
 1

Flinders University

School of Computer Science, Engineering and Mathematics

A User-Oriented Statistical Model for Word
Prediction

Improving Hands-Free Assistive Technologies for Typing

By

Madhuvanthi Muralidharan

A thesis submitted for the degree of Bachelor of Engineering
(Biomedical)(Honours) and Master of Engineering (Biomedical)

Project Supervisors
Professor David Powers

October 2016

Submitted to the School of Computer Science, Engineering and Mathematics in
the Faculty of Science and Engineering in partial fulfilment of the requirements
for the degree of Bachelor of Engineering (Biomedical) (Honours) and Master of

Engineering (Biomedical) at Flinders University – Adelaide, Australia.

 2

Declaration of Originality

I certify that this work does not incorporate without acknowledgement of any
material previously submitted for a degree or diploma in any university; and
that to the best of my knowledge and belief it does not contain any material
previously published or written by any person except where due reference is
made in the text.

Signed: Madhuvanthi Muralidharan Date: 17th October 2016

 3

Abstract

Word prediction has seen a vast range of applications over the years including
SMS smart-messaging systems, and recently, in Assistive Technologies. The
primary intention of word prediction is to reduce typing time, and while most
prediction systems in Assistive Technologies achieve this goal, there is a
requirement for the user to type using a keyboard. This is difficult for many
disabled persons, but borders impossible for users suffering with severe speech
or motor impairments. To enable such persons to type, a user interface is
proposed in which the user is able to type by using predictions – at least from the
users’ perspective – eliminating the requirement of a keyboard. This interface is
part of a broader project on Unconscious Computer Interface where Brain
Computer Interfaces are used to detect implicit intention rather than requiring
explicit action.

The aim of this project was to build a word-prediction model for the
aforementioned user interface. Most word prediction models are based on
statistical language models, in particular the n-gram model. Many
improvements have been suggested to improve upon its performance, but little
focus has been placed on user-based language models. Thus, the project aimed to
address this research gap by building a user-oriented word-prediction model that
is capable of generating predictions based largely on the user than the language.

The model was designed as a back-off language adaptation model, drawing upon
dynamic and static corpora to generate the predictions. Baseline studies
validated the model as a word prediction tool, as well as identifying design
elements with potential to improve performance. It is anticipated that the model
will be integrated with the proposed Unconscious Computer Interface in future.

 4

Acknowledgements

I wish to extend my deepest gratitude to my supervisor, Professor David Powers
for his continual guidance, support and kindness throughout the project. His
patience when imparting his deep knowledge, not only in his field but across
various disciplines, has been invaluable.

Thank you to my family, who have accompanied me on my journey so far with
their unconditional love, support and enthusiasm.

 5

Table of Contents

List of Acronyms and Abbreviations ... 9
1. Introduction .. 12
2. Background ... 15

2.1 Language Model .. 15
2.1.1 Estimation .. 16
2.1.2 Smoothing ... 17
2.1.3 Language Model Adaptation .. 21
2.1.4 Language Model Evaluation .. 22
2.1.5 Stopping and Stemming ... 23

2.2 Application ... 23
2.2.1 Spinal Cord Anatomy ... 23
2.2.2 Quadriplegia ... 24
2.2.3 Locked-in Syndrome ... 25
2.2.4 Existing Assistive Technologies .. 25
2.2.5 Brain Computer Interfaces .. 26

3 Literature Review .. 28
3.1 Computational Linguistics ... 28

3.1.1 Syntactic Models ... 28
3.1.2 Semantic Models .. 29
3.1.3 Topic Models ... 32
3.1.4 Combination of Models ... 34

3.2 Biomedical Application ... 35
4 Implementation .. 40

4.1 Programming Language ... 40
4.1.1 NLTK .. 40

4.2 Methodology ... 40
4.2.1 User Input ... 41
4.2.2 Predictions .. 42
4.2.3 Selection .. 52

5 Experiments .. 55
5.1 Baseline 0 .. 55
5.2 Baseline 1 .. 55
5.3 Baseline 2 .. 55
5.4 Baseline 3 .. 55
5.5 Baseline 4 .. 56
5.6 Test Set .. 56
5.7 Testing Implementation .. 57

5.7.1 Evaluation Metrics ... 57
5.7.2 Testing .. 58

6 Results .. 61
6.1 Standard Error .. 61
6.2 T-Test ... 63

 6

7 Discussion .. 81
7.1 Summary of Key Findings .. 81
7.2 Aims ... 81

7.2.1 Aim 1 ... 81
7.2.2 Aim 2 ... 82
7.2.3 Aim 3 ... 83
7.2.4 Limitations ... 84
7.2.5 Significance ... 85

8 Conclusions and Future Work .. 86
8.1 Future Work ... 86
a. Summary ... 94

References ... 95
Appendix A – Clean BNC Corpus Code .. 104
Appendix B – Bigram Dictionary Code .. 105
Appendix C – Model Implementation ... 106
Appendix D – Individual Email KSR Values for Test Sets 109
Appendix E – Individual Email Normalised KT Values for Test Sets ... 114
Appendix F – Attachments .. 118

 7

Table of Figures

Figure 2.1 Framework for SLM Adaptation (Bellegarda, 2004) 21
Figure 2.2 Motor and Sensory Map of the Spinal Cord (Spinal Hub. 2016) 24
Figure 2.3 P300-Speller, Vertical Flashes (Manyakov et al., 2011) 27
Figure 2.4 P300-Speller, Horizontal Flashes (Manyakov et al., 2011) 27
Figure 3.1 DASHER Interface Wills and Mackay (2006) 37
Figure 4.1 Methodology of System .. 41
Figure 4.2 Enron Formal Email .. 43
Figure 4.3 Enron Informal Email ... 43
Figure 5.1 Test set Breakdown ... 57
Figure 5.2 Automated Keys Pressed Process ... 60
Figure 6.1 Normalised KT for Enron Informal Emails .. 69
Figure 6.2 Normalisedl KT for Personal Informal Emails 69
Figure 6.3 Normalised KT for Personal Formal Emails .. 70
Figure 6.4 Normalised KT for Enron Formal Emails .. 70
Figure 6.5 Total KSR for Enron Informal Emails .. 71
Figure 6.6 Total KSR for Personal Informal Emails .. 71
Figure 6.7 Total KSR for Personal Formal Emails .. 72
Figure 6.8 Total KSR for Enron Formal Emails .. 72
Figure 6.9 Individual KSR for Enron Informal Emails ... 74
Figure 6.10 Individual KSR for Personal Informal Emails 75
Figure 6.11 Individual KSR for Enron Formal Email ... 76
Figure 6.12 Individual KSR for Personal Formal Emails 77
Figure 6.13 Individual Email Length for Enron Informal Emails 78
Figure 6.14 Individual Email Length for Personal Informal Emails 78
Figure 6.15 Individual Email Length for Personal Formal Emails 79
Figure 6.16 Individual Email Length for Enron Formal Emails 79
Figure 6.17 Normalised counts for all corpora for each test set 80
Figure 8.1 UCI Selection Example .. 92
Figure 8.2 UCI Selection Example .. 92

 8

Table of Tables

Table 4.1 NLTK Stopwords ... 46
Table 4.2 WordNet 'Rules of Detachment' .. 48
Table 4.3 Conditional Frequency Distribution of Training Sentence 49
Table 4.4 Variables and Representations ... 52
Table 5.1 Key Differences Between Baselines ... 56
Table 6.1 Average KT for testset of 25 emails across 5 Baselines. The table also

includes the standard error calculated on the 25 sample normalised KT
values. .. 63

Table 6.2 Average KSR for testset of 25 emails across 5 Baselines. The table also
includes the standard error calculated on the 25 sample KSR values. 63

Table 6.3 KSR T-Test Results for Enron Informal Emails 65
Table 6.4 KSR T-Test Results for Personal Informal Emails 65
Table 6.5 KSR T-Test Results for Enron Formal Emails 66
Table 6.6 KSR T-Test Results for Personal Formal Emails 66
Table 6.7 KT T-Test Results for Enron Informal Emails 67
Table 6.8 KT T-Test Results for Personal Informal Emails 67
Table 6.9 KT T-Test Results for Enron Formal Emails ... 67
Table 6.10 KT T-Test Results for Personal Formal Emails 68
Table 8.1 Normalised Counts for each corpora across all test sets 88
Table 8.2 Preliminary Weights for Linear Interpolation Model 88

 9

List of Acronyms and Abbreviations

Acronym Full Form
AAC

AT
BCI
BNC

CALO

CFD
EEG
EM
EMG
EOG
ERP
HMM
IR
KSR
KT
LDA
LSA
MLE
NLP
NLTK
OOV
PCFG
RSVP
SCI
SLM
SVD

Augmentative and Alternative
Communication
Assistive Technology
Brain Computer Interface
British National Corpus

Cognitive Assistant that Learns and
Organises
Conditional Frequency Distribution
Electroencephalogram
Expectation-Maximisation
Electromyography
Electrooculography
Event-Related Potential
Hidden Markov Model
Information Retrieval
Keystrokes Savings Rate
Keystrokes Typed
Latent Dirichlet Allocation
Latent Semantic Analysis
Maximum Likelihood Estimate
Natural Language Processing
Natural Language Toolkit
Out-Of-Vocabulary
Probabilistic Context-Free Grammar
Rapid Serial Visual Representation
Spinal Cord Injury
Statistical Language Model
Singular Value Decomposition

 10

TF-IDF
UBC
UCI
WER
WPM
WSD

Term Frequency-Inverse Document
User-Based Corpus
Unconscious Computer Interface
Word Error Rate
Words Per Minute
Word Sense Disambiguation

 11

List of Nomenclature

Variable Definition
! Sample Standard Deviation
" Sample Mean
#$
%

Sample Values
Arbitrary Value

C(w)

C*
()
(*
N
+*

Number of times word w occurs in a
sample
Laplace Modified Count
Laplace Discount Coefficient
Good Turing Discount Coefficient
Total Observations in Sample
Number of events occurring r times in
training

P(w) Probability of word w in sample

P*
PP

Discounted Probability
Perplexity

R
r*
,-.
T
V
/
/0|/023
/0|/024/023

Event occurring r times
Absolute Discount Coefficient
Standard Error
Threshold for Frequency Counts
Vocabulary Size
Word
Bigram
Trigram

 12

1. Introduction

Speech impairments and a lack of motor control seen in severe disabilities make
communication a difficult if not impossible task. To enable such persons to
communicate, for example through letters or documents, significant focus has
been placed on the development of Brain Computer Interfaces (BCI). BCIs are an
emerging Assistive Technology (AT) that are primarily used for quadriplegics
and persons with related diseases in which there is either partial or complete
paralysis of, part of, or of the whole body. BCIs utilize the user’s brain signals as
the basis for communication and selection (Schalk et al., 2004). The most popular
BCI for document-production is the P300 Speller which uses an alphanumeric
grid. The rows and columns of the grid are successively highlighted and once the
row or column contains the target letter, a P300 signal is elicited in the user’s
brain. This signal is then processed and used to identify the target letter that the
user wished to type (Farwell and Donchin, 1988).

The difficulty with the P300-Speller and other similar word-typing BCIs is the
time taken to produce words (almost a few minutes) and their reliance on
character-by-character typing (Farwell and Donchin, 1988). This often distracts
the user from the overall content they wish to produce, and therefore such
devices rarely see the completion of complete and formatted documents or other
office-related tasks.

A way to reduce the typing time and move from the character-level to a word-
level is word prediction. Predictive communication is not uncommon and has
found its uses in a vast range of fields, from speech and handwriting recognition
to SMS-smart messaging systems and recently, Augmentative and Alternative
Communication (AAC), a form of communication AT for disabled persons. In
most of these applications, the predictions are displayed as a list from which the
user can select a prediction, or manually type the word.

 13

The final interface as part of the larger project (henceforth known as the
Unconscious Computer Interface or, UCI), aims to provide an interface which in
itself, is an integration of word-prediction in a BCI-like AAC device. Specifically,
the interface will contain a list of continuously-generated stream of predictions
and allow a user to type purely by using these predictions. The user uses their
eyes to navigate through the predictions, with relevant predictions based on
where the eye is looking becoming larger in size and the others becoming smaller
and smaller until they are greeked out – i.e., the text is reduced to a simple grey
line or a thick patterned line in the case of multiple texts. It is anticipated with
this interface that the requirement of any keyboard is removed and the typing
time significantly reduced.

Word prediction is commonly achieved by the use of statistical language models
(SLM), which determine the likelihood of a sequence of words and assign an
associated probability to it. The most extensively used language model for word
prediction is based on the n-gram model which estimates the probability of a
word given its prior history, typically drawing up the last n-1 words to make this
approximation (Manning and Schütze, 1999). The three common n-gram models
used are the unigram (unconditioned representing a marginal or prior
distribution), the bigram (conditioned on the last term) and the trigram
(conditioned on the last two terms). The conditional probabilities of the word
sequences are usually estimated with respect to their relative frequencies in the
text, along with additional smoothing techniques to ensure an accurate
probability distribution (Manning and Schütze, 1999).

Whether writing emails, reports, or simply surfing the web, we are heavily
influenced by our writing style, our preferred vocabulary and the task at hand
(email, report-writing). It is evident therefore, that building a word prediction
model that is tailored around the user rather than simply the language can
provide lengthier, more accurate and relevant word predictions.

 14

Hence, the aim of this project is to build a user-based word prediction model,
capable of predicting words based on a user’s interests, style of writing and the
current task being undertaken. It is anticipated that the developed word-
prediction model will be used in combination with the UCI in the future, and
emerge as an innovative and useful AAC device.

The thesis first establishes a comprehensive background of both relevant
language models and AT for quadriplegics and locked-in syndrome patients, and
a literature review outlining current methods for improving these language
models and their applications into existing AT. It then moves on to the
implementation of the designed model, the experiments conducted to validate its
feasibility, the results obtained, a discussion of these results and lastly,
conclusions derived and future work involved.

 15

2. Background
2.1 Language Model
Predictive communication is commonly achieved by the use of statistical
language models. Language models were initially developed for speech
recognition applications, but have since then been used for other natural
language processing (NLP) tasks including optical character recognition and
spelling correction (Manning and Schütze, 1999).

The basis of a language model is to determine the likelihood or joint probability
of a sequence of words 5 /3,/4 …/0 ,	and assign an associated probability to it.
There are many ways in which the probability of the sequence of words can be
calculated, including decomposing the joint probability into a product of
conditional probabilities (chain rule),

5 /3,/4 …/0 = 5 /3 5 /4 /3 5 /: /4/3 …5 /0 /3
023

The chain rule of conditional probabilities conditions each successive word
against the n preceding words, referred to as the word history. However, this
process is computationally inefficient given the excessive number of parameters
required. A well-defined method of reducing the number of parameters is by
reducing the word history on which the word sequence is conditioned on. This
concept is reflected in the Markov Assumption which states that the transition
from one state to the next in a first-order finite state Markov Chain is dependent
only on the previous state and not on any other prior states. Thus, under the
Markov Assumption, the word history simply reduces to the last n -1 words
(Manning and Schütze, 1999).

5 /0 /3
023 ≈ 5 /0 /02<=3

023

(2.1)

(2.2)

 16

This model is called the n-gram model. The most common n-gram models used
are the unigram (unconditioned representing a marginal or prior distribution),
bigram (conditioned on the last term) and trigram (conditioned on the last two
terms).

2.1.1 Estimation

Different estimation techniques can be used to estimate the probability of the
word sequences, with the most straightforward and crudest form of estimation
being the maximum likelihood estimate (MLE, Manning and Schütze, 1999). The
MLE for an event ∈ is the ratio between the number of times the event occurs in
a training data and all the samples in the training data. That is, the relative
frequency of the event, or in this case –word, in the training data.

Example

If we have a unigram model, i.e., 5(/3), the MLE of /3 would be (Manning and
Schütze, 1999)

5 /3 =
@(/3)

A

Similarly, for bigram and trigram models, the maximum likelihood estimate of
(/0/023) and (/0/023/024) would be

5(/0|/023) =
@(/0/023)

@(/023)

5(/0|/023/024) =
@(/02<=3

023 /0)

@(/02<=3
023)

(2.3)

(2.4)

(2.5)

 17

The shortcoming of this approach is that there is severe bias towards observed
events and severe bias towards unseen events (zero probability assigned). That
is, words that are found commonly in texts such as ‘the’ are assigned a large
probability as they are seen often, where as more unique words that are unlikely
to be seen in normal text are assigned a zero probability, i.e., there is absolutely
no chance that this word will appear in any text. This is of course inaccurate,
and to counter this bias and ensure there are no zero probabilities, smoothing

was introduced. The general approach to smoothing is to discount some
probability from observed events and redistribute it to unseen events (Manning
and Schütze, 1999).

2.1.2 Smoothing

2.1.2.1 Good Turing Discounting

Good-Turing discounting is based on the Good Turing formula (Good, 1953),
where the modified count for an event occurring r times is discounted using the
following discount coefficient

Equation 1 Good-Turing Discount Coefficient

(* = (B + 1)
+*=3

B. +*

where +* corresponds the number of events that occurred B times in training.
This method requires that +* > 0 and therefore should only be used for events
that occurred B or more times (B is arbitrary).

2.1.2.2 Laplace Smoothing

Laplace Smoothing simply adds one to each observed count. The modified count
is therefore

(2.6)

(2.7)

 18

H∗ = (@ /3 + 1)
A

A + J

where <

<=K
 is the normalisation factor (V is the vocabulary size and N is the

number of tokens). The discounting coefficient is (Jurafsky and Martin, 2000).

