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ABSTRACT 

Wearable inertial sensors are cheap and portable devices that have recently changed the measurement 

of the postural sway and balance; Several studies have investigated the inter-sensor and test-retest 

reliability or the validity of the balance in healthy individuals or those at risk. Current studies have 

shown inertial sensors to be reliable in static standing eyes open and able to distinguish the old from 

the young or fallers from non-fallers in terms of their amplitude of Medio-lateral sway, gait velocity 

turn speed, of Measuring during walking, stepping, or sit-to-stand have been used either in natural or 

other environments remains questionable. The accuracy of the discrimination between the age or fall 

risk remains undetermined, especially focusing on the ability of the sensors to be able to differentiate 

between the postural sway components in natural settings compared to the clinical state with the goal 

towards prevention of falls or near falls. In this type of data collection with sensors, the practical 

application by previous researchers has shown some of the limitations in the measurement of postural 

sway during movement, the reliability, and validity, thus making this unclear. Most of the studies also 

identified how postural stability is usually maintained in regards to the situation where the center of 

mass ('COM') is located over the base of support ('BOS') while dynamic (moving) or alternatively 

while static (in a stable position). The methodology entails collecting accelerometer data using the 

Inertial Measurement Unit appropriately placed on the pelvis. Necessary computation of the 

accelerometer output and displacement done. Required assumptions were highlighted, and data pre-

processing was then described regarding the main results and limitations. The amplitude differences 

(cm) were recorded for each of the subjects in the first and second trials. Both positive and negative 

were observed in the trials. The positive corresponds to the increasing amplitude that occurs during 

increasing walking speed. Likewise, the negative values show decreased amplitude related to 

decreasing walking speed. That average sway was noted to provide a similar trend in both increasing 

and decreasing forms. The difference in regards to the sign was noted to be constant. However, an 

exception was recorded in the last subject. There was an explanation in null of the difference in the 

amplitude. The apparent limitation concerning the study was in terms of having non-idealist for the 

accelerometers, changes in the hypothesis supporting the horizontality of the y-axis during walking, 

and the presence of the soft-tissue artifact introduced by sliding movement to cause time-varying 

orientation leading to errors during the double integration are all important limitations noted to 

influence the outcome of the study. 
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1. INTRODUCTION 

1.1 Background 

Human balance in the standing position has been assessed quantitatively via posturographic 

examination. This type of examination is a systematic measurement & interpretation of quantities 

which have been considered to be characteristics exhibited by postural sway when humans are in an 

upright position (Caruso et al. 2021). This evaluation has been done both in natural and clinical 

settings to assess the fall risks, especially in geriatric subjects, to evaluate those balance-related 

disabilities objectively. Furthermore, the Posturography study is not only helpful in geriatric 

individuals but for those in sports to assess the subtle differences concerning the balance 

performances of athletes (Hubble et al. 2015). Over the years, Posturography has evolved with the 

contribution of increasing interest in the study of balance, making it easier for the researcher to 

understand various dimensions related to balance. Methods that are now being used to study the 

variables have also evolved (Mobbs et al. 2022). For instance, what was traditionally used to evaluate 

the body's postural sway was the 'force-plate' focusing on the trajectory of the center of Pressure. 

However, this has changed because of the weight during transportation and the cost of conducting the 

study, which is impractical in clinical settings and sports centers. The inexpensive and lightweight 

features of the miniaturized Inertial Measurement Units or Magneto Inertial Measurements Units 

(MIMUs) make their device of choice that is now recommended or used in posturography (Murray 

& Shankar 2017). Those devices can easily be worn by the subjects on any part of the body depending 

on which type of study is being used, i.e., with the use of elastic belts or bands. More than one could 

be on the body; however, the number of sensors to be worn or the part of the body they are placed in 

depends on the application considered. What each sensor contains or elements also depends on their 

purpose or functions (Pang et al. 2019). For instance, wearable inertial sensors are equipped with 

accelerometers, gyroscopes, and magnetometers. Some are designed for 3D measurement, which 

includes motion and gravity.  

Euler angles, such as "roll," "pitch," and "yaw," are often used to describe rotations around 

three orthogonal axes in the sensor-fixed three-dimensional frame of the turn. Local magnetic field 

amplitude and direction could be measured using a magnetometer, which uses a three-axes frame to 

represent components of the magnetic field (Rantalainen et al. 2020). This standard three-axes frame 

is used to measure the accelerometer, gyroscope and magnetometer sensors on the sensing IMU. 

Since the validity of IMU-based balance evaluations for the gold standard force platform is unknown, 

wearable sensors have not yet established a standard in posturography. 

As long as they are proved correct, wearable sensors for balancing measures would be 

excellent since they are low-cost and readily movable in multiple contexts. However, fall risk 
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assessment by wearable sensors is a contentious issue in the balance control literature. Some wearable 

devices have been used to sense the fall risk assessment in older individuals or provide insights into 

detecting the near fall, such as the slips, trips, stumbles, or temporary loss of balance. Some come in 

the form of trackers for the geriatric individuals for helping to track or monitor various physical 

changes or activities indicators, which will then be analysed for detecting the fall detection or 

prediction (Hubble et al. 2015). This is peculiar for use in patients with certain pathologies or 

disabilities that have been found to affect the human balance performance. Those disorders include 

Parkinson's disease (PD) or Multiple Sclerosis.  

In addition to the ongoing need for rehabilitation specialists to have accurate balance outcome 

measurements, there is an increasing interest in creating wearable devices especially for the market 

of "active ageing." For both healthy and ill persons. Balance training using wearable sensors and bio 

feedback is a promising research subject in this context. The benefits of wearable sensor-based 

balance and gait training on balance, gait and functional performance have been studied in a number 

of randomized controlled trials involving both healthy and sick populations. In addition, a study 

looked into smartphone apps that performed body balancing tests. This study builds on past work by 

evaluating many studies that use wearable sensors to detect postural balance and provides a complete 

overview of the most widely reported uses. 

Balance postural control is necessary for staying upright, moving efficiently, and responding 

to environmental obstacles. Balance enhances one's quality of life and well-being. On the other hand, 

balance problems might lead to a near-fall or a fall, resulting in bodily, psychological, or social effects 

and death in some situations. By "taking corrective measures to recover stability," a person avoids 

falling after losing their footing due to a trip or stumble (Su et al. 2020). Even though near falls are a 

strong predictor of falls, little study has been done on them, hence the path from near falls to actual 

falls remains unclear. The healthcare system does not pay attention to people in the community who 

have near-falls but do not sustain an injury. In spite of this, they are the group most in need of fall 

prevention measures. Until recently, falling was the strongest predictor of falling again.  

Recent research has revealed clinical tests that can distinguish near-fallers from fallers and 

non-fallers, including single-leg stance, lunge, and tandem walk five steps (Caruso et al. 2021; 

Murray & Shankar 2017; Pang et al. 2019; Rantalainen et al. 2020). While there is evidence that falls 

history is linked to changes in test performance, little is known about the role of postural sway in 

these outcomes. The body's movement over the base of support, known as postural sway, is a sign of 

balance.  Wearable inertial sensors have surpassed traditional ways of measuring the speed, direction, 

and amplitude of postural sway using force plates or motion capture in gait laboratories, with the new 
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interest in monitoring standing balance and gait.  In comparison to laboratory equipment, inertial 

sensors are less expensive, more portable, and allow postural sway measurements to be obtained in 

any situation appropriate for the population under study. Wearable inertial sensors are also compact, 

light, and unobtrusive and can be attached to the body with tape, belts, or straps (Ghislieri, et al. 

