time (TST), SOL, wake after sleep onset (WASO), and sleep 

efficiency. LMM analyses were conducted to examine whether there were any 

significant differences between PSG and THIM (the fixed effect) for estimating these 

sleep parameters. A statistically significant main effect was further examined using 

Bonferroni adjusted pairwise comparisons. Bland-Altman plots illustrated the degree 

of discrepancy between PSG and THIM estimations (y axis) against PSG (x axis) on 

separate plots for each sleep parameter (Bland & Altman, 1986). These plots display 

the mean difference (bias), the line of best fit, and the limits of agreement (± 1.96 SD 

of the mean difference). The type of sleeper was subsequently included in the model 

to determine whether the accuracy of THIM across all three nights differed between 

good and poor sleepers. 

Results 

Missing Data 

On laboratory Nights 1 and 2, one PSG recording failed due to technical error. 

On Night 2 and Night 3, one THIM recording is missing due to a technical error 

relating to internet access when retrieving the data.  
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Epoch by Epoch Analysis 

Table 6-2 presents the descriptive statistics for the epoch-by-epoch analyses 

on each night. LMM analyses revealed no significant differences between nights on 

sensitivity, F(2, 57) = 0.33, p = .97, specificity, F(2, 57) = 2.84, p = .07, or accuracy, 

F(2, 57) = 0.60, p = .55. 

Table 6-2. Sensitivity, specificity and accuracy for THIM across all three nights. 

Variable Night 1 Night 2 Night 3 

Sensitivity, mean (SD) 0.89 (0.06) 0.89 (0.05) 0.89 (0.07) 

Specificity, mean (SD) 0.59 (0.18) 0.42 (0.27) 0.47 (0.25) 

Accuracy, mean (SD) 0.85 (0.06) 0.87 (0.05) 0.87 (0.07) 
SD = standard deviation. 

Sleep Parameter Estimations 

Table 6-3 presents the descriptive statistics for the sleep parameter 

estimations from PSG and THIM across all three nights. A LMM determined no 

significant interaction between the device (PSG and THIM) and laboratory nights on 

SOL estimations, F(2, 114) = 1.45, p = .24, TST estimations, F(2, 114) = 0.37, p = 

.97, sleep efficiency estimations, F(2, 114) = 0.45, p = .66, or WASO estimations, 

F(2, 114) = 0.73, p = .49. Despite this, pairwise comparisons indicated significant 

differences between PSG and THIM for estimations of sleep efficiency across all 

three laboratory nights, p < .03, and for estimations of WASO across Night 1, p = 

.002, and Night 2, p = .004, but not Night 3, p = .11. The effect sizes between PSG 

and THIM for sleep efficiency estimations were large across Night 1, d = 0.54, Night 

2, d = 0.94, and Night 3, d = 1.00. Similarly, the effect sizes between PSG and THIM 

for WASO estimations were large on Night 1, d = 0.74, and Night 2, d = 1.41. 

Bland-Altman Plots 

Figure 6-1 presents Bland-Altman plots for key sleep parameters on Nights 1, 
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2 and 3. Both TST plots show a bias for THIM towards underestimating TST. Yet, the 

LMM analyses above indicate no significant difference between THIM and PSG on 

TST for these nights. The WASO plots illustrate a similar pattern. The mean bias for 

THIM is positive, meaning that THIM slightly overestimates WASO compared to 

PSG, albeit not significantly on Night 3 according to the LMM analyses. The sleep 

efficiency plots further illustrated that THIM slightly underestimates sleep, evident by 

a mean bias below zero on the y axis. 
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Table 6-3. Sleep parameter descriptive statistics for PSG and THIM and the mean discrepancy between these two measures. 

Sleep Parameters 
Night 1 Night 2 Night 3 

PSG THIM Difference PSG THIM Difference PSG THIM Difference 

SOL, mean (SD), 
min 

21.68  
(16.65) 

19.15  
(17.82) 

-2.53 
(14.84) 

1.42  
(3.25) 

4.61  
(5.39) 

+3.19 
(3.58) 

1.21 
(2.22) 

6.82 
(8.49) 

+5.61 
(8.06) 

TST, mean (SD), min 424.60 
(48.73) 

403.25 
(46.15) 

-21.35 
(45.52) 

339.83 
(56.85) 

314.00 
(53.85) 

-25.83 
(21.75) 

287.55 
(88.32) 

269.95 
(90.83) 

-17.61 
(13.63) 

WASO, mean (SD), 
min 

40.68 
(34.50) 

64.55 
(30.36) * 

+23.88 
(36.66) 

17.06 
(9.75)  

40.08 
(20.96) * 

+23.03 
(20.78) 

21.34 
(14.14) 

33.68 
(22.20) 

+12.34 
(12.78) 

sleep efficiency, 
mean (SD), % 

87.36 
(8.62) 

82.93 
(7.82) * 

-4.44 
(9.04) 

94.74 
(2.94) 

87.59 
(5.93) * 

-7.14 
(6.03) 

92.83 
(4.12) 

86.36 
(8.14) * 

-6.48 
(6.24) 

* p < .05 between PSG and THIM. PSG = polysomnography, SD = standard deviation, SOL = sleep onset latency, TST = total sleep time, 

WASO = wake after sleep onset.
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Total Sleep Time 
(a) Night 1 

 
(b) Night 2 

 
(c) Night 3 

 
  

R2 = .27 
p = .02 

R2 = .11 
p = .19 

R2 = .01 
p = .66 
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Wake After Sleep Onset 
(a) Night 1 

 
(b) Night 2 

 
(c) Night 3 

 
  

R2 = .41 
p = .002 

R2 = .05 
p = .39 

R2 = .13 
p = .13 
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Sleep Efficiency 
(a) Night 1 

 
(b) Night 2 

 
(c) Night 3 

 
Figure 6-1. Bland-Altman plots showing the agreement between PSG and THIM on total sleep 
time, wake after sleep onset and sleep efficiency, separately for each night.  
The solid black horizontal line indicates perfect agreement with PSG. The solid coloured 
horizontal line indicates the bias, the dashed coloured horizontal lines indicates the upper 
and lower limits of agreement, and the dotted coloured lines are the lines of best fit. 

R2 = .37 
p = .004 

R2 = .08 
p = .26 

R2 = .04 
p = .41 



162 
 

Good and Poor Sleeper Comparison.  

Table 6-4 contains the descriptive statistics for sensitivity, specificity and 

accuracy on each night separately for good and poor sleepers. LMM analyses 

showed no significant differences between good and poor sleepers on any night. The 

interactions between the laboratory nights and the type of sleeper were also not 

statistically significant on sensitivity, p = .56, specificity, p = .23, or accuracy, p = .77. 

The descriptive statistics for discrepancies between PSG and THIM 

determined sleep parameters are also present in Table 4. LMM analyses comparing 

mean discrepancies between PSG and THIM found no significant differences 

between nights or between good and poor sleepers. There were also no significant 

interactions between nights and sleeper type on SOL, p = .91, TST, p = .14, WASO, 

p = .42, or sleep efficiency, p = .47. 
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Table 6-4. Epoch-by-epoch and sleep parameter descriptive statistics comparing good and 
poor sleepers.  

Variable 
Laboratory Night 

Night 1 Night 2 Night 3 

Epoch-by-epoch analyses 

Sensitivity, mean (SD) 
Good sleepers 
Poor sleepers 

 
0.91 (0.05) 
0.87 (0.07) 

 
0.91 (0.06) 
0.88 (0.04) 

 
0.90 (0.08) 
0.88 (0.06) 

Specificity, mean (SD) 
Good sleepers 
Poor sleepers 

 
0.54 (0.16) 
0.63 (0.19) 

 
0.44 (0.27) 
0.41 (0.28) 

 
0.49 (0.23) 
0.44 (0.29) 

Accuracy, mean (SD) 
Good sleepers 
Poor sleepers 

 
0.87 (0.04) 
0.83 (0.07) 

 
0.88 (0.04) 
0.86 (0.05) 

 
0.87 (0.08) 
0.86 (0.06) 

Sleep parameters 
SOL discrepancy, mean (SD), min 

Good sleepers 
Poor sleepers 

-2.17 (13.56) 
-2.82 (16.46) 

3.06 (4.65) 
3.33 (2.36) 

5.70 (5.63) 
5.50 (10.51) 

TST discrepancy, mean (SD), min 
Good sleepers 
Poor sleepers 

-14.44 (24.75) 
-27.00 (58.04) 

-21.33 (26.77) 
-30.33 (15.59) 

-14.50 (14.97) 
-21.06 (11.86) 

WASO discrepancy, mean (SD), min 
Good sleepers 
Poor sleepers 

16.61 (17.54) 
29.82 (47.13) 

18.67 (25.03) 
27.39 (15.76) 

9.10 (14.92) 
15.94 (9.47) 

Sleep efficiency discrepancy, mean (SD), % 

Good sleepers 
Poor sleepers 

-2.84 (4.95) 
-5.74 (11.46) 

-5.71 (7.73) 
-8.58 (3.60) 

-4.93 (5.92) 
-8.20 (6.48) 

* p < .05 between good and poor sleepers with this device. SD = standard deviation, 

SOL = sleep onset latency, TST = total sleep time, WASO = wake after sleep onset. 

Discussion 

The aim of the current study was to evaluate the consistency in the accuracy 

of the THIM device for estimating sleep and wakefulness compared to PSG across 
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three nights. The epoch-by-epoch analyses indicated that THIM was consistent in its 

accuracy overall and for estimating sleep (sensitivity) and wake (specificity), with no 

significant differences found across the three laboratory nights. The interactions 

between the device (THIM and PSG) and laboratory nights were not significant for 

any sleep parameter, yet the pairwise comparisons indicated significant differences. 

These pairwise comparisons have greater statistical power to detect significant 

differences than the interactions, but solely interpreting them increases the risk of 

making a type I error due to multiple comparisons. For the purpose of the current 

study, this potential consequence was considered acceptable.  

From the multiple comparisons, THIM estimations of SOL and TST did not 

significantly differ from PSG estimations on all three nights. However, THIM 

estimations of WASO were significantly higher than PSG on Nights 1 and 2, and a 

trend towards higher estimations on Night 3. This contributed towards significantly 

lower THIM estimations of sleep efficiency compared to PSG on all three nights. 

Additionally, the Bland-Altman plots illustrate little, mostly not significant, proportional 

bias across the three laboratory nights. These findings suggest that THIM remains 

accurate across typical and experimentally-restricted sleep. This study also found no 

significant differences between good and poor sleepers in the accuracy of THIM 

across all three laboratory nights. Overall, THIM performs consistently in its accuracy 

(sensitivity, specificity and accuracy) and estimations of sleep parameters for both 

good and poor sleepers across multiple nights of varying sleep opportunity (typical 

and experimentally-restricted). 

To determine whether THIM may be useful for the long-term monitoring of 

sleep, an answer is required to the question, “Is the device accurate enough?” Yet, it 

is difficult to provide an appropriate answer to this question because the degree of 
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accuracy that is required to obtain useful data about sleep over multiple nights will 

depend upon its intended use. For diagnostic purposes that are typically conducted 

with PSG, THIM may not be ‘accurate enough’ because it fairly consistently 

produced overestimations of WASO and underestimations of sleep efficiency 

compared to PSG. For understanding long-term sleep duration of a large sample of 

individuals for research purposes, THIM may be considered ‘accurate enough’ as the 

accuracy of the device for estimating TST was comparable to PSG (underestimation 

of approximately 6%) and was consistent across nights. For consumers wanting to 

monitor their sleep patterns, the tendency of THIM to overestimate wake may cause 

unnecessary alarm and should therefore be used cautiously. Instead of concluding 

with an answer to the proposed question, the findings of the current study should be 

used by others as a guide to determine whether the device is ‘accurate enough’ for 

their particular purpose. 

Having said this, it would be advantageous for all intended purposes to 

improve the accuracy of actigraphy devices for estimating objective wake time 

(Goldstone, Baker, & de Zambotti, 2018). Currently, THIM overestimates 

wakefulness across the night. This could be problematic if it leads to individuals 

seeking unneeded treatment on the basis of their sleep tracking data (Baron et al., 

2017; Gavriloff et al., 2018). Modifications to the THIM sleep tracking algorithm 

should be made to prevent the device from overestimating wakefulness. Making any 

changes to the algorithm would require the accuracy of the device to be tested again 

with an independent sample to ascertain whether the changes reduce the wake bias. 

It is important to consider the limitations of the current study when interpreting 

these findings. The sample size was relatively small compared to validation studies 

with other actigraphy devices, which limits the reliability of the findings. This is 
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particularly important for the comparison between good and poor sleepers as the 

study was not adequately powered to detect small differences in the accuracy of 

THIM between good and poor sleepers. Another limitation is the age range of 

participants, which was restricted to young, healthy adults. Considering that 

comorbidities and age may impact the accuracy of other actigraphy devices (de 

Zambotti, Baker, & Colrain, 2015b; de Zambotti et al., 2019) the findings of this study 

may not generalise to older individuals and/or to those with health conditions. 

Additionally, Night 2 and Night 3 were experimentally restricted sleep opportunities. 

On the one hand, these findings could generalise to restricted sleep opportunities, 

such as those experienced during behavioural insomnia treatments like sleep 

restriction therapy. On the other hand, the findings of the current study should not be 

extended to other types of sleep, including the fragmented sleep experienced by 

people with insomnia. The accuracy of THIM for estimating sleep and wakefulness 

across nights of disrupted/fragmented sleep is unknown and warrants further 

investigation. 

With the long-term goal of using THIM to accurately monitor sleep with 

individuals over a long period of time, there are many aims to potentially address in 

future research. Firstly, the accuracy of THIM should be investigated in the home 

environment. Individuals’ sleep in the artificial laboratory environment can 

substantially vary in quality compared to sleep in their bedroom environment 

(Edinger et al., 1997; Edinger et al., 2001). Relatedly, individuals’ sleep with a full 

PSG montage can vary substantially compared to their sleep without PSG recording. 

Whilst the accuracy of THIM for estimating objective sleep should be compared to 

PSG (Depner et al., 2019), the use of simplified PSG devices may largely overcome 

discomfort (Svensson, Chung, Tokuno, Nakamura, & Svensson, 2019). Therefore, 
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the accuracy of THIM should be tested in participants’ bedroom environments and 

compared against simplified PSG devices to ascertain whether THIM is suitable for 

monitoring sleep outside of the laboratory setting.  

Secondly, the accuracy of THIM should be investigated in various 

populations, such as older individuals and those with health conditions and/or 

disordered sleep. THIM is intended to be used by individuals with insomnia, who are 

typically older than this study’s sample. Nonetheless, no significant differences were 

found in the accuracy of THIM between good and poor sleepers in this study, so the 

device may be similarly accurate in an insomnia sample. To understand the utility of 

the THIM sleep tracking function for individuals with insomnia, the device should be 

tested with a sample representative of this population. 

Thirdly, the accuracy of THIM may need to be tested over a longer period 

than tested in the current study for certain populations, i.e. 7-14 nights (Acebo et al., 

1999; Van Someren, 2007). This is particularly important for monitoring individuals 

with high night-to-night variability in sleep, such as those with insomnia (Buysse et 

al., 2010). These three directions for future research would determine whether THIM 

could accurately monitor sleep and wakefulness in the home environment for 

individuals of varying demographics and sleep quality, rendering the device useful 

for a variety of clinical and research purposes including the management of 

insomnia.  

Conclusion 

This study investigated the consistency in the accuracy of THIM for estimating 

sleep and wakefulness compared to PSG across three nights in the laboratory. 

Whilst sensitivity, specificity, and accuracy remained high and did not vary 

significantly across the three laboratory nights, THIM estimations of WASO and 
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sleep efficiency significantly differed from PSG on some laboratory nights. 

Nonetheless, THIM performed comparably with both good and poor sleepers across 

all three laboratory nights. Whether THIM is accurate enough for monitoring sleep 

and wakefulness over multiple nights will depend on the intended purpose. 

Regardless, modifications should be made to THIM to improve its accuracy for 

estimating wake time. Future research could test THIM in the home environment with 

a larger sample of individuals with varying demographics, health conditions, and 

sleep quality. This is necessary to ascertain whether THIM will be useful for long-

term sleep monitoring to assess, manage and treat individuals with insomnia.  
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Chapter 7: General Discussion 

Overview 

The broad aims of this dissertation were to develop and test the accuracy of 

the THIM device for, firstly, estimating sleep onset using behavioural responses to 

external stimuli and, secondly, for monitoring sleep and wakefulness overnight using 

actigraphy. The purpose was to create a wearable device that could appropriately 

and accurately administer Intensive Sleep Retraining (ISR), and passively monitor 

sleep for its intended use. This chapter summarises the findings of this dissertation 

and discusses the significance and implications of the findings for the 

conceptualisation of the sleep onset period and the clinical treatment of insomnia. 

