# Microphase Separated Block Copolymers as Templates for the Directed Cross-Phase Alignment of Segmented Nanorods

A Thesis for the Degree of Doctor of Philosophy

By

Lucas Paul Johnson B.Sc. (hons) in Nanotechnology

At

Flinders University Faculty of Science and Engineering School of Chemistry and Physics



Flinders University Adelaide · Australia

Sept 2010

## TABLE OF CONTENTS

| Title Page           | Ι     |
|----------------------|-------|
| Table of Contents    | II    |
| Scope of this Thesis | V     |
| Declaration          | VIII  |
| List of Figures      | IX    |
| List of Tables       | XVII  |
| Acknowledgements     | XVIII |

| 1. Literature Review and Aims      | 1   |
|------------------------------------|-----|
| 1.1. Metallic Nanoparticles        | 1   |
| 1.1.1. Basic Principles            | 1   |
| 1.1.2. Synthesis                   | 17  |
| 1.1.3. Functionalisation           | 26  |
| 1.2. Nanoparticle Assemblies       | 28  |
| 1.2.1. Properties                  | 28  |
| 1.2.2. Methods of Assembly         | 35  |
| 1.2.3. Template Formation          | 45  |
| 1.3. Block Copolymers              | 48  |
| 1.3.1. Definition                  | 48  |
| 1.3.2. Microphase Separation       | 49  |
| 1.3.3. Synthesis                   | 59  |
| 1.3.4. Template Directed Assembly  | 71  |
| 1.4. Multisegment Nanorods         | 85  |
| 1.4.1. Introduction                |     |
| 1.4.2. Synthesis                   |     |
| 1.4.3. Selective Functionalisation | 99  |
| 1.5. Research Aim                  | 100 |
| 1.6. References                    | 103 |

| 2. Block Copolymer Synthesis and Microphase   |     |
|-----------------------------------------------|-----|
| Separation                                    | 137 |
| 2.1. Introduction                             | 137 |
| 2.2. Experimental Method and Materials        | 148 |
| 2.2.1. Synthesis of PS-b-P2VP                 | 148 |
| 2.2.2. Synthesis of PMMA-b-PBMA               | 148 |
| 2.2.3. Polymer Characterisation               | 153 |
| 2.2.4. Microphase Separation                  | 155 |
| 2.2.5. Microphase Characterisation            | 157 |
| 2.3. Results and Discussion                   | 159 |
| 2.3.1. PMMA Macroinitiator Synthesis          | 159 |
| 2.3.2. Microphase Separation                  | 174 |
| 2.4. Conclusions                              | 182 |
| 2.5. References                               | 183 |
| Single Segment Nanorods                       |     |
| 3.1. Introduction                             | 188 |
| <b>3.2. Experimental Method and Materials</b> | 202 |
| 3.2.1. Membrane Preparation                   | 202 |
| 3.2.2. Nanorod Synthesis                      | 203 |
| 3.2.3. Nanorod Characterisation               | 206 |
| 3.2.4. Other Sample Characterisation          | 207 |
| 3.3. Results and Discussion                   | 208 |
| 3.3.1. Initial Experiments                    | 208 |
| 3.3.2. Optimisation Experiments               | 232 |
| 3.3.2.1. Composition                          | 232 |
| 3.3.2.2. Nanorod Length Distribution          | 240 |
| 3.3.3. Nanorod Collection                     | 256 |
| 3.4. Conclusions                              | 271 |
| 3.5. References                               | 272 |