2019). Sensor data can be recorded on three axes, enabling extensive three-dimensional information 

on tiny changes in postural sway in both static and dynamic settings. Sway measurements taken using 

inertial sensors can distinguish between different age groups and healthy individuals, and adults with 

Parkinson's disease, multiple sclerosis, and other neurological diseases. Using a wearable inertial 

sensor to determine the risk of falling is more sensitive than clinical testing using the timed up and 

go method (Luinge & Veltink 2004). However, the accuracy and reliability of inertial sensors for 

measuring postural sway remain unknown, especially in otherwise healthy people who experience 

near-falls and falls. 

Fall risk assessments are majorly focused on patients with chronic or neurological diseases or 

the elderly with less regard or consideration for the young adults, which studies have now identified 

to be living with many disorders considered geriatric conditions (McAndrew et al. 2012). 

Advancements in technology have changed the mode of assessments whereby wearable devices have 

taken the order of the day, especially for detecting variables common in patients with a high risk of 

falling or near fall (Haagsma et al. 2020). Posturography has influenced the field with the evolution 

of detection mode using wearable devices in natural and laboratory-induced settings. There are 

different types of devices; however, understanding how to use them properly with the highest forms 

of accuracy remains a major challenge. In addition, there are current unclear findings from different 

studies conducted with different subjects or populations (Hussen & Jleta 2015). For example, those 

studies that have been undertaken on the high-risk population while they are at home or in a controlled 

setting have not yet proven to give a specified accurate approach to measure an excellent postural 

sway when the human state is in an upright, balanced position.  

Currently, the understanding of the measurement of the postural sway with the sensors is still 

related to the ability of those sensors to be able to detect those different movement and motion 

conditions found to be associated with the moving body parts and their measurement axes, which is 

known to be aligned with the direction of motion (Mobbs et al. 2022). Sensors with accelerometers 

with other sensors that can estimate the short linear displacement of the body parts remain the suitable 

devices for the fall risk assessment, which remain the main goal of the study; however, there is still 

common error found to be around 4.5% regardless of the health status of the individual (Neville et al. 

2015). This gives a questionable interpretation of the quantities that characterized the postural sway, 

usually targeted and measured during an upright stance. Getting this done during an incremental 
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shuttle walk test remain in an upright position remain a challenge that needs to be explored, especially 

in fall risk geriatric or young adult patient. Studying such scenarios with the wearable sensors during 

normal gait or movement with the incremental shuttle walk test has never been done. This remains a 

challenge or research gap that needs to be explored, especially when the device Is placed on the pelvis 

at the L3, L4, or L5. Before fall risk or near fall risk and how it needs to be prevented can be properly 

understood, it is important for the researchers or experts to understand the factors that influence 

human stability during working or when exposed to the various perturbations. 

1.2 Problem Statement 

Chronic or neurological diseases and old age tend to increase fall risk among individuals. Fall 

risk detection wearable sensors have thus been developed to assess the balance needs of these 

categories of patients. IMU is a common medical assessment tool used in such assessments. The 

devices are in different designs, which are wearable on any part of the subject's body parts. 

Nevertheless, recent years witnessed an increase in geriatric conditions among younger patients. The 

implication is an increase in the number of patients whose fall risks should be accurately predicted.  

Consequently, it is imperative to determine whether IMUs can accurately be used to differentiate 

between fallers and non-fallers. In this regard, the existing wearable sensors’ performance needs to 

be investigated, and the test protocols are developed to ensure that they are reliable when used among 

all categories of patients with balance challenges. The current study fills this gap.       

1.3 Objectives 

The study’s main objective was to; 

Investigate the accuracy of wearable inertial sensors for centre of mass stability, in predicting 

patient’s ability to balance postural control  

The specific objectives include;  

i. To investigate the performance of common wearable sensors and develop test protocols 

adaptable in assessing their performance.  

ii. To identify the variables, parameters and outcomes associated with wearable sensors and 

evaluate them for enhanced performance.    

iii. To test whether the protocol developed can be adapted in actual data collection from 

individuals with postural sway and balance challenges.  
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2. LITERATURE REVIEW 

Body sway measurements have proven to be a vital reference point for risk assessment of falls 

in humans. Inexpensive wearable inertial sensors have become a valuable tool for this assessment 

(Baker et al. 2021; Mobbs et al. 2022). The measure has been used to discriminate between different 

age groups and among adults that are healthy or living with Parkinson's disease or other disorders of 

a neurological nature (Baker et al. 2021). Understanding how good balance can lead to improved 

quality of life and how deficient balance can lead to falls or near falls is critical for health providers. 

The latter can often result in adverse physical, mental, or social outcomes, including death, especially 

among the elderly or those with neurological disorders (Haagsma et al. 2020).  

 The inertial sensor, accelerometers, or other inertial measurement units ('IMUs') are generally 

considered wearable sensors that are portable, flexible, and inexpensive alternatives to those camera-

based motion analysis systems (Hubble et al. 2015). Moreover, those sensors have proven valuable 

compared to those clinically-diagnosed analyses or measurements.  Those sensors have proven to be 

of better choice because they require little space for normal operation without significant post-

processing procedures to get the required outcome (Hubble et al. 2015).  

Earlier studies have collectively highlighted the need for the use of wearable sensors to 

evaluate those changes associated with the patient's balance and respective gait pattern or offer an 

important mode of screening individuals for different risk factors that could be linked with 

Parkinson's disease or fall (Hubble et al. 2015; Rantalainen et al. 2020; Su et al. 2020). However, 

some research focused only on healthy individuals or robots to understand the human motion, near 

fall or fall, and position estimation using sensors (Neville et al. 2015; Alvarez et al. 2018). In contrast, 

others target both populations to understand how near falls or falls occur in standard settings to 

provide needed information that will help plan intervention or preventive programs to prevent the rate 

of falls in everyday settings (Ghislieri et al. 2019). Nevertheless, there is still a need for more 

scientifically-rigorous future research before making more concrete recommendations for utilizing 

the specified devices as the needed predictive instruments for clinical populations (Hubble et al. 

2015).  

Despite the practical use of the sensors in measuring the postural sway during movement, the 

reliability and validity remain somewhat unclear (Neville et al. 2015; Baker et al. 2021).  Postural 

stability is noticed to be maintained in the situation where the center of mass ('COM') is located over 

the base of support ('BOS') while dynamic (moving) or alternatively while static (in a stable position) 

(Baker et al. 2021).  The margin of stability ('MOS') is the dynamic stability amount during gait, and 

this is assessed by utilizing the velocity and position of the COM over the BOS (Baker et al. 2021). 

While there has been the investigation of the MOS during the time of normal gait, so far, there has 
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been limited investigation during increased walking speeds, such as, namely, during the incremental 

shuttle walk test ('ISWT') (Szczegielniak et al. 2018).  The incremental shuttle walk test has been 

considered a symptom-limited but externally paced test conducted on a 10m course. There is a gradual 

or incremental increase in the individual's walking speed every minute (Evans & Goldstein, 2014). 

This gradual increase in the speed is done until fatigued sets in. Fatigue plays an essential role in 

influencing individual postural stability; hence utilizing wearable sensors to monitor those changes 

as the speed increases and fatigue develops thus provides researchers with a better understanding of 

the possible association with increased risk of falls, especially among the elderly (Evans & Goldstein 

2014; Baker, et al. 2021). However, those features studied by the wearable sensors during normal gait 

or movements have not been studied during the incremental shuttle walk test (Evans & Goldstein, 

2014). This is a research gap that requires exploration.  What this is in mind, the current review 

chapter explores the literature on changes to postural stability by assessing the impact of fatigue on 

the COM and MOS. At the same time, subjects use wearable inertial sensors on L4.  