Methodological considerations and limitations of this dissertation will be presented as 

well as directions for future research with THIM and its use for administering ISR for 

the treatment of insomnia. 

Summary of Dissertation Findings and Original Contribution to Knowledge 

Chapter 2: Systematic review of wearable devices 

Chapter 2 systematically identified studies that examined the accuracy of 

wearable devices for estimating sleep onset latency (SOL) compared to 

polysomnography (PSG). The aim of this review was to determine whether any 

currently available wearable devices are suitable for administering ISR in the home 

environment. Whilst previous reviews summarised the accuracy of wearable devices 

for estimating sleep (Evenson et al., 2015; Van den Water et al., 2011), this review 

was the first to specifically focus on the accuracy of SOL estimations. A focused 

review was warranted, considering that the accurate measurement of SOL is crucial 

for various research and clinical purposes, including the administration of ISR, power 

naps, and objective daytime sleepiness tests outside of the laboratory setting. 
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Although the reviewed actigraphy devices produced estimations of SOL that 

were often not significantly different from PSG, there was large interindividual 

variability depending on, but not entirely explained by, participant characteristics. 

Actigraphy devices are therefore not suitable for purposes dependent on accurate 

estimation of sleep onset because they do not achieve the required degree of 

accuracy across all individuals. This is particularly the case for individuals with sleep 

disorders, who would benefit the most from the clinical applications. As predicted, 

electroencephalography-based (EEG) devices produced more accurate and less 

variable estimates of SOL. However, these devices are expensive, require trained 

personnel to operate, and rarely produce sleep data in real-time as scoring largely 

occurs retrospectively. This limits their usefulness for the purposes of ISR, power 

naps, and daytime diagnostic tests. The review concluded that devices measuring 

behavioural sleep onset were most suitable for the administration of ISR because 

they consistently overestimated PSG-determined SOL, which is more suitable for 

administering ISR than a device that underestimates SOL. These devices also 

showed less variability in their accuracy across individuals than other wearable 

devices. This finding justified the stimulus-response method that THIM relies upon to 

estimate sleep onset for the purposes of ISR. 

Chapter 3: Development of THIM for sleep onset latency detection 

Chapter 3 discussed the development and refinement of the THIM device for 

estimating SOL in comparison to PSG. The findings about the accuracy of the initial 

algorithm in Study 1 informed the refinement of the algorithm, which was 

subsequently tested in Study 2. These two studies made an original contribution to 

knowledge as they were the first to test the accuracy of the novel THIM device. They 

were also the first to assess the use of behavioural responses to external stimuli for 
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sleep onset detection using minimal intensity vibratory stimuli. This was significant 

because THIM showed much closer agreement to PSG than other similar devices 

that use auditory stimuli and larger hand/wrist movements as behavioural responses. 

With the final version of the algorithm, THIM overestimated PSG-SOL by < 1 minute 

on average on both testing nights compared to similar devices that had 

discrepancies of 2-3 minutes compared to PSG (Mair, 1994; Scott et al., 2018). 

Importantly, THIM remained accurate after repeated use and was similar in accuracy 

across good and poor sleepers. It was concluded that THIM was accurate enough 

for the purpose of administering ISR as its slight overestimation of sleep onset 

means that individuals would achieve a similar sleep duration during each sleep 

onset trial as those whose insomnia was effectively treated during laboratory-based 

ISR studies (Harris et al., 2012; Harris et al., 2007). Thus, the THIM administration of 

ISR aligns with the laboratory-based protocol in this aspect. Nonetheless, this needs 

to be confirmed with a sample of individuals with insomnia to ensure that THIM can 

estimate sleep onset to a similar degree of accuracy with the target population for 

ISR. 

Chapter 4: Quantitative EEG analysis of sleep microstructure whilst responding to 
vibratory stimuli 

Chapter 4 further investigated the data from Chapter 3 (Study 2). A 

quantitative electroencephalography (qEEG) analysis was performed during the 

THIM-administered sleep onset trials to characterise sleep microstructure using a 

finer-grained analysis than traditional EEG sleep staging. The aim was to examine 

the correspondence between sleep microstructure and responses to the vibratory 

stimuli emitted by THIM during the sleep onset period. This study was the first to 

perform a qEEG analysis on responses to vibratory stimuli during the sleep onset 

period, with previous research typically using auditory stimuli (Colrain, Di Parsia, & 
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Gora, 2000; Cote, De Lugt, & Campbell, 2002; Cote, Etienne, & Campbell, 2001; 

Harsh et al., 1994). The findings indicated increases in higher frequency brainwaves 

when participants responded to the vibratory stimulus compared to when they did not 

respond across all sleep stages. This suggests that a shift to wakefulness or an 

arousal occurs prior to or coincident with the vibratory stimulus. A lack of response to 

the stimulus was associated with increases in delta activity, signalling greater sleep 

depth. Together, these findings illustrate that during N1 sleep, participants 

consistently exhibited both wake and sleep-like physiological (shifts to higher EEG 

frequencies) and behavioural responses (probability of responding or not responding 

to the stimulus) to vibratory stimuli. This implies that the 30-second epochs scored 

as N1-sleep, in which approximately 54% of vibratory stimuli evoked a behavioural 

response, is a transitional state between wake and sleep that contains both sleep-

like behaviour and brief arousals indicative of wakefulness. 

Chapter 5: Development of THIM sleep tracking function 

Chapter 5 tested the THIM sleep tracking function and its accuracy for 

estimating sleep and wakefulness compared to PSG. The device uses actigraphy to 

passively estimate sleep and wakefulness during the sleep period. Whilst the 

accuracy of this method is well-known, this study made an original contribution to 

knowledge as it was the first to test the accuracy of the THIM device and its novel 

algorithm. Aside from a different actigraphy algorithm, THIM also differs from most 

common sleep trackers because it is worn on the index finger as opposed to the 

wrist. The placement and algorithm of actigraphy devices greatly impact their 

accuracy (Kim et al., 2013; Quante et al., 2018; Slater et al., 2015; Zinkhan et al., 

2014), and finger-worn actigraphy devices may be more accurate than wrist-based 

devices (de Zambotti et al., 2017). Therefore, it was warranted to investigate the 
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accuracy of THIM specifically and we predicted that the device would be more 

accurate than wrist actigraphy devices. 

Contrary to our predictions, THIM had similar accuracy for estimating sleep 

and wake compared to the Actiwatch and Fitbit devices. However, THIM showed a 

greater tendency to underestimate sleep and overestimate wakefulness (which may 

have been significant with a larger sample size), which may be due to the placement 

of the device or the algorithm, or both. No differences were found in the accuracy of 

THIM between good and poor sleepers, which may extrapolate to individuals with 

insomnia but this would require confirmation in future research. There was high 

unexplained variability between individuals, as is common with actigraphy devices. 

This is an area that warrants further investigation to improve the usefulness of 

actigraphy devices for sleep monitoring. 

Chapter 6: Accuracy of THIM sleep tracking over multiple nights 

Chapter 6 assessed the variability in the accuracy of the THIM sleep tracking 

function for estimating sleep and wakefulness during three laboratory nights. This 

was an important contribution to knowledge because sleep trackers intended use is 

over multiple nights, not just one night. Yet, few studies have investigated the 

accuracy of actigraphy devices compared to PSG across multiple nights (Hamill et 

al., 2020; Marino et al., 2013; Paquet et al., 2007; Sanchez-Ortuno et al., 2010). 

Since sleep quality varies between nights for some individuals more than others, 

such as those with insomnia (Buysse et al., 2010), understanding the variability in 

the accuracy of sleep trackers across multiple nights is necessary. 

The THIM device showed consistently high sensitivity, specificity and 

accuracy compared to PSG across the three laboratory nights comprising of a typical 

sleep opportunity (Night 1) and experimentally-restricted sleep opportunities (Nights 
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2 and 3). Additionally, there were no significant differences between good and poor 

sleepers in the agreement between THIM and PSG for all outcome variables. This 

suggests that THIM notably maintains a degree of accuracy across types of sleepers 

and across typical and reduced sleep opportunities. However, THIM produced 

consistently and significantly lower estimations of sleep efficiency due to higher 

estimations of wake after sleep onset across all three nights. This contrasted the 

findings of Chapter 5 due to the greater statistical power of these analyses, although 

the risk of making a type I error was greater in this study due to the interpretation of 

multiple comparisons. Therefore, whilst THIM was reliably accurate for good and 

poor sleepers across a typical and experimentally-restricted nights of sleep, the 

device consistently performed at a sub-optimal level for estimating wakefulness. The 

improvement of the accuracy of THIM for estimating wake is thus required to render 

the device useful for many purposes and may be achieved with modifications to the 

algorithm, the addition of physiological sensors or the extension of the 

stimulus/response method of sleep/wake determination, as discussed further below. 

Theoretical Implications of Dissertation Findings: When does wake end, and 
sleep begin?  

The goal of Chapters 3 and 4 was to quantify the discrepancy between PSG-

sleep onset and THIM-derived sleep onset, yet the findings had unexpected 

theoretical implications. Contrary to findings with auditory stimuli, responsiveness to 

minimal intensity vibratory stimuli aligned closely with PSG-sleep onset, as shown in 

Chapter 3. Analysis of the sleep microstructure using qEEG elucidated this finding 

from Chapter 4. Responses to vibratory stimuli were frequent during wake, rare in N2 

sleep, and somewhere in-between for N1 sleep. Overall, the theoretical findings of 

responsiveness to vibratory stimuli are similar to those found with auditory stimuli. 
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This research provides further support for the conceptualisation of N1 sleep as a 

transitional sleep/wake period. Sleep onset is not a definitive point in time. Rather, it 

is a transitional period that begins with quiet wakefulness, contains rapid fluctuations 

between sleep and wake, and if left undisturbed, ultimately ends with more 

continuous sleep. It involves many physiological and psychological changes 

including in respiration, heart rate, muscle activity, vigilance, memory consolidation 

and responsiveness to auditory stimuli (Ogilvie, 2001). The change in 

responsiveness to tactile stimuli can now be added to this list. 

The next promising step in this research is to explore localised brain activity 

with high density EEG during the sleep onset period whilst participants respond to 

vibratory stimuli. During the sleep onset period, there is an overall reduction in alpha 

and increase in theta brain waves. Yet, this change is not uniform across all brain 

regions: some cortical brain regions display this change earlier during the sleep 

onset period than other regions (Ferrara & de Gennaro, 2011). Fernandez Guerrero 

and Achermann (2019) examined localised changes in brain activity during the sleep 

onset period. Of particular importance to the current study is the finding that the 

postcentral gyrus (Brodmann area 3, the primary somatosensory cortex) exhibited 

higher sigma and delta power than other areas of the brain at the beginning of the 

sleep onset period (early N1 sleep). Therefore, the brain region that processes 

vibratory stimuli appears to fall asleep sooner after N1-sleep onset than other 

measured brain regions, including the primary auditory cortex that processes 

auditory stimuli (Brodmann areas 41 and 42). It would therefore be beneficial to 

examine the correspondence between responsiveness to vibratory stimuli and 

localised brain activity. Furthermore, responsiveness to different stimulus types 

(vibratory and auditory) could be investigated to compare when different processing 
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pathways are inhibited during the sleep onset period. 

Of particular interest for the use of THIM is whether responsiveness to 

vibratory stimuli occurs similarly for individuals with insomnia. The neurocognitive 

model for insomnia includes greater cortical arousal as a conditioned factor of the 

disorder (Perlis et al., 1997). Yet, differences in EEG spectral power have not been 

consistently observed between good sleepers and those with insomnia (Buysse et 

al., 2008; Perlis, Merica, Smith, & Giles, 2001; Spiegelhalder et al., 2012; St-Jean, 

Turcotte, Pérusse, & Bastien, 2013). Whether this theorised, yet inconsistently 

observed, greater cortical arousal extends to heightened responsivity to stimuli in the 

external environment is yet to be investigated. There is evidence of individual 

variability in the correspondence between sleep microstructure and behavioural 

indications of sleep onset that are currently unexplained in the literature. Prerau et al. 

(2014) combined qEEG with behavioural measures of sleep to characterise the 

probability of individuals being awake during the sleep onset period. The authors 

found close temporal alignment between the cessation of correct responses on a 

behavioural task and drop-out in alpha power. However, some individuals continued 

to behaviourally respond well after alpha drop-out, and until increases in delta and 

theta power occurred. 

In Chapter 4, some individuals responded to a considerable number of stimuli 

during N1 and N2 sleep. We theorised that these differences may depend on 

whether participants were good or poor sleepers. Yet, we found no significant 

differences on sleep microstructure when participants responded or did not respond 

to vibratory stimuli during any sleep stage between good sleepers and poor sleepers 

(as defined by scores below or above 7 on the Insomnia Severity Index [ISI], see 

Table A6 in the Appendix). Future research could examine the sleep microstructure 
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of good sleepers compared to individuals with insomnia to determine whether 

responsiveness to vibratory stimuli during sleep depends on sleep characteristics. 

This may have important theoretical and clinical implications for the treatment of 

insomnia, since abnormally sensitive/acute responsivity and information processing 

when attempting sleep is a theorised neurocognitive factor of insomnia (Perlis et al., 

1997). Furthermore, it will be important to assess whether patients with insomnia 

respond similarly to good sleepers to determine whether THIM will remain as 

accurate at estimating sleep onset in this population. 

Clinical Implications of Dissertation Findings 

THIM-administered Intensive Sleep Retraining in the Home 

The findings of this dissertation have potential clinical implications for the 

treatment of insomnia. Chapters 3 and 4 showed that the THIM device can 

administer ISR appropriately by precisely estimating when sleep onset occurs to 

wake individuals up after a very short period of sleep. These findings demonstrate 

THIM-administered ISR aligns closely with the laboratory-based protocol. The next 

step is to test the efficacy of THIM-administered ISR in the home environment. 

The main question remaining is whether THIM-administered ISR will be 

successful in the home environment. This raises two potential issues. The first 

uncertainty lies in whether patients will correctly use THIM and comply with the 

device’s ISR instructions in the uncontrolled home environment without the aid or 

supervision of trained staff. As sleep pressure builds across the ISR treatment 

period, the temptation to deviate from instructions and prematurely end treatment will 

increase. This is an issue for all home-based treatments of insomnia that may be 

minimised with cognitive techniques, including motivational therapy, 

psychoeducation about homeostatic sleep drive and reframing sleepiness as a 
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positive experience indicative of treatment efficacy.  

The second uncertainty is whether THIM-administered ISR will produce a 

therapeutic effect for sleep onset insomnia when used in the home environment. 

Mair et al. (2020) tested whether a home-based application of ISR can be effective 

using a phone-based application called Sleep On Cue (SOC) to administer ISR at-

home with twelve patients diagnosed with insomnia. Compared with their ISI scores 

at baseline (M = 21.08, SD = 3.37), patients with insomnia had reduced insomnia 

severity at post-treatment (M = 14.18, SD = 6.10) and at four-week follow-up (M = 

14.08, SD = 5.04). Patients also adequately adhered to the SOC-administered ISR 

protocol, suggested by actigraphy data that showed peaks in activity at the end of 

each sleep onset trial. They were inferred to correspond with patients’ compliance to 

the ISR instruction to get out of bed in-between trials during the overnight treatment 

session. However, this study did not have a control group so the observed 

improvements in sleep and daytime functioning outcomes cannot necessarily be 

attributed only to the treatment. Nonetheless, treatment outcomes were comparable 

to those found with the waitlist controlled laboratory-based ISR procedure (Harris et 

al., 2012; Harris et al., 2007). Whether home-based ISR will produce similarly 

sustained therapeutic effects over time as the laboratory-based procedure could be a 

topic investigated in future research.  

Since the THIM-administered ISR procedure operates similarly to the phone-

based procedure, it is predicted that the device will successfully administer ISR in 

the home environment and improve sleep quality and daytime functioning for 

individuals with insomnia. A study to test this prediction is ongoing, however financial 

and time restrictions meant that this further study was not feasible within the PhD 

timeframe. If THIM-administered ISR is effective for treating insomnia, then the 



179 
 

device will enable the practical administration of this behavioural treatment in the 

home environment, improving the public’s accessibility to an effective behavioural 

treatment of insomnia. 

Combining THIM-administered ISR with other insomnia treatments 

If THIM can effectively treat insomnia, it could become an adjunct tool for 

clinicians treating insomnia. Harris et al. (2012) found that whilst the laboratory-

based ISR protocol alone was as effective for treating insomnia symptoms as 

stimulus control therapy (SCT), the combination of ISR followed by SCT was 

particularly effective for reducing insomnia severity. ISR was theorised to have 

provided a ‘kick-start’ to treatment effectiveness such that when the patient 

underwent SCT, their insomnia had showed signs of improvement (Harris et al., 

2012). This meant that the daytime sleepiness and the associated challenges 

experienced during the first 3-4 weeks of SCT were avoided, or at least mitigated. 