() =
H∗

H

2.1.2.3 Absolute Discounting

In absolute discounting, the event count is discounted by some constant value
%	(0 < % < 1). In this case, it has least effect on the higher-counts than the lower-
counts. The discount coefficient is therefore defined as (Ney et al., 1994)

B∗ =
B − %

B

The constant value %	can be chosen using using held-out estimation

2.1.2.4 Kneser-Ney Smoothing

Kneser-Ney Discounting extends the absolute discounting method by providing a
more refined probability distribution for the lower order n-grams by considering
the number of contexts in which the word appears in. That is, the number of
times a word /$ completes a bigram (expressed as {{/$23: H /$23/$ > 0}|).
Normalizing this count with the total number of bigrams therefore gives the
following probability for word /$ (Martin and Jurafsky, 2000).

5 /$ =
|{/$23: H /$23/$ > 0}|

(/Q23, /Q ∶ H /Q23/Q > 0 |

(2.8)

(2.9)

(2.10)

 19

2.1.2.5 Model Combination

Discounting methods are all a form of smoothing in which probabilities are
artificially assigned to unseen events to eliminate zero probabilities. Another
smoothing technique that is used is to combine models. For example, if there is
no evidence of a particular trigram in the training text when estimating the
probability 5(/0|/024/023), then its probability can be estimated by a bigram
instead i.e., 5 /0 /023 or even a unigram 5(/0). Alternately, trigram, bigram
and unigram probabilities can all be combined to allow the model to have a
broader spectrum of the contexts available.

2.1.2.5.1 Back-off Modelling

Back-off modelling is a technique in which the model ‘backs-off’ to lower-order n-
grams when the required n-gram has 0 counts. Back-off modelling with a
discounting factor was introduced by Katz (1987), in which a discounted
probability 5∗ is used for seen n-grams, otherwise the algorithm ‘backs-off’ to a
lower order n-gram model. The back-off algorithm is therefore computed as

5ST /0 /02<=3
023 =

5∗ /0 /02<=3
023 																			UV	@ /02<=3

023 > 0

W /02<=3
023 5ST /0 /02<=4

023 											XYℎ[B/U\[

where W is the back-off weight used to distribute the discounted probability mass
to the lower-order n-grams. Katz smoothing is often used in conjunction with
Good-Turing smoothing to provide estimates for the 5∗ and W values (Martin
and Jurafsky, 2000).

2.1.2.5.2 Linear Interpolation

(2.11)

 20

In linear interpolation, different order n-grams are combined together using
linear interpolation. Thus, the probability estimate for 5(/0|/024/023) can be
computed as

5 /0 /024/023 = %35 /0 /024/023 + %45 /0 /023 + %:5(/0)

 where:

%$ = 1

$

Linear interpolation is not constrained to only combining n-gram models, but
rather all types of language models. The general form for linear interpolation of
language models is

5$0]^*_`ab]^c /0 /024/023 = %$

0

$d3

5$ /0 /024/023

The parameter coefficients % are typically set using a held-out corpus, choosing
values that maximize the likelihood of the held-out corpus. One method of
obtaining the optimal parameter coefficients is the iterative expectation-
maximization (EM, Dempster et al., 1977) algorithm.

2.1.2.5.3 Maximum Entropy

Maximum Entropy (Berger et al., 1996) models do not combine the models
themselves, rather they combine selected features from the individual models
into one model. The main advantage of this method is the ability to create an
overall model that is essentially a combination of the strengths of each
individual model. The main disadvantage is the computational inefficiency.

(2.12)

(2.13)

 21

2.1.3 Language Model Adaptation

Studies have shown that n-gram models trained on relevant domain-specific
training sets and applied to similar domain-specific test sets tend to be more
accurate than using generic training sets applied to a domain-specific test set.
For example, in modelling casual phone conversation, it was found better to use
a training set of ‘text has been removed due to copyright reasons’ (Bellegarda,
2004, p. 94). Language model adaptation aims to capture this by considering two
main text corpora – the smaller adaptation or dynamic corpus A, and the larger
static background corpus B. The general framework for SLM adaptation is shown
in Figure 2.1 (Bellegarda, 2004). From this framework, the idea is to use Corpus
A to “adapt” the background corpus B based on ‘task-specific knowledge’ that can
be derived from Corpus A that is, get a task-specific SLM from Corpus A and
combine it with the static background SLM from Corpus B to output an overall
adapted SLM.

Figure 2.1 Framework for SLM Adaptation (Bellegarda, 2004)

There are several ways of combining these two SLMs including linear
interpolation and back-off modelling. The linearly interpolated model combines
the dynamic and SLM as,

P /f ℎf = 1 − % 5Bg /f ℎf + %5BS /f ℎf 	 (2.14)

Figure has been removed
due to copyright
restrictions

 22

where the interpolation coefficients	% are found using the EM algorithm and

5Bg /f ℎf and 5BS /f ℎf are the n-gram estimates based on Corpus A and

Corpus B respectively.

Meanwhile, the back-off SLM adaptation essentially backs-off from the dynamic
SLM estimate to the static estimate depending on the frequency count. This is
referred to as the fill-up technique, with the implementation

P /f ℎf =
5g /f ℎf� 			UV	@g ℎf/f ≥ i

j5S /f ℎf 	XYℎ[B/U\[

where i	is some threshold for frequency counts (for the designed model, 0) and j
is the back-off coefficient.

2.1.4 Language Model Evaluation

2.1.4.1 Perplexity

A common method to evaluate a language model is to measure the perplexity of
the trained model on some unseen test-data (Martin and Jurafsky, 2000).
Perplexity can be defined as inverse probability of a test set given by the
language model, normalized by the number of words in the test data. The
equation for perplexity for a bigram model is

55 k =
1

5(/$|/$23)

<

$d3

Hence, the smaller the perplexity, the larger the probability assigned to the test
data and the better the model.

2.1.4.2 Keystroke Savings

(2.15)

(2.16)

 23

Keystroke savings rate (KSR) is a commonly used method for word prediction
language models. As the name suggests, keystroke savings rate is a measure of
the number of keystrokes saved when typing some unseen test data (Trnka and
McCoy, 2008). The larger the KSR, the more accurate the predictions and the
better the model. The equation for keystroke savings is

l,m = 	
iXYno	-+Y[B[(@ℎnBnHY[B\ − l[p\	5B[\\[(

iXYno	-+Y[B[(@ℎnBnHY[B\
	×	100%

2.1.5 Stopping and Stemming

Stopping and stemming are popular information retrieval (IR) techniques
(Baeza-Yates and Ribeiro-Neto, 1999). Stopping refers to the elimination of
common words such as ‘for’, ‘and’ and ‘a’ in a query with the argument that these
words do not contribute to the general meaning. This argument is also applied to
words that have multiple prefixes or suffixes i.e., ‘like, likely, likeable’ etc.
Stemming, therefore, eliminates the prefixes and suffixes of such word to
retrieve the ‘stem’ of the word, in this case, ‘like’. These techniques can be used
to generate predictions based on semantic relations given that the function
words have been filtered leaving only content words.

2.2 Application

2.2.1 Spinal Cord Anatomy

This section explores existing AT devices available for patients with severe
disabilities. These disabilities often stem from spinal cord injuries (SCI) or
inherent neurological disorders. The first part of this section looks at introducing
basic anatomy to understand the underlying causes of SCI and other relevant
disorders, before moving on to existing AT.

The spinal cord is the largest nerve in the body that extends from the brain down
to the waist. It is protected by sections of bone referred to as vertebrae, which
together, make up the spinal column. The vertebrae are generally grouped as

(2.17)

 24

cervical (upper region), thoracic (middle region), and lumbar and sacral (lower
regions).

The purpose of the spinal cord is to act as a communication channel between the
brain and the body (Shepherd Centre, 2011). Voluntary motion is achieved by the
conduction of nerve impulses from the brain to the spinal cord, and then to the
body via peripheral nerves to initiate movement. Similarly, sensory function is
achieved by carrying sensory stimuli from the body, through the spinal cord and
to the brain to analyse the various sensations (pain, temperature, touch etc.,)
(Brodwin et al, 2009). Each segment of the spinal cord is responsible for
innervating a different region of the body. Figure 2.2 illustrates the motor-
sensory map of the spinal cord.

Figure 2.2 Motor and Sensory Map of the Spinal Cord (Spinal Hub. 2016)

2.2.2 Quadriplegia

SCI occurs when there is any injury or damage to the spinal cord affecting the
communication channel between the brain and the rest of the body. This affects
the sensory, motor and autonomic function below the level of injury. Generally,
the higher the injury on the spinal cord, the more dysfunction the individual will
face (Shepherd Centre, 2011).

Figure has been removed
due to copyright
restrictions

 25

Quadriplegia is a type of SCI in which the cervical nerves are damaged. It is
typically categorised as paralysis of the upper and lower extremities, however
injury to the different cervical nerves will have a varying effect on the paralysis,
and other bodily functions. Injury to the high cervical nerves (C1-C4) is the most
severe, causing partial or complete loss in the arms, hands, trunk and legs, as
well as respiratory, speech, bowel and bladder impairment. Damage to the lower
cervical nerves is usually not as severe, with some individuals retaining some
level of movement in hands and shoulders, as well as breathing and speech
(Shepherd Centre, 2011). The causes of quadriplegia can be due to traumatic
injuries such as car accidents, falls or sport-related, or illnesses including cancer,
stroke, cerebral palsy and multiple sclerosis (Shepherd Centre, 2011).

2.2.3 Locked-in Syndrome

Locked-in syndrome is a rare neurological disorder in which the individual is
completely paralysed of all voluntary movement, excluding movement of their
eyes. The primary cause of locked-in syndrome is damage to a specific part of the
brainstem called the pons, specifically the ventral pons. Damage to the ventral
pons in turn damages the corticospinal tracts causing quadriplegia (Laureys et
al., 2005).

2.2.4 Existing Assistive Technologies

To enable persons with severe speech or motor impairments such as
quadriplegics or locked-in syndrome patients to communicate, significant
research has been focused on developing appropriate AT. Examples of such
technologies range from simple switches, sticks or pointers that can be used by
the hand, tongue, chin etc., to gaze and motion tracking interfaces using
electrooculography (EOG), electromyography (EMG) and electroencephalogram
(EEG). Amongst these, the communication devices applicable to both locked-in
syndrome patients and quadriplegics are the interfaces using EOG, EMG and

 26

EEG (Guerreiro, 2007).

Broadly, all three technologies essentially use the electrical signals produced by
the eye, muscle or brain respectively to control an external device. For the
purpose of this project only EEG-based technologies will be considered
henceforth, as they are an established AT for text-production i.e., the P300-
Speller.

2.2.5 Brain Computer Interfaces

The most common application of EEG-based AT is the BCI. The basic design of a
BCI is to first acquire the brain signals using electrodes, then process the brain
signals to extract features of interest relating to the user’s intention, and finally
translate the features into device commands (Schalk et al., 2004). A common
feature of interest used to identify the user’s intent is the P300 event-related
potential (ERP). The P300 signal, characterised by its positive-inflection with a
latency of 300 msec, is elicited using the ‘odd-ball paradigm’ in which two stimuli
are presented in a random order with one appearing frequently and the other
infrequently. Studies have not only shown that these infrequent stimuli elicit a
P300 signal in the brain, but also found a direct relationship between the
amplitude of the P300 signal and the relevancy of the events (Farwell and
Donchin, 1988).

The P300-Speller is word-typing BCI which exploits the P300 signal to identify
the target letter that the user wishes to type. The P300-Speller consists of an
alphanumeric grid containing the alphabet, along with other numbers and
characters (Figures 2.3-2.4). The rows and columns of the matrix are flashed
randomly and the user focuses on the target letter they wish to type. The row
and column containing the target letter are the ‘relevant’ events while the
remaining row and columns are the ‘irrelevant’ events. When the row or column
containing the target letter is flashed, a P300 response is elicited in the brain.
The amplitude of the P300 signal is detected and analysed, and the target letter

 27

is identified as the letter at which the intersection of the row and column yielded
the largest P300 signal (Farwell and Donchin, 1988).

Figure 2.3 P300-Speller, Vertical Flashes (Manyakov et al., 2011)

Figure 2.4 P300-Speller, Horizontal Flashes (Manyakov et al., 2011)

Figure has been removed
due to copyright
restrictions

Figure has been removed
due to copyright
restrictions

 28

3 Literature Review

This literature review has two main focuses, a computational linguistic section
and a biomedical application section. Both sections are based on language
models, where the former section explores techniques utilized in improving a
standard language model for word prediction, and the latter identifies the
applications of language models in AT.

3.1 Computational Linguistics

3.1.1 Syntactic Models

Syntactic language models incorporate syntactic information to language models
and are widely used, particularly in speech recognition. Deriving and
implementing syntactic models is a difficult task, reflected in its relatively
smaller research field. The most common method of achieving a syntactic
statistical model is to incorporate a statistical parser, which models a word
sequence W and a parse tree T as a joint probability distribution 5	(i,k)

(Manning and Schütze, 1999).

Two main ways of integrating statistical parsers in SLMs is to use a generative
or discriminative language model. In a generative language model, the statistical
parser can be incorporated using 5 k = 5 i,k .s That is, the parser assigns a
probability to all the words or sentences in the language given some probabilistic
context-free grammar (PCFG). This approach has been widely used including
Charniak (2000) when implementing a language model based on the “immediate-
head” parser, Chelba and Jelinek (2000) who had a similar implementation to
Charniak except the use of left-to-right parsing and Roark (2001) who used a
top-down parsing algorithm interpolated with a standard trigram language
model. All the methods found that they were able to improve the accuracy of
recognition in speech recognition tasks across broad-domains.

 29

On the other hand, Collins et al., (2005) took a discriminative approach where a
first statistical parser is used to establish an initial ranking of a set of parse
trees for each sentence with associated probabilities. The discriminative
statistical model then re-ranks the initial parse trees by using additional
features of the trees. This can be used for example, to choose the most likely
recognition hypothesis in a speech recognition system based on features from the
word sequences and parse trees. With regards to word prediction, the statistical
parser described can be used in combination with a language model to identify
the most likely word based on a pre-determined PCFG.

While statistical parsers still remain the most popular method of designing a
syntactic model, a more recent approach was proposed by Kaufmann and Pfister
(2012) to incorporate formal grammars with statistical models instead. The
benefit of this approach is the ability to impose harder and larger number of
linguistic-based constraints on the parser, which is not possible in a statistical
parser whose only restriction is that it must make structural sense.

3.1.2 Semantic Models

The most common method of extracting semantic information from a body of text
is Latent Semantic Analysis (LSA, Landauer and Dumais, 1997). LSA is a word-
similarity vector model that is used to measure semantic similarity between
words based on their co-occurrence (words that occur together or with similar
words). An LSA model is trained on a corpus of documents to create a Y[Bt	×
	(XHut[+Y	matrix. The matrix is reduced using singular value decomposition
(SVD) decomposing the original matrix into a Y[Bt	×	Y[Bt co-occurrence matrix
T. The semantic distance of any two words is found by calculating the dot
product of the two corresponding vectors in matrix T. LSA uses a “bag-of-words”
approach and therefore lacks the ability to maintain word order and therefore
need to be combined with n-gram models such that some form of grammatical
structure is used when predicting words.

 30

 A simple way of combining the two is linear interpolation, however, it was found
that the predicted words often lacked syntactic coherence. Coccaro and Jurafsky
(1998) opted to use geometric interpolation as an alternate means of
combination. This non-linear interpolation meant that a higher probability could
be given to words which were both syntactically and semantically likely and
lower probability if either LSA or n-gram model deemed it unlikely. The final
combined model reduced perplexity by 12%. A similar method was used by
Bellegarda (2000).

Li and Hirst (2005) also combined a semantic model and a basic n-gram model
using a similar technique in which the combined model had both an n-gram
component and semantic associated component. Depending on the degree of
semantic association of the predicted word with the prior history, either only the
n-gram or both the n-gram and semantic model were used to make the
prediction. Instead of using LSA for obtaining semantic information however, an
alternate method using word-occurrences and then filtering them with a
WordNet-like method was used where WordNet is a manually designed
taxonomy of English words (Miller, 1995). Compared to a baseline syntactic
language model developed by Fazly and Hirst (2003), the combined semantic
language model was able to improve the keystroke savings rate by 14.63%.
Additionally, the inclusion of out-of-vocabulary (OOV) entries in the semantic
model was also found to have a profound impact on results.

Two other methods of integrating LSA with a standard language model were
investigated by Wandmacher and Antoine (2008). The first method used a
semantic caching language model. Semantic caching extends a cache language
model with semantic information. Cache-based language models (Kuhn and
Mori, 1990) increase the probability of a word based on its previous appearances
in the long-term history, and are generally the result of interpolation of a cache
n-gram model and a standard n-gram model. Semantic caching involves
calculating the cosine similarity between each word and its nearest neighbours
in a given context. If the value is above a certain threshold, the word is added to

 31

the cache model and discarded if its below. The second method is partial re-
ranking. This method selects the n best words from the standard model (i.e.,
content words) for LSA to first calculate their semantic similarity, and then
assign a corresponding value in addition to its base probability. Both methods
were able to reduce perplexity from a baseline 4-gram models.

Latent Dirichlet Allocation (LDA, Blei et al., 2003) is used to find topics in a
particular document using a similar “bag-of-words” approach to LSA. Broadly,
the algorithm works by first going through each document and randomly
assigning each word in the document to a random topic for some fixed K topics.
To improve upon the original random topic assignments, the algorithm goes
through each word in each document to update the topic assignments based on
(1) how prevalent the word is across topics i.e., P(word|topics) and (2) how
prevalent the topics are in the document P (topic |document).