Understanding maintenance of human stability while working and being exposed to 

perturbations remain critical in preventing falls.  Studies that have tried to explore such aspects of 

postural stability mainly focused on investigating the role of MOS or the COM.  A systematic review 

by Baker et al. (2021) has shown the usefulness of inertial sensors in various movements such as 

walking and stepping or while sitting to stand to help discriminate fallers from non-fallers. However, 

as highlighted above, the accuracy of the discrimination remains unclear, according to Baker et al. 

(2021).  In one of the reviewed studies, Doheny et al. (2012) were shown to focus on using a single 

body-worn accelerometer as the wearable device considered to be low cost and portable for balance 

assessment which is also critical while assessing the fall risks, while others such as Alvarez et al. 

(2018) used accelerometers to explore different aspects of postural stability by monitoring the moving 

body parts with the measurement axes and its alignment with the direction of motion—achieving an 

excellent postural sway, which is considered to be the movement of the COM when a human's main 

upright balance remains an important factor in human stability across the different clinical 

populations, especially those with neurological issues such as Parkinson's disease, aged adults with a 

higher risk of fall and those with head injuries (Neville et al. 2015).   

Posturography remains the systematic measurement and interpretation of quantities that 

characterize postural sway in an upright stance (Ghislieri et al. 2019). Since the incremental shuttle 

walk test is to be done in an upright position, measuring or estimating the fall risk of geriatric patients 

or reviewing the evaluation of the balance-related conditions, including Parkinson's and stroke, using 

the wearable sensors for reading the subtle differences related to the balance or stability. Inertial 

sensors can now be used for recording the individual postural sway by measuring the trajectory of the 

center of pressure ('COP') (Ghislieri et al. 2019). We understand that postural instability or gait 
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disability remains a major threat to the independence and well-being of the elderly or those with 

Parkinson's disease because of the association with an increased risk of falls or fall-related injuries 

(Hubble et al. 2015). However, the lack of sensitivity for accurate and consistent clinical assessments 

of those situations has reinforced the interest in using different wearable sensors as portable and 

inexpensive alternatives for researchers and clinicians.  

In terms of the reliability of the balance, Baker et al. (2021) noticed a moderate to good 

reliability in cases of dynamic balance. At the same time, validity for the static and dynamic balance 

was also reviewed, and it was noticed that this was moderate for both types of balance.  The synthesis 

of the studies revealed that the wearable sensor checked out for the amplitude of mediolateral sway, 

the gait velocity, step length, or the turning speed (Baker et al. 2021).  Apart from this, the wearable 

inertial sensor's measurement of the postural sway in healthy patients provides the needed real-time 

data in the natural environment.  Studies synthesised by the authors show differences in the 

component of the postural sway compared to those recorded from the altered performance in clinical 

tests.  Such help creates a notable target for preventive interventions for cases of falls or the near falls.  

From the studies reviewed by Baker et al. (2021), it was noted that most of the studies used different 

sensors, while some used accelerometers for the measurements.  Those sensors were noted to vary in 

terms of the type, number, positions, fixation, or calibration methods (Baker et al. 2021).  The inertial 

sensors used in those studies have inbuilt gyroscopes, which help measure the rotational velocity data.  

The part of the body where those used sensors are placed depends on the purpose. Still, for this study, 

most of the positions and fixation were those that are placed on the lumbar spine since that is the 

region that is closest to the centre of gravity of the body, which is critical in measure of the body 

balance, and this was noted to produce greater accuracy compared to the thoracic sensors. To further 

reinforce the understanding of the role of the MOS during human walking, changes during stable and 

unstable conditions need to be explored.  

McAndrew et al. (2012) focused on quantifying the pseudorandom anterior-posterior and 

mediolateral oscillations impact the dynamic walking stability. This was computed for the margins 

of stability for each of the trials. It was noted that those subjects might have been engaged in 

controlling their foot placement and stability during those perturbation conditions (McAndrew et al. 

2012). Using the foot placement to control the magnitude of the margin of stability during walking 

was based on the definition of stability (McAndrew et al. 2012). However, maintaining the minimum 

MOS in a more mediolateral way could significantly influence controlling the stability during walking 

simply because it was noted that there is always an increase in MOS variability in perturbations 

situations (McAndrew et al. 2012). This means that using the wearable sensors during perturbations 

for recording the MOS variability has a role in uncovering instability issues, especially in adults. 

Based on the goal of the study, one of the kinds of literature reviewed further proven the importance 
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of wearable inertial sensors in the measurement of the COM of postural sway by examining its 

validity and sensitivity with respect to other methods utilising the health group population (Neville et 

al. 2015).  

The moving body part has its measurement axes aligned with the direction of motion (Alvarez 

et al. 2018). Therefore, sensors can detect those different movement and motion conditions. Based on 

the experiments conducted by Alvarez et al. (2018) utilising the accelerometers, which are also 

important wearable sensors, it was found that it's possible to use that type of sensor to estimate the 

short linear displacements of the body parts being measured. With this type of approach or 

measurements, a typical error of around 4.5% was observed, especially during general conditions. As 

a study reviewed considered both the dynamic and static stability during walking (McAndrew et al. 

2012), especially during the motion kinematic condition, which has been considered a key factor in 

the estimation of the performance since the dynamic response of the accelerometer can thus influence 

the final outcome. Accelerometers and sensors with gyroscopes inbuilt are now being used in real-

time measurement of the body motion Spatio-temporal parameters, especially with the key 

consideration to the low consumption and cost or the associated easy connectivity (Alvarez et al. 

2018). 

Hubble et al. (2015) evaluated different articles that measured the standing balance and the 

walking stability using different types of wearable sensors among those already diagnosed with 

Parkinson's disease. One significant apparent finding from the review was that there is still a need for 

more high-quality studies to be conducted to comprehend the benefit of the wearable sensors for 

identifying the PD-related symptoms and fall risk assessment in a different population (Hubble 2015). 

Despite the associated merits of those wearable sensors used in the reviewed studies, it was noted 

among 81% of the studies that there were apparent differences in the measurement, especially in 

regards to the assessments of standing balance or walking stability among those different groups of 

PD persons or among the healthy control groups. Understandably, falls among the elderly have 

created severe health concerns, resulting in hip fractures, fatalities, or traumatic brain injuries (Pang 

et al. 2019). On the other hand, activities of daily life ('ADL') of those groups of people monitored 

have provided the information needed to categorise them to be of high risk of falling. This monitoring 

has been done with the continuous and obstructive use of wearable sensors (Pang et al. 2019). The 

findings also emphasised how that information has helped identify those issues that could serve as 

the target for the fall prevention programs or interventions. Apart from this, Pang et al. (2019) was 

able to systematically review various other studies, which further revealed that wearable devices were 

able to be used to detect artificially induced new falls with very high accuracy, sensitivity, and 

specificity in the range of 85.7%-100% within the controlled settings, however, in the case of the 

daily life and laboratory testing, such findings could be different (Pang et al. 2019). From the 
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reviewed studies, wearable sensors or devices were used to measure data needed to distinguish near 

falls from ADLs, especially in young adults (Pang et al. 2019).  

Some of those studies used an approach similar to the incremental walking method since the 

patient or individual is made to either walk gradually, stand, rise from sitting, or descend from the 

standing position, which could create a fall situation (Pang et al. 2019). Some studies conducted 

studies that use sensors to distinguish near falls from the actual falls or near falls from those 

considered to be of high-risk populations, especially those with the Parkinson's disease who are 

already diagnosed for a certain period (the idea was to use 6 different hazard conditions) where about 

29 missteps were provoked to train the decision tree (Pang et al. 2019).  