Therefore, the combination of ISR and SCT may have been particularly efficacious 

due to the additive effects of these two treatment components and/or due to greater 

treatment adherence by starting SCT with less severe insomnia after ISR (Lack et 

al., 2019). Either way, combining THIM-administered ISR with SCT or another 

behavioural treatment such as sleep restriction therapy (SRT) as part of cognitive 

behavioural therapy for insomnia (CBT-I) may lead to better treatment outcomes 

than CBT-I alone, which can be tested in future research. Additionally, if THIM-

administered ISR ‘kick-starts’ treatment efficacy, then remission may be achieved 

with a reduced number of CBT-I treatment sessions. This would reduce public 

healthcare costs and burden on clinicians, since there is a shortage of CBT-I 

specialists in Australia and, for that matter, worldwide (Thomas et al., 2016). Future 

research could conduct a dose-response study of CBT-I treatment sessions following 
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THIM-administered ISR to test this idea. 

There is also the potential to combine THIM-administered ISR with digital 

CBT-I programs. When CBT-I administered by a qualified specialist is unavailable, 

digital CBT-I interventions are a viable solution that are inexpensive, and most 

importantly, lead to meaningful improvements in insomnia, health and wellbeing. In a 

large randomised controlled trial (N = 164), greater improvements in sleep and 

daytime functioning were reported for a digital CBT-I intervention, Sleepio, compared 

to a waitlist control group of mild-moderate insomnia cases (Espie et al., 2012). 

Effects sizes at two-month follow-up were substantial for key sleep outcomes, 

including sleep efficiency (d = 1.37), total wake time (d = 1.21), and SOL (d = 0.80, 

Espie et al., 2012). Like clinician-administered CBT-I, individuals could receive 

THIM-administered ISR before commencing digital CBT-I to kick-start therapy. 

Individuals would presumably experience better sleep than normal during the first 

weeks of digital CBT-I. This should make adherence to the behavioural therapy 

instructions easier, increasing treatment adherence and thus efficacy. Therefore, the 

combination of THIM with digital CBT-I would be expected to produce greater 

improvements in sleep and daytime functioning in a greater proportion of patients 

than with either treatment alone. Alternatively, THIM-administered ISR may be 

effective enough at alleviating the insomnia for individuals with mild cases, causing 

them to withdraw from digital CBT-I. Either way, future research could investigate 

whether combining THIM-administered ISR with digital CBT-I would lead to better 

treatment outcomes and adherence than to the stand-alone treatments. 

Another promising avenue for insomnia treatment is combining ISR and CBT-I 

with circadian rhythm science to treat insomnia. For patients with difficulties initiating 

sleep (sometimes referred to as sleep onset insomnia), a circadian phase delay may 
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be exacerbating their insomnia symptoms because they are attempting sleep at a 

non-optimal circadian time, making it more difficult to fall sleep (Lack, Wright, & 

Paynter, 2007; Lack & Wright, 2007; Morris, Lack, & Dawson, 1990). Under these 

conditions, THIM-administered ISR and CBT-I could be combined with early morning 

bright light therapy, which would be administered after circadian core temperature 

nadir. The THIM-administered ISR may fully or partially extinguish the conditioned 

insomnia arousal response, tailored CBT-I would presumably address the 

perpetuating factors of the insomnia, and morning bright light therapy would correct 

the circadian misalignment component by phase advancing the rhythm to facilitate 

easier/earlier sleep onset on subsequent evenings. Our previous findings suggest 

that administering one week of morning bright light therapy is effective at phase 

advancing and improving sleep quality for individuals with sleep onset insomnia 

(Dubiel, 2019; Lack et al., 2007). With simple administration methods for ISR (THIM) 

and bright light therapy (portable light devices), clinicians are now able to easily 

combine these therapeutic techniques, to their patients’ benefit. 

THIM sleep tracking as an assistive tool for CBT-I 

The THIM sleep tracking function may also be useful for insomnia treatment. 

Individuals may struggle to consistently maintain a sleep diary in the long-term. THIM 

may be useful in lieu of sleep diaries, such as to record time in/out of bed to monitor 

adherence to behavioural therapies. Additionally, THIM may provide more accurate 

data about non-adherence to therapy instructions than sleep diaries, as found with 

actigraphy devices by Carney, Lajos, and Waters (2004). THIM may also be useful 

for titrating sleep restriction by monitoring sleep efficiency. THIM could input the 

sleep tracking data either through a validated algorithm or relay these data to the 

clinician to produce tailored sleep restriction instructions for the individual. This 
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would enable closer monitoring of insomnia patients than is currently feasible with 

paper-based sleep diaries collected form patients at each CBT-I session. It is 

important to note that this technique would not be appropriate with patients with 

significant paradoxical insomnia contributing to the condition, as the clinical goal 

would be to treat subjective sleep perceptions measured via sleep diaries, not 

objective sleep estimated with THIM.  

For individuals with substantial paradoxical insomnia, an accurate THIM sleep 

tracking function may have therapeutic benefits. Individuals could monitor their sleep 

at home with THIM for many nights and review their data, with guidance from a 

clinician to aid interpretation, to understand discrepancies between their sleep as 

measured by THIM and their perceptions of sleep. A daily sleep diary could be 

incorporated into the THIM smartphone application to assist with the recording of 

patients’ perceptions of sleep. Data could then be downloaded by patients and 

physicians for use in treatment. This treatment technique has shown small-moderate 

therapeutic benefits when patients were presented with PSG data (Downey & 

Bonnet, 1992; Tang & Harvey, 2006). Whether this technique would be successful 

using the THIM sleep tracking function is a potential direction for future research. 

These potentially therapeutic techniques would require THIM to be accurate 

for monitoring sleep and wakefulness in individuals with insomnia. However, the 

findings of this dissertation are unable to shed light on whether THIM will be accurate 

for people with insomnia. THIM remained accurate at tracking sleep and 

wakefulness for both good and poor sleepers, and across typical and experimentally-

restricted nights of sleep, despite consistently overestimating wakefulness. Yet, we 

did not explore the accuracy of THIM for tracking the fragmented sleep (sleep 

characterised by a high number and duration of awakenings) that people with 
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insomnia typically experience, particularly those experiencing difficulty maintaining 

sleep. Instead, participants largely experienced consolidated sleep during this study, 

although restricted on Nights 2 and 3. THIM may be less accurate at estimating 

sleep and wakefulness across a fragmented sleep period as it may ‘miss’ brief wake 

periods, reducing specificity and overall accuracy. Therefore, the accuracy of THIM 

for estimating sleep and wakefulness with insomnia patients should be investigated 

before testing the utility of the sleep tracking function for treating chronic insomnia. 

Modifications to THIM to improve its accuracy for estimating wake is all the more 

imperative to develop a device that could accurately track the fragmented sleep of 

insomnia patients.  

Methodological Considerations 

Methodological considerations are discussed throughout this dissertation 

where appropriate. Important points to consider when interpreting the findings and 

implications of this dissertation are discussed here. In terms of study limitations, the 

samples sizes of each study were too small to be adequately powered to detect 

small differences between groups (i.e. between good and poor sleepers). This is 

particularly a concern when considering how the accuracy of THIM for monitoring 

sleep and wakefulness overnight differs between individuals. Research with larger 

sample sizes is required to determine whether individual characteristics can explain 

the variability in the accuracy of THIM across individuals. Furthermore, the accuracy 

of THIM for estimating sleep onset and monitoring sleep and wakefulness overnight 

was not tested in patients with insomnia. Therefore, caution must be taken when 

considering the implications of this research for the management and treatment of 

insomnia with THIM. Additional research with a sample of patients with insomnia is 

required to confirm whether THIM can successfully perform its intended functions 
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with this population, and whether this leads to the anticipated therapeutic benefits. 

A methodological strength of this dissertation was the comparison of THIM 

against the gold standard measure for measuring objective sleep, PSG, as is 

recommended in guidelines for validation studies of wearable devices (Depner et al., 

2019). These studies were also conducted in the controlled laboratory environment, 

which was particularly important for confirming that participants adhered correctly to 

THIM’s instructions during ISR. However, laboratory-based testing is not 

representative of home-based settings and so the accuracy of THIM must be 

confirmed in the home environment. The choice of testing the accuracy of THIM with 

a sample of varied sleep quality could also be considered a strength because it 

allowed us to evaluate THIM’s performance with a sample that represented the 

general population, as opposed to validation studies conducted with healthy, good 

sleepers that often fail to replicate with more representative samples (Van den Water 

et al., 2011). Additionally, whilst the sample sizes of the studies discussed in this 

dissertation are too small to achieve adequate statistical power for the detection of 

between-group differences, many datapoints were obtained per individual which 

provided greater power to detect within subject differences. This was particularly the 

case for Chapter 3 which tested the accuracy of THIM for estimating SOL and 

allowed us to evaluate variability in the device’s performance within individuals: a 

consideration that is typically overlooked in validation studies of wearable devices. 

Directions for Future Research 

Possible directions for future research are discussed extensively throughout 

the dissertation, with the broad aim of incorporating THIM into the treatment and 

management of insomnia. Additional directions for future research are discussed 

below. 
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Future research into Intensive Sleep Retraining 

Therapeutic components to ISR 

Now that THIM has enabled the practical administration of ISR, experimental 

studies to further investigate and refine this treatment are easier to conduct. A 

theoretical research question with potentially important implications for the treatment 

of insomnia is what makes ISR effective? Our group has theorised that the 

mechanism of action of ISR is the extinguishing of the conditioned cortical arousal 

response that perpetuates sleep onset difficulties by the re-establishment of the 

bedroom environment and intention to sleep with rapid sleep onset instead of 

wakefulness. This mechanism is common with other behavioural treatments, such as 

SCT that reduces time spent awake in bed over many weeks to reinforce sleep. 

However, there are other potentially therapeutic components to ISR that may 

substantially contribute to its efficacy. 

One potentially therapeutic component of ISR is near-total sleep deprivation. 

Patients experienced one night of sleep deprivation (except for the very brief sleep 

episodes that they experienced after sleep onset during the trials) during the 

laboratory-based ISR studies (Harris et al., 2012; Harris et al., 2007). This increased 

homeostatic sleep drive on the following day and would have contributed to the 

robust recovery sleep that patients experienced the following night. Sleep pressure 

may not have been entirely alleviated during the recovery sleep and may have 

remained higher than normal over multiple nights following treatment, contributing to 

the improved sleep quality observed in the week after treatment. Increased 

homeostatic sleep drive is a necessary component to other behavioural treatments 

for insomnia, such as SRT. The difference between ISR and SRT is that sleep 

pressure was rapidly increased over one night compared to relatively slowly 

increased over many weeks. Therefore, this component of ISR is expected to have 
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some therapeutic benefit – the degree to which this component is responsible for the 

efficacy of ISR could be investigated in future research. 

Similarly, another potentially cognitively therapeutic component of ISR is 

patient reassurance on multiple occasions that their sleep mechanism is not ‘broken’, 

and they retain the ability to sleep. A randomised controlled trial could be conducted 

with each condition largely representing one of these theorised therapeutic 

components of ISR. This trial could test ISR as it is currently conducted (sleep 

retraining condition) compared to a night of sleep deprivation (homeostatic sleep 

drive condition) and to a protocol where participants receive feedback after each 

sleep onset trial that they are falling asleep quickly to enhance the cognitive benefits 

of ISR (the cognitive reassurance condition). Such a study will be practical to 

conduct with THIM, once its performance has been tested with individuals with 

insomnia. Understanding the mechanism of action of ISR may result in alterations to 

the treatment instructions to enhance its effectiveness for treating insomnia. 

One night versus many nights of ISR 

One practical question about the administration of ISR is whether sleep onset 

trials need to be conducted over one night or whether they can be spread over 

multiple nights. Individuals sometimes express concern over the requirement of the 

ISR procedure to experience very little sleep on the treatment night. For some 

individuals for whom this necessary sleep restriction is not advised (such as 

professional drivers, emergency services workers, etc.), a modified treatment 

protocol whereby patients experience a similar number of sleep onset trials spread 

over 2-7 nights and experiencing only 1-2 hours of training and only moderately 

restricted sleep per night may be more agreeable. If ISR’s mechanism of action is 

the retraining of the bedroom environment for sleep, then spreading these retraining 
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experiences over multiple nights should achieve a similar level of therapeutic benefit. 

However, the strongest re-association of the bedroom environment for sleepiness 

may occur through repeated experiences of rapid sleep onsets. ISR spread over 

multiple nights may not result in such rapid sleep onsets. This would be due to 1) 

reduced homeostatic sleep drive compared to later trials in the overnight procedure 

and 2) the strongest circadian rhythm sleep pressure in the early morning not being 

utilised to reduce SOL. Therefore, spreading the ISR treatment over multiple nights 

may not be as effective compared to one overnight treatment session. Whether this 

modified ISR protocol would result in similar improvements to sleep and daytime 

functioning as the original ISR protocol is a theoretically and clinically important topic 

for further investigation that could be explored using THIM. 

Future research into THIM sleep tracking 

In addition to assessing the accuracy of THIM for individuals with insomnia, 

several modifications could be made that would likely improve the accuracy of the 

THIM sleep tracking function. These modifications include the incorporation of 

additional physiological sensors into the THIM device hardware and refining the 

sleep tracking algorithm.  

Addition of sensors to the THIM hardware 

One additional physiological signal added to the next generation of consumer 

sleep trackers is sensors for photoplethysmography (PPG). These sensors emit light 

from the underside of the device onto blood vessels to measure light absorption and 

provide estimates of heart rate and heart rate variability. Preliminary research 

suggests that PPG improves the accuracy of wrist actigraphy-based devices 

(Fonseca et al., 2017; Walch, Huang, Forger, & Goldstein, 2019), and may therefore 

improve the accuracy of THIM. With the miniaturisation of physiological sensors and 
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the central processing units (CPUs) to process this additional information in real-

time, there are many other potential signals that could be used to improve the 

device’s accuracy. These include those that could be incorporated into the THIM 

hardware such as skin temperature and pulse oximetry (Hedner et al., 2004). Such 

additions to THIM would need to undergo empirical validation following 

recommended guidelines (Depner et al., 2019) to ensure that the device produces 

sufficiently accurate estimates of sleep and wakefulness for its intended purposes. 

Refinement to the THIM sleep tracking algorithm 

Another promising approach is to refine the THIM sleep tracking algorithm. In 

Chapter 5, the tendency for greater overestimation in wakefulness by THIM was 

theorised to be due to the device placement, the algorithm, or both. With respect to 

device placement, recent research has suggested that finger twitches occur 

relatively frequently during N1-sleep and REM, and less frequently in deeper stages 

of sleep (Reiter et al., 2020). Consequently, THIM may be sensitive enough to detect 

finger twitches during sleep. If this is the case, then the acceleration from these 

finger twitches would have increased the average amount of movement in the 30-

second epochs. Thus, more epochs may have potentially exceeded the threshold to 

score an epoch as wake, contributing to THIM’s overestimation of wakefulness. It is 

unlikely that actigraphy devices placed on the wrist would be able to detect these 

twitches that are largely localised to the finger (Reiter et al., 2020). This may partly 

explain why THIM appeared to overestimate wakefulness more so than wrist 

actigraphy devices. 

The current THIM algorithm is unable to differentiate between high 

acceleration values in 30-second epochs from finger twitches and larger body 

movements. An adjunctive algorithm could be developed that identifies finger 
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twitches (small movements of a duration less than 1-2 seconds) through the sleep 

period, separately from larger body movements. This information could be used to 

more accurately categorise 30-second epochs as wake or sleep. The adjunctive 

algorithm could also potentially be used to differentiate between sleep stages, as 

finger twitches tend to occur more frequently in lighter stages of sleep (Reiter et al., 

2020). Therefore, this proposed algorithm development could lead to improve 

accuracy for estimating both wake and sleep stages. 

Refinements to the algorithm may incorporate machine learning techniques. 

Rather than pre-emptively identifying factors that may impact the accuracy of 

actigraphy devices, machine learning approaches identify patterns and make 

inferences to inform decisions based on the data instead (with one extracted feature 

potentially being finger twitches). These approaches produce more accurate 

estimations of sleep and wakefulness in independent sample actigraphy datasets 

after training compared to currently validated algorithms (Palotti et al., 2019). 