Though both LDA and LSA are similar in the sense that they both focus on
content words rather than function words, LDA is typically used for topic-
modelling while LSA is used for semantic analysis. To test the capabilities of
LDA in semantic analysis compared to LSA, Mitchell and Lapata (2009) used
both techniques to extract semantic information, combining the information with
a trigram model using additive (linear interpolation) and multiplicative methods.
Multiplicative interpolation is implemented using a semantic factor which
determines the influence of the trigram model on the overall model. The
resulting four models (additive and multiplicative for both LSA and LDA) were
compared with a baseline trigram model. Multiplicative LSA-trigram model
outperformed both additive and multiplicative LDA-trigram models suggesting
the use of LDA is not suited for semantic modelling.

Though the combination of LSA with standard n-gram language models is the
most widely used technique for generating semantic language models, it is not
the only one. Erdogan et al., (2002) presented the semantic concept-based
language model and semantic structured language model, both of which use

 32

alternate means of measuring semantic similarity and integrating language
models. In concept-based modelling, words with semantic similarity are grouped
as a ‘concept’. For some given word, the most likely concept sequence P(C) is
found and an n-gram model is used to estimate P(W|C). In semantic structured
language modelling, semantic classing is used to tag words according to their
meaning thereby providing basic semantic relations. Statistical parsers build on
this to derive more complex relations. The semantic information is then
combined into a maximum entropy model. The maximum entropy model
outperformed the concept-based model with regards to word error rate (WER),
with most WER reduction achieved with the combination of the ME and concept-
based models.

3.1.3 Topic Models

Topic models are integral to language models and word prediction models to
ensure predictions are within the topic of discussion. Lesher and Rinkus (2002)
designed domain-specific n-gram models to evaluate if dynamically swapping
these models in-and-out to match changing topic of conversation could improve
prediction performance. They found that topic-specific models could indeed
provide significant improvements in word prediction, highlighting that this
improvement could be extended to using models capturing various other domains
such as style, formality or genre.

The previous section introduced the idea of LDA for topic modelling. However,
like LSA, using LDA solely for prediction is inaccurate as word order is not
considered and like LSA, an intuitive solution is to simply combine it with an n-
gram language model (Wallach, 2006). As predicted, the prediction accuracy was
increased with this combined model over a general LDA model.

However, using LDA with language models can be computationally challenging
and difficult to implement and therefore simpler methods of using topic models
for word prediction have been suggested.

 33

Trnka et al., (2005) used topic modelling to act as a filter for the predictions from
n-gram models by increasing the probability of related words and decreasing the
probability of unrelated words, given the current topic. Topic identification was
achieved using the popular information retrieval technique – TF-IDF (Term
Frequency – Inverse Document Frequency). This technique in IR is typically
used to rank documents by focussing on content rather than function words. In
this case, it is used to eliminate stop words thereby aiding in topic identification.
It was hypothesized that this topic word prediction system would be able to
decrease the number of keystrokes. However, while the predictions were more
accurate and appropriate, the number of keystrokes did not decrease.
Additionally, the substantial amount of memory and computational inefficiency
of topic identification and modelling did not make this prediction system viable.

Kneser and Steinbiss (1993) used an adaptation model to modify language
models based on the writing style. The adaptation model consisted of K linearly
interpolated language models trained on different genres and writing styles with
associated interpolation parameters that were dynamically calculated based on
the preceding text. The interpolation parameters were used to select the model
that would be used to predict the next word based on the model that the previous
text most likely came from. Results showed the reduced perplexity however,
could be due to the overtraining of the adaptation model.

Similar to Trnka et al. (2005), Mahajan et al., (1999) also used popular
information retrieval techniques to incorporate topical information to n-gram
language models. The first stage was to collect all similar documents in a
training database based on the current document using the aforementioned TF-
IDF technique. The similar documents were then used in combination with a
topic-independent trigram language model using linear interpolation. The
proposed model reduced the perplexity of the baseline trigram language model
by 37% with suggestions presented of using dynamic topic models with varying
amounts of documents to increase robustness while maintaining specificity.

 34

Other means of capturing contextual information are cache-based models and
trigger models (Rosenfeld, 1996.). Cache-based language models were described
in the previous section. A trigger language model uses word trigger pairs in
which the trigger word increases the probability of its associated target word.
Selecting useful trigger pairs was achieved using the average mutual
information technique. Trigger language models combine word triggers and n-
gram constraints using the maximum entropy model.

3.1.4 Combination of Models

Section 1 illustrated the performance gains when either syntactic, semantic or
topic information is incorporated into language models for word prediction.
However, intuitively, the greatest performance improvement will occur when
using a model that is able to enforce syntactic, semantic and topical constraints
on their word predictions. Several techniques for combining language models
have been proposed over the years. As described in the background section, the
most commonly used combination techniques include: linear interpolation,
backing-off, language adaptation and maximum entropy (Rosenfield 1994,
Berger et al., 1996), most of which have been used to combine semantic models
with a standard language model.

The four main combinations of syntactic, semantic and topical information are
syntactic-semantic language models, syntactic-topic models, semantic-topic
models, and lastly, syntactic-semantic-topic language models. Within this,
combinations that have been used directly for enhancing prediction language
models are syntactic-topic models and syntactic-semantic models. While it is a
relatively unexplored field, few notable contributions exist.

Boyd-Graber and Blei (2009) developed a syntactic topic model that is capable of
predicting words that make sense both topically and syntactically. The proposed
method assigned a distribution to each word in a sentence that is a combination
of topic weights (extent to which document is about a certain topic) and syntactic
transitions derived from a parse tree. The model was able to reduce perplexity

 35

compared to a hierarchical Dirichlet process (an extension of LDA which does not
require pre-defined topics) and produce words that were syntactic and
thematically accurate.

Griffiths et al., (2005) designed a generative model that used short-range and
long-range dependencies to identify semantic and syntactic classes. Essentially,
a Hidden Markov Model (HMM) is used to identify the short-term dependencies
or function words and a topic model to handle long-range dependencies or
content words. The results validated the models’ capability of extracting
functional and content words (therefore identifying syntactic classes and
semantic topics). While this model was not specifically targeted at producing
word predictions, the extraction of function and content words is an important
precursor and can be extended to prediction systems.

Meanwhile, Khudanpur and Wu (2000) proposed a SLM which is a combination
of semantic relations found by inference of topics using information retrieval
techniques, and syntactic structure using a left-to-right parser. A maximum
entropy model is then used to combine the two together as a single model.
Results showed a perplexity and WER reduction compared to a baseline trigram
model.

3.2 Biomedical Application

Word prediction models are used in a range of applications including AAC
devices. Most high-tech AAC systems use some form of word prediction, for
example Word Q (Fraser and Tsang, 2001) or Co: Writer (Johnston, 2016) to
improve typing performance and reduce the physical demand on the user. Most
of these prediction software has both a speech component and manual typing
component to cater to a wider range of disabilities, and can be incorporated into
existing word processors. Both Word Q and Co: Writer can interface with a wide
range of word-processing applications including Microsoft Suite, Chrome
amongst others. The word prediction itself for both systems are similar, with

 36

Word Q using a vocabulary largely based on the user, and Co: Writer using topic-
assigned vocabularies. Both systems have a speech output to aid in the typing
process.

Apart from these commercialized systems, substantial research has also been
conducted in identifying alternate word prediction methods and incorporating
them into existing or novel AAC systems. As mentioned, many high-tech AAC
devices exist however, in alignment with the project’s focus, the literature review
will be mainly considering the BCI system and specifically, word-typing based
BCI such as the P300-Speller, RSVP Keyboard and other soft keyboards.

Ryan et al., (2010), examined the effects of predictive typing by comparing a
standard P300-speller with a P300-speller that contained a predictive component
(Word Q), studying particularly the trade-off between increased cognitive effort
but reduced physical effort (decreased number of keystrokes). The study found
that while output-character-per-minute (OCM) and time taken to complete a
sentence was faster in the BCI with the predictive component, accuracy faltered
presumed to be because of the general task difficulty associated with it.
Increasing accuracy, however, could simply be achieved by more practice with
the system.

Akram et al., (2013) initially suggested the idea of simply incorporating a
custom-built dictionary into the BCI to provide word suggestions, before
proposing a further modification to the BCI alphanumeric grid itself to better
resemble the T9 interface commonly used in SMS messaging systems (Akram et
al., 2015). The combination of both word suggestions and the T9 interface was
able to reduce the typing time however, the available predictions are heavily
constrained by the dictionary which only contains 1000 most-commonly used
English words.

Aside from P300-Spellers, other typing-based BCIs exist and also attempt to
improve the typing performance. Orhan et al., (2012) developed the RSVP (Rapid

 37

Serial Visual Representation) which presents characters or symbols in the same
place on screen making it cognitively easier on the user when selecting the
characters (the selection is by EEG). The language model is used to increase the
speed of selection by using the history of the characters typed to predict the next
character that is flashed on the screen. This does increase the typing speed, but
is restricted to character-by-character predictive typing rather than word or even
sentence predictions.

DASHER (Figure 3.1) is an open-source software that provides a user interface
to type text into a computer. It clusters all letters of the alphabet on one side of
the interface and to type, the user navigates to the appropriate letter. Each
chosen character has associated sub-boxes containing possible subsequent
letters, where the size of the sub-box is proportional to the letter’s probability
given by the language model. Wills and Mackay (2006) proposed to incorporate
this software in BCIs in an effort to improve its transfer rate by using the BCI
signal to choose a letter in the DASHER interface. The main pitfall is that the
DASHER interface is cognitively demanding, particularly if the signal is
continuous however, is still relatively less than what is required of a P300-
Speller.

Figure 3.1 DASHER Interface Wills and Mackay (2006)

Speier et al., (2011) also took the language model path to improve spelling and
bit rate of BCIs, choosing to combine a stepwise linear discriminant analysis
with Naïve Bayes classifier and a trigram model. The trigram model was used as

Figure has
been removed
due to
copyright
restrictions

 38

a prior for the Naïve Bayes classifier when determining the probability of each
character. This approach was able to achieve significant improvement in
accuracy and bit rates, with suggestions of expanding to word predictions as well
as letter predictions.

General improvements to less technological-advanced typing systems such as
generic soft keyboards are also important research areas. These modifications
are all reliant on language models to provide prediction, but also attempt to use
other factors such as gaze point to further enhance typing.

Mackenzie and Zhang (2008) used keyboard geometry, current fixation point of
the user, previously inputted characters and a language model to build letter
prediction (three most probable letters highlighted on a keyboard) and word
prediction models. The combination of all these pieces of information means that
more accurate predictions can be made particularly in letter prediction. For
example, if after “th” the user is fixating on “d” but the most probable letter is
“e”, “e” will be highlighted instead. This method works well for letter prediction
however is sensitive to the first few letters typed.

Goodman et al., (2002) make use of language models to reduce WER and word
disambiguation particularly when a user clicks the boundary between two keys
and the most probable key needs to be found on a soft keyboard. This allows for
completely corrective keyboards. They found that the incorporation of language
models significantly reduced the WER and increased the words per minute
(WPM). Users also preferred the corrective keyboard as it was able to reduce the
number of errors.

Numerous studies in both sections have highlighted the benefits of firstly,
incorporating syntactic, semantic and topic information to standard language
models and secondly, including word prediction algorithms in AAC devices.
Maximum performance improvement of word prediction language models will
evidently occur with a model that can exploit all three information sources to

 39

provide predictions that are syntactically, semantically and topically accurate
thus mimicking natural language. While such a model has not yet been
successful implemented for word prediction, combinations such as syntactic-topic
models and semantic-syntactic models have seen some success. Both models are
viable however syntactic-semantic models may be more computationally efficient
given its independence of LDA.

The studies also indicated the little focus placed on user-based language models
specifically, predictions that are based on the user and their style of writing
rather than on the language and style of some pre-determined documents or text.
This project aims to address this research gap to design a user-based word
prediction model capable of presenting predictions reflective of the user’s
interests, style of writing and the contextual nature of the task being
undertaken.

 40

4 Implementation

4.1 Programming Language

The program chosen for implementation was Python 3.5 due to its existing
natural language toolkit (NLTK), cleaner syntax and most developed version of
Python.

4.1.1 NLTK

NLTK is a NLP toolkit available through Python. The package contains various
corpora as well as text-processing libraries including frequency distribution,
tokenization, corpus readers, stopping and stemming, lemmatisation, WordNet
and word sense disambiguation (NLTK, 2015), all of which were used as part of
developing the word prediction model. The various uses of these libraries in the
application of word prediction are explained further in this chapter.

4.2 Methodology

The developed word prediction system can be split into three main sections – the
user input, generation of predictions and the selection of the required
predictions. The prediction module constitutes the bulk of the program including
the developed word prediction model. Figure 4.1 illustrates the methodology
implemented and the basic tasks of each module.

 41

Figure 4.1 Methodology of System

4.2.1 User Input

The user input has three main purposes:

• Identify the task that they wish to undertake
• Begin typing
• Choose the prediction

The task and context the user is undertaking dictates the task-derived user-
based corpus (UBC) - in this case, the user has the option of choosing between
writing an email or a document (task) and within email, a formal or informal
email. It is assumed that the document task is a report, however in future
versions this may include letters, literature reviews, resumes and so forth.

Once the task is identified, the user is prompted to begin typing. An un-buffered
input is used such that predictions are automatically generated once the user
presses the ‘space’ key, rather than waiting for the user to press ‘enter’ after each

User Input
•Choose Task
•Begin Typing
Choose the
prediction

Predictions
•Generate
predictions
using Word
Prediction Model

Selection of
Predictions
•Select relevant
prediction OR
continue typing

 42

word. Lastly, once the alphabetized prediction list is presented to the user, they
can make a selection and the program will automatically append the word (and
space) to the current document. Else, they can continue typing.

4.2.2 Predictions

4.2.2.1 Pre-Processing

Pre-processing of the training sets for implementation of the word prediction
model is required.

4.2.2.1.1 Training Corpora

The purpose of the training corpora is for training the language model such that
it can be tested during the testing phase. The training corpora consists of a UBC
and the British National Corpus (BNC, British National Corpus, 2009). Two
versions of the corpora were used to generate the predictions – an unfiltered
corpus for syntactic-based predictions, and a filtered corpus for semantic-based
predictions.

4.2.2.1.1.1 User-Based Corpus

The aim of the UBC is to provide all relevant information about the user such
that the predictions generated can be user-based and task-driven. These include
but not limited to, emails, address books, read and written documents, webpages
searched and saved etc. Each task has its own associated UBC – i.e., a corpus of
emails, or a corpus of read and written documents and depending on the task
being undertaken, the corresponding UBC is used. As the testing and results aim
to validate the model as a ‘proof-of-concept’, and also be computationally
efficient, the task-dependent UBCs for this model were predesigned consisting of
personal emails (formal and informal), and saved PDF documents relating to this
project and other university studies. The formal and informal email UBCs also
contained part of the publicly available Enron corpus. All the emails and PDF
documents were in text-file format, such that they could be read by the
PlainTextCorpusReader from the NLTK package.

 43

4.2.2.1.1.1.1 Enron Email Dataset

The Enron email dataset is a publicly available collection of emails collected and
prepared by the CALO (A Cognitive Assistant that Learns and Organises). The
dataset was first made public by the Federal Energy Regulatory Commission
during their investigation of the company. The dataset itself contains emails
from 150 employees of Enron (mostly senior management) and contains a total of
0.5 M messages (Enron Email Dataset, 2015). Of this, approximately 3000
emails (20 emails from each employee) were used for the UBC. This ensured that
there was an equal number of Enron and personal emails in the UBC as well as
equal number of emails taken from each employee. The classification of an
informal vs. formal email was done subjectively, on the basis of whether the
email was referring to professional work or personal work. An example of a
formal email is shown in Figure 4.2 and an informal email in Figure 4.3. The
informal and formal emails were filtered to only contain the subject and contents
of the email as the focus of the software is to only aid in predicting words
relevant to the body of the text.

Figure 4.2 Enron Formal Email

Figure 4.3 Enron Informal Email

 44

4.2.2.1.1.1.2 Personal Email Dataset

The personal email dataset consisted of approximately 3,000 emails (formal and
informal). Like the Enron email dataset, the classification of formal and informal
was subjective and dependent on whether the email was in reference to
university work or personal work. The informal and formal emails were filtered
to only contain the subject and contents of the email.

4.2.2.1.1.1.3 Personal PDF Documents

The PDF documents used in the UBC were based on the documents relating to
this project (i.e., relevant papers, reviews) and other documents relating to other
university studies (lecture notes, assignments). All papers were filtered to
contain only the title, the authors and the main body of the text. Formulas which
were unchanged in the text file were not filtered, as the predictions aim to be as
accurate as possible given the context, i.e., if the user were writing a report with
formulas used before, it would be beneficial for the model to be able to predict
them. If, however, they were not recognised by the text file, the resulting
replacement character was filtered.

4.2.2.1.1.2 British National Corpus

The British National Corpus (BNC) is a 100 million text corpus containing
written and spoken British English from a range of sources (British National
Corpus, 2009). The BNC was acquired through Flinders University, and cleaned
to remove the html tags. The code is shown in Appendix A.