 Risk assessments are majorly focused on those with chronic or neurological diseases or the 

elderly, but in some situations, young adults have been put for assessment where the systematic 

review by Pang et al. (2019) has shown that wearable devices can also be used for the detection of 

the laboratory-induced near falls in them in a controlled setting and with high accuracy. However, 

there are unclear findings regarding the accuracy of wearable sensors in detecting the near falls among 

the older adults or those considered to be among the high-risk population while they are at home or 

in other major community settings (Pang et al. 2019).  
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3. METHODOLOGY 

This section describes the processing followed in computing the sway starting from the 

accelerometer data collected by one Inertial Measurement Unit placed on the pelvis. This section is 

organized as follows: first of all, a description of the accelerometer output and how the displacement 

is computed starting from these measurements is given; after that, the main assumptions are 

discussed; then, the data-pre-processing is described, and the main results are listed and analysed; 

finally, the limitations are discussed. 

3.1 Understanding the Sensor  

3.1.1 Test protocol:  

The sensor (METAMTIONR r0.4) was already selected by colleagues in the College of 

Nursing and Health Sciences and data was also provided. The goal to understand data 

and analysis it so to reach this point we should knowing how sensor work by doing 

specific test using record video for test protocol and then comparing data output for each 

test to sea differences.   

 

3.1.1.1 Normal walk: 

 

  

 

 

 

 

 

 

 

 

 

 

Figure 1. Normal walk test 
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Figure 2: Normal walk data 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 is a graphical representation of a normal walk test as recorded by the sensor. It focuses on 

acceleration, which is presented in meters per second. It also records average displacement data, and 

the displacement data. In terms of acceleration, the Y axis goes right and left, which is consistent with 

a normal walk. An increase the meters covered per second translate into increased right and left 

movements sway recorded by the IMU. For instance, while 10m/s, the right and left movements are 

not as intense as when the pace increases to 30m/s. Further intensity is recorded at 70 m/s. A 

consistent increase in acceleration translates in increased average displacement data. Similarly, there 

is an increase in the displacement data. For instance, a comparison between the accelerometer and 

displacement data reveal that the right and left movements in the former are equally reflected in the 

latter. In this regard, there is stability in movement.   
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Figure 3: Slight sideway test 

Figure 4: Slight sideway data 

3.1.1.2 Slight sideway: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4 summarizes data recorded by the IMU with regard to the sideway movements of its wearer. 

It focuses on the wearer’s slight sideways movement, the average displacement data obtained from 

the movement, and the displacement data. In terms of slight sideway acceleration, it is evident that 

the first movement is intense. As a result, the Y axis right and left movements are wider compared to 
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Figure 5: Hop (L) test 

Figure 6: Hop (L) data 

subsequent movements. In this regard the m/s covered at 10s, which is the onset of the sideways 

movement, extends more right and left from the Y axis compared to when the IMU wearer is moving 

at 20m/s, 30m/s, and 40m/s. Movements in these subsequent accelerations consistently decreases. 

The average displacement data in Figure 4 demonstrates the downward trajectory of the right and left 

movements as acceleration increases. A similar trend is evident in the displacement data provided, 

which equally indicate a downward trend in the movements from the Y axis.  

3.1.1.3 Hop (L):  
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Figure 7: Hop (R) test 

Figure 8: Hop (R) data 

Figure 6 summarises the activity in Figure 6, which entails a left hop test. It focuses on the IMU’s 

wearer’s hop (L) acceleration, the average displacement data, and displacement data. Unlike in 

normal walk test and slight sideway test, acceleration (m/s) predictably results in an increase in right 

and left movements from the Y axis. An increased hop (L) acceleration however decreases right and 

left movements on the Y axis. The subsequent increases in acceleration result in additional intervals 

of increase and decrease in the right and left movements on the Y axis. The displacement data equally 

summarizes these movements as maximum and minimum.     

3.1.1.4 Hop (R): 
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Figure 9: Jog test 

Figure 8 summarizes data for right hop data as recorded by the IMU. The activity is depicted in Figure 

7.  It focuses on the wearer’s hop (R) acceleration, the average displacement data, and the 

displacement data. All the measurements are computed from the Y axis. There is a slight difference 

in displacement occasioned by the right hop compared to the left hope. For instance, a comparison of 

the average displacement data in Figure 6 and 8 show that while an increase in acceleration 

consistently increased and decreased displacements left and right from the Y axis in Figure 6, it 

consistently decreased when the IMU wearer hopped on the right leg. As a result, Figure 8 confirms 

that an increase in acceleration when hopping on the right leg decreases displacement from the Y 

axis. However, both right and left hops differ from normal walking, which informed an increase in 

average displacement whenever there was increased acceleration.     

3.1.1.5 Jog:  
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Figure 10: Jog data 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10 summarises the jog data recorded by the IMU. The activity is depicted in Figure 9. It focuses 

on the jog acceleration in m/s, the average displacement data, and the displacement data during the 

activity. At the onset of the jog, there is a sharp increase in the right and left movements in the first 5 

to 10 seconds. Increased acceleration then informs a drop in the average displacement before the rise 

in displacement at 30 seconds. It however stabilizes in the subsequent minutes of jogging. The trend 

differs from all the other preceding tests conducted.  
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Figure 11: Comparing between normal Walk and Jog data 

Figure 12: Comparing between Exaggerated side and Slight sideway data 

3.1.1.6 Comparing data:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11 compares between normal walk and jog data. From the data trends it is evident that the Y 

axis go right and left. The normal walk graph indicates that it displacement increases consistently 

with the increase in acceleration. In jogging however, there is high displacement at the onset of the 

activity. However, with increased acceleration, there is a sharp decrease in displacement followed by 

another sharp increase in displacement. The increase is succeeded with stability in the displacement.   
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Figure 13: Comparing between Hop (L) and Hop (R) data 

Figure 14: IMU direction position. 

Figure 12 represents the exaggerated side and slight sideway data obtained from the IMU. The 

average displacement data sharply rises in the exaggerated side to stabilize with the increase in 

acceleration.  However, in the slight sideway data, average displacement first rises by consistently 

drops with the increase in acceleration. It is based on this observation that Y axis is the focus of this 

thesis.     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13 is comparing between Hop (L) and Hop (R) data and shown that X axis is up and down. 

There is a slight difference in displacement occasioned by the right hop compared to the left hope. 

For instance, a comparison of the average displacement data in left hop and right hop shows that 

while an increase in acceleration consistently increased and decreased displacements right and left on 

the left hop, it consistently decreased when the IMU wearer hopped on the right leg.      
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3.2 Description of the accelerometer output and displacement computation 

"Specific force" (𝒂) is the difference between the body's acceleration (𝒂𝑏𝑜𝑑𝑦) and a gravity 

acceleration (𝒈). The sensor's local coordinate system (LCS) resolves all quantities, and the results 

are summarised in (1): 

 𝒂 = (𝒂𝑏𝑜𝑑𝑦 − 𝒈) (1) 

From (1), it is possible to understand that when the MIMU is moving, the contribution of the 𝒂𝑏𝑜𝑑𝑦 

term is superimposed with 𝒈 and the two terms cannot be distinguished unless an additional source 

of information is used. Typically, the orientation of the unit ( 𝑅𝐿𝐶𝑆
𝐺𝐶𝑆 ) is estimated using a sensor 

fusion algorithm concerning a global coordinate system (GCS), Gravity is aligned vertically and one 

horizontal axis (often x-axis) points in a direction specified by Earth's magnetic north projected onto 

horizontal plane. (Caruso et al., 2021), as represented in Figure 15.  