|                                                                                                                           | 276                                                                |
|---------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|
| 4.1. Introduction                                                                                                         | 276                                                                |
| 4.2. Experimental Methods and Materials                                                                                   | 277                                                                |
| 4.2.1. Membrane Preparation                                                                                               | 277                                                                |
| 4.2.2. Nanorod Synthesis                                                                                                  | 277                                                                |
| 4.2.3. Nanorod Characterisation                                                                                           | 278                                                                |
| 4.3. Results and Discussion                                                                                               | 279                                                                |
| 4.3.1. Synthesis: Literature Conditions                                                                                   | 279                                                                |
| 4.3.2. Synthesis Optimised Conditions                                                                                     | 282                                                                |
| 4.3.2.1. Nitric Acid                                                                                                      | 286                                                                |
| 4.3.2.2. Sonication                                                                                                       | 288                                                                |
| 4.3.3. Nanorod Length vs. Charge                                                                                          | 292                                                                |
| 4.3.4. Final Synthesis Conditions                                                                                         | 296                                                                |
| 4.4. Conclusions                                                                                                          | 314                                                                |
| 4.5. References                                                                                                           | 316                                                                |
| 5. Cross-Phase Alignment of Segmented Nanorods<br>5.1. Introduction                                                       | 318<br>318                                                         |
| 5.2. Experimental Methods and Materials                                                                                   | 324                                                                |
| 5.2.1. Nanorod Functionalisation                                                                                          | 324                                                                |
| 5.2.2. Solution Preparation                                                                                               | 325                                                                |
|                                                                                                                           |                                                                    |
| 5.2.3. Microphase Separation                                                                                              | 325                                                                |
| 5.2.3. Microphase Separation<br>5.2.4. Sample Characterisation                                                            | 325<br><u>3</u> 25                                                 |
| <ul><li>5.2.3. Microphase Separation</li><li>5.2.4. Sample Characterisation</li><li>5.3. Results and Discussion</li></ul> | 325<br>325<br><b>326</b>                                           |
| <ul> <li>5.2.3. Microphase Separation</li></ul>                                                                           | 325<br>325<br><b>326</b><br>326                                    |
| <ul> <li>5.2.3. Microphase Separation</li></ul>                                                                           | 325<br>325<br><b>326</b><br>326<br>332                             |
| <ul> <li>5.2.3. Microphase Separation</li></ul>                                                                           | 325<br>325<br><b>326</b><br>326<br>332<br>332<br>338               |
| <ul> <li>5.2.3. Microphase Separation</li></ul>                                                                           | 325<br>325<br><b>326</b><br>326<br>332<br>338<br><b>342</b>        |
| <ul> <li>5.2.3. Microphase Separation</li></ul>                                                                           | 325<br>325<br><b>326</b><br>326<br>326<br>332<br>338<br><b>342</b> |

IV

#### **SCOPE OF THIS THESIS**

Nanotechnology, the study of the control of matter on an atomic and molecular scale, is a field of scientific endeavour that deals with materials or devices with structure on the scale of 100nm in size or less. Nanotechnology has garnered considerable interest in recent years as the ability to manipulate matter on this scale promises to enable considerable advancements in a wide range of diverse areas such as materials, medicine, electronics, computation and energy technology, potentially providing solutions to many problems currently faced by humankind.

One area of nanotechnology which has been the subject of much investigation is the nanoparticle, which is defined as a small object that behaves as a whole unit in terms of its transport and properties, with one or more dimensions that are constricted to length scales ranging from 1 - 100 nm. [1-2] Nanoparticles, particularly those comprised of metals, are of great scientific and technological interest as they bridge the realms of atoms and molecules with that of bulk materials, and consequently exhibit a wide variety of unique properties that typically do not exist in the bulk. [3]

Much of the initial work on nanoparticles concerned the development of synthetic methods so that control over nanoparticle size, morphology and composition could be achieved, in addition to the characterisation of these particle's properties. More recently however, there has been a greater focus on the use of nanoparticles as building blocks to form nanoparticle assemblies. [4-8] This trend is driven by the desire for complex 3D devices at this scale, the formation of such structures being rather difficult to achieve using traditional 'top-down' approaches to structure formation (where small devices and structures are created at the direction of larger structures) such as lithography. [9]

One of the most versatile processes by which nanoparticles may be directed to form well controlled structures with high throughput is self assembly, a 'bottom-up' process which involves the use of interactions between structural components to facilitate spontaneous arrangement of the particles into ordered structures. [10-11] Among the self assembly methods that have been developed to date, template assisted assembly (which involves the use of highly selective interactions between a patterned substrate and the nanoparticles to direct the nanoparticle assembly) stands out as one of the most promising, as it combines aspects of top-down and bottom-up structural arrangement approaches, thereby allowing for the rapid formation of a wide range of complex 3D structures with structural order extending over macroscopic volumes. [12-15]

There exists a wide range of suitable templates that may be applied to the template assisted assembly of nanoparticles. One particularly useful template is microphase separated block copolymers, which consist of periodic, chemically distinct domains within which appropriately functionalised nanoparticles may be selectively incorporated. Unlike most other suitable templates, block copolymers are able to form a wide range of nanoscale patterns with a high degree of control over pattern size and morphology. [9, 16-17] However, block copolymers have one disadvantage, in that the vast majority of the possible pattern morphologies are composed of isolated regions (cermet topology), while for many applications, the arrangement of nanoparticles into network type structures is desirable.

In an effort to extend the application of the otherwise advantageous block copolymers to the template directed assembly of nanoparticles into network structures, we developed an alternative methodology for nanoparticle assembly using this form of template called *cross-phase* alignment, which involves the alignment of segmented nanorods, rod shaped nanoparticles with varying composition along the long axis of the rod, across the domain interfaces in the block copolymer matrix. In this thesis, we report the results of this investigation.