4.2.2.1.2 Tokenisation

To simplify the text processing process, all of the corpora and test sets were
tokenised. Tokenisation essentially splits a sentence into a series of tokens
ranging from words, numbers or punctuation. The text was tokenised using the
build in word tokeniser from NLTK. The following examples illustrates a raw
text compared to a tokenised text.

 45

Example
Original:

“This is a sample text that has not been tokenised!”

Tokenised:

‘This’ ‘is’ ‘a’ ‘sample’ ‘text’ ‘that’ ‘has’ ‘not’ ‘been’ ‘tokenised’ ‘!’

4.2.2.2 Filtered and Unfiltered Corpus

As mentioned, two versions of each (UBC, BNC) training corpora were used to
predict both syntactic and semantic words. After the initial filtrations (removal
of tags, date in emails etc.), the first version remained the same (unfiltered)
while the second version implemented a second round of filters to remove
common (stop) words leaving only content words. Lemmatising was also used to
reduce inflectional forms of words i.e., ‘liking’ and ‘liked’ are both inflectional
forms of the word ‘like’.

4.2.2.2.1 Stopwords

The removal of stopwords is achieved using NLTK, which provides its own
default set of stopwords (Table 4.1)

 46

Table 4.1 NLTK Stopwords

ourselves hers between yourself but again there about once during

out very having with they own an be some for

do its yours such into of most itself other off

Is s am or who as from him each the

themselves until below are we these your his through Don’

nor me were her more himself this down should our

their while above both up to ours had she all

no When at any before them same and been have

in will on does yourselves then that because what over

why so can did not now under he you herself

has just where too only myself which those I after

few whom t being if theirs my against a by

doing it how further was here than

 47

4.2.2.2.2 Stemming

Both stemming and lemmatisation are methods to reduce inflectional forms of
words, however stemming is a cruder process in which the end of the word is
simply taken off whereas lemmatisation considers the morphology and existing
vocabulary when returning the reduced form (Martin and Jurafsky, 2000). For
example, for the word ‘having’, a stemmer may return ‘hav’ while a lemmatiser
returns ‘have’. Given that the semantic predictions are taken from the filtered
corpus, it was important for the filtered words to have correct spelling, hence a
lemmatiser was used instead of a stemmer. The lemmatiser used was the
WordNet lemmatiser, which uses WordNet’s in-built morphological processing
tool for considering morphology and existing vocabulary. Given a string and a
syntactic category (noun, verb etc.,) the WordNet morphological processor
applies a set of ‘rules of detachment’ (Table 4.2) to the string and returns the
base form of the word. If the word is an exception, WordNet searches through an
exception list or simply returns the unchanged input word (Princeton University,
2010).

 48

Table 4.2 WordNet 'Rules of Detachment'

Syntactic Category Suffix Ending

Noun “s” “”
Noun “ses” “s”
Noun “xes” “x”
Noun “zes” “z”
Noun “ches” “ch”
Noun “shes” “sh”
Noun “men” “man”
Noun “ies” “y”
Verb “s” “”
Verb “ies” “y”
Verb “es” “e”
Verb “es” “”
Verb “ed” “e”
Verb “ed” “”
Verb “ing” “e”
Verb “ing” “”
Adjective “er” “”
Adjective “est” “”
Adjective “er” “e”
Adjective “est” “e”

4.2.2.3 Word Prediction Model

As mentioned in the Background section, the three commonly used n-gram
models for assigning probabilities to words are the unigram model
(unconditioned), the bigram model (conditioned on the previous word) and the
trigram model (conditioned on the previous two words). While the accuracy of the
model increases with higher n-grams, this also increases the computational

 49

inefficiency, and therefore typically bigram or trigram models are used as they
ensure accuracy while still maintaining computational efficiency. In this case,
the bigram model was used as it optimised the trade-off between computational
efficiency and accuracy.

The prediction themselves are based on the bigram counts, or a conditional
frequency distribution (CFD) of all the bigrams in the given corpus. The
distribution contains the bigram counts for all bigrams in the corpus, and the
most frequently occurring outcome word following the input or context word is
used as a potential prediction. This was implemented using the probability
module from NLTK.

Example

Using the training sentence “the quick brown fox jumps over the lazy dog”, Table
4.3 illustrates the CFD of bigram counts for the training sentence with the
predictions highlighted. Note: the rows of the table depict the context words and
the columns of table show the outcome or prediction words.

Table 4.3 Conditional Frequency Distribution of Training Sentence

CFD Brown Dog Fox Jumps Lazy Over Quick The

Brown 0 0 1 0 0 0 0 0

Fox 0 0 0 1 0 0 0 0
Jumps 0 0 0 0 0 1 0 0
Lazy 0 1 0 0 0 0 0 0

Over 0 0 0 0 0 0 0 1
Quick 1 0 0 0 0 0 0 0
The 0 0 0 0 1 0 1 0

To decrease computational time, the CFD of the BNC and UBC (both filtered and
unfiltered versions) were saved in a dictionary format (Appendix B) using the

 50

pickle module such that it could be re-opened easily rather than having to
generate bigram counts in the corpus for every input word.

4.2.2.3.1 Prediction Sources

The predictions are taken from three different sources where the first source is
an unfiltered corpus, the second is a filtered (no stopwords and stemmed words)
corpus and the third is WordNet (Princeton University, 2010). The purpose of
using the first two sources is to predict both syntactic (unfiltered) and semantic
(filtered) words. The syntactic-based words are however, a crude reflection of
true syntax given the underpinning assumption that the syntax in the corpus is
correct. The semantically-related words are taken from the filtered corpus with
the assumption that the removal of stop-words and inflectional words leaves
content words which are more semantically related to each other.

Finally, the WordNet predictions are also semantic-driven predictions, and
synonyms of the input word. WordNet is an online lexical database in which
words (nouns, verbs, adjective and adverbs) are grouped into synsets which
represent a particular concept i.e., the ‘animal’ synset corresponds to words
relating to animals. Evidently, words under a particular synset are all
synonymous to each other (Princeton University, 2010).

To increase the accuracy of the WordNet predictions, Word-Sense
Disambiguation (WSD) methods were used to find the ‘sense’ of the word and
based on the closest related-synset, extract the ‘lemmas’ or words, in that synset
(i.e., the synonyms) and add it to the overall prediction list.

There have been several WSD methods proposed over the years (Yang and
Powers 2005, Yang and Powers 2006, Powers 1997, Huang and Powers 2001) of
which the popular Lesk algorithm was used for this model. Two main versions of
the Lesk algorithm exist namely the original (Lesk 1986) and the adapted Lesk
algorithm (Banerjee and Pederson, 2002), both of which are available through

 51

the Lesk NLTK module. The basic Lesk algorithm works by selecting the word-
sense (glosses) whose definition has the most overlap (highest number of
common words) with the context (previously written words). The adapted Lesk
algorithm used in model uses WordNet as the basis for the sense definitions and
outputs the corresponding synset given the context. Therefore, the more words in
the context, the more likelihood of overlapping common words between the
sentence and synset definition and the more accurately returned synset. Given
that WordNet predictions are only generated for nouns, verbs, adjectives or
adverbs, this constraint was added in the system to reduce computation time.

The WordNet predictions are generated independent of the syntactic and
semantic predictions and if they exist, are simply appended to the existing
prediction list.

4.2.2.3.2 Model

The model designed is based on the back-off SLM adaptation method, also known
as the fill-up technique (see Background). The generalised equation for a back-off
SLM adaptation model is given by Equation 2.15 (page 18), where Pr	(%)
represents the SLM based on the dynamic corpus A, and Pr	(') is the SLM based
on the static background corpus B.

Instead of having two corpora however, the designed model uses three corpora
where the current document and the UBC are the dynamic corpora, and the BNC
is the static background corpus B. Moreover, two versions of each corpus exist,
and the bigram predictions are based on both corpora. That is, the bigram
predictions from the overall current document, UBC and BNC corpora
incorporate all the predictions from the filtered and unfiltered corpora (repeat
predictions are discarded). Since the predictions from each filtered and unfiltered
corpora are mutually independent i.e., the predictions generated from the
filtered corpus are independent of the predictions generated from the unfiltered
corpus, the combination is based on the multiplication rule,

(%)*+	' = 	(% ∗ 	((') (4.1)

 52

The overall back-off model equation therefore becomes,

Pr ./ ℎ/ = 1

(2%11 .4 ℎ4 	×	(2%12 .4 ℎ4 			78	9%11 ℎ4.4 	:2	9%12 ℎ4.4 	≥ <

(2%21 .4 ℎ4 	×	(2%22 .4 ℎ4 				78	9%21 ℎ4.4 	:2	9%22 ℎ4.4 	≥ <

1(2'11 .4 ℎ4 	×	(2'12 .4 ℎ4 							:=ℎ>2.7?>

Table 4.4 shows the relevant variables and their representation. The
implementation of the model is shown in Appendix C. Note: The WordNet
predictions are generated independently of the corpora-based predictions, and
therefore not included in the equation.

Table 4.4 Variables and Representations

Variables Representation

@AA Unfiltered current document corpus
@AB Filtered current document corpus

@BA Unfiltered UBC
@BB Filtered UBC
CAA Unfiltered BNC
CAB Filtered BNC
D 1 (bigram count must be at least 1

otherwise back-off to next corpus)
1 1, back-off coefficient

4.2.3 Selection

The predictions listed on the final UCI are subject to screen availability and
therefore to reflect this constraint, the prediction lists only the three most
common predictions (i.e., those with the highest probability) from each source.
This also ensures that the system remains computationally efficient. Once the
list of predicted words is presented to the user, they are given two options –

(4.2)

 53

choose a word from the list or continue typing. If they choose the former, the
chosen word is appended to the existing sentence, and the next set of predictions
are generated based on the newly appended word. If the prediction list does not
contain the intended word, the user can continue to type and the next set of
predictions will be based on the next word the user types. The process is
repeated until the user terminates the program.

Example

Email:

“Good Morning, meeting at 9am?”

The user is first asked to respond to the question “Would you like to write a

document or email?”

In this case, the user would type “email”. Note: the system is case-sensitive.

Pursuant to this, the user is further asked “Would you like to write a formal or

informal email?” to identify the relevant UBC.

In this case, the user would type “formal”.

The user is then prompted to begin typing.

Following the first word “Good” the system first appends the word to a running
document, before loading predictions. As previously mentioned, the word
prediction system works as a ‘back-off’ that is, it first queries the current
document for a prediction, then the UBC and finally the BNC. The querying
itself is done by first identifying whether the current word, i.e. “Good” is in the
current document, the UBC or the BNC. Once the current word has been found
in either of the three corpora, then the system organises all the words in the
corresponding corpus in bigrams such that the CFD method can be used to

 54

generate the predictions. As mentioned, the prediction list contains both
syntactic and semantic predictions, and as such the system takes the top 3
syntactic and semantic predictions, creates a new final prediction list and
presents this list to the user. Using this list, the user is then asked to “…Choose

a prediction by typing 1-9 else 10 to continue typing”.

In this example, the predictions listed are as follows –

1. Morning
2. Luck
3. morning
4. good
5. well

The user would type “1” corresponding to the prediction “Morning”. The system
then automatically appends this predicted word to the running document and
generates predictions for the predicted word (“Morning”). This process continues
until the last word has been either typed or predicted, and the user exits the
system.

 55

5 Experiments

Four baseline versions of the prediction model were tested and compared to a
Baseline 0 model. The purpose of the baselines is to identify which is the most
accurate and beneficial such that future versions can improve upon its
performance.

5.1 Baseline 0
The Baseline 0 model assumes all words are of equal probability, and therefore
provides all the words in the corpus as predictions.

5.2 Baseline 1
Baseline 1 is the most basic version of the model in which the predictions are
based on unigram predictions. That is, the predictions listed are independent of
the word typed and are based purely on the frequency of words in the corpus. For
example, if the frequency distribution for the UBC lists ‘the’, ‘and’, ‘a’ and ‘for’ as
the most frequently used words, they will be listed as the predictions for any new
test word. The UBC used contains all emails (Enron and personal) and PDF
documents i.e., it does not take task into consideration and therefore a generic
UBC is used rather than a task-derived UBC.

5.3 Baseline 2
The second version also uses the generic UBC containing all emails and PDF
documents, but instead of using unigram predictions, it uses bigram predictions
(i.e., takes the input word into consideration).

5.4 Baseline 3
The third version also uses bigram predictions but instead of using the generic
UBC, the task-derived UBC is used instead. For example, if the user is writing
an informal email, then the UBC would be the informal email corpus.

 56

5.5 Baseline 4
The fourth and final version also uses bigram predictions and a task-driven
UBC, but also includes WordNet predictions.

Table 5.1 summarises the key differences between the five baselines.

Table 5.1 Key Differences Between Baselines

Baselines Differences

Baseline 0 All words as predictions
Baseline 1 Unigram predictions from generic

UBC
Baseline 2 Bigram predictions from generic UBC
Baseline 3 Bigram predictions from task-driven

UBC
Baseline 4 Bigram predictions from task-driven

UBC + WordNet predictions

The primary aims of the test were to:

• Identify how well each model is capable of word prediction
• Evaluate the advantages and disadvantages of using a task-driven UBC

vs. a generic UBC
• Determine if the inclusion of WordNet predictions is beneficial to the

model

5.6 Test Set
The end user for this model is a person who is unable to type and therefore needs
to type using alternative means such as their brain signals. Such persons are
unlikely to begin using this interface for typing large documents. Rather, they
are more likely to use the interface to write brief messages or emails. As such,
preliminary tests conducted to test the feasibility and accuracy of the model were
on a test set consisting of a 100 relatively short emails (approximately 200
characters), from both personal emails and the Enron database, as the training

 57

UBC contains both sources of emails. Of the 100, 50 emails were informal emails
and 50 were formal emails of which 25 were personal formal and informal emails
and 25 were informal and formal emails from the Enron database. All the emails
were filtered to contain only the subject heading and the contents of the
message, and were subjectively classified as informal or formal based on whether
they related to professional or personal work. The test set is “held out” data, and
therefore mutually exclusive from the training set.

 Figure 5.1 illustrates the breakdown of the test set. Depending on the results
obtained, the tests can be extended to test larger emails or even office-related
documents i.e., reports.

Figure 5.1 Test set Breakdown

5.7 Testing Implementation

5.7.1 Evaluation Metrics

The two main evaluation metrics used for assessing the word prediction system
were KSR and the keystrokes typed (KT). While the latter is not a mainstream
evaluation metric for word prediction, KSR is an established word-prediction
assessor, particularly for AAC devices and tend to be calculated using a human

100 Emails

50 Formal
Emails

25 Personal
Formal
Emails

25 Enron
Formal
Emails

50 Informal
Emails

25 Personal
Informal
Emails

25 Enron
Informal
Emails

 58

subject. Given the timeframe and budget considerations of this project, an
automated system was used rather than human subjects. As such, the results
generated from this project cannot strictly be compared with those used in other
studies as the assessment methods themselves differ. It is anticipated that in
future versions particularly with the inclusion of the prediction system in the
UCI, the KSR will be re-evaluated and used in comparison with existing studies.

5.7.1.1 Keystroke Savings Rate

The primary evaluation metric was the KSR (see Background section) which
evaluates the keystrokes saved with the prediction tool. The higher the KSR, the
better the prediction model. Calculation of the KSR is shown in Equation 2.17
(page 20). From the equation, the total entered characters are the total
characters in each email without prediction while the keys pressed is the number
of keys pressed when used in conjunction with the prediction tool.

5.7.1.2 Normalised Keystrokes Typed

A secondary evaluation metric was keystrokes typed (KT), which is equivalent to
the number of keys pressed with and without the word prediction model,
normalised by the total number of characters. That is,

E:2F)G7?>+	H< = 	
<:=)G	H<	

=:=)G	Iℎ)2)I=>2?

The lower the KT, the more accurate the predictions generated and the better
the model.

5.7.2 Testing

5.7.2.1 Total Entered Characters

As mentioned, the total entered characters are a measure of how many
characters are typed if there is no prediction i.e., the total number of characters

 59

in each email. To streamline the process, the calculation was done automatically
by tokenising the text and adding the length of each tokenised element. Note in
this case, white space is not included in the total entered characters as the
system automatically appends the whitespace once the user either selects a
prediction or continues typing. The example below illustrates the process.

Example

Sentence: “I am going to the shops”
Tokenized: “I” “am” “going” “to” “the” “shops”
Total Keystrokes: 1 + 2 + 5 + 2 + 3 + 5 = 18

Additionally, the KSR is designed to only identify the accuracy of the predictions
and therefore does not include secondary keystrokes such as enter (for
appending predictions).

5.7.2.2 Keys Pressed

The keys pressed evaluates the number of keys pressed with word prediction.
This again, was an automated process. For each word in the test email, the
prediction model is used to predict the next word. If the model predicts the next
word correctly, the number of keystrokes remains unchanged however, if the
predictions are incorrect, then the number of keystrokes is increased by the
length of unpredicted word (i.e., the cost of an error). This process is illustrated
in Figure 5.2.

 60

Figure 5.2 Automated Keys Pressed Process

Generate
predictions for each

word

Correct Prediction

Number of
keystrokes
unchanged

Incorrect Prediction

Number of
keystrokes

incremented by
length of

unpredicted word

 61

6 Results

The results were generated on the four test sets. As Baseline 0 does not yield any
predictions, KSR is 0 and therefore is difficult to accurately compare against the
remaining Baselines. As such, the evaluation metric used to compare Baseline 0
to the other Baselines was total KT (Figures 6.1–6.4) whereas the evaluation
metric to compare Baselines 1-4 (Figures 6.5-6.8) was KSR. In both cases, KT
and KSR were calculated across all the emails in each test set. Table 6.1 shows
the normalised, average KT values for each test set (along with the standard
error) and Table 6.2 shows the total KSR values for each test set (along with the
standard error). Note: as aforementioned, the KT values are normalised with
respect to the total characters in each email therefore Baseline 0 is 1. Individual
KSR and normalised KT values (with standard error) for each email in the test
sets are shown in Appendices D and E respectively.