Furthermore, personalised machine learning models (one separate model for each 

individual, trained for each individual) produce more accurate estimates of sleep and 

wakefulness compared to general machine learning models (one model for all 

individuals, trained on all individuals), as there is considerable variability between 

individuals that cannot be accounted for in generalised models (Khademi, El-

Manzalawy, Master, Buxton, & Honavar, 2019). If this approach could be 

implemented into actigraphy scoring software, it may largely overcome the limitation 

with actigraphy devices of variability in accuracy across individuals.  

Responses to vibratory stimuli and sleep tracking 

The two approaches to improving the THIM sleep tracking function described 

above would require extensive resources, time and expertise to develop, research, 
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and implement. There is another approach that utilises the current THIM hardware 

and algorithms that would require only slight changes to the THIM smartphone 

software. The detection of wakefulness using finger tap responses to vibratory 

stimuli as used in the THIM-ISR function could be incorporated into the THIM sleep 

tracking function. With this method, individuals would attempt to fall asleep whilst 

responding to vibratory stimuli. Once THIM detects that sleep onset has occurred, 

the device could begin monitoring sleep using actigraphy. Once enough movement 

is detected to suggest that the individual is awake, THIM could re-commence 

administering vibratory stimuli to which the individual would respond until they fell 

asleep again. Alternatively, THIM could continue to administer vibratory stimuli after 

the initial sleep onset has occurred, as the stimuli are presumably at a supra-

threshold intensity that is only just perceptible when awake and may be too weak to 

interrupt sleep once established. With this alternative, the individual would respond 

to vibratory stimuli as soon as they woke up. The latter method may be more 

advantageous as using the former method would result in some awakenings being 

undetected throughout the night, since movement does not always precisely co-

occur with awakenings during the sleep period (Pollak et al., 2001). However, the 

latter method would require greater CPU usage and battery consumption, which may 

be unfeasible to implement with the current THIM technology. 

Preliminary research with a similar device that utilised responsiveness to 

auditory stimuli emitted after detecting movement with actigraphy (i.e. the former 

method described above) was promising (Scott, 2016). This device showed 

substantially higher specificity (M = 0.79, SD = 0.25) and comparable sensitivity (M = 

0.89, SD = 0.06), as compared to THIM and other actigraphy devices discussed in 

this dissertation. Future research could compare the accuracy of the current THIM 
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sleep tracking function to a modified THIM that utilises finger tap responses to 

vibratory stimuli in comparison to PSG to determine whether this method is more 

accurate for estimating sleep and wake. 

Conclusion 

Based on the findings of this dissertation, the THIM device can accurately 

estimate sleep onset compared to PSG with good and poor sleepers. THIM and 

PSG-SOL correspond highly. QEEG analysis further indicated that responsiveness 

to THIM’s vibrations can occur during brief arousal/wakeful periods that are often 

overlooked by traditional PSG scoring criteria for sleep. The THIM sleep tracking 

algorithm has comparable accuracy for estimating sleep and wakefulness compared 

to other actigraphy devices, and its accuracy remains consistent across multiple 

nights. These promising findings suggest that THIM may be useful for the 

administration of ISR and for the long-term monitoring of objective sleep in the home 

environment. The next step is to test THIM-administered ISR and sleep tracking with 

insomnia patients to ascertain the utility of the device for the treatment and 

management of this sleep disorder. This practical device may allow for the wider 

dissemination of the effective ISR behavioural technique to treat insomnia, assisting 

physicians and ultimately benefiting patients. 
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Appendices 

Appendix 1.  

Database Search Strategies 
PubMed Search: 
(("Sleep Latency/physiology"[Mesh] OR "Sleep Stages/physiology"[Mesh]) OR 

("sleep onset"[tw] OR "sleep onsets"[tw] OR "sleep latency"[tw] OR "sleep 

latencies"[tw] OR "sleep onset latency"[tw] OR "sleep onset latencies"[tw] OR "sleep 

onset period"[tw] OR "sleep onset periods"[tw] OR "sleep onset process"[tw] OR 

"sleep wake transition"[tw] OR "sleep wake transitions"[tw])) AND (("Wearable 

Electronic Devices"[Mesh] OR "Mobile Applications"[Mesh] OR "Actigraphy"[Mesh] 

OR "Monitoring, Ambulatory"[Mesh]) OR ("device"[tw] OR "devices"[tw] OR 

"wearable"[tw] OR "wearables"[tw] OR "actigraph"[tw] OR "actigraphs"[tw] OR 

"actigraphy"[tw] OR "accelerometer"[tw] OR "accelerometers"[tw] OR "mobile 

application"[tw] OR "mobile applications"[tw] OR "smartphone application"[tw] OR 

"smartphone applications"[tw] OR "mobile app"[tw] OR "mobile apps"[tw] OR 

"smartphone app"[tw] OR "smartphone apps"[tw] OR "ambulatory"[tw] OR 

"portable"[tw])) AND ("Data Accuracy"[Mesh] OR ("measure"[tw] OR "measures"[tw] 

OR "measurement"[tw] OR "measuring"[tw] OR "monitor"[tw] OR "monitors"[tw] OR 

"monitoring"[tw] OR "estimate"[tw] OR "estimates"[tw] OR "estimation"[tw] OR 

"estimating"[tw] OR "detect"[tw] OR "detects"[tw] OR "detection"[tw] OR 

"detecting"[tw] OR "accuracy"[tw] OR "accurate"[tw] OR "accurately"[tw] OR 

"valid"[tw] OR "validation"[tw] OR "validity"[tw] OR "reliable"[tw] OR "reliability"[tw] 

OR "performance"[tw] OR "perform"[tw] OR "performs"[tw] OR "assess"[tw] OR 

"assesses"[tw] OR "assessment"[tw])) 

Returned – 1157 results; Restricted to English articles – 1115 results  
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Web of Science Search: 
1. TS=("sleep onset" OR "sleep onsets" OR "sleep latency" OR "sleep latencies" OR 

"sleep onset latency" OR "sleep onset latencies" OR "sleep onset period" OR "sleep 

onset periods" OR "sleep onset process" OR "sleep wake transition" OR "sleep wake 

transitions") 

Indexes=SCI-EXPANDED, SSCI, A&HCI, CPCI-S, CPCI-SSH, ESCI, CCR-

EXPANDED, IC Timespan=All years 

2. TS=("device" OR "devices" OR "wearable" OR "wearables" OR "actigraph" OR 

"actigraphs" OR "actigraphy" OR "accelerometer" OR "accelerometers" OR "mobile 

application" OR "mobile applications" OR "smartphone application" OR "smartphone 

applications" OR "mobile app" OR "mobile apps" OR "smartphone app" OR 

"smartphone apps" OR "ambulatory" OR "portable") 

Indexes=SCI-EXPANDED, SSCI, A&HCI, CPCI-S, CPCI-SSH, ESCI, CCR-

EXPANDED, IC Timespan=All years 

3. TS=("measure" OR "measures" OR "measurement" OR "measuring" OR "monitor" 

OR "monitors" OR "monitoring" OR "estimate" OR "estimates" OR "estimation" OR 

"estimating" OR "detect" OR "detects" OR "detection" OR "detecting" OR "accuracy" 

OR "accurate" OR "accurately" OR "valid" OR "validation" OR "validity" OR "reliable" 

OR "reliability" OR "performance" OR "perform" OR "performs" OR "assess" OR 

"assesses" OR "assessment") 

Indexes=SCI-EXPANDED, SSCI, A&HCI, CPCI-S, CPCI-SSH, ESCI, CCR-

EXPANDED, IC Timespan=All years 

(#3 AND #2 AND #1) AND LANGUAGE: (English) 

 

Returned – 866 results; Restricted to English articles – 857 results 
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SCOPUS Search: 
1. INDEXTERMS ( "Sleep Latency" OR "Sleep Stages" ) 

2. TITLE-ABS-KEY (sleep onset OR sleep onsets OR sleep latency OR sleep 

latencies OR sleep onset latency OR sleep onset latencies OR sleep onset period 

OR sleep onset periods OR sleep onset process OR sleep wake transition OR sleep 

wake transitions) 

3. INDEXTERMS ("Wearable Electronic Devices" OR "Mobile Applications" 

OR "Actigraphy" OR "Monitoring, Ambulatory") 
4. TITLE-ABS-KEY (device OR devices OR wearable OR wearables OR 

actigraph OR actigraphs OR actigraphy OR accelerometer OR accelerometers OR 

mobile application OR mobile applications OR smartphone application OR 

smartphone applications OR mobile app OR mobile apps OR smartphone app OR 

smartphone apps OR ambulatory OR portable) 

5. INDEXTERMS ("Data Accuracy") 

6. TITLE-ABS-KEY (measure OR measures OR measurement OR measuring 

OR monitor OR monitors OR monitoring OR estimate OR estimates OR estimation 

OR estimating OR detect OR detects OR detection OR detecting OR accuracy OR 

accurate OR accurately OR valid OR validation OR validity OR reliable OR reliability 

OR performance OR perform OR performs OR assess OR assesses OR 

assessment) 

(#1 OR #2) AND (#3 OR #4) AND (#5 OR #6) 

Returned: 1,549 results; Restricted to English articles: 1,477 results 
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PsycINFO Search: 

Searches Results 

1 sleep onset/ 

2 mobile devices/ 

3 actigraphy/ 

4 monitoring/ 

5 2 or 3 or 4 

6 ("sleep onset" or "sleep onsets" or "sleep latency" or "sleep latencies" or 

"sleep onset latency" or "sleep onset latencies" or "sleep onset period" 

or "sleep onset periods" or "sleep onset process" or "sleep wake 

transition" or "sleep wake transitions").tw. 

7 ("device" or "devices" or "wearable" or "wearables" or "actigraph" or 

"actigraphs" or "actigraphy" or "accelerometer" or "accelerometers" or 

"mobile application" or "mobile applications" or "smartphone application" 

or "smartphone applications" or "mobile app" or "mobile apps" or 

"smartphone app" or "smartphone apps" or "ambulatory" or 

"portable").tw. 

8 ("measure" or "measures" or "measurement" or "measuring" or "monitor" 

or "monitors" or "monitoring" or "estimate" or "estimates" or "estimation" 

or "estimating" or "detect" or "detects" or "detection" or "detecting" or 

"accuracy" or "accurate" or "accurately" or "valid" or "validation" or 

"validity" or "reliable" or "reliability" or "performance" or "perform" or 

"performs" or "assess" or "assesses" or "assessment").tw. 

9 1 or 6 

10 5 or 7 

11 8 and 9 and 10 

12 limit 11 to English language 

Returned – 526 results; Restricted to English articles – 511 results 
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CINAHL (EBSCOhost) Search: 

Search 
Terms Search Options 

S9 S5 AND S6 AND S7  

S8 S5 AND S6 AND S7  

S7 S2 OR S3  

S6 S1 OR S4  

S5 TX ("measure" OR "measures" OR "measurement" OR "measuring" OR 

"monitor" OR "monitors" OR "monitoring" OR "estimate" OR "estimates" 

OR "estimation" OR "estimating" OR "detect" OR "detects" OR "detection" 

OR "detecting" OR "accuracy" OR "accurate" OR "accurately" OR "valid" 

OR "validation" OR "validity" OR "reliable" OR "reliability" OR 

"performance" OR "perform" OR "performs" OR "assess" OR "assesses" 

OR "assessment")  

S4 TX ("sleep onset" OR "sleep onsets" OR "sleep latency" OR "sleep 

latencies" OR "sleep onset latency" OR "sleep onset latencies" OR "sleep 

onset period" OR "sleep onset periods" OR "sleep onset process" OR 

"sleep wake transition" OR "sleep wake transitions")  

S3 TX ("device" OR "devices" OR "wearable" OR "wearables" OR "actigraph" 

OR "actigraphs" OR "actigraphy" OR "accelerometer" OR 

"accelerometers" OR "mobile application" OR "mobile applications" OR 

"smartphone application" OR "smartphone applications" OR "mobile app" 

OR "mobile apps" OR "smartphone app" OR "smartphone apps" OR 

"ambulatory" OR "portable")  

S2 (MH "Monitoring, Physiologic") OR (MH "Actigraphy") OR (MH "Mobile 

Applications") OR (MH "Wearable Sensors")  

S1 (MH "Sleep Stages")  

Returned – 240 results; Restricted to English articles – 239 results
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Appendix 2. 

Table A2. Study Characteristics including sample information, setting, and PSG specifications. 

Study 

Sample Characteristics Testing Characteristics Gold-standard measure 

N Age (years) 
Sample Description 

(N in brackets) 
Sleep Type Setting 

PSG 

Specifications 

PSG 

Scoring 

Criteria 

Ajilore et al. 

(1995) 

10 M = 23.7 (SD = 7.0), 

range: 19-42 

Average sleepers nocturnal 

sleep 

Laboratory Grass Model 8-

10 polygraph 

R&K 

Alsaadi et al. 

(2014) 

50 M = 42.7 (SD = 15.15) All experienced non-specific lower 

back pain 

nocturnal 

sleep 

Laboratory Sandman 

system 

AASM 

Baandrup 

and Jennum 

(2015) 

42 M = 46.1 (SD = 9.5) Schizophrenia (37) or bipolar (5) nocturnal 

sleep 

Homes Trackit 

ambulatory PSG 

AASM 

Blackwell et 

al. (2011) 

889 M = 76.28 (SD = 5.47) Elderly men with osteoporotic 

fractures 

nocturnal 

sleep 

Homes Compumedics 

Safiro Unit 

R&K 

Burnett et al. 

(1985) 

10 M = 53 (SD = 17.8), 

range: 25-83 

No sleep complaints (2), disturbed 

sleep ≥3 nights per week (8) 

nocturnal 

sleep 

Homes Grass Model 7D 

polygraph 

R&K, 

N2-sleep 
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onset as 10 

mins of N2 

Cantero, 

Atienza, 

Stickgold, 

and Hobson 

(2002) 

10 range: 20-25 healthy with no sleep disturbances daytime nap Laboratory Grass Model 8-

10 polygraph 

R&K 

Cellini et al. 

(2013) 

30 M = 20.77 (SD = 3.14) healthy with no sleep disorders daytime nap Laboratory Astro-Med 

Grass Heritage 

model 15 

amplifiers 

AASM 

Cellini et al. 

(2015) 

30 M = 20.3 (SD = 2.76) healthy with no sleep disorders daytime nap Laboratory Astro-Med 

Grass Heritage 

model 15 

AASM 

Chae et al. 

(2009) 

33 M = 54 (SD = 8.7) OSA (20), OSA and PLMS (13) nocturnal 

sleep 

Laboratory Compumedics E 

Series 

AASM 

Chakar et al. 

(2017) 

38 M = 23.5 (SD = 1.5) healthy with no sleep disturbances nocturnal 

sleep 

Laboratory Embla N7000 

system 

AASM 
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Choi et al. 

(2017) 

66 SDB group: 

M = 49.76 (SD = 14.6) 

CI group:  

M = 58.11 (SD = 9.73) 

sleep disordered breathing (SDB, 

36), chronic insomnia  

(CI, 30) 

nocturnal 

sleep 

Laboratory Remlogic Embla 

Systems 

AASM 

Cole et al. 

(1992) 

21 M = 47.8 (SD = 15.7) Controls (7), elderly (2), psychiatric 

disorder (6), OSA (2), DIMS (2), 

widows (2) 

nocturnal 

sleep 

Laboratory Two-channel 

unspecified 

PSG system 

R&K 

First epoch 

of 20mins of 

sleep 

Cook et al. 

(2017) 

21 M = 26.5 (SD = 4.6) Mild-moderate unipolar MDD nocturnal 

sleep 

Laboratory Alice Sleepware AASM 

Cook et al. 

(2018) 

43 M = 33.3 (SD = 11) narcolepsy (3), idiopathic 

hypersomnia (13), 

organic/unspecified hypersomnia 

(18), mild OSA (6), 

hypersomnolence from other 

condition (4) 

nocturnal 

sleep 

Laboratory Alice Sleepware AASM 

De Souza et 

al. (2003) 

21 range: 18-33 healthy with no sleep disturbances nocturnal 

sleep 

Laboratory sleep analyzer 

computer, v9.2 

R&K 
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de Zambotti 

et al. (2015a) 

28 M = 50.1 (SD = 3.9) Healthy (12), chronic insomnia (12), 

PLMI > 10 (2), PLMI > 10 and AHI 

> 5 (2) 

nocturnal 

sleep 

Laboratory Compumedics 

amplifiers 

AASM 

de Zambotti 

et al. (2018) 

44 range: 19-61 no health conditions (35), PLMS (9) nocturnal 

sleep 

Laboratory Compumedics 

Grael-PSG 

system 

AASM 

Dick et al. 

(2010a) 

28 M = 56 (SD = 10) All tentative OSA diagnosis, PLMS 

(12), arrhythmia (3) 

overnight, 

diagnostic or 

treatment 

Laboratory SOMNOscreen 

system (SSC) 

R&K 

Dunican et al. 