- Nam, P.H., P. Maiti, M. Okamoto, T. Kotaka, N. Hasegawa, and A. Usuki, *Polymer*, 2001. 42: p. 9633.
- Holister, P., Weener, J-W., Vas, C. R., Harper, T., *Nanoparticles*, in *Technology White Papers*. 2003, Cientifica. p. 1.
- Klabunde, K.J., Schmid, G., Pileni, M. P., Khaleel, A., Richards, R. M., Mulvaney, P., Sorensen, C. M., Mulukutla, R. S., Koper, O., Winecki, S., Parker, J., *Nanoscale Materials in Chemistry*, ed. K.J. Klabunde. 2001, New York: John Wiley and Sons, inc. 292.
- Lazzari, M., Lopez-Quintela, M. A., *Advanced Materials*, 2003. 15(19): p. 1583.
- Shouheng, S., Murray, C. B., Weller, D., Folks, L., Moser, A., *Science*, 2000. 287: p. 1989.
- 6. Reiss, G., Hutten, A., *Nature Materials*, **2005**. 4: p. 725.
- Gates, B.D., Xu, Q., Stewart, M., Ryan, D., Willson, C. G., Whitesides, G. M., *Chemical Reviews*, 2005. 105: p. 1171.
- Ieong, M., Doris, B., Kedzierski, J., Rim, K., Yang, M., Science, 2004. 306(5704): p. 2057.
- 9. Park, C., Yoon, J., Thomas, E. L., *Polymer*, **2003**. 44: p. 6725.
- Kotov, N.A., Nanoparticles Assemblies and Superstructures. 2006: CRC Press.
- Parviz, B.A., Ryan, D., Whitesdies, G. M., *IEEE Transactions on Advanced Packaging*, 2003. 26(3): p. 233.
- Davis, S.A., Breulmann, M., Rhodes, K. H., Baojian, Z., Mann, S., Chemistry of Materials, 2001. 13(10): p. 3218.
- Maury, P.A., Reinhoudt, D. N., Huskens, J., *Current Opinion in Colloid and Interface Science*, **2008**. 13(1-2): p. 74.
- 14. Wang, D., Mohwald, H., *Journal of Materials Chemistry*, 2004. 14: p. 459.
- Wilde, G., *Nanostructured Materials*. Frontiers of Nanoscience, ed. G.
   Wilde. Vol. 1. **2008**: Elsevier.
- 16. Haryono, A., Binder, W. H., Small, 2006. 2(5): p. 600.
- Krishnamoorthy, S., Hinderling, C., Heinzelmann, H., *Materials Today*, **2006**. 9(9): p. 40.

## **DECLARATION**

I certify that this thesis does not incorporate without acknowledgement any material previously submitted for a degree or diploma in any university; and that to the best of my knowledge and belief it does not contain any material previously published or written by another person except where due and direct reference has been made in the text.

Lucas Paul Johnson, B.Sc. (hons) in Nanotechnology

/ /

-----

### LIST OF FIGURES

| <b>Fig 1.1:</b> Diagram showing the electronic structure of (a) diatomic lithium (b) a cluster of 6 |
|-----------------------------------------------------------------------------------------------------|
| lithium atoms and (c) bulk lithium2                                                                 |
| Fig 1.2: Diagram showing the density of states for a metal with (a) no spatial confinement (b)      |
| confinement in one dimension (c) confinement in two dimensions and (d) confinement in all           |
| three dimensions4                                                                                   |
| Fig 1.3: Current vs. applied potential for (a) a metal nanoparticle exhibiting a coulomb            |
| blockade and (b) bulk metal6                                                                        |
| Fig 1.4: Depiction of a magnetic dipole moment arising from a                                       |
| "current loop"7                                                                                     |
| Fig 1.5: Ferromagnetic domain structure in (a) zero field and (b) in an applied magnetic field 10   |
| Fig 1.6: Diagram showing the increase in surface area when a bulk solid is divided into an          |
| equal volume of smaller particles14                                                                 |
| Fig 1.7: Diagram showing the use of grooves as a template in vapour synthesis of                    |
| nanoparticles (a) direct replication of the grooves by directing the vapour at the substrate        |
| through the use a gas stream (b) utilising the groove shape and angle of vapour approach to         |
| form particles outside the "shadow" created by the grooves21                                        |
| Fig 1.8: Depiction of an assembly of spherical nanoparticles on a surface (top), ground state       |
| wavefunctions for charge carriers localised in two adjacent nanoparticles i.e. finite potential     |
| wells (middle) and graphs of current due to an applied voltage (bottom) where (a) the               |
| interparticle spacing is "large" such that no charge transport by tunnelling occurs (b) the         |
| interparticle spacing is "moderate" such that tunnelling can occur but is inhibited by the          |
| coulomb blockade (c) the interparticle spacing is "small" such that exchange coupling is            |
| strong enough to delocalise the charge carriers over the whole                                      |
| assembly30                                                                                          |
| Fig 1.9: Depiction of the electric field strength and extent of the nanoparticle wavefunction       |
| away from the surface of two identical spherical nanoparticles or radius r together with the        |
| corresponding light absorption spectrum due to localised surface plasmon resonance in the           |
| case of (a) interparticle spacing >> 5r (no electromagnetic coupling) (b) interparticle spacing     |
| = 5r (weak electromagnetic coupling) (c) interparticle spacing < 5r (strong electromagnetic         |
| coupling) and (d) interparticle spacing << 5r (strong electromagnetic and exchange coupling)        |
|                                                                                                     |
| Fig 1.10: A suspension of spherical nanoparticles on a solid substrate (a) immediately after        |
| deposition (b) after most solvent has been evaporated (c) after all solvent has evaporated          |
|                                                                                                     |