6.1 Standard Error
To account for statistical chance, the standard error was calculated for all the
results, and represented in the graphs by the standard error bars. These error
bars represent how precise the data is by accounting for statistical chance. If the
error bars overlap, the findings are statistically insignificant where as if the
error bars do not overlap, the findings are statistically significant. The equation
for standard error is,

JKL =
M
E

where
 M = standard deviation
E = number of observations in sample

(6.1)

(6.2)

 62

M =
1
E (NO − Q)R

S

OTU

where

E = number of observations in sample
Q = sample mean
NO = sample values

In this case, E = 25 (25 emails). The standard deviation and standard error were
computed using Excel.

Note: Baseline 0 does not take into account standard error as it is the true value.

 63

6.2 T-Test
To further add credibility to the findings, a series of t-tests were conducted on
the results to assess statistical significance. The null hypothesis states that
“there is no statistical significance between the two test sets”. If the absolute t-stat
value is greater than the t-critical value, the null hypothesis is rejected. The KSR
T-test results for the four test sets are shown in Tables 6.3-6.6 and the KT T-test
results are shown in Tables 6.7-6.10.

Table 6.1 Average KT for testset of 25 emails across 5 Baselines. The table also includes the standard error

calculated on the 25 sample normalised KT values.

KT Total Baseline

0

Baseline 1 Baseline 2 Baseline 3 Baseline 4

Enron

Informal

1 0.954±0.484 0.864±1.261 0.843±1.307 0.839±1.311

Personal

Informal

1 0.949±0.662 0.866±1.437 0.851±1.689 0.850±1.70

Personal

Formal

1 0.955±0.609 0.863±1.938 0.851±2.065 0.844±2.082

Enron

Formal

1 0.958±0.581 0.874±1.405 0.867±1.354 0.869+1.317

Table 6.2 Average KSR for testset of 25 emails across 5 Baselines. The table also includes the standard error

calculated on the 25 sample KSR values.

KSR

Total

Baseline

0 (%)

Baseline 1

(%)

Baseline 2

(%)

Baseline 3

(%)

Baseline 4

(%)

Enron

Informal

0 4.960±0.484 13.941±1.261 15.764±1.307 16.139±1.311

Personal

Informal

0 5.109±0.662 15.464±1.437 15.636±1.687 14.739±1.700

Enron 0 5.487±0.609 15.647±1.938 16.551±2.065 17.124±2.082

 64

Formal

Enron

Informal

0 4.538±0.581 14.214±1.405 15.159±1.355 14.560±1.317

 65

Table 6.3 KSR T-Test Results for Enron Informal Emails

Enron

Informal

(KSR)

B0

vs

B1

B0 vs

B2
B0 vs

B3
B0

vs

B4

B1

vs

B2

B1

vs

B3

B1

vs

B4

B2

vs

B3

B2

vs

B4

B3

vs

B4
T-stat -

9.486
-
10.821

-
12.017

-12.3 -
6.706

-
7.976

-
8.257

-
1.133

-
1.365

-
0.230

T-critical 2.064 2.064 2.064 2.064 2.039 2.042 2.042 2.010 2.010 2.010

Statistically

Significant
Yes Yes Yes Yes Yes Yes Yes No No No

Table 6.4 KSR T-Test Results for Personal Informal Emails

Personal

Informal

(KSR)

B0

vs

B1

B0

vs

B2

B0

vs

B3

B0

vs

B4

B1

vs

B2

B1

vs

B3

B1

vs

B4

B2

vs

B3

B2

vs

B4

B3

vs

B4
T-stat -

7.698
-
9.313

-
8.838

-
8.818

-
5.234

-
5.417

-
5.422

-
0.698

-
0.725

-
0.027

T-critical 2.064 2.064 2.064 2.064 2.039 2.039 2.039 2.010 2.010 2.010

Statistically

Significant
Yes Yes Yes Yes Yes Yes Yes No No No

 66

Table 6.5 KSR T-Test Results for Enron Formal Emails

Enron

Formal

(KSR)

B0

vs

B1

B0

vs

B2

B0

vs

B3

B0

vs

B4

B1

vs

B2

B1

vs

B3

B1

vs

B4

B2

vs

B3

B2

vs

B4

B3

vs

B4
T-stat -

7.298
-
8.998

-
9.841

-
9.952

-
5.528

-
6.170

-
6.161

-
0.355

-
0.241

0.121

T-critical 2.064 2.064 2.064 2.064 2.035 2.035 2.035 2.010 2.010 2.010

Statistically

Significant
Yes Yes Yes Yes Yes Yes Yes No No No

Table 6.6 KSR T-Test Results for Personal Formal Emails

Personal

Formal

(KSR)

B0

vs

B1

B0

vs

B2

B0

vs

B3

B0

vs

B4

B1

vs

B2

B1

vs

B3

B1

vs

B4

B2

vs

B3

B2

vs

B4

B3

vs

B4
T-stat -

7.448
-
7.052

-
7.205

-
7.470

-
4.493

-
4.803

-
5.077

-
0.429

-
0.662

-
0.229

T-critical 2.064 2.064 2.064 2.064 2.039 2.042 2.042 2.010 2.010 2.010

Statistically

Significant
Yes Yes Yes Yes Yes Yes Yes No No No

 67

Table 6.7 KT T-Test Results for Enron Informal Emails

Enron

Informal

(KT)

B0

vs

B1

B0 vs

B2
B0 vs

B3
B0

vs

B4

B1

vs

B2

B1

vs

B3

B1

vs

B4

B2

vs

B3

B2

vs

B4

B3

vs

B4

T-stat 9.485 10.821 12.017 12.3 6.706 7.976 8.257 1.133 1.365 0.230

T-critical 2.064 2.064 2.064 2.064 2.039 2.042 2.042 2.010 2.010 2.010

Statistically

Significant
Yes Yes Yes Yes Yes Yes Yes No No No

Table 6.8 KT T-Test Results for Personal Informal Emails

Personal

Informal

(KT)

B0

vs

B1

B0

vs

B2

B0

vs

B3

B0

vs

B4

B1

vs

B2

B1

vs

B3

B1

vs

B4

B2

vs

B3

B2

vs

B4

B3

vs

B4

T-stat 7.698 9.313 8.838 8.818 5.234 5.417 5.422 0.698 0.725 0.027

T-critical 2.064 2.064 2.064 2.064 2.039 2.039 2.039 2.010 2.010 2.010

Statistically

Significant
Yes Yes Yes Yes Yes Yes Yes No No No

Table 6.9 KT T-Test Results for Enron Formal Emails

Enron

Formal

(KT)

B0

vs

B1

B0 vs

B2
B0

vs

B3

B0

vs

B4

B1

vs

B2

B1

vs

B3

B1

vs

B4

B2

vs

B3

B2

vs

B4

B3

vs

B4

 68

T-stat 7.298 8.998 9.841 9.952 5.528 6.170 6.161 0.355 0.241 -
0.121

T-critical 2.064 2.064 2.064 2.064 2.035 2.035 2.035 2.010 2.010 2.010

Statistically

Significant
Yes Yes Yes Yes Yes Yes Yes No No No

Table 6.10 KT T-Test Results for Personal Formal Emails

Personal

Formal (KT)
B0

vs

B1

B0

vs

B2

B0

vs

B3

B0

vs

B4

B1

vs

B2

B1

vs

B3

B1

vs

B4

B2

vs

B3

B2

vs

B4

B3

vs

B4
T-stat 7.448 7.052 7.205 7.470 4.493 4.803 5.077 0.429 0.662 0.229

T-critical 2.064 2.064 2.064 2.064 2.039 2.042 2.042 2.010 2.010 2.010

Statistically

Significant
Yes Yes Yes Yes Yes Yes Yes No No No

 69

Figure 6.1 Normalised KT for Enron Informal Emails

Figure 6.2 Normalisedl KT for Personal Informal Emails

0

0.2

0.4

0.6

0.8

1

1.2

Baseline 0 Baseline 1 Baseline 2 Baseline 3 Baseline 4

N
or

m
al

is
ed

 K
T

Baselines

Normalised KT (Enron Informal Emails)

0

0.2

0.4

0.6

0.8

1

1.2

Baseline 0 Baseline 1 Baseline 2 Baseline 3 Baseline 4

N
or

m
al

is
ed

 K
T

Baselines

Normalised KT (Personal Informal Emails)

 70

Figure 6.3 Normalised KT for Personal Formal Emails

Figure 6.4 Normalised KT for Enron Formal Emails

Taking statistical significance into consideration, Baselines 1-4 are all able to
reduce the number of characters typed with respect to Baseline 0 (equivalent to
total characters in test set). In comparison to Baseline 1, Baselines 2-4 all fare
better however in comparison with each other, there is no statistical difference.

0

0.2

0.4

0.6

0.8

1

1.2

Baseline 0 Baseline 1 Baseline 2 Baseline 3 Baseline 4

N
or

m
al

is
ed

 K
T

Baselines

Normalised KT (Personal Formal Emails)

0.75

0.8

0.85

0.9

0.95

1

1.05

Baseline 0 Baseline 1 Baseline 2 Baseline 3 Baseline 4

N
or

m
al

is
ed

 K
T

Baselines

Normalised KT (Enron Formal Emails)

 71

Figure 6.5 Total KSR for Enron Informal Emails

Figure 6.6 Total KSR for Personal Informal Emails

0
2
4
6
8

10
12
14
16
18
20

Baseline 1 Baseline 2 Baseline 3 Baseline 4

K
SR

 (%
)

Baselines

Total KSR (Enron Informal Emails)

0
2
4
6
8

10
12
14
16
18

Baseline 1 Baseline 2 Baseline 3 Baseline 4

K
SR

 (%
)

Baselines

Total KSR (Personal Informal Emails)

 72

Figure 6.7 Total KSR for Personal Formal Emails

Figure 6.8 Total KSR for Enron Formal Emails

Considering statistical significance, Baselines 2-4 are all better than Baseline 1
however, are all statistically insignificant when compared with each other. Note:
the KSR for Baseline 0 is zero, and therefore all Baselines are statistically
significantly better than Baseline 0.

0

5

10

15

20

25

Baseline 1 Baseline 2 Baseline 3 Baseline 4

K
SR

 (%
)

Baselines

Total KSR (Personal Formal Emails)

0
2
4
6
8

10
12
14
16
18

Baseline 1 Baseline 2 Baseline 3 Baseline 4

K
SR

 (%
)

Baselines

Total KSR (Enron Formal Emails)

 73

The following graphs illustrate the individual KSR for each email in each test set
(Figures 6.9-6.12) and the corresponding distribution of email length (Figures
6.13-6.16) to identify a potential correlation between email length and KSR.

 74

Figure 6.9 Individual KSR for Enron Informal Emails

-5

0

5

10

15

20

25

30

35

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

K
SR

 (%
)

Emails

Individual KSR (Enron Informal Emails)

Baseline 1 Baseline 2 Baseline 3 Baseline 4

 75

Figure 6.10 Individual KSR for Personal Informal Emails

-5

0

5

10

15

20

25

30

35

40

45

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

K
SR

 ((
%

)

Emails

Individual KSR (Personal Informal Emails)

Baseline 1 Baseline 2 Baseline 3 Baseline 4

 76

Figure 6.11 Individual KSR for Enron Formal Email

-5

0

5

10

15

20

25

30

35

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

K
SR

 (%
)

Emails

Individual KSR (Enron Formal Emails)

Baseline 1 Baseline 2 Baseline 3 Baseline 4

 77

Figure 6.12 Individual KSR for Personal Formal Emails

-5

0

5

10

15

20

25

30

35

40

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

K
SR

 (%
)

Emails

Individual KSR (Personal Formal Emails)

Baseline 1 Baseline 2 Baseline 3 Baseline 4

 78

Figure 6.13 Individual Email Length for Enron Informal Emails

Figure 6.14 Individual Email Length for Personal Informal Emails

0

50

100

150

200

250

300

350

400

450

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Ch
ar

ac
te

rs

Emails

Individual Email Length (Enron Informal Emails)

0

50

100

150

200

250

300

350

400

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Ch
ar

ac
te

rs

Emails

Individual Email Length (Personal Informal Emails)

 79

Figure 6.15 Individual Email Length for Personal Formal Emails

Figure 6.16 Individual Email Length for Enron Formal Emails

Additional statistics were calculated to identify which is the most frequently
used corpus (or not found) from which the predictions are generated by using the
MLE i.e.,

!"#$%&'()*	,"-!.(= 	
0". .'$)(2#)*',.'"!	.%3)!	4#"$,"#2-(
5".%&	!-$6)#	"4	7"�*('!	.)(.	*",-$)!.

0
50

100
150
200
250
300
350
400
450

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Ch
ar

ac
te

rs

Emails

Individual Email Length (Personal Formal Emails)

0

50

100

150

200

250

300

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Ch
ar

ac
te

rs

Emails

Individual Email Length (Enron Formal Emails)

(6.3)

 80

From the Equation 6.3, the higher the normalised counts, the greater number of
predictions generated from the particular corpus. Figure 6.17 illustrates the
normalised counts across all emails for each training corpus. From the graph, it
is evident that UBC has the highest number of predictions taken from it, and the
BNC has the lowest. The significance of these results is discussed further in the
Discussion and Future Works sections.

Figure 6.17 Normalised counts for all corpora for each test set

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Current Document User-Based Corpus British National
Corpus

Out-of-Vocabulary

N
or

m
al

is
ed

 C
ou

nt
s

Corpora

Emails

Enron Formal Enron Informal Personal Informal Personal Formal

 81

7 Discussion

7.1 Summary of Key Findings

• Baselines 2 – 4 all outperformed Baseline 0 and Baseline 1 with respect to
KSR, but were statistically similar compared to each other

• Baselines 2-4 had reduced KT in comparison to Baseline 0 and Baseline 1,
but were statistically similar compared to each other

• No apparent correlation between email length and KSR
• KSR was similar across all test sets with no major discrepancies between

Formal vs. Informal or Enron vs. Personal emails

7.2 Aims
The aims of the tests were to identify the following:

1. Is the model capable of word prediction?
2. Does a context-driven UBC yield more accurate results?
3. Is there any added benefit of including WordNet predictions?

The following sections will address these aims with respect to the results
obtained.

7.2.1 Aim 1

The overall aim of this project was to build a user-based word prediction model,
whose predictions are based largely on the user rather than the language. While
the model itself was designed to reflect this, the tests were implemented to verify
if the model was capable of word prediction on some unseen test data. From the
results, it is evident that all baseline variations of the model, including the most
basic unigram model (Baseline 1), is capable of word prediction.

Additionally, the improvement of Baseline 2 upon Baseline 1 for KT and KSR
signifies the benefit of using bigram predictions than unigram predictions. This

 82

is as expected, as unigram predictions do not take into consideration the input or
context word when deriving the appropriate predictions, rather purely
considering the frequency of words in a corpus.

7.2.2 Aim 2

From the results (both KT and KSR), Baseline 2 and Baseline 3 were
approximately the same with any small differences deemed as statistically
insignificant. This suggests that having a task-driven UBC (Baseline 3) does not
improve up on the accuracy of word prediction. Theoretically, tailoring the UBC
to the context of what is being written should generate more accurate predictions
particularly in this system, as the prediction list contains a portion of all possible
predictions. For example, if the user is writing an informal email to his friend
Bob and begins the email with ‘Hi’, the informal emails UBC is more likely to
contain the bigram ‘Hi Bob’ more frequently than the generic UBC, which may
contain a range of bigrams beginning with ‘Hi’ but not necessarily ending with
‘Bob’. Hence, the prediction list from the informal emails UBC has a higher
likelihood of containing ‘Bob’ than from the generic UBC, which could contain a
range of other names.

However, a potential reason for the lack of impact of a context-derived UBC
could be due to crossover in content between different contexts. For example,
formal content i.e., this project, is generally used in the context of a formal email
however, could still be referenced in an informal context. In this case, the
informal emails UBC is unlikely to contain any information regarding the formal
content and therefore the prediction list either contains irrelevant predictions
taken from the BNC or no predictions at all resulting in a greater KT and
smaller KSR.

Apart from increasing accuracy of the predictions, the purpose of a task-driven
UBC was to reduce the time taken to generate predictions (smaller corpus).
Given that Baseline 3 is not impeding the word prediction performance, future
versions could focus on trying to improve its accuracy rather than not

 83

considering context at all. For example, ensuring that the task-driven UBC is
regularly updated such that it can capture any new crossover content. This is
discussed further in the Future Works section.

7.2.3 Aim 3

The inability of Baseline 4 to reduce KT or increase KSR in comparison to
Baseline 3 indicates that the WordNet predictions did not provide any added
benefit to the model. There could be several reasons for this, including the
misidentification of the synset leading to inaccurate synonymous predictions.

The identification of a synset is based on the degree of overlap between the
previously written words, and the synset definition from WordNet. It is clear
that the more previously written words or more semantically-related words will
yield in a more correct identified synset. In the case of the test emails, they are
quite short and jump from topic-to-topic quickly, making it difficult for WSD to
work properly leading to synset misidentification and irrelevant synonyms being
added to the prediction list. As such, WordNet predictions may prove to be more
useful for longer and topic-dependent documents i.e., a report on the brain.

