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Abstract 
 
Word prediction has seen a vast range of applications over the years including 
SMS smart-messaging systems, and recently, in Assistive Technologies. The 
primary intention of word prediction is to reduce typing time, and while most 
prediction systems in Assistive Technologies achieve this goal, there is a 
requirement for the user to type using a keyboard. This is difficult for many 
disabled persons, but borders impossible for users suffering with severe speech 
or motor impairments. To enable such persons to type, a user interface is 
proposed in which the user is able to type by using predictions – at least from the 
users’ perspective – eliminating the requirement of a keyboard. This interface is 
part of a broader project on Unconscious Computer Interface where Brain 
Computer Interfaces are used to detect implicit intention rather than requiring 
explicit action.   
 
The aim of this project was to build a word-prediction model for the 
aforementioned user interface. Most word prediction models are based on 
statistical language models, in particular the n-gram model. Many 
improvements have been suggested to improve upon its performance, but little 
focus has been placed on user-based language models.  Thus, the project aimed to 
address this research gap by building a user-oriented word-prediction model that 
is capable of generating predictions based largely on the user than the language.  
 
The model was designed as a back-off language adaptation model, drawing upon 
dynamic and static corpora to generate the predictions. Baseline studies 
validated the model as a word prediction tool, as well as identifying design 
elements with potential to improve performance. It is anticipated that the model 
will be integrated with the proposed Unconscious Computer Interface in future.    
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1.   Introduction 
 
Speech impairments and a lack of motor control seen in severe disabilities make 
communication a difficult if not impossible task. To enable such persons to 
communicate, for example through letters or documents, significant focus has 
been placed on the development of Brain Computer Interfaces (BCI). BCIs are an 
emerging Assistive Technology (AT) that are primarily used for quadriplegics 
and persons with related diseases in which there is either partial or complete 
paralysis of, part of, or of the whole body. BCIs utilize the user’s brain signals as 
the basis for communication and selection (Schalk et al., 2004). The most popular 
BCI for document-production is the P300 Speller which uses an alphanumeric 
grid. The rows and columns of the grid are successively highlighted and once the 
row or column contains the target letter, a P300 signal is elicited in the user’s 
brain. This signal is then processed and used to identify the target letter that the 
user wished to type (Farwell and Donchin, 1988).  
 
The difficulty with the P300-Speller and other similar word-typing BCIs is the 
time taken to produce words (almost a few minutes) and their reliance on 
character-by-character typing (Farwell and Donchin, 1988). This often distracts 
the user from the overall content they wish to produce, and therefore such 
devices rarely see the completion of complete and formatted documents or other 
office-related tasks.  
 
A way to reduce the typing time and move from the character-level to a word-
level is word prediction. Predictive communication is not uncommon and has 
found its uses in a vast range of fields, from speech and handwriting recognition 
to SMS-smart messaging systems and recently, Augmentative and Alternative 
Communication (AAC), a form of communication AT for disabled persons. In 
most of these applications, the predictions are displayed as a list from which the 
user can select a prediction, or manually type the word.  
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The final interface as part of the larger project (henceforth known as the 
Unconscious Computer Interface or, UCI), aims to provide an interface which in 
itself, is an integration of word-prediction in a BCI-like AAC device. Specifically, 
the interface will contain a list of continuously-generated stream of predictions 
and allow a user to type purely by using these predictions. The user uses their 
eyes to navigate through the predictions, with relevant predictions based on 
where the eye is looking becoming larger in size and the others becoming smaller 
and smaller until they are greeked out – i.e., the text is reduced to a simple grey 
line or a thick patterned line in the case of multiple texts. It is anticipated with 
this interface that the requirement of any keyboard is removed and the typing 
time significantly reduced.  
 
Word prediction is commonly achieved by the use of statistical language models 
(SLM), which determine the likelihood of a sequence of words and assign an 
associated probability to it. The most extensively used language model for word 
prediction is based on the n-gram model which estimates the probability of a 
word given its prior history, typically drawing up the last n-1 words to make this 
approximation (Manning and Schütze, 1999). The three common n-gram models 
used are the unigram (unconditioned representing a marginal or prior 
distribution), the bigram (conditioned on the last term) and the trigram 
(conditioned on the last two terms). The conditional probabilities of the word 
sequences are usually estimated with respect to their relative frequencies in the 
text, along with additional smoothing techniques to ensure an accurate 
probability distribution (Manning and Schütze, 1999).  
 
Whether writing emails, reports, or simply surfing the web, we are heavily 
influenced by our writing style, our preferred vocabulary and the task at hand 
(email, report-writing). It is evident therefore, that building a word prediction 
model that is tailored around the user rather than simply the language can 
provide lengthier, more accurate and relevant word predictions.  
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Hence, the aim of this project is to build a user-based word prediction model, 
capable of predicting words based on a user’s interests, style of writing and the 
current task being undertaken. It is anticipated that the developed word-
prediction model will be used in combination with the UCI in the future, and 
emerge as an innovative and useful AAC device.   
 
The thesis first establishes a comprehensive background of both relevant 
language models and AT for quadriplegics and locked-in syndrome patients, and 
a literature review outlining current methods for improving these language 
models and their applications into existing AT. It then moves on to the 
implementation of the designed model, the experiments conducted to validate its 
feasibility, the results obtained, a discussion of these results and lastly, 
conclusions derived and future work involved.  
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2.   Background 
2.1 Language Model 
Predictive communication is commonly achieved by the use of statistical 
language models. Language models were initially developed for speech 
recognition applications, but have since then been used for other natural 
language processing (NLP) tasks including optical character recognition and 
spelling correction (Manning and Schütze, 1999).  
 
The basis of a language model is to determine the likelihood or joint probability 
of a sequence of words 5 /3,/4 …/0 ,	and assign an associated probability to it. 
There are many ways in which the probability of the sequence of words can be 
calculated, including decomposing the joint probability into a product of 
conditional probabilities (chain rule), 
 

5 /3,/4 …/0 = 5 /3 5 /4 /3 5 /: /4/3 …5 /0 /3
023  

 
The chain rule of conditional probabilities conditions each successive word 
against the n preceding words, referred to as the word history. However, this 
process is computationally inefficient given the excessive number of parameters 
required. A well-defined method of reducing the number of parameters is by 
reducing the word history on which the word sequence is conditioned on. This 
concept is reflected in the Markov Assumption which states that the transition 
from one state to the next in a first-order finite state Markov Chain is dependent 
only on the previous state and not on any other prior states. Thus, under the 
Markov Assumption, the word history simply reduces to the last n -1 words 
(Manning and Schütze, 1999).  
 

5 /0 /3
023 ≈ 5 /0 /02<=3

023                                                                                  
 
 

(2.1) 

(2.2) 
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This model is called the n-gram model. The most common n-gram models used 
are the unigram (unconditioned representing a marginal or prior distribution), 
bigram (conditioned on the last term) and trigram (conditioned on the last two 
terms).  
 

2.1.1 Estimation 
 
Different estimation techniques can be used to estimate the probability of the 
word sequences, with the most straightforward and crudest form of estimation 
being the maximum likelihood estimate (MLE, Manning and Schütze, 1999). The 
MLE for an event ∈ is the ratio between the number of times the event occurs in 
a training data and all the samples in the training data. That is, the relative 
frequency of the event, or in this case –word, in the training data.  
 

Example   
 
If we have a unigram model, i.e., 5(/3), the MLE of /3 would be (Manning and 
Schütze, 1999) 
 

5 /3 =
@(/3)

A
 

 
Similarly, for bigram and trigram models, the maximum likelihood estimate of 
(/0/023) and (/0/023/024) would be 
 

5(/0|/023) =
@(/0/023)

@(/023)
 

 

5(/0|/023/024) =
@(/02<=3

023 /0)

@(/02<=3
023 )

 

 
 
 
 

(2.3) 

(2.4) 

(2.5) 
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The shortcoming of this approach is that there is severe bias towards observed 
events and severe bias towards unseen events (zero probability assigned). That 
is, words that are found commonly in texts such as ‘the’ are assigned a large 
probability as they are seen often, where as more unique words that are unlikely 
to be seen in normal text are assigned a zero probability, i.e., there is absolutely 
no chance that this word will appear in any text. This is of course inaccurate, 
and to counter this bias and ensure there are no zero probabilities, smoothing 

was introduced. The general approach to smoothing is to discount some 
probability from observed events and redistribute it to unseen events (Manning 
and Schütze, 1999).  
 

2.1.2 Smoothing 
 

2.1.2.1 Good Turing Discounting 

 
Good-Turing discounting is based on the Good Turing formula (Good, 1953), 
where the modified count for an event occurring r times is discounted using the 
following discount coefficient  
 
Equation 1 Good-Turing Discount Coefficient 

(* = (B + 1)
+*=3

B. +*
 

 
 
where +* corresponds the number of events that occurred B times in training. 
This method requires that  +* > 0 and therefore should only be used for events 
that occurred B or more times (B is arbitrary).  
 

2.1.2.2 Laplace Smoothing 

 
Laplace Smoothing simply adds one to each observed count. The modified count 
is therefore 
 

(2.6) 

(2.7) 
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H∗ = (@ /3 + 1)
A

A + J
 

 

where <

<=K
 is the normalisation factor (V is the vocabulary size and N is the 

number of tokens). The discounting coefficient is (Jurafsky and Martin, 2000). 
 

() =
H∗

H
 

 
 

2.1.2.3 Absolute Discounting 

 
In absolute discounting, the event count is discounted by some constant value 
%	(0 < % < 1). In this case, it has least effect on the higher-counts than the lower-
counts. The discount coefficient is therefore defined as (Ney et al., 1994) 
 

B∗ =
B − %

B
 

 
The constant value %	can be chosen using using held-out estimation  
 

2.1.2.4 Kneser-Ney Smoothing 

 
Kneser-Ney Discounting extends the absolute discounting method by providing a 
more refined probability distribution for the lower order n-grams by considering 
the number of contexts in which the word appears in. That is, the number of 
times a word /$ completes a bigram (expressed as  {{/$23: H /$23/$ > 0}|). 
Normalizing this count with the total number of bigrams therefore gives the 
following probability for word /$ (Martin and Jurafsky, 2000). 
 
 

5 /$ =
|{/$23: H /$23/$ > 0}|

(/Q23, /Q ∶ H /Q23/Q > 0 |
 

 

(2.8) 

(2.9) 

(2.10) 
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2.1.2.5 Model Combination 

 
Discounting methods are all a form of smoothing in which probabilities are 
artificially assigned to unseen events to eliminate zero probabilities. Another 
smoothing technique that is used is to combine models. For example, if there is 
no evidence of a particular trigram in the training text when estimating the 
probability 5(/0|/024/023), then its probability can be estimated by a bigram 
instead i.e., 5 /0 /023  or even a unigram 5(/0). Alternately, trigram, bigram 
and unigram probabilities can all be combined to allow the model to have a 
broader spectrum of the contexts available.  
 

2.1.2.5.1 Back-off Modelling 
 
Back-off modelling is a technique in which the model ‘backs-off’ to lower-order n-
grams when the required n-gram has 0 counts. Back-off modelling with a 
discounting factor was introduced by Katz (1987), in which a discounted 
probability 5∗ is used for seen n-grams, otherwise the algorithm ‘backs-off’ to a 
lower order n-gram model. The back-off algorithm is therefore computed as   
 

5ST /0 /02<=3
023 =

5∗ /0 /02<=3
023 																			UV	@ /02<=3

023 > 0

W /02<=3
023 5ST /0 /02<=4

023 											XYℎ[B/U\[
 

 
where W is the back-off weight used to distribute the discounted probability mass 
to the lower-order n-grams. Katz smoothing is often used in conjunction with 
Good-Turing smoothing to provide estimates for the 5∗  and W values (Martin 
and Jurafsky, 2000). 
 
 
 
 

2.1.2.5.2 Linear Interpolation 
 

(2.11) 
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In linear interpolation, different order n-grams are combined together using 
linear interpolation. Thus, the probability estimate for 5(/0|/024/023) can be 
computed as 
 

5 /0 /024/023 = %35 /0 /024/023 + %45 /0 /023 + %:5(/0) 
 
 where: 

%$ = 1

$

 

 
  
Linear interpolation is not constrained to only combining n-gram models, but 
rather all types of language models. The general form for linear interpolation of 
language models is 
 

5$0]^*_`ab]^c /0 /024/023 = %$

0

$d3

5$ /0 /024/023  

 
The parameter coefficients % are typically set using a held-out corpus, choosing 
values that maximize the likelihood of the held-out corpus. One method of 
obtaining the optimal parameter coefficients is the iterative expectation-
maximization (EM, Dempster et al., 1977) algorithm.  
 

2.1.2.5.3 Maximum Entropy 
 
Maximum Entropy (Berger et al., 1996) models do not combine the models 
themselves, rather they combine selected features from the individual models 
into one model. The main advantage of this method is the ability to create an 
overall model that is essentially a combination of the strengths of each 
individual model. The main disadvantage is the computational inefficiency.  
 
 

(2.12) 

(2.13) 
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2.1.3 Language Model Adaptation 
 
Studies have shown that n-gram models trained on relevant domain-specific 
training sets and applied to similar domain-specific test sets tend to be more 
accurate than using generic training sets applied to a domain-specific test set. 
For example, in modelling casual phone conversation, it was found better to use 
a training set of ‘text has been removed due to copyright reasons’ (Bellegarda, 
2004, p. 94). Language model adaptation aims to capture this by considering two 
main text corpora – the smaller adaptation or dynamic corpus A, and the larger 
static background corpus B. The general framework for SLM adaptation is shown 
in Figure 2.1 (Bellegarda, 2004). From this framework, the idea is to use Corpus 
A to “adapt” the background corpus B based on ‘task-specific knowledge’ that can 
be derived from Corpus A that is, get a task-specific SLM from Corpus A and 
combine it with the static background SLM from Corpus B to output an overall 
adapted SLM.  
 
 

 

 

 

 

 

 

 

 

 

Figure 2.1 Framework for SLM Adaptation (Bellegarda, 2004) 

 
There are several ways of combining these two SLMs including linear 
interpolation and back-off modelling. The linearly interpolated model combines 
the dynamic and SLM as,  
 

P /f ℎf = 1 − % 5Bg /f ℎf + %5BS /f ℎf 	 (2.14) 

Figure has been removed 
due to copyright 
restrictions 



 22 

 
where the interpolation coefficients	% are found using the EM algorithm and 

5Bg /f ℎf  and 5BS /f ℎf  are the n-gram estimates based on Corpus A and 

Corpus B respectively. 
 
Meanwhile, the back-off SLM adaptation essentially backs-off from the dynamic 
SLM estimate to the static estimate depending on the frequency count. This is 
referred to as the fill-up technique, with the implementation 
 

P /f ℎf =
5g /f ℎf� 			UV	@g ℎf/f ≥ i

j5S /f ℎf 	XYℎ[B/U\[
 

  
where i	is some threshold for frequency counts (for the designed model, 0) and j 
is the back-off coefficient.  
 

