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Abstract 

The treatment of proximal humeral fractures with fracture fixation plates has been associated 

with a failure rate of up to 35% and the cause of this is not yet fully understood. However, 

several factors contribute to the failures, such as fracture configuration, bone quality, screw 

orientation, and screw length. Finite Element (FE) analysis is a commonly used computational 

approach to investigate the biomechanics of fracture fixation devices. Still, FE techniques are 

too computationally expensive for complex problems with a high number of variables. The 

overall aim of this thesis is to develop and assess computationally efficient methodologies in 

order to investigate the bone deformation of a fractured humerus with a fracture fixation plate, 

varying different implant parameters and within subjects. The first study of this thesis aimed 

to develop a computational model to predict the minimum principal strain within the fractured 

humerus by varying the length of the proximal screws. To achieve this, an FE analysis and an 

Adaptive Neural Network (ANN) method were combined. A semi-automated FE workflow on a 

single subject was developed to generate up to a thousand different configurations by varying 

the length of the proximal screws in the humeral head. The data generated were used to train 

ANN models, which showed a high level of accuracy (R2 = 0.96-0.99, RMSE = 0.51-1.27 % strain). 

After the training process, the best ANN model was applied to predict bone strain for a full 

factorial scenario. This confirmed that the length of the cortical screw has a significant impact 

on bone strain. Additionally, using the ANN to make predictions for the full factorial scenario 

only took a few seconds, whereas performing FE analysis for the same number of configurations 

would have required 170.6 days.  

The second study aimed to develop an efficient computational model to reproduce the minimum 

principal strain within the fractured humerus with the variation of the orientation of the 

proximal screws. Similar to the first study, a semi-automated pipeline was developed to 

generate FE models based on a single subject, with varying orientations of the proximal screws, 

resulting in up to a thousand simulations. The data from the models created were used to train 
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ANN models. In particular, two types of ANN models were developed, one to predict the screw 

collision and the other to predict the strain around the screws when the orientation of the screws 

varies. The two models combined had a good level of accuracy, showing a percentage of error of 

15.60% for the first model, and an R2 = 0.98-0.99 and an RMSE = 0.65-3.77 % strain for the 

second model. The two ANN models were then used to make predictions of a full factorial 

scenario, showing again the high impact of the cortical screw. Moreover, using the ANN for 

predictions in a full factorial scenario took only a few seconds, compared to the FE analysis 

which would have taken approximately 5,911.8 days. 

Despite the high efficiency of ANN models, they have the limitation of predicting a single value 

of strain, instead of the distribution of bone strain around the surface of the screws. For this 

reason, a more advanced DL technique has been introduced in the last two studies. 

In the third study, the FE data generated from the first and second analyses were used to train 

two types of Graph Neural Network (GNN) models. The models were trained using nodal 

information from the bone surface of proximal screws from the FE data and could predict the 

distribution of bone strain around the screws, with an R2 = 0.87-0.95 and RMSE = 2.81-3.86 % 

strain. The GNN models showed a high level of accuracy, and the main advantage was the 

considerably smaller training and testing time, consisting of respectively a few hours and a few 

seconds. 

The last study aimed to generate an efficient computational model on a cohort of subjects. A 

semi-automated FE workflow was developed to generate data from 434 subjects.  These data 

were used to train a GNN model, which could predict the distribution of minimum, middle and 

maximum principal strain around the proximal screws. The results of the GNN model were 

satisfactory, with an R2 = 0.76 and an RMSE = 4.93 % strain for the prediction of the minimal 

principal strain of the bone, showing again the time efficiency of GNN models. 

This thesis has successfully developed methodologies with different levels of complexity that 

combine FE analysis with DL techniques to enhance and expedite the computational process. 
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Specifically, it has been shown to be time-efficient without compromising the accuracy of the FE 

analysis. Integrating DL algorithms into FE setups for evaluating medical device performance 

has the potential to improve surgical planning for individual patients, ultimately leading to 

better outcomes in medical procedures. 
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Chapter 1 

1. Introduction 

1.1 Motivation 

Proximal humeral fractures are one of the most common fractures among elderly patients, 

constituting 6-9% of all diagnosed fractures (Roux et al. 2012; Sporer et al. 2006). With the 

growing elderly population, this incidence is expected to rise in the coming years, leading to 

increased strain on the healthcare system and associated costs (Maravic et al. 2014; Palvanen 

et al. 2006). Approximately 15% of these fractures require surgical intervention (Patel et al. 

2022), with the use of fracture fixation plates being a widely used treatment. However, there is 

evidence in the literature suggesting a significant failure rate of up to 36% for these implants, 

and the specific reasons for these failures are not yet fully understood due to the complex nature 

of the biomechanical problem (Kralinger et al. 2014). A variety of parameters, both related to 

the implant and the patient, are thought to be involved in the problem, yet there is still limited 

understanding of how these factors individually and collectively contribute to failure. Some of 

these parameters include screw length, screw orientation, screw configuration, plate position, 

and bone quality (Lewis et al. 2021). Finite Element (FE) analysis is considered the 

computational gold standard for evaluating implant failure and facilitating the development of 

new implant designs. One of the primary advantages of FE analysis is its time efficiency 
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compared to the experimental methods and its capability to accurately compute bone stress and 

deformation anywhere within the bone structure. These measurements are challenging to 

obtain through experimental settings, making FE analysis a valuable tool for predicting 

potential implant failures and offering insights for enhanced implant design. Several studies in 

the existing literature have conducted FE analysis to address the effects of various implant 

parameters associated with failure for a proximal humeral fracture within subjects (Fletcher et 

al. 2019a, 2019c, 2019b; Jabran et al. 2019b; Mischler et al. 2020b; Tilton et al. 2020b; Varga et 

al. 2018, 2020). These studies have focused the analysis on a limited number of configurations, 

performing from less than one hundred to up to a few thousand simulations. Indeed, due to the 

large number of parameters involved, FE analysis can be a time-consuming process, especially 

when attempting to assess the impact of numerous variables in a problem with a significant 

number of simulations and a large solution space. This limitation highlights the need for the 

development of a more efficient computational technique that can support FE analysis and 

accurately predict the mechanical environment associated with fracture fixation devices across 

a wide range of configurations.  

At present, some surrogate models have been formulated using FE data to investigate various 

biomechanical issues and enhance their computational efficiency. For instance, models trained 

using FE data have been developed to address biomechanical problems with a focus on femoral 

fracture, hip and knee implants, using techniques such as Kriging, Adaptive Neural Network 

(ANN), and Gaussian process (GP) methods (Al-Dirini et al. 2020; O’Rourke et al. 2016; Taylor 

et al. 2017). The development and training of ANN models can be a relatively straightforward 

and efficient process, making them a valuable computational tool. Despite their success in 

various applications, ANN models have not been used for addressing the biomechanical 

behaviour of proximal humeral fractures with fracture fixation plates. Given their potential, it 

is critical to explore the application of ANN models in this area, and they could be implemented 

in order to make a prediction of strain with the variation of implant parameters. Additionally, 
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the literature contains more complex Deep Learning FE-informed models, and they should be 

explored in an orthopaedic setting, particularly in the context of fracture fixation, as they could 

make predictions of the distribution of strain of an area of interest. An example is a study 

conducted by Krokos et al., which demonstrated the effectiveness of a Graph Neural Network 

(GNN) technique in predicting variations in internal stress within an object with the changes 

in its porous structure (Krokos et al. 2022a). This work highlights the potential of using GNN 

models combined with FE data to predict the mechanical response of materials, even in complex 

scenarios. The Krokos study gives confidence to explore GNN models to predict internal bone 

strain variations in response to changes in implant parameters and within subjects. 

In summary, to gain a deeper insight into the biomechanical characteristics of a proximal 

humeral fracture treated with a fixation plate and eventually reduce its failure rate, more 

efficient computational methodologies such as ANN and GNN should be implemented to assist 

the FE analysis, which has limited computational capabilities when exploring a problem with a 

large solution space. 

1.2 Research Aims 

The overall aim of this thesis is to develop and assess computationally efficient methodologies 

in order to investigate the bone deformation of a fractured humerus with a fracture fixation 

plate, varying different implant parameters and within subjects. Due to the problem's 

complexity and the extensive solution space, only single variations are made to explore the 

applicability of the computational methods implemented. More specifically: 

• Develop a semi-automated pipeline to efficiently generate an FE analysis varying 

different implant-related parameters on a single subject. 

• Develop a semi-automated pipeline to efficiently generate FE analyses for a large cohort 

of 100’s of subjects. 
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• Develop a computationally enhanced methodology using FE data and an ANN 

methodology to efficiently investigate the impact of variations in several implant 

parameters on humeral strain. 

• Develop a computationally enhanced methodology using FE data and a GNN 

methodology to efficiently investigate the impact of variations in several implant 

parameters and subject variabilities on humeral strain, and give a strain distribution 

prediction inside the humerus. 

• Apply the developed FE informed ANN and GNN surrogate models to explore the 

influence of screw length and orientation on the humeral strain. 

• Apply the developed FE informed GNN models to explore the influence of subject 

variability on the humeral strain.  

1.3 Thesis Outline 

To achieve the research aims set out, the thesis is organised into the following chapters: 

Chapter 2 provides a review of the literature. It includes descriptions of the humerus and 

shoulder and their biomechanics, as well as a review of proximal humeral fractures and fracture 

fixation plates. A focus on the different investigating approaches has been made, such as in vitro 

testing, FE models and surrogate techniques. Moreover, it describes various DL techniques 

available. 

Chapter 3 investigates the influence of screw length on the bone strain around the surface of 

the screws.  It involves the use of FE data combined with an ANN method. The FE workflow 

described the development of the ANN model and its application to make predictions of a full 

factorial scenario. 

Chapter 4 investigates the influence of screw orientation on the bone strain around the surface 

of the screws.  It involves the use of FE data combined with an ANN method. The FE workflow 
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described the development of the ANN model and its application to make predictions of a full 

factorial scenario. 

Chapter 5 uses the dataset developed in Chapters 3 and 4 to predict the distribution of bone 

strain around the screws using a GNN technique. 

Chapter 6 investigates the influence of variation in subject anatomy on the predicted 

distribution of bone strain around the screws for the proximal humeral fracture. A semi-

automated workflow was developed to generate FE data of 434 subjects, and their data were 

used to train a GNN model. 

Chapter 7 summarises the main findings of this project and its future projection on fracture 

fixation failure analysis. The limitations of this work and potential future research directions 

are also discussed.  
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Chapter 2 

2. Literature Review 

2.1 Anatomy of the Shoulder 

The shoulder is a complex structure that connects the upper extremity to the axial skeleton. It 

is composed of four joints and three main bones, and this complex interaction allows movements 

in six degrees of freedom. Considering the complexity of the shoulder joint structure, there are 

a variety of injuries or pathologies that can cause shoulder instability, pain, or loss of motion.  

2.1.1 Humerus 

The longest and largest bone in the upper extremity is the humerus, which is the extension of 

the shoulder joint that allows arm movements in space (Figure 2.1). Its structure is divided into 

three different sections such as the proximal end, the shaft and the distal end. The proximal 

end of the humerus is the portion of the bone that articulates with the scapula adjacent to the 

glenoid cavity, and together they constitute the shoulder joint (Huri et al. 2020). The head has 

a hemispherical shape, with a diameter between 32 and 58 mm (Boileau and Walch 1997). At 

the proximal end of the humerus are the greater and lesser tubercles, the first in an upper 

lateral position and the second in an anterior position, and they act as attachments for the 

surrounding muscles. The supraspinatus, infraspinatus and teres minor muscles are connected 
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to the greater tubercle and the subscapularis muscle to the lesser tubercle (Huri and Paschos 

2017). Moreover, the anatomical and surgical neck can be identified. The first connects the 

humeral head to its shaft, the second is the region just below both tuberosities and oriented 

horizontally in space. This region is the weakest and therefore most commonly at risk of fracture 

(Drake et al. 2010). 

2.1.2 Glenohumeral Joint 

The shoulder structure includes four distinct joints, the acromioclavicular, sternoclavicular, 

scapulothoracic and glenohumeral joints.  

The proximal end of the humerus and the glenoid cavity of the scapula are bound by the 

glenohumeral joint, a synovial ball-and-socket junction. This joint is highly mobile and the 

diameter of the head of the humerus is larger than the glenohumeral cavity, which makes the 

joint unstable. To increase its stability, several tissues surrounding the glenohumeral joint 

Figure 2.1 - Anterior and posterior view of the proximal humerus (Yılmaz et al. 2020)  
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serve as dynamic constraints, such as muscles, or static constraints, such as the glenoid labrum, 

the glenohumeral joint capsule and the glenohumeral ligaments (Huri et al. 2020). 

2.2 Shoulder Biomechanics 

The movements of the shoulder are permitted by the interaction of the sternoclavicular joint, 

the acromioclavicular joint, the scapulothoracic joint and the glenohumeral joint, where the 

majority of the movements are performed. 

2.2.1 Shoulder Motion 

The shoulder is a very flexible structure and is able to make large movements and consequently 

making it less stable. The movements of the shoulder are enabled by the correct interaction of 

the four joints together (Lippert 2006)(Figure 2.2). 

Extension and flexion occur in the sagittal plane around the frontal axis, allowing rotation up 

to 180° and hyperextension up to 45° from the anatomical position, i.e. when the arm is aligned 

to the vertical axis. With regard to flexion, 120° is performed in the glenohumeral joint and the 

remaining 60° is allowed by the movement of the scapula (Inman and Abbott 1991). The flexion 

is performed mainly by the pectoralis major and deltoid muscle but also by the coracobrachialis, 

and biceps brachii, whereas the extension is performed mainly by the latissimus dorsi and teres 

major, and partially by the pectoralis major, deltoid, triceps brachii (Lippert 2006). 

Adduction and abduction take place in the frontal plane around the sagittal axis. The abduction 

can be done 120° passively when the scapula is constrained by the motion, but it can reach up 

to 180° only if the shoulder joint is also rotated laterally (Lucas and Francisco 1973). It is mainly 

enabled by the deltoid and supraspinatus, which also have the role of pulling the humeral head 

into the glenoid fossa during movement (Lippert 2006). Adduction has a maximum range of 30° 

and is allowed by pectoralis major, latissimus dorsi, and teres major. 
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Medial and lateral rotation, also known as internal and external rotation, occur in the 

transverse plane around the vertical axis. From a neutral position, it is possible to move 90°  in 

any direction, and the muscles involved are subscapularis, teres major, latissimus dorsi, 

pectoralis major, deltoid, teres minor, infraspinatus (Lippert 2006).  

2.2.2 Humerus Coordinate System  

In order to analyse the movement of the glenohumeral joint and the shoulder, a reference system 

of the humerus is used as a local coordinate system (Figure 2.3). This is defined by three 

anatomical landmarks: the glenohumeral centre of rotation (GH), the most caudal point on the 

Figure 2.2 - Shoulder Motion (Cardoso and Gasparik 2023) 
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lateral epicondyle (EL), and the most caudal point on the medial epicondyle (EM). Once these 

three points are identified, the origin of the reference system is coincident with GH, and the X 

axis is the line perpendicular to the plane formed by EL, EM, and GH, pointing forward. The Y 

axis is the line connecting GH and the midpoint of EL and EM, pointing to GH, and the Z axis 

is the common line perpendicular to the Y and X axes, pointing to the right (Wu et al. 2005). 

The displacements are determined as follows once the reference system has been defined: 

• Translation along the x-axis = anterior/posterior translation 

• Translation along the y-axis = inferior/superior translation 

• Translation along the z-axis = joint distraction 

• Rotation around the x-axis = abduction/adduction 

• Rotation around the y-axis = internal/external rotation 

• Rotation around the z-axis = flexion/extension  

Motion standardization is only defined for right shoulder joints. When measuring left shoulders, 

it is advised to mirror the original position data relative to the sagittal plane. (Wu et al. 2005). 

2.2.3 Forces in the Glenohumeral Joint 

In order to reproduce the shoulder joint movements in an experimental or computational model, 

it is necessary to have a precise knowledge of realistic loads acting in vivo. Although this is not 

an easy task as the shoulder is considered to be very complex and is less studied than the hip 

or knee joints, several studies have been found in the literature which attempt to either measure 

or calculate the contact forces at the interface between the humerus and the shoulder and the 

forces generated by the surrounding muscles. 
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2.2.3.1 Contact Forces 

The measurement of muscle and joint reaction forces in a healthy intact shoulder joint remains 

challenging due to the lack of a direct method for such measurements. Additionally, direct 

measurement of joint reaction forces has only been conducted on a limited group of subjects with 

a shoulder replacement, limiting the understanding of these forces in healthy individuals.  

Several studies in the literature have tried to calculate muscle forces and contact loads in the 

glenohumeral joint using musculoskeletal models, which have produced a wide range of 

different results (Poppen and Walker 1978; Prinold et al. 2013).  In contrast to these, Bergmann 

et al developed an instrumented shoulder implant with telemetric data transmission that made 

possible the measurement of six components of joint contact forces and moments for the first 

time ever (Bergmann et al. 2007, 2011). 

Figure 2.3 - Humerus coordinate system. GH: glenohumeral centre of rotation. EL: lateral epicondyle. EM: medial 

epicondyle. (Anatomical model powered by BioDigital, image crafted by the author) 
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In an initial study, they analysed simple movements of a single patient, such as abduction and 

flexion, but also more complex movements, such as lifting objects or using crutches (Bergmann 

et al. 2007). Regarding the force values observed, they recorded a value of 40%BW (Body Weight) 

for the first months of physiotherapy, and up to 120% BW in the following months.  However, 

in terms of the direction of the forces, for almost all the activities performed, the angles of the 

contact forces with respect to the humerus varied only minimally in the sagittal plane, from 17° 

to 26°, and slightly more in the frontal plane, from 14° to 31° (Figure 2.4). This finding is in 

agreement with the further study conducted on seven different patients (Bergmann et al. 2011). 

Analysing the force values of the second study, for flexion without the use of weights and varying 

the speed of the movement performed, the mean value of the force ranged from 58%BW to 

73%BW, similar for abduction where the mean force recorded was between 65%BW and 81%BW. 

For both activities, the addition of a 2-kg weight increased the contact force magnitude by 51-

75% at both slow and fast speeds, while raising the arm above 90° increased strength by 21-40% 

(Bergmann et al. 2011). Despite the validity and uniqueness of these studies, it must be 

recognised that these are subjects who have undergone shoulder implant surgery, and therefore 

unhealthy subjects and this may affect the loads. 

Figure 2.4 - Reaction force at glenohumeral joint during flexion (Bergmann et al. 2007) 
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2.2.3.2 Muscular Forces 

In order to simulate shoulder movements accurately, it would be desirable to know the muscle 

forces.  One technique used to measure them is through EMG signals in vivo, but this method 

can only reliably detect the activity of superficial muscles, with poor signal strength (Inman and 

Abbott 1991). Otherwise, a computational approach can be used to develop a musculoskeletal 

model, and over the last few years, several models have been developed that vary in complexity 

and the number of muscles considered. The models believed to be most relevant and complete 

were analysed by Prinold et al. in their review (Prinold et al. 2013). The models included are: 

The Delft shoulder and elbow model (DSEM)(Nikooyan et al. 2011; Van Der Helm 1994), the 

UK National Shoulder Model (UKNSM)(Charlton and Johnson 2006), The Garner and Pandy 

model (GPM)(Garner and Pandy 2001), The Swedish shoulder model (SSM) (Högfors et al. 1995), 

The Waterloo model (WSM)(Dickerson et al. 2007), Stanford-VA model (Holzbaur et al. 2005, 

2007). 

These models used an inverse dynamics simulation analysis, and Hill-type muscle models to 

describe muscle-tendon behaviour and force generation, which are driven by a series of muscle-

tendon parameters. In order to develop a realistic MS model, it is necessary to accurately define 

these parameters, which for example can be direct inputs to the model such as bone kinematics, 

landmarks and length of the glenohumeral centre of rotation, muscle insertions and ligament 

lengths, and assumptions about muscle force characteristics. The studies considered gave 

similar glenohumeral joint reaction force values for some activities, but it is necessary to 

underline that for the upper limb there is still a big gap for the experimental validation of these 

models, as it is difficult to measure muscle forces and joint reaction forces in vivo. In terms of 

muscular forces, all the models showed that the physiological cross-sectional area (PCSA) was 

found to be higher for the deltoid muscle compared to other muscles. Generally, the PCSA has 

been consistently shown to have a linear correlation with the maximum force that a muscle can 

generate, highlighting the importance of PCSA as a key determinant of muscle strength 
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(Fukunaga et al. 2001). Table 2.1 presents the PCSA values defined for the studies considered 

in the Prinold review, consistently showing a higher value for the deltoid muscle (Table 2.1). 

Moreover, as shown in the WSM model, the comparison of muscle force prediction patterns 

during humeral abduction with the DSEM model shows that the deltoid muscle exhibits the 

highest relative force involvement during the movement (Dickerson et al. 2007). These models 

have limitations and are indeed sensitive to errors in their input parameters, which 

significantly affect the output results. Furthermore, there is currently a lack of a consistent 

scaling methodology that provides realistic kinematic reproductions of individual subjects, 

which would be relevant to support for example the planning of a surgery or to evaluate the 

performance in a pathological condition (Prinold et al. 2013).  

Table 2.1 - Comparison of shoulder muscle PCSAs (cm2) of the studies reviewed by Prinold et al. The ratio of deltoid 

muscle PCSA to the specific shoulder muscle is displayed in the parenthesis. For the SSM and WSM, the normalised 

values are available. Table adapted from (Prinold et al. 2013). 

GH muscles DSEM UKNSM SSM WSM Standford-VA GPM 

Total deltoid 33.07 (1) 12.2 (1) (1) (1) 25.0 (1) 81.98 (1) 

Infraspinatus 14.32 (2.31) 6.0 (2.03) (1.91) (1.91) 11.9 (2.09) 33.3 (2.46) 

Teres minor  4.97 (6.65) 2.10 (5.81) (8) (8) 3.70 (6.76) 6.77 (12.1) 

Supraspinatus 6.21 (5.33) 3.0 (4.07) (3.95) (3.95) 4.8 (5.23) 20.8 (3.93) 

Subscapularis 14.31 (2.31) 7.80 (1.56) (1.54) (1.54) 14.1 (1.74) 35.7 (2.30) 

2.3 Proximal Humeral Fractures 

Proximal humeral fracture is one of the most common fractures for patients over 65 years old 

and it accounts for 6-9% of the total diagnosed fractures (Iglesias-Rodríguez et al. 2021; Roux et 

al. 2012; Sporer et al. 2006). In particular, proximal fractures are the most common, about 50% 

of all humeral fractures and are the third most common type of fracture in the elderly, after the 

femoral neck and radius (Holloway et al. 2015; Maravic et al. 2014; Roux et al. 2012). 
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The incidence of proximal humerus fractures increases with age and is higher for female 

patients between 45 and 85 years of age after a fall from a standing position or an episode of 

high-energy trauma (Holloway et al. 2015; Kim et al. 2012; McLean et al. 2019). It is therefore 

well established from multiple studies that proximal humerus fractures are frequent among the 

elderly, generally with a low BMD, and most cases require hospital treatment (Fleischhacker et 

al. 2021; Maravic et al. 2014). 

Figure 2.5 - Estimation of proximal humerus fractures in individuals aged 60 and above with osteoporosis in the 

Finnish population, determined using a regression model (Palvanen et al. 2006) 
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In addition, the patient's daily activities become more difficult, which can have a great impact 

on the quality of life after the fracture and the risk of subsequent hospitalisation is high 

(Maravic et al. 2014). 

Therefore, since this kind of fracture is typical for elderly osteoporotic patients and considering 

that the geriatric population is continuously increasing, an increase of this kind of injury is 

expected in the future and additional demand for hospitalisation, raising the consumption of 

hospital resources and consequently their cost (Kim et al. 2012; Maravic et al. 2014; Palvanen 

et al. 2006)(Figure 2.5)  

2.3.1 Classification 

Several different types of classification of proximal bone fracture are present in the literature 

and each one focuses on different aspects.  

Neer's classification is structured into six groups and divides the fracture patterns by the 

number of fragments, direction of displacement and articular surface involvement (Carofino and 

Leopold 2013; Neer 1987)(Figure 2.6). Following this classification system, fractures with 

displacements less than 1.0 cm or angles less than 45° are included in Group 1. This type of 

fracture accounts for more than 85% of all fractures of the humerus and is not usually treated 

surgically. Group 2 refers to fractures with anatomic neck displacement, which normally causes 

avascular necrosis, and Group 3 identifies fractures with surgical neck displacement and can be 

angulated, separated, or impacted. The fractures of this group may damage the surrounding 

arterial structures and the axillary nerve. Displaced fractures involving the greater tuberosity 

belong to Group 4 and cause longitudinal rotator cuff tears. They may be two-, three-, or four-

part fractures such as Group 5, which includes dislocations of the lower tuberosity.  Group 6 

includes fractures with dislocations; four-part fractures are the most severe and neurovascular 

symptoms are common (Lasanianos et al. 2015).  
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 The AO/ASIF classification system divides proximal humeral fractures into three main groups 

based on joint involvement and a number of major fracture lines (Foundation AO 2014)(Figure 

2.7). The Type A group represents unifocal extraarticular fractures further subdivided based on 

tuberosity involvement and whether the metaphysis is impacted. Type B fractures are bifocal 

extra-articular and may be with or without metaphyseal impaction, or with glenohumeral 

dislocation. The Type C group includes intra-articular fractures, which can be categorized 

further according to whether the fracture is impacted with slight displacement, marked 

displacement, or dislocated. 

Figure 2.6 - The different types of proximal humeral fractures as per Neer's classification system (Lasanianos et al. 

2015)  
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Overall, it can be seen that the classification of proximal humerus fracture is complicated since 

fracture can occur in a large number of different patterns. 

2.3.2 Surgical Treatment 

In general, most (85%) proximal humeral fractures are minimally displaced or nondisplaced and 

therefore can be treated non-surgically, usually mobilized with a sling, and passive range-of-

motion exercises are performed after rest (Iglesias-Rodríguez et al. 2021; Neer 1987). Non-

surgical management of displaced fractures is challenging and often results in less than 

satisfactory outcomes (Neer 1987). Highly displaced fractures and three- and four-part fractures 

are difficult to treat especially when the patient is osteoporotic and the risk of necrosis caused 

by humeral head devascularization increases. Fracture instability, i.e. the possibility of the 

fractured fragments moving during rehabilitation or minimal arm movements, is the main 

criterion for determining the necessity of surgery (Dahan et al. 2019). 

The remaining 15% of proximal humeral fractures require operative intervention in order to 

achieve recovery (Huri and Paschos 2017; Owsley and Gorczyca 2008; Schlegel et al. 1994). 

There are several techniques for treating the injury, and no one implant is ideal for all fractures. 

However, the purposes of surgery are the same with all implants: to achieve and maintain 

satisfactory reduction to allow early shoulder motion, obtain health, and restore functionality 

(Owsley and Gorczyca 2008). 

Figure 2.7 - The types of proximal humeral fractures according to the AO/ASIF classification system. Copyright by 

AO Foundation, Switzerland (Foundation AO 2014)  
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Surgical options include percutaneous pinning, intramedullary fixation, open reduction and 

internal plate fixation, hemiarthroplasty, or reverse shoulder arthroplasty (Greiwe 

2015)(Figure 2.8). 

Percutaneous pinning is a minimally invasive technique and reduces blood vessel compromise. 

This procedure can be used for two-part neck fractures, three-part fractures and 4-part valgus 

fractures in patients with good bone quality, minimal metaphyseal comminution and intact 

medial calcar (Domingue et al. 2021). Failures related to this treatment can be loss of reduction, 

neurovascular injury, osteonecrosis and malunion, especially for four-part fractures (Greiwe 

2015). 

Intramedullary fixation can be used for 2-part fractures, less often for 3-, and 4-part fractures, 

but is rarely indicated because of its high failure rate (Domingue et al. 2021). Overall, hardware-

related complications following intramedullary fixation are common, with 16-23% requiring 

further surgery and/or removal of the nail. Commonly, complications involve rotator cuff and 

articular cartilage injury and varus malunion (Greiwe 2015). 