Based on this, hypothetically longer emails in the test sets should have resulted
in Baseline 4 potentially outperforming the other baselines as there is a higher
likelihood of the correct synset being identified. However, the results obtained
show no apparent correlation between email length and the KSR for Baseline 4.
This could mean that WordNet synonyms may be more useful for topic-
dependent documents.

Another potential reason for the poor performance of WordNet could be that the
predictions are synonymous to the input word and therefore, may not be as
accurate for predicting the output word. The reason for basing the prediction on
the input word is because the input word is known, and therefore there is more
control over the predictions generated.

 84

7.2.4 Limitations

It is important to recognise the presence of certain limitations which can impede
on the model’s performance. Identifying these limitations can aid in
understanding how to either reduce or eliminate them in future versions.

From Figure 6.17, it is clear that the UBC generates the most predictions, and
consequently has the largest impact on the resulting accuracy of the predictions.
The issue of crossover content impacting the performance of Baseline 3 can
therefore potentially be explained by the limitation of using a predesigned UBC.
Using a predesigned UBC means that the UBC does not contain the most up-to-
date user information increasing the chance of crossover content. However, while
the problem of crossover content cannot be eliminated entirely; it can only be
reduced by ensuring that the user-based predictions are taken from the most
recent representation of the user.

Additionally, the final syntactic and semantic predictions listed were only a
portion of all the possible predictions (3 each). While it is unrealistic to list all
these predictions, the portion of predictions listed could affect the accuracy of the
model. For example, the more predictions listed, the higher the likelihood of one
of the predictions being correct. However, given that the number of predictions
listed is dependent on the final UCI (i.e., how many predictions can fit into the
screen at a time), this limitation may be unavoidable.

An evaluation limitation is the calculation of the keystrokes on the test data. The
keystrokes were calculated purely on the characters of the email thereby
disregarding the keystrokes involved in selection of the prediction i.e., choosing
the predictions via corresponding numbers and the enter key for selection. The
main reason for using this particular evaluation method is because the aims of
the tests were to evaluate the accuracy of the predictions rather than the system
as a whole.

 85

7.2.5 Significance

The tests were designed to identify if the language model based on the principles
of SLM adaptation and back-off modelling is a feasible word prediction model,
and evaluate the advantages and disadvantages of certain design
implementations such as the inclusion of WordNet or using a task-driven UBC.

The results obtained for this ‘proof-of-concept’ confirm the model’s potential as a
word prediction model while highlighting possible modifications to further
increase the accuracy of the predictions. Specifically, the results indicate that
there is no statistically significant difference between using a task-driven or a
generic UBC, and there is no significant benefit from the inclusion of WordNet
on the accuracy of predictions.

At face value, the results indicate that there is no statistically significant
difference between Baseline 2, 3 or 4 and therefore technically, any of the
baselines can be used to improve upon the future word prediction model.
However, there are other factors that should be considered such as time. While
time as a metric has not been validated by the tests, intuitively Baseline 3 and
Baseline 4 use a task-based (therefore smaller) UBC and consequently, may have
a smaller time associated with generating predictions than Baseline 2, which
uses a much larger UBC. As such, Baseline 3 may be a better choice for future
improvements instead. However, to make any conclusive decisions, further tests
particularly involving time as a metric must be evaluated first.

The results strongly suggest that WordNet offers no benefit to prediction model
when writing an email. However, WordNet’s influence for other tasks,
particularly those requiring a longer and topically-similar document needs to be
further tested. Given that the prediction model is to be used for a range of tasks
and contexts, depending on the results obtained for other tasks, appropriate
decisions can be made on WordNet’s inclusion, or potentially partial inclusion
using a weighting scheme.

 86

8 Conclusions and Future Work

8.1 Future Work

There are two main aspects to the future work section – future work involving
the word prediction model and generation of user-based predictions, and future
work involving development of the final UCI.

8.1.1.1 Word Prediction Model

8.1.1.1.1 Updating User-Based Corpus

The results highlighted the problem of crossover content, and arose primarily
due to the pre-generated corpora used in the model. As mentioned previously, a
way to address this is to continually update the contextual UBCs as frequently
as possible (i.e., each night) to ensure that the UBC contains the most up-to-date
information on the user. For this to be done efficiently, there must be a
mechanism of storing the documents (emails, reports, webpages searched and
saved etc.) at regular intervals. There could be several methods of
implementation, i.e., interfacing with existing email systems such as Gmail to
automatically download new emails and caching, as well as downloading, web
content. If this is achieved, then theoretically the accuracy of the predictions
should increase proportionally increasing the overall performance of the model.

8.1.1.1.2 Static and Dynamic Weights

The current model works as back-off model and hence, each corpus has an equal
weight. However, in reality, predictions are more likely to come from one type of
corpus than another, for example, the likelihood of predictions being generated
from the UBC might be much larger than predictions being generated from the
BNC. This is in fact validated by preliminary statistics seen in Figure 6.17,
indicating that the likelihood of predictions taken from UBC is more than double
than that of the current document or BNC. Aside from the three main corpora,

 87

the same trend is applicable for unfiltered (syntactic) vs. filtered (semantic)
corpora, as well as WordNet.

To reflect these various influences, weights can be added for each corpora or
source, of predictions to form a linearly interpolated model i.e.,

8	 9 = :; :<(8	 9 >?) ∗ :B(8 9 >C) +	:E :<(8	 9 F?) ∗ (:B8 9 FC)

+:G(:< 8	 9 H?) ∗ :B(8 9 HC) +:I

where :;, :E, :G and	:I are the associated weights of each corpus and
WordNet, and :< and :B are the weights for the unfiltered (syntactic
predictions) and filtered (semantic predictions) respectively. The three corpora
(current document, UBC and BNC) are given by Corpus X, Corpus Y and Corpus
Z respectively, with >?, F?, H?signifying the unfiltered versions and >C, FC and HC
signifying the filtered versions.

Due to time constraints, preliminary weight were only calculated for each of the
corpora :;, :E and :G (Table 8.1). The calculation of MLE for these weights are
shown in Equations (8.2-8.4) and results tabulated (Table 8.2). Given that there
is a small portion of words that were not found in the corpus (i.e., OOV) and to
ensure that the weights all add up to 1, the normalised count for the OOV words
was distributed evenly across the three corpora weights. Hence, the final raw
weights are the average of all the weights for each test set plus the evenly
distributed average OOV normalised count.

It is important to realise that these weights are preliminary and therefore
require further tuning in the future. A way of achieving this fine tuning would be
to simply run a greater amount of unseen test data through the model.

:; =
0". .'$)(2#)*',.'"!	.%3)!	4#"$	K09

5".%&	!-$6)#	"4	7"#*('!	.)(.	*",-$)!.

(8.1)

(8.2)

 88

:E =
0". .'$)(2#)*',.'"!	.%3)!	4#"$	LK9

5".%&	!-$6)#	"4	7"#�('!	.)(.	*",-$)!.

:G =	
0". .'$)(2#)*',.'"!	.%3)!	4#"$,-##)!.	*",-$)!.	,"#2-(

5".%&	!-$6)#	"4	7"#*('!	.)(.	*",-$)!.

Table 8.1 Normalised Counts for each corpora across all test sets

Normalised

Counts

Current

Document

(:G)

UBC (:E) BNC (:;) OOV

Enron Formal

Emails

0.166 0.777 0.026 0.031

Enron

Informal

Emails

0.226 0.709 0.053 0.013

Personal

Informal

Emails

0.155 0.747 0.042 0.056

Personal

Formal

Emails

0.165 0.745 0.052 0.038

Average 0.178 0.744 0.043 0.035

Table 8.2 Preliminary Weights for Linear Interpolation Model

Weights Weight Values

MN 0.189
MO 0.756

MP 0.055

These corpora weights are static in that they remain the same throughout the
program. However, in reality, as the document progresses, these weights may
change. For example, as the user’s current document becomes longer, the

(8.3)

(8.4)

 89

likelihood of the predictions taken from the current document may surpass the
likelihood of the other corpora. Weights that are able to adapt to these changes
are dynamic weights. Calculating dynamic weights can be done in many ways,
including simply doing a real-time calculation of where the predictions are being
taken from and adjusting the weights within a particular time or ‘word’-frame
i.e., adjust the weights after 100 words.

8.1.1.1.3 Recency Model

A recency model can be incorporated to weight information inside the corpus
itself, particularly the UBC. For example, predictions based on emails or
webpages written or accessed in the last week as opposed to the last year may be
weighted higher as the user may be more likely to write similar to their recent
emails/documents rather than former email/documents. In this case, time is the
metric used to evaluate recent vs. old, however another possible metric to be
used could be words. That is, rank the words in the corpus based on the
frequency of usage rather than when they were used. For example, if the user
wrote an essay on amphibians three years ago, but now wishes to write a similar
report, predictions based on this three-year old report will be weighted higher
under the word-based recency model as ‘amphibian’ and related terms would be
ranked higher due to their frequency of use rather than a time-based recency
model which would decrease the predictions’ weight as it was accessed a long
time back.

Recency language models are important for various disciplines including
information retrieval, where the retrieved documents may need to be both
topically and within a certain time frame relevant to the user’s query. Li and
Croft (2003) designed a time-based language model which incorporates a time-
based posterior prior for each document in the language model, therefore when
selecting the documents via a ranking process, the documents will be subjected
to a time constraint and ranked accordingly. This method could potentially be
translated for the word prediction model, where the ‘documents’ could be emails,

 90

PDFs and so forth each with a time-based prior and therefore ranked within the
corpus solely based on these priors.

8.1.1.1.4 Syntactic Information

Incorporating syntactic information in a language model (see Literature Review)
is useful in eliminating inappropriate or inaccurate predictions. For example, if
the user wants the write the sentence ‘my aunt is going to the shops’, the
prediction after ‘aunt’ must be is and not are as the latter defies the subject +
verb agreement rule. This is particularly important for this model, as the
predictions are largely based on the user and as such, if the user has poor
grammar in their emails or documents, this will follow through as they are
typing new documents.

Additionally, in English, pronouns are often used in replacement of repeated
nouns. For example, instead of writing ‘Jack climbed over the fence and then
Jack fell down’, we write ‘Jack climbed over the fence and then he fell down’.
That is, he replaces Jack (a proper noun) in the sentence. To reflect this writing
style, predicting pronouns instead of repeating nouns can be incorporated into
the language model as part of syntactic information. The implementation of this
can be quite complex, however a simplistic initial method could be store all real-
time proper nouns in a list using a part-of-speech tagger. If the proper noun is
used more than once, include the pronoun as a prediction each time the proper
noun is suggested. The crux of the problem, however, is how to identify the
correct pronoun for the subject i.e., how does the model know that ‘him’ is the
correct pronoun for ‘Jack’? This must be investigated further in future versions.

8.1.1.1.5 Perplexity Evaluation

The primary evaluation metrics used for the results were KT and KSR, however
an equally important evaluation metric is perplexity (see Background section).
As mentioned, perplexity is a measure of how much probability the trained

 91

language model assigns to each word on some unseen test data. The more
information provided by the language model, the lower the perplexity.

To measure perplexity, the language model must be first trained by assigning
probabilities (not counts as what was used for generating predictions) to each
word for both the UBC and the BNC. For a bigram model, the probability is
given by Equation 2.4. Once the model has been trained, it can be used to assign
probabilities on some unseen test-data. Perplexity is extremely sensitive to zero
probabilities (i.e., unknown words) and therefore must use some form of
smoothing to eliminate these zero probabilities.

Training the model takes significant computational power and time given the
number of words in UBC (1.2 million) and BNC (100 million). Consequently,
given the time constraints and computational limitations when undertaking this
project, the results were not able to be generated.

8.1.1.2 Unconscious Computer Interface

The UCI is part of the larger project where the predictions from the language
model are presented in an alphabetized list to the user (Figure 8.1). Using BCI
technology, the user can select the appropriate predictions and append it to the
current document.

 92

Figure 8.1 UCI Selection Example

Figure 8.2 UCI Selection Example

8.1.1.2.1 Selection

The selection of the UCI can be explained using the examples shown in Figures
8.1 and 8.2. Figure 8.1 depicts the initial prediction list shown to the user. Each

 93

prediction has an associated probability and its size is proportional to that
probability i.e., the most probable words in the initial prediction list are ‘Good
Afternoon’, ‘Hey’ and ‘Hi’. The user can peruse through the list using BCI
technology and as the user focuses on a particular prediction or section of the
prediction list, the associated section enlarges with new predictions emerging
(Figure 8.2). In the example, the user focuses on the word ‘Hey’, and predictions
on either side of the word are essentially ‘greeked out’ while the predictions
under the ‘H’ section are enlarged. Once the user selects the appropriate
prediction using BCI technology, the prediction is appended to the final
document and a new prediction list based on the newly appended prediction is
displayed.

For simplicity, the examples shown in Figures 8.1 and 8.2 are in black and
white, however, more complicated versions can colour code the predictions
according to the source and style. For example, the three corporal sources of
predictions in the model are the current document, UBC and BNC, and along
with WordNet, each can have their own associated colour. Similarly, syntactic
and semantic predictions can each have their own colour.

8.1.1.2.2 Evaluation

The predictions generated from the language model must be adapted to fit their
use in the UCI. Essentially, the predictions in the UCI should resemble a
probability search tree with the branches as predictions and their associated
probabilities. As the user focuses their attention on a particular word, new
predictions with new probabilities are added as branches until the correct word
(information) is found. Hence, a potential evaluation metric for the UCI could be
to count the number of steps, or branches in the search tree from the initial
highest probable word until the correct word. In the final UCI, the ‘steps’ are
measured by BCI however, a more ‘proof-of-concept’ approach would be to simply
use the direction (up, down, left, right) keys where the ‘up’ and ‘down’ keys could
be used to peruse the list, ‘left’ to make a selection and ‘right’ as a form of delete.

 94

Hence, the number of steps would simply be the number of times the ‘left’ key
was pressed.

a. Summary

The designed model is capable of providing predictions based largely on the user
rather than solely the language, with the predictions reflecting the user’s
interests, style of writing and their current task being undertaken. Results show
that this model is capable of word prediction, whilst also highlighting potential
design modifications such as use of a generalised corpus opposed to a context-
derived corpus and further evaluating the effect of WordNet. Aside from the
significance of developing a feasible user-based word prediction language model,
the significance of the results also means that this tool can be successfully
integrated with the future UCI.

 95

References

Akram, F., Metwally, M.K., Han, H.S., Jeon, H.J. and Kim, T.S., 2013, February.
A novel P300-based BCI system for words typing. In Brain-Computer Interface

(BCI), 2013 International Winter Workshop on (pp. 24-25). IEEE.

Akram, F., Han, S. M. & Kim, T. S. 2015. An efficient word typing P300-BCI
system using a modified T9 interface and random forest classifier. Comput Biol

Med, 56, 30-6.

A.P. Dempster, N.M. Laird, and D.B. Rubin. Maximum likelihood from
incomplete data via the EM algorithm. Journal of the Royal Statistical Society B,
39:1–38, 1977.

Baeza-Yates, R. and Ribeiro-Neto, B., 1999. Modern information retrieval (Vol.
463). New York: ACM press.

Banerjee, S. and Pedersen, T., 2002, February. An adapted Lesk algorithm for
word sense disambiguation using WordNet. In International Conference on

Intelligent Text Processing and Computational Linguistics (pp. 136-145).
Springer Berlin Heidelberg.

Bellegarda, J. R. 2000. Exploiting latent semantic information in statistical
language modeling. Proceedings of the IEEE, 88, 1279-1296.

Bellegarda, J.R., 2004. Statistical language model adaptation: review and
perspectives. Speech communication, 42(1), pp.93-108.

Berger, A. L., Pietra, V. J. D. & Pietra, S. A. D. 1996. A maximum entropy
approach to natural language processing. Computational linguistics, 22, 39-71.

Blei, D. M., Ng, A. Y. & Jordan, M. I. 2003. Latent dirichlet allocation. Journal of

machine Learning research, 3, 993-1022.

 96

Boyd-Graber, J. L. & Blei, D. M. Syntactic topic models. Advances in neural
information processing systems, 2009. 185-192.

British National Corpus. 2009. What is the BNC? [ONLINE] Available at:
http://www.natcorp.ox.ac.uk/corpus/. [Accessed 4 October 2016].

Brodwin MG, Siu FW, Howard J, Brodwin ER 2009, Medical, Psychosocial and

Vocational Aspects of Disability, Elliott & Fitzpatrick Inc. GA, viewed 7th June
2016,
<http://www.kvccdocs.com/KVCC/2014Spring/MHT226/Medical%20Aspects.pdf#
page=299)>

Charniak, E. 2000. A maximum-entropy-inspired parser. Proceedings of the 1st

North American chapter of the Association for Computational Linguistics

conference. Seattle, Washington: Association for Computational Linguistics.

Charniak, E. 2001. Immediate-head parsing for language models. Proceedings of

the 39th Annual Meeting on Association for Computational Linguistics. Toulouse,
France: Association for Computational Linguistics.

Chelba, C. and Jelinek, F., 1998, August. Exploiting syntactic structure for
language modeling. In Proceedings of the 36th Annual Meeting of the Association

for Computational Linguistics and 17th International Conference on

Computational Linguistics-Volume 1 (pp. 225-231). Association for
Computational Linguistics.

Chelba, C. & Jelinek, F. 2000. Structured language modeling. Computer Speech

& Language, 14, 283-332.