2.1.4 Language Model Evaluation 
 
2.1.4.1 Perplexity 

 
A common method to evaluate a language model is to measure the perplexity of 
the trained model on some unseen test-data (Martin and Jurafsky, 2000). 
Perplexity can be defined as inverse probability of a test set given by the 
language model, normalized by the number of words in the test data. The 
equation for perplexity for a bigram model is  

55 k =
1

5(/$|/$23)

<

$d3

 

 
Hence, the smaller the perplexity, the larger the probability assigned to the test 
data and the better the model. 
 

2.1.4.2 Keystroke Savings 

 

(2.15) 

(2.16) 
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Keystroke savings rate (KSR) is a commonly used method for word prediction 
language models. As the name suggests, keystroke savings rate is a measure of 
the number of keystrokes saved when typing some unseen test data (Trnka and 
McCoy, 2008). The larger the KSR, the more accurate the predictions and the 
better the model. The equation for keystroke savings is 
 

l,m = 	
iXYno	-+Y[B[(	@ℎnBnHY[B\ − l[p\	5B[\\[(	

iXYno	-+Y[B[(	@ℎnBnHY[B\
	×	100% 

 
2.1.5 Stopping and Stemming 
 
Stopping and stemming are popular information retrieval (IR) techniques 
(Baeza-Yates and Ribeiro-Neto, 1999). Stopping refers to the elimination of 
common words such as ‘for’, ‘and’ and ‘a’ in a query with the argument that these 
words do not contribute to the general meaning. This argument is also applied to 
words that have multiple prefixes or suffixes i.e., ‘like, likely, likeable’ etc. 
Stemming, therefore, eliminates the prefixes and suffixes of such word to 
retrieve the ‘stem’ of the word, in this case, ‘like’. These techniques can be used 
to generate predictions based on semantic relations given that the function 
words have been filtered leaving only content words.   
 
2.2 Application 

2.2.1 Spinal Cord Anatomy 
 

This section explores existing AT devices available for patients with severe 
disabilities. These disabilities often stem from spinal cord injuries (SCI) or 
inherent neurological disorders. The first part of this section looks at introducing 
basic anatomy to understand the underlying causes of SCI and other relevant 
disorders, before moving on to existing AT.   
 
The spinal cord is the largest nerve in the body that extends from the brain down 
to the waist. It is protected by sections of bone referred to as vertebrae, which 
together, make up the spinal column. The vertebrae are generally grouped as 

(2.17) 
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cervical (upper region), thoracic (middle region), and lumbar and sacral (lower 
regions).  
 
The purpose of the spinal cord is to act as a communication channel between the 
brain and the body (Shepherd Centre, 2011). Voluntary motion is achieved by the 
conduction of nerve impulses from the brain to the spinal cord, and then to the 
body via peripheral nerves to initiate movement. Similarly, sensory function is 
achieved by carrying sensory stimuli from the body, through the spinal cord and 
to the brain to analyse the various sensations (pain, temperature, touch etc.,) 
(Brodwin et al, 2009). Each segment of the spinal cord is responsible for 
innervating a different region of the body. Figure 2.2 illustrates the motor-
sensory map of the spinal cord.  
 
 

 

 

 

 

 

 

 

 

 

Figure 2.2 Motor and Sensory Map of the Spinal Cord (Spinal Hub. 2016) 

 
 

2.2.2 Quadriplegia 
 
SCI occurs when there is any injury or damage to the spinal cord affecting the 
communication channel between the brain and the rest of the body. This affects 
the sensory, motor and autonomic function below the level of injury. Generally, 
the higher the injury on the spinal cord, the more dysfunction the individual will 
face (Shepherd Centre, 2011).  
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Quadriplegia is a type of SCI in which the cervical nerves are damaged. It is 
typically categorised as paralysis of the upper and lower extremities, however 
injury to the different cervical nerves will have a varying effect on the paralysis, 
and other bodily functions. Injury to the high cervical nerves (C1-C4) is the most 
severe, causing partial or complete loss in the arms, hands, trunk and legs, as 
well as respiratory, speech, bowel and bladder impairment. Damage to the lower 
cervical nerves is usually not as severe, with some individuals retaining some 
level of movement in hands and shoulders, as well as breathing and speech 
(Shepherd Centre, 2011). The causes of quadriplegia can be due to traumatic 
injuries such as car accidents, falls or sport-related, or illnesses including cancer, 
stroke, cerebral palsy and multiple sclerosis (Shepherd Centre, 2011).  
 

2.2.3 Locked-in Syndrome 
   
Locked-in syndrome is a rare neurological disorder in which the individual is 
completely paralysed of all voluntary movement, excluding movement of their 
eyes. The primary cause of locked-in syndrome is damage to a specific part of the 
brainstem called the pons, specifically the ventral pons. Damage to the ventral 
pons in turn damages the corticospinal tracts causing quadriplegia (Laureys et 
al., 2005).  
 

2.2.4 Existing Assistive Technologies 
 
To enable persons with severe speech or motor impairments such as 
quadriplegics or locked-in syndrome patients to communicate, significant 
research has been focused on developing appropriate AT. Examples of such 
technologies range from simple switches, sticks or pointers that can be used by 
the hand, tongue, chin etc., to gaze and motion tracking interfaces using 
electrooculography (EOG), electromyography (EMG) and electroencephalogram 
(EEG). Amongst these, the communication devices applicable to both locked-in 
syndrome patients and quadriplegics are the interfaces using EOG, EMG and 
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EEG (Guerreiro, 2007). 

Broadly, all three technologies essentially use the electrical signals produced by 
the eye, muscle or brain respectively to control an external device. For the 
purpose of this project only EEG-based technologies will be considered 
henceforth, as they are an established AT for text-production i.e., the P300-
Speller.  

2.2.5 Brain Computer Interfaces 
 
The most common application of EEG-based AT is the BCI. The basic design of a 
BCI is to first acquire the brain signals using electrodes, then process the brain 
signals to extract features of interest relating to the user’s intention, and finally 
translate the features into device commands (Schalk et al., 2004). A common 
feature of interest used to identify the user’s intent is the P300 event-related 
potential (ERP). The P300 signal, characterised by its positive-inflection with a 
latency of 300 msec, is elicited using the ‘odd-ball paradigm’ in which two stimuli 
are presented in a random order with one appearing frequently and the other 
infrequently. Studies have not only shown that these infrequent stimuli elicit a 
P300 signal in the brain, but also found a direct relationship between the 
amplitude of the P300 signal and the relevancy of the events (Farwell and 
Donchin, 1988).  
 
The P300-Speller is word-typing BCI which exploits the P300 signal to identify 
the target letter that the user wishes to type. The P300-Speller consists of an 
alphanumeric grid containing the alphabet, along with other numbers and 
characters (Figures 2.3-2.4). The rows and columns of the matrix are flashed 
randomly and the user focuses on the target letter they wish to type. The row 
and column containing the target letter are the ‘relevant’ events while the 
remaining row and columns are the ‘irrelevant’ events. When the row or column 
containing the target letter is flashed, a P300 response is elicited in the brain. 
The amplitude of the P300 signal is detected and analysed, and the target letter 
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is identified as the letter at which the intersection of the row and column yielded 
the largest P300 signal (Farwell and Donchin, 1988).  

 
 
 

 

 

 

 

 

 

 

Figure 2.3 P300-Speller, Vertical Flashes (Manyakov et al., 2011) 

 
 
 
 
 
 
 
 
 
 

Figure 2.4 P300-Speller, Horizontal Flashes (Manyakov et al., 2011) 
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3 Literature Review 
 
This literature review has two main focuses, a computational linguistic section 
and a biomedical application section. Both sections are based on language 
models, where the former section explores techniques utilized in improving a 
standard language model for word prediction, and the latter identifies the 
applications of language models in AT.    

 
3.1 Computational Linguistics 

3.1.1 Syntactic Models 
 
Syntactic language models incorporate syntactic information to language models 
and are widely used, particularly in speech recognition. Deriving and 
implementing syntactic models is a difficult task, reflected in its relatively 
smaller research field. The most common method of achieving a syntactic 
statistical model is to incorporate a statistical parser, which models a word 
sequence W and a parse tree T as a joint probability distribution 5	(i,k) 

(Manning and Schütze, 1999).  
 
Two main ways of integrating statistical parsers in SLMs is to use a generative 
or discriminative language model. In a generative language model, the statistical 
parser can be incorporated using  5 k = 5 i,k .s  That is, the parser assigns a 
probability to all the words or sentences in the language given some probabilistic 
context-free grammar (PCFG). This approach has been widely used including 
Charniak (2000) when implementing a language model based on the “immediate-
head” parser, Chelba and Jelinek (2000) who had a similar implementation to 
Charniak except the use of left-to-right parsing and Roark (2001) who used a 
top-down parsing algorithm interpolated with a standard trigram language 
model.  All the methods found that they were able to improve the accuracy of 
recognition in speech recognition tasks across broad-domains.  
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On the other hand, Collins et al., (2005) took a discriminative approach where a 
first statistical parser is used to establish an initial ranking of a set of parse 
trees for each sentence with associated probabilities. The discriminative 
statistical model then re-ranks the initial parse trees by using additional 
features of the trees. This can be used for example, to choose the most likely 
recognition hypothesis in a speech recognition system based on features from the 
word sequences and parse trees. With regards to word prediction, the statistical 
parser described can be used in combination with a language model to identify 
the most likely word based on a pre-determined PCFG.   
 
While statistical parsers still remain the most popular method of designing a 
syntactic model, a more recent approach was proposed by Kaufmann and Pfister 
(2012) to incorporate formal grammars with statistical models instead. The 
benefit of this approach is the ability to impose harder and larger number of 
linguistic-based constraints on the parser, which is not possible in a statistical 
parser whose only restriction is that it must make structural sense.  
 

3.1.2 Semantic Models 
 
The most common method of extracting semantic information from a body of text 
is Latent Semantic Analysis (LSA, Landauer and Dumais, 1997). LSA is a word-
similarity vector model that is used to measure semantic similarity between 
words based on their co-occurrence (words that occur together or with similar 
words). An LSA model is trained on a corpus of documents to create a Y[Bt	×
	(XHut[+Y	matrix. The matrix is reduced using singular value decomposition 
(SVD) decomposing the original matrix into a Y[Bt	×	Y[Bt co-occurrence matrix 
T. The semantic distance of any two words is found by calculating the dot 
product of the two corresponding vectors in matrix T. LSA uses a “bag-of-words” 
approach and therefore lacks the ability to maintain word order and therefore 
need to be combined with n-gram models such that some form of grammatical 
structure is used when predicting words.   
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 A simple way of combining the two is linear interpolation, however, it was found 
that the predicted words often lacked syntactic coherence. Coccaro and Jurafsky 
(1998) opted to use geometric interpolation as an alternate means of 
combination. This non-linear interpolation meant that a higher probability could 
be given to words which were both syntactically and semantically likely and 
lower probability if either LSA or n-gram model deemed it unlikely. The final 
combined model reduced perplexity by 12%. A similar method was used by 
Bellegarda (2000).  
 
Li and Hirst (2005) also combined a semantic model and a basic n-gram model 
using a similar technique in which the combined model had both an n-gram 
component and semantic associated component. Depending on the degree of 
semantic association of the predicted word with the prior history, either only the 
n-gram or both the n-gram and semantic model were used to make the 
prediction. Instead of using LSA for obtaining semantic information however, an 
alternate method using word-occurrences and then filtering them with a 
WordNet-like method was used where WordNet is a manually designed 
taxonomy of English words (Miller, 1995). Compared to a baseline syntactic 
language model developed by Fazly and Hirst (2003), the combined semantic 
language model was able to improve the keystroke savings rate by 14.63%. 
Additionally, the inclusion of out-of-vocabulary (OOV) entries in the semantic 
model was also found to have a profound impact on results.  
 
Two other methods of integrating LSA with a standard language model were 
investigated by Wandmacher and Antoine (2008). The first method used a 
semantic caching language model. Semantic caching extends a cache language 
model with semantic information. Cache-based language models (Kuhn and 
Mori, 1990) increase the probability of a word based on its previous appearances 
in the long-term history, and are generally the result of interpolation of a cache 
n-gram model and a standard n-gram model. Semantic caching involves 
calculating the cosine similarity between each word and its nearest neighbours 
in a given context. If the value is above a certain threshold, the word is added to 
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the cache model and discarded if its below. The second method is partial re-
ranking. This method selects the n best words from the standard model (i.e., 
content words) for LSA to first calculate their semantic similarity, and then 
assign a corresponding value in addition to its base probability. Both methods 
were able to reduce perplexity from a baseline 4-gram models.  
 
Latent Dirichlet Allocation (LDA, Blei et al., 2003) is used to find topics in a 
particular document using a similar “bag-of-words” approach to LSA. Broadly, 
the algorithm works by first going through each document and randomly 
assigning each word in the document to a random topic for some fixed K topics. 
To improve upon the original random topic assignments, the algorithm goes 
through each word in each document to update the topic assignments based on 
(1) how prevalent the word is across topics i.e., P(word|topics) and (2) how 
prevalent the topics are in the document P (topic |document).  
 
Though both LDA and LSA are similar in the sense that they both focus on 
content words rather than function words, LDA is typically used for topic-
modelling while LSA is used for semantic analysis. To test the capabilities of 
LDA in semantic analysis compared to LSA, Mitchell and Lapata (2009) used 
both techniques to extract semantic information, combining the information with 
a trigram model using additive (linear interpolation) and multiplicative methods. 
Multiplicative interpolation is implemented using a semantic factor which 
determines the influence of the trigram model on the overall model. The 
resulting four models (additive and multiplicative for both LSA and LDA) were 
compared with a baseline trigram model. Multiplicative LSA-trigram model 
outperformed both additive and multiplicative LDA-trigram models suggesting 
the use of LDA is not suited for semantic modelling.  
 
Though the combination of LSA with standard n-gram language models is the 
most widely used technique for generating semantic language models, it is not 
the only one.  Erdogan et al., (2002) presented the semantic concept-based 
language model and semantic structured language model, both of which use 
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alternate means of measuring semantic similarity and integrating language 
models. In concept-based modelling, words with semantic similarity are grouped 
as a ‘concept’. For some given word, the most likely concept sequence P(C) is 
found and an n-gram model is used to estimate P(W|C). In semantic structured 
language modelling, semantic classing is used to tag words according to their 
meaning thereby providing basic semantic relations. Statistical parsers build on 
this to derive more complex relations. The semantic information is then 
combined into a maximum entropy model. The maximum entropy model 
outperformed the concept-based model with regards to word error rate (WER), 
with most WER reduction achieved with the combination of the ME and concept-
based models.   
 

3.1.3 Topic Models 
 
Topic models are integral to language models and word prediction models to 
ensure predictions are within the topic of discussion. Lesher and Rinkus (2002) 
designed domain-specific n-gram models to evaluate if dynamically swapping 
these models in-and-out to match changing topic of conversation could improve 
prediction performance. They found that topic-specific models could indeed 
provide significant improvements in word prediction, highlighting that this 
improvement could be extended to using models capturing various other domains 
such as style, formality or genre.  
 
The previous section introduced the idea of LDA for topic modelling. However, 
like LSA, using LDA solely for prediction is inaccurate as word order is not 
considered and like LSA, an intuitive solution is to simply combine it with an n-
gram language model (Wallach, 2006). As predicted, the prediction accuracy was 
increased with this combined model over a general LDA model.  
 