**Fig 1.11:** A suspension of spherical nanoparticles between a patterned substrate electrode and counter electrode (a) before the electric field is applied and (b) when the electric field is applied. (c) shows an example top-down view of the deposition of nanowires onto a patterned

| electrode substrate. (d) depicts alignment of nanowires in solution by an electric field prior | to         |
|------------------------------------------------------------------------------------------------|------------|
| deposition onto a substrate by solvent evaporation                                             | 38         |
| Fig 1.12: (a) functionalised nanoparticles at the liquid-air interface (b) close packed        |            |
| nanoparticles when the interfacial area is compressed                                          | <u>39</u>  |
| Fig 1.13: Examples of block copolymer chain architectures                                      | 48         |
| Fig 1.14: Composition profile for the cross section of a diblock in the weak segregation and   | d          |
| strong segregation regime                                                                      | <u>5</u> 1 |
| Fig 1.15: Phase diagram depicting the morphology of a diblock copolymer at thermodynam         | nic        |
| equilibrium as a function of volume fraction of one of the blocks (f) and the strength of inte | er-        |
| block repulsion (χN)                                                                           | 53         |
| Fig 1.16: Microphase separated morphologies for a triblock copolymer containing three          |            |
| chemically distinct blocks of varying volume fraction at thermodynamic equilibrium             | 54         |
| Fig 1.17: An example of the short range ordering of block copolymers as seen in a lamellar     | r          |
| microphase morphology                                                                          | 56         |
| Fig 1.18: A depiction of the progress of a step growth polymerisation                          | 60         |
| Fig 1.19: Example of step growth polymerisation applied to the extension of a single block     | to         |
| form a block copolymer                                                                         | 63         |
| Fig 1.20: A depiction of (a) a homopolymer and (b) a diblock copolymer that result from        |            |
| variation in chain length                                                                      | 63         |
| Fig 1.21: Reaction mechanism for a living radical polymerisation showing the equilibrium       |            |
| between an active polymer radical that can undergo propagation (right) and a dormant           |            |
| polymer chain that cannot undergo propagation (left). Note that the equilibrium favours the    | )          |
| formation of the dormant species                                                               | <u>6</u> 4 |
| Fig 1.22: Reaction mechanism for ATRP                                                          | 66         |
| Fig 1.23: Reaction mechanism for ARGET ATRP                                                    | <u>6</u> 7 |
| Fig 1.24: Reaction mechanism for NMRP                                                          | 68         |
| Fig 1.25: Reaction mechanism for RAFT                                                          | <u>69</u>  |
| Fig 1.26: Reaction mechanism for ionic polymerisation (in this case anionic polymerisation     | n)         |
|                                                                                                | 70         |
|                                                                                                |            |

**Fig 1.27:** Computed phase diagram (as a function of volume fraction of block A (f) and nanoparticle volume fraction  $(\Phi)$ ) for a strongly segregated AB diblock copolymer containing nanoparticles with an enthalpically preferential interaction with the A block and diameter smaller than the A blocks radius of gyration. Regions S, C, L, DIS and  $2\Phi$  correspond to the spherical, cylindrical, lamellar, disordered and a 2 phase morphology region where both disordered and microphase separated regions are present in the polymer respectively at equilibrium \_\_\_\_\_\_76

**Fig 1.28:** Computed phase diagram (as a function of volume fraction of block A (f) and nanoparticle volume fraction ( $\Phi$ )) for a strongly segregated AB diblock copolymer containing nanoparticles with an enthalpically preferential interaction with the A block and diameter comparable to the A blocks radius of gyration. Regions S, C, L, DIS, SAC, SAL and  $2\Phi$ 