Coccaro, N. & Jurafsky, D. Towards better integration of semantic predictors in
statistical language modeling. ICSLP, 1998. Citeseer.

 97

Collins, M., Roark, B. & Saraclar, M. 2005. Discriminative syntactic language
modeling for speech recognition. Proceedings of the 43rd Annual Meeting on

Association for Computational Linguistics. Ann Arbor, Michigan: Association for
Computational Linguistics.

Dempster, A. P., Laird, N. M. & Rubin, D. B. 1977. Maximum likelihood from
incomplete data via the EM algorithm. Journal of the royal statistical society.

Series B (methodological), 1-38.

Don Johnston. 2016. Co: Writer Universal. [ONLINE] Available at:
http://donjohnston.com/cowriter/. [Accessed 30 June 2016].

Enron Email Dataset. 2015. Enron Email Dataset. [ONLINE] Available at:
https://www.cs.cmu.edu/~./enron/. [Accessed 4 October 2016].

Erdogan, H., Sarikaya, R., Gao, Y. & Picheny, M. Semantic structured language
models. INTERSPEECH, 2002.

Farwell, L. A. & Donchin, E. 1988. Talking off the top of your head: toward a
mental prosthesis utilizing event-related brain potentials.
Electroencephalography and Clinical Neurophysiology, 70, 510-523.

Fraser Shein, Vivian Tsang. 2001. WordQ Writing Software. [ONLINE]
Available at:
http://www.goqsoftware.com/pdf/research/wordQ4writingsoftware.pdf. [Accessed
30 June 2016].

Gildea, D. & Hofmann, T. 1999. Topic-based language models using EM. History,
11111, 11111.

Good, I.J., 1953. The population frequencies of species and the estimation of
population parameters. Biometrika, 40(3-4), pp.237-264.

 98

Goodman, J., Venolia, G., Steury, K. & Parker, C. Language modeling for soft
keyboards. Proceedings of the 7th international conference on Intelligent user
interfaces, 2002. ACM, 194-195.

Griffiths, T. L., Steyvers, M., Blei, D. M. & Tenenbaum, J. B. Integrating topics
and syntax. Advances in neural information processing systems, 2004. 537-544.

Guerreiro, T.J.V. 2007, Assistive Technologies for Spinal Cord Injured
Individuals A Survey

Huang, J.H. and Powers, D., 2001. Large scale experiments on correction of
confused words. Australian Computer Science Communications, 23(1), pp.77-82.

Katz, S. 1987. Estimation of probabilities from sparse data for the language
model component of a speech recognizer. IEEE transactions on acoustics, speech,

and signal processing, 35, 400-401.

Kaufmann, T. & Pfister, B. 2012. Syntactic language modeling with formal
grammars. Speech Communication, 54, 715-731.

Khudanpur, S. & Wu, J. 2000. Maximum entropy techniques for exploiting
syntactic, semantic and collocational dependencies in language modeling.
Computer Speech & Language, 14, 355-372.

Klakow, D. Log-linear interpolation of language models. ICSLP, 1998.

Kneser, R. & Steinbiss, V. On the dynamic adaptation of stochastic language
models. Acoustics, Speech, and Signal Processing, 1993. ICASSP-93., 1993 IEEE
International Conference on, 1993. IEEE, 586-589.

 99

Kuhn, R. & De Mori, R. 1990. A cache-based natural language model for speech
recognition. IEEE transactions on pattern analysis and machine intelligence, 12,
570-583.

Landauer, T. K. & Dumais, S. T. 1997. A solution to Plato's problem: The latent
semantic analysis theory of acquisition, induction, and representation of
knowledge. Psychological review, 104, 211.

Laureys, S., Pellas, F., Van Eeckhout, P., Ghorbel, S., Schnakers, C., Perrin, F.,
Berre, J., Faymonville, M. E., Pantke, K. H., Damas, F., Lamy, M., Moonen, G. &
Goldman, S. 2005. The locked-in syndrome : what is it like to be conscious but
paralyzed and voiceless? Prog Brain Res, 150, 495-511.

Li, X. and Croft, W.B., 2003, November. Time-based language models. In
Proceedings of the twelfth international conference on Information and knowledge

management (pp. 469-475). ACM.

Lesk, M., 1986, June. Automatic sense disambiguation using machine readable
dictionaries: how to tell a pine cone from an ice cream cone. In Proceedings of the

5th annual international conference on Systems documentation (pp. 24-26). ACM.

Lesher, G. W. & Rinkus, G. J. Domain-specific word prediction for augmentative
communication. Proceedings of the RESNA 2002 Annual Conference, 2002.

Li, J. & Hirst, G. Semantic knowledge in word completion. Proceedings of the
7th international ACM SIGACCESS conference on Computers and accessibility,
2005. ACM, 121-128.

Mackenzie, I. S. & Zhang, X. Eye typing using word and letter prediction and a
fixation algorithm. Proceedings of the 2008 symposium on Eye tracking research
& applications, 2008. ACM, 55-58.

 100

Mahajan, M., Beeferman, D. & Huang, X. Improved topic-dependent language
modeling using information retrieval techniques. Acoustics, Speech, and Signal
Processing, 1999. Proceedings., 1999 IEEE International Conference on, 1999.
IEEE, 541-544.

Manning, C.D. and Schütze, H., 1999. Foundations of statistical natural

language processing (Vol. 999). Cambridge: MIT press.

Manyakov, N. V., Chumerin, N., Combaz, A. & VAN HULLE, M. M. 2011.
Comparison of classification methods for P300 brain-computer interface on
disabled subjects. Comput Intell Neurosci, 2011, 519868.

Jurafsky, D and Martin, J.H., 2000. Speech and language processing.
International Edition, 710.

Mitchell, J and Lapata, M. Language models based on semantic composition.
Proceedings of the 2009 Conference on Empirical Methods in Natural Language
Processing: Volume 1-Volume 1, 2009. Association for Computational
Linguistics, 430-439.

Mora-Cortes, A., Manyakov, N. V., Chumerin, N. & Van Hulle, M. M. 2014.
Language model applications to spelling with brain-computer interfaces.
Sensors, 14, 5967-5993.

Natural language Toolkit — NLTK 3.0 documentation 2015.
<http://www.nltk.org> (Accessed: 4 October 2016).

Ney, H., Essen, U. and Kneser, R., 1994. On structuring probabilistic
dependences in stochastic language modelling. Computer Speech & Language,
8(1), pp.1-38.

Orhan, U., Hild, K. E., Erdogmus, D., Roark, B., Oken, B. & Fried-Oken, M.

 101

RSVP keyboard: an EEG based typing interface. 2012 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), 2012. IEEE,
645-648.

Powers, D.M., 1997, July. Learning and Application of Differential Grammars.
In CoNLL (pp. 88-96).

Princeton University "About WordNet." WordNet. Princeton University. 2010.
<http://wordnet.princeton.edu>

Riccardi, G., Potamianos, A. & Narayanan, S. Language model adaptation for
spoken language systems. ICSLP, 1998. 2327-2330.

Roark, B. 2001. Probabilistic top-down parsing and language modeling.
Computational linguistics, 27, 249-276.

Rosenfeld, R., 1996. A maximum entropy approach to adaptive statistical
language modeling.

Rosenfeld, R. 2005. Adaptive statistical language modeling: A maximum entropy

approach. Department of the Navy, Naval Research Laboratory.

Ryan, D. B., Frye, G., Townsend, G., Berry, D., Mesa-G, S., Gates, N. A. &
Sellers, E. W. 2010. Predictive spelling with a P300-based brain–computer
interface: increasing the rate of communication. Intl. Journal of Human–

Computer Interaction, 27, 69-84.

Schalk, G., Mcfarland, D. J., Hinterberger, T., Birbaumer, N. & Wolpaw, J. R.
2004. BCI2000: a general-purpose brain-computer interface (BCI) system. IEEE

Trans Biomed Eng, 51, 1034-43.

 102

Shepherd Centre 2011, Understanding Spinal Cord Injury, viewed 7th June
2016, < http://www.spinalinjury101.org >

Speier, W., Arnold, C., Lu, J., Taira, R. K. & Pouratian, N. 2011. Natural
language processing with dynamic classification improves P300 speller accuracy
and bit rate. Journal of neural engineering, 9, 016004.

Spinal Hub 2016, Spinal Nerves Up Close. [ONLINE] viewed 5th October 2016, <
http://www.spinalhub.com.au/what-is-a-spinal-cord-injury/what-happens-to-the-
spinal-cord-after-injury/spinal-nerves-up-close>

Trnka, K. and McCoy, K.F., 2008, June. Evaluating word prediction: framing
keystroke savings. In Proceedings of the 46th Annual Meeting of the Association

for Computational Linguistics on Human Language Technologies: Short Papers
(pp. 261-264). Association for Computational Linguistics.

Trnka, K., Yarrington, D., Mccoy, K. & Pennington, C. 2005. Topic Modeling in
Word Prediction For Aac. Technical Report.

Wallach, H. M. Topic modeling: beyond bag-of-words. Proceedings of the 23rd
international conference on Machine learning, 2006. ACM, 977-984.

Wandmacher, T. & Antoine, J.-Y. 2008. Methods to integrate a language model
with semantic information for a word prediction component. arXiv preprint

arXiv:0801.4716.

Wills, S. A. & Mackay, D. J. 2006. DASHER-an efficient writing system for
brain-computer interfaces? IEEE Transactions on Neural Systems and

Rehabilitation Engineering, 14, 244-246.

Yang, D. and Powers, D.M., 2005, January. Measuring semantic similarity in the
taxonomy of WordNet. In Proceedings of the Twenty-eighth Australasian

 103

conference on Computer Science-Volume 38 (pp. 315-322). Australian Computer
Society, Inc..

Yang, D. and Powers, D.M., 2006. Verb similarity on the taxonomy of WordNet.
Masaryk University.

 104

Appendix A – Clean BNC Corpus Code

import re
import io
import nltk
import os

 os.chdir('/Users/madhumuralidharan/nltk_data/corpora/BNC/K/KS''') #choose BNC folder

 def cleanhtml(raw_html): #filter html tags
 cleanr =re.compile('<.*?>')
 cleantext = re.sub(cleanr,'', raw_html)
 return cleantext

 for i in os.listdir(os.getcwd()):
 if i.endswith(".txt"):
 print (i) #print the text file
 my_file = io.open(i,"r", encoding = "utf-8") #open text file
 text_file = my_file.read() #read
 new=cleanhtml(text_file) #clean
 new_file = open(i, "w") #rewrite old file with clean version
 new_file.write(new)
 else:
 continue

 105

Appendix B – Bigram Dictionary Code

def bigram(tokens):
 model=collections.defaultdict() #create new dictionary
 bigrams = nltk.bigrams(tokens) #generate bigrams
 fdist=nltk.ConditionalFreqDist(bigrams) #generate conditional freq distribution from counts
 try: #bigram frequency
 for k,v in fdist.items():
 model[k] = v #save bigram counts
 except KeyError:
 model[k]=1 #default if word is not found
 return model

model = bigram(tokens)
pickle.dump(model,open("bnc_probability.p","wb")) #save to file

 106

Appendix C – Model Implementation

def CheckUserInputExists(current_word, task):
 """
 :param current_word: current word for which predictions are generated
 :param task: email or document
 :return: prediction list
 The function takes the input word and the task (email/document). Depending on the task,
 the corresponding user-based corpus (informal/formal/document) is selected. The system then
looks for potential
 predictions first in the current document, then the user-based corpus and finally the BNC.
Once the appropriate
 corpus is found, a conditional frequency distribution is generated containing the bigram counts
from the corpus and
 used to generate the predictions.
 Note: Each of the corpora have a second filtered version (removed stop words and
lemmatisation).
 If bigram predictions exist in any of two versions of the three corpora, the three most
common/frequent
 predictions are stored in a list and returned.
 """
 new= []
 new = list(set(new))
 input = current_word
 overall_pred = []
 temp_corpus = task
 print(temp_corpus)

 #find appropriate user-based corpus

 if temp_corpus == 'formal':
 with io.open("Formal_Emails_Filtered_All.txt", "r", encoding="utf-8") as my_file:
 user_based_corpus = my_file.read()
 elif temp_corpus == 'informal':
 with io.open("Informal_Emails_Filtered_All.txt", "r", encoding="utf-8") as my_file:
 user_based_corpus = my_file.read()
 elif temp_corpus == 'document':
 with io.open("Past_PDFs.txt", "r", encoding="utf-8") as my_file:
 user_based_corpus = my_file.read()

 #Check for bigram predictions in current document
 if input in current_document:
 print("Found in current document")
 mynewtext = [w for w in current_document if w not in stopwords] #stopping
 new_text = (lemmatiser.lemmatize(i) for i in mynewtext) #lemmatising
 bigrams_normal = bigram_model(current_document,2)
 bigrams_semantic = bigram_model(new_text,2)
 cfd_normal = nltk.ConditionalFreqDist(bigrams_normal)
 cfd_semantic = nltk.ConditionalFreqDist(bigrams_semantic)
 normal_predictions = list(cfd_normal[input].most_common(3))
 semantic_predictions = list(cfd_semantic[input].most_common(3))
 if (normal_predictions == semantic_predictions): #if normal and semantic predictions are
the same, store the first three in a list

 107

 np = [] #temp prediction list
 normal_pred = []
 for i in range(len(normal_predictions)):
 np += normal_predictions[i]
 normal_pred = np[0::2]
 overall_pred = list(set((normal_pred)))
 else: #if normal and semantic predictions are not the same, build a new list with both the
normal and semantic predictions
 normal_pred = []
 semantic_pred = []
 np = []
 sp = []
 for i in range(len(normal_predictions)):
 np += normal_predictions[i]
 normal_pred = np[0::2]
 for j in range(len(semantic_predictions)):
 sp += semantic_predictions[j]
 semantic_pred = sp[0::2]
 overall_pred = (list(set(normal_pred) | set(semantic_pred))) #filter out common semantic
and syntactic predictions
 return overall_pred

 #check for bigram predictions in user-based corpus
 elif input in user_based_corpus:
 print("Found in user-based corpus")
 print("Found in BNC")
 cfd_normal = pickle.load(open("saved_ubc_cfd.p", "rb"))
 cfd_semantic = pickle.load(open("saved_ubc_semantic_cfd.p",”rb”))
 normal_predictions = list(cfd_normal[input].most_common(3))
 semantic_predictions = list(cfd_semantic[input].most_common(3))
 if (normal_predictions == semantic_predictions):
 np = []
 normal_pred = []
 for i in range(len(normal_predictions)):
 np += normal_predictions[i]
 normal_pred = np[0::2]
 overall_pred = list(set((normal_pred)))
 else:
 normal_pred = []
 topic_pred = []
 np = []
 tp = []
 for i in range(len(normal_predictions)):
 np += normal_predictions[i]
 normal_pred = np[0::2]
 for j in range(len(semantic_predictions)):
 tp += semantic_predictions[j]
 topic_pred = tp[0::2]
 overall_pred = (list(set(normal_pred) | set(topic_pred)))
 return overall_pred
 #check for predictions in BNC
 elif input in corpus:
 print("Found in BNC")
 cfd_normal = pickle.load(open("saved_bnc_cfd.p", "rb"))
 cfd_semantic = pickle.load(open("saved_bnc_semantic_cfd.p", "rb"))
 normal_predictions = list(cfd_normal[input].most_common(3))
 semantic_predictions = list(cfd_semantic[input].most_common(3))
 if (normal_predictions == semantic_predictions):

 108

 np = []
 normal_pred = []
 for i in range(len(normal_predictions)):
 np += normal_predictions[i]
 normal_pred = np[0::2]
 overall_pred = list(set((normal_pred)))
 else:
 normal_pred = []
 topic_pred = []
 np = []
 tp = []
 for i in range(len(normal_predictions)):
 np += normal_predictions[i]
 normal_pred = np[0::2]
 for j in range(len(semantic_predictions)):
 tp += semantic_predictions[j]
 topic_pred = tp[0::2]
 overall_pred = (list(set(normal_pred) | set(topic_pred)))
 return overall_pred
 else:
 print("not found anywhere")
 overall_pred = []
 return overall_pred

 109

Appendix D – Individual Email KSR Values for
Test Sets

Personal

Informal

Emails

Baseli

ne 0

(%)

Baseline 1

(%)

Baseline 2

(%)

Baseline 3

(%)

Baseline 4

(%)

1 0 2.222±0.662 17.788±1.436 15.566±1.689 15.556±1.700

2 0 2.941±0.662 10.784±1.436 8.824±1.689 8.824±1.700

3 0 4.545±0.662 22.728±1.436 36.364±1.689 36.364±1.700

4 0 1.717±0.662 19.742±1.436 22.318±1.689 23.176±1.700

5 0 1.852±0.662 12.963±1.436 24.074±1.689 24.074±1.700

6 0 12.698±0.662 17.460±1.436 19.048±1.689 19.048±1.700

7 0 10.101±0.662 11.111±1.436 9.091±1.689 9.091±1.700

8 0 2.362±0.662 17.323±1.436 17.323±1.689 18.110±1.700

9 0 2.5±0.662 5±1.436 6.25±1.689 6.25±1.700
10 0 8.537±0.662 14.634±1.436 19.512±1.689 19.512±1.700
11 0 3.125±0.662 6.25±1.436 6.25±1.689 6.25±1.700
12 0 4.177±0.662 0±1.436 0±1.689 0±1.700
13 0 10.145±0.662 13.043±1.436 13.043±1.689 13.043±1.700