However, using LDA with language models can be computationally challenging 
and difficult to implement and therefore simpler methods of using topic models 
for word prediction have been suggested.  
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Trnka et al., (2005) used topic modelling to act as a filter for the predictions from 
n-gram models by increasing the probability of related words and decreasing the 
probability of unrelated words, given the current topic. Topic identification was 
achieved using the popular information retrieval technique – TF-IDF (Term 
Frequency – Inverse Document Frequency). This technique in IR is typically 
used to rank documents by focussing on content rather than function words. In 
this case, it is used to eliminate stop words thereby aiding in topic identification. 
It was hypothesized that this topic word prediction system would be able to 
decrease the number of keystrokes. However, while the predictions were more 
accurate and appropriate, the number of keystrokes did not decrease. 
Additionally, the substantial amount of memory and computational inefficiency 
of topic identification and modelling did not make this prediction system viable.  
 
Kneser and Steinbiss (1993) used an adaptation model to modify language 
models based on the writing style. The adaptation model consisted of K linearly 
interpolated language models trained on different genres and writing styles with 
associated interpolation parameters that were dynamically calculated based on 
the preceding text. The interpolation parameters were used to select the model 
that would be used to predict the next word based on the model that the previous 
text most likely came from. Results showed the reduced perplexity however, 
could be due to the overtraining of the adaptation model.  
 
Similar to Trnka et al. (2005), Mahajan et al., (1999) also used popular 
information retrieval techniques to incorporate topical information to n-gram 
language models. The first stage was to collect all similar documents in a 
training database based on the current document using the aforementioned TF-
IDF technique. The similar documents were then used in combination with a 
topic-independent trigram language model using linear interpolation. The 
proposed model reduced the perplexity of the baseline trigram language model 
by 37% with suggestions presented of using dynamic topic models with varying 
amounts of documents to increase robustness while maintaining specificity.  
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Other means of capturing contextual information are cache-based models and 
trigger models (Rosenfeld, 1996.). Cache-based language models were described 
in the previous section.  A trigger language model uses word trigger pairs in 
which the trigger word increases the probability of its associated target word. 
Selecting useful trigger pairs was achieved using the average mutual 
information technique. Trigger language models combine word triggers and n-
gram constraints using the maximum entropy model.  
 

3.1.4 Combination of Models 
 
Section 1 illustrated the performance gains when either syntactic, semantic or 
topic information is incorporated into language models for word prediction. 
However, intuitively, the greatest performance improvement will occur when 
using a model that is able to enforce syntactic, semantic and topical constraints 
on their word predictions. Several techniques for combining language models 
have been proposed over the years. As described in the background section, the 
most commonly used combination techniques include: linear interpolation, 
backing-off, language adaptation and maximum entropy (Rosenfield 1994, 
Berger et al., 1996), most of which have been used to combine semantic models 
with a standard language model.  
 
The four main combinations of syntactic, semantic and topical information are 
syntactic-semantic language models, syntactic-topic models, semantic-topic 
models, and lastly, syntactic-semantic-topic language models. Within this, 
combinations that have been used directly for enhancing prediction language 
models are syntactic-topic models and syntactic-semantic models. While it is a 
relatively unexplored field, few notable contributions exist.  
 

Boyd-Graber and Blei (2009) developed a syntactic topic model that is capable of 
predicting words that make sense both topically and syntactically. The proposed 
method assigned a distribution to each word in a sentence that is a combination 
of topic weights (extent to which document is about a certain topic) and syntactic 
transitions derived from a parse tree. The model was able to reduce perplexity 
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compared to a hierarchical Dirichlet process (an extension of LDA which does not 
require pre-defined topics) and produce words that were syntactic and 
thematically accurate.   
 
Griffiths et al., (2005) designed a generative model that used short-range and 
long-range dependencies to identify semantic and syntactic classes. Essentially, 
a Hidden Markov Model (HMM) is used to identify the short-term dependencies 
or function words and a topic model to handle long-range dependencies or 
content words. The results validated the models’ capability of extracting 
functional and content words (therefore identifying syntactic classes and 
semantic topics). While this model was not specifically targeted at producing 
word predictions, the extraction of function and content words is an important 
precursor and can be extended to prediction systems.  
 
Meanwhile, Khudanpur and Wu (2000) proposed a SLM which is a combination 
of semantic relations found by inference of topics using information retrieval 
techniques, and syntactic structure using a left-to-right parser. A maximum 
entropy model is then used to combine the two together as a single model. 
Results showed a perplexity and WER reduction compared to a baseline trigram 
model.  
 

3.2 Biomedical Application 
 
Word prediction models are used in a range of applications including AAC 
devices. Most high-tech AAC systems use some form of word prediction, for 
example Word Q (Fraser and Tsang, 2001) or Co: Writer (Johnston, 2016) to 
improve typing performance and reduce the physical demand on the user. Most 
of these prediction software has both a speech component and manual typing 
component to cater to a wider range of disabilities, and can be incorporated into 
existing word processors. Both Word Q and Co: Writer can interface with a wide 
range of word-processing applications including Microsoft Suite, Chrome 
amongst others. The word prediction itself for both systems are similar, with 
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Word Q using a vocabulary largely based on the user, and Co: Writer using topic-
assigned vocabularies. Both systems have a speech output to aid in the typing 
process.   
 
Apart from these commercialized systems, substantial research has also been 
conducted in identifying alternate word prediction methods and incorporating 
them into existing or novel AAC systems. As mentioned, many high-tech AAC 
devices exist however, in alignment with the project’s focus, the literature review 
will be mainly considering the BCI system and specifically, word-typing based 
BCI such as the P300-Speller, RSVP Keyboard and other soft keyboards.  
 
Ryan et al., (2010), examined the effects of predictive typing by comparing a 
standard P300-speller with a P300-speller that contained a predictive component 
(Word Q), studying particularly the trade-off between increased cognitive effort 
but reduced physical effort (decreased number of keystrokes). The study found 
that while output-character-per-minute (OCM) and time taken to complete a 
sentence was faster in the BCI with the predictive component, accuracy faltered 
presumed to be because of the general task difficulty associated with it. 
Increasing accuracy, however, could simply be achieved by more practice with 
the system.    
 
Akram et al., (2013) initially suggested the idea of simply incorporating a 
custom-built dictionary into the BCI to provide word suggestions, before 
proposing a further modification to the BCI alphanumeric grid itself to better 
resemble the T9 interface commonly used in SMS messaging systems (Akram et 
al., 2015). The combination of both word suggestions and the T9 interface was 
able to reduce the typing time however, the available predictions are heavily 
constrained by the dictionary which only contains 1000 most-commonly used 
English words.  
 
Aside from P300-Spellers, other typing-based BCIs exist and also attempt to 
improve the typing performance. Orhan et al., (2012) developed the RSVP (Rapid 
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Serial Visual Representation) which presents characters or symbols in the same 
place on screen making it cognitively easier on the user when selecting the 
characters (the selection is by EEG). The language model is used to increase the 
speed of selection by using the history of the characters typed to predict the next 
character that is flashed on the screen. This does increase the typing speed, but 
is restricted to character-by-character predictive typing rather than word or even 
sentence predictions.  
 
DASHER (Figure 3.1) is an open-source software that provides a user interface 
to type text into a computer. It clusters all letters of the alphabet on one side of 
the interface and to type, the user navigates to the appropriate letter. Each 
chosen character has associated sub-boxes containing possible subsequent 
letters, where the size of the sub-box is proportional to the letter’s probability 
given by the language model. Wills and Mackay (2006) proposed to incorporate 
this software in BCIs in an effort to improve its transfer rate by using the BCI 
signal to choose a letter in the DASHER interface. The main pitfall is that the 
DASHER interface is cognitively demanding, particularly if the signal is 
continuous however, is still relatively less than what is required of a P300-
Speller.   

 
 

 

 

 

 

 

 

Figure 3.1 DASHER Interface Wills and Mackay (2006) 

 
Speier et al., (2011) also took the language model path to improve spelling and 
bit rate of BCIs, choosing to combine a stepwise linear discriminant analysis 
with Naïve Bayes classifier and a trigram model. The trigram model was used as 
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a prior for the Naïve Bayes classifier when determining the probability of each 
character. This approach was able to achieve significant improvement in 
accuracy and bit rates, with suggestions of expanding to word predictions as well 
as letter predictions.  
 
General improvements to less technological-advanced typing systems such as 
generic soft keyboards are also important research areas. These modifications 
are all reliant on language models to provide prediction, but also attempt to use 
other factors such as gaze point to further enhance typing.  
 
Mackenzie and Zhang (2008) used keyboard geometry, current fixation point of 
the user, previously inputted characters and a language model to build letter 
prediction (three most probable letters highlighted on a keyboard) and word 
prediction models. The combination of all these pieces of information means that 
more accurate predictions can be made particularly in letter prediction. For 
example, if after “th” the user is fixating on “d” but the most probable letter is 
“e”, “e” will be highlighted instead. This method works well for letter prediction 
however is sensitive to the first few letters typed.  
 
Goodman et al., (2002) make use of language models to reduce WER and word 
disambiguation particularly when a user clicks the boundary between two keys 
and the most probable key needs to be found on a soft keyboard. This allows for 
completely corrective keyboards. They found that the incorporation of language 
models significantly reduced the WER and increased the words per minute 
(WPM). Users also preferred the corrective keyboard as it was able to reduce the 
number of errors.  
 
Numerous studies in both sections have highlighted the benefits of firstly, 
incorporating syntactic, semantic and topic information to standard language 
models and secondly, including word prediction algorithms in AAC devices. 
Maximum performance improvement of word prediction language models will 
evidently occur with a model that can exploit all three information sources to 
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provide predictions that are syntactically, semantically and topically accurate 
thus mimicking natural language. While such a model has not yet been 
successful implemented for word prediction, combinations such as syntactic-topic 
models and semantic-syntactic models have seen some success. Both models are 
viable however syntactic-semantic models may be more computationally efficient 
given its independence of LDA.  
 
The studies also indicated the little focus placed on user-based language models 
specifically, predictions that are based on the user and their style of writing 
rather than on the language and style of some pre-determined documents or text. 
This project aims to address this research gap to design a user-based word 
prediction model capable of presenting predictions reflective of the user’s 
interests, style of writing and the contextual nature of the task being 
undertaken.  
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4 Implementation 
 
4.1 Programming Language 
 
The program chosen for implementation was Python 3.5 due to its existing 
natural language toolkit (NLTK), cleaner syntax and most developed version of 
Python.  
 

4.1.1 NLTK 
 
NLTK is a NLP toolkit available through Python. The package contains various 
corpora as well as text-processing libraries including frequency distribution, 
tokenization, corpus readers, stopping and stemming, lemmatisation, WordNet 
and word sense disambiguation (NLTK, 2015), all of which were used as part of 
developing the word prediction model. The various uses of these libraries in the 
application of word prediction are explained further in this chapter.  
 

4.2 Methodology 
 
The developed word prediction system can be split into three main sections – the 
user input, generation of predictions and the selection of the required 
predictions. The prediction module constitutes the bulk of the program including 
the developed word prediction model. Figure 4.1 illustrates the methodology 
implemented and the basic tasks of each module.  
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Figure 4.1 Methodology of System 

 
 
4.2.1 User Input 
 
The user input has three main purposes:  

• Identify the task that they wish to undertake 
• Begin typing 
• Choose the prediction 

 
The task and context the user is undertaking dictates the task-derived user-
based corpus (UBC) - in this case, the user has the option of choosing between 
writing an email or a document (task) and within email, a formal or informal 
email. It is assumed that the document task is a report, however in future 
versions this may include letters, literature reviews, resumes and so forth.  
 
Once the task is identified, the user is prompted to begin typing. An un-buffered 
input is used such that predictions are automatically generated once the user 
presses the ‘space’ key, rather than waiting for the user to press ‘enter’ after each 
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word. Lastly, once the alphabetized prediction list is presented to the user, they 
can make a selection and the program will automatically append the word (and 
space) to the current document. Else, they can continue typing.  
 

4.2.2 Predictions 
 
4.2.2.1 Pre-Processing 

 
Pre-processing of the training sets for implementation of the word prediction 
model is required.  
 
4.2.2.1.1 Training Corpora 

 
The purpose of the training corpora is for training the language model such that 
it can be tested during the testing phase.  The training corpora consists of a UBC 
and the British National Corpus (BNC, British National Corpus, 2009). Two 
versions of the corpora were used to generate the predictions – an unfiltered 
corpus for syntactic-based predictions, and a filtered corpus for semantic-based 
predictions.  
 
4.2.2.1.1.1 User-Based Corpus 
 
The aim of the UBC is to provide all relevant information about the user such 
that the predictions generated can be user-based and task-driven. These include 
but not limited to, emails, address books, read and written documents, webpages 
searched and saved etc. Each task has its own associated UBC – i.e., a corpus of 
emails, or a corpus of read and written documents and depending on the task 
being undertaken, the corresponding UBC is used. As the testing and results aim 
to validate the model as a ‘proof-of-concept’, and also be computationally 
efficient, the task-dependent UBCs for this model were predesigned consisting of 
personal emails (formal and informal), and saved PDF documents relating to this 
project and other university studies. The formal and informal email UBCs also 
contained part of the publicly available Enron corpus. All the emails and PDF 
documents were in text-file format, such that they could be read by the 
PlainTextCorpusReader from the NLTK package.  
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4.2.2.1.1.1.1 Enron Email Dataset 
 
The Enron email dataset is a publicly available collection of emails collected and 
prepared by the CALO (A Cognitive Assistant that Learns and Organises). The 
dataset was first made public by the Federal Energy Regulatory Commission 
during their investigation of the company. The dataset itself contains emails 
from 150 employees of Enron (mostly senior management) and contains a total of 
0.5 M messages (Enron Email Dataset, 2015). Of this, approximately 3000 
emails (20 emails from each employee) were used for the UBC. This ensured that 
there was an equal number of Enron and personal emails in the UBC as well as 
equal number of emails taken from each employee. The classification of an 
informal vs. formal email was done subjectively, on the basis of whether the 
email was referring to professional work or personal work. An example of a 
formal email is shown in Figure 4.2 and an informal email in Figure 4.3. The 
informal and formal emails were filtered to only contain the subject and contents 
of the email as the focus of the software is to only aid in predicting words 
relevant to the body of the text. 
 
 

 
Figure 4.2 Enron Formal Email 

 

 
Figure 4.3 Enron Informal Email 
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4.2.2.1.1.1.2 Personal Email Dataset 
 
The personal email dataset consisted of approximately 3,000 emails (formal and 
informal). Like the Enron email dataset, the classification of formal and informal 
was subjective and dependent on whether the email was in reference to 
university work or personal work. The informal and formal emails were filtered 
to only contain the subject and contents of the email. 
 

4.2.2.1.1.1.3 Personal PDF Documents 
 
The PDF documents used in the UBC were based on the documents relating to 
this project (i.e., relevant papers, reviews) and other documents relating to other 
university studies (lecture notes, assignments). All papers were filtered to 
contain only the title, the authors and the main body of the text. Formulas which 
were unchanged in the text file were not filtered, as the predictions aim to be as 
accurate as possible given the context, i.e., if the user were writing a report with 
formulas used before, it would be beneficial for the model to be able to predict 
them. If, however, they were not recognised by the text file, the resulting 
replacement character was filtered.  
 