 

 

 

 

 

 

 

 

A sensor fusion architecture is used to calculate 𝑅𝐿𝐶𝑆
𝐺𝐶𝑆  using the complimentary properties 

of the accelerometer, gyroscope, and magnetometer data (Sabatini, 2011). Once 𝑅𝐿𝐶𝑆
𝐺𝐶𝑆  is computed, 

the gravity vector is removed from the accelerometer readings as follows: 

 𝒂𝑏𝑜𝑑𝑦 = 𝒂 +  𝑅′𝐿𝐶𝑆
𝐺𝐶𝑆  𝒈𝐺𝐶𝑆  (2) 

After that, the three-dimensional displacement 𝒅 is computed by double integrating the 𝒂𝑏𝑜𝑑𝑦 

term.  

Figure 15: orientation of the sensor LCS with respect to the GCS. 
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 𝒅 = ∫ ∫ 𝒂𝑏𝑜𝑑𝑦

𝑡2

𝑡1

 𝑑𝑡
𝑡2

𝑡1

 (3) 

Where 𝑡1 and 𝑡2 corresponded to the first and last sample, respectively. It is clear that the 

initial conditions on the velocity should be provided for the first-time integration to obtain meaningful 

𝒅 values. Typically, 𝑡1 and 𝑡2 are selected to match the instants corresponding to null velocity (i.e., 

the body is still in both 𝑡1 and 𝑡2). By doing so, the initial velocity conditions can be set equal to zero. 

3.3 Assumptions 

 It can be assumed that the accelerometer is perfectly fixed on the pelvis surface so that its 

vertical axis is coincident with the gravity vector direction when the subject is standing still. In this 

case, the two horizontal axes would sense a null gravity contribution, thus no longer requiring the 

estimation of 𝑅𝐿𝐶𝑆
𝐺𝐶𝑆 . In particular, the accelerometer axis aligned along the mediolateral direction 

of the body is the one of interest to compute the sway. Obviously, this assumption is weak due to the 

impossibility of a perfect position of the sensor due to the body's rounded surfaces, as depicted in 

Figure 16 (Benedetti et al., 2017; Cereatti et al., 2015).  

 

 

To overcome this limitation, a virtual realignment was performed as the sensor was 

positioned perfectly vertical to have the x-axis vertical and the y-axis horizontal during the standing 

position (Caruso et al., 2020; Zedda et al., 2020). The latter was identified as follows and 

graphically represented in Figure 17.  

 

The accelerometer norm was computed for each timestamp:  

Figure 16: The positioning of the accelerometer on the lower back. The sensor's actual LCS is 

highlighted in black, while the target LCS is represented with dashed green lines. 
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𝑎𝑛𝑜𝑟𝑚 =  √𝑎𝑥
2 + 𝑎𝑦

2 + 𝑎𝑧
2 

• The mean value of 𝑎𝑛𝑜𝑟𝑚 was subtracted. 

• The standard deviation was computed using a moving window of 25 samples (250 ms) 

for the first 15 seconds of each recording. 

• The indexes of the samples correspond to a value of 𝑎𝑛𝑜𝑟𝑚 lower than 0.01 m/s2 were 

identified. 

• The continuous longest sequence of samples identified at the previous point was selected 

to represent the standing part. 

 

 

 

 

 

 

 

 

 

 

 

 

 

In the standing part, the following procedure was performed to compute the realignment 

matrix 𝑅𝑚𝑒𝑎𝑠
𝑣𝑒𝑟𝑡  which is defined by an angular rotation ∆𝜃 around a rotation axis 𝑘. The matrix was 

computed by comparing the measured accelerometer signals 𝒂𝒎𝒆𝒂𝒔 = [𝑎𝑥, 𝑎𝑦, 𝑎𝑧]
𝑚

𝑠2
 with those which 

were measured if the accelerometer was perfectly vertical 𝒂𝒊𝒅 =  [9.81,  0,  0]
𝑚

𝑠2
 following an 

approach similar to that described in (Vitali et al., 2017): 

• ∆𝜃 = acos (
𝒂𝒊𝒅

|𝒂𝒊𝒅|
∙

𝒂𝒎𝒆𝒂𝒔

|𝒂𝒎𝒆𝒂𝒔|
)Where the ∙ operator means the scalar product. 

Figure 17: the standing part is identified by the orange horizontal line. 
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• 𝑘 =  (
𝒂𝒊𝒅

|𝒂𝒊𝒅|
∧

𝒂𝒎𝒆𝒂𝒔

|𝒂𝒎𝒆𝒂𝒔|
)Where the ∧ operator means the vector product. 

• 𝑅𝑚𝑒𝑎𝑠
𝑣𝑒𝑟𝑡  was finally obtained using the Euler-Rodrigues's formula (Murray et al., 2017): 

 𝑅𝑚𝑒𝑎𝑠
𝑣𝑒𝑟𝑡 = 𝑰 + sin(∆𝜃) 𝑲 + (1 − cos(∆𝜃))𝑲2 (4) 

where 𝑲 is the skew-symmetric form of the axis 𝑘: 

 𝑲 =  [

0 −𝑘𝑧 𝑘𝑦

𝑘𝑧 0 −𝑘𝑥

−𝑘𝑦 𝑘𝑥 0
] (5) 

The last step of the realignment procedure consisted of the rotation of the measured signal onto the 

new vertical coordinate system: 

 𝒂𝒗𝒆𝒓𝒕 = 𝑅𝑚𝑒𝑎𝑠
𝑣𝑒𝑟𝑡  ∗ 𝒂𝒎𝒆𝒂𝒔 (6) 

From this point on, only the y-axis (i.e., medio-lateral direction) of the new rotated 𝑎𝑣𝑒𝑟𝑡 was 

considered. 

3.4 Overview of the data processing pipeline 

The data processing pipeline is reported in Figure 18. All these steps were implemented using 

MATLAB R2021a (The MathWorks Inc., Natick, MA, USA). 

 

 

Figure 18: pipeline for the data processing. These steps were repeated for each participant and for 

each trial.  
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3.5 Data pre-processing and sway computation 

After having imported the accelerometer data in MATLAB, the realignment processing 

described above is implemented to obtain 𝒂𝒗𝒆𝒓𝒕. The y-axis time-series were high-pass filtered using 

a 6th order Butterworth filter to limit the slow-changing variation of the accelerometer offset (Hussen 

& Jleta, 2015). At the end of this stage the 𝒂𝒗𝒆𝒓𝒕𝒇
 was obtained. The cut-off frequency was set at 100 

mHz. The mask of the filter in terms of both magnitude and phase is reported in Figure 19.  

 

Figure 19: Mask of the high-pass filter 

 

However, due to the non-idealist of both the filter and the calibration model, the filtered data 

had a (little) residual in the mean, which was then removed. This was done to avoid a drift growing 

unbounded overtime when double-integrating the acceleration. The mean value (indicated with 

𝒃𝒗𝒆𝒓𝒕𝒇
) when integrated results in a line whose value is proportional to the elapsed time: 

 ∫ ∫ (𝒂𝒗𝒆𝒓𝒕𝒇
+ 𝒃𝒗𝒆𝒓𝒕𝒇

)
𝑡2

𝑡1

𝑑𝑡 =
𝑡2

𝑡1

 (7) 
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∫ (𝒗𝒗𝒆𝒓𝒕𝒇
+ 𝒃𝒗𝒆𝒓𝒕𝒇

 (𝑡2 − 𝑡1))
𝑡2

𝑡1

𝑑𝑡 = 

𝒅𝒗𝒆𝒓𝒕𝒇
+

1

2
𝒃𝒗𝒆𝒓𝒕𝒇

 (𝑡2 − 𝑡1)2 

 

The first term represents the sway (which has zero mean), while the second 
1

2
𝒃𝒗𝒆𝒓𝒕𝒇

 (𝑡2 − 𝑡1)2 

represents the errors due to the mean value caused by the non-idealist of the filter and the calibration 

model. For example, the gravity value was assumed to be equal to 9.81 
𝑚

𝑠2 but actual measurements 

may differ from this value depending on the accuracy of the implemented calibration model (Parvis 

& Ferraris, 1995; Stančin & Tomažič, 2014). To sum up, the subtraction of the mean value was a 

simple strategy to mitigate the non-idealist of the pre-processed data. This operation was possible 

since the velocity at the beginning and the end was null (i.e., velocity mean value equal to zero). By 

having removed the mean value only, it is possible to assume that the sway is represented by 𝒅𝒗𝒆𝒓𝒕𝒇
. 