With regard to shoulder replacements, there are two different techniques. Hemiarthroplasty is 

performed for complex fractures of younger individuals, who would likely have complications 

with the placement of a fixation plate. Reverse total shoulder, on the other hand, is the 

procedure used for older patients with lower bone density (Domingue et al. 2021). In general, 

these two techniques are used for patients with poor bone quality and poor vascularity who 

undergo three- and four-part fractures of the proximal humerus (Greiwe 2015). 

Lastly, fixation plates are used for the treatment of 2-, 3- and 4-part fractures. This type of 

device remains one of the principal articular preservation treatments for complex fracture 

patterns, (Murray et al. 2011) and has demonstrated better biomechanical outcomes than other 

devices (Solberg et al. 2009; Sproul et al. 2011). In this regard, the number of proximal humerus 

fractures treated with internal fixation has increased in recent years (Huttunen et al. 2012; 

McLean et al. 2019). 
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2.3.3 Fracture Fixation Plates 

Fracture plate fixation is performed through open shoulder surgery and the implant is inserted 

into the lateral portion of the proximal humerus. The plates and the screws act as an anchoring 

system for the fracture fragments, preventing major movements and providing the necessary 

stability during rehabilitation. 

Locking plates and non-locking plates are two different types of implant designs used for 

fracture fixation, and locking plates have become increasingly popular due to their high success 

rate (Kubiak et al. 2006; Seide et al. 2007; Soileau et al. 2007; Walsh et al. 2006). Locking plates 

provide enhanced stability and support after the implant is fixed because of an anchoring 

mechanism between the threaded screw heads and the plate itself. This mechanism establishes 

a stable angular connection between the screws and the plate, which improves the overall 

stability and support of the implant (Cronier et al. 2010; Jabran et al. 2018). 

Non-locking or compression plates were bulkier and showed a high failure rate, especially for 

osteoporotic patients and were also associated with a high rate of infection (Karataglis et al. 

2011). However, the plates used now have a higher probability of success, allowing for early 

fracture mobilisation. Indeed locking plates provide greater angular stability, allowing the load 

to be distributed uniformly throughout the structure, rather than being concentrated on a single 

Figure 2.8 - Example of (left) percutaneous pinning, (centre) intramedullary nailing and (right) locking plate. Adapted 

from (Greiwe 2015) 
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screw (Karataglis et al. 2011; Maldonado et al. 2003; Seide et al. 2007). Furthermore, the 

stability of compression plates is dependent on the interaction between the plate and bone, as 

opposed to locking plates where it is dependent on the interaction between the bone and the 

screw. This results in a decreased level of friction, leading to a reduced biological impact (Egol 

et al. 2004). Moreover, locking plates have superior pull-out strength and stiffness, and failure 

requires simultaneous pull-out or failure of all screws.  

There are different types of locking plates, developed by different manufacturers (Figure 2.9). 

One type of commercial plate is Spatial Subchondral Support (S3; Zimmer Biomet, Warsaw, IN, 

USA)(Zimmer Biomet 2014). This design can have non-locking screws in addition to threaded 

ones, preventing damage to the articular surface (Le et al. 2019). The S3 plate is placed 3 cm 

distal to the greater tuberosity to achieve a 135° neck angle, improving the patient's 

postoperative response and reducing complications of subacromial impingement (Jabran et al. 

2018). 

Figure 2.9 - Different designs of locking plates. (left) Spatial Subchondral Support (Gille et al. 2008). (right) PHILOS 

(Fletcher et al. 2019c).  
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The successor to this plate is the A.L.P.S. Proximal Humerus Plating System (Zimmer Biomet 

2015a), which similarly takes full benefit of the principle of Spatial Subchondral Support plate. 

This plate is designed to reduce the risk of complications associated with treating proximal 

humerus fractures such as varus collapse, screw penetration into the articular surface and 

subacromial impingement. 

Another popular product is PHILOS (Proximal Humerus Internal Locking System; Synthes, 

Paoli, PA, USA). It provides 9 screw holes for proximal fragments and at least 3 screw holes for 

distal shaft fixation, but the recommended procedure is to apply at least 4 screws in the head of 

the humerus, up to 9 if the bone quality is very poor (Synthes 2018). 

It has been reported that locking plates have led to complications, mainly involving screw 

perforation in the bone. Therefore, a second-generation locking technology has been developed 

with variable-angle screws (Cronier et al. 2010). This type of plate allows the screw direction in 

the humeral head to be adjusted before locking, in contrast to the traditional locking 

technologies where screw angles are predefined (Jabran et al. 2018). 

One example of variable angle plates is the Non-Contact Bridging plate (NCB, Zimmer, Warsaw, 

IN, USA) (Zimmer Biomet 2015b). This design allows polyaxial positioning of the screw (30°) in 

the head of the humerus and subsequent locking of the screw head for greater stability. 

Furthermore, these plates decrease the risk of periosteal blood impairment since they act as an 

internal fixator without contact between the plate and the bone surface (Figure 2.10).  Extra 

care should be taken with the orientation of the screws, and additional technical guidelines on 

how to orientate the screw in the space are essential to ensure actual benefits and avoid the risk 

of interacting screws (Königshausen et al. 2012).  
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2.3.4 Clinical Complications 

In comparison with compression fixation plates for proximal humerus fracture, the use of 

locking plates significantly increased the probability of success (Kubiak et al. 2006; Seide et al. 

2007; Soileau et al. 2007; Walsh et al. 2006). However, especially for 3- and 4-part fractures, 

recovery of the injury remains difficult to achieve and post-operative failure rates of up to 36% 

have been reported (Kralinger et al. 2014). This is more frequent in osteoporotic patients over 

60 years of age, for which an unexpectedly high rate of screw cut-out and revision surgery is 

observed (Kralinger et al. 2014; Owsley and Gorczyca 2008; Solberg et al. 2009; Sproul et al. 

2011). 

The majority of the complications are screw perforation (9%), varus collapse due to a malunion 

(7-16%), subacromial impingement (5%), avascular necrosis (4%), and bone resorption (2-10%). 

Overall, there is a reoperation rate of around 14% (Kavuri et al. 2018; Owsley and Gorczyca 

2008; Sproul et al. 2011). 

Excessive screw penetration into the bone is referred to as screw cut-out or perforation and is 

the most common reason for early revision surgery (Sproul et al. 2011). There are two different 

types, primary and secondary. Primary screw penetration describes the intraoperative 

placement of the screws into the glenohumeral joint. When the screws penetrate the articular 

Figure 2.10 - Example of variable angle locking system. (left) Design from Zimmer. (right) design from AO. (Cronier 

et al. 2010) 
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surface due to the collapse of the humeral head caused by varus collapse, avascular necrosis, or 

failure of fixation, it is referred to as secondary screw penetration (Kavuri et al. 2018). Primary 

screw cut-out is preventable since it is a technical error made by the surgeon. Secondary screw 

cut-out is more difficult to predict and may be the result of technical errors in fixation or due to 

the type of fracture and subsequent development of avascular necrosis (Sproul et al. 2011). A 

significant risk factor to consider in relation to this type of failure could be the age of the patient 

and the quality of the bone, as shown in the study conducted by Owsley et al. (Owsley and 

Gorczyca 2008).  

Varus collapse of the humeral head is one of the major complications of locking plate fixation of 

proximal humerus fractures. Moreover, this failure can lead to secondary subacromial 

impingement and penetration of the screw into the articular surface of the glenohumeral joint. 

Risk factors related to this failure may be poor alignment of the implant and bone segments, 

lack of medial cortical support and bone quality (Kavuri et al. 2018; Sproul et al. 2011). 

Impingement is another complication observed, especially in varus-angular fractures where 

impingement of the greater tuberosity is more likely. This problem is often symptomatic and 

may require removal of the plate. Subacromial impingement may be the result of intraoperative 

poor plate placement or the consequences of humeral head collapse. This type of failure can be 

anticipated and can be avoided if the implant placement procedure is performed correctly. 

Moreover, an increased risk of hardware impingement has been noted for a high surgical neck 

fracture followed by more proximal plate fixation (Greiwe 2015; Sproul et al. 2011). 

Avascular necrosis (AVN) affects 11% of patients and can occur up to five years after injury 

(Sproul et al. 2011). There are many complications subsequently caused by AVN, including pain, 

poor functional performance, decreased range of motion and arthritis of the glenohumeral joint. 

(Kavuri et al. 2018). This kind of failure is associated with the type of fracture and the stability 

of the fixation, and the risk of incidence increases for three- and four-part fractures (Huri et al. 

2020). Furthermore, AVN can cause bone resorption of the tuberosity, with a reported incidence 
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between 3% and 10% (Miyamura et al. 2021). The size of major tuberosity fragments may 

influence their resorption, increasing the risk when they are smaller than 15% of the humeral 

head, and associated with low bone quality. The study conducted by Miyamura found a higher 

rate of bone resorption for an unreduced greater tuberosity, and the risk of resorption is reduced 

when an optimal reduction is achieved (Miyamura et al. 2021). 

Screw cut out and varus collapse can be related to hardware and bone failures, and their causes 

will be explored in this thesis. With regard to impingement and avascular necrosis, these are 

attributed to kinematic mechanisms and vascularisation within the bone, so these are aspects 

that will not be investigated as part of this thesis. 

2.4 In-Vitro Testing 

Several studies have been found in the literature, which analyse the biomechanical behaviour 

of different plate designs and assess their performance through in vitro experiments. The use 

of in vitro biomechanical studies is relevant when it is necessary to test the safety of a device, 

generally by subjecting it to a maximum load or breakage scenario. Moreover, in vitro testing 

with a bone sample provides a realistic model of clinical conditions, and cadaver models are 

considered the gold standard for evaluating bone failure, including screw cut-out under fatigue 

loading. This approach inherently incorporates factors such as contact mechanics, friction, and 

material properties, along with providing precise control over experimental conditions. In 

contrast, in vivo testing presents certain limitations, as it remains a model. For instance, it does 

not account for biological processes like bone remodelling, and there can be significant 

variability in the quality of cadaveric materials. However, as pointed out in the systematic 

literature review conducted by Jabran et al (Jabran et al. 2018), there is no defined protocol for 

testing fixation plates for humerus fracture and each study considers several conditions in a 

different way, such as loading conditions, load application methods, failure criteria and 

parameters determined to indicate implant performance. 
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The presented assessment of the biomechanical studies is based on the review conducted by 

Jabran et al. (Jabran et al. 2018). One of the main criteria for classifying biomechanical studies 

in the literature is the type of load applied to the humerus, which has been defined as axial, 

torsion, bending and flexion combined with an axial load, which is found to be the most popular 

methodology (Jabran et al. 2018)(Figure 2.11).   

The simplest loading configuration was compression of the bone along its shaft axis, whereby 

the most common setup was to fix the distal portion of the humerus at the shaft and load the 

humeral head. In the majority of cases, the system was considered to have failed when complete 

or irreversible closure of the fracture gap occurred and when a non-linearity in the load-

displacement curve was evident, where the point of failure was also considered to be a point of 

a large load drop. 

The least common type of loading observed was the application of a pure torsion along the shaft 

axis, in which generally the distal humerus was fixed and a moment was imposed on the head 

of the humerus. The most common criterion used to define failure was to measure the angular 

displacement of the bone portion or the recording of interfragmentary motion using 3D motion 

analysis systems. 

Another configuration used was to apply a load along one of the two axes perpendicular to the 

shaft axis resulting in extension/flexion or varus/valgus moment, to simulate a bending 

condition. Different scenarios for load application were presented by Jabran et al., such as direct 

shaft loading, direct head loading, eccentric loading without a rod, eccentric loading with a 

horizontal rod, and eccentric loading with a vertical rod. Generally, the stiffness was calculated 

from the force-displacement curve and failure load of the bone-plate construct.  

The type of loading most frequently reproduced was flexion and axial loading, and almost all 

studies loaded the humeral head. Several of these angled the humerus by approximately 20° of 

abduction to simulate mainly shear loading. In this configuration, some studies based their 
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conditions on the clinical studies conducted by Bergmann et al., in which the glenohumeral 

contact forces were measured in vivo during activities of daily life (Bergmann et al. 2007). 

Typically, 3D motion analysis systems were used to measure humeral and inter-fragmentary 

motion. 

In conclusion, despite the type of loading scenario examined, most studies analyse peak force 

output, stiffness, and fracture gap displacement to investigate construct stability. The 

Figure 2.11 - Four types of loading conditions performed in the literature (Jabran et al., 2018) 
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limitations concerning these biomechanical studies are that they do not analyse the distribution 

of stresses and strains, information that is useful for a deeper understanding of the functionality 

of the fracture fixation plate. Moreover, the tests conducted involve the use of cadaveric 

specimens, so there is a problem of great variability between the specimens, only one implant 

design per specimen can be evaluated and the accessibility of cadaveric specimens is very 

limited. 

2.5 Finite Element Modelling 

An alternative to experimental studies is computational modelling, such as Finite Element (FE) 

analysis. This technique aims to virtually replicate an in vivo or in vitro scenario, allowing a 

potentially fast analysis of the problem and doesn’t require the use of technical equipment and 

samples, which can be expensive and not always available. A powerful advantage of this 

technique is that it allows the measurement of results that cannot be detected experimentally, 

such as the stress and strain distribution in the bone and the implant. Furthermore, when 

developed correctly, FE analysis helps to improve implant design and gives the possibility to 

develop a preoperative plan, with the aim of improving fracture healing and reducing device 

failure (Lewis et al. 2021, 2022). In addition, FE  analysis can contribute to faster research and 

development towards better treatment options and strategies (Castro-Franco et al. 2020; Lewis 

et al. 2021). On the other hand, FE modelling has some disadvantages. One significant 

limitation is its dependence on computer processing power, which can restrict the complexity of 

the models that can be analysed. Additionally, FE modelling requires approximations to 

represent the mechanical properties of bone materials, as well as the boundary and loading 

conditions. These approximations may not accurately reflect the complexities of real-world 

scenarios, potentially impacting the accuracy of the analysis. 

This technique could be advantageous for studying the biomechanics of fixation plates for 

proximal humerus fracture since it would allow not only to estimate the deformations in the 
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bone and the stresses in the implant, but also to easily and quickly modify several parameters 

to analyse different aspects and identify the worst case leading to failure of the device.  

The FE technique consists of discretising a virtual geometry into a mesh and imposing boundary 

and loading conditions. The elements are deformable, unlike rigid-body musculoskeletal models, 

allowing stresses and strains to be calculated.  

The literature does not offer a large number of FE studies on the fixation plate for proximal 

humerus fracture and a total of 32 studies were found. However an increase in the use of this 

technique has been noticed in recent years. This rise in interest could be explained by the 

growing incidence of this type of fracture and the high failure rate of the device. This section 

describes all the works found in the literature through a non-systematic review, that was also 

recently conducted by another research group (Lewis et al. 2021). The table below summarises 

the main features of these studies (Table 2.2) 

In general, these models are designed in the same way, i.e. the humerus is segmented from a 

CT image, then the fracture and implant placement are modelled, the geometry meshed, the 

materials defined and the loading and boundary conditions applied (Figure 2.12) 

First, the reported studies were conducted with the aim of comparing different systems with 

each other, for example, a locking plate and an intramedullary nail, optimising the use of 

Figure 2.12 - Overview of finite element analysis workflow (Lewis et al., 2021) 
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existing locking systems or optimising their design (Chen et al. 2017; Feerick et al. 2013; Li et 

al. 2022; Mischler et al. 2020a). These studies were developed with a subject-specific geometry, 

fourteen studies conducted the analysis on one patient (Chen et al. 2020; Jabran et al. 2019b) 

and the others on multiple patients (Schader et al. 2021; Steiner et al. 2018).   

Continuum FE (cFE) modelling of bone was used in most studies and only one used microFE 

(FE), which allowed to consider the microarchitecture of trabecular bone in the humerus head, 

obtaining accurate stiffness values and estimating bone surface displacement (Steiner et al. 

2018). The lack of this type of study in the literature is explained mainly by the fact that the 

FE modelling of the fixation of the entire proximal humerus requires large computational 

resources even for linear elastic simulations. Indeed, studies have been found in the literature 

that have considered an FE analysis only for a reduced portion of the bone, analysing the 

behaviour at the screw-bone interface. These studies were not included in the literature search 

for this study. Regarding the material properties used in the cFE models, they were mostly 

considered heterogeneous based on Bone Mineral Density (BMD) derived from CT scans 

(Kennedy et al. 2013; Varga et al. 2018), alternatively, they were also simplified as homogeneous 

by assigning different values for cortical and trabecular bone (Jabran et al. 2019b). In general, 

the assignment of material properties based on BMD  makes the model more complex, although 

the correct assumption of the equation between BMD and Young's modulus of bone remains 

problematic, considering that there is no accurate study conducted specifically for the humerus, 

and the relationships used have been derived mostly from those obtained for the femur 

(Helgason et al. 2008). For the FE model, homogeneous properties at the tissue level were 

assumed.  

Regarding the definition of the constraints, focusing on the bone-screw interface, most studies, 

whether FE or cFE, bonded the two structures together, in order to make the simulation easier 

and faster (Maldonado et al. 2003; Steiner et al. 2018; Varga et al. 2018). Only one study imposed 

a friction coefficient between bone and screws, justifying this choice as mimicking the implant 
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inserted without osseointegration (Chen et al. 2017). Two studies analysed the difference 

between the interface of bonded and pseudo-threaded screws, while the first study found no 

difference (Inzana et al. 2016), the second noted that a longer thread increases the bending 

stiffness in varus (Le et al. 2019). However, it has to be considered that the use of threading in 

the simulation increases the computation time significantly, from 2 to about 290 minutes 

(Inzana et al. 2016). Furthermore, a study conducted by MacLeod et al. on the femoral shaft 

concludes that the use of a bonded condition is sufficient if the focus is not on analysing the 

bone-screw interface but on understanding the general behaviour of the system (MacLeod et al. 

2012). 

With respect to the loading conditions, several studies reproduced simplified conditions based 

on experimental setups conducted in previous publications, such as varus bending, torsional 

loading and, the most frequently used condition, bending combined with compression. Other 

studies have mimicked physiological activities. Most of these referred to the clinical study 

conducted by Bergmann to determine the magnitude and direction of the reaction force at the 

glenohumeral joint (Bergmann et al. 2011). Indeed, the most commonly reproduced condition 

consisted of the application of a force on the humeral head with an inclination of approximately 

20° deviation from the axis of the humerus in order to represent a typical force scenario during 

common shoulder activities. None of these studies refers to the worst case, but the magnitude 

of the applied force refers to a functional load. 

Regarding the outputs analysed, the most frequently reported outcome from the analysed 

results was the fracture's gap motion, which aimed to achieve maximum stiffness of the bone-

implant system (Chen et al. 2020; Feerick et al. 2013). Additionally, some studies performed 

experimental analyses to validate the FE models by comparing bone displacement (Jabran et 

al. 2019b; Tilton et al. 2020a). 

Other parameters mentioned in some studies are implant pressure and stress, with the aim of 

minimising them in order to avoid damage to the device. Furthermore, it was observed that high 
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pressures at the implant tips and high shear stresses along the implant-bone interfaces indicate 

a possible pull-out or push-out of the screws for each device (Feerick et al. 2013; Yang et al. 

2015). 

Finally, some studies have measured stress or strain across the entire bone or in bone fraction 

around the tips of the screws (Schader et al. 2021; Tilton et al. 2020b). Reduced stress values 

have been recorded in the presence of the calcareous screw (Yang et al. 2015), with longer screws 

(Kennedy et al. 2013) by inserting cement between the implant and the (Feerick et al. 2013), 

changing the screw angles (Jabran et al. 2018) and selecting more elastic implant materials 

(Feerick et al. 2013). However, these studies have not been experimentally validated since the 

stress within the bone cannot be measured. With regard to strain in bone, the general pattern 

of strain distribution appeared to be independent of individual bone quality and musculoskeletal 

activity, but its magnitudes were mainly influenced by bone quality (Maldonado et al. 2003). In 

a study conducted by Varga et al., the strain measurement around the screw tips was found to 

be an experimentally validated surrogate for the cyclic screw cut-out failure (Varga et al. 2017), 

consequently the resulting model was used to explore the behaviour of the system under 

different conditions. For example, it has been noted that the strain value in the bone can be 

reduced by appropriately selecting the number of screws in the head of the humerus (Inzana et 

al. 2016; Tilton et al. 2020b), by using longer screws (Fletcher et al. 2019a), maximising the 

spread of the screws (Fletcher et al. 2019a) and directing the screws in the humerus head in a 

more proximal direction (Mischler et al. 2020b). Furthermore, it has been observed that the 

correct position of the plate influences the value of strain, reducing its magnitude with a more 

proximal implant position (Fletcher et al. 2019b). 

Furthermore, it can be seen that different parameters have a significant influence on the success 

of the fixation plate for proximal humerus fracture. In this regard, a few research groups have 

conducted several parametric studies to explore the variation of stress and deformation in the 

implant and the bone due to the change of several parameters, such as screw length (Fletcher 



 

47 

 

et al. 2019a), screw configuration and space positioning (Fletcher et al. 2019b; Jabran et al. 

2019b; Mischler et al. 2020b; Tilton et al. 2020b), plate positioning (Fletcher et al. 2019b), 

fracture gap size and cement augmentation configurations (Tilton et al. 2020b; Varga et al. 2018, 

2020). It is crucial to acknowledge that the parametric studies mentioned used a relatively small 

number of subjects for the analysis, which limited the understanding of subject variabilities. 

Indeed, some studies conducted the analysis on just one subject (Jabran et al. 2019b; Tilton et 

al. 2020b), while others included a small number of subjects, ranging from 24 to 47 (Fletcher et 

al. 2019a, 2019c, 2019b; Mischler et al. 2020b; Varga et al. 2018, 2020).  Despite the fact that 

conducting a parametric study is useful to explore different scenarios, this type of study is 

merely informative and does not consider the interaction between parameters, nor the 

probability of observing a specific level of a parameter (Taylor and Prendergast 2015). 
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Table 2.2 - Summary of Finite Element studies that investigated humeral proximal fractures with fracture fixation plates 

PAPER LOADING COND PARAMETERS N SUBJECTS OUTPUT RESULTS 

Maldonado et al. 

2003 

Neutral arm position 

90° abduction 

90° forward flexion 

Bone quality 

Cement augmentation 

N = 2 Bone strain 

Shear stresses at the 

bone-cement interface 

Strain magnitudes affected by bone 

quality 

Strain distribution is independent 

of bone quality and 

musculoskeletal activity 

Feerick et al. 2013 90° abduction Cement augmentation 

The behaviour of four 

different implants 

N = 1 Displacement between 

the fracture fragments 

Shear stress distribution 

in cortical bone 

Cement reinforcement improves 

the plate stability  

Kennedy et al. 

2013 

90° abduction Cement augmentation N = 1 Maximum pressure on 

bone-implant interface 

Implant stress 

Improvement in initial stability 

and decrease in the implant-bone 

interface stress are achieved 

through augmentation 

Čukelj et al. 2014 Abduction 

Adduction 

Axial compression 

Flexion 

Fracture gap angle 

The behaviour of two 

different plates 

N = 1 Bone displacement 

Fracture gap 

displacement 

The angle of the fracture gap does 

not influence the overall 

displacement of the model 

He et al. 2015 Abduction 

Adduction 

Flexion 

Extension 

Axial compression 

Int/Ext rotation 

Bone quality 

The behaviour of two 

different implants  

N = 1 Construct stiffness 

Fracture gap 

displacement 

Von Mises stress 

distribution on the 

implants 

Enhanced stability with an 

additional medial buttress plate 

Yang et al. 2015 90° abduction Fracture gap length 

Calcar screw 

N = 1 Max shear stresses of 

screw-bone interfaces 

Von Mises implant 

stresses 

Calcar screws and medial cortical 

contact improve stability 

Inzana et al. 2016 Varus bending Screw configuration 

Bone-screw interface 

condition 

N = 10 Averaged maximum 

principal strain in peri-

screw bone region 

Calcar screws reduce peri-implant 

bone strain 



 

49 

 

PAPER LOADING COND PARAMETERS N SUBJECTS OUTPUT RESULTS 

Bone-screw interface modelling 

does not affect statistical findings 

Zhang et al. 2016 Axial bending Hole style N = 1 Von Mises stress around 

screw holes and in the 

implant 

Stiffness of the  

construct 

Directional displacement 

within the gap 

It might be more effective to use a 

configuration with separate locking 

and dynamic holes to prevent plate 

fracture 

Chen et al. 2017 Compression Fracture impaction 

Bone quality 

The behaviour of two 

different implants 

N = 1 Bone and implant stress 

Gap displacement 

Fracture impaction enhances 

stability and decreases peak stress 

on the metallic implant and bone in 

cases of both normal and poor bone 

quality 

He et al. 2017 Compression 

Abduction 

Int/Ext rotation  

The behaviour of four 

different implants 

Quality of the bone 

N = 1 Construct stiffness 

Fracture gap 

Stress distribution on 

the implant 

Neck-shaft angle 

variation 

Additional medial plating increases 

construct stability and decreases 

implant stress via buttressing 

Varga et al. 2017 Compression with 

bending 

NA N = 20 Averaged minimum 

principal strain in peri-

screw bone region 

Bones strain around screw tips is 

highly correlated with 

experimental cycles to cut-out 

failure 

Acklin et al. 2018 Adduction Inclination of gliding 

screws 

N = 3 Peak principal 

compressive strains at 

the tip of the four 

proximal screws 

Lower maximum values for the 

gliding plate when comparing a 30° 

screw angle to a 20° screw angle 

and to the PHILOS plate. 

Mendoza-Muñoz et 

al. 2018 

Compression 

 

Loading conditions 

Screws configuration 

Implant material  

N = 1 Construct stiffness 

Von Mises stress in the 

implant 

The use of medial support and steel 

plates decreases implant stress and 
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PAPER LOADING COND PARAMETERS N SUBJECTS OUTPUT RESULTS 

Bone quality Bone deformation bone deformation and increases 

stiffness 

Steiner et al. 2018 Displacement at the 

humeral head 

Bone quality N = 8 Construct stiffness 

Strain distribution in 

bone 

Validated model, good correlation 

with experiments in terms of 

construct stiffness 

Varga et al. 2018 Three experimental 

and three physiological 

loading modes 

Effect of cement 

augmentation of screw 

tips 

N = 47 Averaged compressive 

strain in peri-screw bone 

region 

The biomechanical effect of 

augmentation strongly depends on 

the BMD, more osteoporotic 

samples experience greater benefit 

Fletcher et al. 

2019a 

Three experimental 

and three physiological 

loading modes 

Length of the screws N = 42 Averaged compressive 

strain in peri-screw bone 

region 

Longer screws reduce the risk of 

cut-out failure 

Fletcher et al. 

2019c 

Three experimental 

and three physiological 

loading modes 

Proximal-distal plate 

positioning 

Calcar screws 

N = 26 Averaged compressive 

strain in peri-screw bone 

region 

Plate proximalization and calcar 

screws reduce the predicted cut-out 

failure risk 

Fletcher et al. 

2019b 

Three experimental 

and three physiological 

loading modes 

Screw configuration N = 26 Averaged compressive 

strain in peri-screw bone 

region 

Besides screw number, screw 

spread and calcar screws are the 

most influential on predicted cut-

out failure risk 

Jabran et al. 2019c Bending 

 

Orientation of infero-

medial screws 

Screws length 

N = 1 Load 

Maximum von Mises 

implant stress 

Bone stress around 

screws 

Change of fracture gap 

closure 

The bending stiffness of the bone-

plate construct is primarily reliant 

on the infero-medial screws more 

than any other screws 

Le et al. 2019 Adduction Length of the threaded 

head screw 

N = 1 Construct stiffness 

von Mises stress of 

screws and screw holes 

Threading the head screws caused 

an increase in the mean von Mises 

stress within the corresponding 

screw holes. Longer threading 

increased varus bending stiffness 
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PAPER LOADING COND PARAMETERS N SUBJECTS OUTPUT RESULTS 

Chen et al. 2020 Compression 

20° abduction 

Rotation 

The behaviour of four 

different implants 

Quality of the bone 

N = 1 Construct stiffness 

Fracture gap 

displacements 

Von Mises stress in the 

implants 

Intramedullary strut increases 

medial support and augments the 

stability of lateral plating 

Kim et al. 2020 Abduction Inferomedial 

supporting screws 

group 

Bone quality 

N = 1 Stress distribution in the 

humeral head 

Local maximum peri-

implant stress in the 

bone around proximal 

screws 

In osteoporotic individuals, it is 

advisable to use inferomedial 

supporting screws to replicate the 

stress distribution seen in a non 

osteoporotic bone 

Mischler et al. 