4.2.2.1.1.2 British National Corpus 
 
The British National Corpus (BNC) is a 100 million text corpus containing 
written and spoken British English from a range of sources (British National 
Corpus, 2009). The BNC was acquired through Flinders University, and cleaned 
to remove the html tags. The code is shown in Appendix A.  
 

4.2.2.1.2 Tokenisation 
 
To simplify the text processing process, all of the corpora and test sets were 
tokenised. Tokenisation essentially splits a sentence into a series of tokens 
ranging from words, numbers or punctuation. The text was tokenised using the 
build in word tokeniser from NLTK. The following examples illustrates a raw 
text compared to a tokenised text.  
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Example 
Original: 
 
“This is a sample text that has not been tokenised!” 
 
Tokenised: 
  
‘This’ ‘is’ ‘a’ ‘sample’ ‘text’ ‘that’ ‘has’ ‘not’ ‘been’ ‘tokenised’ ‘!’ 
 

4.2.2.2 Filtered and Unfiltered Corpus 

 
As mentioned, two versions of each (UBC, BNC) training corpora were used to 
predict both syntactic and semantic words. After the initial filtrations (removal 
of tags, date in emails etc.), the first version remained the same (unfiltered) 
while the second version implemented a second round of filters to remove 
common (stop) words leaving only content words. Lemmatising was also used to 
reduce inflectional forms of words i.e., ‘liking’ and ‘liked’ are both inflectional 
forms of the word ‘like’.  
 

4.2.2.2.1 Stopwords 
 
The removal of stopwords is achieved using NLTK, which provides its own 
default set of stopwords (Table 4.1) 
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Table 4.1 NLTK Stopwords 

ourselves hers between yourself but again there about once during 

out very having with they own an be some for 

do its yours such into of most itself other off 

Is  s am or who as from him each the 

themselves until below are we these your his through Don’ 

nor me were her more himself this down should our 

their while above both up to ours had she all 

no When  at any before them same and been have 

in will on does yourselves then that because what over 

why so can did not now under he you herself 

has just where too only myself which those I after 

few whom t being if theirs my against a by 

doing it how further was here than    
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4.2.2.2.2 Stemming 
 
Both stemming and lemmatisation are methods to reduce inflectional forms of 
words, however stemming is a cruder process in which the end of the word is 
simply taken off whereas lemmatisation considers the morphology and existing 
vocabulary when returning the reduced form (Martin and Jurafsky, 2000). For 
example, for the word ‘having’, a stemmer may return ‘hav’ while a lemmatiser 
returns ‘have’. Given that the semantic predictions are taken from the filtered 
corpus, it was important for the filtered words to have correct spelling, hence a 
lemmatiser was used instead of a stemmer. The lemmatiser used was the 
WordNet lemmatiser, which uses WordNet’s in-built morphological processing 
tool for considering morphology and existing vocabulary. Given a string and a 
syntactic category (noun, verb etc.,) the WordNet morphological processor 
applies a set of ‘rules of detachment’ (Table 4.2) to the string and returns the 
base form of the word. If the word is an exception, WordNet searches through an 
exception list or simply returns the unchanged input word (Princeton University, 
2010). 
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Table 4.2 WordNet 'Rules of Detachment' 

Syntactic Category Suffix Ending 

Noun “s” “” 
Noun “ses” “s” 
Noun “xes” “x” 
Noun “zes” “z” 
Noun “ches” “ch” 
Noun “shes” “sh” 
Noun “men” “man” 
Noun “ies” “y” 
Verb “s” “” 
Verb “ies” “y” 
Verb “es” “e” 
Verb “es” “” 
Verb “ed” “e” 
Verb “ed” “” 
Verb “ing” “e” 
Verb “ing” “” 
Adjective “er” “” 
Adjective “est” “” 
Adjective “er” “e” 
Adjective “est” “e” 

 

4.2.2.3 Word Prediction Model 

 
As mentioned in the Background section, the three commonly used n-gram 
models for assigning probabilities to words are the unigram model 
(unconditioned), the bigram model (conditioned on the previous word) and the 
trigram model (conditioned on the previous two words). While the accuracy of the 
model increases with higher n-grams, this also increases the computational 
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inefficiency, and therefore typically bigram or trigram models are used as they 
ensure accuracy while still maintaining computational efficiency. In this case, 
the bigram model was used as it optimised the trade-off between computational 
efficiency and accuracy.  
 
The prediction themselves are based on the bigram counts, or a conditional 
frequency distribution (CFD) of all the bigrams in the given corpus. The 
distribution contains the bigram counts for all bigrams in the corpus, and the 
most frequently occurring outcome word following the input or context word is 
used as a potential prediction. This was implemented using the probability 
module from NLTK.  
 

Example 
 
Using the training sentence “the quick brown fox jumps over the lazy dog”, Table 
4.3 illustrates the CFD of bigram counts for the training sentence with the 
predictions highlighted. Note: the rows of the table depict the context words and 
the columns of table show the outcome or prediction words.  
 
Table 4.3 Conditional Frequency Distribution of Training Sentence 

CFD Brown Dog Fox Jumps Lazy Over Quick The 

Brown 0 0 1 0 0 0 0 0 

Fox 0 0 0 1 0 0 0 0 
Jumps 0 0 0 0 0 1 0 0 
Lazy 0 1 0 0 0 0 0 0 

Over 0 0 0 0 0 0 0 1 
Quick 1 0 0 0 0 0 0 0 
The 0 0 0 0 1 0 1 0 

 
To decrease computational time, the CFD of the BNC and UBC (both filtered and 
unfiltered versions) were saved in a dictionary format (Appendix B) using the 
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pickle module such that it could be re-opened easily rather than having to 
generate bigram counts in the corpus for every input word.  
 

4.2.2.3.1 Prediction Sources 
  
The predictions are taken from three different sources where the first source is 
an unfiltered corpus, the second is a filtered (no stopwords and stemmed words) 
corpus and the third is WordNet (Princeton University, 2010). The purpose of 
using the first two sources is to predict both syntactic (unfiltered) and semantic 
(filtered) words. The syntactic-based words are however, a crude reflection of 
true syntax given the underpinning assumption that the syntax in the corpus is 
correct. The semantically-related words are taken from the filtered corpus with 
the assumption that the removal of stop-words and inflectional words leaves 
content words which are more semantically related to each other.  
 
Finally, the WordNet predictions are also semantic-driven predictions, and 
synonyms of the input word. WordNet is an online lexical database in which 
words (nouns, verbs, adjective and adverbs) are grouped into synsets which 
represent a particular concept i.e., the ‘animal’ synset corresponds to words 
relating to animals. Evidently, words under a particular synset are all 
synonymous to each other (Princeton University, 2010).  
 
To increase the accuracy of the WordNet predictions, Word-Sense 
Disambiguation (WSD) methods were used to find the ‘sense’ of the word and 
based on the closest related-synset, extract the ‘lemmas’ or words, in that synset 
(i.e., the synonyms) and add it to the overall prediction list.  
 
There have been several WSD methods proposed over the years (Yang and 
Powers 2005, Yang and Powers 2006, Powers 1997, Huang and Powers 2001) of 
which the popular Lesk algorithm was used for this model. Two main versions of 
the Lesk algorithm exist namely the original (Lesk 1986) and the adapted Lesk 
algorithm (Banerjee and Pederson, 2002), both of which are available through 



 51 

the Lesk NLTK module. The basic Lesk algorithm works by selecting the word-
sense (glosses) whose definition has the most overlap (highest number of 
common words) with the context (previously written words). The adapted Lesk 
algorithm used in model uses WordNet as the basis for the sense definitions and 
outputs the corresponding synset given the context. Therefore, the more words in 
the context, the more likelihood of overlapping common words between the 
sentence and synset definition and the more accurately returned synset. Given 
that WordNet predictions are only generated for nouns, verbs, adjectives or 
adverbs, this constraint was added in the system to reduce computation time. 

The WordNet predictions are generated independent of the syntactic and 
semantic predictions and if they exist, are simply appended to the existing 
prediction list.   
 

4.2.2.3.2 Model 
 
The model designed is based on the back-off SLM adaptation method, also known 
as the fill-up technique (see Background). The generalised equation for a back-off 
SLM adaptation model is given by Equation 2.15 (page 18), where Pr	(%) 
represents the SLM based on the dynamic corpus A, and Pr	(') is the SLM based 
on the static background corpus B.  
 
Instead of having two corpora however, the designed model uses three corpora 
where the current document and the UBC are the dynamic corpora, and the BNC 
is the static background corpus B. Moreover, two versions of each corpus exist, 
and the bigram predictions are based on both corpora. That is, the bigram 
predictions from the overall current document, UBC and BNC corpora 
incorporate all the predictions from the filtered and unfiltered corpora (repeat 
predictions are discarded). Since the predictions from each filtered and unfiltered 
corpora are mutually independent i.e., the predictions generated from the 
filtered corpus are independent of the predictions generated from the unfiltered 
corpus, the combination is based on the multiplication rule,  
 

( %	)*+	' = 	( % ∗ 	((') (4.1) 
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The overall back-off model equation therefore becomes,  
 

Pr ./ ℎ/ = 1

(2%11 .4 ℎ4 	×	(2%12 .4 ℎ4 			78	9%11 ℎ4.4 	:2	9%12 ℎ4.4 	≥ <

(2%21 .4 ℎ4 	×	(2%22 .4 ℎ4 				78	9%21 ℎ4.4 	:2	9%22 ℎ4.4 	≥ <

1(2'11 .4 ℎ4 	×	(2'12 .4 ℎ4 							:=ℎ>2.7?>

 

 
Table 4.4 shows the relevant variables and their representation. The 
implementation of the model is shown in Appendix C. Note: The WordNet 
predictions are generated independently of the corpora-based predictions, and 
therefore not included in the equation. 
 
Table 4.4 Variables and Representations 

Variables Representation 

@AA Unfiltered current document corpus 
@AB Filtered current document corpus 

@BA Unfiltered UBC 
@BB Filtered UBC 
CAA Unfiltered BNC 
CAB Filtered BNC 
D 1 (bigram count must be at least 1 

otherwise back-off to next corpus) 
1 1, back-off coefficient  

 
 

4.2.3 Selection 
 
The predictions listed on the final UCI are subject to screen availability and 
therefore to reflect this constraint, the prediction lists only the three most 
common predictions (i.e., those with the highest probability) from each source. 
This also ensures that the system remains computationally efficient. Once the 
list of predicted words is presented to the user, they are given two options – 

(4.2) 
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choose a word from the list or continue typing. If they choose the former, the 
chosen word is appended to the existing sentence, and the next set of predictions 
are generated based on the newly appended word. If the prediction list does not 
contain the intended word, the user can continue to type and the next set of 
predictions will be based on the next word the user types. The process is 
repeated until the user terminates the program. 
 

Example 
 
Email:  

“Good Morning, meeting at 9am?” 

 

The user is first asked to respond to the question “Would you like to write a 

document or email?” 

 

In this case, the user would type “email”. Note: the system is case-sensitive.  
 
Pursuant to this, the user is further asked “Would you like to write a formal or 

informal email?” to identify the relevant UBC.  
 

In this case, the user would type “formal”.  
 
The user is then prompted to begin typing. 
 
Following the first word “Good” the system first appends the word to a running 
document, before loading predictions. As previously mentioned, the word 
prediction system works as a ‘back-off’ that is, it first queries the current 
document for a prediction, then the UBC and finally the BNC. The querying 
itself is done by first identifying whether the current word, i.e. “Good” is in the 
current document, the UBC or the BNC. Once the current word has been found 
in either of the three corpora, then the system organises all the words in the 
corresponding corpus in bigrams such that the CFD method can be used to 
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generate the predictions. As mentioned, the prediction list contains both 
syntactic and semantic predictions, and as such the system takes the top 3 
syntactic and semantic predictions, creates a new final prediction list and 
presents this list to the user. Using this list, the user is then asked to “…Choose 

a prediction by typing 1-9 else 10 to continue typing”.  
 
In this example, the predictions listed are as follows –  
 

1. Morning 
2. Luck 
3. morning 
4. good 
5. well 

 
The user would type “1” corresponding to the prediction “Morning”. The system 
then automatically appends this predicted word to the running document and 
generates predictions for the predicted word (“Morning”). This process continues 
until the last word has been either typed or predicted, and the user exits the 
system.  
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5 Experiments 
 
Four baseline versions of the prediction model were tested and compared to a 
Baseline 0 model. The purpose of the baselines is to identify which is the most 
accurate and beneficial such that future versions can improve upon its 
performance.  
 

5.1 Baseline 0 
The Baseline 0 model assumes all words are of equal probability, and therefore 
provides all the words in the corpus as predictions.  
 

5.2 Baseline 1 
Baseline 1 is the most basic version of the model in which the predictions are 
based on unigram predictions. That is, the predictions listed are independent of 
the word typed and are based purely on the frequency of words in the corpus. For 
example, if the frequency distribution for the UBC lists ‘the’, ‘and’, ‘a’ and ‘for’ as 
the most frequently used words, they will be listed as the predictions for any new 
test word. The UBC used contains all emails (Enron and personal) and PDF 
documents i.e., it does not take task into consideration and therefore a generic 
UBC is used rather than a task-derived UBC.  
 
5.3 Baseline 2 
The second version also uses the generic UBC containing all emails and PDF 
documents, but instead of using unigram predictions, it uses bigram predictions 
(i.e., takes the input word into consideration).  
 
5.4 Baseline 3 
The third version also uses bigram predictions but instead of using the generic 
UBC, the task-derived UBC is used instead. For example, if the user is writing 
an informal email, then the UBC would be the informal email corpus.   
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5.5 Baseline 4 
The fourth and final version also uses bigram predictions and a task-driven 
UBC, but also includes WordNet predictions.  
 
Table 5.1 summarises the key differences between the five baselines.   
 
Table 5.1 Key Differences Between Baselines 

Baselines  Differences 

Baseline 0 All words as predictions 
Baseline 1 Unigram predictions from generic 

UBC 
Baseline 2 Bigram predictions from generic UBC 
Baseline 3 Bigram predictions from task-driven 

UBC 
Baseline 4 Bigram predictions from task-driven 

UBC + WordNet predictions 
 
The primary aims of the test were to: 

• Identify how well each model is capable of word prediction 
• Evaluate the advantages and disadvantages of using a task-driven UBC 

vs.  a generic UBC 
• Determine if the inclusion of WordNet predictions is beneficial to the 

model 
 

5.6 Test Set 
The end user for this model is a person who is unable to type and therefore needs 
to type using alternative means such as their brain signals. Such persons are 
unlikely to begin using this interface for typing large documents. Rather, they 
are more likely to use the interface to write brief messages or emails. As such, 
preliminary tests conducted to test the feasibility and accuracy of the model were 
on a test set consisting of a 100 relatively short emails (approximately 200 
characters), from both personal emails and the Enron database, as the training 
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UBC contains both sources of emails. Of the 100, 50 emails were informal emails 
and 50 were formal emails of which 25 were personal formal and informal emails 
and 25 were informal and formal emails from the Enron database. All the emails 
were filtered to contain only the subject heading and the contents of the 
message, and were subjectively classified as informal or formal based on whether 
they related to professional or personal work. The test set is “held out” data, and 
therefore mutually exclusive from the training set.  
 