3.6 Sway analysis 

For each patient and each of the two trials, the analysis of the 𝒅𝒗𝒆𝒓𝒕𝒇
 characteristics were performed 

separately for 12 portions of the signal since the experimental protocol involved 12 repetitions at an 

increasing walking speed. For each signal portion, the positive and negative peaks of 𝒅 were 

identified as metrics of oscillation of the lower back at each gait cycle (Kamen et al., 1998; Mancini 

et al., 2012). The displacement and average displacement data assisted in computing the differences 

between the two trials.   

Thus, the amplitude of the sway was computed as follows: 

 𝐴𝑠𝑤𝑎𝑦 = max (𝒅𝒗𝒆𝒓𝒕𝒇
) − min (𝒅𝒗𝒆𝒓𝒕𝒇

) (8) 

The maxima and minima are reported in Fuger 20 and Figure 21.  
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Figure 20: Trial 1, the time-series of 𝒅𝒗𝒆𝒓𝒕𝒇
. Data are referred to subject #1, as an example. 

Figure 20 summarises the minimum and maximum displacement data. At the onset of the 

movement, there is a low displacement from the y-axis. However, an increase in acceleration 

consistently increases the displacements. For instance, the displacements recorded between 

150 and 350 seconds are much higher compared to those recorded between 0 and 150 

seconds.    

 

Figure 21: Trial 2, the time-series of 𝒅𝒗𝒆𝒓𝒕𝒇
. Data are referred to as subject #1 after effect 

by fatigue, as an example. 

Figure 21 summarizes the effect of fatigue on displacement from the y-axis—increased 

acceleration when under fatigue equally increases the displacement consistently. For instance, 

acceleration between 0 and 150 seconds is lower than an acceleration between 150 and 300. 

The displacements, however, decrease upon reaching 300 seconds. The difference with Figure 

20 is that the displacements are more sway to right and left.     
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The 𝐴𝑠𝑤𝑎𝑦 was then averaged for each portion to quantify the mean amplitude of the sway, 

thus obtaining 12 values, represented in Figure 22 and Figure 23.  

 

Figure 22: Trial 1, the 12 values representing the average 𝑨𝒔𝒘𝒂𝒚 for each of the 12 portions. 

Figure 22 summarises the average displacement data for each of the 12 portions before effect 

by fatigue. At the onset, there is inconsistency in the displacement with a decrease between 

the first two values. There is then an increase in displacement between portions two and three, 

followed by a reduction in displacement between 3 and 5. However, there is a consistent 

increase in displacement between portions 5 and 8 and that giving indcate the sway in here 

will be high. 

 

Figure 23: Trial 2, the 12 values representing the average 𝑨𝒔𝒘𝒂𝒚  after effect by fatigue for 

each of the 12 portions. 

 

Finally, the difference between the average 𝐴𝑠𝑤𝑎𝑦 for the last and the first portions was 

computed. A positive value means that the amplitude increased with the increase of the walking 

speed. On the contrary, a negative value means that the amplitude decreases with the decrease of the 

walking speed. This entire process was repeated for each of the two trials and for each subject. 
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4. RESULTS 

The differences between the average 𝐴𝑠𝑤𝑎𝑦 for the last and the first portions are reported in 

Table I.  

Amplitude difference First trial (cm) Second trial (cm) Age Gender 

Subj #1 12 5 73 F 

Subj #2 -7 -40 57 M 

Subj #3 -2 -3 68 F 

Subj #4 5 7 56 M 

Subj #5 12 32 69 F 

Subj #6 -2 -5 58 F 

Subj #7 -14 -13 44 F 

Subj #8 2 -2 65 M 

STD 9.0 20.2 

 

From table above, it is possible to observe that the results were variable depending on the 

subject and on the single-trial (STD equal to 9 cm and 20 cm, respectively). However, the trend was 

similar for all the participants in terms of increasing or decreasing the amplitude between the two 

trials, i.e., the sign of the difference remained constant. An exception was represented by the last 

subject, but this could be explained by the fact that the differences were almost null. Half of the 

subjects exhibited a sway amplitude increase. Overall, the difference in the amplitude was below 
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15cm, but for the second trials of subjects 2 and 5 which values amounted to -40 cm and 32 cm, 

respectively.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 24 : Trials 1 and 2 for Subject #5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 25 :Trials 1 and 2 for Subject #2 
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In this case, Subject 5 show above in Figure 24 first trail was stable and average sway is 12cm 

but in second trial was big sway about 32cm (20 cm different gap) from first trial (Result from table 

I) and that giving indicate this subject #5 was affected by fatigue more than other participants 

specially when her age 69 old. However, in subj2 same thing was happen different gap between first 

and second trials about 33cm and that not usually normal specially when his age 57 old. So, as Figure 

25 show for second trial displacement data there is big sway in begging and end of test and that could 

be prepare to start test and doing some stretch by the end. IMU can predict the risk of falling during 

walking and standing.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



   

30 

5. DISCUSSION 

For the process involved in the measurement or assessment of the sensors or the placement of 

the sensors or its positions, no fixed or consistent number is recommended or considered appropriate 

or needed. Regardless, from several reviewed studies, the preferred location or site was within the 

lumbar spine (L3-L5). It is understandable from the reviewed studies that a single inertial sensor in 

terms of reliability is the same as using the multiple inertial sensors once the position during 

measurement is done appropriately, as in placement on the center of mass (L3-L5) (Ghislieri et al. 

2019). At this point, while recording the data, analysis is bound to give moderate to good Validity 

during the test for reliability of the static and dynamic balance (Baker et al. 2021). In clinical settings, 

using a single sensor placed at the region of the center of mass makes it easier for the clinician to 

observe the required data, especially during the telehealth interactions concerning the needed 

instructions, observations, and interventions with the devices targeted at providing. Researchers have 

utilized single sensors to identify the major differences that exist between the fallers and non-fallers. 

This (the use of a single inertial wearable sensor) appears to be pertinent in this study because of the 

nature of the study, which relates sway analysis that is relevant to getting the important results. One 

of the issues that have made it essential is that multiple sensors have been shown to be common, 

which creates a state of an increased error because of the various positions each of the sensors reads 

its data from, making it compute different data. It is observable that the use of different placements 

for the wearable devices for both the static and dynamic balance activities and their respective body 

positions creates different challenges or issues with the pool of data collected (Baker et al. 2021). It 

is important to note that studies with different research questions demand different research analyses 

to solve the issue. Regardless of such difference in analysis, there is a need to have a standardized 

sensor positioning that will allow cross-comparison of results of studies to enable justification of 

recommendations. Increasing our understanding or knowledge of fall risk assessment makes it 

possible to have a consistent or gold standard requiring the placement of the equipment for measuring 

the various direction (ML and AP sway) during various moves, as in the static balance or step time, 

step length, and gait velocity for the dynamic balance. One issue that has created the different need 

for more studies remains the accuracy of the discrimination between healthy individuals and those 

diagnosed with certain health conditions. However, those sensors can still help discriminate between 

the young from those that are old or fallers from the non-fallers. Data used by studies differ some 

used accelerometer-related data, while some other devices included gyroscope and magnetometer 

data. This reduced the system's complexity, making it less difficult for clinicians noted to be less 

familiar with the technicalities of the new sensors or what is needed to integrate sensors into their 

clinical evaluation process.  
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Description of the wearable sensor placements during the methodology or experimental 

placement for each postural sway is fully done, attaching it to the subjects utilizing the elastic belts. 