2020a 

Three experimental 

and three physiological 

loading modes 

Plate type 

Screw configuration 

N = 26 Averaged compressive 

strain in peri-screw bone 

region 

PHILOS provides in general better 

stability compared to the 

periarticular plate 

Screw configuration highly 

influential on the predicted cut-out 

failure risk 

Mischler et al. 

2020b 

Three experimental 

and three physiological 

loading modes 

Screw orientation N = 20 Averaged compressive 

strain in peri-screw bone 

region 

Optimized locking screw angles 

significantly decrease predicted 

cut-out failure risk 

Tilton et al. 2020c Compression 

20° abduction 

20° adduction 

Additive 

manufacturing 

N = 1 Strain around the screws 

Construct stiffness 

Relative displacement of 

fragments 

Maximum von Mises 

stress in the plate 

The medial strut attached to the 

plate reduced the predicted cut-out 

risk 

Tilton et al. 2020b 20° abduction Fracture gap 

Screw configuration 

N = 1 Compressive strain 

around the screws 

Construct stiffness 

Relative displacement of 

fragments 

Certain configurations with a lower 

number of screws can be effective 

Using one calcar screw may be 

enough 
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PAPER LOADING COND PARAMETERS N SUBJECTS OUTPUT RESULTS 

Maximum von Mises 

stress in the plate 

Negligible effect of screw 

configuration for well-reduced 

fractures 

Varga et al. 2020 Three experimental 

and three physiological 

loading modes 

Cement augmentation N = 24 Averaged compressive 

strain in peri-screw bone 

region  

Configuration of screw 

augmentation strongly determines 

the mechanical benefit 

Augmentation of calcar screws is 

most beneficial to decrease 

predicted cut-out failure risk 

Schader et al. 2021 Three experimental 

and three physiological 

loading modes 

Screw orientation N = 19 Averaged compressive 

strain in peri-screw bone 

region 

The orientations of the locking 

screws could be optimized for 

specific subjects to reduce the risk 

of cut-out and enhance PHF 

fixation 

Xu et al. 2022 Torsional testing 

0° axial compression 

20° abduction 

20° adduction  

4 different calcar screw 

fixation groups 

N = 1 Averaged compressive 

strain in peri-screw bone 

region 

The average stress in the 

cylindrical bone regions 

around the tips of the 

calcar screws  

The medial support is important 

Muthusamy et al. 

2022 

15°, 40°, 65° and 90° 

abduction and flexion 

35°, 50°, 70°, and 90° 

horizontal flexion  

NA N = 1, synthetic 

bone 

Maximum deformation 

at the fracture site 

Maximum bone stress 

Maximum plate stress 

Mean screw stress 

The stiffness significantly 

increased when the arm was lifted 

at high angles and moved with 

minimal horizontal flexion. At the 

fracture location, the shoulder joint 

experienced greater displacement 

and increased stress on the plate, 

screws, and bones with horizontal 

flexion compared to abduction and 

flexion movements. 
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PAPER LOADING COND PARAMETERS N SUBJECTS OUTPUT RESULTS 

Li et al. 2022 Abduction 

Adduction, 

Flexion 

Extension 

Axial compression 

Int/Ext rotation 

The behaviour of three 

different implants 

N = 1, synthetic 

bone 

Fracture stability 

Rotation stability 

Implant stress 

Lateral support reduced implant 

stress 

Putzeys et al. 2024 Axial bending, 

Torsion bending 

Combined Compression 

and Bending 

Wire pulling 

mechanism 

Screw orientation 

N = 1, synthetic 

bone 

Bone and implant stress The push-pull mechanism results 

in a stress distribution that is more 

uniform 
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2.6 Surrogate models 

As observed in the previous section, several FE models have been developed in the literature to 

analyse the behaviour of the fixation plate for proximal humerus fracture under different 

conditions. Moreover, it is clear that the success of this device is influenced by a large number 

of parameters, such as the positioning of the screws, the type of fracture, and the number of 

screws implanted in the head, etc. In order to consider the interaction and variation of all these 

parameters, the simple use of an FE analysis through a parametric study would be too 

expensive, as the number of simulations required would be too high. For this reason, it would 

be necessary to use more advanced computational techniques (Taylor and Prendergast 2015). 

A more sophisticated approach compared to a parametric study is to develop a Design of 

experiments (DoE), which consists of exploring a fixed number of levels (N) for a large number 

of parameters (P) (Taylor and Prendergast 2015). Mendoza-Muñoz et al. developed 24 models 

from a full-factorial design to evaluate the effects of implant material properties, type of force 

applied, bone density and screw configuration. This is the only Design of Experiment found 

regarding the fixation plate for a proximal humerus fracture, and it did not explore the problem 

in significant detail (Mendoza-Muñoz et al. 2018). Instead, in a more general study conducted 

for femur fracture, the Taguchi method was used, in which only a few dimensions of the plate 

and screw design were taken as parameters. The number of experiments is significantly reduced 

by the Taguchi method, as it controls the level of design factors through the use of an orthogonal 

matrix. Additionally, it statistically assesses the significance of the design factors (Kim et al. 

2011). DOE offers the advantage of considering the interaction of parameters, unlike parametric 

studies. It allows for the effective exploration of multiple parameters and the assessment of 

their individual impact on the expected outcome. However, it does not have a probability 

associated with fixed levels for each parameter (Taylor and Prendergast 2015).  
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Probabilistic analysis is the best method to simultaneously explore multiple variables and 

assess the risk/probability for a given outcome. The simplest method that can be used to conduct 

this kind of analysis is to use Monte Carlo-based sampling, however, it requires the execution 

of a large number of analyses, which makes it a very computationally expensive solution (Taylor 

and Prendergast 2015). One of the techniques that have been used in the analysis of various 

orthopaedic devices to minimise the computational cost associated with probabilistic analyses 

are surrogate models, which are mainly used when the number of parameters is extremely high 

(Taylor and Prendergast 2015).  Surrogate models mimic the behaviour of complex systems, and 

they can be either analytical models or black box models. It has been shown that surrogate 

models are an efficient approach for the design of computationally expensive models such as 

those found in aerospace systems and orthopaedic medical devices (Queipo et al. 2005).  

The basic principle of the surrogate model is to approximate through the input/output data the 

fitness function that describes a given problem, and is generally extremely complex (Jin 2005).  

The development of the surrogate model consists of three stages. Firstly, selecting an 

appropriate sampling technique to provide a training dataset that covers the range of input 

data, then the choice of the most appropriate algorithm for the analysis of the problem and the 

optimisation or training of the model parameters. Finally, the accuracy of the surrogate model 

is evaluated (Queipo et al. 2005). Some applications in the field of computational orthopaedics 

are presented below, in which finite element models have been developed to create input and 

Figure 2.13 - Examples of Latin Hypercube sampling method.  (Leary et al. 2003)  Reprinted by permission of Informa 

UK Limited, trading as Taylor & Taylor & Francis Group. 
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output data in order to build surrogate models. Several sampling methods and surrogate models 

are listed. 

The sampling methods used are different, as shown in the table below (Table 2.3), and the aim 

is to create a dataset that allows the surrogate model to be developed correctly and efficiently. 

One sampling method used is the fractional factorial design, which consists of selecting a subset 

of all possible combinations. Indeed, the size of all potential combinations increases 

exponentially with the complexity of the problem and is not suitable for computational 

orthopaedic biomechanics due to the significant computational time, so it is preferable to use a 

fractional method (O’Rourke et al. 2016). The Taguchi method, a form of fractional factorial 

design, was used to design a fixation plate for a femur fracture and, as previously mentioned, 

this method is based on the orthogonal matrix, and the number of samples can be decreased 

efficiently (Fang et al. 2020). The most frequently found method used for biomechanical 

orthopaedic problems is Latin Hypercube sampling. This method is found to be efficient, 

providing uniform coverage of the sampling space by partitioning it so that the probability of 

each interval is equal (Fitzpatrick et al. 2014; Queipo et al. 2005). It also has the ability to 

provide different sampling plans with very different performances in terms of uniformity, as is 

shown in the example in the figure (Leary et al. 2003) (Figure 2.13). 

The second step consists of choosing the most appropriate surrogate model. Models can be 

parametric (e.g. polynomial regression, Kriging) and non-parametric (e.g. neural networks, 

random forest), the first assumes that the global relationship between inputs and outputs is 

known, while non-parametric models use different types of simple models at different regions 

of the data in order to build a global model (Queipo et al. 2005). The polynomial regression model 

is a methodology that examines the quantitative relationship between a function of interest and 

a fixed number of basis functions (Queipo et al. 2005). A quadratic model was used in a study of 

a fixation device for femur fracture and simplified regression models were implemented 

afterwards since the full quadratic models are complex and can be challenging to interpret (Wee 
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et al. 2017). A simple linear regression approach, in which the output of the surrogate model is 

a linear combination of inputs, was used in a study for a knee implant. This study showed 

promising results regarding the use of a surrogate model in this type of application (Fitzpatrick 

et al. 2014). Another model that was found to be able to capture the data trend efficiently is the 

Gaussian process model, which was used in two different studies on hip implants (Al-Dirini et 

al. 2020; Bah et al. 2011). Furthermore, the Kriging method evaluates the output in an 

unsampled region by calculating a weighted average of the known values of the function in the 

region surrounding the point (Queipo et al. 2005). In a study of an acetabular cup, this model 

gave accurate predictions while significantly reducing the computational time (O’Rourke et al. 

2016). With regard to non-parametric models, the Random Forests method was used for another 

study on Total Hip Arthroplasty and gave satisfactory results. This model consists of a set of 

decision trees, each trained using a bootstrap technique, and computes predictions as the 

average result of all the decision trees. This technique was shown to be reasonably fast to define 

and quick to train (Donaldson et al. 2015). Artificial neural networks are a technique that uses 

a network of functions to model complex, non-linear relationships between input and output 

variables. An example of this was conducted in a study to define the trend in femoral neck strain 

(Taylor et al. 2017).   
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Table 2.3 - Example of biomechanical studies that used surrogate models 

Paper Investigation Sampling method Surrogate model  

Bah et al. 2011 Investigate the statistical effects of implant 

positioning on the initial stability of a cementless total 

hip replacement (THR). 

Latin Hypercube Sampling (LHS) Gaussian model 

Fitzpatrick et al. 2014 Develop a surrogate model that can predict 

micromotion across the entire bone-implant interface 

for a knee replacement 

Latin Hypercube Sampling (LHS) Linear regression 

Donaldson et al. 2015 Develop a surrogate model of Total Hip Arthroplasty 

that can predict contact mechanics and permanent 

deformations  

Latin Hypercube Sampling (LHS) Random Forest 

O’Rourke et al. 2016 Develop a time-efficient method for quantifying FE 

model sensitivity to input parameters and their 

interactions by using a surrogate model. 

Random from Full factorial design Linear and Kriging models 

Taylor et al. 2017 Develop an adaptive neural network (ANN)-based 

surrogate model to predict femoral neck strains and 

fracture loads obtained from a previously developed 

population-based FE model 

Latin Hypercube Sampling (LHS) Adaptive Neural Network 

Wee et al. 2017  Create mathematical models that describe the 

interaction between the parameters of fracture 

fixation constructs and resulting 3D biomechanics 

Design of Experiments Polynomial regression model 

Simplified regression model 

Chatterjee et al. 2019 Generate ANN models from FE data to explore the 

microstrain in femur implants, analysing various 

implant configurations and several bone conditions 

NA Adaptive Neural Network 

(Ziaeipoor et al. 2019) 

Ziaeipoor et al. 2019 

Develop Multivariate Linear Regression-based (MLR) 

surrogate models to lower the computational cost of 

predicting femoral strains during regular activity in 

comparison when compared to finite element analysis 

Latin Hypercube Sampling (LHS) Multivariate Linear 

Regression 

Al-Dirini et al. 2020 Create a computationally efficient, cohort-specific 

surrogate model for predicting the distribution of 

micromotion along the contact surface for various 

implant positions 

Latin Hypercube Sampling (LHS) Gaussian model 
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Paper Investigation Sampling method Surrogate model  

Fang et al. 2020 An orthogonal regression approach is used to find the 

relationships between the internal fixation 

parameters and the biomechanical indices with the 

lowest number of runs, in order to establish surrogate 

models of different biomechanical indices 

Taguchi Quadratic regression 

orthogonal method 

Stowers et al. 2021 Use of an FE and Gaussian process approach to 

determine the stress and strain for skin sutures 

Latin Hypercube Sampling (LHS) Gaussian model 

Dhason et al. 2023 Generate ANN models from FE data to analyse 

implant movements, exploring various material 

compositions of a fracture fixation plate 

NA Adaptive Neural Network 
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2.6.1 Deep Learning 

Deep Learning models are a more complex type of surrogate model. Deep Learning is an 

advanced subset of Machine Learning inspired by the human brain's structure and function. 

These models consist of complex data-driven algorithm structures and have been successfully 

applied in various fields such as aerospace engineering, business, and science applications. Deep 

Learning algorithms have been developed to perform complex tasks such as image recognition, 

natural language processing, decision-making, and drug molecule prediction (Lecun et al. 2015). 

The foundation of Deep Learning is the Neural Network, which consists of connections of basic 

units called neurons, connected to each other in several numbers of layers (López-Monroy and 

García-Salinas 2021). Each neuron receives an input, elaborates the information through linear 

transformations and is sent as output. The information received from multiple inputs is 

elaborated as follows:  𝑧 =  (∑ 𝑤𝑖𝑥𝑖
𝑛
𝑖=1 )  +  𝑏, in which z is the output, x is the input, w is the 

weight value and b is the bias value. After the information is elaborated, usually an activation 

function is applied to the output z, depending on the type of problem. Throughout the training 

process, the loss function is used to indicate whether the model is effectively learning. Different 

types of loss functions are available, and all of them compare the predicted output of the model 

with the actual output. During the training process, the weights and biases of the network are 

updated through the backpropagation process to minimise the error between the predicted and 

actual output (López-Monroy and García-Salinas 2021). The term "Deep" in Deep Learning 

refers to the number of layers of neurons, including an input layer, multiple hidden layers, and 

an output layer. 

There are different types of deep learning models, which vary based on their complexity and 

applications, such as feedforward Adaptive Neural Networks (ANN), Convolutional Neural 

Networks (CNN), and Graph Neural Networks (GNN). 
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Adaptive Neural Networks (ANNs) are one of the simplest types of Deep Learning models, that 

often use a multilayer approach. ANNs usually adopt a feedforward approach, which entails 

mapping a fixed-size input to a fixed-size output. To move from one layer to the next, the inputs 

are sum weighted by a set of neurons from the previous layer, and compute the result through 

a non-linear function (Lecun et al. 2015). These models are usually trained using 

backpropagation functions (Sarker 2021)(Figure 2.14). Several ANN models have been 

developed for combining FE analysis with Deep Learning. These models have been used to 

estimate the accumulation of apparent fatigue damage in bone structures (Hambli 2011), 

predict femoral neck strains and fracture loads (Taylor et al. 2017), and estimate tissue 

adaptation loads based on trabecular bone density distribution (Zadpoor et al. 2013).  

Figure 2.14 - Example of a multilayer neural networks and backpropagation (Lecun et al. 2015)  
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A Convolutional Neural Network (CNN) is a type of Deep Learning algorithm that is commonly 

used for image analysis. CNNs are a more advanced form of Artificial Neural Networks (ANNs), 

and they use convolutional and pooling layers to process 1D and 2D structured data such as 

signals, languages, and images (Lecun et al. 2015). CNNs are frequently used to perform tasks 

such as natural language processing, object detection, image segmentation and medical image 

analysis (Sarker 2021). 

As an example, a CNN model had been developed to classify proximal humeral fractures from 

medical images (Chung et al. 2018). A CNN approach is also used, where the actual data from 

the FE mesh is utilised for training the models. One of the earliest applications of this approach 

was conducted on a 2D aortic structure (Liang et al. 2018). Another relevant work used a CNN 

approach to estimate the stress in an inhomogeneous structure (Krokos et al. 2022b). 

2.6.1.1 Graph Neural Network 

When working with 3D structures, it can be challenging and restrictive to use ANN and CNN 

approaches. Indeed, ANN models typically operate on parameters or features, while CNN 

models require data with a grid-like structure (Jiang and Chen 2023)(Figure 2.15). In FE 

Figure 2.15 - Example of regular grid structure (left) and graph structure (right) (image crafted by the author).  
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applications, these methods are particularly challenging due to the mesh data, which often lacks 

an organised grid structure, therefore, a more flexible methodology is required. Graph Neural 

Networks (GNNs) are deep learning techniques that operate on graph structure.  

This methodology has a wide range of applications in various fields such as social network 

analysis, biology, and computer vision (Zhou et al. 2020). Unlike CNN methods, GNN works on 

non-Euclidean structures and focuses on tasks such as node classification, link prediction, and 

clustering. 

GNNs are a type of neural network that can process and analyse graphs. A graph G = (V; E) is 

defined by a set of nodes V and a set of edges E connecting these nodes (Georgousis et al. 2021).    

GNNs have the unique ability to train on different structures, making them very powerful.  

GNNs apply separate neural network layers to each component of a graph. These layers are 

known as GNN layers. For every node, edge, and global information, the GNN layer is applied 

to elaborate the input data. The output graph of a GNN can be described with updated 

embeddings because the GNN updates each of the node, edge, and global-context 

representations, but does not modify the connectivity of the input graph (Sanchez-Lengeling et 

Figure 2.16 - A single layer of a simple GNN. A graph is the input, and each component (V, E, U) gets updated by a 

multilayer perceptron (MLP) to produce a new graph. Each function subscript indicates a separate function for a 

different graph attribute at the n-the layer of a GNN model. (Sanchez-Lengeling et al. 2021)  
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al. 2021)(Figure 2.16). Overall, GNNs are a very powerful tool for analysing graphs and 

extracting useful information from them.  

According to the literature, only one study was found that utilised a computational model on a 

3D structure using FE analysis combined with a GNN approach. The study was conducted on a 

porous material with the goal of developing a model that could predict the stress in the structure 

Figure 2.17 - Comparison between the Von Mises stress distribution as calculated by FEA (centre) and the Von Mises 

stress distribution as predicted by the GNN (bottom) (Krokos et al. 2024) 
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by altering the porous positions and dimensions. The study yielded positive results, indicating 

that a GNN methodology can be effectively carried out using data collected from FE analysis 

without compromising accuracy (Krokos et al. 2022a)(Figure 2.17). 

2.7 Summary 

Proximal humerus fracture is a common type of fracture in elderly patients. As the geriatric 

population is growing, the incidence of this type of injury is also on the rise. Surgical treatment 

for this fracture typically involves the use of fracture fixation plates and over the years, these 

plates have undergone several design changes to improve their success rate. The most 

significant change was the introduction of locked plates which have threads between the screw 

heads and the holes in the plates. More recently, second-generation fixation plates have been 

developed, which allow for the orientation of the screw to be varied before insertion into the 

bone. Despite these design improvements, the failure rate of fracture fixation plates can be as 

high as 35% which are clinically shown as screw perforation, malunion, subacromial 

impingement and avascular necrosis. The causes of these failures are not yet fully understood. 

Indeed, the bone-implant system is complex and involves multiple variables such as the position 

of the plate, the number of screws in the head of the humerus, and their orientation in space.  

FE analysis is a commonly used computational approach to better understand the behaviour of 

the plate-bone system. However, the studies conducted so far have been limited to a parametric 

analysis with a restricted number of variables. In fact, conducting a parametric analysis with a 

larger number of variables would be too computationally expensive. To overcome this limitation, 

advanced computational methods such as Deep Learning can be used. Deep Learning models 

have been successfully applied to various complex problems such as natural language 

processing, image recognition, and market trend predictions. In biomedical applications, these 

models have been used to predict femoral neck strains, and fracture loads, and classify humeral 

fractures from medical images. 
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Combining Deep Learning with FE analysis has the potential for a more efficient investigation 

of the failure of fracture fixation devices by varying the parameters of interest, implant and 

patient-related. Advanced computational methods are necessary to assess the influence of 

patient and implant-related parameters on bone strain in a more efficient and time-efficient 

manner, in order to understand the cause of failure and eventually improve fracture fixation 

devices. 
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Chapter 3 

3. Assessing screw length impact on bone strain 

in proximal humerus fracture fixation via 

surrogate modelling1  

3.1 Introduction  

Proximal humerus fractures are one of the most frequent fractures in older patients (Sporer et 

al. 2006) and the incidence of this type of injury is expected to increase in the coming decades 

with the increase in the geriatric population (Palvanen et al. 2006). About 15% of proximal 

humeral fractures require surgery (Neer 1987), which usually involves the use of a fixation 

device like a fracture fixation plate. Fracture healing is not always achieved, and a failure rate 

of up to 35% has been reported in the literature (Kralinger et al. 2014). There is yet no clear 

understanding of the causes of these failures. Indeed, the complexity of the bone-implant system 

 

1The study presented in this chapter is the subject of the following paper:  

Mini D, Reynolds KJ, Taylor M. (2024) Assessing screw length impact on bone strain in 

proximal humerus fracture fixation via surrogate modelling. Int J Numer Meth Biomed 

Engng; 40(8):e3840. doi:10.1002/cnm.3840  

https://doi.org/10.1002/cnm.3840
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is determined by the involvement of a high number of variables, some related to the patient, i.e. 

bone quality and type of fracture, and some related to the surgery, i.e. the position of the plate, 

the number and the lengths of the screws in the head of the humerus and their orientation in 

space (Lewis et al. 2021). Several Finite Element (FE) studies have been developed with the aim 

of better understanding the behaviour of the plate-bone system, and the most detailed studies 

have been limited to a parametric analysis with a restricted number of parameters being 

assessed, performing from less than one hundred to up to a few thousand simulations, but not 

covering all the possible configurations for each study (Fletcher et al. 2019a, 2019c, 2019b; 

Jabran et al. 2019b; Mischler et al. 2020b; Tilton et al. 2020b; Varga et al. 2018, 2020). The 

parameters that have been evaluated in these studies are screw length (Fletcher et al. 2019a), 

screw orientation (Jabran et al. 2019b; Mischler et al. 2020b; Schader et al. 2021) and 

configuration (Fletcher et al. 2019c; Mischler et al. 2020a; Tilton et al. 2020b), plate positioning 

(Fletcher et al. 2019b), cement augmentation at the screw tips (Varga et al. 2018, 2020) and 

fracture configuration (Tilton et al. 2020b). Studies have been conducted on a single subject 

(Jabran et al. 2019b; Tilton et al. 2020b) and others on a group of subjects (Fletcher et al. 2019a, 

2019c, 2019b; Mischler et al. 2020b; Varga et al. 2018, 2020). Indeed, from a computational point 

of view, it would be too expensive to develop a full parametric analysis with a large number of 

parameters, considering the time taken to develop and run each FE model.  

Surrogate models are a potential solution as they are used to reduce the computational time in 

complex problems (Jin 2011). The principle of surrogate models is to approximate through input 

parameter values and the corresponding output responses a function that describes a given 

problem (Jin 2005). Kriging, Adaptive Neural Network (ANN) and Gaussian process (GP) based 

models are a few examples of surrogate models that have been used in the past to describe a 

biomechanical problem trained using finite element data, in particular for hip and knee 

implants (Al-Dirini et al. 2020; O’Rourke et al. 2016; Taylor et al. 2017). The ANN technique 

simply consists of a connection of neurons that process and send information to each other, 
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where the mechanism is inspired by the neurons in the brain. It has been demonstrated to be 

accurate for the prediction of femoral strain (Taylor et al. 2017) but hasn’t yet been used to 

explore the impact on the bone of a fracture fixation device. The aim of this study is to develop 

an ANN based surrogate model to analyse the effect on bone strain of the length of the screws 

of a fracture fixation plate implanted in a humeral head of a single subject. We hypothesize that 

the ANN models can predict the variation of bone strain with the variation of a single implant 

parameter in a more cost-effective manner compared to a pure FE analysis. This could be 

particularly useful in more complex analyses in the future. 

3.2 Method 

3.2.1 FE model 

A CT scan of a cadaver of a 61-year-old female from the New Mexico Decedent Image Database 

(NMDID) was used to generate a model of a proximal humerus (Edgar et al. 2020). The geometry 

of the humerus was segmented using Simpleware™ software (Version U-2022.12; Synopsys, 

Inc., Mountain View, USA), and the proximal region of the bone was extracted obtaining a 

segment of 160 mm length. A single fracture was virtually simulated by creating a 5 mm 

horizontal gap at the surgical neck of the humerus. This fracture was categorized as 11-A2.1 in 

the AO classification (Müller et al. 1990). 

A fracture fixation plate (Austofix, Adelaide, Australia) was virtually implanted in the bone and 

secured with seven proximal screws and three distal screws each with a diameter of 3 mm.  

Screws of different lengths were used, based on the distance between the tip of the screw and 

the glenohumeral joint (TJD, Tip to Joint Distance), which was varied between 4, 8, 12 and 16 

mm (Fletcher et al. 2019a), resulting in a total of 47 possible configurations. The plate was 

positioned 4mm posterior to the bicipital groove and 7mm distal to the top of the greater tubercle 

(Figure 3.1). 
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Bone mineral density (BMD) was calibrated within the CT image using the generic Eggermont 

approach (Eggermont et al. 2019).  Elastic properties were determined by converting the local 

BMD value, ρapp, of the CT image to elastic modulus, E, using the conversion equation provided 

by Morgan et al (Morgan et al. 2003). 

𝐸(𝑀𝑃𝑎) = 6850𝜌𝑎𝑝𝑝
1.49 

The mean value of BMD in the humeral head had a value of 66.39 mgHA/cm3 (Kamer et al. 

2016; Krappinger et al. 2012), corresponding to a subject with low density, as has been used in 

other studies (Fletcher et al. 2019c; Mischler et al. 2020b). The plate and the screws were 

titanium with a Young’s modulus of 105 GPa and a Poisson’s ratio of 0.3. A mesh of linear 

tetrahedral elements (C3D4) was generated with Synopsys’ Simpleware™ FE module.  A 

convergence study was performed to assess the appropriate size of the elements, resulting in 

the use of an element edge length between 0.5mm and 1.0 mm.  Details of the convergence study 

Figure 3.1 - Coronal view of the proximal humerus with the plate, showing the TJD (left). Numerations of the screws 

used for this study (right) 
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can be found in the Supplementary Material (Appendix A: Supplementary material for Chapter 

3).  Tied contacts were defined at the bone-screw and screw-plate interface.  Loading conditions 

were defined according to Röderer’s experimental study, reproducing an axial bending scenario 

(Röderer et al. 2013). Specifically, the bone and implant geometry were rotated by 25° around 

the anterior-posterior axis of the humerus, in agreement with Bergmann's clinical study 

(Bergmann et al. 2007). The nodes of the distal portion of the humerus were linked to a node 

positioned external to the geometry, corresponding to the midpoint between the condyles of the 

distal humerus, which was fixed in all directions. On the humeral head, the nodes of a circular 

region with a diameter of 20 mm were linked to a point externally located at 1 mm distance 

from the surface of the humerus, along the axis connecting the centre of the humeral head to 

the centre of the circular region. A vertically oriented force of 100N was applied to this external 

point, which was constrained only to move in the vertical direction. No rotations were allowed 

Figure 3.2 - Loading and boundary conditions 
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(Figure 3.2). These loading and boundary conditions were similarly defined from several studies 

from the AO foundation team, which were considered high quality and indeed a good comparable 

source.  

For the analysis of the finite element models, ABAQUS (Version 6.14-3, Dassault Systèmes, 

Vélizy-Villacoublay, France) standard implicit static solver was used. The FE analysis was run 

on a total number of 1980 simulations, each of which had different screw length configurations, 

as explained in more detail in section 3.2.2.  The minimum principal strain at the contact nodes 

around the proximal screws was computed from the elements data and used as the output data. 