 Figure 5.1 illustrates the breakdown of the test set. Depending on the results 
obtained, the tests can be extended to test larger emails or even office-related 
documents i.e., reports.   
 

 
Figure 5.1 Test set Breakdown 

 
5.7 Testing Implementation 

5.7.1 Evaluation Metrics 
 
The two main evaluation metrics used for assessing the word prediction system 
were KSR and the keystrokes typed (KT). While the latter is not a mainstream 
evaluation metric for word prediction, KSR is an established word-prediction 
assessor, particularly for AAC devices and tend to be calculated using a human 

100 Emails

50 Formal 
Emails

25 Personal  
Formal
Emails

25 Enron 
Formal 
Emails

50 Informal 
Emails

25 Personal
Informal 
Emails

25 Enron 
Informal 
Emails
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subject. Given the timeframe and budget considerations of this project, an 
automated system was used rather than human subjects. As such, the results 
generated from this project cannot strictly be compared with those used in other 
studies as the assessment methods themselves differ. It is anticipated that in 
future versions particularly with the inclusion of the prediction system in the 
UCI, the KSR will be re-evaluated and used in comparison with existing studies.  
 
5.7.1.1 Keystroke Savings Rate 

 
The primary evaluation metric was the KSR (see Background section) which 
evaluates the keystrokes saved with the prediction tool. The higher the KSR, the 
better the prediction model. Calculation of the KSR is shown in Equation 2.17 
(page 20). From the equation, the total entered characters are the total 
characters in each email without prediction while the keys pressed is the number 
of keys pressed when used in conjunction with the prediction tool.  
 

5.7.1.2 Normalised Keystrokes Typed 

 
A secondary evaluation metric was keystrokes typed (KT), which is equivalent to 
the number of keys pressed with and without the word prediction model, 
normalised by the total number of characters.  That is,  
 

E:2F)G7?>+	H< = 	
<:=)G	H<	

=:=)G	Iℎ)2)I=>2? 

 
The lower the KT, the more accurate the predictions generated and the better 
the model.  
 
5.7.2 Testing 
 
5.7.2.1 Total Entered Characters 

 
As mentioned, the total entered characters are a measure of how many 
characters are typed if there is no prediction i.e., the total number of characters 
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in each email. To streamline the process, the calculation was done automatically 
by tokenising the text and adding the length of each tokenised element. Note in 
this case, white space is not included in the total entered characters as the 
system automatically appends the whitespace once the user either selects a 
prediction or continues typing. The example below illustrates the process.  
 

Example 
 
Sentence: “I am going to the shops” 
Tokenized: “I” “am” “going” “to” “the” “shops” 
Total Keystrokes: 1 + 2 + 5 + 2 + 3 + 5 = 18 
 
Additionally, the KSR is designed to only identify the accuracy of the predictions 
and therefore does not include secondary keystrokes such as enter (for 
appending predictions).  
 

5.7.2.2 Keys Pressed 

 
The keys pressed evaluates the number of keys pressed with word prediction. 
This again, was an automated process. For each word in the test email, the 
prediction model is used to predict the next word. If the model predicts the next 
word correctly, the number of keystrokes remains unchanged however, if the 
predictions are incorrect, then the number of keystrokes is increased by the 
length of unpredicted word (i.e., the cost of an error). This process is illustrated 
in Figure 5.2.    
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Figure 5.2 Automated Keys Pressed Process 
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6 Results 
 
The results were generated on the four test sets. As Baseline 0 does not yield any 
predictions, KSR is 0 and therefore is difficult to accurately compare against the 
remaining Baselines. As such, the evaluation metric used to compare Baseline 0 
to the other Baselines was total KT (Figures 6.1–6.4) whereas the evaluation 
metric to compare Baselines 1-4 (Figures 6.5-6.8) was KSR. In both cases, KT 
and KSR were calculated across all the emails in each test set. Table 6.1 shows 
the normalised, average KT values for each test set (along with the standard 
error) and Table 6.2 shows the total KSR values for each test set (along with the 
standard error). Note: as aforementioned, the KT values are normalised with 
respect to the total characters in each email therefore Baseline 0 is 1. Individual 
KSR and normalised KT values (with standard error) for each email in the test 
sets are shown in Appendices D and E respectively.  
 

6.1 Standard Error 
To account for statistical chance, the standard error was calculated for all the 
results, and represented in the graphs by the standard error bars.  These error 
bars represent how precise the data is by accounting for statistical chance. If the 
error bars overlap, the findings are statistically insignificant where as if the 
error bars do not overlap, the findings are statistically significant. The equation 
for standard error is,  
 
 

JKL =
M
E

 

 
 
where 
 M = standard deviation 
E = number of observations in sample  
 
 

(6.1) 

(6.2) 
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M =
1
E (NO − Q)R

S

OTU

 

where 
 
E = number of observations in sample  
Q = sample mean 
NO = sample values 
 
In this case, E = 25 (25 emails). The standard deviation and standard error were 
computed using Excel.  
 
Note: Baseline 0 does not take into account standard error as it is the true value. 
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6.2 T-Test 
To further add credibility to the findings, a series of t-tests were conducted on 
the results to assess statistical significance. The null hypothesis states that 
“there is no statistical significance between the two test sets”. If the absolute t-stat 
value is greater than the t-critical value, the null hypothesis is rejected. The KSR 
T-test results for the four test sets are shown in Tables 6.3-6.6 and the KT T-test 
results are shown in Tables 6.7-6.10.  
 
Table 6.1 Average KT for testset of 25 emails across 5 Baselines. The table also includes the standard error 

calculated on the 25 sample normalised KT values.   

KT Total Baseline 

0 

Baseline 1  Baseline 2  Baseline 3  Baseline 4  

Enron 

Informal 

1 0.954±0.484 0.864±1.261 0.843±1.307 0.839±1.311 

Personal 

Informal 

1 0.949±0.662 0.866±1.437 0.851±1.689 0.850±1.70 

Personal 

Formal 

1 0.955±0.609 0.863±1.938 0.851±2.065 0.844±2.082 

Enron 

Formal 

1 0.958±0.581 0.874±1.405 0.867±1.354 0.869+1.317 

 
Table 6.2 Average KSR for testset of 25 emails across 5 Baselines. The table also includes the standard error 

calculated on the 25 sample KSR values.  

KSR 

Total 

Baseline 

0 (%) 

Baseline 1 

(%) 

Baseline 2 

(%) 

Baseline 3 

(%) 

Baseline 4 

(%) 

Enron 

Informal 

0 4.960±0.484 13.941±1.261 15.764±1.307 16.139±1.311 

Personal 

Informal 

0 5.109±0.662 15.464±1.437 15.636±1.687 14.739±1.700 

Enron 0 5.487±0.609 15.647±1.938 16.551±2.065 17.124±2.082 



 64 

Formal 

Enron 

Informal 

0 4.538±0.581 14.214±1.405 15.159±1.355 14.560±1.317 
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Table 6.3 KSR T-Test Results for Enron Informal Emails 

Enron 

Informal 

(KSR) 

B0 

vs 

B1 

B0 vs 

B2 
B0 vs 

B3 
B0 

vs 

B4 

B1 

vs 

B2 

B1 

vs 

B3 

B1 

vs 

B4 

B2 

vs 

B3  

B2 

vs 

B4 

B3 

vs 

B4 
T-stat -

9.486 
-
10.821 

-
12.017 

-12.3 -
6.706 

-
7.976 

-
8.257 

-
1.133 

-
1.365 

-
0.230 

T-critical 2.064 2.064 2.064 2.064 2.039 2.042 2.042 2.010 2.010 2.010 

Statistically 

Significant  
Yes Yes Yes Yes Yes Yes Yes No No No 

 
Table 6.4 KSR T-Test Results for Personal Informal Emails 

Personal 

Informal 

(KSR) 

B0 

vs 

B1 

B0 

vs 

B2 

B0 

vs 

B3 

B0 

vs 

B4 

B1 

vs 

B2 

B1 

vs 

B3 

B1 

vs 

B4 

B2 

vs 

B3  

B2 

vs 

B4 

B3 

vs 

B4 
T-stat -

7.698 
-
9.313 

-
8.838 

-
8.818 

-
5.234 

-
5.417 

-
5.422 

-
0.698 

-
0.725 

-
0.027 

T-critical 2.064 2.064 2.064 2.064 2.039 2.039 2.039 2.010 2.010 2.010 

Statistically 

Significant  
Yes Yes Yes Yes Yes Yes Yes No No No 
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Table 6.5 KSR T-Test Results for Enron Formal Emails 

Enron 

Formal 

(KSR) 

B0 

vs 

B1 

B0 

vs 

B2 

B0 

vs 

B3 

B0 

vs 

B4 

B1 

vs 

B2 

B1 

vs 

B3 

B1 

vs 

B4 

B2 

vs 

B3  

B2 

vs 

B4 

B3 

vs 

B4 
T-stat -

7.298 
-
8.998 

-
9.841 

-
9.952 

-
5.528 

-
6.170 

-
6.161 

-
0.355 

-
0.241 

0.121 

T-critical 2.064 2.064 2.064 2.064 2.035 2.035 2.035 2.010 2.010 2.010 

Statistically 

Significant   
Yes Yes Yes Yes Yes Yes Yes No No No 

 
 
Table 6.6 KSR T-Test Results for Personal Formal Emails 

Personal 

Formal 

(KSR) 

B0 

vs 

B1 

B0 

vs 

B2 

B0 

vs 

B3 

B0 

vs 

B4 

B1 

vs 

B2 

B1 

vs 

B3 

B1 

vs 

B4 

B2 

vs 

B3  

B2 

vs 

B4 

B3 

vs 

B4 
T-stat -

7.448 
-
7.052 

-
7.205 

-
7.470 

-
4.493 

-
4.803 

-
5.077 

-
0.429 

-
0.662 

-
0.229 

T-critical 2.064 2.064 2.064 2.064 2.039 2.042 2.042 2.010 2.010 2.010 

Statistically 

Significant  
Yes Yes Yes Yes Yes Yes Yes No No No 
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Table 6.7 KT T-Test Results for Enron Informal Emails 

Enron 

Informal 

(KT) 

B0 

vs 

B1 

B0 vs 

B2 
B0 vs 

B3 
B0 

vs 

B4 

B1 

vs 

B2 

B1 

vs 

B3 

B1 

vs 

B4 

B2 

vs 

B3  

B2 

vs 

B4 

B3 

vs 

B4 

T-stat 9.485 10.821 12.017 12.3 6.706 7.976 8.257 1.133 1.365 0.230 

T-critical 2.064 2.064 2.064 2.064 2.039 2.042 2.042 2.010 2.010 2.010 

Statistically 

Significant  
Yes Yes Yes Yes Yes Yes Yes No No No 

 
Table 6.8 KT T-Test Results for Personal Informal Emails 

Personal 

Informal 

(KT) 

B0 

vs 

B1 

B0 

vs 

B2 

B0 

vs 

B3 

B0 

vs 

B4 

B1 

vs 

B2 

B1 

vs 

B3 

B1 

vs 

B4 

B2 

vs 

B3  

B2 

vs 

B4 

B3 

vs 

B4 

T-stat 7.698 9.313 8.838 8.818 5.234 5.417 5.422 0.698 0.725 0.027 

T-critical 2.064 2.064 2.064 2.064 2.039 2.039 2.039 2.010 2.010 2.010 

Statistically 

Significant  
Yes Yes Yes Yes Yes Yes Yes No No No 

 
 
Table 6.9 KT T-Test Results for Enron Formal Emails 

Enron 

Formal 

(KT) 

B0 

vs 

B1 

B0 vs 

B2 
B0 

vs 

B3 

B0 

vs 

B4 

B1 

vs 

B2 

B1 

vs 

B3 

B1 

vs 

B4 

B2 

vs 

B3  

B2 

vs 

B4 

B3 

vs 

B4 
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T-stat 7.298 8.998 9.841 9.952 5.528 6.170 6.161 0.355 0.241 -
0.121 

T-critical 2.064 2.064 2.064 2.064 2.035 2.035 2.035 2.010 2.010 2.010 

Statistically 

Significant  
Yes Yes Yes Yes Yes Yes Yes No No No 

 
 
Table 6.10 KT T-Test Results for Personal Formal Emails 

Personal 

Formal (KT) 
B0 

vs 

B1 

B0 

vs 

B2 

B0 

vs 

B3 

B0 

vs 

B4 

B1 

vs 

B2 

B1 

vs 

B3 

B1 

vs 

B4 

B2 

vs 

B3  

B2 

vs 

B4 

B3 

vs 

B4 
T-stat 7.448 7.052 7.205 7.470 4.493 4.803 5.077 0.429 0.662 0.229 

T-critical 2.064 2.064 2.064 2.064 2.039 2.042 2.042 2.010 2.010 2.010 

Statistically 

Significant  
Yes Yes Yes Yes Yes Yes Yes No No No 
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Figure 6.1 Normalised KT for Enron Informal Emails 

 

 
Figure 6.2 Normalisedl KT for Personal Informal Emails 
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Figure 6.3 Normalised KT for Personal Formal Emails 

 
 

 
Figure 6.4 Normalised KT for Enron Formal Emails 

 
Taking statistical significance into consideration, Baselines 1-4 are all able to 
reduce the number of characters typed with respect to Baseline 0 (equivalent to 
total characters in test set). In comparison to Baseline 1, Baselines 2-4 all fare 
better however in comparison with each other, there is no statistical difference.    
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Figure 6.5 Total KSR for Enron Informal Emails 

 
 

 
Figure 6.6 Total KSR for Personal Informal Emails 
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Figure 6.7 Total KSR for Personal Formal Emails 

 

 
Figure 6.8 Total KSR for Enron Formal Emails 

 
Considering statistical significance, Baselines 2-4 are all better than Baseline 1 
however, are all statistically insignificant when compared with each other. Note: 
the KSR for Baseline 0 is zero, and therefore all Baselines are statistically 
significantly better than Baseline 0. 
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The following graphs illustrate the individual KSR for each email in each test set 
(Figures 6.9-6.12) and the corresponding distribution of email length (Figures 
6.13-6.16) to identify a potential correlation between email length and KSR.  
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Figure 6.9 Individual KSR for Enron Informal Emails 
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Figure 6.10 Individual KSR for Personal Informal Emails 
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Figure 6.11 Individual KSR for Enron Formal Email 

-5

0

5

10

15

20

25

30

35

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

K
SR

 (%
)

Emails

Individual KSR (Enron Formal Emails)

Baseline 1 Baseline 2 Baseline 3 Baseline 4



 77 

 
Figure 6.12 Individual KSR for Personal Formal Emails
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Figure 6.13 Individual Email Length for Enron Informal Emails 

 

 
Figure 6.14 Individual Email Length for Personal Informal Emails 
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Figure 6.15 Individual Email Length for Personal Formal Emails 

 

 
Figure 6.16 Individual Email Length for Enron Formal Emails 
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From the Equation 6.3, the higher the normalised counts, the greater number of 
predictions generated from the particular corpus. Figure 6.17 illustrates the 
normalised counts across all emails for each training corpus. From the graph, it 
is evident that UBC has the highest number of predictions taken from it, and the 
BNC has the lowest. The significance of these results is discussed further in the 
Discussion and Future Works sections.    
 