| correspond to the spherical, cylindrical, lamellar, disordered, cylindrical core-shell, lamellar                       |
|------------------------------------------------------------------------------------------------------------------------|
| core-shell and a 2 phase morphology region where both disordered and microphase separated                              |
| regions are present in the polymer respectively at equilibrium77                                                       |
| Fig 1.29: Depiction of a nanorod with discrete surface regions that are each compatible with                           |
| different microphases of a block copolymer85                                                                           |
| Fig 1.30: Example of a possible network type assemblies of anisotropic nanoparticles in a                              |
| BCC microphase separated block copolymer85                                                                             |
| Fig 1.31: A typical template electrodeposition process, which involves a nanochannel                                   |
| template (A) being coated on one side with a layer of conductive material (B). This coating                            |
| serves as a cathode during the application of a potential across the channels when a metal                             |
| plating solution is introduced (C). This results in electrodeposition of material within the                           |
| template pores (D). The plating solution is removed and electrodeposition repeated with a                              |
| different plating solution to obtain segmented nanorods.(E). The conductive coating and                                |
| template are then removed, yielding free nanorods (F)87                                                                |
| Fig 1.32: The diffuse double layer that forms at a metallic cathode. This consists of the inner                        |
| Helmholtz plane (IHP), which is made up of specifically adsorbed ions, the outer hemlholtz                             |
| plane (OHP), which is made up of solvated ions with charge opposing that of the electrode                              |
| and the diffuse layer, which contains a mixture of ions/counter ions92                                                 |
| Fig 1.33: Graph showing the external potential required to obtain a specific current flow                              |
| during an electrodeposition at a cathode. Several different system behaviours are shown;                               |
| region I (Tafel region) exhibits kinetically controlled deposition characterised by an activation                      |
| polarisation (P <sub>o</sub> ), region II exhibits kinetically controlled deposition characterised by a                |
| concentration polarisation (P <sub>c</sub> ), region III shows mass transport controlled deposition                    |
| characterised by a limiting current, while region IV shows mass transport controlled                                   |
| depositon characterised by hydrogen evolution. The precise relationship between V and I will                           |
| vary depending upon factors such as the plating solution used and the electrode area94                                 |
| Fig 1.34: Graph of metal growth species concentration (C) as a function of distance from the                           |
| cathode surface at high overpotentials. Bulk solution concentration $(C_{\scriptscriptstyle \infty})$ decreases as one |
| approaches the cathode surface ( $C_o$ ), the distance over which this occurs being referred to as                     |
| the diffusion layer (δ)95                                                                                              |
| Fig 2.1: Depiction of a functionalised bi-segmented nanorod sequestered at the interface                               |
| between two lamellar microphases with (left) a thin interface and (right) a thick interface141                         |
| Fig 2.2: Vacuum distillation apparatus setup during nitrogen purging149                                                |
| Fig 2.3: Vacuum distillation apparatus setup during addition of monomer via elution through                            |
| an activated alumina column150                                                                                         |
| Fig 2.4: Depiction of an epoxy substrate coated with a diblock copolymer film that has been                            |
| shaped to provide a suitable face for ultramicrotomy157                                                                |
| Fig 2.5: Kinetic data for the ATRP of PMMA macroinitiator using the CuBr/PMDETA                                        |
| catalyst system and EBrIB as the initiator in 50 vol% methoxybenzene. Each data point is the                           |
| average of 3 separate polymerisations161                                                                               |

| Fig 2.6: Molecular weight as a function of monomer conversion for the ATRP of PMMA                  |
|-----------------------------------------------------------------------------------------------------|
| macroinitiator using the CuBr/PMDETA catalyst system and EBrIB as the initiator in 50               |
| vol% methoxybenzene. Each data point is the average of 3 separate polymerisations163                |
| Fig 2.7: Molecular weight distribution as determined by GPC for PMMA macroinitiator                 |
| samples prepared by ATRP using the CuBr/PMDETA catalyst system and EBrIB as the                     |
| initiator in 50 vol% methoxybenzene165                                                              |
| Fig 2.8: H <sup>1</sup> -NMR spectrum of PMMA-Br macroinitiator167                                  |
| <b>Fig 2.9:</b> Molecular weight distribution as determined by GPC of (□) PMMA macroinitiator       |
| and (◊) PMMA-b-PBMA block copolymer prepared using this macroinitiator170                           |
| Fig 2.10: H <sup>1</sup> -NMR of PMMA-b-PBMA block copolymer171                                     |
| Fig 2.11: Image of an iodine stained, microphase separated PS-b-P2VP film (lamellar                 |
| morphology) on an epoxy substrate174                                                                |
| Fig 2.12: TEM image of the cross-section of an iodine stained, microphase separated PS-b-           |
| P2VP film showing a well ordered lamellar morphology175                                             |
| Fig 2.13: TEM image of the cross-section of the PS-b-P2VP film's epoxy substrate176                 |
| Fig 2.14: Close up TEM images of the cross-section of an iodine stained, microphase                 |
| separated PS-b-P2VP film showing the dimensions of the microphase lamellae177                       |
| Fig 2.15: Image of an iodine stained, microphase separated PS-b-P2VP film (spherical                |
| morphology) on an epoxy substrate178                                                                |
| Fig 2.16: TEM image of the cross-section of an iodine stained, microphase separated PS-b-           |
| P2VP film showing a well ordered spherical morphology180                                            |
| Fig 2.17: TEM image of the cross-section of an iodine stained, microphase separated PS-b-           |
| P2VP film showing a well ordered spherical morphology181                                            |
| Fig 3.1: SEM images of the filtration surface of a commercially available porous anodic             |
| alumina filtration membrane (nominal 10nm pore diameter)191                                         |
| Fig 3.2: SEM images of the cross-section of a commercially available porous anodic alumina          |
| membrane (nominal 10nm pore diameter) showing the (top) pore structure in the bulk of the           |
| membrane and (bottom) the asymmetric pore structure at the branched (filtration) surface.           |
|                                                                                                     |
| Fig 3.3: SEM images of the surface of a commercially available track etched polycarbonate           |
| membrane194                                                                                         |
| Fig 3.4: Porous membrane with a damaged/delaminated conductive backing exhibiting (a) a             |
| reduction in nanorod yields and (b) increased variation in nanorod length195                        |
| Fig 3.5: SEM of a 200nm thick Ag layer sputter coated onto a track etched polycarbonate             |
| membrane, which exhibits a largely pin-hole free surface197                                         |
| Fig 3.6: Porous membrane with a conductive coating containing voids and pin-hole defects            |
| that are (a) filled by electrodeposition of a sacrificial layer of metal followed by (b) deposition |
| of the metal comprising the nanorods198                                                             |
| Fig 3.7: Setup of the electrodeposition apparatus203                                                |