Indeed, it has been shown that the average principal strain around the proximal locking screws 

can be a surrogate parameter of implant failure and estimate construct stability (Varga et al. 

2017). 

In order to speed up the process of the FE analysis, a systematic generation of the FE models 

was developed using Matlab (Mathworks, Natick, MA, USA). Through a customised script, the 

software is able to automatically select the desired parameters, generate the models through 

Simpleware, run the FE analysis on Abaqus and post-process the FE simulation data (Figure 

3.3).  

3.2.2 ANN Model 

The Neural Network toolbox in Matlab (Mathworks, Natick, MA, USA) was used for the 

generation of the surrogate models. Different architectures were analysed, and the one with the 

best performance was selected; a three layers cascade forward network, with two hidden layers 

with 10 and 5 neurons and one linear output layer. The Levenberg Marquart backpropagation 

algorithm was used to train the ANNs (Figure 3.4).  

The ANN was trained using 7 input variables, the TJD of each screw in the humeral head 

(screws 6-12 in Figure 3.1), resulting in a maximum number of possible combinations of 47, for 

a total of 16,384 configurations. Training of the ANN was performed using reduced sample sizes. 
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Latin Hypercube sampling method was used to generate training sets of 50, 100, 200, 500, and 

1000 models, in order to assess the influence of training set size on the ANN performance.  An 

Figure 3.3 - Flow chart showing steps for the surrogate modelling, from the FE modelling, ANN training and 

regression analysis. 
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additional testing set of 100 samples was generated to test the quality of the predictions 

generated by the ANNs.  

16 single-output ANNs were generated, to predict the 50th and the 90th percentiles of the 

principal strain around each screw and around all the screws. One multiple-output ANN was 

also generated, to predict the 50th and the 90th percentiles of the principal strain around each 

screw (Figure 3.3). 

3.2.3 Assessment of surrogate model 

During the generation of each ANN, 80% of the inputs were randomly selected for the training 

of the network, 10% for the verification of the training process and the other 10% were used 

Figure 3.4 - Illustration of the Adaptive Neural Network 
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independently to assess the performance of the network. In order to assess the robustness of the 

networks, this process was performed 100 times, so 100 ANN models were trained and then 

used to replicate the results of the testing sets of 100 samples previously generated (Taylor et 

al. 2017). In order to assess the quality of the networks, the coefficient of determination (R2), 

regression slope and root mean square error (RMSE) were reported, showing the result for the 

best ANN model and a mean of all the 100 ANN models. This process was done for all the ANNs 

trained using the training set of different sizes, and their results were compared to each other 

to define the best sample size (Figure 3.3). 

For the multiple-output ANN, 100 networks were trained, and their outputs were averaged and 

then compared to the results from the testing set (Hashem 1997). 

A further approach was used to test the accuracy of the ANN. An additional testing set of 30 FE 

models was developed, using tip-to-joint distance (TJD) of 6, 10 and 14 mm. The aim of this 

testing was to verify that the ANN can make predictions of configurations with values of inputs 

that are not being used in the original training process. The predictions of the ANN were 

compared with the output values of these FE models with a regression analysis. 

3.2.4 Analysis of ANN predictions 

As the last step, the single-output ANN models with the lowest error were used to make a 

prediction of all the 47 possible configurations, in order to identify the influence of the variation 

of screw length in the humeral head.  

Moreover, once the single-output ANN trained to predict the principal bone strain around all 

the screws was developed, it was used to replicate a study from the literature (Fletcher et al. 

2019a). Specifically, predictions of case studies where all the screws had the same TJD were 

produced, respectively with measures of 4, 8, 12 and 16 mm. Although a different implant was 

used, the aim was to capture the negative impact of shorter proximal screws on the bone 

minimal principal strain around the screws.    
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Analysis of variance (ANOVA) of the ANN model predictions was conducted in order to analyse 

the influence of each input on the output and identify any possible interactions between them. 

The ANOVA test was conducted on the ANN model predictions with a single output, for a total 

of 16 tests. In particular, the ANN models with minimum RMSE value were used. The ANOVA 

test generates the sum of squares for each input and each interaction term, which was then 

expressed as a percentage of the total sum of squares (%TSS) to determine the influence of each 

term.  

3.3 Results 

A total of 1,980 FE simulations were run and each one required a time of 15 minutes, from the 

generation of the mesh to post-processing the results. In Figure 3.5, several configurations are 

displayed as examples illustrating the results from the FE analysis (Figure 3.5).  

The accuracy of the ANN depends on the number of data sets used during its development. The 

ANNs were trained using a training set of 50, 100, 200, 500, and 1000 samples. These models 

were then utilized to predict the bone minimal principal strain of 100 configurations that were 

not included in the training set. The influence of training set size was performed only on the 

two single-output ANNs, one trained for the prediction of the 50th percentile of the minimal 

principal bone strain around all the screws and the second one trained for the prediction of the 

Figure 3.5 - Minimal Principal Strain distribution obtained from the FE analysis for the configurations having TJD 

of 4, 8, 12 and 16 mm 
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90th percentile of minimal principal bone strain around all the screws. As the size of the dataset 

increased, the R2 increased from 0.82 to 0.99 and RMSE dropped from 114.31 to 21.14 µstrain 

for the first ANN when increasing from 50 to 1000 training sets. The same behaviour was 

recorded for the second ANN, as the R2 rose from 0.92 to 0.99 and the RMSE decreased from 

466.14 to 62.78 µstrain (Table 3.1).  

Table 3.1 - Performance of the single-output ANN on the testing set of 100 simulations for the prediction of minimal 

principal strain of the bone around all the screws. The influence of the training set size is shown. Results are displayed 

for the model with the lowest error, while the average of 100 models is shown in brackets. 

Training 

set 

50th percentile min principal strain 90th percentile min principal strain 

R2 Slope RMSE, μ 

strain 

RMSE, % 

strain 

R2 Slope RMSE, μ 

strain 

RMSE, 

% strain 

50 0.827 

(0.612) 

0.985 

(0.912) 

114.321 

(191.280) 

3.501 

(5.858) 

0.923 

(0.772) 

0.924 

(0.852) 

466.149 

(811.366) 

4.208 

(7.323) 

100 0.902 

(0.783) 

0.925 

(0.956) 

81.595 

(129.859) 

2.499 

(3.997) 

0.968 

(0.895) 

0.988 

(0.947) 

298.314 

(551.441) 

2.693 

(4.997) 

200 0.944 

(0.866) 

0.954 

(0.901) 

61.053 

(93.040) 

1.870 

(2.850) 

0.992 

(0.977) 

0.970 

(0.973) 

149.858 

(245.956) 

1.353 

(2.220) 

500 0.991 

(0.974) 

1.006 

(0.981) 

24.242 

(39.243) 

0.742 

(1.202) 

0.998 

(0.996) 

0.991 

(0.992) 

76.358 

(107.761) 

0.689 

(0.973) 

1000 0.993 

(0.986) 

1.005 

(0.955) 

21.146 

(29.201) 

0.648 

(0.894) 

0.999 

(0.996) 

0.999 

(0.997) 

62.786 

(98.562) 

0.567 

(0.890) 

 

Since the RMSE and the R2 values of the ANN trained with 500 and 1000 data were comparable 

in values, all the subsequent presented ANN results were trained with the dataset of 500. An 

additional seven single-output ANNs were developed using the single value of strain around 

each screw as output. A strong correlation is shown in Table 3.2, and the error varied from 24.63 

µstrain to 148.11 µstrain (Table 3.2).  

A multiple-output ANN was trained 100 times, the results were averaged and compared with 

the results from the testing set. A high correlation was shown, with values of error higher but 

similar to the results from the single-output ANNs (Table 3.3). For simplicity, all the further 

analysis were made on single-output ANNs.  In order to capture if the ANN was accurate in the 

prediction of the strain of models with additional values of TJD, once trained, the best ANN was 

used to predict the strain values from the 30 simulations with additional TJD values of 6, 10 
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and 14 mm. Comparing the output from the ANN with the FE models, a high correlation was 

detected (R2 = 0.96-0.99) but with a significantly higher level of error (RMSE = 28.75 - 1190.72 

µstrain) (Table 3.4, Table 3.5). 

Table 3.2 - Performance of single-output ANNs on the testing set of 100 simulations for the prediction of bone strain 

around each single screw. Results are displayed for the model with the lowest error, while the average of 100 models 

is shown in brackets. 

 50th min principal strain 90th min principal strain 

R2 Slope RMSE, μ 

strain 

RMSE, 

% 

strain 

R2 Slope RMSE, μ 

strain 

RMSE, 

% 

strain 

Screw6 0.999 

(0.999) 

0.996 

(0.998) 

56.428 

(68.536) 

0.512 

(0.622) 

0.998 

(0.997) 

0.995 

(0.996) 

148.110 

(196.140) 

0.746 

(0.998) 

Screw7 0.995 

(0.992) 

0.999 

(0.995) 

41.178 

(50.752) 

0.972 

(1.198) 

0.996 

(0.990) 

0.992 

(0.993) 

134.834 

(194.662) 

0.951 

(1.373) 

Screw8 0.991 

(0.976) 

0.999 

(1.003) 

30.691 

(46.777) 

1.202 

(1.832) 

0.996 

(0.989) 

0.994 

(0.979) 

61.120    

(94.161) 

0.973 

(1.500) 

Screw9 0.989 

(0.982) 

0.980 

(0.986) 

24.636 

(31.443) 

1.099 

(1.402) 

0.991 

(0.980) 

1.002 

(0.989) 

79.765   

(118.369) 

1.194 

(1.772) 

Screw10 0.994 

(0.987) 

0.998 

(0.990) 

33.908 

(46.623) 

0.936 

(1.288) 

0.995 

(0.990) 

0.976 

(0.972) 

67.733    

(94.312) 

0.958 

(1.334) 

Screw11 0.989 

(0.981) 

0.987 

(0.975) 

26.398 

(34.430) 

1.270 

(1.656) 

0.995 

(0.989) 

0.998 

(1.003) 

63.335    

(89.686) 

1.029 

(1.458) 

Screw12 0.996 

(0.995) 

0.995 

(0.989) 

49.860 

(58.065) 

1.100 

(1.327) 

0.998 

(0.996) 

0.984 

(0.981) 

77.188    

(97.685) 

0.880 

(1.113) 

 

Table 3.3 - Performance of the multiple-outputs ANN on the testing set of 100 simulations for the prediction of bone 

strain around each single screw 

 50th min principal strain 90th min principal strain 

R2 Slope RMSE, μ 

strain 

RMSE, 

% 

strain 

R2 Slope RMSE, μ 

strain 

RMSE, 

% 

strain 

Screw6 0.999 0.997 58.548 0.532 0.996 0.991 122.889 0.619 

Screw7 0.994 0.997 42.014 0.992 0.995 0.971 72.072 0.508 

Screw8 0.964 0.991 63.079 2.471 0.987 0.985 94.519 1.505 

Screw9 0.986 0.981 28.172 1.257 0.993 0.968 82.310 1.232 

Screw10 0.973 0.962 72.233 1.995 0.987 0.992 97.854 1.384 

Screw11 0.981 0.894 40.536 1.950 0.997 0.980 87.996 1.430 

Screw12 0.996 0.988 54.814 1.236 0.996 0.991 122.889 1.400 
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Table 3.4 - Performance of single-output ANNs on the testing set of 30 simulations with intermediate values of TJD 

for the prediction of bone strain around each single screw. Results are displayed for the model with the lowest error, 

while the average of 100 models is shown in brackets 

 50th min principal strain 90th min principal strain 

R2 Slope RMSE, μ 

strain 

RMSE, 

% 

strain 

R2 Slope RMSE, μ 

strain 

RMSE, 

% 

strain 

Screw6 0.986 

(0.961) 

0.936 

(0.888) 

289.135 

(467.249) 

2.625 

(4.242) 

0.926 

(0.909) 

0.818 

(0.794) 

1190.72 0 

(1306.21) 

5.996 

(6.577) 

Screw7 0.951 

(0.943) 

0.838 

(0.831) 

156.839 

(169.441) 

3.703 

(4.000)  

0.950 

(0.907) 

0.952 

(0.902) 

360.700 

(500.819) 

2.544 

(3.533) 

Screw8 0.988 

(0.871) 

1.029 

(0.925) 

35.817 

(113.457) 

1.403 

(4.444) 

0.952 

(0.920) 

0.953 

(0.901) 

176.880 

(237.332) 

2.817 

(3.780) 

Screw9 0.971 

(0.942)  

0.930 

(0.870) 

38.488 

(55.388) 

1.717 

(2.470) 

0.970 

(0.931) 

0.927 

(0.909) 

133.690 

(197.194) 

2.001 

(2.952) 

Screw10 0.994 

(0.978) 

0.983 

(0.986) 

28.757 

(52.358) 

0.794 

(1.446) 

0.984 

(0.976) 

0.969 

(0.960) 

103.655 

(125.971) 

1.466 

(1.782) 

Screw11 0.971 

(0.923) 

0.981 

(0.944) 

39.292 

(64.391) 

1.890 

(3.097) 

0.982 

(0.970) 

0.994 

(0.973) 

107.441 

(139.388) 

1.746 

(2.265) 

Screw12 0.990 

(0.985) 

1.016 

(1.019) 

71.948 

(89.305) 

1.622 

(2.013) 

0.994 

(0.992) 

0.995 

(1.009) 

104.948 

(130.335) 

1.196 

(1.485) 

 

Table 3.5 - Performance of the single-output ANN on the testing set of 30 simulations with intermediate values of TJD 

for the prediction of bone strain around all the screws. Results are displayed for the model with the lowest error, while 

the average of 100 models is shown in brackets 

 50th min principal strain 90th min principal strain 

R2 Slope RMSE, μ 

strain 

RMSE, 

% 

strain 

R2 Slope RMSE, μ 

strain 

RMSE, 

% 

strain 

All 

screws 

0.959 

(0.929) 

0.961 

(0.943) 

49.815 

(66.923) 

1.526 

(2.050) 

0.959 

(0.945) 

0.868 

(0.858) 

364.228 

(413.789) 

3.288 

(3.735) 

 

The trained single-output ANNs were used to make predictions of principal bone strain around 

all the screws and each screw for all the possible 47 configurations.  The ANN models took less 

than one minute of running time for the generations of the outputs of these configurations, 

significantly less than what an FE model would require. For the ANOVA of each single-output 

ANN model, the %TSS of each input was used to understand how the different screw lengths 

affect the screw strains. The interaction values between the input parameters were not reported 

since their %TSS was approximately zero. Variation in the length of screw 6 was found to be 
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influential, for both the 50th and 90th bone strain around all screws, as well as strain around 

screws 6, screw 7, and screw 9 (Table 3.6, Table 3.7). 

Table 3.6 - % of Total Sum Square – models of 50th percentile principal strain around the screws 

50th percentile 

principal 

strain 

All 

screws 

Screw 

6 

Screw 

7 

Screw 

8 

Screw 

9 

Screw 

10 

Screw 

11 

Screw 12 

Screw6 35.240 99.545 93.692 32.780 93.925 0.084 1.211 0.012 

Screw7 0.378 0.231 4.769 0.568 0.054 0.014 0.430 0.158 

Screw8 11.562 0.014 0.100 50.841 0.024 0.030 0.025 0.002 

Screw9 0.019 0.004 0.138 0.064 3.572 0.026 1.770 0.026 

Screw10 18.584 0.020 0.000 2.884 0.049 86.628 0.178 1.595 

Screw11 6.953 0.017 0.005 0.015 0.463 0.004 83.163 0.019 

Screw12 23.450 0.051 0.352 0.343 0.278 9.725 11.440 96.863 

 

Table 3.7 - % of Total Sum Square – models of 90th percentile principal strain around the screws 

90th percentile 

principal 

strain 

All 

screws 

Screw 

6 

Screw 

7 

Screw 

8 

Screw 

9 

Screw 

10 

Screw 

11 

Screw 12 

Screw6 91.685 98.309 50.495 49.174 82.171 9.997 1.295 1.751 

Screw7 2.351 0.482 42.951 1.167 0.218 0.009 0.951 0.375 

Screw8 0.406 0.068 0.029 44.062 0.018 0.004 0.017 0.017 

Screw9 0.070 0.044 0.276 0.046 12.317 0.019 1.377 0.048 

Screw10 0.531 0.020 0.038 0.290 0.020 75.996 0.103 0.738 

Screw11 0.433 0.001 0.001 0.009 0.018 0.005 91.321 0.099 

Screw12 2.907 0.001 0.086 0.142 0.224 8.395 3.871 96.175 

 

The results are shown by plotting the variation of the mean of the output values analysed with 

the variation of screw length (Figure 3.7, Figure 3.6).  The ANOVA test showed how screw 6 has 

a major impact on the variation of the strain around the screws, especially on the 90th percentile 

strain.  
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In order to give a graphical representation of the results with the variations of the TJD of each 

screw, the Sum of TJD was introduced and used to plot the variation of strain for each 

simulation (Figure 3.8, Figure 3.9).  

Figure 3.8 shows the results of the 50th and 90th percentile principal bone strain around all 

screws for all 16,384 possible configurations. More specifically, the four simulations in which 

the TJD of each screw was fixed by the same size, respectively 4, 8, 12 and 16 mm, were 

highlighted. The results showed that the increase in TJD of all screws simultaneously was 

associated with a decrease in strain around all screws (Figure 3.8)(Fletcher et al. 2019a). Since 

the ANOVA test showed that screw 6 has the biggest impact on the variation of the 50th and 

90th strain, a similar plot shows the variation of strain with the variation of the sum of TJD for 

each simulation, highlighting the value of TJD of screw 6 (Figure 3.9). That showed again how 

an increase of TJD for screw 6 caused an increase of bone strain around all the screws (Figure 

3.9).  
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Figure 3.6 - Mean variation of the 90th principal strain around all the screws with the variation of the length of each 

screw 
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Figure 3.7 - Mean variation of the 50th percentile principal strain around all the screws with the variation of the length 

of each screw 

Figure 3.8 - Variation of 50th (left) and 90th percentile (right) of principal bone strain for all configurations. Focus 

on the configurations in which all the screws have the same TJD 
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Figure 3.9 - Variation of the 50th percentile principal strain (blue) and the 90th percentile principal strain (red) of the 

bone for each length of screw 6 with the variation of the sum of the TJD of all the screws 
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3.4 Discussion 

The motivation behind this study is that FE models can give an accurate prediction, but they 

are time consuming when the aim is to analyse the impact of a large number of parameters, 

making it necessary to run a high number of models. It has been shown that the problem of the 

fracture fixation device for a proximal humeral fracture is challenging because of the high 

number of variables and assessing the effect of all of them together through an FE analysis 

would be too computationally expensive. In this study, we developed a Neural Network model, 

which is a computationally cheap and reliable technique, to reproduce the strain around the 

screws with varying lengths, defined as the TJD of each proximal screw.  

Firstly, the ANN model was shown to be sensitive to the training set size and acceptable results 

were obtained with a N=500 training set. Indeed, using a training set with 500 simulations 

resulted in high R2 and low RMSE values when comparing the ANN predictions with FE results 

for 100 unseen cases (R2=0.96-0.99, RMSE=24.6-148.11 µstrain). Moreover, the ANN was 

trained 100 times on the same data, and the comparison between the best and mean RMSE of 

the ANN predictions showed that the model was stable and not sensitive to the training data.  

The ANN models with the lowest RMSE value were used to make predictions of bone strain 

around all the screws and bone strain around every single screw for 30 additional FE models 

developed having additional values of TJD (6, 10 and 14 mm). The results showed a high level 

of correlation (R2=0.96-0.99) but a higher level of error (RMSE=28.7-1190.72 µstrain), 

suggesting that in order to make more accurate predictions, it is important to use the same 

input values used for the training process (Table 3.4, Table 3.5). 

Examination of the strain values for individual screws, developing a single-output ANN and 

using the one over the 100 ANN models trained with minimum RMSE was shown to be 

equivalent to developing a multiple-output ANN and averaging their results over the ANN 100 

models trained (Table 3.2, Table 3.3). 
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Once the accuracy of the networks was demonstrated, the network was used to make a 

prediction of all 47 configurations, with a running time of a few seconds. In terms of 

computational cost, making the predictions for all possible screw configurations with the ANN 

models was shown to be significantly faster than developing FE models for all the 

configurations. Indeed, it took around 20 minutes to develop, run and extrapolate the output 

from a single FE model. Furthermore, the training time for a single ANN was about one minute, 

and afterwards only took a few seconds to make new predictions. It would not be feasible to run 

47 FE simulations, but this study showed it was possible to run a few FE models in order to 

train and develop an ANN model to use for the predictions of all the configurations. 

Some of the 47 predictions obtained from the ANN model were compared to similar screw 

configurations reported in the literature. Firstly, analysing the values of strain around all the 

screws for the configurations with the same value of TJD for all the screws, the results showed 

that lower values of strain are obtained with longer screws, confirming the results of a previous 

FE study (Figure 3.8) (Fletcher et al. 2019a).  

The advantage of running all the configurations using the ANN models made it possible to 

analyse the impact of each screw on the overall strain distribution and on the strain around 

each individual screw for a single subject. Overall, the results showed that the calcar screw 

(screw 6) had the greatest influence, confirming the importance of carefully choosing the 

appropriate length for this screw (Fletcher et al. 2019a; Gardner et al. 2007). In particular, the 

increase of TJD for screw 6 impacts significantly the strain around all the screws, and the same 

behaviour was reported in Fletcher’s study for the calcar screws (Fletcher et al. 2019a). There 

was a marked increase in the strain when the TJD increased to 12 and 16 mm. Moreover, the 

results from the ANOVA test demonstrated how the variation of the length of screw 6 influenced 

the strain around screws 7, 8 and 9 (Table 3.6, Table 3.7). 

There are several limitations in this study. Firstly, we developed the ANN from the data of only 

one subject. Although other studies found in the literature investigated the variations of implant 
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parameters on a single subject (Jabran et al. 2019b; Tilton et al. 2020b), for completeness of the 

study this methodology should be expanded to a group of subjects. We used non-homogeneous 

material properties, however, the equation used to describe the relation between Young’s 

Modulus and BMD was specific to the femoral head (Morgan et al. 2003), not the proximal 

humerus. The loading and boundary conditions of the FE model were simplified, reproducing a 

simple load case with bonded conditions at the interface between the bone and the implant. 

Previous studies have shown no differences in results between tied and threaded conditions in 

terms of bone strain values around the screws (Inzana et al. 2016). No experimental analysis 

was conducted for the validation of the FE models. However, the value of strain around the 

screw was demonstrated to be a surrogate parameter of cut-out failure (Varga et al. 2017). 

Moreover, the range of values of 50th percentile principal strain around all the screws has shown 

to have comparable values to other FE studies conducted for the fracture fixation plates for a 

proximal humeral fracture (Mischler et al. 2020b; Varga et al. 2017). Lastly, only a single 

variation for the implant was made, the orientation of the screws was assumed to be fixed and 

the fracture configuration was simplified.  

Due to the complexity of the problem and the high computational cost required to conduct an 

FE Analysis, the aim of this study was to demonstrate the use of advanced computational 

techniques for predicting the behaviour of a fracture fixation plate used in treating proximal 

humeral fractures in a simplified scenario. Giving the promising results of the ANN 

methodology and the computational efficiency demonstrated in this study, this gives us 

confidence that the complexity could be increased, by introducing further variables, such as the 

orientation or the configurations of the screws and including patient variability.  Based on our 

experience, we would recommend a staged approach to increasing the complexity, in order to 

understand the impact this has performance of the surrogate model and the information 

required to give accurate predictions. 
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3.5 Conclusion 

This study demonstrated that an ANN model can accurately reproduce the value of strain in 

the bone around the screws just with geometric information from the implant, using a multiple 

and a single output network.  The advantage of this technique is that was possible to use the 

network to make a further and accurate analysis of all the possible configurations in a time 

efficient process. ANN models showed to be computationally inexpensive for new predictions, 

making it a possible tool for future applications, expanding it to assess the influence of more 

implant and bone parameters, such as screw orientation and patient variability.   
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Chapter 4 

4.  Assessing the influence of screw orientation 

on fracture fixation of the proximal humerus 

using finite element informed surrogate 

modelling2 

4.1 Introduction  

Fractures of the proximal humerus are one of the most frequent fractures in older subjects 

(Sporer et al. 2006), accounting for around 10% of all fractures, with a higher incidence for 

women >65 years old and predicted to increase with the increase of the older population 

(McLean et al. 2019; Palvanen et al. 2006). Up to 30% of these fractures are treated surgically 

 

2The study presented in this chapter is the subject of the following paper:  

Mini D, Reynolds KJ, Taylor M. (2024) Assessing the influence of screw orientation on 

fracture fixation of the proximal humerus using finite element informed surrogate modelling, 

Submitted to the International Journal for Numerical Methods in Biomedical Engineering  
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in Australia and the most common surgical procedure is the use of a fracture fixation plate 

(McLean et al. 2019). Fracture healing is not always achieved, with a reported failure rate of up 

to 35% (Kralinger et al. 2014). The design of fracture fixation plates has changed in the past 

decades intending to decrease the failure rate, and recently fracture fixation plates 

incorporating variable angle screws have been introduced (Cronier et al. 2010). In vitro testing 

is the gold standard for evaluating implant fixation biomechanics (Jabran et al. 2018), but it 

becomes impractical due to the high number of parameters to investigate. On the other hand, 

Finite Element (FE) techniques have been used to explore the impact of different variables on 

the bone strain and implant stress for a fracture fixation plate (Lewis et al. 2021), such as the 

position of the plate (Fletcher et al. 2019b), screw length (Fletcher et al. 2019a), bone quality 

(Fletcher et al. 2019c; Tilton et al. 2020b), the number of screws in the head of the humerus 

(Fletcher et al. 2019c; Tilton et al. 2020) and their orientation in space (Jabran et al. 2019b; 

Mischler et al. 2020b, 2022; Schader et al. 2021). However, these studies have been conducted 

on a limited number of configurations (Fletcher et al. 2019a, 2019c, 2019b; Jabran et al. 2019b; 

Mischler et al. 2020b; Schader et al. 2021; Tilton et al. 2020b; Varga et al. 2018, 2020), with 

simulation numbers ranging from a few hundred (Fletcher et al. 2019c, 2019b; Jabran et al. 

2019b; Schader et al. 2021; Tilton et al. 2020b; Varga et al. 2018) to a few thousand (Fletcher et 

al. 2019a; Mischler et al. 2020b; Varga et al. 2020). 

Only a few studies have investigated the impact of screw orientation on predicting mechanical 

failure of the locking plate fixation (Jabran et al. 2019b; Mischler et al. 2020b, 2022; Schader et 

al. 2021). Jabran study focused only on the variation of the orientation of two screws on a single 

subject, generating 538 configurations (Jabran et al. 2019b), and Mischler and Schader's studies 

were both conducted on a group of 19 subjects but varying the screw orientation of the 6 

proximal screws only a one at a time, for a total of 88 configurations per sample (Mischler et al. 

2020b; Schader et al. 2021). Additionally, in a more recent study, the Mischler group conducted 

experimental validation confirming that modifying the direction of specific screws led to 
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improvement in preventing cut-out failure when compared to using the standard fracture 

fixation plate (Mischler et al. 2022). The Jabran study only focused on the angle variations of 

two screws, while the first Mischler and Schader studies explored a considerably reduced 

number of screw angle combinations. Indeed, once a large number of simulations are needed to 

be investigated, FE analysis becomes too time-expensive and a more efficient computational 

technique is needed. Surrogate models can be used to make estimations of a larger number of 

configurations in a quicker way. Surrogate models aim to make a prediction of the fitness 

function of a complex problem with the use of input and output data (Jin 2005), reducing the 

computational effort. Specifically for biomechanical applications, Kriging (O’Rourke et al. 2016; 

Takian et al. 2021), Adaptive Neural Network (ANN) (Mini et al. 2024; Taylor et al. 2017) and 

Gaussian process (GP) (Al-Dirini et al. 2020; Bah et al. 2011) based models are some examples 

of surrogate models that have been used with a combination of FE data to describe problems 

with hip and knee implants. ANN, which consists of a network of interconnected neurons that 

exchange information with one another, has been shown to be a precise and effective technique 

(Taylor et al. 2017). Recently, our research group successfully developed an FE-informed ANN 

model to accurately predict bone strain with varying screw lengths for a proximal humeral 

fracture with a fracture fixation plate. The results of this study have demonstrated a high level 

of accuracy and have shown great promise for the application of ANN models in this field (Mini 

et al. 2024). The aim of the current study is to develop an FE-informed ANN model to analyse 

the effect of screw orientations on bone strain for a fracture fixation plate implanted in a 

humeral head, reducing computational time and exploring a wide range of possible 

configurations. A hypothesis of this study is that the variation of the angle of the calcar screw 

has a higher impact than the other screws, as has been shown in other studies (Mischler et al. 