(2018) 

50 M = 57 (SD = 5), 

range: 46-73 

Community sample of middle-aged 

adults 

nocturnal 

sleep 

Laboratory Compumedics 

Grael-PSG 

system 

AASM 

Edinger et al. 

(2004) 

33 M = 58.6 (SD = 13.5) All psychiatrically stable veterans, 

OSA (10), poor sleep hygiene (12), 

PLMS (3), psychophysiological 

insomnia (3), insomnia and anxiety 

(3), insomnia and mood disorder 

nocturnal 

sleep 

medical 

centre 

Compumedics 

PS2 or Safiro 

systems 

R&K 
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(1), hypnotic-dependent sleep 

disorder (1) 

Farabi, 

Quinn, and 

Carley (2017) 

27 M = 23.8 (SD = 4.1), 

range: 18–30 

All diagnosed with T1 diabetes, no 

sleep disorders 

overnight, TIB 

>7hrs 

Laboratory Alice 5 system AASM 

Fietze et al. 

(2015) 

A: 

30 

B: 

20 

A: M = 57 (SD = 14), 

range: 18-80 

B: M = 60 (SD = 11), 

range: 41-74 

A: all OSA, PLMS (6), arrhythmia 

(1) 

B: all OSA, PLMS (12), Cheyne-

Stokes respiration (1) 

overnight, 

diagnostic or 

treatment 

night 

Laboratory SOMNOscreen 

system (SSC)  

R&K 

Finan et al. 

(2016) 

14 M = 26.43 (SD = 3.74) 

range: 22–34 

healthy, good sleepers overnight, TIB 

8hrs 

Laboratory Embla N7000 

system 

AASM 

Fonseca et 

al. (2017) 

1: 16 

2: 35 

1: M = 51.2 (SD = 8.4) 

2: M = 52.0 (SD = 6.9) 

All healthy nocturnal 

sleep 

hotel Alice PDx 

system 

AASM 

Fuller et al. 

(2017) 

21 M = 22.5 (SD = 2.7) Elite athletes nocturnal 

sleep 

apartment Compumedics 

Siesta 802 

system 

AASM 
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Griessenberg

er et al. 

(2013) 

10 M = 32.5 (SD = 7.63), 

range: 23-45 

Insomnia (7), no sleep disorders (3) nocturnal 

sleep 

Not 

provided 

Synamps EEG 

amplifiers 

semiautoma

tic scoring 

(AASM) 

Gruwez et al. 

(2017) 

20 M = 30 (SD = 5) All healthy nocturnal 

sleep 

Homes Dream 

ambulatory PSG 

AASM 

Hauri (1999) 25 Insomnia:  

M = 44.5, range: 22-

65 

Controls:  

M = 25.5, range: 19-

40 

Insomnia (19), controls (6) nocturnal 

sleep 

Laboratory Not provided First epoch 

of S1 

First epoch 

of S2 

First epoch 

of 10min of 

sleep 

Hedner et al. 

(2004) 

228 M = 48.8 (SD = 14.0) Controls (38), mild OSA (54), 

moderate OSA (83), severe OSA 

(53) 

nocturnal 

sleep 

Laboratory 

or homes 

Embla system 

Alice III system 

R&K 

Hedner et al. 

(2011) 

227 M = 49 (SD = 14) Controls (38), mild OSA (54), 

moderate OSA (82), severe OSA 

(53) 

nocturnal 

sleep 

Laboratory 

or homes 

Embla system 

Alice III system 

R&K 
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Insana et al. 

(2011) 

41 M = 27.65 (SD = 

4.72), range: 18.44-

38.44 

first-time parents, participated 

during M = 6.93 (SD = 1:26) 

postpartum week 

MSLTs Laboratory Embla N7000 

system 

R&K 

Kanady et al. 

(2011) 

19 M = 19.7 (SD = 1.5) Healthy with no sleep disturbances daytime nap Laboratory Astro-Med 

Grass Heritage 

Model 15 

amplifiers 

R&K 

Kang et al. 

(2017) 

50 Insomnia:  

M = 38.4 (SD = 11.2) 

Good sleeper: 

M = 32.1 (SD = 7.4) 

Insomnia, good sleepers nocturnal 

sleep 

Homes Embletta X100 

ambulatory PSG 

AASM 

Kapella, 

Vispute, Zhu, 

and 

Herdegen 

(2017) 

50 M = 63.2 (SD = 8.4) Mild to severe COPD, no other 

sleep disorders or conditions 

nocturnal 

sleep 

Laboratory Alice 3 system AASM 
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Kaplan, 

Talbot, 

Gruber, and 

Harvey 

(2012) 

54 Bipolar group:  

M = 33.1 (SD = 10.3) 

Matched controls:  

M = 38.1 (SD = 13.0) 

Bipolar type I or type II but in-

between mood episodes (27) 

Matched controls with no history of 

mental illness or sleep disturbance 

(27) 

nocturnal 

sleep 

Laboratory Compumedics 

Siesta802 

system 

R&K 

Kaplan et al. 

(2014) 

99 Mdn = 32.7, range: 

18-60 

Average sleepers (49), and those 

with chronic insomnia symptoms, 

suspected restless leg syndrome, 

PLMS, or suspected sleep apnea 

(50) 

nocturnal 

sleep 

Laboratory PSG system 

(Consolidated 

Research) 

R&K 

Kosmadopoul

os et al. 

(2014) 

22 M = 23.9 (SD = 3.8) healthy with no sleep disturbances nocturnal 

sleep 

Laboratory Compumedics 

Siesta system 

R&K 

Kuo et al. 

(2017) 

59 information not 

available 

good sleepers (43), poor sleepers 

(16) 

nocturnal 

sleep 

Laboratory Compumedics 

Siesta802 

system 

R&K 

Laakso et al. 

(2004) 

39 able-bodied:  Able-bodied with normal sleep (10), 

sleep-disordered without motor 

nocturnal 

sleep 

Laboratory 

Intellectuall

Embla system R&K 
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M = 28 (SD = 10) 

sleep-disordered:  

M = 38 (SD = 14) 

sleep-disordered with 

motor disabilities: 

M = 36 (SD = 13) 

disabilities (13), sleep-disordered 

with motor disabilities (16) 

y Disabled 

Centre or 

homes 

Lichstein et 

al. (2006) 

57 range: 21-87 All had insomnia nocturnal 

sleep 

Laboratory Alice 3 system R&K 

Lucey et al. 

(2016) 

29 M = 54 (SD = 15.7), 

range: 25-80 

Either no OSA or mild OSA (18), 

PLMS (5) 

overnight, 

diagnostic or 

treatment 

Laboratory Polysmith 

system 

AASM 

Maglione et 

al. (2013) 

61 M = 67.74 (SD = 9.26) Mild-moderate Parkinson's Disease nocturnal 

sleep 

Laboratory Compumedics 

somtè system 

AASM 

Markwald et 

al. (2016a) 

29 M = 24.0 (SD = 5.3) Healthy with no sleep disorders nocturnal 

sleep 

Laboratory Grass Comet 

Plus system 

AASM 

Matsuo et al. 

(2016) 

20 M = 20.70 (SD = 

0.39), range: 19-24 

Healthy with no sleep disorders Not provided Not 

provided 

Alice 5 system Not 

provided 
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McCall and 

McCall 

(2012) 

54 M = 41.3 (SD = 12.9) Diagnosed with insomnia and major 

depressive episodes 

nocturnal 

sleep 

Laboratory VIASYS 

SomnoStar 

system 

AASM 

First epoch 

of 10min of 

sleep 

Mundt et al. 

(2016) 

113 M = 52.68 (SD = 

10.91) 

Diagnosed with insomnia and 

fibromyalgia  

nocturnal 

sleep 

Homes AURA Portable 

System 

R&K 

Myllymaa et 

al. (2016) 

31 M = 31.3 (SD = 11.8) Sleep bruxism and healthy controls nocturnal 

sleep 

Laboratory Embla N7000 

system 

AASM 

Nakazaki et 

al. (2014) 

17 M = 21.9 (SD = 1.7) Healthy with no sleep disorders nocturnal 

sleep 

Laboratory Neurofax EEG-

1200 system 

First epoch 

of sleep 

(120s 

epochs) 

O’Hare et al. 

(2015) 

20 M = 30 (SD = 6) No sleep disorders overnight, TIB 

8 hrs 

Laboratory Embla N7000 

system 

First epoch 

of 2mins of 

sleep 

Paquet et al. 

(2007) 

15 M = 39.3 (SD = 15.1), 

range: 20-60 

healthy with no sleep disturbances Nocturnal 

sleep and 

daytime 

Laboratory Grass Model 15 

Neurodata 

system 

First epoch 

of 10mins of 

sleep 
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recovery 

sleeps 

Pigeon et al. 

(2018) 

20 M = 30.1 (SD = 13.1) Healthy, good sleepers nocturnal 

sleep 

Laboratory Embla N7000 

system 

AASM 

Razjouyan et 

al. (2017) 

21 M = 50.8 (SD = 12.8) Self-reported sleep problems nocturnal 

sleep 

Laboratory Grass Comet 

PLUS XL 

Embla S4500 

system 

 

Reid and 

Dawson 

(1999) 

32 Group 1: M = 21.2 (SD 

= 2.7), range: 18-30 

Group 2: M = 43.9 (SD 

= 6.8), range: 35-56 

Both groups healthy with no sleep 

disorders 

Overnight 

simulated 

shift work 

protocol 

Laboratory Sleep analyser 

computer 

R&K 

Rupp and 

Balkin (2011) 

29 M = 24.3 (SD = 5.4) Healthy with no sleep disturbances nocturnal 

sleep 

Laboratory Not provided First epoch 

of sleep 

Sanchez-

Ortuno et al. 

(2010) 

62 Insomnia:  

M = 28.3 (SD = 4.9) 

Controls:  

M = 28.4 (SD = 6.0) 

Insomnia group (31) and matched 

normal sleepers (31) 

nocturnal 

sleep 

Laboratory 

and homes 

Oxford Medilog 

9000 or 9200 

systems 

AASM 
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Sargent et al. 

(2016) 

16 M = 19.3 (SD = 1.5) Elite cyclists, no sleep disorders nocturnal 

sleep 

training 

camp 

Compumedics 

system 

AASM 

Scatena et al. 

(2012) 

25 M = 44.3 (SD = 18.4), 

range: 25-63 

All healthy nocturnal 

sleep 

Laboratory Not provided AASM 

Scott et al. 

(2018) 

12 M = 21.67 (SD = 1.23) healthy with no sleep disturbances overnight, 

sleep onset 

trials 

Laboratory Compumedics 

Somtè system 

AASM 

Senny et al. 

(2012) 

124 M = 50.8 (SD = 12.4) OSA (68), insomnia/depression 

(27), Other including PLMS and 

circadian rhythm disorders (29) 

nocturnal 

sleep 

Laboratory Embla S7000 or 

N7000 systems 

First epoch 

of sleep 

First epoch 

of 15min of 

sleep 

Shambroom 

et al. (2012) 

26 M = 38 (SD = 13), 

range: 19-60 

Healthy with no sleep disorders nocturnal 

sleep 

Laboratory Cadwell Easy III 

EEG 

R&K 

First epoch 

of 10min of 

sleep 
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Signal, Gale, 

and Gander 

(2005) 

21 M = 41.8 (SD = 9.1) Flight crew (11 Captains, 10 First 

Officers) 

in-flight rest 

and layover 

sleeps 

Airplane 

and hotel 

Embla system R&K 

Sivertsen et 

al. (2006) 

34 M = 60.5 (SD = 4.5) Insomnia, mostly sleep 

maintenance insomnia 

nocturnal 

sleep 

Laboratory Embla A10 R&K 

Slater et al. 

(2015) 

108 M = 22.7 (SD = 0.2) All healthy nocturnal 

sleep 

Laboratory Compumedics 

Grael-PSG 

system 

AASM 

Taibi et al. 

(2013) 

16 M = 69.4 (SD = 8.1) All had insomnia nocturnal 

sleep 

Laboratory Model not 

provided 

R&K 

Tonetti et al. 

(2013) 

11 M = 24.75 (SD = 3.62) Healthy with no sleep disorders overnight, TIB 

8 hrs 

Laboratory Compumedics 

Siesta802 

system 

R&K 

Tonetti et al. 

(2008) 

12 M = 22.97 (SD = 2.62) Healthy with no sleep disorders nocturnal 

sleep 

Laboratory Grass Heritage 

PSG System 

R&K 

Vallieres and 

Morin (2003) 

17 M = 41.6 (SD = 5.7), 

range: 34-50 

Sleep onset insomnia (1), sleep 

maintenance insomnia (9), or mixed 

(7) 

nocturnal 

sleep 

Laboratory Not provided R&K 
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Wang et al. 

(2008) 

21 M = 38.9 (SD = 13.0) Non-OSA (10) and OSA (11) nocturnal 

sleep 

Laboratory Alice 5 system R&K 

White et al. 

(1995) 

30 M = 51.1 (SD = 2.9) Suspected OSA diagnosis nocturnal 

sleep 

Laboratory Grass Model 

78E polygraph 

R&K 

Zhang et al. 

(2014) 

20 M = 29.7 (SD = 7.5) All healthy daytime nap Laboratory Not provided AASM 

Zinkhan et al. 

(2014) 

100 M = 51.3 (SD = 13.0), 

range: 19-73 

Community sample nocturnal 

sleep 

Laboratory Not provided AASM 

AASM = American Academy of Sleep Medicine scoring criteria, AHI = Apnea–Hypopnea Index, DIMS = disorders of initiating and maintaining sleep, 

M = mean, Mdn = median, N2 = Non-rapid eye movement Stage 2, OSA = obstructive sleep apnea, PLMI = periodic limb movement index, PLMS = 

Periodic limb movements of sleep, R&K = Rechtschaffen and Kales criteria for sleep scoring, S1 = Stage 1 sleep, S2 = Stage 2 sleep, SD = standard 

deviation. 
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Appendix 3.  

Table A3. Tested Device Specifications. 

Study 
Wearable 

Device Type 

Wearable Device Description 

Device Name Scoring Software and Algorithm Description 

Ajilore et al 

1995 

EOG and 

actigraphy 

Nightcap  Computer software not described 

Alsaadi et al 

2014 

actigraphy SenseWear Pro 3 Armband 

Actiwatch-2 

Armband: SenseWear Professional software v 6.1, 60s epochs 

Actiwatch: ActiWare software v 5.52.0003 (Philips Respironics), 30-s 

epochs, medium threshold, 10 immobile minutes criterion 

Baandrup & 

Jennum  

actigraphy Actiwatch Spectrum Actiware software v 6.0.0 (Respironics), 30s epochs, medium 

sensitivity 

Blackwell et al 

2011  

actigraphy Sleepwatch-O Action W-2 software, Cole et al. (1992) algorithm with ZCM, University 

of California San Diego (Jean-Louis, Kripke, Mason, Elliott, & 

Youngstedt, 2001) algorithm for PIM and TAT 

Burnett et al 

1985 

actigraphy and 

ECG 

Vitalog PMS-8 to store the data 

Actigraphy: switches mounted on a 

cube 

ECG: three chest electrodes 

Two independent scorers and their scores were averaged. Sleep 

onset as 10mins of inactivity and/or reduced heart rate 

VSTAT program also automatically scored the data 
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Cantero et al 

2002  

EOG Nightcap  Scored on device 

Cellini et al 2013  actigraphy Actiwatch-64 

GT3X+ 

Actiwatch: Actiware 5.52.0003 (Philips Respironics) at low, medium 

and high thresholds, 60s epochs 

GT3X+: ActiLife 6.4.3 (Actigraph) using Sadeh et al. (1994) algorithm, 

60s epochs 

Cellini et al 2015  EEG Zeo wireless system bedside base station, 30s epochs, algorithm follows R&K criteria 

Chae et al 2009  actigraphy Actiwatch-L Actiware v 5.0 (Minimitter-Respironics Inc), 15s epochs, all thresholds 

and sensitivities 

Chakar et al 

2017  

actigraphy Actiwatch-2 Actiware v 6.0.1, 30s epochs with default settings 

Choi et al 2017  actigraphy Actiwatch-2 Actiware v 5.70, 30s epochs 

Cole et al 1992  actigraphy Motionlogger Actigraph Algorithm developed in this study, 2s epoch, ZCM 

Cook et al 2017  actigraphy Actiwatch-2 

Fitbit Flex 

Actiwatch: medium threshold, 10 immobile minutes 

Fitbit: website (version not provided), normal and sensitive settings 

Cook et al 2018  actigraphy Actiwatch-2 

Jawbone UP3 

Actiwatch: 30s epochs, medium sensitivity, 5 immobile minutes 

UP3: UP Android app v 4.24, 60s epochs 
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de Souza et al 