14 0 7.563±0.662 14.286±1.436 11.765±1.689 11.765±1.700

15 0 6.081±0.662 4.054±1.436 2.703±1.689 2.703±1.700
16 0 0±0.662 6.061±1.436 16.667±1.689 16.667±1.700

17 0 5.505±0.662 11.927±1.436 29.358±1.689 29.358±1.700

18 0 8.451±0.662 7.042±1.436 19.718±1.689 19.718±1.700

19 0 0±0.662 7.895±1.436 7.895±1.689 7.895±1.700

 110

20 0 3.604±0.662 16.216±1.436 12.613±1.689 12.613±1.700

21 0 5.738±0.662 16.393±1.436 10.246±1.689 11.475±1.700

22 0 3.478±0.662 11.739±1.436 11.304±1.689 11.304±1.700
23 0 6.224±0.662 35.270±1.436 9.544±1.689 8.299±1.700

24 0 5.348±0.662 17.647±1.436 19.251±1.689 19.251±1.700

25 0 8.537±0.662 17.073±1.436 24.390±1.689 24.390±1.700

 111

Enron

Informal

Emails

Baseline

0 (%)

Baseline 1

(%)

Baseline 2

(%)

Baseline 3

(%)

Baseline 4

(%)

1 0 7.949±0.484 13.077±1.261 13.333±1.307 14.872±1.311
2 0 6.462±0.484 14.462±1.261 11.077±1.307 12±1.311
3 0 0±0.484 31.25±1.261 31.25±1.307 31.25±1.311
4 0 2.75±0.484 13±1.261 14±1.307 14±1.311
5 0 5.109±0.484 16.423±1.261 16.423±1.307 16.423±1.311
6 0 4.580±0.484 16.031±1.261 19.084±1.307 22.137±1.311
7 0 7.018±0.484 15.789±1.261 7.018±1.307 7.018±1.311
8 0 5.128±0.484 13.675±1.261 15.385±1.307 15.385±1.311
9 0 2.415±0.484 18.841±1.261 22.705±1.307 22.705±1.311
10 0 5.405±0.484 8.108±1.261 10.811±1.307 10.811±1.311
11 0 9.091±0.484 18.182±1.261 19.481±1.307 19.481±1.311
12 0 1.587±0.484 7.143±1.261 26.190±1.307 26.190±1.311
13 0 1±0.484 21±1.261 16±1.307 16±1.311
14 0 2.454±0.484 4.908±1.261 12.270±1.307 12.270±1.311
15 0 7.954±0.484 10.227±1.261 7.955±1.307 7.955±1.311
16 0 1.538±0.484 6.154±1.261 20±1.307 20±1.311
17 0 5.195±0.484 6.493±1.261 7.792±1.307 7.792±1.311
18 0 6.312±0.484 14.286±1.261 16.279±1.307 15.947±1.311
19 0 1.408±0.484 14.085±1.261 19.718±1.307 19.718±1.311
20 0 5.455±0.484 13.182±1.261 15.455±1.307 15.455±1.311
21 0 7.143±0.484 13.492±1.261 19.048±1.307 18.254±1.311
22 0 4.177±0.484 19.444±1.261 18.056±1.307 18.056±1.311
23 0 5±0.484 0±1.261 0±1.307 0±1.311
24 0 5.405±0.484 19.369±1.261 20.721±1.307 20.720±1.311
25 0 4.177±0.484 12.5±1.261 12.5±1.307 18.75±1.311

 112

Personal

Formal

Emails

Baseline

0 (%)

Baseline 1

(%)

Baseline 2

(%)

Baseline 3

(%)

Baseline 4

(%)

1 0 2.222±0.609 17.778±1.938 15.556±2.065 15.556±2.082
2 0 2.941±0.609 10.784±1.938 8.824±2.065 8.824±2.082
3 0 4.545±0.609 22.727±1.938 36.364±2.065 36.364±2.082
4 0 1.717±0.609 19.742±1.938 22.318±2.065 23.176±2.082
5 0 1.852±0.609 12.963±1.938 24.074±2.065 24.074±2.082
6 0 12.700±0.609 17.460±1.938 19.048±2.065 19.048±2.082
7 0 10.101±0.609 11.111±1.938 9.091±2.065 9.091±2.082
8 0 2.362±0.609 17.323±1.938 17.323±2.065 18.110±2.082
9 0 2.5±0.609 5±1.938 6.25±2.065 6.25±2.082
10 0 8.537±0.609 14.634±1.938 19.512±2.065 19.512±2.082
11 0 3.125±0.609 6.25±1.938 6.25±2.065 6.25±2.082
12 0 4.167±0.609 0±1.938 0±2.065 0±2.082
13 0 10.145±0.609 13.043±1.938 13.043±2.065 13.043±2.082
14 0 7.563±0.609 14.286±1.938 11.765±2.065 11.765±2.082
15 0 6.081±0.609 4.054±1.938 2.703±2.065 2.703±2.082
16 0 0±0.609 6.061±1.938 16.667±2.065 16.667±2.082
17 0 5.505±0.609 11.927±1.938 29.358±2.065 29.358±2.082
18 0 8.451±0.609 7.042±1.938 19.718±2.065 19.718±2.082
19 0 0±0.609 7.895±1.938 7.895±2.065 7.895±2.082
20 0 3.604±0.609 16.216±1.938 12.613±2.065 12.613±2.082
21 0 5.738±0.609 16.393±1.938 10.246±2.065 11.475±2.082
22 0 3.478±0.609 11.739±1.938 11.304±2.065 11.304±2.082
23 0 6.224±0.609 35.270±1.938 9.544±2.065 8.299±2.082
24 0 5.348±0.609 17.647±1.938 19.251±2.065 19.251±2.082
25 0 8.537±0.609 17.073±1.938 24.390±2.065 24.390±2.082

 113

Enron

Formal

Emails

Baseli

ne 0

(%)

Baseline 1

(%)

Baseline 2

(%)

Baseline 3

(%)

Baseline 4 (%)

1 0 7.051±0.581 9.615±1.405 9.615±1.355 14.103±1.317

2 0 5±0.581 17±1.405 18±1.355 18±1.317
3 0 8.219±0.581 16.438±1.405 19.178±1.355 17.808±1.317

4 0 8.130±0.581 9.756±1.405 13.008±1.355 13.008±1.317
5 0 0±0.581 10±1.405 6±1.355 10±1.317
6 0 2.390±0.581 17.530±1.405 21.116±1.355 20.319±1.317
7 0 2.479±0.581 14.050±1.405 14.050±1.355 14.050±1.317
8 0 8.824±0.581 17.647±1.405 17.647±1.355 17.647±1.317
9 0 3.846±0.581 20.192±1.405 17.308±1.355 15.385±1.317
10 0 6.024±0.581 10.040±1.405 11.647±1.355 10.040±1.317
11 0 5.155±0.581 16.495±1.405 18.557±1.355 19.588±1.317
12 0 6.061±0.581 15.152±1.405 15.152±1.355 18.182±1.317
13 0 5.556±0.581 11.111±1.405 11.111±1.355 11.111±1.317
14 0 2.660±0.581 7.979±1.405 7.447±1.355 5.851±1.317
15 0 0±0.581 3.846±1.405 3.846±1.355 3.846±1.317
16 0 0.877±0.581 5.263±1.405 6.140±1.355 3.509±1.317
17 0 4.4±0.581 11.6±1.405 15.6±1.355 14.4±1.317
18 0 3.817±0.581 2.290±1.405 9.160±1.355 9.160±1.317
19 0 0±0.581 0±1.405 0±1.355 0±1.317
20 0 3.704±0.581 16.296±1.405 16.296±1.355 16.270±1.317
21 0 3.145±0.581 16.981±1.405 18.868±1.355 18.868±1.317
22 0 8.8±0.581 14.4±1.405 15.2±1.355 16±1.317
23 0 0±0.581 0±1.405 0±1.355 0±1.317
24 0 1.987±0.581 24.503±1.405 21.854±1.355 13.907±1.317
25 0 7.826±0.581 27.826±1.405 26.523±1.355 26.522±1.317

 114

Appendix E – Individual Email Normalised KT
Values for Test Sets

Enron

Formal

Emails

Baseline

0

Baseline 1 Baseline 2 Baseline 3 Baseline 4

1 1 0.929±0.006 0.904±0.014 0.904±0.014 0.859±0.013
2 1 0.95±0.006 0.830±0.014 0.820±0.014 0.820±0.013
3 1 0.918±0.006 0.836±0.014 0.808±0.014 0.822±0.013
4 1 0.919±0.006 0.902±0.014 0.870±0.014 0.870±0.013
5 1 1±0.006 0.900±0.014 0.940±0.014 0.900±0.013
6 1 0.976±0.006 0.825±0.014 0.789±0.014 0.797±0.013
7 1 0.975±0.006 0.860±0.014 0.8599±0.014 0.860±0.013
8 1 0.912±0.006 0.824±0.014 0.824±0.014 0.824±0.013
9 1 0.962±0.006 0.798±0.014 0.827±0.014 0.846±0.013
10 1 0.940±0.006 0.900±0.014 0.884±0.014 0.900±0.013
11 1 0.948±0.006 0.835±0.014 0.814±0.014 0.804±0.013
12 1 0.939±0.006 0.849±0.014 0.849±0.014 0.818±0.013
13 1 0.944±0.006 0.889±0.014 0.889±0.014 0.889±0.013
14 1 0.973±0.006 0.920±0.014 0.926±0.014 0.941±0.013
15 1 1±0.006 0.962±0.014 0.962±0.014 0.962±0.013
16 1 0.991±0.006 0.947±0.014 0.939±0.014 0.965±0.013
17 1 0.956±0.006 0.884±0.014 0.844±0.014 0.856±0.013
18 1 0.962±0.006 0.977±0.014 0.908±0.014 0.908±0.013
19 1 1±0.006 1±0.014 1±0.014 1±0.013
20 1 0.963±0.006 0.837±0.014 0.837±0.014 0.837±0.013
21 1 0.969±0.006 0.830±0.014 0.811±0.014 0.811±0.013
22 1 0.912±0.006 0.856±0.014 0.848±0.014 0.840±0.013
23 1 1±0.006 1±0.014 1±0.014 1±0.013
24 1 0.980±0.006 0.755±0.014 0.781±0.014 0.861±0.013
25 1 0.922±0.006 0.722±0.014 0.735±0.014 0.735±0.013

 115

Personal

Informal

Emails

Baseline

0

Baseline 1 Baseline 2 Baseline 3 Baseline 4

1 1 0.978±0.006 0.822±0.014 0.844±0.017 0.844±0.017
2 1 0.971±0.006 0.892±0.014 0.912±0.017 0.912±0.017
3 1 0.955±0.006 0.773±0.014 0.636±0.017 0.636±0.017
4 1 0.983±0.006 0.803±0.014 0.777±0.017 0.768±0.017
5 1 0.981±0.006 0.870±0.014 0.759±0.017 0.759±0.017
6 1 0.873±0.006 0.825±0.014 0.810±0.017 0.810±0.017
7 1 0.899±0.006 0.889±0.014 0.909±0.017 0.909±0.017
8 1 0.976±0.006 0.827±0.014 0.827±0.017 0.819±0.017
9 1 0.975±0.006 0.95±0.014 0.938±0.017 0.9375±0.017
10 1 0.915±0.006 0.854±0.014 0.805±0.017 0.805±0.017
11 1 0.969±0.006 0.938±0.014 0.938±0.017 0.938±0.017
12 1 0.958±0.006 1±0.014 1±0.017 1±0.017
13 1 0.899±0.006 0.870±0.014 0.870±0.017 0.870±0.017
14 1 0.924±0.006 0.857±0.014 0.882±0.017 0.882±0.017
15 1 0.939±0.006 0.960±0.014 0.973±0.017 0.973±0.017
16 1 1±0.006 0.940±0.014 0.833±0.017 0.833±0.017
17 1 0.945±0.006 0.881±0.014 0.706±0.017 0.706±0.017
18 1 0.915±0.006 0.930±0.014 0.803±0.017 0.803±0.017
19 1 1±0.006 0.921±0.014 0.921±0.017 0.921±0.017
20 1 0.964±0.006 0.838±0.014 0.874±0.017 0.874±0.017
21 1 0.943±0.006 0.836±0.014 0.898±0.017 0.885±0.017
22 1 0.965±0.006 0.883±0.014 0.887±0.017 0.887±0.017
23 1 0.938±0.006 0.647±0.014 0.905±0.017 0.917±0.017
24 1 0.947±0.006 0.824±0.014 0.807±0.017 0.807±0.017
25 1 0.915±0.006 0.830±0.014 0.756±0.017 0.756±0.017

Personal

Formal

Baseline

0
Baseline 1 Baseline 2 Baseline 3 Baseline 4

 116

Emails
1 1 0.955±0.006 0.8310.830±0.019 0.864±0.021 0.867±0.021
2 1 1±0.006 1±0.019 1±0.021 1±0.021
3 1 0.967±0.006 0.967±0.019 0.956±0.021 0.901±0.021
4 1 0.934±0.006 0.893±0.019 0.889±0.021 0.885±0.021
5 1 0.930±0.006 0.940±0.019 0.909±0.021 0.909±0.021
6 1 1±0.006 1±0.019 1±0.021 1±0.021
7 1 1±0.006 0.723±0.019 0.766±0.021 0.787±0.021
8 1 0.937±0.006 0.779±0.019 0.747±0.021 0.747±0.021
9 1 0.906±0.006 0.943±0.019 0.943±0.021 0.943±0.021
10 1 0.958±0.006 0.831±0.019 0.761±0.021 0.761±0.021
11 1 0.972±0.006 0.778±0.019 0.764±0.021 0.729±0.021
12 1 0.973±0.006 0.946±0.019 0.919±0.021 0.919±0.021
13 1 0.916±0.006 0.863±0.019 0.832±0.021 0.855±0.021
14 1 0.938±0.006 0.870±0.019 0.880±0.021 0.880±0.021
15 1 0.934±0.006 0.851±0.019 0.818±0.021 0.818±0.021
16 1 0.927±0.006 0.824±0.019 0.832±0.021 0.815±0.021
17 1 0.948±0.006 0.814±0.019 0.835±0.021 0.832±0.021
18 1 0.954±0.006 0.806±0.019 0.749±0.021 0.749±0.021
19 1 0.898±0.006 0.878±0.019 0.857±0.021 0.755±0.021
20 1 0.928±0.006 0.717±0.019 0.651±0.021 0.651±0.021
21 1 1±0.006 1±0.019 1±0.021 1±0.021
22 1 0.969±0.006 0.781±0.019 0.766±0.021 0.766±0.021
23 1 1±0.006 1±0.019 1±0.021 1±0.021
24 1 0.971±0.006 0.647±0.019 0.647±0.021 0.647±0.021
25 1 0.953±0.006 0.901±0.019 0.896±0.021 0.896±0.021

 117

Enron

Informal

Emails

Baseline

0
Baseline 1 Baseline 2 Baseline 3 Baseline 4

1 1 0.921±0.005 0.869±0.013 0.867±0.013 0.851±0.013
2 1 0.935±0.005 0.855±0.013 0.889±0.013 0.880±0.013
3 1 1±0.005 0.688±0.013 0.688±0.013 0.688±0.013
4 1 0.973±0.005 0.870 ±0.013 0.860±0.013 0.860±0.013
5 1 0.949±0.005 0.836±0.013 0.836±0.013 0.836±0.013
6 1 0.954±0.005 0.840±0.013 0.809±0.013 0.779±0.013
7 1 0.930±0.005 0.842±0.013 0.930±0.013 0.930±0.013
8 1 0.949±0.005 0.863±0.013 0.846±0.013 0.846±0.013
9 1 0.976±0.005 0.812±0.013 0.773±0.013 0.773±0.013
10 1 0.946±0.005 0.919±0.013 0.892±0.013 0.892±0.013
11 1 0.909±0.005 0.818±0.013 0.805±0.013 0.805±0.013
12 1 0.984±0.005 0.929±0.013 0.738±0.013 0.738±0.013
13 1 0.990±0.005 0.790±0.013 0.840±0.013 0.840±0.013
14 1 0.975±0.005 0.951±0.013 0.877±0.013 0.877±0.013
15 1 0.920±0.005 0.898±0.013 0.920±0.013 0.920±0.013
16 1 0.985±0.005 0.938±0.013 0.800±0.013 0.800±0.013
17 1 0.948±0.005 0.935±0.013 0.922±0.013 0.922±0.013
18 1 0.937±0.005 0.857±0.013 0.837±0.013 0.841±0.013
19 1 0.986±0.005 0.859±0.013 0.803±0.013 0.803±0.013
20 1 0.945±0.005 0.868±0.013 0.845±0.013 0.845±0.013
21 1 0.929±0.005 0.865±0.013 0.810±0.013 0.817±0.013
22 1 0.958±0.005 0.806±0.013 0.819±0.013 0.819±0.013
23 1 0.950±0.005 1±0.013 1±0.013 1±0.013
24 1 0.946±0.005 0.806±0.013 0.793±0.013 0.793±0.013
25 1 0.958±0.005 0.875±0.013 0.875±0.013 0.813±0.013

 118

Appendix F – Attachments

The attached USB contains:

• Source code of software

o Baseline3.py

o Clean_bnc.py

• Sample corpora text files for training model

o Formal_Emails_Filtered_All.txt

o Informal_Emails_Filtered_All.txt

o Past_PDFs.txt

o User_based_corpus.txt

• Note: Due to distribution policies, the BNC needs to be accessed externally