2020b). 
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4.2 Methods 

In order to investigate how screw orientation affects bone strain, various FE models were 

generated by changing the direction of the screws in the proximal-distal and anterior-posterior 

directions. The input and output data from these models were then used to train different ANN 

models and their accuracy was analysed.  

4.2.1 FE model 

For the generation of the FE analysis, one CT image of a cadaver of a 61-year-old female donor 

was collected from the New Mexico Decedent Image Database (NMDID) (Edgar et al. 2020). The 

right humerus was manually segmented using Simpleware™ software (Version U-2022.12; 

Synopsys, Inc., Mountain View, USA) and the shaft was cut at 160 mm length from the humeral 

head.  A single cut with a 5 mm gap at the surgical neck was virtually performed, representing 

Figure 4.1 - Numerations of the screws used for this study (left).  Possible orientation of the screw tips in distal-

proximal and posterior-anterior direction (centre). The head of each screw was fixed in the neutral position (0°- 0°), 

and the tip of the screw was able to move from the neutral position with increments of 5° in the distal-proximal and 

posterior-anterior direction. Loading and boundary conditions (right) , image from (Mini et al. 2024)  
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a single two-part proximal humeral fracture AO/OTA 11-A2.1 (Foundation AO 2014). The bone 

fracture was virtually fixed using a fracture fixation plate (Austofix, Adelaide, Australia) 

(Figure 4.1). The plate was positioned 4 mm posterior to the bicipital groove and 7 mm distal to 

the top of the greater tubercle, and it was secured in place using seven proximal screws and 

three distal screws, each represented as a cylinder of 3 mm diameter. The orientation of the 

seven proximal screws was varied in the proximal-distal and anterior-posterior direction from 

the neutral position (0° - 0°) (Figure 4.1), which was defined as the standard configuration of 

the screws. The length of each of the screws was varied in order to have a fixed Tip to Joint 

(TJD) distance of 8 mm (Fletcher et al. 2019a), defined as the distance between the tip of the 

screws and the glenohumeral joint. The actual lengths of the screws varied based on the 

orientation of the screws. All materials were defined as linear elastic with a Poisson’s ratio of 

0.3. The material properties of the bone were defined as heterogenous, in which the bone mineral 

density (BMD) was derived from the CT image using the phantomless calibration methodology 

proposed by Eggermont et al. (Eggermont et al. 2019). The elastic modulus was converted from 

the local BMD using the Morgan et al. (Morgan et al. 2003) equation: 𝐸(𝑀𝑃𝑎) = 6850𝜌𝑎𝑝𝑝
1.49.  The 

mean value of BMD in the humeral head had a value of 66.39 mgHA/cm3, comparable to the 

range values found in the literature (Kamer et al. 2016; Krappinger et al. 2012). The screws and 

plate were defined as titanium alloy, with a Young’s modulus of 105 GPa. Synopsys’ 

Simpleware™ FE module was used to generate a mesh of the model with linear tetrahedral 

elements (C3D4), having an element edge length between 1 and 0.5 mm. Bone-screw and screw-

plate interfaces were set as tied contact. The models were subjected to a vertical force, 

reproducing the axial bending scenario according to Röderer et al experimental study (Röderer 

et al. 2013). In agreement with Bergmann’s clinical study (Bergmann et al. 2007), the model 

geometry was rotated by 25° around the anterior-posterior axis of the humerus. An external 

point that represented the midpoint between the condyles of the distal humerus was fixed in all 

directions and connected to the nodes of the distal portion of the humerus. A second external 
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point, located at 1 mm distance from the surface of the humeral head along the axis connecting 

the centre of the humeral head to the centre of the circular region, was linked to a circular region 

with a diameter of 20 mm located on the humeral head. A vertical force of 100N was applied on 

the second external point, free to move only in a vertical direction (Figure 4.1) and no rotations 

were allowed. Moreover, these loading and boundary conditions were similarly defined from 

several studies from the AO foundation team, which were considered high quality and indeed a 

good comparable source. The minimum principal strain of the bone was evaluated around the 

surface proximal screws, as this has been shown to be a surrogate parameter of failure (Varga 

et al. 2017). Indeed, from Varga’s study it had been shown that the minimal principal strain 

around the screws can be used as a surrogate parameter to predict cut-out failure of the implant. 

A standard implicit static analysis of the models was run in ABAQUS (Version 6.14-3, Dassault 

Systèmes, Vélizy-Villacoublay, France). An automated workflow was developed using Matlab, 

as a way of speeding up the FE model generation, solution and post-processing pipeline. 

 The process included the generation of the models with the meshing process in Simpleware, 

setting of the boundary and loading conditions in Matlab (Mathworks, Natick, MA, USA), the 

running and output analysis using Abaqus and the post-processing of the data. Moreover, an 

automated process of selecting the screw length imposing a TJD of 8mm (Fletcher et al. 2019a) 

and detecting any screw collision in the model was developed and integrated into the workflow 

(Figure 4.2).  
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Figure 4.2 - Flow chart showing steps for the surrogate modelling, from the FE modelling, ANN training and 

regression analysis. 
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4.2.2 Dataset Development 

The proximal-distal and anterior-posterior orientation of the seven proximal screws was varied 

from the standard position, which corresponds to the original position of screws in the plate 

configuration (0° - 0°). In particular, the location of the head of each screw was fixed and the 

position of their tips was changed from the conventional position.  For both directions, the tip 

was positioned from a range of -10° and 10°, varying with an increment of 5°. Therefore, the 

total number of possible configurations was 257. To reduce this number, three training sets of 

different sizes were developed with a Latin Hypercube sampling technique, generating training 

sets of 500, 2000, and 5000 FE models. Some simulations failed due to screws colliding when 

changing direction, resulting in 92, 370, and 879 successful simulations for each group, 

respectively. In addition, a final training set size of 7500 was considered as the sum of all the 

training sets, with a total of successful simulations of 1341. To test the surrogate models once 

developed, a testing set size of 500 simulations was created, which resulted in 91 successful 

simulations after removing invalid models due to screw collisions. The training datasets were 

used to develop and train three different ANNs, one for the detection of screw collision and the 

other two for the prediction of the principal minimum strain of the bone at the strain surface. 

All the ANNs were developed using the Neural Network toolbox in Matlab (Mathworks, Natick, 

MA, USA)(Figure 4.2). 

4.2.2.1 ANN for detection of screw collision 

The first ANN developed was a classification type network, developed in order to detect if any 

screw of a model was colliding with any others. The network used was structured with a single 

hidden layer composed of 25 neurons and one linear output layer, and the training algorithm 

used was a Levenberg-Marquard backpropagation function. The network was fed with the 

information of the anterior-posterior and proximal-distal position of each screw, for a total of 14 

inputs. The output information was a binary representing the interaction or non-interaction of 

the screws. This ANN will be addressed as ANNcollision. 
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4.2.2.2 ANN for prediction of bone strain 

The second and the third ANNs were composed of two hidden layers, with 10 and 5 nodes 

respectively, and one linear output layer. The input used to train the second model were the 

orientation of the screws and the information of screw collision, for a total of 16 inputs. The 

outputs used were the medial (50th) and 90th percentile of the minimal principal strain of the 

bone at the surface of the screws. In particular, ANN models were developed to predict the 

minimal principal strain of the bone around each single screw and around all the screws. A 

Bayesian regularization backpropagation function was used to train the ANNs. This ANN will 

be addressed as ANNstrain_16. 

The third ANN was developed for the prediction of bone strain around the screws. The 

properties were the same as the ANNstrain_16, with the difference in the number of input data 

used to feed the model. Only information of screw orientation was used, without the information 

of collision of the screws, for a total of 14 inputs. This ANN will be addressed as ANNstrain_14. 

4.2.3 Assessment of ANN 

During the training process of all the ANNs, the training sets data were divided into 80% for 

the training, 10% for the validation and 10% for the test. Therefore, as the training samples 

were chosen randomly at the beginning of the training process, the training process of each case 

was conducted 100 times, generating 100 unique ANNcollision, ANNstrain_14 and ANNstrain_16 models, 

in order to assess the robustness of the networks. Those models were then used to make 

predictions of the 91 unseen cases previously generated for the testing set, and the accuracy of 

their prediction was evaluated. In particular, for the ANNcollision the accuracy was defined by 

analysing the percentage of true prediction of the collision. For the ANNstrain_16 and ANNstrain_14, 

a regression analysis was conducted reporting a coefficient of determination (R2), regression 

slope and root mean square error (RMSE), to assess the quality of the predictions of the ANNs 

of the minimal principal strain of the bone around all the screws and the single screws. (Figure 

4.2) 
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4.2.4 Analysis of ANN predictions 

After the influence of the training set size was assessed, the best trained ANNcollision, ANNstrain_14 

and ANNstrain_16 were used to make predictions of a reduced full factorial scenario, in which 

screws were able to vary in proximal-distal and anterior-posterior direction of only +10° and -

10° from the neutral position. For this setup, the total number of possible configurations was 97. 

(Figure 4.2) An analysis was conducted to compare the accuracy of predictions between the use 

of ANNcollision combined with ANNstrain_16 and ANNstrain_14. To do so, an additional testing set of 

500 simulations was defined through Latin Hypercube sampling method in which the TJD of 

the seven proximal screws had randomly distributed values of -10°, 0° and 10°, having a 

successful 96 simulations without collision. A two-sample t-test was conducted between the FE 

results and their predictions using ANNcollision with ANNstrain_16, and their predictions using only 

ANNstrain_14.  

Lastly, a comparison was made between the 50th and 90th percentile principal bone strain 

around the calcar screw (Screw 6) using the results of the full factorial generated with the 

ANNcollision with ANNstrain_16, and the 50th and 90th percentile principal bone strain around the 

calcar screw (Screw 6) obtained from the training sets of 500, 2000, 5000, and 7500 FE models. 

This comparison was focused on the calcar screw as it has been shown to be highly influential 

(Mischler et al. 2020b). The purpose of this comparison was to determine whether there was a 

difference in the range of strain distribution between the predictions made on the full factorial 

space and the training sets. To test this, a t-test was conducted with a statistical significance 

level of p < 0.001. 

4.3 Results 

A total of 1,528 FE simulations were run and each one took between 15-20 minutes, from the 

generation of the mesh to post-processing the results. The training time of each ANN was a few 

minutes and, once trained, the ANNs prediction time of new configurations was just a few 
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seconds. In Figure 4.3, several configurations are displayed as examples illustrating the results 

from the FE analysis (Figure 4.3).  

Firstly, the influence of the training set size was assessed for ANNcollision and ANNstrain_16. 

For the prediction of collision, a percentage of true and false prediction has been reported, 

showing a minor improvement from the smallest to the largest training set, with a true best 

prediction from 82.6% to 84.4% (Table 4.1). 

Table 4.1 - Performance of the ANNcollision on the testing set of 91 successful simulations for the prediction of collision 

of the screws. The influence of the training set size is shown. Results are displayed for the model with the best accuracy, 

while the average of 100 ANN models is shown in brackets 

Training set size 

(Reduced size) 

Prediction of screw collision 

% Prediction % Error 

500 (92) 82.60 (79.80) 17.40 (20.19) 

2000 (370) 83.00 (80.75) 17.00 (19.25) 

5000 (879) 83.40 (81.19) 16.60 (18.80) 

7500 (1,341) 84.40 (81.75) 15.60 (18.24) 

 

Regarding the prediction of principal bone strain around the screws, the influence of the 

training set size was assessed on the ANNstrain_16 predicting the 50th and the 90th percentile 

principal bone strain around the screw surface. The ANNstrain_16 demonstrated an improvement 

in accuracy using the larger training set size of 7500, reaching an R2 value of 0.98 and a RMSE 

of 129.30 μstrain for the prediction of 50th percentile principal strain, and an R2 value of 0.99 

and a RMSE of 129.26 μstrain for the prediction of 90th percentile principal strain (Table 4.2). 

Figure 4.3 – An example of Minimal Principal Strain distribution obtained from the FE analysis for a few 

configurations 
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Results of 50th and the 90th percentile principal bone strain predictions from the ANNstrain_14 

were reported as well, showing respectively a best R2 of 0.91 and 0.92 and lowest RMSE of 95.40 

and 306.35 μstrain (Table 4.3). 

Table 4.2 - Performance of the ANNstrain_16 on the testing set of 91 successful simulations for the prediction of bone 

principal strain around the screws. The influence of the training set size is shown. Results are displayed for the model 

with the best accuracy, while the average of 100 ANN models is shown in brackets 

 

Table 4.3 - Performance of the ANNstrain_14 on the testing set of 91 successful simulations for the prediction of bone 

principal strain around the screws. Results are displayed for the model with the best accuracy, while the average of 

100 ANN models is shown in brackets 

Training set 

size (Reduced 

size) 

50th percentile min principal strain 90th percentile min principal strain 

 R2 Slope RMSE, μ 

strain 

RMSE, % 

strain 

R2 Slope RMSE, 

μstrain 

RMSE, % 

strain 

7500 (1,341) 0.91 

(0.84) 

0.90 

(0.85) 

95.40 

(124.116) 

2.75 

(3.62) 

0.92 

(0.87) 

0.95 

(0.92) 

306.35 

(392.85) 

5.49 

(7.04) 

 

After having assessed the influence of training set size, additional ANNs were generated and 

trained using the input and output data from the training set with a size of 7500 to predict the 

50th and 90th percentile principal strain around each single screw. The trained ANNstrain_14 and 

ANNstrain_16 were used to make predictions of the unseen testing dataset, resulting in a high 

value of R2 and a low level of RMSE for all of them (Table 4.4, Table 4.5).  In particular, the 

model ANNstrain_16 showed a high level of R2 (R2 > 0.99) and low RMSE, ranging between 30.81 

and 66.70 μstrain for the 50th percentile of strain and between 62.17 and 144.30 μstrain for the 

Training set 

size (Reduced 

size) 

50th percentile min principal strain 90th percentile min principal strain 

 R2 Slope RMSE, 

μstrain 

RMSE, % 

strain 

R2 Slope RMSE, 

μstrain 

RMSE, % 

strain 

500 (92) 0.97 

(0.97) 

0.96 

(0.95) 

161.82 

(176.75) 

4.72 

(5.15) 

0.97 

(0.97) 

0.94 

(0.93) 

449.99 

(459.19) 

8.06 

(8.23) 

2000 (370) 0.98 

(0.97) 

0.98 

(0.98) 

140.92 

(159.50) 

4.11 

(4.65) 

0.99 

(0.98) 

0.99 

(1.00) 

209.71 

(374.50) 

3.76 

(6.71) 

5000 (879) 0.98 

(0.98) 

0.98 

(0.98) 

129.49 

(138.18) 

3.77 

(4.03) 

0.99 

(0.99) 

0.99 

(0.99) 

160.07 

(211.98) 

2.87 

(3.80) 

7500 (1,341) 0.98 

(0.98) 

0.99 

(0.99) 

129.30 

(135.03) 

3.77 

(3.93) 

0.99 

(0.99) 

1.00 

(0.99) 

129.26 

(168.66) 

2.32 

(3.02) 
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90th percentile of strain (Table 4.4). On the other hand, the model ANNstrain_14 had a lower 

accuracy than the ANNstrain_16. For the prediction of the 50th percentile of strain, the R2 range 

was 0.94-0.99 and the RMSE ranged between 69.66 and 163.52 μstrain. The regression with the 

90th percentile of strain had a R2 value between 0.84 and 0.98, and a RMSE value between 

157.45 and 461.81 μstrain (Table 4.5). 

Table 4.4 - Performance of the ANNstrain_16 on the testing set of 91 simulations for the prediction of bone strain around 

each single screw.  Results are displayed for the model with the best accuracy, while the average of 100 ANN models 

is shown in brackets 

 50th percentile min principal strain 90th percentile min principal strain 

 R2 Slope RMSE, μ 

strain 

RMSE, % 

strain 

R2 Slope RMSE, μ 

strain 

RMSE, % 

strain 

Screw6 0.999 

(0.999) 

1.00 

(1.00) 

66.70 

(89.25) 

0.65 (0.88) 0.999 

(0.988) 

1.00 

(1.01) 

144.30 

(372.83) 

0.78 (2.03) 

Screw7 0.998 

(0.997) 

1.00 

(1.00) 

57.24 

(67.08) 

1.12 (1.31) 0.997 

(0.99) 

0.98 

(0.99) 

205.28 

(251.17) 

1.31 (1.60) 

Screw8 0.996 

(0.992) 

0.99 

(0.99) 

41.59 

(55.62) 

0.99 (1.32) 0.996 

(0.994) 

1.00 

(1.00) 

108.09 

(143.62) 

0.77 (1.02) 

Screw9 0.997 

(0.996) 

1.00 

(1.00) 

40.09 

(48.57) 

1.37 (1.65) 0.992 

(0.985) 

0.99 

(0.99) 

184.04 

(239.23) 

2.39 (3.11) 

Screw10 0.999 

(0.998) 

1.00 

(1.00) 

32.47 

(42.06) 

0.69 (0.89) 0.998 

(0.994) 

1.00 

(1.00) 

77.58 

(121.77) 

1.01 (1.58) 

Screw11 0.999 

(0.998) 

1.00 

(1.01) 

24.02 

(31.04) 

0.83 (1.07) 0.997 

(0.993) 

1.00 

(1.00) 

84.16 

(115.75) 

1.30 (1.78) 

Screw12 0.999 

(0.999) 

1.00 

(1.00) 

30.81 

(37.04) 

0.74 (0.89) 0.999 

(0.999) 

1.00 

(1.00) 

62.17 

(81.87) 

0.76 (1.01) 
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Table 4.5 -Performance of the ANNstrain_14 on the testing set of 91 simulations for the prediction of bone strain around 

each single screw. Results are displayed for the model with the best accuracy, while the average of 100 ANN models is 

shown in brackets. 

 

Afterwards, the best ANNs trained with 7500 FE data were used to make a prediction of a full 

factorial scenario, of 97 possible configurations, in which the screw could vary in proximal-distal 

and anterior-posterior direction of ±10° from the neutral position. The ANNs were used to make 

predictions of 50th and 90th percentile principal bone strain around all the screws and around 

every single screw of a new testing set.   

A t-test was conducted between the FE predictions of an unseen dataset, that was set as a 

control group, their predictions using ANNcollision with ANNstrain_16 and their predictions using 

only ANNstrain_14. No significant difference was found between the FE data and the predictions 

using ANNcollision with ANNstrain_16 (p>0.05). Significant differences (p<0.05) were found between 

the FE data and the ANNstrain_14 predictions of 50th percentile principal bone strain around screw 

 50th percentile min principal strain 90th percentile min principal strain 

 R2 Slope RMSE, μ 

strain 

RMSE, % 

strain 

R2 Slope RMSE, μ 

strain 

RMSE, % 

strain 

Screw6 0.989 

(0.973) 

1.00 

(0.98) 

163.52 

(237.73) 

1.62 (2.35) 0.979 

(0.946) 

0.97 

(0.96) 

371.37 

(583.09) 

2.02 (3.17) 

Screw7 0.954 

(0.872) 

0.93 

(0.88) 

123.57 

(188.60) 

2.42 (3.69) 0.970 

(0.874) 

0.92 

(0.86) 

461.81 

(799.31) 

2.95 (5.10) 

Screw8 0.969 

(0.915) 

0.99 

(0.90) 

102.98 

(149.99) 

2.44 (3.56) 0.981 

(0.946) 

0.98 

(0.96) 

264.68 

(388.92) 

1.87 (2.75) 

Screw9 0.946 

(0.904) 

0.95 

(0.91) 

91.422 

(118.89) 

3.11 (4.05) 0.846 

(0.694) 

0.88 

(0.75) 

423.15 

(590.49) 

5.50 (7.67) 

Screw10 0.987 

(0.965) 

0.97 

(0.97) 

72.036 

(109.05) 

1.52 (2.30) 0.973 

(0.923) 

1.00 

(0.95) 

174.80 

(284.37) 

2.28 (3.70) 

Screw11 0.979 

(0.954) 

0.97 

(0.96) 

63.485 

(81.61) 

2.20 (2.82) 0.970 

(0.943) 

0.97 

(0.95) 

182.96 

(241.93) 

2.82 (3.37) 

Screw12 0.992 

(0.981) 

1.01 

(1.01) 

69.669 

(94.53) 

1.68 (2.28) 0.985 

(0.936) 

1.02 

(0.98) 

157.45 

(250.67) 

1.93 (3.08) 
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6, screw7, and screw 8, and 90th percentile bone strain around all the screws, screw6, screw8, 

screw 9 and screw 10.  

Figure 4.4 - Prediction of 50th percentile principal bone strain around all the screws. Each heatmap represent the 

percentage of variation of strain for each screw from its neutral position (* indicates p < 0.001). 
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Therefore, ANNcollision with ANNstrain_16 was used to make predictions of principal bone strain 

around the screws of all the 97 possible configurations since there was no statistical difference 

with the FE results. The influence of the orientation of each screw was assessed, showing 

Figure 4.5 - Prediction of 90th percentile principal bone strain around all the screws. Each heatmap represent the 

percentage of variation of strain for each screw from its neutral position (* indicates p < 0.001). 
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significant difference (p<0.001) in most of the changed positions of their tips from the neutral 

position (Figure 4.4, Figure 4.5). In particular, screw 6, the one considered the calcar screw, had 

the biggest impact on variation of 90th and 50th percentile of bone strain around all the screws 

showing variations between -12,78% and +36.45% (Figure 4.4, Figure 4.5). Influence of variation 

of orientation of screw 6 on the strain of the bone around itself has been reported, showing 

variations between -22.49% and +45.06% (Figure 4.6).   

As the calcar screw has a significant impact on the biomechanical outcomes of fracture fixation 

plates, a final comparison between the variation of the 50th and 90th percentile principal bone 

strain around the calcar screw (Screw 6) predicted with the use of the ANNcollision with 

ANNstrain_16, and the variation of the same output predicted by the FE models for the training 

sets of 500, 2000, 5000 was conducted. There was a statistical difference (p<0.05) between the 

results from each of the training sets and the full factorial results (Figure 4.7), which show a 

higher range of bone principal strain.  

Figure 4.6 - Prediction of 50th and 90th percentile principal bone strain around screw 6 with the variation of orientation 

of screw 6. Each heatmap represent the percentage of variation of strain for each screw from its neutral position (* 

indicates p < 0.001). 
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4.4 Discussion 

The aim of this study was to develop a surrogate model, using FE data, in order to make efficient 

predictions of bone strain of a fractured humerus with a fracture fixation plate as a result of 

varying the orientation of the proximal screws.  A new generation of fracture fixation plates 

with variable angle screws has been introduced in order to improve the outcome of fracture 

healing but a worst or optimal configuration hasn’t yet been identified when changing the 

orientation of the proximal screws. Several FE studies have been conducted to investigate the 

impact of variable angle screws on the biomechanical performance of the fracture fixation plate, 

but they explored only a reduced number of configurations (Jabran et al. 2019b; Mischler et al. 

Figure 4.7 - Variation of 50th and 90th percentile bone principal strain for the ANN predictions of the full factorial 

scenario and the FE predictions of the training set of 500, 2000, 5000, and 7500 data. Statistical significance (p<0.05) 

is shown between 
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2020b; Schader et al. 2021), or they investigate the impact of variable angle of only two proximal 

screws. Indeed, conducting an FE analysis on all possible configurations is not feasible due to 

the high number of possible combinations. A methodology combining FE data with ANN has 

been developed, with the aim of making accurate and faster predictions of bone strain around 

the screws, which had been shown to be a screw cut-out failure predictor (Varga et al. 2017). In 

a previous study, we developed a similar methodology to investigate the impact of variations in 

screw length on the humeral strain, and our findings confirmed the efficacy of using an ANN 

approach trained with FE data (Mini et al. 2024). For this particular biomechanical problem, 

two ANN have been developed, one for the prediction of screw collision and another one for the 

prediction of screw strain. The ANNcollision had a maximum accuracy of 84.4%, which did not 

improve significantly with the increase in training set size. Two different training networks 

were developed for the prediction of principal bone strain, one having 14 input data (information 

of screw orientation) and the other having 16 input data (information of screw orientation and 

information of screw collision). ANNstrain_16 showed a higher level of accuracy for the prediction 

of the unseen data from the testing set, especially on the prediction of the minimal principal 

strain of the bone around each single screw (Table 4.2, Table 4.3, Table 4.4), showing that the 

information of screw collision used as input improves the prediction of bone principal strain 

while the screw orientation is varied. Overall, the ANNstrain_16 showed to be an accurate model 

for the prediction of bone principal strain around the screws. 

Regarding the prediction of the full factorial scenario, a purely FE approach would have taken 

an impractical 66,430 CPU days, with each single simulation lasting a maximum of 20 minutes. 

However, combining FE analysis and ANN considerably reduced the running time. Specifically, 

to produce the full factorial analysis the ANN was trained with 7500 FE simulations, which 

only took 18.7 CPU days. Moreover, training the ANN models and using them thereafter only 

took a few minutes. 



 

108 

 

Predictions of a full factorial scenario of 97 simulations were made using ANNcollision with 

ANNstrain_16, in order to assess the influence of screw orientation on bone principal strain on the 

full factorial spectrum. The principal bone strain predicted by the ANNcollision with ANNstrain_16 

was not significantly different from the FE data of the unseen testing set, unlike the case with 

ANNstrain_14, which underestimated the same data. This indicates that even though the 

ANNcollision alone did not demonstrate strong accuracy, when combined with ANNstrain_16, they 

collectively made similar predictions of bone principal strain compared to the unseen FE results. 

The variation in the orientation of the calcar screw, screw 6, showed to have the strongest 

influence on the 50th and 90th percentile of principal bone strain around all the screws (Figure 

4.4, Figure 4.5). Analysing the 90th percentile of strain around all the screws, on average the 

distal position showed to be the least safe. When the screw 6 has a distal angle of 10°, the strain 

value increases up to 36% from the neutral position. In terms of the safest configuration, our 

findings agreed with those of Fletcher et al and Jabran et al, which identified the safest 

configuration was when the calcar screw is orientated in the proximal direction (Jabran et al. 

2019b; Mischler et al. 2020b). Moreover, the impact of variations of screw 6 on the strain of the 

bone around itself has been reported, showing on average a decrease of more than 20% of the 

variation of 50th and 90th percentile principal bone strain in the proximal direction (Figure 4.6).  

In this study we also compared the bone principal strain predictions obtained from the full 

factorial scenario generated with the ANNs with those of the FE simulations on the training 

sets of 500, 2000, 5000, and 7500. The analysis revealed a significant statistical difference. In 

particular, the ANNs models were able to make predictions on the full factorial scenario with 

higher principal bone strain variation than the ones predicted by the FE analysis on all the 

training sets (Figure 4.7). This showed how running a full factorial analysis with an ANN 

approach would help to identify potentially dangerous configurations, that would not have been 

detected through a small sample analysis. 
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This study has demonstrated that an FE-informed Neural Network approach can be used to 

explore the impact of variation of screw orientation on bone deformation for a fracture fixation 

plate for a proximal humeral fracture, showing the high impact that the calcar screw orientation 

has on the prediction of bone principal strain. This technique has the primary advantage of 

being cost-effective in terms of time, both during the training phase and when making 

predictions for unseen scenarios. The computational cost is strongly dependent on the 

generation of data used for the training process. Moreover, the process of generating new 

predictions was made easy and fast by utilizing only screw orientation and collision information 

as input data, eliminating the need for generating a new mesh for the prediction of new data. 