2003  

actigraphy Mini Motionlogger Basic Actigraph ZCM, 60s epochs, 5 immobile minutes, Cole et al. (1992) (Action 3 v 

3.15 software) and Sadeh et al. (1994) (Action for Windows v 1.05) 

algorithms 

de Zambotti et 

al 2015  

actigraphy Jawbone UP  UP mobile app (version not provided) 

de Zambotti et 

al 2018 

actigraphy Fitbit Charge 2 Fitbit Inc. provided sleep stage data, 30s epochs 

Dick et al 2010  actigraphy SOMNOwatch DOMINO light software, Gorney (1997) algorithm, activity threshold 

set to 28 units, ‘number of epochs before/after’ set to 4 epochs, 30s 

epochs 

Dunican et al 

2018  

actigraphy GT3X+ 

Readiband version 3 

GT3X+: ActiLife 6 software, 60s epochs, Cole et al. (1992) algorithm 

Readiband: proprietary algorithm, Readiband Sync software 

Edinger et al 

2004 

EOG and 

actigraphy 

REMview 

Mini-Mitter Actiwatch device 

REMview: RV software using proprietary algorithm 

Actiwatch: proprietary algorithm, 60s epochs 

Farabi et al 

2017  

actigraphy Actiwatch-2  Actiware 6, 30s epochs, 10 immobile minutes, all thresholds 

Fietze et al 2015  actigraphy and 

EEG 

SOMNOwatch 

Study A: F4-M1 EEG channel 

Manual scoring, R&K criteria 



236 
 

Study B: EEG, EMG and EOG 

Finan et al 2016  actigraphy and 

EEG 

X4 Sleep Profiler headband Sleep Profiler Portal software, sleep onset as four consecutive sleep 

epochs in the first 5 minutes of recording 

Fonseca et al 

2017 

actigraphy and 

PPG 

Device containing PPG and 

accelerometer 

Actiwatch Spectrum 

PPG Device: Authors’ algorithm, 30s epochs 

Actiwatch: Actiware software with the default settings 

Fuller et al 2017  actigraphy Actical Z-series Actiware v 5.61, all thresholds 

Griessenberger 

et al 2013  

EEG Zeo wireless system Zeo device 

Gruwez et al 

2017 

actigraphy Jawbone UP MOVE 

Withings Pulse 02 

SenseWear Pro Armband 

Accompanying smartphone apps (versions not provided) 

Hauri 1999 Response to a 

stimulus 

Sleep switch device Data read off display on the device (acts like a stopwatch) 

Hedner et al 

2004 

PAT Watch_PAT100 system with 

actigraph (actigraphy-measured 

sleep) 

Authors’ algorithm (see paper for details), 30s epochs 



237 
 

Hedner et al 

2011 

actigraphy Watch_PAT100 system (PAT-

measured sleep) 

Authors’ algorithm (see paper for details), 30s epochs 

Insana et al 

2011 

actigraphy Actiwatch-64 Actiware v 5.5, 15s epochs, all thresholds and three immobile minute 

criteria (2, 5, 10mins) 

Kanady et al 

2011 

actigraphy Actiwatch-64 Automatic rest interval detection from Actiware 5.52.0003 software, 

60s epochs, 3 AMRI sensitivities (high, medium, low) and 2 interval 

durations (15, 40mins). Once rest intervals were established, used the 

default settings to score sleep. 

Kang et al 2017  actigraphy Fitbit Flex 

Actiwatch-2 

Fitbit: website, 30s epochs 

Actiwatch: Actiware v 6.0.8, default settings 

Kapella et al 

2017  

actigraphy Actiwatch-2 Actiware v 6.0.8, 30s epochs, 5 thresholds (0, 5, 10, 20 and 40) and 3 

immobile minute (5, 10, 15mins) criteria 

Kaplan et al 

2012  

actigraphy Actiwatch-64 Actiware v 5.57, all three thresholds (low, med, high), 30s epochs, 

immobile minutes criteria (number of minutes not reported) 

Kaplan et al 

2014  

EEG Zmachine Automated sleep–wake detection algorithm (Z-ALG), 30s epochs, 

algorithm described in paper 
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Kosmadopoulos 

et al 2014  

actigraphy 

device and EEG 

device 

Actiwatch-64 

Actical Z-series 

Zeo wireless system 

Actiwatch and Actical: Actiware v 3.4, 30s epochs, four thresholds 

(low, medium, high and custom 10), algorithm described in paper, 10 

immobile minutes 

Zeo: Zeo automatic software (no version given) 

Kuo et al 2017  actigraphy A device the authors created See paper for algorithm details 

Laakso et al 

2004 

actigraphy Actiwatch Actiwatch Sleep Analysis software v 4.15, 60s epochs, medium and 

high thresholds, 10 immobile minutes 

Lichstein et al 

2006  

actigraphy Actiwatch-64 Actiware Sleep v. 3.3, 30s epochs, high threshold 

Lucey et al 2016  EEG Sleep Profiler Manual scoring using the Sleep Profiler Manual 

Maglione et al 

2013  

actigraphy Actiwatch-L Actiware v 5.0, 30s epochs, 7 thresholds (0, 5, 10, 20, 40, 60, 80) and 

3 immobile minute (0, 5, 10mins) criteria 

Markwald et al 

2016  

actigraphy Actiwatch-64 

Zeo wireless system 

Actiwatch: Actiware v 3.3, 30s epochs, medium sensitivity 

Zeo: proprietary algorithm, 30s epochs 

Matsuo et al 

2016  

actigraphy Actiwatch-2 

MTN-210 

Actiwatch: Actiware v 6.0.1, all three thresholds, 2min epochs 

MTN: SleepSign Act software, default algorithm 

McCall & McCall  actigraphy Actiwatch-64 Actiware v 5.0, 30s epochs, medium threshold 
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Mundt et al 

2016  

actigraphy Actiwatch-2 Actiware v.5.3.2, 30s epochs, high sensitivity, Oakley (1997) algorithm 

Myllymaa et al 

2016 

EEG Forehead EEG, zygomatic (Sp1, 

Sp2) and mastoid (T9, T10), right-

EOG, ECG and pulse oximetry 

Manual scoring using AASM criteria, RemLogic software 

Nakazaki et al 

2014  

actigraphy FS-750 actigraph worn on waist 2-min epochs, algorithm described in paper 

O’Hare et al 

2015 

actigraphy Actiwatch-2 Information not provided 

Paquet et al 

2007 

actigraphy Actiwatch-L Actiware v 5.0., 60s epochs, 2 thresholds (20 and 40) using algorithms 

by Actiwatch-L manufacturers. Two additional algorithms described in 

paper. All algorithms defined sleep onset as first epoch of 10mins of 

sleep 

Pigeon et al 

2018  

actigraphy myCadian watch 

Actiwatch-2 

myCadian: CURA System, 30s epochs 

Actiwatch: Actiware v 6.0.2, medium sensitivity, 30s epochs 

Razjouyan et al 

2017  

actigraphy Actiwatch-L Actiwatch-L: Action4 v 1.16, 60s epochs, Cole et al. (1992) algorithm 

Reid & Dawson actigraphy Z80-32k V1 activity monitor 30s epochs, sleep onset as first epoch of 5mins of inactivity 
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Rupp & Balkin  actigraphy Motionlogger Watch  

Actiwatch-64 
 

Motionlogger: Action-W v 2, Cole et al. (1992) algorithm, 30s epochs, 

ZCM and default settings 

Actiwatch: Actiware v 3.4, 30s epochs  

Sanchez-Ortuno 

et al 2010  

actigraphy Mini-Mitter Actiwatch devices Actiwatch software, medium threshold, 60s epochs, 10 immobile 

minutes 

Sargent et al 

2016 

actigraphy Philips Respironics activity monitor Actiware v 3.1, 60s epochs split into 30s epochs for analysis, default 

algorithm using all 3 thresholds (low, medium, high) 

Scatena et al 

2012 

actigraphy Actiwatch-64 Actiwatch software v 7.31, Sadeh et al. (1994) algorithm 

Scott et al 2018 Response to a 

stimulus 

Sleep On Cue smartphone 

application 

Scored on device 

Senny et al 

2012 

jaw movement, 

oxygen 

saturation, nasal 

airflow 

Somnolter device records nasal 

airflow, SpO2, body position and 

jaw movements 

Somnolter analysis software  

Shambroom et 

al 2012  

actigraphy 

device and EEG 

device 

Zeo wireless system 

Actiwatch-64 

Zeo: scored on device 

Actiwatch: Actiware v 5.0, 30s epochs, medium threshold 
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Signal et al 

2005  

Actigraphy Actiwatch Actiware v 3.14, 60s epochs, all three thresholds, sleep onset as start 

of 20 epochs where 19 were scored as sleep  

Sivertsen et al 

2006  

actigraphy Actiwatch Plus Actiwatch software v 1.19, 30s epochs, medium sensitivity 

Slater et al 2015 actigraphy GT3X+ ActiLife 6.8 software, 60s epochs, Sadeh et al. (1994) algorithm 

Taibi et al 2013 actigraphy Actiwatch-64 Actiware v 5.57, 30s epochs, 10 immobile minutes 

Tonetti et al 

2013 

EEG Zeo wireless system Scored on device 

Tonetti et al 

2008 

actigraphy Basic Mini-Motionlogger 

Actiwatch 

Motionlogger: Action W-2 v 3.23, 60s epochs, Cole et al. (1992) 

algorithm 

Actiwatch: Actiwatch software v 5.32, 60s epochs, Oakley (1997) 

algorithm 

Vallieres & 

Morin  

actigraphy IM Systems actigraphy device IM Systems software and algorithm (version 3.15a) 

Wang et al 2008 actigraphy Actiwatch-64 Actiware v 5.0, 30s epochs, medium threshold, 10 immobile minutes 

White et al 1995  Various 

physiological 

measures 

NightWatch System: EOG, leg 

movement, oxygen saturation, 

nasal airflow, chest and abdomen 

Algorithm described in paper 
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motion, body position, movement 

and heart rate 

Zhang et al 

2014  

EEG A wireless headband Algorithm described in paper 

Zinkhan et al 

2014  

actigraphy SOMNOwatch plus (one on the hip, 

one on the wrist) 

GT3X+ (placed on hip) 

SOMNOwatch: Domino Light software, Dick et al. (2010a) algorithm 

GT3X+: ActiLife v 5, Cole et al. (1992) algorithm 

EEG = electroencephalography, EOG = electrooculography, ECG = electrocardiography, PIM = proportional integration mode, TAT =time 

above threshold, ZCM = zero-crossing mode 
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Appendix 4.  

Table A4. Overview of the Accuracy of the Wearable Devices, separated by Type of Device. 

Actigraphy Devices 

Study  Sample Type Device 

Tested 

Results 

Sleep Onset Latency Means (SD) Discrepancy (SD) between 

PSG and Device, or Bland-

Altman Plot statistics 

Correlations between PSG 

and Device [95% CIs] 

Alsaadi et al 2014  Other health 

conditions 

(lower back 

pain) 

SenseWear 

Pro 3 

Armband 

Actiwatch-2 

  

PSG: M = 15.19 (SD = 14.23, range: 

2-73) 

Armband: M = 15.23 (SD = 24.98, 

range: 0-124) 

Actiwatch: M = 4.46 (SD = 8.80, 

range: 0-51) 

  Armband: 

ICC = 0.13, [-0.15, 0.39] 

Actiwatch:  

ICC = 0.33, [-0.05, 0.63] 

Baandrup & 

Jennum  

Other health 

conditions 

(mental 

health 

conditions) 

Actiwatch 

Spectrum 

PSG: M = 21 (SD = 31) M = -2 (SD = 45), n.s. ICC = 0.00, [0.00, 0.19] 
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Blackwell et al 

2011  

Other health 

conditions 

(elderly men 

with 

osteoporotic 

fractures) 

Sleepwatch

-O 

PSG: M = 12.53 (SD = 20.53) 

PIM: M = 9.76 (SD = 17.27) 

TAT: M = 10.11 (SD = 22.58) 

ZCM: M = 29.88 (SD = 52.78)  

PIM: M = -2.77 (SD = 22.03) 

TAT: M = -2.43 (SD = 27.82) 

ZCM: M = 17.56 (SD = 

51.37) 

PIM: r(s) = 0.44, ICC = 0.32, 

[0.26, 0.38] 

TAT: r(s) = 0.39, ICC = 0.17, 

[0.10, 0.23] 

ZCM: r(s) = 0.36, ICC = 0.12, 

[0.06, 0.19] 

Cellini et al 2013  Healthy Actiwatch-

64 

GT3X+ 

  

  

PSG: M = 10.60 (SD = 5.88) 

Actiwatch-64: M = 14.37 (SD = 15.36), 

n.s. 

GT3X+:  

ACT M = 7.67 (SD = 5.44), n.s. 

LFE M = 7.8 (SD = 5.40), n.s. 

Actiwatch-64: M = 3.77 (SD = 

13.76), n.s. 

GT3X+:  

ACT M = -2.93 (SD = 4.98)* 

LFE M = -2.8 (SD = 4.94) * 

Actiwatch-64: ICC = 0.29 

GT3X+: ACT ICC = 0.55, 

LFE ICC = 0.56 

  

  

Chae et al 2009  Sleep 

disorders 

(OSA and 

OSA+PLMS) 

Actiwatch-L PSG: M = 5.73 (SD = 5.43) 

ACT: 

4min ACT: M = 3.59 (SD = 4.05) 

5min: M = 5.76 (SD = 5.40) 

6min: M = 16.99 (SD = 34.53) 

10min: M = 25.86 (SD = 40.72) 

  4min ACT: r = 0.44, [0.12, 

0.68] 

5min: r = 0.65, [0.40, 0.82] 

6min: r = 0.22, [-0.13, 0.52] 

10min: r = 0.29, [-0.06, 0.58] 

15min: r = 0.39, [0.05, 0.65] 
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15min: M = 44.61 (SD = 66.67) 

Chakar et al 2017 Healthy Actiwatch-2 PSG: M = 25.2 (SD = 21.8) 

ACT: M = 3.0 (SD = 2.1) 

  r = .01* 

Choi et al 2017 

(Choi et al., 2017)  

Sleep 

disorders 

(sleep 

disordered 

breathing, 

insomnia) 

Actiwatch-2 Sleep disordered breathing group, 

PSG: M = 11.7 (SD = 13.98) 

ACT: M = 8.7 (SD = 14.6), n.s. 

Insomnia group, 

PSG: M = 21.7 (SD = 18.87) 

ACT: M = 6.6 (SD = 14.67)*** 

  Sleep disordered breathing 

group, 

ICC = 0.24, [-0.50, 0.62], 

n.s. 

Insomnia group, 

ICC = 0.70***, [0.36, 0.86] 

Cole et al 1992 Controls and 

sleep 

disorders, 

mental health 

conditions 

Motionlogg

er 

Actigraph 

PSG: M = 59.2 (SD = 46.1) 

ACT: M = 50.1 (SD = 50.7), n.s. 

  r = .90*** 
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Cook et al 2017 Other health 

conditions 

(MDD) 

Actiwatch-2 

Fitbit Flex 

  

PSG: M = 19.2 (SD = 22.7) 

Actiwatch-2: M = 5.8 (SD = 7.7) 

Fitbit-Normal: M = 17.2 (SD = 14.2) 

Fitbit-Sensitive: M = 30.7 (SD = 28.6) 

Actiwatch-2: M = −13.5* 

Fitbit-Normal: M = −2.0, n.s. 

Fitbit-Sensitive: M = 11.5* 

  

  

Cook et al 2018 Sleep 

disorders 

(narcolepsy, 

hypersomnia) 

Actiwatch-2 

Jawbone 

UP3 

  

PSG: M = 16.8 (SD = 23.3) 

UP3: M = 11.7 (SD = 16.6) 

Actiwatch-2: M = 3.98 (SD = 8.61)  

UP3-PSG: M = -5.13, n.s. 

Actiwatch-2-PSG: M = -

12.9*** 

  

  

de Souza et al 

2003 

Healthy Mini 

Motion-

logger 

Basic 

Actigraph 

PSG: M = 6.9 (SD = 4.5) 

Cole: M = 8.3 (SD = 4.7) 

Sadeh: M = 9.4 (SD = 5.1)  

Cole: bias = 1.3 (SD = 3.6) 

Sadeh: bias = 2.4 (SD = 4.0) 

Cole: r = 0.69 

Sadeh: r = 0.64  

de Zambotti et al 

2015  

Healthy and 

sleep 

disorders 

Jawbone 

UP  

PSG: M = 9.1 (SD = 6.9) 

UP: M = 14.3 (SD = 10.1)** 

M = 5.2 (SD = 9.6), lower 

limit: -24.1, upper limit: 13.7 
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de Zambotti et al 

2018  

Healthy and 

sleep 

disorders 

(PLMS) 

Fitbit 

Charge 2 

Main group, 

PSG: M = 14 (SD = 11), [10, 17] 

Charge: M = 9 (SD =6), [7, 11],  

t = −2.70* 

PLMS group, 

PSG: M = 15 (SD = 13), [4, 25] 

Charge: M =8 (SD = 5), [5, 12], 

t = –1.91, n.s.  