| Fig 3.8: procedure for the unfurling of the Ag coated polycarbonate membrane onto (a) the     |
|-----------------------------------------------------------------------------------------------|
| metal contact plate which has (b) 1-2 drops of water deposited onto it near the edge. The     |
| curled up membrane is then placed onto these drops such that (d) the membrane may unfurl to   |
| cover the metal contact plate204                                                              |
| Fig 3.9: SEM images of (a) Ag treated polycarbonate and (b) untreated polycarbonate           |
| membrane210                                                                                   |
| Fig 3.10: SEM image of Ag treated polycarbonate at high magnification211                      |
| Fig 3.11: TEM images of Ni nanorods synthesized under literature derived conditions214        |
| Fig 3.12: EDAX spectrum of Ni nanorods215                                                     |
| Fig 3.13: High resolution TEM image of nickel nanorods synthesized under literature derived   |
| conditions215                                                                                 |
| Fig 3.14: TEM image featuring the perforate, plate like fragments of material observed in the |
| nickel nanorod samples216                                                                     |
| Fig 3.15: EDAX of the perforated, plate like fragments of material in TEM images of nickel    |
| nanorods217                                                                                   |
| Fig 3.16: A typical current vs. time data for the electodeposition of nickel from a nickel    |
| sulfamate plating solution into the pores of a polycarbonate filtration membrane218           |
| Fig 3.17: Current vs. time data for the deposition of gold.   220                             |
| Fig 3.18: TEM image of Au nanorods synthesized under literature conditions222                 |
| Fig 3.19: EDAX spectra of (A) the solid nanorod segments and (B) the porous "tails"223        |
| Fig 3.20: High resolution TEM images of (a) porous gold "tails" and (b) solid gold nanorod    |
| segments224                                                                                   |
| Fig 3.21: TEM images of Au nanorods formed with a passed charge of (a) 0.025C and (b)         |
| 0.1C226                                                                                       |
| Fig 3.22: TEM image of an Au nanorod without nitric acid treatment (bottom) EDAX spectra      |
| of (A) the left segment and (B) the right segment228                                          |
| Fig 3.23: TEM image of a Ni nanorod without nitric acid treatment (bottom) EDAX spectra       |
| of (A) the right segment and (B) the left segment231                                          |
| Fig 3.24: TEM image of gold nanorods resulting from metal deposition where rinsing of the     |
| membrane between depositions is accompanied by mild sonication234                             |
| Fig 3.25: SEM image of the surface of a track etched polycarbonate membrane after exposure    |
| to pH 11 KOH solution for 1 hour235                                                           |
| Fig 3.26: Current vs. time data for the electrodeposition of residual silver species in a KOH |
| electrolyte236                                                                                |
| Fig 3.27: TEM image of gold nanorods formed following the electrodeposition of residual       |
| silver species237                                                                             |
| Fig 3.28: (a) TEM image of gold nanorods formed following deposition of a nickel barrier      |
| segment (b) EDAX analysis of the gold segments showing the gold Ma and La peaks and the       |
| Ka peaks due to copper238                                                                     |