Indeed, the most cost demanding stage of this methodology is the generation of FE data, but 

this cost is significantly reduced once the surrogate model has been trained. 

There are some limitations in this study. Firstly, the boundary and loading conditions of the FE 

analysis were simplified, and no muscular forces were taken into account. Regarding the 

material properties of the bone, the Morgan's equation referred to the femoral head was used to 

define the relation between Young’s Modulus and BMD, as no equation referred to the humeral 

head was found in the literature (Morgan et al. 2003). The model was not experimentally 

validated, however, the methodology developed for the generation of the FE models reproduced 

in the Varga et al study and Mischler et al, that were experimentally validated (Mischler et al. 

2022; Varga et al. 2017), which was similar to the methodology conducted in this paper for the 

generation of FE data.  This study did not explore subject variabilities; indeed, the model was 

developed on a single subject, as the Jabran and Tilton studies, not taking into account the 

possible variations due to different anatomies (Jabran et al. 2018; Tilton et al. 2020b). Since 

Schader et al study (Schader et al. 2021) suggested that subject-specific optimization of the 

orientation of the screws could improve the biomechanical performance of the fracture fixation 

plate, in the future ANN models assessing patients’ variabilities should be developed. Moreover, 

the model only included one fracture pattern in order to simplify the study. To improve the 
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model's complexity and applicability, future versions need to take into account different fracture 

configurations. Given that the accuracy of the ANNcollision only reached 84.4%, additional 

techniques should be implemented and evaluated to predict screw collisions more accurately. 

Since the cause of the failure of these implants is unclear, the influence of other parameters 

should be investigated with this methodology, fracture pattern, screw configuration and also 

potential implant malposition. Additionally, the ANN model should include other outputs of 

interest to better understand the biomechanics of the fracture fixation plate, such as bone 

micromotion, fracture gap movements, and implant stress (Lewis et al. 2021). 

Despite these limitations, this study demonstrated the potential of using a finite element 

informed Neural Network technique to develop an advanced computational model for 

investigating the variation of strain with the variation of implant screws orientation. Moreover, 

the technique proved to be a more efficient and less time-consuming approach than traditional 

methods. As also demonstrated in our previous research, using an ANN methodology is 

advantageous when studying problems with a wide solution space, and this approach allows for 

the identification of potentially dangerous configurations in a more computationally efficient 

manner. Our study's findings provide assurance regarding the use of this more efficient 

computational technique, and in the future, we intend to explore even more complex techniques 

to implement and potentially provide more informed decisions in a surgical setting. 

4.5 Conclusion 

In conclusion, a computational approach using FE and ANNs to predict bone deformation of the 

humerus with the variation of screw orientation was successfully developed. This methodology 

showed good accuracy for the prediction of deformation of the bone with the variation of screw 

orientation in the proximal-distal and anterior-posterior direction. The trained ANNs 

demonstrated the impact of the orientation of the calcar screws on the biomechanical 
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performance of the fracture fixation plate, in agreement with what was found in the literature, 

showing that more beneficial configurations can be reached with variable angle locking screws.  
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Chapter 5 

5. Developing a Graph Neural Network model to 

predict a field of strains in fracture fixation of 

the proximal humerus varying implant 

parameters 

5.1 Introduction  

When conducting FE analysis to explore the effects of multiple parameters, the computational 

demands can be quite significant. In Chapters 3 and 4, an ANN methodology was developed to 

assist the FE analysis. The models demonstrated a high degree of accuracy in representing the 

50th and 90th percentiles of bone strain around the screws. However, it is important to 

acknowledge that the ANN has a significant limitation of being incapable of replicating a 

distribution of strain on a geometry, thereby it doesn't allow the visualisation of the entire strain 

field. Other Deep Learning methods can be combined with the FE process to reduce 

computational costs and predict a distribution of strain. While some CNN methods have been 

developed for FE studies, they are limited to working with structured Euclidean data (Heidari 
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et al. 2022; Zhou et al. 2020). On the other hand, GNN is a powerful DL technique that operates 

on graph structures. When properly trained, GNN can predict features of graphs and 3D 

structures. GNNs are commonly used to analyse graph data such as social interactions, 

networks, and chemical structures. However, only a few studies have begun to explore the 

application of GNN in combination with FE analysis to investigate the strain and stress of 3D 

solid objects. For example, Krokos et al. utilised a GNN approach to study the variation of 

internal stress in an object by altering its porous structure, achieving high prediction accuracy 

from the model (Krokos et al. 2022a). This study, although not conducted in a complex scenario, 

demonstrated the potential of using a GNN approach with FE data to predict the behaviour of 

a material as its 3D structure changes. 

To investigate the failure of fracture fixation devices for humerus fractures, FE methods are 

computationally demanding because of the high number of parameters and the wide solution 

space. The GNN approach could be used with FE data to predict the internal distribution of 

strain and stress when investigating the effect of multiple configurations for an orthopaedic 

implant. This approach can reduce the computational cost without sacrificing accuracy. 

In this chapter, a GNN approach was developed using the FE data generated from Chapters 3 

and 4. The goal was to predict the distribution of strain on the bone surface around the screws, 

with the variation in screw length and screw direction respectively. The accuracy of the model's 

predictions was analysed, and a comparison of the GNN models with the ANN model’s 

prediction was conducted. 

5.2 Methods 

The study was based on the FE data developed in Chapters 3 and 4, which consisted of a single 

fractured humerus with a fracture fixation plate. In particular, in Chapter 3 the FE analysis 

was developed by varying the length of the proximal screws in the humeral head. In Chapter 4 

the FE analysis was developed by varying the orientation in space of the proximal humeral 
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screws. Two distinct GNN models were developed on each dataset. The GNN for the first dataset 

will be addressed as GNNScrewLength and the GNN for the second dataset will be addressed as 

GNNScrewDirection. 

5.2.1 Variation of screw length 

5.2.1.1 Dataset development 

The dataset used for this section was the FE dataset developed in Chapter 3, which consisted of 

a subject-specific analysis of a single humerus in which the screw length of the proximal screws 

was varied. As already described in section 3.2.1, an FE dataset was generated on a single image 

of a cadaver collected from the New Mexico Decedent Image Database (Edgar et al. 2020). The 

screw length of the seven proximal screws was the variable of interest, which was adjusted 

through the TJD between the cortical surface of the humeral head and the tip of the screws. In 

particular, the TJD measurements used were 4, 8, 12 and 16 mm. For this study, the five 

training sets of size 50, 100, 200, 500 and 1000 data and the testing set of 100 data were used, 

which were all already developed in Chapter 3. The data from each FE simulation was converted 

into graph structures consisting of a 3D connection of nodes. The features of the nodes of the 

bone around the seven proximal screws were elaborated and divided into input and output data, 

necessary for the training of the GNNScrewLength. In particular, the input data were defined as 

follows: 

• x, y, z coordinates of the nodes of the bone surface around the proximal screws, each of 

them expressed in mm. 

• Young Modulus of the nodes of the bone surface around the proximal screws, expressed 

in MPa. The data were extracted from the adjacent elements. 

• Edge connectivity matrix. The nodes' connectivity was determined by connecting each 

node to the nodes positioned with a maximum distance of 2 mm. 

• Edge length distance of the connected nodes. 
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The output value used was the Minimum Principal Strain of the bone of the surface around the 

proximal screws. The data were defined at the nodal level after they were extracted from the 

adjacent elements. 

5.2.1.2 GNNScrewLength development 

The study was conducted using Pytorch Geometric (Fey and Lenssen 2019), in particular, the 

GNN structure TAGConv (Du et al. 2017). 

The GNNScrewLength consisted of an encoder, a processor, and a decoder (Figure 5.1)  

• The encoder was made up of a single block containing a TAGConv and a ReLU layer. The 

TAGConv had an input size of 4, corresponding to the Young modulus at the nodes and 

the x, y, and z coordinates of the nodes. The output size of the TAGConv layer was set to 

100. 

• The processor consisted of six distinct blocks, each one composed of a TAGConv, and 

ReLu layer. The input and output size of each TAGConv layer was set to 100. 

• The decoder consisted of a final distinct block of a TAGConv, and ReLu layer, and a final 

Linear layer. The input size of the TAGConv was 100, and the output was 1, 

corresponding to the minimum principal strain at the nodes. 

For each TAGConv the number of loop K was set to 6. Each block elaborates also the information 

on edge connectivity and edge length. 

This structure was used to train five different GNNScrewLength models using the five training sets 

of sizes 50, 100, 200, 500 and 1000, in order to investigate the amount of data needed for an 

accurate model.  
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5.2.1.3 Analysis of GNNScrewLength predictions 

To assess the robustness of the GNNScrewLength model, the training process was separately 

performed 10 times using the entire dataset for each training session, resulting in the creation 

of 10 distinct trained models each time. Subsequently, all the configurations of the testing set 

of 100 models were used to assess the accuracy of the models. A regression analysis between 

those FE data and their prediction with the trained GNNScrewLength models was conducted, 

looking at the R2 values, the slope and the RMSE (µstrain and %). The best GNNScrewLength model 

was considered to have the lowest %RMSE. The GNN models were trained using a NVIDIA RTX 

A400 GPU with 16 GB of RAM. 

Figure 5.1 - Workflow of the GNNScrewLength to investigate the influence of variation of screw length 
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5.2.1.4 Reproduction of ANN case study 

An additional FE dataset was created based on the conditions outlined in section 3.2.1. This 

dataset replicated configurations where all the screws had a TJD length of 4, 8, 12, and 16 mm, 

and where the TJD of all the screws was set to 8, except for screw 6, which was varied to 4, 8, 

12, and 16 mm. In total, there were 7 different configurations. These specific configurations 

were chosen based on findings from Chapter 3 and previous literature, which demonstrated the 

impact of changing the screws' TJD equally and the effect of varying the length of the screw 

inserted in the calcar region, which in this configuration was represented by Screw 6. The bone 

strain of the new dataset was predicted using the best GNNScrewLength model of each training set. 

The differences between the predictions from GNNScrewLength with the FE real data and 

GNNScrewLength vs the ANN developed in Chapter 3 were reported. 

5.2.2 Variation of screw direction   

5.2.2.1 Dataset development 

The dataset used for this section was the FE dataset developed in Chapter 4, which consisted of 

a subject-specific analysis of a single humerus in which the screw direction of the proximal 

screws was varied. As already described in section 4.2.1, an FE dataset was generated on a 

single image of a cadaver collected from the New Mexico Decedent Image Database (Edgar et 

al. 2020). The variable of interest was the screw orientation of the seven proximal screws in the 

humeral head. In particular, proximal-distal and anterior-posterior were varied by ±5° and ±10° 

from the neutral position, set as 0°-0°. For this study, the four training sets of size 500, 2000, 

5000 and 7500 data and the testing set of 500 data were used for the analysis, which were all 

already developed in Chapter 4. As the collision of the screws had to be taken into account, the 

training and testing sets had respectively a reduced number of 92, 370, 879, 1341, and 91 

successful simulations.  The data from each FE simulation was converted into graph structures 

consisting of a 3D connection of nodes. The features of the nodes of the bone around the seven 
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proximal screws were elaborated and divided into input and output data, necessary for the 

training of the GNNScrewDirection. In particular, the input data were defined as follows: 

• x, y, z coordinates of the nodes of the bone surface around the proximal screws, each of 

them expressed in mm. 

• Young Modulus of the nodes of the bone surface around the proximal screws, expressed 

in MPa. The data were extracted from the adjacent elements. 

• Edge connectivity matrix. The connectivity of the nodes was determined by connecting 

each node to the nodes positioned with a maximum distance of 1.5 mm. 

• Edge length distance of the connected nodes. 

The output value used was the Minimum Principal Strain of the bone of the surface around the 

proximal screws. The data were defined at the nodal level after they were extracted from the 

element adjacent. 

5.2.2.2 GNNScrewDirection model development 

The study was conducted using Pytorch Geometric (Fey and Lenssen 2019), in particular a 

combination of different GNN structures. In contrast to the approach outlined in Section 5.2.1.2, 

a different GNN methodology was used based on the observation that the performance of the 

GNN in Section 5.2.1.2 was almost identical. Therefore, the aim was to construct a model using 

an alternative GNN structure (Appendix B: Supplementary material for Chapter 5). 

The GNNScrewDirection consisted of an encoder, a processor, and a decoder (Figure 5.2).  

• The encoder consisted of a single block composed of a GraphNorm (Cai et al. 2021), XConv 

(Li et al. 2018), ChebConv (Defferrard et al. 2016), Dropout and a ReLu layer. The input 

size of the GraphNorm was 1, corresponding to the young modulus at the nodes. 

• The processor consisted of two distinct blocks, each one composed of an XConv, 

ChebConv, Dropout and a ReLu layer. The input and output size of each TAGConv layer 

was set to 100. 



 

119 

 

• The decoder consisted of a final distinct block of an XConv, ChebConv, Dropout, ReLu 

layer, and a final Linear layer. The input size of the linear layer was 100 and its output 

size was 1, corresponding to the minimum principal strain at the nodes. 

For each XConv the hidden channels were 100, the dimension was set to 3 and the Kernel size 

was 5. Each XConv elaborates on the information of Young modulus and nodal positions. For 

each ChebConv the Chebyshev filter size K was 9. Each ChebConv elaborates on information of 

Young modulus edge connectivity and edge length distance. The four training sets were utilized 

to train four distinct GNNScrewDirection models with the previously explained structure. The 

accuracy of the models was assessed based on the training set size. 

5.2.2.3 Analysis of GNNScrewDirection prediction 

To assess the robustness of the GNNScrewDirection model, the training process was separately 

performed 10 times using the entire dataset for each training session, resulting in the creation 

of 10 distinct trained models each time. Subsequently, all the configurations of the testing set 

of 500 models (91 successful simulations) were used to assess the accuracy of the models. A 

Figure 5.2 - Workflow of the GNN to investigate the influence of variation of screw orientation 
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regression analysis between those FE data and their prediction with the trained GNNScrewDirection 

was conducted, looking at the R2 values, the slope and the RMSE (µstrain and %). The GNN 

models were trained using a NVIDIA RTX A400 GPU with 16 GB of RAM. 

5.2.2.4 Reproduction of ANN case study 

A comparison between the predictions generated by the ANN developed in Chapter 4 and the 

predictions from the GNNScrewDirection was conducted. The testing set of 500 simulations (91 

successful) was considered, in particular the FE configurations with the maximum and 

minimum 90th percentile principal strain. The difference between the 50th and 90th percentile of 

bone principal strain between the predictions from the ANN and those from the GNNScrewDirection 

was calculated. 

5.3 Results 

5.3.1 Variation of screw length 

The overall FE analysis running time for each configuration, from the selection of the screw 

length to the post-processing of the output, took approximately 15-20 minutes. During the 

training process for the GNNScrewLength models, it took 0.5, 1.1, 2.2, 6, and 12 hours to train them 

using training sets of 50, 100, 200, 500, and 1000 data, respectively. Once trained, each 

GNNScrewLength model only took 15 seconds to predict the 100 FE configuration of the testing set 

(Table 5.1). An analysis of the influence of the training set size revealed that for regression 

between the FE data and their prediction with the GNNScrewLength models, the R2 and slope 

increased from 0.92 to 0.95, and the RMSE decreased from 889.75 to 681.88 µstrain (a reduction 

of 23%) when transitioning from a training set of 50 data points to one of 1000 (Figure 5.3, Table 

5.1).   

For each training set, the best GNNScrewLength model was used to replicate the bone principal 

strain of the testing set of 7 configurations introduced in section 5.2.1.4. Among these 
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configurations, four had the same TJD measurement for all the screws, while the remaining 

three had a TJD of 8mm for all the screws, except for screw 6, which had a varied TJD. The 

models were able to accurately capture the increase in strain with the increase in TJD (Figure 

5.4, Figure 5.5). The model trained with more data showed higher accuracy, particularly in 

demonstrating the increase in strain for the configuration where all screws had a TJD of 16 mm, 

resulting in a significant increase in strain at the tip of the cortical screw. A similar behaviour 

was observed for the model where screw 6 had a TJD of 16 mm while the rest of the screws had 

a TJD of 8 mm. Depending on the configuration, the model trained with more data tended to 

produce results closer to the FE predictions, with the R2 increasing from 0.86-0.95 for the model 

trained with a smaller training set to 0.91-0.98 for those trained with a larger training set. 

Looking at the RMSE, this study reported a reduction from 5.29-2.50% µstrain for the model 

trained with 50 data to a %RMSE of 4.29-1.57% µstrain for the model trained with 1000 data 

(Table 5.2, Table 5.4).  

For the comparison of the 7 configurations with the GNNScrewLength and ANN models developed 

in Chapter 3, the absolute percentage difference was reported for both the 50th and the 90th 

minimal principal strain. Overall, a difference variation of 0.63-15.50 was reported, showing no 

influence on the training set size. The ANN model is assumed to provide better predictions than 

the GNN model, given that the error tends to be higher for the GNNScrewLength predictions. When 

using a GNN model, accuracy is sacrificed in order to visualize the strain field (Table 5.3, Table 

5.5). 

 



 

122 

 

Table 5.1 - Performance of the GNNScrewLength on the testing set of 100 simulations for the prediction of the minimal 

principal strain of the bone around all the screws with the variation of screw length. The influence of the training set 

size is shown. Results are displayed for the model with the lowest error, while the average of 100 models is shown in 

brackets. 

Training 

set size (n) 

FE 

Running 

time (h) 

GNN 

training 

time (h) 

R
2
 Slope RMSE 

(µstrain) 

RMSE (%) 

50 16.6 0.5 0.92 (0.91) 0.92 (0.92) 889.75 

(931.08) 

3.76 (3.92) 

100 33.3 1.1 0.93 (0.93) 0.94 (0.89)  816.73 

(871.99) 

3.32 (3.52) 

200 66.6 2.2 0.94 (0.94) 1.00 (1.00) 744.23 

(762.69) 

3.11 (3.24) 

500 166.6 6 0.95 (0.95) 0.95 (0.95)  700.74 

(710.01) 

2.81 (2.88) 

1000 333.2 12 0.95 (0.95) 0.96 (0.95) 681.88 

(693.29) 

2.71 (2.76) 

 

Figure 5.3 – Performance variation of the 10 GNNScrewLength developed for each training set. 
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Table 5.2 - Regression of the minimal principal strain at the nodes between the FE data of the configurations having the same value of TJD for every seven proximal screws, and 

their prediction using the best GNNScrewLength for each training set size 

  Nodal minimal principal strain 

  R
2
 Slope RMSE (µstrain) RMSE (%) 

Training 

set size 
50 100 200 500 1000 50 100 200 500 1000 50 100 200 500 1000 50 100 200 500 1000 

T
J
D

 

4 0.89 0.92 0.90 0.94 0.95 1.06 1.04 1.12 1.02 1.04 722.5 569.8 774.6 492.0 452.6 4.71 3.71 5.05 3.20 2.95 

8 0.92 0.95 0.96 0.97 0.95 0.93 0.95 1.06 0.96 1.01 613.3 462.4 510.0 411.1 518.1 4.27 3.22 3.55 2.86 3.61 

12 0.95 0.97 0.97 0.98 0.98 0.97 0.93 1.01 0.97 0.94 699.2 613.2 466.9 424.8 459.2 2.50 2.28 1.74 1.58 1.71 

16 0.86 0.89 0.87 0.90 0.91 0.73 0.77 0.76 0.80 0.80 2339.7 2096.7 2164.4 2016.7 1948.3 5.15 4.62 4.77 4.44 4.29 

 

Table 5.3 - Comparison of the configurations with the same value of TJD for each seven proximal screws predicted with the GNNScrewLength model and the ANN model developed 

in Chapter 3. The absolute difference between the 50th and the 90th percentile minimal principal strain values obtained from the GNNScrewLength and ANN models is reported. 

  
% of error of 50th percentile minimal principal strain 

between the ANN predictions and the GNNScrewLength 

prediction 

% of error of 90th percentile minimal principal strain 

between the ANN predictions and the GNNScrewLength 

prediction 

Training set size 50 100 200 500 1000 50 100 200 500 1000 

T
J
D

 

4 13.01 6.87 13.40 11.20 8.63 14.91 8.57 19.04 10.22 10.62 

8 6.65 1.67 8.93 7.78 5.69 0.21 0.38 9.40 0.64 2.75 

12 1.23 6.64 0.37 1.43 5.35 2.24 4.70 6.11 1.90 1.63 

16 12.02 15.08 10.58 12.49 15.51 11.55 11.51 4.47 8.72 8.83 
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Figure 5.4 - Bone principal strain distribution of the configurations having same TJD for all the screws. Results from the FE model and the best GNNScrewLength trained with 

each training set size. 
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Table 5.4 – Regression of the minimal principal strain at the nodes between the FE data of the configurations having TJD of all the screws set to 8 mm and having varied TJD 

for screw 6, and their prediction using the best GNNScrewLength for each training set size 

  Nodal minimal principal strain 

  R
2
 Slope RMSE (µstrain) RMSE (%) 

Training 

set size 
50 100 200 500 1000 50 100 200 500 1000 50 100 200 500 1000 50 100 200 500 1000 

T
J
D

 

4 0.88 0.94 0.90 0.94 0.95 1.01 0.99 1.07 0.99 1.00 729.16 492.3 718.42 495.85 438.3 5.29 3.57 5.22 3.60 3.18 

8 0.92 0.95 0.96 0.97 0.95 0.93 0.95 1.06 0.96 1.01 613.3 462.4 510.0 411.1 518.1 4.27 3.22 3.55 2.86 3.61 

12 0.94 0.95 0.96 0.98 0.98 0.98 0.90 1.05 0.97 0.98 667.7 635.5 570.6 447.3 375.3 2.79 2.66 2.38 1.82 1.57 

16 0.92 0.92 0.94 0.94 0.95 0.87 0.92 0.94 0.94 0.97 1247.8 1176.9 1082.3 1075.7 974.5 2.91 2.74 2.52 2.50 2.27 

 

Table 5.5 - Comparison of the configurations varying only the TJD of screw 6 predicted with the GNNScrewLength model and the ANN model developed in Chapter 3. The absolute 

difference between the 50th and the 90th percentile minimal principal strain values obtained from the GNNScrewLength and ANN models is reported 

  
% of error of 50th percentile minimal principal strain 

between the ANN predictions and the GNNScrewLength 

prediction 

% of error of 90th percentile minimal principal strain 

between the ANN predictions and the GNNScrewLength 

prediction 

Training set size 50 100 200 500 1000 50 100 200 500 1000 

T
J
D

 

4 9.12 5.26 10.71 8.08 4.48 8.95 4.59 12.65 5.72 4.47 

8 6.65 1.67 8.93 7.78 5.69 0.21 0.38 9.40 0.64 2.75 

12 1.60 1.97 2.08 2.42 0.88 1.99 5.57 7.18 0.92 0.63 

16 10.47 12.34 10.86 9.26 12.40 5.35 4.19 2.23 2.79 0.22 
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Figure 5.5 - Bone principal strain distribution of the configurations having same TJD for screw 6. Results from the FE model and the best GNNScrewLength trained with each 

training set size. 
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5.3.2 Variation of screw orientation 

 The entire process for the FE analysis for each configuration, from selecting the screw angle to 

processing the outputs, took approximately 15-20 minutes. For the training process, it took 1, 

4, 10, and 15 hours to train the GNNScrewDirection using training sets of 500, 2000, 5000, and 7500 

data, respectively. Once trained, each GNNScrewDirection only took 15 seconds to predict the 500 FE 

configurations of the testing set (Table 5.6).  

When analysing the impact of the training set size, looking at the regression between the FE 

data and their prediction with the GNNScrewDirection models, it was observed that as the training 

set increased from 500 data to 7500, the R2 increased from 0.66 to 0.87 and also the increased 

Figure 5.6 - Performance variation of the 10 GNNScrewDirection developed for each training set. The original size of the 

training set is shown with the reduced one in brackets. 
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from 0.69 to 0.89 Additionally, the RMSE decreased from 1788.21 to 1078.77 µstrain, indicating 

a reduction of 39.6% (Table 5.6, Figure 5.6). 

In the analysis of the predictions of the configurations with the highest and lowest 90th 

percentile minimal principal strain, the impact of training set size was reported. The study 

found that increasing the training data led to improved accuracy, with the models better 

capturing high levels of strain along the cortical screw and the screws in the lower part of the 

humeral head (Figure 5.7). The results showed that models trained with more data produced 

outputs closer to the FE analysis, with the R2 value increasing from 0.56-0.59 for the model 

trained with a smaller training set to 0.82-0.83 for those trained with a larger set. In terms of 

the %RMSE, the study observed a decrease from 10.67-9.3% of µstrain for the model trained 

with 500 data points to 6.66-5.68% of µstrain for the model trained with 7500 data points (Table 

5.7). 

A comparison was made between the configurations with the highest and lowest 90th percentile 

minimal principal strain predicted by the GNNScrewDirection model and the ANN model developed 

in Chapter 4. The absolute percentage difference for both the 50th and 90th percentile minimal 

principal strain was calculated. The report showed a difference range of 0.33% to 19.99%, 

indicating that the training set size only influenced the 90th percentile minimal principal strain 

(Table 5.8). 
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Table 5.6 - Performance of the GNNScrewDirection on the testing set of 91 simulations for the prediction of the minimal 

principal strain of the bone around all the screws with the variation of screw orientation. The influence of the training 

set size is shown. Results are displayed for the model with the lowest error, while the average of 100 models is shown 

in brackets. 

Training 

set size (n) 

FE 

Running 

time (h) 

GNN 

training 

time (h) 

R
2
 Slope RMSE (µstrain) RMSE 

(%) 

500 (92) 30.48 1 0.66 

(0.65) 

0.69 

(0.63) 

1788.21 (1859.24) 6.23 

(6.51) 

2000 (370) 123.12 4 0.81 

(0.81) 

0.82 

(0.81) 

1315.42 (1343.55) 4.65 

(4.77) 

5000 (879) 292.80 10 0.86 

(0.85) 

0.88 

(0.88) 

1127.99 (1153.56) 4.07 

(4.14) 

7500 (1,341) 448.80 15 0.87 

(0.86) 

0.89 

(0.88) 

1078.77 (1105.22) 3.86 

(3.95) 
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Table 5.7 - Regression of the minimal principal strain at the nodes between the FE data of the configurations with the highest and lowest 90th percentile minimal principal strain, 

and their prediction using the best GNNScrewDirection for each training set size 

  Nodal minimal principal strain 

  R2 Slope RMSE (µstrain) RMSE (%) 

 Training set 

size 

500 

(92) 

2000 

(370) 

5000 

(879) 

7500 

(1341) 

500 

(92) 

2000 

(370) 

5000 

(879) 

7500 

(1341) 

500 

(92) 

2000 

(370) 

5000 

(879) 

7500 

(1341) 

500 

(92) 

2000 

(370) 

5000 

(879) 

7500 

(1341) 

 

Max 90th 

percentile 

strain 

0.59 0.80 0.86 0.83 0.53 0.75 0.88 0.84 2478.0 1716.1 1355.5 1511.1 9.3 6.44 5.09 5.68 

Min 90th 

percentile 

strain 

0.56 0.72 0.77 0.82 0.73 0.77 0.83 0.86 1262.3 969.0 871.56 787.6 10.67 8.19 7.37 6.66 

 

 

 

 
Table 5.8 - Comparison of the configurations with the highest and lowest 90th percentile minimal principal strain predicted with the GNNScrewDirection model and the ANN model 

developed in Chapter 4. The absolute difference between the 50th and the 90th percentile minimal principal strain values obtained from the GNNScrewDirection and ANN models is 

reported. 