B-A plot, 

Main group, 

Bias = 4 (SD = 9), [1, 8] 

lower limit: −14, upper limit: 

23 

PLMS group, 

bias = 7 (SD = 10), [1, 15] 

lower limit: –14, upper limit: 

27 

  

Dick et al 2010 Sleep 

disorders 

(OSA) 

SOMNOwat

ch 

PSG: M = 19 

ACT: M = 14, t(28)= −3.249*** 

  r = 0.89*** 

Dunican et al 

2018  

Representativ

e community 

samples 

GT3X+ 

Readiband 

v3  

PSG: M = 18 (SD = 18) 

ACT: M = 4 (SD = 4)* 

Readiband: M = 40 (SD = 32)* 

ACT: M = -14 (SD = 35)* 

Readiband: M = 22 (SD = 

74)* 
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Edinger et al 

2004 

Sleep 

disorders 

Mini-Mitter 

Actiwatch 

device 

PSG: M = 28.7 (SD = 41.9) 

ACT: M = 31.9 (SD = 67.1), n.s. 

  ACT: r = .87** 

Farabi et al 2017 Other health 

conditions 

(T1 diabetes) 

Actiwatch-2  PSG: M = 36.2 (SD = 18.4) 

ACT: M = 18.1 (SD = 24.3)* 

B-A plot: 

bias = −18.1 (SD = 25.3) 

lower limit: -28.1, upper: -8.1 

  

Fonseca et al 

2017  

Healthy Actiwatch 

Spectrum 

PSG: M = 15.53 (SD = 8.23) Subset of Set 2, 

ACT-PSG: M = −8.59 (SD = 

9.05) 

  

Fuller et al 2017 Healthy Actical Z-

series 

PSG: M = 16.0 (SD = 15.5) 

Actical: M = 6.3 (SD = 8.3)* 

B-A plot, 

bias = -9.5 (SEE = 15.2), 

[−13.4, 5.7] 

r = 0.24 

Gruwez et al 

2017  

Healthy Jawbone 

UP 

Withings 

Pulse 02 

PSG: M = 14 (SD = 13) 

Withings: M = 13 (SD = 4), n.s. 

UP: M = 20 (SD = 10), n.s. 

Armband: M = 11(SD = 9), n.s. 

  Withings: n.s. 

UP: n.s. 

Armband: r = 0.5* 
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SenseWear 

Pro 

Armband  

Hedner et al 2004  Healthy and 

sleep 

disorders 

(OSA) 

Watch_PAT

100 with 

actigraph 

(actigraphy-

measured 

sleep) 

In 30-s epochs, 

Normal group, 

PSG: M = 51.2 (SD = 52.6) 

Watch_PAT: M = 62.2 (SD = 33.2), 

n.s. 

Mild group, 

PSG: M = 37.8 (SD = 38.8) 

Watch_PAT: M = 54.4 (SD = 27.1)* 

Moderate group, 

PSG: M = 39.9 (SD = 36.7) 

Watch_PAT: M = 54.4 (SD = 30.8)* 

Severe group, 

PSG: M = 48.6 (SD = 57.0) 

Watch_PAT: M = 59.1 (SD = 35.2), 

n.s. 
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All groups, 

PSG: M = 43.3 (SD = 45.4) 

Watch_PAT: M = 56.8 (SD = 31.4)* 

Insana et al 2011 Disrupted 

sleep, 

otherwise 

healthy 

Actiwatch-

64 

PSG: M = 9.96 (SD = 4.64), range: 

3.13–20.00 

2-min ACT: M = 0.67 (SD = 0.69), 

range: 0.00–2.69, t(40) = 12.80*** 

5-min: M = 2.18 (SD = 2.46),  

range: 0.06–10.31, t(40) = 9.50*** 

10-min: M = 6.46 (SD = 5.60),  

range: 0.13–20.00, t(40) = 3.29** 

2-min: M = -9.29 (SD = 4.65) 

5-min: M = -7.82 (SD = 5.23) 

10-min: M = -3.49 (SD = 

6.79)  

2-min: r = .07, n.s. 

5-min: r = .01, n.s. 

10-min: r = .13, n.s.  

Kanady et al 

2011  

Healthy Actiwatch-

64 

PSG: M = 11.9 (SD = 9.6) 

high-15: M = 7.6 (SD = 12.1) 

high-40: M = 7.7 (SD = 12.3) 

med-15: M = 2.5 (SD = 4.6) 

med-40: M = 2.0 (SD = 4.8) 

low-15: M = 0.4 (SD = 1.2) 

low-40: M = 0.5 (SD = 1.4) 

B-A plot, 

high-15:  

bias = -3.13 (SD = 12.64) 

upper limit: 1.39, lower limit: -

7.65 

high-40:  

high-15: r = 0.726*** 

high-40: r = 0.319, n.s. 

med-15: r = 0.319, n.s. 

med-40: r = 0.185, n.s. 

low-15: r = 0.185, n.s. 

low-40: r = 0.396, n.s. 
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bias = -3.38 (SD = 12.79), 

upper limit: 1.27, lower limit: -

8.03 

Kang et al 2017 Healthy and 

sleep 

disorders 

(insomnia) 

Fitbit Flex 

Actiwatch-

2  

In insomnia group, 

PSG: M = 15.6 (SD = 13.6) 

ACT: M = 20.4 ± 25.6, Z =−0.51, n.s. 

Flex-N: M = 13.2 (SD = 9.8), 

t=1.22, n.s. 

In good sleeper group, 

PSG: M = 10.2 (SD = 10.2) 

ACT: M = 13.8 (SD = 16.4),  

Z =−0.03, n.s. 

Flex-N: M = 10.9 (SD = 11.2),  

Z =−0.47, n.s. 

Fitbit-Normal setting: 

in good sleepers, M = 0.7 

in insomnia group, M = -2.4  

In insomnia group, 

Flex-N: ICC = 0.673, [0.35, 

0.84] 

Flex-S: ICC = 0.403, [−0.14, 

0.70] 

ACT: ICC = 0.737, [0.48, 

0.87] 

In good sleeper group, 

Flex-N: ICC = 0.865, [0.62, 

0.95] 

Flex-S: ICC = 0.581, [−0.08, 

0.85] 

ACT: ICC = 0.586, [−0.12, 

0.85] 
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Kapella et al 2017  Other health 

conditions 

(COPD) 

Actiwatch-2 PSG: M = 34.5 (SD = 31.4) 

ACT: M = 29.0 (SD = 29.1), n.s. 

    

Kaplan et al 2012 Controls and 

other health 

conditions 

(bipolar) 

Actiwatch-

64 

Night 1 in bipolar group, 

PSG: M= 12.6 (SD = 13.7) 

ACT: M = 11.8 (SD = 14.4), n.s. 

Night 2 in bipolar group, 

PSG: M = 15.9 (SD = 17.9) 

ACT: M = 12.8 (SD = 21.0), n.s. 

Night 1 in control group, 

PSG: M = 10.8 (SD = 11.7) 

ACT: M = 18.2 (SD = 28.0), n.s. 

Night 2 in control group, 

PSG: M = 11.6 (SD = 13.4) 

ACT: M = 10.0 (SD = 15.9), n.s. 

  bipolar group, r = .33* 

control group, r = .41** 

Kosmadopoulos 

et al 2014  

Healthy Actiwatch-

64 

PSG: M = 27.1 (SD = 28.5) 

Actiwatch-64: M = 11.1 (SD = 12.3)* 

Actical: M = 5.1 (SD = 7.6)* 
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Actical Z-

series  

Kuo et al 2017 Healthy and 

poor sleepers 

Author-

developed 

actigraphy 

device 

PSG: M = 15.4 (SD = 22.2) 

ACT: M = 16.1 (SD = 16.7)  

B-A plot, 

bias = 0.74 (SD = 19.16) 

ICC = 0.53 

Laakso et al 2004 Controls and 

other health 

conditions 

(sleep 

disorders, 

motor 

disabilities) 

Actiwatch able-bodied group,  

PSG: M = 14, range: 1-73 

sleep-disordered, 

 PSG: M = 48, range: 8-258 

sleep-disordered with motor 

disabilities,  

PSG: M = 121, range: 7-606 

able-bodied group,  

M = -6 (SD = 7) 

sleep-disordered,  

M = -48 (SD = 62) 

sleep-disordered with motor 

disabilities,  

M = -152 (SD = 194) 

able-bodied group, r = 0.82** 

sleep-disordered, r = 0.73** 

sleep-disordered with motor 

disabilities, r = 0.17, n.s 

Lichstein et al 

2006  

Sleep 

disorders 

(insomnia) 

Actiwatch-

64 

PSG: M = 17.5 (SD = 12.6) 

ACT: M = 17.3 (SD = 26.8), n.s. 

  r = .30, n.s. 

Maglione et al 

2013  

Other health 

conditions 

Actiwatch-L PSG: M= 14.45 (SD = 19.24) 

ACT-0 min: M = 0 (SD = 0) 

0min: M = 14.45 (SD = 

19.24)*** 
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(Parkinson’s 

Disease) 

ACT-5 min: M = 9.70 (SD = 32.49) 

ACT-10 min: M = 13.80 (SD = 28.90) 

5min: M = 4.75 (SD = 31.07), 

n.s. 

10min: M = 0.65 (SD = 

27.44), n.s.  

Markwald et al 

2016  

Healthy Actiwatch-

64 

PSG: M = 14.7 (SD = 17.3) 

ACT: M = 2.4 (SD = 1.8)* 

Sleep Efficiency < 85%, 

PSG: M = 21.0 (SD = 23.4) 

ACT: M = 2.2 (SD = 1.4)* 

Sleep Efficiency > 85%, 

PSG: M = 9.6 (SD = 7.6) 

ACT: M = 2.6 (SD = 2.1), n.s. 

    

Matsuo et al 2016 Healthy Actiwatch-2 

MTN-210 

PSG: M = 6.20 (SD = 0.43) 

ACT80: M = 8.50 (SD = 3.09) 

ACT40: M = 12.60 (SD = 3.54) 

ACT20: M = 15.00 (SD = 3.67) 

MTN-Body: M = 21.50 (SD = 4.86)* 

MTN-Wrist: M = 29.40 (SD = 5.77)** 

ACT80: bias = 2.3,  

[−24.33, 28.93] 

ACT40: bias = 8.5, [−63.3, 

80.3] 

ACT20: bias = 8.8,  

[−22.62, 40.22] 

ACT80: r = 0.1851, n.s. 

ACT40: r = 0.2434, n.s. 

ACT20: r = 0.2518, n.s. 

MTN-B: r = 0.1626, n.s. 

MTN-W: r = 0.06577, n.s.  
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MTN-B: bias = 15.3,  

[−26.87, 57.47] 

MTN-W: bias = 23.2, 

[−27.25, 73.65]  

McCall & McCall  Sleep 

disorders 

(insomnia + 

MDD) 

Actiwatch-

64 

PSG: M = 28.4 (SD = 36.9) 

PSG-Latency to persistent sleep:  

M = 35.2 (SD = 37.6) 

ACT: M = 24.2 (SD = 28.0) 

PSG-ACT: M = -4.19 (SE = 

5.3), n.s 

Latency to persistent sleep, 

ACT: M = -11.0 (SE = 4.8)*  

PSG-ACT: r = 0.31* 

Latency to persistent sleep, 

ACT: r = 0.44***  

Mundt et al 2016 Sleep 

disorders 

(insomnia + 

fibromyalgia) 

Actiwatch-2 PSG: M = 25.73 (SD = 41.63) 

ACT: M = 46.93 (SD = 52.26)* 

  r = 0.08, n.s. 

Nakazaki et al 

2014 

Healthy FS-750 

actigraph 

PSG: M = 11.8 (SD = 2.9) 

ACT: M = 12.7 (SD = 2.7) 

  ICC = 0.403** 

O’Hare et al 2015 Healthy Actiwatch-2 PSG: M = 20 (SD = 13) 

ACT: M = 3 (SD = 2)* 

  r = 0.214, n.s. 

Paquet et al 2007 Healthy Actiwatch-L Nocturnal sleep 

PSG: M = 21.2 (SD = 33.6) 
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ACT-40 threshold: M = 7.3 (SD = 7.6) 

ACT-20 threshold: M = 12.3 (SD = 

9.4) 

Lot-reg algorithm: M = 8.0 (SD = 9.7) 

Lot-coeff algorithm: M = 9.6 (SD = 

10.6) 

Day recovery sleep, 

PSG: M = 5.5 (SD = 6.5) 

ACT-40 threshold: M = 4.1 (SD = 8.2) 

ACT-20 threshold: M = 4.5 (SD = 8.4) 

Lot-reg algorithm: M = 3.1 (SD = 6.3) 

Lot-coeff algorithm: M = 3.4 (SD = 

6.4) 

Caffeine recovery sleep, 

PSG: M = 11.7 (SD = 17.1) 

ACT-40 threshold: M = 3.5 (SD = 4.0) 

ACT-20 threshold: M = 4.3 (SD = 4.0) 

Lot-reg algorithm: M = 3.4 (SD = 4.3) 
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Lot-coeff algorithm: M = 3.7 (SD = 

4.5) 

Pigeon et al 2018 Healthy myCadian 

watch 

Actiwatch-2 

PSG: M = 42.9 (SD = 27.2) 

myCadian: M = 55.7 (SD = 55.2), n.s. 

Actiwatch: M = 3.0 (SD = 2.5)** 

Latency to persistent sleep, 

PSG: M = 47.8 (SD = 28.3) 

myCadian: M = 55.9 (SD = 55.2), n.s. 

Actiwatch: M = 35 (SD = 29.7)* 

    

Razjouyan et al 

2017  

Sleep 

disorders 

(self-

reported) 

Actiwatch-L PSG: M = 22.1 (SD = 19.2)   ACT: r = .04, n.s. 

Reid & Dawson  Healthy Z80-32k V1 

activity 

monitor 

  Overall, 

Young group: M = 6.9-20.9 

Older group: M = 6.8-11.4 

  

Rupp & Balkin Healthy Actiwatch-

64 

Baseline night, 

PSG: M = 13.7 (SD = 10.6) 

Baseline night,   
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Motionlogg

er Watch  

Motionlogger: M = 14.8 (SD = 9.6), 

n.s. 

Actiwatch: M = 6.9 (SD = 5.6)*** 

Recovery night, 

PSG: M = 5.0 (SD = 5.5) 

Motionlogger: M = 9.1 (SD = 7.0)*** 

Actiwatch: M = 4.9 (SD = 3.9), n.s. 