For the sway computation, the accelerometer axis remains vital and made to be aligned along the ML 

direction of the body (Alvarez et al. 2018). However, because of weak assumptions created by the 

impossibilities that are associated with the existence of having a perfect positioning for the wearable 

sensor because the area it is usually placed in the body has a rounded surface, we tend to have the 

actual orientation and ideal orientation for the positioning of the accelerometer on the lower back. 

For the balance stance measurement, the subject is made to maintain their double leg stance for half 

a minute because of the effect studies have shown such to heavily had on the postural sway by helping 

to modify the base of the support. Feet positions in double leg stance come in various forms, such as 

feet opening angle, which ranges from 10-30 degrees, or self-selected feet position. As simple as the 

positioning appears, getting this in subjects is usually challenging, especially for those that suffer the 

problems with the balance-related disabilities. In most situations, patients prefer to keep their feet 

apart to ensure they are able to maintain balance, which gives them that ecological test condition that 

could be close to the real-life upright stance.  

In this context, the mediolateral sway velocity during the walking represents the main 

parameter that helps differentiates those considered to be recurrent fallers from non-recurrent fallers. 

This is independent of the testing condition. When recorded data present with higher index values 

compared to the normative values, such can thus be considered to be suggestive of postural control 

deficit, especially those common with geriatric individuals with health disorders. In the recorded data 

for the two trials, the analysis output has shown the two sides of positive and negative with respective 

walking speeds placed. It is important for health professionals interested in utilizing such variables 

as a pointer to conduct other assessments further when they are already shown the likelihood of 

postural control deficit. Areas to also look after include the fall history, fear or use of medication, 

presence of issues with lower limb strength, and problems with proprioception or vestibular 

deficiencies. Suppose they have been recommended previous strategies to prevent falls or reduce 

chances of having injuries. Nevertheless, several postural sway parameters or features measured or 

extracted from the centre of pressure data were related to high fall risk. Those features have a way of 

helping to discriminate between those that are fallers and non-fallers. IMUs can be used to detect and 

quantify human movement factors that influence stability during ISWT. 
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5.1 Limitations  

Despite the rigorous methodology developed to estimate the sway amplitude, some limitations 

must be underlined.  

First of all, the accelerometer non-idealist may strongly contribute to the magnitude of the 

errors (Luinge & Veltink 2004). In fact, it is clear from (1) that the 𝒂𝑏𝑜𝑑𝑦 contribution is zero when 

no accelerations are occuring, and the accelerometer function as an inclinometer simply by 

monitoring the gravitational tilt. In contrast, the accelerometer's 𝒂𝑏𝑜𝑑𝑦 term is equal to 𝒈 when it is 

in free fall, and the accelerometer's output is null. It is hard to accurately estimate the accelerometer 

inclination without other sources of information while the MIMU is moving because the 𝒂𝑏𝑜𝑑𝑦 term 

is overlaid with 𝒈.  In addition, the measured accelerometer output a is corrupted by errors who’s 

modelling commonly includes a matrix of scale factor error coefficients (𝑺𝑎), matrix of cross coupling 

error coefficients, also known as non-orthogonality (𝑴𝑎), a vector a of bias error (𝒃𝑎)  and the vector 

representing its fluctuations (𝜹𝒃𝑎), and white Gaussian noise as stated in equation (9) (Aydemir & 

Saranli, 2012; Unsal & Demirbas, 2012): 

 𝒂 = (𝑺𝑎 + 𝑴𝑎)(𝒂𝑏𝑜𝑑𝑦 − 𝒈) + 𝒃𝑎 + 𝜹𝒃𝑎 +  𝒘𝑎 (9) 

 

Specifically, 𝑺𝑎 is the diagonal 3x3 matrix of coefficients expressing, for each axis, the 

deviation from ideal sensor sensitivity. This error typically consists of a constant component and 

temperature-induced variance. 𝑴𝑎 represents the 3x3 matrix of the non-orthogonality errors between 

the three accelerometer sensing axes caused by the mechanical components' positioning. According 

to the trigonometric formula, the non-orthogonality causes an undesirable coupling of the axis' 

outputs. The axis output in the absence of g is represented by the 𝒃𝑎 3x1 vector, which is the 

accelerometer bias. The bias vector 𝒃𝑎 contains a fixed part and temperature-induced variation. A 

calibration refinement method can adjust 𝑺𝑎, 𝑴𝑎, and 𝒃𝑎 (Aslan & Saranli 2008). However, there are 

run-to-run variances, turn-on-to-turn-on variations, and a moderate shift over time in the bias error. 

The 𝜹𝒃𝑎 3x1 vector reflects the latter components of the errors, which is one of the biggest issues 

when determining the displacement since the accelerometer data is doubly integrated after gravity 

reduction. A 3x1 vector of white Gaussian noise with zero mean 𝒘𝑎 is the final result as part of the 

stochastic error components, the 𝜹𝒃𝑎and 𝒘𝑎 vectors are only able to be statistically described (Ash 

et al. 1998; Systems et al. 2014). 
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The second limitation is represented by the fact that, despite the mathematical realignment, 

the hypothesis of a complete horizontality of the 𝒂𝒗𝒆𝒓𝒕 the y-axis (aligned along the mediolateral 

direction) may no longer hold during walking, depending on the subject-specific oscillation amplitude 

(Bolink et al. 2016). In fact, during gait, the y-axis of the accelerometer varied its orientation, thus 

sensing the relevant gravity vector projection. By assuming a perfectly sinusoidal oscillation, a model 

of the error is presented below: 

 

∫ ∫ (𝒂𝒗𝒆𝒓𝒕𝒇
+ 𝐴𝑠𝑖𝑛(2𝜋𝑓0𝑡))

𝑡2

𝑡1

𝑑𝑡 =
𝑡2

𝑡1

 

∫ (𝒗𝒗𝒆𝒓𝒕𝒇
− 2𝜋𝑓0𝐴𝑐𝑜𝑠(2𝜋𝑓0𝑡))

𝑡2

𝑡1

𝑑𝑡 = 

𝒅𝒗𝒆𝒓𝒕𝒇
− (2𝜋𝑓0𝐴)2 (𝑠𝑖𝑛(2𝜋𝑓0𝑡2) −  𝑠𝑖𝑛(2𝜋𝑓0𝑡1)) 

(10) 

 

In (10) the 𝑓0 is the frequency of the oscillation, which is directly linked with the gait cycle 

frequency. As highlighted in the equation mentioned above, the amplitude of the errors is proportional 

to the square of the oscillation amplitude, and on 𝑓0. 