| Fig 3.29: Photo of a polycarbonate membrane containing gold nanorods (after nitric acid       |
|-----------------------------------------------------------------------------------------------|
| treatment). Note the visibly preferential deposition at the edge of the deposition area241    |
| Fig 3.30: TEM image of nanorods including those resulting from metal deposition in the        |
| outermost segment of the synthesis template244                                                |
| Fig 3.31: TEM image of nanorods excluding those resulting from metal deposition in the        |
| outermost segment of the synthesis template245                                                |
| Fig 3.32: Length distributions of gold nanorods (a) including and (b) excluding those formed  |
| from metal deposition at the edge of the cathode246                                           |
| Fig 3.33: Length distribution of gold nanorods formed with (a) a 1mA current limit and (b) no |
| current limit249                                                                              |
| Fig 3.34: current vs. time data for gold deposition at a current limit of 1mA250              |
| Fig 3.35: Length distribution of gold nanorods formed with a 0.1mA current limit251           |
| Fig 3.36: current vs. time data for gold deposition at a current limit of 0.1mA252            |
| Fig 3.37: length histogram for gold nanorods synthesized under a current limit of 1mA with    |
| sonication during the deposition253                                                           |
| Fig 3.38: current vs. time data for gold deposition (a) under a current limit of 1mA and (b)  |
| under a current limit of 1mA with sonication254                                               |
| Fig 3.39: TEM image of nanorods collected using the standard literature method of multiple    |
| centrifugation and re-suspension steps257                                                     |
| Fig 3.40: TEM image of a nanorod coated in a low electron density residue258                  |
| Fig 3.41: TEM images of low electron density spheres present in nanorod samples treated       |
| using the standard literature method259                                                       |
| Fig 3.42: TEM image showing the absence of residual polymer when the nanorods are treated     |
| with extensive sonication during the re-suspension stage of nanorod collection261             |
| Fig 3.43: TEM image showing the near complete absence of residual polymer adhering to         |
| nanorods that are treated with extensive sonication during the re-suspension stage of nanorod |
| collection262                                                                                 |
| Fig 3.44: diagram showing the chemical attack of polycarbonate by base hydrolysis of the      |
| carbonate group263                                                                            |
| Fig 3.45: TEM image of nanorods collected after treatment with 30% ammonia solution264        |
| Fig 3.46: TEM images of nanorods collected after treatment with 30% ammonia solution,         |
| exhibiting the presence of smears of residue material265                                      |
| Fig 3.47: diagram depicting the chemical attack of poly(vinyl pyrrolidone) by hydrogen        |
| peroxide266                                                                                   |
| Fig 3.48: TEM images of nanorods treated with 30% ammonia solution followed by 30%            |
| hydrogen peroxide solution267                                                                 |
| Fig 3.49: diagram depicting the conversion of carboxylic acid by products of poly(vinyl       |
| pyrrolidone) into corresponding amides by ammonia268                                          |
| Fig 3.50: TEM images of nanorods treated with ammonia solution and hydrogen                   |
| peroxide 270                                                                                  |

| Fig 4.1: TEM image of a Ni-Au-Ni-Au segmented nanorod                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 280          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| Fig 4.2: EDAX analysis of Ni-Au-Ni-Au segmented nanorods                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 281          |
| Fig 4.3: TEM image of Ni-Au-Ni-Au segmented nanorods formed under optimized                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |
| conditions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 283          |
| Fig 4.4: Depiction of attack of nickel nanorod segments within the synthesis template by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              |
| nitric acid (top) before exposure to nitric acid (bottom) after exposure to nitric acid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 284          |
| Fig 4.5: TEM image of Ni-Au-Ni-Au segmented nanorods formed under optimized                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |
| conditions, excluding the use of nitric acid or sonication                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 285          |
| Fig 4.6: TEM image of Ni-Au-Ni-Au segmented nanorods formed under optimized                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |
| conditions, excluding the use of sonication                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 286          |
| Fig 4.7: TEM image of Ni-Au-Ni-Au segmented nanorods formed under optimized                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |
| conditions, with no sonication and treatment with 4:1:1 methanol:30% $NH_3{:}30\%$ $H_2O_2$ to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              |
| remove deposited silver                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 288          |
| Fig 4.8: TEM image of Ni-Au-Ni-Au segmented nanorods formed under optimized                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |
| conditions, with sonication and treatment with 4:1:1 methanol:30% $NH_3$ :30% $H_2O_2$ to remain the sonication of the s | nove         |
| deposited silver                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 289          |
| Fig 4.9: current vs. time data for the deposition of subsequent gold segments in a Ni-Au-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Ni-          |
| Au sample (top) with sonication (bottom) without sonication                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | _290         |
| <b>Fig 4.10:</b> TEM image of (0.08C) Ni – (0.08C) Au nanorods                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 292          |
| <b>Fig 4.11:</b> TEM image of (0.06C) Ni – (0.12C) Au nanorods                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <u>2</u> 93  |
| <b>Fig 4.12:</b> TEM image of (0.04C) Ni – (0.04C) Au nanorods                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <u>2</u> 93  |
| <b>Fig 4.13:</b> TEM image of (0.04C) Ni – (0.04C) Au nanorods                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 294          |
| Fig 4.14: (top) TEM image of Au-Ni nanorods treated under conditions optimized for use                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | •            |
| with block copolymers (bottom) EDAX analysis of the observed nanoparticles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | _298         |
| Fig 4.15: TEM images of small particles dispersed within traces of residual polymer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <u>.</u> 299 |
| Fig 4.16: EDAX of residue polymer smears containing dispersed particulates as shown in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ı fig        |
| 4.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 300          |
| Fig 4.17: TEM of Au-Ni-Au nanorod at 200kV showing the polycrystalline nature of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |
| deposited metal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .304         |
| Fig 4.18: TEM of Au-Ni nanorods (top) before polymer removal and centrifugation (bott                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | om)          |
| after such treatment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 307          |
| Fig 4.19: TEM of 0.04C-0.04C Au-Ni nanorods after polymer removal and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |
| centrifugation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 308          |
| Fig 4.20: TEM of 100nm-100nm long Au-Ni nanorods showing shrinkage of the nickel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |
| segment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <u>309</u>   |
| Fig 4.21: TEM of 100nm-100nm long Au-Ni nanorods showing the plastic deformation of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | of the       |
| gold segments along with the presence of voids                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <u>310</u>   |
| Fig 4.22: TEM of 100nm-100nm long Au-Ni nanorods showing the breakage of some of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | the          |
| nanorods into individual segments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <u>311</u>   |