 
Figure 6.17 Normalised counts for all corpora for each test set 
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7 Discussion 
 

7.1 Summary of Key Findings 
 

• Baselines 2 – 4 all outperformed Baseline 0 and Baseline 1 with respect to 
KSR, but were statistically similar compared to each other 

• Baselines 2-4 had reduced KT in comparison to Baseline 0 and Baseline 1, 
but were statistically similar compared to each other  

• No apparent correlation between email length and KSR 
• KSR was similar across all test sets with no major discrepancies between 

Formal vs. Informal or Enron vs. Personal emails 
 
 
7.2 Aims 
The aims of the tests were to identify the following: 

1. Is the model capable of word prediction? 
2. Does a context-driven UBC yield more accurate results? 
3. Is there any added benefit of including WordNet predictions? 

 
The following sections will address these aims with respect to the results 
obtained.  
 
7.2.1 Aim 1 
 
The overall aim of this project was to build a user-based word prediction model, 
whose predictions are based largely on the user rather than the language. While 
the model itself was designed to reflect this, the tests were implemented to verify 
if the model was capable of word prediction on some unseen test data. From the 
results, it is evident that all baseline variations of the model, including the most 
basic unigram model (Baseline 1), is capable of word prediction.  
 
Additionally, the improvement of Baseline 2 upon Baseline 1 for KT and KSR 
signifies the benefit of using bigram predictions than unigram predictions. This 
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is as expected, as unigram predictions do not take into consideration the input or 
context word when deriving the appropriate predictions, rather purely 
considering the frequency of words in a corpus. 
 

7.2.2 Aim 2 
 
From the results (both KT and KSR), Baseline 2 and Baseline 3 were 
approximately the same with any small differences deemed as statistically 
insignificant. This suggests that having a task-driven UBC (Baseline 3) does not 
improve up on the accuracy of word prediction. Theoretically, tailoring the UBC 
to the context of what is being written should generate more accurate predictions 
particularly in this system, as the prediction list contains a portion of all possible 
predictions. For example, if the user is writing an informal email to his friend 
Bob and begins the email with ‘Hi’, the informal emails UBC is more likely to 
contain the bigram ‘Hi Bob’ more frequently than the generic UBC, which may 
contain a range of bigrams beginning with ‘Hi’ but not necessarily ending with 
‘Bob’. Hence, the prediction list from the informal emails UBC has a higher 
likelihood of containing ‘Bob’ than from the generic UBC, which could contain a 
range of other names.  
 
However, a potential reason for the lack of impact of a context-derived UBC 
could be due to crossover in content between different contexts. For example, 
formal content i.e., this project, is generally used in the context of a formal email 
however, could still be referenced in an informal context. In this case, the 
informal emails UBC is unlikely to contain any information regarding the formal 
content and therefore the prediction list either contains irrelevant predictions 
taken from the BNC or no predictions at all resulting in a greater KT and 
smaller KSR.  
 
Apart from increasing accuracy of the predictions, the purpose of a task-driven 
UBC was to reduce the time taken to generate predictions (smaller corpus). 
Given that Baseline 3 is not impeding the word prediction performance, future 
versions could focus on trying to improve its accuracy rather than not 
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considering context at all. For example, ensuring that the task-driven UBC is 
regularly updated such that it can capture any new crossover content. This is 
discussed further in the Future Works section.  
 

7.2.3 Aim 3 
 
The inability of Baseline 4 to reduce KT or increase KSR in comparison to 
Baseline 3 indicates that the WordNet predictions did not provide any added 
benefit to the model. There could be several reasons for this, including the 
misidentification of the synset leading to inaccurate synonymous predictions.  
 

The identification of a synset is based on the degree of overlap between the 
previously written words, and the synset definition from WordNet. It is clear 
that the more previously written words or more semantically-related words will 
yield in a more correct identified synset. In the case of the test emails, they are 
quite short and jump from topic-to-topic quickly, making it difficult for WSD to 
work properly leading to synset misidentification and irrelevant synonyms being 
added to the prediction list. As such, WordNet predictions may prove to be more 
useful for longer and topic-dependent documents i.e., a report on the brain.  
 
Based on this, hypothetically longer emails in the test sets should have resulted 
in Baseline 4 potentially outperforming the other baselines as there is a higher 
likelihood of the correct synset being identified. However, the results obtained 
show no apparent correlation between email length and the KSR for Baseline 4. 
This could mean that WordNet synonyms may be more useful for topic-
dependent documents.  
 

Another potential reason for the poor performance of WordNet could be that the 
predictions are synonymous to the input word and therefore, may not be as 
accurate for predicting the output word. The reason for basing the prediction on 
the input word is because the input word is known, and therefore there is more 
control over the predictions generated.  
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7.2.4 Limitations 
 
It is important to recognise the presence of certain limitations which can impede 
on the model’s performance. Identifying these limitations can aid in 
understanding how to either reduce or eliminate them in future versions.  
 
From Figure 6.17, it is clear that the UBC generates the most predictions, and 
consequently has the largest impact on the resulting accuracy of the predictions.  
The issue of crossover content impacting the performance of Baseline 3 can 
therefore potentially be explained by the limitation of using a predesigned UBC. 
Using a predesigned UBC means that the UBC does not contain the most up-to-
date user information increasing the chance of crossover content. However, while 
the problem of crossover content cannot be eliminated entirely; it can only be 
reduced by ensuring that the user-based predictions are taken from the most 
recent representation of the user.  
 
Additionally, the final syntactic and semantic predictions listed were only a 
portion of all the possible predictions (3 each). While it is unrealistic to list all 
these predictions, the portion of predictions listed could affect the accuracy of the 
model. For example, the more predictions listed, the higher the likelihood of one 
of the predictions being correct. However, given that the number of predictions 
listed is dependent on the final UCI (i.e., how many predictions can fit into the 
screen at a time), this limitation may be unavoidable.  
 
An evaluation limitation is the calculation of the keystrokes on the test data. The 
keystrokes were calculated purely on the characters of the email thereby 
disregarding the keystrokes involved in selection of the prediction i.e., choosing 
the predictions via corresponding numbers and the enter key for selection. The 
main reason for using this particular evaluation method is because the aims of 
the tests were to evaluate the accuracy of the predictions rather than the system 
as a whole.  
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7.2.5 Significance 
 
The tests were designed to identify if the language model based on the principles 
of SLM adaptation and back-off modelling is a feasible word prediction model, 
and evaluate the advantages and disadvantages of certain design 
implementations such as the inclusion of WordNet or using a task-driven UBC.  
 
The results obtained for this ‘proof-of-concept’ confirm the model’s potential as a 
word prediction model while highlighting possible modifications to further 
increase the accuracy of the predictions. Specifically, the results indicate that 
there is no statistically significant difference between using a task-driven or a 
generic UBC, and there is no significant benefit from the inclusion of WordNet 
on the accuracy of predictions.  
 
At face value, the results indicate that there is no statistically significant 
difference between Baseline 2, 3 or 4 and therefore technically, any of the 
baselines can be used to improve upon the future word prediction model. 
However, there are other factors that should be considered such as time. While 
time as a metric has not been validated by the tests, intuitively Baseline 3 and 
Baseline 4 use a task-based (therefore smaller) UBC and consequently, may have 
a smaller time associated with generating predictions than Baseline 2, which 
uses a much larger UBC. As such, Baseline 3 may be a better choice for future 
improvements instead. However, to make any conclusive decisions, further tests 
particularly involving time as a metric must be evaluated first.   
 
The results strongly suggest that WordNet offers no benefit to prediction model 
when writing an email. However, WordNet’s influence for other tasks, 
particularly those requiring a longer and topically-similar document needs to be 
further tested. Given that the prediction model is to be used for a range of tasks 
and contexts, depending on the results obtained for other tasks, appropriate 
decisions can be made on WordNet’s inclusion, or potentially partial inclusion 
using a weighting scheme. 
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8 Conclusions and Future Work 
 
8.1 Future Work 
 
There are two main aspects to the future work section – future work involving 
the word prediction model and generation of user-based predictions, and future 
work involving development of the final UCI.    
 
8.1.1.1 Word Prediction Model 

 
8.1.1.1.1 Updating User-Based Corpus 
 
The results highlighted the problem of crossover content, and arose primarily 
due to the pre-generated corpora used in the model. As mentioned previously, a 
way to address this is to continually update the contextual UBCs as frequently 
as possible (i.e., each night) to ensure that the UBC contains the most up-to-date 
information on the user. For this to be done efficiently, there must be a 
mechanism of storing the documents (emails, reports, webpages searched and 
saved etc.) at regular intervals. There could be several methods of 
implementation, i.e., interfacing with existing email systems such as Gmail to 
automatically download new emails and caching, as well as downloading, web 
content. If this is achieved, then theoretically the accuracy of the predictions 
should increase proportionally increasing the overall performance of the model.  
 
 
8.1.1.1.2 Static and Dynamic Weights 
 
The current model works as back-off model and hence, each corpus has an equal 
weight. However, in reality, predictions are more likely to come from one type of 
corpus than another, for example, the likelihood of predictions being generated 
from the UBC might be much larger than predictions being generated from the 
BNC. This is in fact validated by preliminary statistics seen in Figure 6.17, 
indicating that the likelihood of predictions taken from UBC is more than double 
than that of the current document or BNC. Aside from the three main corpora, 



 87 

the same trend is applicable for unfiltered (syntactic) vs. filtered (semantic) 
corpora, as well as WordNet. 
 
To reflect these various influences, weights can be added for each corpora or 
source, of predictions to form a linearly interpolated model i.e.,  
 

8	 9 = :; :<(8	 9 >? ) ∗ :B(8 9 >C ) +	:E :<(8	 9 F? ) ∗ (:B8 9 FC )

+:G(:< 8	 9 H?) ∗ :B(8 9 HC ) +:I 

 
where :;, :E, :G and	:I are the associated weights of each corpus and 
WordNet, and :< and :B  are the weights for the unfiltered (syntactic 
predictions) and filtered (semantic predictions) respectively. The three corpora 
(current document, UBC and BNC) are given by Corpus X, Corpus Y and Corpus 
Z respectively, with >?, F?, H?signifying the unfiltered versions and >C, FC and HC 
signifying the filtered versions.  
 
Due to time constraints, preliminary weight were only calculated for each of the 
corpora :;,  :E and :G (Table 8.1). The calculation of MLE for these weights are 
shown in Equations (8.2-8.4) and results tabulated (Table 8.2). Given that there 
is a small portion of words that were not found in the corpus (i.e., OOV) and to 
ensure that the weights all add up to 1, the normalised count for the OOV words 
was distributed evenly across the three corpora weights. Hence, the final raw 
weights are the average of all the weights for each test set plus the evenly 
distributed average OOV normalised count.  
 
It is important to realise that these weights are preliminary and therefore 
require further tuning in the future. A way of achieving this fine tuning would be 
to simply run a greater amount of unseen test data through the model.  
 

:; =
0". .'$)(	2#)*',.'"!	.%3)!	4#"$	K09

5".%&	!-$6)#	"4	7"#*(	'!	.)(.	*",-$)!.
 

 

(8.1) 

(8.2) 
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:E =
0". .'$)(	2#)*',.'"!	.%3)!	4#"$	LK9

5".%&	!-$6)#	"4	7"#�(	'!	.)(.	*",-$)!. 

 

:G =	
0". .'$)(	2#)*',.'"!	.%3)!	4#"$	,-##)!.	*",-$)!.	,"#2-(

5".%&	!-$6)#	"4	7"#*(	'!	.)(.	*",-$)!.
 

 
Table 8.1 Normalised Counts for each corpora across all test sets  

Normalised 

Counts 

Current 

Document 

(:G) 

UBC (:E) BNC (:;) OOV 

Enron Formal 

Emails 

0.166 0.777 0.026 0.031 

Enron 

Informal 

Emails 

0.226 0.709 0.053 0.013 

Personal 

Informal 

Emails 

0.155 0.747 0.042 0.056 

Personal 

Formal 

Emails 

0.165 0.745 0.052 0.038 

Average 0.178 0.744 0.043 0.035 
 
Table 8.2 Preliminary Weights for Linear Interpolation Model 

Weights Weight Values 

MN 0.189 
MO 0.756 

MP 0.055 
 

These corpora weights are static in that they remain the same throughout the 
program. However, in reality, as the document progresses, these weights may 
change. For example, as the user’s current document becomes longer, the 

(8.3) 

(8.4) 
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likelihood of the predictions taken from the current document may surpass the 
likelihood of the other corpora. Weights that are able to adapt to these changes 
are dynamic weights. Calculating dynamic weights can be done in many ways, 
including simply doing a real-time calculation of where the predictions are being 
taken from and adjusting the weights within a particular time or ‘word’-frame 
i.e., adjust the weights after 100 words.  
 
8.1.1.1.3 Recency Model 
 
A recency model can be incorporated to weight information inside the corpus 
itself, particularly the UBC. For example, predictions based on emails or 
webpages written or accessed in the last week as opposed to the last year may be 
weighted higher as the user may be more likely to write similar to their recent 
emails/documents rather than former email/documents. In this case, time is the 
metric used to evaluate recent vs. old, however another possible metric to be 
used could be words. That is, rank the words in the corpus based on the 
frequency of usage rather than when they were used. For example, if the user 
wrote an essay on amphibians three years ago, but now wishes to write a similar 
report, predictions based on this three-year old report will be weighted higher 
under the word-based recency model as ‘amphibian’ and related terms would be 
ranked higher due to their frequency of use rather than a time-based recency 
model which would decrease the predictions’ weight as it was accessed a long 
time back. 
 
Recency language models are important for various disciplines including 
information retrieval, where the retrieved documents may need to be both 
topically and within a certain time frame relevant to the user’s query. Li and 
Croft (2003) designed a time-based language model which incorporates a time-
based posterior prior for each document in the language model, therefore when 
selecting the documents via a ranking process, the documents will be subjected 
to a time constraint and ranked accordingly. This method could potentially be 
translated for the word prediction model, where the ‘documents’ could be emails, 
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PDFs and so forth each with a time-based prior and therefore ranked within the 
corpus solely based on these priors.  
 

8.1.1.1.4 Syntactic Information 
 
Incorporating syntactic information in a language model (see Literature Review) 
is useful in eliminating inappropriate or inaccurate predictions. For example, if 
the user wants the write the sentence ‘my aunt is going to the shops’, the 
prediction after ‘aunt’ must be is and not are as the latter defies the subject + 
verb agreement rule. This is particularly important for this model, as the 
predictions are largely based on the user and as such, if the user has poor 
grammar in their emails or documents, this will follow through as they are 
typing new documents.  
 
Additionally, in English, pronouns are often used in replacement of repeated 
nouns. For example, instead of writing ‘Jack climbed over the fence and then 
Jack fell down’, we write ‘Jack climbed over the fence and then he fell down’. 
That is, he replaces Jack (a proper noun) in the sentence. To reflect this writing 
style, predicting pronouns instead of repeating nouns can be incorporated into 
the language model as part of syntactic information. The implementation of this 
can be quite complex, however a simplistic initial method could be store all real-
time proper nouns in a list using a part-of-speech tagger. If the proper noun is 
used more than once, include the pronoun as a prediction each time the proper 
noun is suggested. The crux of the problem, however, is how to identify the 
correct pronoun for the subject i.e., how does the model know that ‘him’ is the 
correct pronoun for ‘Jack’? This must be investigated further in future versions.  
 