Actiwatch: M = −6.85 (SD = 

1.71) 

Recovery night, 

Motionlogger: M = 4.05 (SD 

= 0.87)  

Sanchez-Ortuno 

et al 2010  

Healthy and 

sleep 

disorders 

(insomnia) 

Mini-Mitter 

Actiwatch 

devices 

Night 1: 

In insomnia group, 

PSG: M = 28.92 (SD = 28.20) 

ACT: M = 17.80 (SD = 15.60) 

in normal sleepers, 

PSG: M = 10.75 (SD = 7.14) 

ACT: M = 10.43 (SD = 10.10) 

 No significant difference in 

accuracy of ACT between 

insomnia group and normal 

sleeper group. 

insomnia group, 

between-subjects: r = 

0.57*** 

within-subjects: r = 0.43** 

normal sleepers, 

between-subjects: r = 

0.80*** 

within-subjects: r = 0.41**  

Sargent et al 

2016 

Healthy Philips 

Respironics 

PSG: M = 18.3 (SD = 12.6) 

ACT: M = 17.3 (SD = 14.2) 

M = -0.9 (SD = 14.0), n.s.   
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activity 

monitor 

Scatena et al 

2012  

Healthy Actiwatch-

64 

PSG: M = 14.1 (SD = 17.5) 

ACT: M = 13.9 (SD = 18.6) 

  kendall W coefficient = 0.724 

Shambroom et al 

2012  

Healthy Actiwatch-

64 

PSG1: M = 12.7 (SD = 3.1) 

PSG2: M = 9.7 (SD = 2.0) 

ACT: M = 2.4 (SD = 0.6)* 

PSG1-LPS: M = 18.4 (SD = 4.2) 

PSG2-LPS: M = 22.4 (SD = 4.6) 

ACT: M = 9.5 (SD = 2.5)* 

  Normal PSG-SOL criteria, 

ACT-PSG1: ICC = -0.07 

ACT-PSG2: ICC = 0.13 

Latency to persistent sleep, 

ACT-PSG1: ICC = 0.40 

ACT-PSG2: ICC = 0.22 

Signal et al 2005 Disrupted 

sleep 

Actiwatch In Flight, 

PSG: M = 9 (SD = 7) 

ACT: M = 9 (SD = 12) 

Layover, 

PSG: M = 6 (SD = 4) 

ACT: M = 8 (SD = 6) 

In flight: M = 2.2, [-13.2, 17.6] 

Layover: M = 0.1, [-22.5, 

22.7]  

In flight: r = .06 

Layover: r = .40 
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Sivertsen et al 

2006  

Sleep 

disorders 

(insomnia) 

Actiwatch 

Plus 

Before treatment, 

PSG: M = 23.8 (SEM = 24.7) 

ACT: M = 11.6 (SEM = 19.6) 

After treatment, 

PSG: M = 15.7 (SEM = 20.9) 

ACT: M = 10.8 (SEM = 18.1) 

    

Slater et al 2015 Healthy GT3X+ PSG: M = 18.8 (SD = 18.0) 

Wrist-ACT: M = 11.5 (SD = 13.1)* 

Hip-ACT: M = 3.7 (SD = 9.3)* 

B-A plot, 

Wrist-ACT:  

bias = −7.3 (SD = 18.0), 

upper limit: 3.9, lower limit: -

10.7 

Hip-ACT:  

bias = −15.1 (SD = 19.4), 

upper limit: -11.5, lower limit: 

-18.8 

Wrist-ACT: ICC = 0.32 

Hip-ACT: ICC = 0.05  

Taibi et al 2013 Sleep 

disorders 

(insomnia) 

Actiwatch-

64 

PSG: M = 18.36 (SD = 12.31) 

ACT: M = 4.98 (SD = 4.80) 

M = -13.39   
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Tonetti et al 2008  Healthy Basic Mini-

Motionlogg

er 

Actiwatch  

PSG: M = 12.96 (SD = 11.95) 

Motionlogger: M = 5.61 (SD = 6.81)*** 

Actiwatch: M = 8.51 (SD = 12.01)*** 

Motionlogger: M = -7.35 

Actiwatch: M = -4.45  

  

Vallieres & Morin  Sleep 

disorders 

(insomnia) 

IM Systems 

actigraphy 

device 

Across all nights, 

PSG: M = 12.67 (SD = 2.21) 

ACT: M = 4.57 (SD = 0.73)* 

night 1: M = -14.16 (SD = 

21.59), cohen's d = -1.79 

night 2: M = -7.01 (SD = 

11.77), cohen's d = -2.50  

  

Wang et al 2008  Healthy and 

sleep 

disorders 

(OSA) 

Actiwatch-

64 

Overall, 

PSG: M = 24.74 (SD = 29.91) 

ACT: M = 27.60 (SD = 53.77), n.s. 

Non-OSA, 

PSG: M = 39.60 (SD = 37.58) 

ACT: M = 41.70 (SD = 75.20), n.s. 

OSA, 

PSG: M = 11.23 (SD = 9.79) 

ACT: M = 14.77 (SD = 17.70), n.s. 

  Overall: ICC = 0.35 

Non-OSA: ICC = 0.20 

OSA: ICC = 0.31  
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Zinkhan et al 

2014  

Community 

sample 

SOMNOwat

ch plus 

GT3X+  

PSG: M = 18.6 (SD = 18.3) 

SOMNO-wrist: M = 10.2 (SD = 18.7) 

SOMNO-hip: M = 0.4 (SD = 2.7) 

GT3X+: M = 12.5 (SD = 46.1) 

SOMNO-wrist: M = 7.7 

(SD = 25.9) 

SOMNO-hip: M = 16.7  

(SD = 18.2) 

GT3X+: M = 6.4 (SD = 46.8)  

  

Actigraphy plus a Physiological Signal 

Study Sample 

Type 

Type of 

Device 

Device Tested Results 

Sleep Onset Latency Means Discrepancy between 

PSG and device, or 

Bland-Altman Plot 

statistics 

Correlations 

Ajilore et al 

1995  

Healthy actigraphy 

and EOG 

Nightcap  Nightcap: M = 21 (SD = 24) 

PSG: M = 14 (SD = 12) 

t = 1.37, n.s. 

    

Burnett et al 

1985  

Sleep 

disorders 

actigraphy 

and ECG 

Vitalog PMS-8 Night 1, 

PSG: M = 23 (SD = 19) 

PSG-N2: M = 33 (SD = 20) 
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Device Manual scoring: M = 26 (SD 

= 21) 

Device Automatic scoring: M = 34 

(SD = 42) 

Night 2, 

PSG: M = 17 (SD = 12) 

PSG-N2: M = 24 (SD = 17) 

Device Manual scoring: M = 22 (SD 

= 19) 

Device Automatic scoring: M = 22 

(SD = 19) 

Edinger et al 

2004  

Sleep 

disorders 

actigraphy 

and EOG 

REMview PSG: M = 28.7 (SD = 41.9) 

REMview: M = 59.4 (SD = 59.8)* 

  REMview: r = .82** 

Fietze et al 

2015  

Sleep 

disorders 

actigraphy 

and EEG 

SOMNOwatch 

Study A: F4-M1 

EEG channel 

Study A, 

PSG: M = 26 

SOMNOwatch: M = 29 

Study B, 

PSG: M = 17 

B-A plot, 

Study A, 

bias = 3 (SD = 6), 

lower limit: -10, upper: 16 

Study B, 

Study A, 

r = 0.98*** 

Study B, 

r = 0.87***  
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Study B: EEG, 

chin EMG and 

EOG  

SOMNOwatch: M = 21  bias = 4,  

lower limit: -12, upper: 20 

Finan et al 

2016 

Healthy actigraphy 

and EEG 

X4 Sleep Profiler 

headband 

PSG: M = 8.04 (SD = 7.84) 

Sleep Profiler Automatic algorithm: 

M = 5.00 (SD = 5.52)* 

Sleep Profiler Manual scoring: M = 

4.82 (SD = 6.18)* 

  Sleep Profiler 

Automatic algorithm: 

r = .59* 

Sleep Profiler 

Manual scoring: r = 

.45, n.s. 

Fonseca et al 

2017  

Healthy actigraphy 

and PPG 

Device containing 

PPG and 

accelerometer  

PSG: M = 15.53 (SD = 8.23) M = −6.80 (SD = 7.69), 

lower limit: −21.88, upper 

limit: 8.28 

Subset of Set 2, 

M = −7.48 (SD = 6.64) 

  

Hedner et al 

2011 

Controls 

and 

sleep 

disorders 

PAT Watch_PAT100 

system (PAT-

measured sleep) 

In epochs, 

PSG: M = 57 (SD = 31) 

Watch-PAT: M = 43 (SD = 45)* 

  ICC = 0.57** 
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Physiology-based Devices 

Study Sample Type Type of 

Device 

Device 

Tested 

Results 

Sleep Onset Latency 

Means 

Discrepancy between PSG and 

device, or Bland-Altman Plot 

statistics 

Correlations 

Cantero et al 

2002  

Healthy EOG Nightcap      r = 0.98* 

Cellini et al 

2015 

Healthy EEG  Zeo wireless 

system 

PSG: M = 9.85 (SD = 6.11) 

Zeo: M = 7.82 (SD = 5.68)*  

B-A plot, 

Bias: -2.03 (SD = 4.95) 

upper limit: -0.26, lower limit: -

3.80 

ICC = 0.53*** 

Griessenberg

er et al 2013  

Controls and 

sleep disorders 

EEG  Zeo wireless 

system 

PSG: M = 10.79 (SD = 

11.18) 

  r = .072, n.s. 

Kaplan et al 

2014 

Controls and 

sleep disorders 

EEG  Zmachine   B-A plot, 

bias = −5.64, (SD = 12.12) 

r = 0.962 

Kosmadopou

los et al 2014  

Healthy EEG Zeo wireless 

system 

PSG: M = 27.1 (SD = 28.5) 

Zeo: M = 11.0 (SD = 11.0)* 
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Lucey et al 

2016 

Sleep 

disorders 

EEG Sleep 

Profiler 

PSG: M = 16.3 (SEM = 3.9) 

Sleep Profiler: M = 15.1 

(SEM = 2.8) 

  ICC = 0.67 

Markwald et 

al 2016  

Healthy EEG Zeo wireless 

system 

PSG: M = 14.7 (SD = 17.3) 

Zeo: M = 7.3 (SD = 9.5)* 

Sleep efficiency < 85%, 

PSG: M = 21.0 (SD = 23.4) 

Zeo: M = 7.3 (SD = 10.9)* 

Sleep efficiency > 85%, 

PSG: M = 9.6 (SD = 7.6) 

Zeo: M = 7.4 (SD = 8.6), n.s. 

    

Myllymaa et 

al 2016  

Controls and 

sleep disorders 

EEG Frontal 

EEG, right-

EOG, ECG 

and pulse 

oximetry 

PSG-N1: M = 16.2 (SD = 

14.3) 

Device: M = 15.4 (SD = 

12.7), n.s. 

PSG-N2: M = 27.9 (SD = 

18.6) 

N1-Device: M = -0.8 (SD = 12.8), 

n.s. 

N2 Device: M = 0.4 (SD = 13.3), 

n.s.  

N1-Device: 

ICC = 0.548 

N2-Device: 

ICC = 0.771 
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Device: M = 28.3 (SD = 

20.5), n.s. 

Senny et al 

2012  

Sleep 

disorders 

jaw 

movements, 

oxygen 

saturation, 

nasal airflow 

Somnolter 

device 

records 

nasal 

airflow, 

SpO2, body 

position and 

jaw 

movements 

  Overall, 

PSG-30s epoch: M = 33.1 (SD = 

77.4), [14.7, 51.7]* 

PSG-15min epoch: M = 4.2 (SD = 

59.6), [-20.4, 28.8] 

OSA group, 

PSG-30s epoch: M = 36.1 (SD = 

88.7), [6.6, 65.4]* 

PSG-15min epoch: M = -1.4 (SD 

= 59.6), [-32.4, 34.8] 

Insomnia group, 

PSG-30s epoch: M = 29.7 (SD = 

68.2), [-4.7, 64.1]* 

PSG-15min epoch: M = 8.8 (SD = 

65.7), [-44.5, 62.1] 

Other group, 
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PSG-30s epoch: M = 33.3 (SD = 

59.5), [-6.0, 72.0]* 

PSG-15min epoch: M = 11 (SD = 

33.9), [-33.3, 55.1] 

Shambroom 

et al 2012  

Healthy EEG Zeo wireless 

system 

PSG1: M = 12.7 (SD = 3.1) 

PSG2: M = 9.7 (SD = 2.0) 

Zeo: M = 7.8 (SD = 2.4), n.s. 

PSG1-LPS: M = 18.4 (SD = 

4.2) 

PSG2-LPS: M = 22.4 (SD = 

4.6) 

Zeo: M = 17.4 (SD = 4.0), 

n.s. 

  Normal PSG-SOL 

criteria, 

Zeo-PSG1: ICC = 

0.42 

Zeo-PSG2: ICC = 

0.50 
 

Tonetti et al 

2013  

Healthy EEG  Zeo wireless 

system 

PSG: M = 22.68 (SD = 

13.74) 

Zeo: M = 15.86 (SD = 

13.05), n.s. 

    



269 
 

White et al 

1995  

Sleep 

disorders 

Various 

physiological 

measures 

NightWatch 

System 

PSG: M = 15 (SE = 3) 

NightWatch: M = 14 (SE = 2) 

   r = 0.54*, [.22, .76]  

Zhang et al 

2014  

Healthy EEG  Single 

frontal 

electrode in 

headband 

35/40 (87.5%) of sleep 

onsets detected within 

transition from N1-N2 sleep 

    

Behaviour-based Devices 

Study Sample Type Type of 

Device 

Device 

Tested 

Results 

Sleep Onset Latency Means Discrepancy between 

PSG and device, or 

Bland-Altman Plot 

statistics 

Correlations 

Hauri 1999 Controls and 

sleep 

disorders 

(insomnia) 

Depressio

n of a 

switch 

Sleep switch 

device 

Switch: M = 32.4 (SD = 30.7) 

PSG-N1: M = 17.3 (SD = 13.0)** 

PSG-N2: M = 22.9 (SD = 16.8), 

n.s. 

N1 sleep: M = 15.1 

N2 sleep: M = 9.5 

solid sleep: M = -1.8  

N1 sleep: r = .60 

N2 sleep: r = .55 

solid sleep: r = .98  
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PSG-solid sleep: M = 34.2 (SD = 

33.3), n.s. 

Scott et al 

2017  

Healthy Response 

to a 

stimulus 

Sleep On 

Cue 

smartphone 

application 

  PSG-N1: M = 3.17 (SD = 

3.04) 

PSG-6 epochs of sleep:  

M = 2.75 (SD = 3.11) 

PSG-N2: M = 0.81 (SD = 

1.96) 

PSG-N1: r(s) = 0.79*** 

PSG-6 epochs of sleep: 

r(s) = 0.81*** 

PSG-N2 sleep: r(s) = 

0.92*** 

 [] contain 95% confidence intervals, * p < .05, ** p < .01, *** p < .001, n.s. no significant difference. 

ACT = actigraphy, COPD = Chronic obstructive pulmonary disease, ICC = intra-class correlation, M = mean, PAT = peripheral arterial tone, PSG = 

polysomnography, LFE = low-frequency extension algorithm option, LPS = latency to persistent sleep, N1 = Non-rapid eye movement Stage 1, N2 = 

Non-rapid eye movement Stage 2, n.s. = not significant, OSA = obstructive sleep apnea, PIM = proportional integration mode, PLMS = Periodic limb 

movements of sleep, SD = standard deviation, SE = standard error, SOL = sleep onset latency, TAT =time above threshold, ZCM = zero-crossing 

mode 
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Appendix 5. 

Instructions to participants about operating THIM 

To ensure that participants understood how to correctly use the device, they 

practiced undergoing a sleep onset trial whilst awake Research assistants read the 

following instructions to participants, demonstrating each action: 

“To begin a trial, double-tap THIM by moving your index finger to meet your 

thumb twice. THIM will glow blue to signal that it has started the trial. THIM will start 

emitting low intensity vibrations. When you feel these vibrations, respond to THIM by 

giving a big finger twitch response, similar to the double-tap movement, but you only 

twitch your finger once. After a while, THIM will emit a very long, high intensity alarm 

vibration to signal the end of the trial. To turn this alarm off, double-tap THIM. THIM 

will glow a different colour other than blue, typically green, to signal that it has ended 

the trial. During Night 2 and Night 3, we will ask that you complete a very short 

questionnaire at this point at the end of the trial. Once you are ready to begin the 

next trial, double-tap THIM again and it will glow blue to signal that it has started. 

This process will be repeated for four hours of testing.” 

After hearing these instructions, participants were required to respond to five 

vibratory stimuli successfully with the appropriate finger taps. If participants did not 

successfully respond to two consecutive vibrations – typically by not tapping the 

device with enough force, or by responding to the stimulus too late – the device 

would administer the high intensity alarm vibration. If this occurred, participants were 

required to commence another trial and respond to five consecutive vibrations until 

they were able to do so without activating the high intensity alarm vibration. 

Participants were then prompted to not respond to the next two vibratory stimuli so 

that they could experience the high intensity alarm vibration and practice ending the 
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trial with a double-tap response.  

Once the research assistant was certain that the participant understood the 

instructions and could operate THIM successfully, they stopped practicing. 

Participants repeated any aspects above and research assistants answered any 

questions, if necessary. 

  



273 
 

Appendix 6. 

Table A6. Good versus poor sleeper comparison. 

 

Interaction Terms 
Inferential Statistics 

F dfs p 

Five-way interaction (night, sleeper status, sleep stage, time and behavioural 
response) 

Delta, % 0.73 12, 963.95 .72 

Theta, % 0.39 12, 1011.68 .97 

Alpha, % 0.47 12, 1016.81 .93 

Sigma, % 0.83 12, 1040.12 .62 

Beta, % 0.53 12, 1026.23 .90 

Four-way interaction (sleeper status, sleep stage, time and behavioural response) 

Delta, % 0.58 12, 965.76 .86 

Theta, % 0.82 12, 1016.65 .63 

Alpha, % 1.03 12, 1022.25 .42 

Sigma, % 1.11 12, 1048.06 .35 

Beta, % 0.92 12, 1032.58 .52 

Note: as a reminder, the fixed effects were Night (Night 2, Night 3), Sleeper Status 

(good, poor sleeper), sleep stage (wake, N1 or N2), time (the five-second epochs) 

and behavioural response (response/no response). 
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