 
% of error of 50th percentile minimal principal 

strain between the ANN predictions and the 

GNNScrewDirection prediction 

% of error of 90th percentile minimal principal 

strain between the ANN predictions and the 

GNNScrewDirection prediction 

Training set size 500 (92) 2000 (370) 5000 (879) 7500 (1341) 500 (92) 2000 (370) 5000 (879) 7500 (1341) 

Max 90th percentile strain 15.08 11.14 15.91 19.99 21.14 9.56 1.01 0.33 

Min 90th percentile strain 9.01 10.19 10.67 7.98 7.34 10.67 5.23 2.61 
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Figure 5.7 -Bone principal strain distribution of the configurations with max and min and 90th percentile principal bone strain. Results from the FE model and the best 

GNNScrewDirection trained with each training set size 
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Figure 5.8 - Bone principal strain distribution of the configurations with max and min 90th percentile principal bone strain. Focus on the screw anterio-posterio and 

proximal-distal position. 
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5.4 Discussion 

The aim of this study was to develop an advanced DL model to assist the FE analysis for quickly 

and accurately predicting bone strain varying implant parameters. Additionally, the aim was 

also to develop a technique capable of reproducing the field of strain inside the bone without 

losing accuracy. To achieve this, two different GNN models were developed to predict strain for 

each dataset developed in Chapters 3 and 4, which consisted in varying the screw length and 

screw orientation of the implant. Overall, the GNNs model efficiently predicted FE data and 

accurately estimated the distribution of bone strain, in terms of RMSE of the predictions. 

Focusing on the model's accuracy, the GNN models were able to make accurate predictions of 

strain distribution, for both datasets, showing a best RMSE of 2.71% of strain for the 

GNNScrewLength, and a best RMSE of 3.86% of strain for the GNNScrewDirection. However, the 

GNNScrewDirection had lower accuracy compared to the GNNScrewLength. Despite the use of different 

structures for the two datasets, it is unlikely that this difference can solely account for the lower 

performance of GNNScrewDirection. Indeed, the Appendix already showed that the same structure 

used for GNNScrewLength performed equally with the dataset that involved variation in screw 

direction (Appendix B: Supplementary material for Chapter 5). However, the lower performance 

of GNNScrewDirection may be attributable to the higher variability of node positions in space, given 

that the screws were moved in proximal-distal and anterior-posterior positions. Moreover, due 

to the higher computational cost of the GNNScrewDirection model and due to the limits of the 

available computing power, the maximum ledge length connectivity was set 0.5 mm lower than 

the one specified for the GNNScrewLength problem. This adjustment may have contributed to a 

reduction in the accuracy of the results. Given the limited computing resources, with only a 

GPU equipped with 16GB of RAM, it would be beneficial to consider and incorporate more 

powerful computing options such as compute clusters or cloud-based GPUs in future works. 
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Overall, the GNNScrewLength predictions for the cases shown in Figure 5.4 and Figure 5.5 were 

visually similar. The model effectively captured the strain distribution around the surface of the 

screws, demonstrating higher accuracy for the models trained with more data and showing 

strong regression. Similarly, the case shown in Figure 5.7 illustrated how the GNNScrewDirection 

trained with less data was unable to capture the higher increase in strain. 

When comparing the predictions from the ANN models and the GNN models for GNNScrewLength 

and GNNScrewDirection, it was noticed that there was little difference in the predictions of the 90th 

percentile of strain for both datasets. However, a more noticeable variance was observed in the 

predictions of the 50th percentile of strain. This suggests that while the ANN and GNN 

approaches provided similar results in detecting higher strain values within the bone, there was 

a discrepancy in predicting the 50th percentile of bone strain. When comparing the 

computational requirements of the two methodologies, it is evident that the GNN approach 

demands more computational power and training time. However, it excels in predicting and 

displaying the actual strain distribution on the surface of interest, in the same amount of time 

required by the ANN method to give a prediction for the same amount of data. 

The studies of this chapter were conducted on an NVIDIA RTX A400 GPU with 16 GB of RAM.  

The models could not be developed on the CPU and CUDA had to be installed on the computer 

in order to utilize the PyTorch Geometric library. Focusing on the computational time, for both 

types of datasets, the training time of the GNN models was strictly dependent on the training 

set size. In particular, the more data we used to train the model, the more accuracy we gained, 

but the more training time was necessary. Notably, the difference in model accuracy was less 

significant when comparing the two largest training sets than when comparing the largest set 

with the others. This indicates that the best predictions were achieved with the largest dataset, 

and further improvements would not be gained by increasing the amount of data. However, the 

training time of the GNNs was significantly lower compared to generating the same amount of 

FE data, demonstrating the computational efficiency of this DL approach. For a more 
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comprehensive analysis, the volume of the bone around the screws should be considered rather 

than just focusing on the surface area. This will allow for a more thorough examination of the 

effects of the implant's impact on the bone surrounding the proximal screws of the plate. The 

main current limitation is related to the constraints on computer resources. The analysis 

currently utilizes all of the GPU memory available, and to expand the analysis to a specific 

volume of interest, additional resources would be required.  

This study is the first to aim to predict bone strain using an advanced computational technique 

for proximal humeral fractures with a fracture fixation device. Some studies in the literature 

have conducted parametric analyses to understand the behaviour of fracture fixation devices by 

varying different variables, implant and patient-related (Fletcher et al. 2019c, 2019a, 2019b; 

Mischler et al. 2020b; Varga et al. 2017, 2018, 2020). However, these studies have primarily 

focused on the mean strain around the screws and have not investigated the variation of strain 

distribution with the variation of the parameters of interest. Examining the internal 

distribution could be beneficial for gaining a better understanding of the problem.  Analysing a 

problem with a very large solution space using only FE analysis is challenging due to the 

computational costs. DL models could potentially assist the FE analysis, improving 

computational power. Although GNNs have shown computational efficiency, they have not yet 

been fully explored for addressing a biomechanical problem using FE analysis. 

A series of limitations need to be addressed. Firstly, the development of GNNScrewLength and 

GNNScrewDirection only involved the investigation of a small number of GNN structures. It is 

important to test additional algorithms, particularly a GNN algorithm specifically tailored to 

this type of problem. Furthermore, given the diverse methods within the DL branch, further 

investigations are necessary to determine if there are alternative methods that could effectively 

address this problem. Only the variation of a single parameter was considered. There are a high 

number of parameters related to the implant, such as screw length, screw orientation, and 

implant position, as well as patient-related factors like bone quality and fracture configurations, 
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which all play a role in the outcome of the treatment of proximal humeral fractures with a 

fracture plate (Lewis et al. 2021). Unfortunately, it is not clear which parameter is the most 

influential and how to reduce the failure rate. Therefore, a more complex model should be 

developed to address all these variables. The model was developed based on a single subject, so 

it was not capable of capturing and predicting the variations among different subjects. Indeed, 

to enhance the reliability of the model, it should be trained on a larger dataset that includes 

multiple subjects.  The model was developed using only the nodal data on the bone surface 

around the screws. To effectively capture the entire field of strain in the bone, the model should 

be trained on volumetric data, potentially encompassing the entire bone segments. However, 

the increase of data for the training process would drastically increase the computational time 

and would also demand more GPU resources in terms of memory. Lastly, a computational 

limitation is that the model requires information at the nodal level to make predictions for new 

configurations. This requires transforming the surface of interest into nodal data, assigning 

material properties and coordinates in 3D space, and defining the connections between the 

nodes. While this process adds some computational cost, it reduces the data analysis to a smaller 

surface compared to the entire mesh of the fractured bone with the implant. Therefore, data 

extraction during the model settings adds some computational cost to the process, but they are 

very limited. Moreover, this cost is still relatively minor compared to running an FE analysis, 

and no mesh morphing is required. Overall, the GNN proved to be a very efficient and time-

saving technique. The training time was shorter than the FE data generation, and the GNN 

model was able to make new predictions in just a few seconds. The study demonstrated how 

GNN can be used to improve the FE computational power for the analysis of a fracture fixation 

plate for proximal humeral fractures and potentially could be explored for other orthopaedic 

problems. 

In this chapter, it was demonstrated that well-trained GNNs are capable of making accurate 

predictions. A high R2 value was achieved even for the smallest training set when varying the 
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screw length. However, when varying the screw orientation, the R2 was lower, likely due to the 

challenge of having nodes located in different positions due to the change in screw orientation. 

Nevertheless, the model was able to capture the strain distribution. Furthermore, the GNN 

technique proved to be highly time-efficient. The training time was much lower than the FE 

running time for the same amount of data, and once trained, it only took a few seconds to make 

predictions for a new scenario.  
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Chapter 6 

6. Developing a Graph Neural Network model for 

a group of subjects to predict bone strain 

distributions in fracture fixation of the 

proximal humerus 

6.1 Introduction  

The current approach to analysing patient variability for a specific medical implant involves 

using FE, which can be computationally expensive, especially in cases with complex loading and 

boundary conditions, or when a high number of parameters and different implant configurations 

are involved. While simple surrogate models like ANN models could help reduce computational 

costs, they are not able to predict the distribution of strain or stress for a 3D geometry. 

Additionally, using various geometries and 3D meshes for subject-specific analysis can be a 

challenging and time-consuming process. Therefore, it is crucial to develop a more effective 

methodology.  
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Graph Neural Networks (GNN) are a type of Deep Learning (DL) method that operates on graph 

structures. GNNs are mesh-independent and can be used to predict different 3D geometries, 

therefore taking into account subject variability. Krokos et al used GNN methodology to predict 

stress within 3D porous structures while varying certain geometric features such as the size 

and positions of the pores (Krokos et al. 2022a). However, GNN techniques have not yet been 

explored in orthopaedic scenarios, especially for subject-specific analysis to predict bone strain 

with the use of a fracture fixation device. 

In this chapter, the aim was to assess the ability of a GNN model to predict bone strains across 

patients, using subject-specific FE data of the humerus with a fracture fixation plate for a group 

of subjects. A semi-automated workflow was developed to perform FE analysis on CT scans of 

434 subjects, each with a fracture fixation plate for a proximal humeral fracture. The 

parameters of the implant remained unchanged, and the FE data were used to train a GNN 

model. The main focus of this study was to assess the time efficiency and accuracy of the model. 

6.2 Methods 

The study was based on patient-specific humeri with fracture fixation plate models of 434 

subjects. A semi-automated FE process was developed, and their data were used to train a GNN 

model.  

6.2.1 FE model  

For the generation of the FE data, CT images of 434 cadavers of > 60-year-old donors were 

collected from the New Mexico Decedent Image Database (NMDID) (Edgar et al. 2020). The 

cohort consisted of 203 females and 231 males. Synopsys’ Simpleware™ AS Ortho module was 

used for the segmentation of 81 left and 353 right humeri (Version U-2022.12; Synopsys, Inc., 

Mountain View, USA). All the humeri were cut at 160mm in length from the top of the humeral 

head and a virtual osteotomy of a 5 mm gap was performed at the surgical neck, simulating a 

single two-part proximal humeral fractures AO/OTA 11-A2.1 (Foundation AO 2014). A fracture 
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fixation plate (Austofix, Adelaide, Australia) with twelve screws was virtually inserted in the 

bone, positioned 4mm posterior to the bicipital groove and 7mm distal to the top of the greater 

tubercle (Austofix, Adelaide, Australia). The proximal screw length was automatically set for 

each subject to maintain a constant Tip To Joint (TJD) distance of 8 mm (Fletcher et al. 2019a) 

and their orientation in the space was fixed. The diameter of all the screws was set to 3 mm.  

All materials were modelled as linear elastic, with a Poisson's ratio of 0.3. The screws and plate 

were made of titanium alloy, having a Young’s modulus of 105 GPa. The Eggermont 

methodology was used to obtain each subject's Bone Mineral Density (BMD) (Eggermont et al. 

2019), which was then used to convert to Young Modulus using the Morgan et al. equation 

(Morgan et al. 2003): 𝐸(𝑀𝑃𝑎) = 6850𝜌𝑎𝑝𝑝
1.49 .  An FE mesh with linear tetrahedral elements 

(C3D4), with an element edge length between 1 and 0.5 mm was generated using the Synopsys’ 

Simpleware™ FE module. Refer to Appendix A for the mesh convergence. The contact between 

the bone and the screws and between the plate and the screws were set as tied. According to 

Röderer's experimental work (Röderer et al. 2013), the models were exposed to a vertical force 

to simulate an axial bending scenario. The model's geometry was then rotated by 25° around 

the humerus's anterior-posterior axis, in line with Bergmann's clinical study (Bergmann et al. 

2007). A point external to the humerus, representing the midpoint between the condyles of the 

lower end of the upper arm bone, was fixed in all directions and connected to the nodes of the 

lower portion of the humerus (Figure 3.2). In addition, another external point was connected to 

a 20 mm-diameter circular area on the surface of the humeral head. This point was positioned 

1 mm from the surface of the humeral head along the axis connecting the centre of the humeral 

head to the centre of the circular area. The second external point, which could only move 

vertically, was then subjected to a vertical force of 100N. Similar to the studies carried in 

chapter 3 and 4, these loading and boundary conditions choice were made based on the high 

quality studies developed from the AO foundation team. The outputs of interest were the 

principal components of the strain at the surface of the bone around the proximal screws, as it 
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had been shown to be a parameter of failure for fracture fixation plates used for proximal 

humeral fractures (Varga et al. 2017). The models were run in ABAQUS (Version 6.14-3, 

Dassault Systèmes, Vélizy-Villacoublay, France) as a standard implicit static analysis. 

In order to be time efficient, the process of generating the FE data for each subject was partially 

automated using a chain of Matlab (Mathworks, Natick, MA, USA) scripts. The processes 

included the segmentation of the humeri using the autosegmentor tool, the translation of the 

reference system based on the anatomical references of each subject, the virtual osteotomy, the 

selection of screw length, the generation of the mesh, the selection of material property based 

oh CT image, the setting of the boundary and loading conditions on and then the FE simulation 

running and output analysis (Figure 6.1). 

6.2.2 Dataset development 

After running FE simulations for the 434 subjects, the data from each analysis was converted 

into graph structures consisting of a 3D network of nodes. The input and output data for 

Figure 6.1 - Workflow developed for the generation of FE data 
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generating the graphs were extracted from the nodal information of the bone surface around 

the screws for each subject. These graph structures were then used to train the GNN models. 

In particular, the input data were defined as follows: 

• x, y, z coordinates of the nodes of the bone surface around the proximal screws, which 

were normalised. For each subject, the coordinate data were normalised based on the 

coordinates data of their cortical bone screw (screw 6), to reduce the variability of the 

data since the coordinate system was subject-specific, based on the anatomical reference 

points of the humerus.  

• Young Modulus of the nodes of the bone surface around the proximal screws, which were 

normalised. For each node, this data was derived from the adjacent elements. The data 

of all subjects were normalised based on the Young Modulus data of a subject which was 

picked randomly. 

• Edge connectivity matrix. The nodes' connectivity was determined by connecting each 

node to the nodes positioned with a maximum distance of 2 mm. 

• Edge length distance of the connected nodes. 

The output values used were the minimum, middle and maximum principal strain of the bone 

of the surface around the proximal screws. The data were defined at the nodal level after being 

extracted from the adjacent element. 

The graphs obtained from the cohort of 434 subjects were divided into four groups of 100, 200, 

300, and 400 subjects for the training set and one group of 34 subjects for the testing set. The 

training sets were used to train the GNN models, with the focus of investigating the amount of 

data needed to build an accurate model. The testing set was used to test the GNNs once they 

were trained.   
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6.2.3 GNN Development 

The GNN structure used for this study was developed using PyTorch Geometric (Fey and 

Lenssen 2019), using mainly the structure ChebConv (Defferrard et al. 2016). The GNN 

consisted of an encoder, a processor and a decoder (Figure 6.2).  

• The encoder consisted of a single block composed of a ChebConv, Dropout and ReLu 

layer. The input size of the ChebConv was 4, corresponding to the young modulus at the 

nodes and the x, y and z coordinates of the nodes, and the output size was set to 100. 

• The processor consisted of two distinct blocks, each one composed of a ChebConv, 

Dropout and ReLu layer. The input and output size of each ChebConv layer was set to 

100. 

• The decoder consisted of a final distinct block of a ChebConv, Dropout and ReLu layer, 

and a final Linear layer. The input size of the ChebConv was 100, and the output was 3, 

corresponding to the principal component of strain at the nodes. 

Figure 6.2 - Workflow of the GNN to investigate the subject variabilities 
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For each ChebConv the Chebyshev filter size K was 9. Each ChebConv elaborates information 

about young modulus, nodal coordinates, edge connectivity and edge length distance. 

6.2.4 Analysis of GNN predictions 

In order to evaluate the robustness of the GNN models, the training process was conducted 10 

times for each training set, resulting in 10 unique GNN models for each training set. The data 

for the training sets were selected randomly from the total 434 graphs available. The accuracy 

of the GNN models was assessed using the remaining set of 34 FE models. Specifically, a 

regression analysis was performed comparing the nodal prediction of the strains around the 

screws from the FE real data to their predictions from the trained GNN model. In this analysis, 

the R2 values, the slope, and the RMSE (in µstrain and %strain) were reported. The best GNN 

was considered to have the lowest % of RMSE. The GNN models were trained using a NVIDIA 

RTX A400 GPU with 16 GB of RAM. 

Additionally, a categorical analysis was performed. Specifically, the 34 subjects from the testing 

sets were divided into three different groups based on the mean value of the BMD of the bone 

around the seven proximal screws. The groups were arbitrarily defined as subjects with a mean 

BMD value lower than 92 mg/cm3, subjects with a value between 92 and 119 mg/cm3, and 

subjects with a value higher than 119 mg/cm3. A Kruskal-Wallis H-test was conducted between 

the GNN groups, and a Dunn-Bonferroni pairwise comparison was carried out if statistical 

difference was achieved (p*<0.05) to detect which groups are statistically different, with a p-

value lower than 0.05. The same process was conducted for the FE groups. Finally, a Mann-

Whitney U test was conducted between each FE and GNN for each division group within the 

same BMD range to determine any statistical differences, with a set p*<0.05. 

6.3 Results 

The FE analysis took approximately 37-42 minutes per subject, from the segmentation process 

of the humeri to extracting the outputs of interest after running the FE simulation. The training 
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of the GNNs with the training set of 100, 200, 300, and 400 data sets took 1, 2, 3, and 4 hours 

respectively. After the training process, each GNN took only 15 seconds to make predictions for 

the 34 unseen subject cases of the testing set. 

Prior to selecting the model outlined in section 6.2.3, several GNN methods with different 

structures were analysed (Table 6.1). A single GNN for each structure was trained using 

increasing training sets ranging from 50 to 400. This helped to evaluate the accuracy of each 

model progressively. The final model was chosen based on having the highest R2 and slope, as 

well as the lowest RMSE. Additionally, it demonstrated a shorter training time compared to the 

other models when using a training set of 400 subjects (Figure 6.3). 

The following results come from the model explained in section 6.2.3. Focusing on the influence 

of training set size on the GNN accuracy, increasing the number of training data sets improved 

the prediction accuracy of the models (Figure 6.4). Looking at the regression results between 

the Minimal Principal Strain of the nodes around the screws of the FE models of the testing set 

and their predictions with the GNNs, the R2 value increased from 0.69 for the training set of 

100 data to 0.75 for the training set of 400 data. The GNN models under predict the strains, as 

the slope is always lower than 1. In particular, the slope increased from 0.78 for the training set 

of 100 data to 0.80 for the training set of 400 data. The RMSE had a reduction of 5.6% between 

the predictions from the GNN trained with 100 data and the one trained with 400, decreasing 

from a value of 759 µstrain to a value of 716 µstrain (Table 6.2). 

The predictions of the Maximum Principal Strain had a similar trend to the prediction of 

Minimal Principal Strain. In particular, the R2 value and the slope value increased respectively 

from a value of 0.67 and 0.76 to a value of 0.74 and 0.82, from the predictions made with the 

GNN trained with 100 data and the one trained with 400. With a similar decreasing rate, the 

RMSE value dropped from 750 to 665 µstrain (Table 6.2). 
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The GNN models were less efficient at predicting the Middle Principal strain values. In 

particular, a slight increase of R2 was reported, respectively of 0.37 for the training set of 100 to 

0.44 for the training set of 400. The absolute value of RMSE didn’t change, but the % of RMSE 

slightly dropped, from 10.68% to 9.69% respectively for the training set of 100 and 400 data 

(Table 6.2). 

In analysing the strain prediction based on the division of subjects into groups by their mean 

BMD, it was observed that the magnitude of both minimum and maximum strain increased as 

BMD decreased among the subject groups. Statistical significance was observed between the 

GNN group with the lowest BMD and the other two GNN groups in terms of predicting 

minimum and maximum strain. Additionally, there was a significant difference between the FE 

group with the lowest BMD and the FE group with the highest BMD for predicting strain. 

However, there was no statistically significant difference between every FE and GNN for each 

group, as the p-value was higher than 0.05 (Figure 6.5). 

The GNN and FE predictions for strain in subjects with minimum, 25th percentile, 50th 

percentile, 75th percentile, and maximum BMD values over the testing set of 34 subjects have 

been documented. In the case with the highest BMD, no significant increase in strain was 

observed. However, for the subjects with the lowest BMD, an increase in strain was observed at 

the tip of the cortical screws, and the GNN predictions successfully captured this increase. It 

was observed that there was a gradual increase in BMD at the bottom of the more distal screws 

with the overall increase of BMD within subjects (Figure 6.6). 
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Table 6.1-Details of the GNN structures used and tested. X: nodes matrix. A: adjacency matrix. W: edge weight matrix. K: trainable filter, Pi: neighbouring point positions of xi. 

γΘ, hΘ: neural networks. α: parameters that learn how much information to keep in the mean.       

GNN Type Input Output Algorithm 

TAG (DU ET 

AL. 2017) 

MessagePassing, 

topology 

adaptive graph 

convolutional 

networks 

operator 

Node features 

Edge index 

Edge weights (opt) 

Node features 
𝑋′ = ∑(𝐷

−1
2⁄ 𝐴𝐷

−1
2⁄ )𝑘𝑋

𝐾

𝑘=0

𝑊𝑘 

𝐷𝑖𝑖 = ∑ 𝐴𝑖𝑗
𝑗=0

 

XConv (LI ET 

AL. 2018) 

Module, 

convolutional 

operator 

Node features 

Positions 

Batch vector (opt) 

Node features 𝑥𝑖
′ = 𝐶𝑜𝑛𝑣(𝐾, 𝛾Θ(𝑃𝑖 − 𝑝𝑖) × (ℎΘ(𝑃𝑖 − 𝑝𝑖) ∥ 𝑥𝑖)) 

ChebConv 

(DEFFERRARD 

ET AL. 2016) 

MessagePassing, 

chebyshev 

spectral graph 

convolutional 

operator 

Node features 

Edge indices 

Edge weights (opt) 

Batch vector (opt) 

Maximum lambda 

value (opt) 

Node features 
𝑋′ =  ∑ 𝑍(𝑘) ∙ Θ(𝑘)

𝐾

𝑘=1

 

𝑍(1) = 𝑋 

𝑍(2) = �̂� ∙ 𝑋 

𝑍(𝑘) = 2 ∙ �̂� ∙ 𝑍(𝑘−1) − 𝑍(𝑘−2) 

�̂� =  
2𝐿

𝜆𝑚𝑎𝑥
− 𝐼 

GraphNorm 

(CAI ET AL. 

2021) 

Module, graph 

normalization 

over individual 

graphs 

Node features 

Batch vector (opt) 

Node features 
𝑥𝑖

′ =
𝑥 − 𝛼⨀𝐸[𝑥]

√𝑉𝑎𝑟[𝑥 − 𝛼⨀𝐸[𝑥]] + 𝜖

⨀𝛾 + 𝛽 
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Figure 6.3 - Performance of different GNN models with the increase of training set size 
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Table 6.2 - Performance of the GNN on the testing set of 34 simulations for the prediction of minimal, middle and maximum principal strain of the bone around all the screws. 

The influence of the training set size is shown. Results are displayed for the model with the lowest error, while the average of 100 models is shown in brackets. The computational 

time difference between the FE and the GNN processes is also displayed 

 Minimal Principal strain Mid Principal strain Maximum principal strain 

Training 

set size 

(n) 

FE 

Running 

time (h) 

GNN 

training 

time (h) 

R2 Slope 
RMSE 

(µstrain) 

RMSE 

(%) 
R2 Slope 

RMSE 

(µstrain) 

RMSE 

(%) 
R2 Slope 

RMSE 

(µstrain) 

RMSE 

(%) 

100 61-70 1 
0.71 

(0.69) 

0.71 

(0.78) 
374 (759) 

5.50 

(5.90) 

0.37 

(0.38) 

0.39 

(0.39) 
104 (107) 

10.68 

(10.72) 

0.70 

(0.67) 

0.77 

(0.78) 
702 (721) 

6.54 

(6.79) 

200 122-140 2 
0.73 

(0.73) 

0.81 

(0.79) 
696 (733) 

5.03 

(5.37) 

0.41 

(0.41) 

0.41 

(0.42) 
105 (106) 

9.54 

(10.21) 

0.72 

(0.71) 

0.80 

(0.80) 
656 (697) 

6.04 

(6.26) 

300 183-210 3 
0.75 

(0.73) 

0.79 

(0.80) 
718 (728) 

5.13 

(5.56) 

0.44 

(0.42) 

0.42 

(0.42) 
102 (105) 

9.44 

(10.23) 

0.76 

(0.72) 

0.80 

(0.79) 
669 (691) 

5.96 

(6.28) 

400 244-280 4 
0.76 

(0.75) 

0.74 

(0.80) 
751 (716) 

4.93 

(5.31) 

0.44 

(0.44) 

0.44 

(0.43) 
102 (105) 

9.69 

(10.18) 

0.74 

(0.74) 

0.85 

(0.81) 
660 (676) 

5.63 

(6.14) 
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Figure 6.4 - Performance variation of the 10 GNNs developed for each training set. The variation for the training set prediction and the testing set prediction is 

shown  
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Figure 6.5 - Regression and categorical analysis for the FE and GNN data of the 34 subjects of the testing set. 
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6.4 Discussion 

Developing an efficient computational tool using an FE technique to predict the bone strain at 

a population level when applying an implant is a complex and time-consuming task. Indeed, FE 

analysis can be demanding, especially when conducting extensive analyses on multiple subjects. 

However, creating a more efficient tool has the potential to investigate the biomechanics of a 

specific implant in a more time-efficient manner, which could significantly improve surgical 

planning for implants and minimize the risk of failure for certain implant designs in the future. 

Figure 6.6 – BMD distribution and Min principal strain distribution of strain in the humerus for the subjects with 

minimum, 25th percentile, 50th percentile, 75th percentile and maximum value of BMD over the testing set of 34 subjects. 

Results from the FE model and the best GNN trained with the training set of size 400. 
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The objective of this study was to develop an efficient computational model using a GNN 

technique and an FE analysis to predict the distribution of bone deformation in the humeral 

head among individuals with a proximal humeral fracture and a fracture fixation plate. To 

efficiently generate FE data for a cohort of 434 subjects, a semi-automated process was 

developed. Firstly, several architectures of GNN models were explored and ultimately the best 

one was selected based on its regression results between 35 FE data from the testing set and 

their predictions with the GNN model, as well as its computation time. The selected model was 

the most complex one, and it was demonstrated that increasing the complexity of the model led 

to an improvement in the predictions (Figure 6.3). 

When analysing the impact of the training set size during the training process of the GNN 

models, it was observed that increasing the amount of training data led to improved accuracy 

in predicting Min, Mid, and Max bone strain, in terms of RMSE of the predictions. The 

predictions were more accurate for the Min and Max strain compared to the Mid strain, possibly 

due to the fact that the Mid Principal strain values are very close to zero, fluctuating between 

low positive and low negative values. This made it challenging for the model to identify 

consistent patterns (Figure 6.4, Table 6.2). The data presented in Figure 6.4 suggests that 

increasing the number of subjects in the training sets results in higher accuracy. This is 

evidenced by the decrease in RMSE from 5.50 to 4.93 % of µstrain for the Min Principal strain, 

from 10.68 to 9.69 % of µstrain for the Mid Principal strain, and from 6.54 to 5.63 % of µstrain 

for the Max Principal strain when transitioning from a training set of 100 data to a training set 

of 400 data (Figure 6.4). The values obtained for both the Min and Max principal strain appear 

to be within an acceptable range, as they are fairly close to 1 considering the absolute strain 

values. However, further improvements to the GNN model are needed to achieve a more 

substantial reduction in RMSE and to improve overall model performance. 