8.1.1.1.5 Perplexity Evaluation 
 
The primary evaluation metrics used for the results were KT and KSR, however 
an equally important evaluation metric is perplexity (see Background section). 
As mentioned, perplexity is a measure of how much probability the trained 
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language model assigns to each word on some unseen test data. The more 
information provided by the language model, the lower the perplexity.   
 
To measure perplexity, the language model must be first trained by assigning 
probabilities (not counts as what was used for generating predictions) to each 
word for both the UBC and the BNC. For a bigram model, the probability is 
given by Equation 2.4. Once the model has been trained, it can be used to assign 
probabilities on some unseen test-data. Perplexity is extremely sensitive to zero 
probabilities (i.e., unknown words) and therefore must use some form of 
smoothing to eliminate these zero probabilities.  
 
Training the model takes significant computational power and time given the 
number of words in UBC (1.2 million) and BNC (100 million). Consequently, 
given the time constraints and computational limitations when undertaking this 
project, the results were not able to be generated.    
 
 
8.1.1.2 Unconscious Computer Interface 

 
The UCI is part of the larger project where the predictions from the language 
model are presented in an alphabetized list to the user (Figure 8.1). Using BCI 
technology, the user can select the appropriate predictions and append it to the 
current document.  
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Figure 8.1 UCI Selection Example 

 

 
Figure 8.2 UCI Selection Example 

 
8.1.1.2.1 Selection 
 
The selection of the UCI can be explained using the examples shown in Figures 
8.1 and 8.2. Figure 8.1 depicts the initial prediction list shown to the user. Each 
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prediction has an associated probability and its size is proportional to that 
probability i.e., the most probable words in the initial prediction list are ‘Good 
Afternoon’, ‘Hey’ and ‘Hi’. The user can peruse through the list using BCI 
technology and as the user focuses on a particular prediction or section of the 
prediction list, the associated section enlarges with new predictions emerging 
(Figure 8.2). In the example, the user focuses on the word ‘Hey’, and predictions 
on either side of the word are essentially ‘greeked out’ while the predictions 
under the ‘H’ section are enlarged. Once the user selects the appropriate 
prediction using BCI technology, the prediction is appended to the final 
document and a new prediction list based on the newly appended prediction is 
displayed.  
 
For simplicity, the examples shown in Figures 8.1 and 8.2 are in black and 
white, however, more complicated versions can colour code the predictions 
according to the source and style. For example, the three corporal sources of 
predictions in the model are the current document, UBC and BNC, and along 
with WordNet, each can have their own associated colour. Similarly, syntactic 
and semantic predictions can each have their own colour.  
 
8.1.1.2.2 Evaluation 
 
The predictions generated from the language model must be adapted to fit their 
use in the UCI. Essentially, the predictions in the UCI should resemble a 
probability search tree with the branches as predictions and their associated 
probabilities. As the user focuses their attention on a particular word, new 
predictions with new probabilities are added as branches until the correct word 
(information) is found. Hence, a potential evaluation metric for the UCI could be 
to count the number of steps, or branches in the search tree from the initial 
highest probable word until the correct word. In the final UCI, the ‘steps’ are 
measured by BCI however, a more ‘proof-of-concept’ approach would be to simply 
use the direction (up, down, left, right) keys where the ‘up’ and ‘down’ keys could 
be used to peruse the list, ‘left’ to make a selection and ‘right’ as a form of delete. 
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Hence, the number of steps would simply be the number of times the ‘left’ key 
was pressed.  
 

a. Summary 
 
The designed model is capable of providing predictions based largely on the user 
rather than solely the language, with the predictions reflecting the user’s 
interests, style of writing and their current task being undertaken. Results show 
that this model is capable of word prediction, whilst also highlighting potential 
design modifications such as use of a generalised corpus opposed to a context-
derived corpus and further evaluating the effect of WordNet. Aside from the 
significance of developing a feasible user-based word prediction language model, 
the significance of the results also means that this tool can be successfully 
integrated with the future UCI.  
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Appendix A – Clean BNC Corpus Code 
 
 
import re 
import io 
import nltk 
import os 
 
 
 os.chdir('/Users/madhumuralidharan/nltk_data/corpora/BNC/K/KS''') #choose BNC folder 
 
 def cleanhtml(raw_html): #filter html tags 
   cleanr =re.compile('<.*?>') 
   cleantext = re.sub(cleanr,'', raw_html) 
   return cleantext 
 
 for i in os.listdir(os.getcwd()): 
     if i.endswith(".txt"): 
         print (i) #print the text file 
         my_file = io.open(i,"r", encoding = "utf-8") #open text file 
         text_file = my_file.read() #read 
         new=cleanhtml(text_file) #clean 
         new_file = open(i, "w") #rewrite old file with clean version 
         new_file.write(new) 
     else: 
         continue 
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Appendix B – Bigram Dictionary Code 
 
def bigram(tokens): 
    model=collections.defaultdict() #create new dictionary 
    bigrams = nltk.bigrams(tokens)  #generate bigrams 
    fdist=nltk.ConditionalFreqDist(bigrams) #generate conditional freq distribution from counts 
    try:  #bigram frequency 
        for k,v in fdist.items(): 
            model[k] = v #save bigram counts 
    except KeyError: 
        model[k]=1 #default if word is not found 
    return model 
 
model = bigram(tokens) 
pickle.dump(model,open("bnc_probability.p","wb")) #save to file 
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Appendix C – Model Implementation 
 
def CheckUserInputExists(current_word, task): 
    """ 
    :param current_word: current word for which predictions are generated 
    :param task: email or document 
    :return: prediction list 
    The function takes the input word and the task (email/document). Depending on the task, 
    the corresponding user-based corpus (informal/formal/document)  is selected. The system then 
looks for potential 
    predictions first in the current document, then the user-based corpus and finally the BNC. 
Once the appropriate 
    corpus is found, a conditional frequency distribution is generated containing the bigram counts 
from the corpus and 
    used to generate the predictions. 
    Note: Each of the corpora have a second filtered version (removed stop words and 
lemmatisation). 
    If bigram predictions exist in any of two versions of the three corpora, the three most 
common/frequent 
    predictions are stored in a list and returned. 
    """ 
    new= [] 
    new = list(set(new)) 
    input = current_word 
    overall_pred = [] 
    temp_corpus = task 
    print(temp_corpus) 
 
    #find appropriate user-based corpus 
 
    if temp_corpus == 'formal': 
        with io.open("Formal_Emails_Filtered_All.txt", "r", encoding="utf-8") as my_file: 
            user_based_corpus = my_file.read() 
    elif temp_corpus == 'informal': 
        with io.open("Informal_Emails_Filtered_All.txt", "r", encoding="utf-8") as my_file: 
            user_based_corpus = my_file.read() 
    elif temp_corpus == 'document': 
        with io.open("Past_PDFs.txt", "r", encoding="utf-8") as my_file: 
            user_based_corpus = my_file.read() 
 
    #Check for bigram predictions in current document 
    if input in current_document: 
        print("Found in current document") 
        mynewtext = [w for w in current_document if w not in stopwords] #stopping 
        new_text = (lemmatiser.lemmatize(i) for i in mynewtext) #lemmatising 
        bigrams_normal = bigram_model(current_document,2) 
        bigrams_semantic = bigram_model(new_text,2) 
        cfd_normal = nltk.ConditionalFreqDist(bigrams_normal) 
        cfd_semantic = nltk.ConditionalFreqDist(bigrams_semantic) 
        normal_predictions = list(cfd_normal[input].most_common(3)) 
        semantic_predictions = list(cfd_semantic[input].most_common(3)) 
        if (normal_predictions == semantic_predictions): #if normal and semantic predictions are 
the same, store the first three in a list 
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            np = [] #temp prediction list 
            normal_pred = [] 
            for i in range(len(normal_predictions)): 
                np += normal_predictions[i] 
                normal_pred = np[0::2] 
            overall_pred = list(set((normal_pred))) 
        else: #if normal and semantic predictions are not the same, build a new list with both the 
normal and semantic predictions 
            normal_pred = [] 
            semantic_pred = [] 
            np = [] 
            sp = [] 
            for i in range(len(normal_predictions)): 
                np += normal_predictions[i] 
                normal_pred = np[0::2] 
            for j in range(len(semantic_predictions)): 
                sp += semantic_predictions[j] 
                semantic_pred = sp[0::2] 
            overall_pred = (list(set(normal_pred) | set(semantic_pred))) #filter out common semantic 
and syntactic predictions 
        return overall_pred 
 
    #check for bigram predictions in user-based corpus 
    elif input in user_based_corpus: 
        print("Found in user-based corpus") 
        print("Found in BNC") 
    cfd_normal = pickle.load(open("saved_ubc_cfd.p", "rb")) 
    cfd_semantic = pickle.load(open("saved_ubc_semantic_cfd.p",”rb”)) 
        normal_predictions = list(cfd_normal[input].most_common(3)) 
        semantic_predictions = list(cfd_semantic[input].most_common(3)) 
        if (normal_predictions == semantic_predictions): 
            np = [] 
            normal_pred = [] 
            for i in range(len(normal_predictions)): 
                np += normal_predictions[i] 
                normal_pred = np[0::2] 
                overall_pred = list(set((normal_pred))) 
        else: 
            normal_pred = [] 
            topic_pred = [] 
            np = [] 
            tp = [] 
            for i in range(len(normal_predictions)): 
                np += normal_predictions[i] 
                normal_pred = np[0::2] 
            for j in range(len(semantic_predictions)): 
                tp += semantic_predictions[j] 
                topic_pred = tp[0::2] 
            overall_pred = (list(set(normal_pred) | set(topic_pred))) 
        return overall_pred 
    #check for predictions in BNC 
    elif input in corpus: 
        print("Found in BNC") 
    cfd_normal = pickle.load(open("saved_bnc_cfd.p", "rb")) 
    cfd_semantic = pickle.load(open("saved_bnc_semantic_cfd.p", "rb")) 
        normal_predictions = list(cfd_normal[input].most_common(3)) 
        semantic_predictions = list(cfd_semantic[input].most_common(3)) 
        if (normal_predictions == semantic_predictions): 
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            np = [] 
            normal_pred = [] 
            for i in range(len(normal_predictions)): 
                np += normal_predictions[i] 
                normal_pred = np[0::2] 
            overall_pred = list(set((normal_pred))) 
        else: 
            normal_pred = [] 
            topic_pred = [] 
            np = [] 
            tp = [] 
            for i in range(len(normal_predictions)): 
                np += normal_predictions[i] 
                normal_pred = np[0::2] 
            for j in range(len(semantic_predictions)): 
                tp += semantic_predictions[j] 
                topic_pred = tp[0::2] 
            overall_pred = (list(set(normal_pred) | set(topic_pred))) 
        return overall_pred 
    else: 
        print("not found anywhere") 
        overall_pred = [] 
        return overall_pred 
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Appendix D – Individual Email KSR Values for 
Test Sets 
 

Personal 

Informal 

Emails 

Baseli

ne 0 

(%) 

Baseline 1 

(%) 

Baseline 2 

(%) 

Baseline 3 

(%) 

Baseline 4 

(%) 

1 0 2.222±0.662 17.788±1.436 15.566±1.689 15.556±1.700 

2 0 2.941±0.662 10.784±1.436 8.824±1.689 8.824±1.700 

3 0 4.545±0.662 22.728±1.436 36.364±1.689 36.364±1.700 

4 0 1.717±0.662 19.742±1.436 22.318±1.689 23.176±1.700 

5 0 1.852±0.662 12.963±1.436 24.074±1.689 24.074±1.700 

6 0 12.698±0.662 17.460±1.436 19.048±1.689 19.048±1.700 

7 0 10.101±0.662 11.111±1.436 9.091±1.689 9.091±1.700 

8 0 2.362±0.662 17.323±1.436 17.323±1.689 18.110±1.700 

9 0 2.5±0.662 5±1.436 6.25±1.689 6.25±1.700 
10 0 8.537±0.662 14.634±1.436 19.512±1.689 19.512±1.700 
11 0 3.125±0.662 6.25±1.436 6.25±1.689 6.25±1.700 
12 0 4.177±0.662 0±1.436 0±1.689 0±1.700 
13 0 10.145±0.662 13.043±1.436 13.043±1.689 13.043±1.700 

14 0 7.563±0.662 14.286±1.436 11.765±1.689 11.765±1.700 

15 0 6.081±0.662 4.054±1.436 2.703±1.689 2.703±1.700 
16 0 0±0.662 6.061±1.436 16.667±1.689 16.667±1.700 

17 0 5.505±0.662 11.927±1.436 29.358±1.689 29.358±1.700 

18 0 8.451±0.662 7.042±1.436 19.718±1.689 19.718±1.700 

19 0 0±0.662 7.895±1.436 7.895±1.689 7.895±1.700 
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20 0 3.604±0.662 16.216±1.436 12.613±1.689 12.613±1.700 

21 0 5.738±0.662 16.393±1.436 10.246±1.689 11.475±1.700 

22 0 3.478±0.662 11.739±1.436 11.304±1.689 11.304±1.700 
23 0 6.224±0.662 35.270±1.436 9.544±1.689 8.299±1.700 

24 0 5.348±0.662 17.647±1.436 19.251±1.689 19.251±1.700 

25 0 8.537±0.662 17.073±1.436 24.390±1.689 24.390±1.700 
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Enron 

Informal 

Emails 

Baseline 

0 (%) 

Baseline 1 

(%) 

Baseline 2 

(%) 

Baseline 3 

(%) 

Baseline 4 

(%) 

1 0 7.949±0.484 13.077±1.261 13.333±1.307 14.872±1.311 
2 0 6.462±0.484 14.462±1.261 11.077±1.307 12±1.311 
3 0 0±0.484 31.25±1.261 31.25±1.307 31.25±1.311 
4 0 2.75±0.484 13±1.261 14±1.307 14±1.311 
5 0 5.109±0.484 16.423±1.261 16.423±1.307 16.423±1.311 
6 0 4.580±0.484 16.031±1.261 19.084±1.307 22.137±1.311 
7 0 7.018±0.484 15.789±1.261 7.018±1.307 7.018±1.311 
8 0 5.128±0.484 13.675±1.261 15.385±1.307 15.385±1.311 
9 0 2.415±0.484 18.841±1.261 22.705±1.307 22.705±1.311 
10 0 5.405±0.484 8.108±1.261 10.811±1.307 10.811±1.311 
11 0 9.091±0.484 18.182±1.261 19.481±1.307 19.481±1.311 
12 0 1.587±0.484 7.143±1.261 26.190±1.307 26.190±1.311 
13 0 1±0.484 21±1.261 16±1.307 16±1.311 
14 0 2.454±0.484 4.908±1.261 12.270±1.307 12.270±1.311 
15 0 7.954±0.484 10.227±1.261 7.955±1.307 7.955±1.311 
16 0 1.538±0.484 6.154±1.261 20±1.307 20±1.311 
17 0 5.195±0.484 6.493±1.261 7.792±1.307 7.792±1.311 
18 0 6.312±0.484 14.286±1.261 16.279±1.307 15.947±1.311 
19 0 1.408±0.484 14.085±1.261 19.718±1.307 19.718±1.311 
20 0 5.455±0.484 13.182±1.261 15.455±1.307 15.455±1.311 
21 0 7.143±0.484 13.492±1.261 19.048±1.307 18.254±1.311 
22 0 4.177±0.484 19.444±1.261 18.056±1.307 18.056±1.311 
23 0 5±0.484 0±1.261 0±1.307 0±1.311 
24 0 5.405±0.484 19.369±1.261 20.721±1.307 20.720±1.311 
25 0 4.177±0.484 12.5±1.261 12.5±1.307 18.75±1.311 
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Personal 