| Fig 5.1: SEM image of the surface of a track etched polycarbonate membrane serving as a        |
|------------------------------------------------------------------------------------------------|
| synthesis template for the segmented nanorods (pores are highlighted in yellow)320             |
| Fig 5.2: TEM image of a cross-section of the microphase separated block copolymer /            |
| nanorod films in regions absent of nanorods326                                                 |
| Fig 5.3: TEM image depicting cross-phase templating of segmented nanorods         328          |
| Fig 5.4: TEM image depicting cross-phase templating of segmented nanorods. Note that the       |
| apparent diameter of the nanorod in this image is larger than expected, and is most likely two |
| nanorods at different depths within the cross-section329                                       |
| Fig 5.5: TEM image showing changes in microphase morphology to accommodate a single            |
| segment nanoparticle330                                                                        |
| Fig 5.6: TEM image depicting changes in microphase morphology around nanorods in close         |
| proximity331                                                                                   |
| Fig 5.7: TEM image showing cross-phase templating of Au-Ni nanorods in PS-b-P2VP               |
| without surface functionalisation334                                                           |
| Fig 5.8: TEM image showing disruption of the local microphase separation in the presence of    |
| non-functionalised nanorods335                                                                 |
| Fig 5.9: TEM image showing disruption of the local microphase ordering in the presence of      |
| long nanorods336                                                                               |
| Fig 5.10: TEM image showing disruption of the local microphase ordering in the presence of     |
| long nanorods337                                                                               |
| Fig 5.11: TEM image showing the BCC spherical morphology block copolymer in the                |
| absence of nanorods339                                                                         |
| Fig 5.12: TEM image showing the effect of both single and bi-segmented nanorods on the         |
| microphase structure of PS-b-P2VP with a BCC spherical morphology340                           |
| Fig 5.13: TEM image showing the effect of both a cluster of nanorods on the microphase         |
| structure of PS-b-P2VP with a BCC spherical morphology341                                      |

### LIST OF TABLES

| Table 2.1: Data related to the determination of equilibrium microphase periodicity relative              | e to |
|----------------------------------------------------------------------------------------------------------|------|
| total degree of polymerisation for a diblock copolymer                                                   | .142 |
| Table 2.2: Mark-Houwink parameters for PMMA and PBMA in THF at 30°C                                      | 155  |
| <b>Table 3.1:</b> Current limits for the deposition of metals (given as current per unit electrode area) | 206  |

#### ACKNOWLEDGEMENT

First, I would like to acknowledge Assoc. Prof. Janis Matisons for giving me the opportunity to engage in study at a post-graduate level, as well as for his advice and encouragement along the way. I would also like to acknowledge the assistance of a number of other people for their contributions to this work; David Uhrig for the synthesis of PS-b-P2VP block copolymer along with Kerry Gascoigne, Lyn Waterhouse and Peter Self for their advice and assistance with imaging of samples by electron microscopy. Finally, I would like to thank the members of the Flinders Nanomaterials group, both past and present, for the help and support they have offered over the course of my postgraduate studies.