The last limitation is the sliding movement's soft tissue artifact, which causes a time-varying 

relative orientation between the IMU and pelvis axes (Berner et al. 2020). This issue may strongly 

contribute to increasing errors during the double integration process. 
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6. CONCLUSION 

To sum up the current findings, wearable inertial devices have proven to be of great 

importance in differentiating between fallers and non-fallers. Despite having several limitations or 

unclear features relating to the measurements, continuous study and measurement have shown a better 

understanding of what needs to be measured or targeted while using IMUs or different forms of 

wearable devices. This study has enlightened what positive or negative amplitude of postural sway 

represents during increasing walking in terms of accuracy and validity. IMUs can be used to detect 

and quantify human movement factors that influence stability during incremental shuttle walk test 

(ISWT). Health care professionals and sports professionals can benefit from the proper understanding 

of postural sway amplitude as the determinant of individual key balance determinants. This can be 

used as a guide while evaluating their patients or athletes or planning their efficient rehabilitation 

programs that will help reduce the fall risk or prevent falls.  

 

6.1 RECOMMENDATIONS 

There are a number of recommendations that can be made. Wearable inertial devices that 

could easily be worn and achieve the actual orientation without errors need to be developed to reduce 

limitations in such areas, especially those related to errors during walking. There is also a need to see 

how different participants can be recruited.  

 

6.2 FUTURE WORK 

Further research is needed in several areas to evaluate the convergent validity required to use 

a single sensor to collect data over the centre of mass compared to those studies that used six sensors 

in clinical settings. Also, further research to use that single sensor to discriminate the postural sway 

differences between healthy and unhealthy individuals or between subjects with major age groups 

differences, or between those that could be classified as fallers or non-fallers in either clinical or 

natural settings.  
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APPENDICES 

%% Set up the Import Options and import the data 

clearvars 

clc 

close all 

 

% 1) IMPROVE THE READING OF THE DATA AND IMPLEMENT THE AUTOMATIC READING OF 

% ALL THE FILES - OK 

 

pathData = 'Data'; 

patients = 1:8; 

 

sk = zeros(12,2,8); 

rmsmaxmin = zeros(12,2,8); 

 

for idx = patients 

 

    figure 

    for rep = 1:2 

        %% Read data 

        acc = readmatrix([pathData filesep 'iswt' num2str(idx) '(' num2str(rep) ').csv']); 

 

        if (idx == 5 && rep == 1) 

            acc = acc(200*100:end,:); 

        elseif(idx == 7 && rep == 1) 

            acc = acc(51*100:end,:); 

        end 

 

        t = acc(:,3); 

        t = t - t(1); 

        t = t - t(1); 

        accy = acc(:,5)*9.81; 

 

        N = size(t,1); 

 

        subplot(4,2,1+(rep-1)) 

        plot(t,accy,'.-','LineWidth',2) 

        grid on 

        grid minor 

        xlabel('Time (s)') 

        ylabel('(m/s^2)') 

        title('Accelerometer data') 

        legend('y-axis') 

 

        % Noise shift, high pass filtering, and double integration 

 

        %% Reorient the sensor along the vertical direction 

 

        % find an interval where the sensor is actually still 

 

        acc_m = vecnorm(acc(:,4:6)'); 

        tmp = abs(acc_m-mean(acc_m)); 

 

        if (idx == 4 && rep == 1) 

            mov_std_a = movstd(tmp(1:750),[25 0]); 

        else 

            mov_std_a = movstd(tmp(1:1500),[25 0]); 

        end 

 

        toCutStanding = mov_std_a < 0.01; 
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        longestSequenceCutStatic = find(bwareafilt(toCutStanding == 1, 1) == true); %find the longest consecutive 

sequence 

 

        if ~(length(longestSequenceCutStatic) < 120) 

            longestSequenceCutStatic = longestSequenceCutStatic(50:end-49); 

        end 

        hold on 

        plot(t(longestSequenceCutStatic),ones(size(longestSequenceCutStatic)),'.') 

        %         xlim([0 25]) 

 

 

        accAvgStatic = mean(acc(longestSequenceCutStatic,4:6)); 

        accMeas = accAvgStatic./norm(accAvgStatic); 

        accId = [1 0 0]; 

 

        angPv = acosd(dot(accMeas,accId)); 

        kPv = cross(accMeas,accId)./norm(cross(accMeas,accId)); 

        qtiltPelvis = [cosd(angPv/2) sind(angPv/2)*kPv]; 

        RtiltPelvis = quat2dcm(qtiltPelvis)'; 

 

        acc_vert = zeros(N,3); 

 

        for ii = 1:N 

            acc_vert(ii,:) = RtiltPelvis*acc(ii,4:6)'*9.81; 

        end 

 

        %% Filter the signals 

        acc_shift = acc_vert(:,2) - mean(acc_vert(:,2)); 

 

        dt = mean(diff(t)); 

        fs = 1/dt; % Sampling Rate 

        fc = 0.1/(fs/2);  % Cut off Frequency 

        order = 6; % 6th Order Filter 

        [b, a] = butter(order,fc,'high'); %Filter acc Signals 

 

        %         figure,freqz(b,a,1000,fs) % filter mask 

 

        accf_shift = filtfilt(b,a,acc_shift); 

        v = cumtrapz(t,accf_shift-mean(accf_shift)); %First Integration (Acceleration - Veloicty) 

 

        v_f = filtfilt(b,a,v); 

 

 

        d = cumtrapz(t, v_f); %Second Integration (Velocity - Displacement) 

 

 

        hp = subplot(3,2,3+(rep-1)); 

        plot(t,d); 

        hold on 

        grid on 

        grid minor 

        xlabel('Time (s)') 

        ylabel('(m)') 

        title('Displacement data') 

 

        %% Average sway data 

 

        % we want to divide our signal in 12 portions (one portion for each 

        % increment in velocity) 

 

        n = round(N/12); 
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        d_mag = abs(d); 

 

 

        sway_avg = arrayfun(@(i) mean(d_mag(i:i+n-1)),1:n:length(d_mag)-n+1)'; % the averaged vector 

 

        subplot(3,2,5+(rep-1)) 

        plot(sway_avg,'-^') 

        grid on 

        grid minor 

        xlabel('Portion') 

        ylabel('(m)') 

        title('Average displacement data') 

 

        %% Maxima-minima 

 

        %         [~,MaxIdx] = findpeaks(d-mean(d),'MinPeakHeight',0,'MinPeakDistance',10); 

        %         [~,MinIdx] = findpeaks(-(d-mean(d)),'MinPeakHeight',0,'MinPeakDistance',10); 

 

        for jj = 1:12 

            if jj*n > N 

                n = N - n*(jj-1); 

            end 

 

            app = d(n*(jj-1)+1:jj*n); 

 

            [~,MaxIdx] = findpeaks(app-mean(app),'MinPeakDistance',10); 

            [~,MinIdx] = findpeaks(-(app-mean(app)),'MinPeakDistance',10); 

 

            MaxIdx = MaxIdx + (jj-1)*n; 

            MinIdx = MinIdx + (jj-1)*n; 

 

            Maxima = d(MaxIdx); 

            Minima = d(MinIdx); 

 

            plot(hp, t(MaxIdx), Maxima,'ro') 

            plot(hp, t(MinIdx), Minima,'ko') 

 

            maxmin = [Maxima; Minima]; 

 

 

            rmsmaxmin(jj,rep,idx) = mean(Maxima) - mean(Minima); 

              

   

        end 

 

        legend(hp,'y-axis','Maxima','Minima') 

 

         

    end 

    sgtitle(['Subj #' num2str(idx)]) 

end 

 

%% Has the sway decreased or increased? 

 

maxmin_abs = abs(rmsmaxmin); 

 

diff_end_start = squeeze(maxmin_abs(end,:,:) - maxmin_abs(1,:,:))*100; % in cm 

 

% positive value = increase 

% negative value = decrease 

 

 

%% ----------additional 
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% [P,f] = pwelch(acc_shift-mean(acc_shift),hamming(n/2),round(n/10),n,fs); 

% figure 

% plot(f,P) 

 

 

 

 

 

 

 

 