Formal 

Emails 

Baseline 

0 (%) 

Baseline 1 

(%) 

Baseline 2 

(%) 

Baseline 3 

(%) 

Baseline 4 

(%)  

1 0 2.222±0.609 17.778±1.938 15.556±2.065 15.556±2.082 
2 0 2.941±0.609 10.784±1.938 8.824±2.065 8.824±2.082 
3 0 4.545±0.609 22.727±1.938 36.364±2.065 36.364±2.082 
4 0 1.717±0.609 19.742±1.938 22.318±2.065 23.176±2.082 
5 0 1.852±0.609 12.963±1.938 24.074±2.065 24.074±2.082 
6 0 12.700±0.609 17.460±1.938 19.048±2.065 19.048±2.082 
7 0 10.101±0.609 11.111±1.938 9.091±2.065 9.091±2.082 
8 0 2.362±0.609 17.323±1.938 17.323±2.065 18.110±2.082 
9 0 2.5±0.609 5±1.938 6.25±2.065 6.25±2.082 
10 0 8.537±0.609 14.634±1.938 19.512±2.065 19.512±2.082 
11 0 3.125±0.609 6.25±1.938 6.25±2.065 6.25±2.082 
12 0 4.167±0.609 0±1.938 0±2.065 0±2.082 
13 0 10.145±0.609 13.043±1.938 13.043±2.065 13.043±2.082 
14 0 7.563±0.609 14.286±1.938 11.765±2.065 11.765±2.082 
15 0 6.081±0.609 4.054±1.938 2.703±2.065 2.703±2.082 
16 0 0±0.609 6.061±1.938 16.667±2.065 16.667±2.082 
17 0 5.505±0.609 11.927±1.938 29.358±2.065 29.358±2.082 
18 0 8.451±0.609 7.042±1.938 19.718±2.065 19.718±2.082 
19 0 0±0.609 7.895±1.938 7.895±2.065 7.895±2.082 
20 0 3.604±0.609 16.216±1.938 12.613±2.065 12.613±2.082 
21 0 5.738±0.609 16.393±1.938 10.246±2.065 11.475±2.082 
22 0 3.478±0.609 11.739±1.938 11.304±2.065 11.304±2.082 
23 0 6.224±0.609 35.270±1.938 9.544±2.065 8.299±2.082 
24 0 5.348±0.609 17.647±1.938 19.251±2.065 19.251±2.082 
25 0 8.537±0.609 17.073±1.938 24.390±2.065 24.390±2.082 
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Enron 

Formal 

Emails 

Baseli

ne 0 

(%) 

Baseline 1 

(%) 

Baseline 2 

(%) 

Baseline 3 

(%) 

Baseline 4 (%)  

1 0 7.051±0.581 9.615±1.405 9.615±1.355 14.103±1.317 

2 0 5±0.581 17±1.405 18±1.355 18±1.317 
3 0 8.219±0.581 16.438±1.405 19.178±1.355 17.808±1.317 

4 0 8.130±0.581 9.756±1.405 13.008±1.355 13.008±1.317 
5 0 0±0.581 10±1.405 6±1.355 10±1.317 
6 0 2.390±0.581 17.530±1.405 21.116±1.355 20.319±1.317 
7 0 2.479±0.581 14.050±1.405 14.050±1.355 14.050±1.317 
8 0 8.824±0.581 17.647±1.405 17.647±1.355 17.647±1.317 
9 0 3.846±0.581 20.192±1.405 17.308±1.355 15.385±1.317 
10 0 6.024±0.581 10.040±1.405 11.647±1.355 10.040±1.317 
11 0 5.155±0.581 16.495±1.405 18.557±1.355 19.588±1.317 
12 0 6.061±0.581 15.152±1.405 15.152±1.355 18.182±1.317 
13 0 5.556±0.581 11.111±1.405 11.111±1.355 11.111±1.317 
14 0 2.660±0.581 7.979±1.405 7.447±1.355 5.851±1.317 
15 0 0±0.581 3.846±1.405 3.846±1.355 3.846±1.317 
16 0 0.877±0.581 5.263±1.405 6.140±1.355 3.509±1.317 
17 0 4.4±0.581 11.6±1.405 15.6±1.355 14.4±1.317 
18 0 3.817±0.581 2.290±1.405 9.160±1.355 9.160±1.317 
19 0 0±0.581 0±1.405 0±1.355 0±1.317 
20 0 3.704±0.581 16.296±1.405 16.296±1.355 16.270±1.317 
21 0 3.145±0.581 16.981±1.405 18.868±1.355 18.868±1.317 
22 0 8.8±0.581 14.4±1.405 15.2±1.355 16±1.317 
23 0 0±0.581 0±1.405 0±1.355 0±1.317 
24 0 1.987±0.581 24.503±1.405 21.854±1.355 13.907±1.317 
25 0 7.826±0.581 27.826±1.405 26.523±1.355 26.522±1.317 
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Appendix E – Individual Email Normalised KT 
Values for Test Sets 
 

Enron 

Formal 

Emails 

Baseline 

0 

Baseline 1 Baseline 2 Baseline 3 Baseline 4 

1 1 0.929±0.006 0.904±0.014 0.904±0.014 0.859±0.013 
2 1 0.95±0.006 0.830±0.014 0.820±0.014 0.820±0.013 
3 1 0.918±0.006 0.836±0.014 0.808±0.014 0.822±0.013 
4 1 0.919±0.006 0.902±0.014 0.870±0.014 0.870±0.013 
5 1 1±0.006 0.900±0.014 0.940±0.014 0.900±0.013 
6 1 0.976±0.006 0.825±0.014 0.789±0.014 0.797±0.013 
7 1 0.975±0.006 0.860±0.014 0.8599±0.014 0.860±0.013 
8 1 0.912±0.006 0.824±0.014 0.824±0.014 0.824±0.013 
9 1 0.962±0.006 0.798±0.014 0.827±0.014 0.846±0.013 
10 1 0.940±0.006 0.900±0.014 0.884±0.014 0.900±0.013 
11 1 0.948±0.006 0.835±0.014 0.814±0.014 0.804±0.013 
12 1 0.939±0.006 0.849±0.014 0.849±0.014 0.818±0.013 
13 1 0.944±0.006 0.889±0.014 0.889±0.014 0.889±0.013 
14 1 0.973±0.006 0.920±0.014 0.926±0.014 0.941±0.013 
15 1 1±0.006 0.962±0.014 0.962±0.014 0.962±0.013 
16 1 0.991±0.006 0.947±0.014 0.939±0.014 0.965±0.013 
17 1 0.956±0.006 0.884±0.014 0.844±0.014 0.856±0.013 
18 1 0.962±0.006 0.977±0.014 0.908±0.014 0.908±0.013 
19 1 1±0.006 1±0.014 1±0.014 1±0.013 
20 1 0.963±0.006 0.837±0.014 0.837±0.014 0.837±0.013 
21 1 0.969±0.006 0.830±0.014 0.811±0.014 0.811±0.013 
22 1 0.912±0.006 0.856±0.014 0.848±0.014 0.840±0.013 
23 1 1±0.006 1±0.014 1±0.014 1±0.013 
24 1 0.980±0.006 0.755±0.014 0.781±0.014 0.861±0.013 
25 1 0.922±0.006 0.722±0.014 0.735±0.014 0.735±0.013 
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Personal 

Informal 

Emails 

Baseline 

0 

Baseline 1 Baseline 2 Baseline 3 Baseline 4 

1 1 0.978±0.006 0.822±0.014 0.844±0.017 0.844±0.017 
2 1 0.971±0.006 0.892±0.014 0.912±0.017 0.912±0.017 
3 1 0.955±0.006 0.773±0.014 0.636±0.017 0.636±0.017 
4 1 0.983±0.006 0.803±0.014 0.777±0.017 0.768±0.017 
5 1 0.981±0.006 0.870±0.014 0.759±0.017 0.759±0.017 
6 1 0.873±0.006 0.825±0.014 0.810±0.017 0.810±0.017 
7 1 0.899±0.006 0.889±0.014 0.909±0.017 0.909±0.017 
8 1 0.976±0.006 0.827±0.014 0.827±0.017 0.819±0.017 
9 1 0.975±0.006 0.95±0.014 0.938±0.017 0.9375±0.017 
10 1 0.915±0.006 0.854±0.014 0.805±0.017 0.805±0.017 
11 1 0.969±0.006 0.938±0.014 0.938±0.017 0.938±0.017 
12 1 0.958±0.006 1±0.014 1±0.017 1±0.017 
13 1 0.899±0.006 0.870±0.014 0.870±0.017 0.870±0.017 
14 1 0.924±0.006 0.857±0.014 0.882±0.017 0.882±0.017 
15 1 0.939±0.006 0.960±0.014 0.973±0.017 0.973±0.017 
16 1 1±0.006 0.940±0.014 0.833±0.017 0.833±0.017 
17 1 0.945±0.006 0.881±0.014 0.706±0.017 0.706±0.017 
18 1 0.915±0.006 0.930±0.014 0.803±0.017 0.803±0.017 
19 1 1±0.006 0.921±0.014 0.921±0.017 0.921±0.017 
20 1 0.964±0.006 0.838±0.014 0.874±0.017 0.874±0.017 
21 1 0.943±0.006 0.836±0.014 0.898±0.017 0.885±0.017 
22 1 0.965±0.006 0.883±0.014 0.887±0.017 0.887±0.017 
23 1 0.938±0.006 0.647±0.014 0.905±0.017 0.917±0.017 
24 1 0.947±0.006 0.824±0.014 0.807±0.017 0.807±0.017 
25 1 0.915±0.006 0.830±0.014 0.756±0.017 0.756±0.017 

 
Personal 

Formal 

Baseline 

0 
Baseline 1 Baseline 2 Baseline 3 Baseline 4 
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Emails 
1 1 0.955±0.006 0.8310.830±0.019 0.864±0.021 0.867±0.021 
2 1 1±0.006 1±0.019 1±0.021 1±0.021 
3 1 0.967±0.006 0.967±0.019 0.956±0.021 0.901±0.021 
4 1 0.934±0.006 0.893±0.019 0.889±0.021 0.885±0.021 
5 1 0.930±0.006 0.940±0.019 0.909±0.021 0.909±0.021 
6 1 1±0.006 1±0.019 1±0.021 1±0.021 
7 1 1±0.006 0.723±0.019 0.766±0.021 0.787±0.021 
8 1 0.937±0.006 0.779±0.019 0.747±0.021 0.747±0.021 
9 1 0.906±0.006 0.943±0.019 0.943±0.021 0.943±0.021 
10 1 0.958±0.006 0.831±0.019 0.761±0.021 0.761±0.021 
11 1 0.972±0.006 0.778±0.019 0.764±0.021 0.729±0.021 
12 1 0.973±0.006 0.946±0.019 0.919±0.021 0.919±0.021 
13 1 0.916±0.006 0.863±0.019 0.832±0.021 0.855±0.021 
14 1 0.938±0.006 0.870±0.019 0.880±0.021 0.880±0.021 
15 1 0.934±0.006 0.851±0.019 0.818±0.021 0.818±0.021 
16 1 0.927±0.006 0.824±0.019 0.832±0.021 0.815±0.021 
17 1 0.948±0.006 0.814±0.019 0.835±0.021 0.832±0.021 
18 1 0.954±0.006 0.806±0.019 0.749±0.021 0.749±0.021 
19 1 0.898±0.006 0.878±0.019 0.857±0.021 0.755±0.021 
20 1 0.928±0.006 0.717±0.019 0.651±0.021 0.651±0.021 
21 1 1±0.006 1±0.019 1±0.021 1±0.021 
22 1 0.969±0.006 0.781±0.019 0.766±0.021 0.766±0.021 
23 1 1±0.006 1±0.019 1±0.021 1±0.021 
24 1 0.971±0.006 0.647±0.019 0.647±0.021 0.647±0.021 
25 1 0.953±0.006 0.901±0.019 0.896±0.021 0.896±0.021 
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Enron 

Informal 

Emails 

Baseline 

0 
Baseline 1 Baseline 2 Baseline 3 Baseline 4 

1 1 0.921±0.005 0.869±0.013 0.867±0.013 0.851±0.013 
2 1 0.935±0.005 0.855±0.013 0.889±0.013 0.880±0.013 
3 1 1±0.005 0.688±0.013 0.688±0.013 0.688±0.013 
4 1 0.973±0.005 0.870 ±0.013 0.860±0.013 0.860±0.013 
5 1 0.949±0.005 0.836±0.013 0.836±0.013 0.836±0.013 
6 1 0.954±0.005 0.840±0.013 0.809±0.013 0.779±0.013 
7 1 0.930±0.005 0.842±0.013 0.930±0.013 0.930±0.013 
8 1 0.949±0.005 0.863±0.013 0.846±0.013 0.846±0.013 
9 1 0.976±0.005 0.812±0.013 0.773±0.013 0.773±0.013 
10 1 0.946±0.005 0.919±0.013 0.892±0.013 0.892±0.013 
11 1 0.909±0.005 0.818±0.013 0.805±0.013 0.805±0.013 
12 1 0.984±0.005 0.929±0.013 0.738±0.013 0.738±0.013 
13 1 0.990±0.005 0.790±0.013 0.840±0.013 0.840±0.013 
14 1 0.975±0.005 0.951±0.013 0.877±0.013 0.877±0.013 
15 1 0.920±0.005 0.898±0.013 0.920±0.013 0.920±0.013 
16 1 0.985±0.005 0.938±0.013 0.800±0.013 0.800±0.013 
17 1 0.948±0.005 0.935±0.013 0.922±0.013 0.922±0.013 
18 1 0.937±0.005 0.857±0.013 0.837±0.013 0.841±0.013 
19 1 0.986±0.005 0.859±0.013 0.803±0.013 0.803±0.013 
20 1 0.945±0.005 0.868±0.013 0.845±0.013 0.845±0.013 
21 1 0.929±0.005 0.865±0.013 0.810±0.013 0.817±0.013 
22 1 0.958±0.005 0.806±0.013 0.819±0.013 0.819±0.013 
23 1 0.950±0.005 1±0.013 1±0.013 1±0.013 
24 1 0.946±0.005 0.806±0.013 0.793±0.013 0.793±0.013 
25 1 0.958±0.005 0.875±0.013 0.875±0.013 0.813±0.013 
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Appendix F – Attachments 
 

The attached USB contains:  

• Source code of software  

o Baseline3.py 

o Clean_bnc.py 

• Sample corpora text files for training model  

o Formal_Emails_Filtered_All.txt 

o Informal_Emails_Filtered_All.txt 

o Past_PDFs.txt 

o User_based_corpus.txt 

• Note: Due to distribution policies, the BNC needs to be accessed externally 

 

 