In the analysis of the 90th percentile of the Min and Max principal strains around the screws for 

the 34 subjects in the testing set, there is a notable increasing trend in the Min principal strain 
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and a decreasing trend in the Max principal strain with higher values of BMD within subjects. 

In comparison to the FE analysis results, the GNN model underpredicts the magnitude of both 

the Min and Max principal strains. When the data were categorised into three groups based on 

their BMD values around the screws, a statistical difference was observed between the GNN 

group with the lowest BMD and the others. This demonstrates that the GNN model can 

effectively distinguish between subjects with low and high BMD values when presented with 

unseen data. Furthermore, GNN has the capability to accurately predict the distribution of 

strain on a three-dimensional surface, enabling accurate identification of areas with elevated 

strain (Figure 6.6). 

After analysing the predictions of the GNN trained with each training set and the evaluation of 

the GNN's prediction of the 90th percentile of the Min and Max principal strain around the 

screws, it is evident that the models consistently underestimate the strain values (Figure 6.4, 

Figure 6.5). Interestingly, there is minimal variance between the results of the GNN from the 

training process and the GNN from the test analysis of unseen scenarios (Appendix C: 

Supplementary material for Chapter 6), making it unlikely that the model is overfitting. 

Therefore, it seems improbable that increasing the data for the training set would significantly 

enhance the GNN's performance. Rather, it is more likely that the model is underfitting, and it 

is probable that the GNN algorithms used for this specific problem may not be performing 

optimally, suggesting the exploration of alternative models. 

This study is the first one to use an efficient computational technique to predict bone strain in 

proximal humeral fractures with a fracture fixation device for a cohort of subjects. Developing 

an efficient methodology for predicting bone deformation in multiple patients with a fracture 

fixation implant is challenging and time-consuming. Previous studies by the AO foundation 

group have developed a computational framework for generating FE data on a cohort of subjects, 

focusing on varying implant parameters (Fletcher et al. 2019b, 2019a, 2019c; Mischler et al. 

2020b, 2022; Schader et al. 2021; Varga et al. 2018). Although advantageous in their parametric 
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approach, those models were developed on a limited number of subjects, between 20 and 47 

subjects, and used only an FE approach. An efficient computational method is essential to 

reduce computational costs when dealing with a larger cohort of subjects. Ziaeipoor et al. 

conducted a comprehensive study using Principal Component Analysis (PCA) to predict the 

strain distribution in intact femurs across a large population. The study faced challenges related 

to the necessity use of mesh morphing for the model construction and predicting the strain for 

unseen subjects. Additionally, the model did not consider bone fractures, which is another 

limitation of the study (Ziaeipoor et al. 2020). This study innovatively used a combination of 

GNN and FE approaches to predict bone deformation in proximal humeral fractures treated 

with a fracture fixation plate, taking into account variations in subject geometries and material 

properties. The method was found to be computationally inexpensive, with the main 

computational cost being the generation of training data through the FE process. Indeed, the 

training duration was directly proportional to the amount of data in the training set, reaching 

a maximum of 4 hours. Furthermore, the model demonstrated the ability to accurately predict 

the 35 unseen cases. 

A series of limitations should be addressed. Firstly, the loading and boundary conditions of the 

FE model were simplified and assumed a tied interface between the bone and the implant. 

Furthermore, the models were not experimentally validated. However, it is worth noting that 

similar conditions were employed in the majority of studies found in the literature (Fletcher et 

al. 2019b, 2019a, 2019c; Mischler et al. 2020b, 2022; Schader et al. 2021; Varga et al. 2017, 

2018), some of which were experimentally validated (Varga et al. 2017, 2018).  Another 

limitation is that only the surface bone data around the screws was analysed. Indeed, for a more 

comprehensive analysis, data from a volumetric region should be used. This approach, however, 

may result in a significant rise in the requirement for GPU resources and greater computational 

expenses for training the GNN models. It is essential to thoughtfully consider these factors, 

even though the use of volumetric data is likely to enhance the accuracy of the models by 
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increasing the amount of input data for each subject. This study has only focussed on the bone 

strain. Additional factors such as micromotions of the bone segments or implant stress could 

also be taken into account and, in principle, the GNN technique should be flexible enough to 

work with other type of variables, not limited to bone strain alone. The implant parameters 

remained unchanged, with only the subject variations being considered. In the future, it would 

be beneficial to first enhance the model's accuracy and then increase its complexity by 

introducing additional variables for analysis. These variables may include screw length, plate 

position, and screw orientation. Moreover, expanding the training data set beyond 400 subjects 

would also be beneficial. Lastly, for the development of this chapter, only a limited number of 

GNN models from the PyTorch library were explored. However, it is essential to expand the 

investigation by exploring a wider range of GNN and DL approaches with varying degrees of 

complexity. Additionally, it would be advantageous to explore other DL methods, such as 

advanced image-based Convolutional Neural Network (CNN) models or Generative Adversarial 

Networks (GANs) models. However, one challenge in exploring these techniques would involve 

converting the FE dataset into an image format, which could be time-consuming, especially 

considering the 3D geometry involved. The aim of this study was to create an efficient 

computational model using a GNN technique and an FE analysis to predict the distribution of 

bone deformation in the humeral head among individuals with a proximal humeral fracture and 

a fracture fixation plate. The methodology used in the study demonstrated that GNN and FE 

techniques can be effectively applied to this purpose. In addition to their efficiency and 

computational time advantages, using a GNN technique eliminates the need for mesh morphing 

processes, significantly reducing the computational time required compared to other simpler 

surrogate techniques or an extended FE analysis. Furthermore, GNN techniques provide 

enhanced flexibility in predicting unseen scenarios. Although the study was simplified, it 

suggests that by increasing complexity and incorporating additional parameters for 

investigation, a GNN approach could be developed to analyse biomechanical problems and 

enhance the traditional FE approach. Ideally, a computational approach such as the one 
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described in this chapter could, in the future, enhance surgical planning and assist surgeons in 

improving the outcome of medical applications. 
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Chapter 7 

7. Discussion, Conclusion, and Future Work 

7.1 Discussion 

Understanding the biomechanical performance of a fracture fixation plate used to treat 

proximal humeral fractures is a complex task due to numerous influencing parameters. These 

parameters can be categorised as implant-related, including screw length, screw orientation, 

and plate position, as well as patient-related, such as bone quality, bone size, and fracture 

configuration. FE analysis is commonly used to study the biomechanical behaviour of these 

fixations’ solutions and their worst-case scenario, but it can be computationally intensive when 

dealing with a large number of potential configurations. Previous studies that used FE analysis 

to investigate the performance of fracture fixation plates for proximal humeral fractures were 

limited to a small number of subjects, up to 47, and a restricted number of conditions, resulting 

in a few thousand simulations. This approach demonstrated that relying solely on FE analysis 

becomes extremely demanding when exploring a greater number of configurations and when 

aiming to explore the subject variabilities. The main objective of this thesis was to develop 

efficient computational models to assist the FE analysis and reduce computational time. 

Specifically, the focus was on creating computational models of varying complexity to examine 

the impact of different implant variables and subject variability. 
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Fracture fixation plates are considered the gold standard for treating proximal humeral 

fractures, particularly in elderly patients. Some FE analysis studies found in the literature have 

examined the impact of various implant parameters on bone deformation through parametric 

analysis. These parameters include screw length, screw orientation, plate position, and cement 

augmentation. However, these analyses are limited, as they only explore a few parameter 

combinations and they run a limited number of simulations (Fletcher et al. 2019b, 2019a, 2019c; 

Mischler et al. 2020b, 2022; Schader et al. 2021; Varga et al. 2018). Indeed, FE Analysis can be 

computationally demanding, especially when exploring multiple configurations and dealing 

with complex boundary and loading conditions. In this regard, DL methodologies could help and 

assist FE analysis, enhancing its computational capabilities. Training a DL model using FE 

data can lead to quick and accurate predictions for unforeseen scenarios, ultimately saving the 

computational time typically required for a purely FE-based process. 

The first two studies carried out in this thesis consisted of combining an FE and an ANN 

approach to investigate the impact of two different implant characteristics on the humeral 

strain. Specifically, two distinct FE datasets were created by varying the length of the proximal 

screws of the implant and modifying the screw orientation within the humeral head. In the field 

of orthopaedic applications, only a limited number of studies in the literature have employed a 

combined FE and ANN model. For instance, these models have been used to predict femoral 

neck strains and fracture loads (Taylor et al. 2017), as well as femoral strain variations based 

on implant design features and bone quality (Chatterjee et al. 2019). Additionally, they have 

been used to detect bone displacement based on bone plate features for a femoral fracture 

(Dhason et al. 2023). However, none of these studies have investigated the influence of implant 

parameters of a fracture fixation plate on humeral strain. The studies in both Chapters 3 and 4 

involved exploring up to a thousand simulations, resulting in a larger number of configurations 

compared to previous FE studies in the literature (Fletcher et al. 2019a; Jabran et al. 2019a; 

Mischler et al. 2020b; Schader et al. 2021). Additionally, training ANN models using FE data 
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offered several benefits, particularly in reducing the computational time required for predicting 

new, unseen scenarios. This approach provided a significant advantage, as the process of 

predicting new scenarios only took a few seconds and necessitated only the length or orientation 

data of the screws of the new configurations. Indeed, no mesh information is necessary to make 

predictions for new scenarios, which makes this method a quick and efficient tool for generating 

new predictions. However, one of the main limitations of the ANN approach is that, while it is 

computationally inexpensive, it does not provide a prediction of the local strain distribution, but 

rather only a generalized mean or maximum value of the strain occurring within the humerus.  

To address this issue, the aim of the studies of Chapter 5 and Chapter 6 was to develop an 

efficient GNN model combined with the FE analysis, to make predictions of a distribution of 

strain with the variation of implant parameters and within subjects.  Research in the literature 

has demonstrated that GNN models are suitable for analysing mesh structures and can 

effectively learn from structured data such as molecular structures and 3D geometries. This 

presents a significant advantage for FE analysis, particularly considering the computational 

cost involved, as the integration of GNN with FE analysis overcomes the need for mesh 

morphing when analysing multiple structures. An early notable study successfully combined 

FE and GNN approaches to predict stress within a porous structure while varying its porous 

characteristics. This study provided valuable insights into the current use of FE and GNN 

methodologies, although it was limited in that it did not account for variations in material 

properties inside the structure, focusing solely on the geometric variation of the pores (Krokos 

et al. 2022a). In the research outlined in Chapters 5 and 6, an innovative approach utilizing 

GNN was conducted to predict bone strain. Several GNN models were trained using the FE data 

developed in Chapters 3 and 4, as well as on a new dataset from a cohort of 434 subjects. The 

architecture of the GNN models was chosen from those available in the Pytorch Geometric 

library, after evaluating their performance. The GNN models demonstrated the ability to 

accurately predict new scenarios, effectively capturing the impact of implant and subject 



 

161 

 

variabilities. One significant advantage of this approach is the substantial reduction in 

computational time compared to FE analysis. While the model's training time could extend over 

several hours depending on the data volume, once trained, it takes only a few minutes to 

generate new predictions. This efficiency makes it highly suitable for real-time applications and 

surgical planning assistance. 

The research presented in this thesis highlights the potential of using an FE dataset to develop 

an effective computational model for predicting unseen scenarios. The ANN model, while 

relatively simple, demonstrated its ability to provide a quantitative prediction of overall bone 

strain, rather than an actual distribution. This capability is valuable for assessing whether the 

strain levels are within a safe range or if the bone is approaching failure. The input data 

required to generate new predictions were straightforward, involving only implant features 

such as screw length and screw orientation. However, it is important to note a limitation of the 

model, as it does not incorporate patient-specific variables, given that the ANN models were 

trained on a single specimen. To incorporate patient-specific characteristics into the model, 

patient characteristics such as humerus length, diameter of the humeral head, and BMD need 

to be included. On the other hand, the GNN approach offers more advanced capabilities, as it is 

able to predict the distribution of strain, enabling real-time visual analysis of the impact of the 

parameter of interest.  

The research outlined in this thesis offers significant promise for use in biomedical implant 

applications due to its high level of accuracy and computational efficiency, making it a valuable 

advancement in the field. Indeed, the methodologies used have the potential to support in vitro 

testing, provide guidelines for improved surgical practices and pre-operative planning, and even 

potentially enable real-time adjustments during surgeries. In the context of in vitro testing for 

regulatory approval, it is often necessary to test for worst-case scenarios. However, identifying 

such scenarios can be challenging in biomechanical problems that involve a wide solution space 

and a high number of variables. For instance, the biomechanical challenges of fracture fixation 
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plates for proximal humeral fractures, as described in the thesis introduction, exemplify these 

complexities. According to a study by Zdero et al, a review was performed to identify research 

studies that conducted experimental or computational analyses to explore the impact of plate 

and/or screw variables on fracture fixation performance. The review revealed that a wide range 

of variables were investigated, highlighting the potential challenges of comprehensively 

examining all variables using either experimental or finite element approaches (Zdero et al. 

2024). More efficient computational techniques such as the ones described in this thesis hold 

the potential to identify worst-case scenarios for specific complex problems. Additional FE 

analysis can then be conducted to confirm the results from the surrogate models, followed by 

validation through mechanical testing. Moreover, the comprehensive analysis presented in this 

thesis has the potential to provide valuable guidance for surgeons in the application of fracture 

fixation plates and for other biomechanical scenarios. Chapters 3, 4, and 5 revealed that careful 

consideration should be given to the length and orientation of cortical screw (screw 6), as these 

factors greatly influence the strain in the bone and consequently the success of the implant, 

consistent with findings from previous studies (Fletcher et al. 2019b; Mischler et al. 2020b). For 

instance, the results suggest that a TJD ranging from 4 to 8 mm should be chosen to minimize 

the overall strain in the humerus, especially for the cortical screw, which also should be directed 

more proximally to reduce the risk associated with high strain. Therefore, it is important to 

carefully consider the length and orientation of the cortical screw based on this evidence. 

Additionally, Chapter 6 demonstrated that lower BMD results in increased bone strain, which 

could lead to failure of fixation (Mischler et al. 2020b). While previous research has examined 

the impact of screw length and poor bone quality, the use of a DL technique combined with an 

FE analysis could offer substantial benefits in examining scenarios where the effects of certain 

variables are not extensively documented and potentially assist surgeons in making more 

informed decisions. This approach may also facilitate the integration of multiple variables for 

the study of complex scenarios. Lastly, the techniques outlined in this thesis have the potential 

to serve as a highly efficient computational tool for surgical planning and for evaluating the 
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potential risk of failure for each individual patient. It is important to highlight that further 

substantial development is required to enhance the effectiveness of the tool. Nonetheless, the 

findings presented within this research offer valuable encouragement for the expansion and 

integration of the tool into practice. 

7.2 Limitations 

The ultimate goal of this project is to rapidly predict the strain for any patient with any fracture 

pattern while accounting for various implant variables. While this thesis has made significant 

progress, there is still some way to go in achieving this goal, and it is important to acknowledge 

the limitations associated with the FE and DL models developed in this thesis. In the FE 

analysis, the bone was modelled as a linear elastic material, and the equation used to derive the 

elastic modulus from the bone mineral density was based on the femoral head (Morgan et al. 

2003). It is important to note that there is currently no literature addressing the humeral head 

in this context. Using a more complex material behaviour for the bone in the model would 

increase the FE running time, but it is unlikely to have a significant impact on the DL training 

and prediction time. Regarding the accuracy of the prediction, integrating a more complex bone 

behaviour could result in more realistic outcomes, although the impact may not be substantial 

(Zhou and Al-Qadi 2024). For all the FE studies, in order to simulate a simplified scenario a 

simplified fracture pattern was applied, resulting in an unrealistic scenario. For future 

applications and improvements of the model, it is essential to replicate a more realistic fracture 

patterns to achieve a more accurate scenario. The FE analysis used simplified loading and 

boundary conditions, focusing solely on an axial-bending scenario and excluding muscular forces 

from the model. Moreover, no sensitivity analysis was conducted to explore the impact of the 

variation in loading and boundary conditions. Increasing the complexity of the loading and 

boundary scenario, similar to the material properties, would lead to longer FE computational 

times and more realistic FE data. This would consequently improve the accuracy of DL models, 



 

164 

 

however, it would not necessarily increase the training and prediction time of the DL models. 

The FE and DL models were not experimentally validated. Nonetheless, the loading and 

boundary conditions used for the FE analysis reproduced those found in a group of works that 

have been experimentally validated. The technique explored in this thesis has the potential to 

be used to develop a computational tool capable of examining a broader spectrum of boundary 

and loading conditions, not limiting the investigation to a single scenario, resulting in a more 

realistic investigation. In this thesis, the analysis was focused specifically on the bone strain 

around the surface of the screws. This particular output was chosen because previous research 

has shown it to be a surrogate indicator of potential cut-out failure of the proximal humeral 

plate (Varga et al. 2017). Moreover, the AO Foundation's team conducted several studies to 

examine how variations in different parameters affect bone strain around screws. These studies 

have served as guidelines for the FE developed in this thesis (Fletcher et al. 2019b, 2019c, 2019a; 

Mischler et al. 2020a, 2020b, 2022; Schader et al. 2021; Varga et al. 2017, 2018, 2020). In order 

to carry experimental tests consistently with the literature, it is recommended to use a biaxial 

testing machine for conducting bending, axial rotation, and varus bending tests similar to the 

analysis conducted by Unger and Roderer (Röderer et al. 2013; Unger et al. 2012), and 

reproduced in the FE studies by the AO Foundation's group (Fletcher et al. 2019b, 2019c, 2019a; 

Mischler et al. 2020a, 2020b, 2022; Schader et al. 2021; Varga et al. 2017, 2018, 2020). However, 

these testing methods have the limitation of not being able to predict the strain inside the bone. 

Therefore, additional parameters such as micromotions and fracture gap distance should be 

used to validate the models developed in this thesis. For a more thorough analysis, Digital 

Volume Correlation (DVC) methods could be employed in conjunction with these testing 

methods to estimate the strain inside the bone and validate the models, although requiring a 

µCT scan machine (Roberts et al. 2014). 

The ANN models developed in Chapters 3 and 4 were simplified. They were generated using 

data from a single subject, they did not account for patient-specific input and were not designed 
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to be transferrable to other individuals. Consequently, the model's applicability was limited to 

the specific subject on which it was trained. 

The GNN models used in Chapters 5 and 6 were originally designed for other applications, and 

as a result, the algorithms were not originally customized for the specific biomechanical problem 

addressed in this thesis.  Furthermore, only a limited number of GNN models have been used 

and tested. As a result, it would be highly beneficial to further investigate the efficacy of 

alternative GNN structures and to develop specific algorithms tailored to address the challenges 

of this particular biomechanical issue. A limitation of these GNN models is their dependence on 

mesh data from an unseen scenario to produce new predictions, which can lead to time-

consuming processes, especially when dealing with complex scenario geometries. 

Every study conducted in this thesis focused on addressing one variable at a time in order to 

simplify the problem and gradually increase complexity. For the studies conducted in Chapters 

3, 4 and 5, the datasets developed were based on a single patient, and it was analysed the effect 

of a single implant variable. On the other hand, the dataset for Chapter 6 was generated on 434 

subjects, but all the implant conditions were uniform. The studies conducted in every chapter 

were designed to analyse one variable at a time in order to test the capabilities of the FE-

informed surrogate models in making predictions within a simplified scenario. The ultimate 

goal is to develop a complex model that can make predictions considering all variables 

influencing the problem. However, the reality and complexity of computational models suggest 

starting the analysis with a simplified approach and then progressing from there. The models 

developed in this thesis have demonstrated the ability to make accurate predictions, providing 

confidence to progress to more complex analyses. 

Finally, to execute a surgical plan, a CT scan is often necessary, although it is not always a 

standard part of the care protocol. Moreover, a larger dataset of subjects is necessary for training 

the models presented in this thesis, which can be challenging since CT scans are typically less 

available in open sources and more costly to acquire. However, there is ongoing research focused 
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on developing models to convert 2D X-ray data, which are usually more available and less 

expensive, into 3D images, which could be advantageous in the future (Maken and Gupta 2023). 

7.3 Future Work 

The research conducted in this thesis represents the initial development of a more advanced 

computational tool to enhance the use of traditional FE analysis for the assessment of 

orthopaedic devices. This tool aims to evaluate the risk associated with fracture fixation plates 

for proximal humeral fractures, taking into account patient-specific factors and variability in 

implant design. By integrating FE with a DL approach, there is potential to significantly 

enhance the assessment of the surgical phase and improve the identification of risks associated 

with specific implant-related decisions. This computational tool holds promise for enhancing 

pre-clinical testing protocols and supporting surgeons in the planning of surgical procedures. 

Looking ahead to future projects, the ANN methodology should be further explored by 

expanding it to a cohort of subjects in order to assess patient variability and by evaluating the 

impact of different fracture configurations. Additionally, it would be valuable to assess 

additional implant parameters, including screw configuration, plate position, and screw 

augmentation. Incorporating these parameters with the ones evaluated in Chapters 3 and 4 

would enable to examine the collective impact of implant parameters and subject parameters. 

This comprehensive computational tool has the potential to assist surgeons in efficiently 

identifying high-risk scenarios associated with the implant procedure. 

In addition to the GNN methodology developed in Chapters 5 and 6, there is a need to expand 

its scope to evaluate not only individual variables like screw length and subject variabilities but 

also to assess multiple implant variables across a cohort of subjects. Furthermore, similarly for 

the ANN, it is important to consider additional implant parameters such as plate position, and 

screw augmentation, and expand the subject's dataset to include different ethnicity groups, 

address gender biases, and enclose a wider age range. To enhance the accuracy of the DL 
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techniques, several adjustments and alternative explorations could be considered. For instance, 

by incorporating multiple variations, such as screw orientation and plate positioning, multiple 

GNN blocks trained on the individual variations could be used to assess these individual factors 

collectively, thereby improving overall accuracy. Furthermore, the region of interest could be 

expanded from the bone surface surrounding the screws to a volumetric region of the bone 

around the screws or even the entire humeral head. However, it's important to note that these 

modifications would considerably increase the computational requirements of the model during 

the training process. Although these implementations would increase the computational 

demands of the FE and DL models, the promising results presented in this thesis demonstrate 

that this methodology can function as a valuable computational tool for fracture fixation devices. 

Consequently, it is worthwhile to continue advancing these models and extend their application 

to more realistic scenarios. 

In order to establish the reliability and applicability of the tool developed in this thesis, the 

methodology used should be replicated, which involves integrating FE data with a DL approach 

to investigate further orthopaedic issues outside the current scope. Similar to this thesis, an 

expanded dataset should be developed to generate data and evaluate the risk factors associated 

with various biomedical devices, such as joint implants and prosthetics. This approach will 

validate the effectiveness of the computational tool and expand its potential applications in the 

field of orthopaedics. The encouraging results outlined in this thesis provide confidence that the 

DL methods could be used to explore the impacts of various fracture fixation scenarios on 

different bone segments. In the context of other orthopaedic challenges, such as joint 

replacement, DL methods should be adapted to address specific issues, and they are likely to 

yield positive outcomes, provided that a comprehensive dataset is used during the model 

training process. For example, the integration of FE models with DL techniques can be used to 

investigate how various designs of knee prostheses affect the success of the implants across 

diverse populations. While FE models are well-established and widely applied in knee 
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replacement research, ongoing studies aim to enhance their design to improve their success 

rates. By training DL techniques on FE data, researchers can assess how different designs may 

influence implant loosening and, ultimately, failure. It is essential to train the model on an 

extensive dataset, particularly one that includes a wide range of subjects, to accurately capture 

the variability among individuals. This approach, following thorough experimental testing, 

could have some potential in the surgical planning of knee replacement. By providing 

personalised data, it can assist surgeons in selecting the most advantageous implant tailored to 

the individual needs of each patient.    

The research conducted in this thesis demonstrated how leveraging DL techniques could be 

advantageous for the development and application of orthopaedic devices. To begin with, the 

Verification and Validation process of in silico trials for biomedical devices typically involves 

assessing the worst-case scenario, necessitating the analysis of various configurations. This 

process can be time-consuming when numerous variables need to be explored and a high number 

of potential configurations exist. In this context, DL techniques could facilitate the development 

of configurations that require analysis, thereby reducing the associated costs. It is important to 

establish standards for the development of DL models, as this could potentially enhance the in 

silico testing process for medical devices in the future. Furthermore, the implementation of 

efficient computational approaches, as explored in this thesis, could significantly aid in surgical 

planning for orthopaedic devices. Ideally, the creation of a database would allow surgeons to 

visualize the real-life impact of different implant choices, enabling them to make more informed 

decisions during surgical procedures. 

7.4 Conclusion 

The research presented in this thesis forms the groundwork for the creation of an effective 

computational tool to assist in the evaluation of fracture fixation plates for proximal humeral 

fractures. By integrating FE analysis with a DL approach, this work has enabled the exploration 
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of implant conditions and subject variability in a computationally efficient manner, 

demonstrating both time efficiency and reliability. Integrating such a tool into the design and 

development process of new fracture fixation designs as a standard practice could enhance the 

production of orthopaedic devices reducing the risk of failure. Additionally, this methodology 

could be integrated into a comprehensive tool for surgical planning, assisting surgeons to make 

informed decisions quickly while visualizing the impact of different variables on patients. 
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Appendix A: Supplementary material for 

Chapter 3 

Convergence Study 

A convergence study was conducted in order to select the mesh size for all the FE simulations 

run in this study. Five different FE models were generated, varying the maximum and the 

minimum edge lengths of the elements of the mesh, as shown in the table. (Table A.1) 

Table A.1 - Mesh dimension of each model and their results of bone principal strain around all the screws 

Model 

number 

Elements 

number 

Min 

element 

edge 

length 

(mm) 

Max 

element 

edge 

length 

(mm) 

50th percentile 

principal bone 

strain around 

the screws 

(µstrain) 

90th percentile 

principal bone 

strain around 

the screws 

(µstrain) 

Running 

time 

(min) 

1 120482 2.0 2.5 1798.18 4510.56 5 

2 197715 1.5 2.0 2050.91 5147.50 5 

3 435899 1.0 1.5 2155.45 5510.33 8 

4 935165 0.5 1.0 2360.77 6129.38 15 

5 2591842 0.4 0.7 2664.00 6872.86 42 

 

The loading, boundary conditions and material properties were set the same as explained in the 

methods section. The principal bone strain around all the screws was analysed, and each model's 

results were compared. 

As shown in the table below, between models 5 and 4 we obtained a deviation of bone strain up 

to 10%, which was assumed acceptable since the running time of the model with the finest mesh 

was significantly higher (Table A.1).     
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Assessing different surrogate models 

Two more surrogate models were developed in this study, a Squared Exponential Gaussian 

Process Regression (GPR) model and a Linear regression model.  

As for the development of the ANN models, the surrogate models were trained with the training 

set of 500 FE simulations and then tested with the set of 100 FE simulations. The regression 

between the results from the FE models and their prediction from the surrogate models has 

been reported.  

Overall, for both predictions of bone principal strain made with the Squared Exponential GPR 

model and Linear Regression model, the R2 values were high but the values of RMSE for the 

linear regression model were significantly higher. The results from the Squared Exponential 

GPR were comparable with the results from the ANN models, although they showed a slightly 

high level of RMSE (Table A.2, Table A.3, Table A.4).  

Moreover, the Squared Exponential GPR model and Linear Regression model are not capable 

to make predictions of multiple outputs, differently from the ANN model. 

 

Table A.2 - Prediction of bone principal strain around all the screws 

Surrogate model 50th percentile min principal 

strain 

90th percentile min principal 

strain 

 R2 Slope RMSE, μ strain R2 Slope RMSE, μ strain 

Squared 

Exponential GPR 

0.99 0.99 24.575 0.99 0.99 98.84 

Linear Regression 0.86 0.90 93.7 0.93 0.91 434.03 
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Table A.3 - Squared Exponential GPR model’s predictions of bone principal strain around each screw 

 50th percentile min principal strain 90th percentile min principal strain 

 R2 Slope RMSE, μ strain R2 Slope RMSE, μ strain 

Screw6 0.999 0.996 61.112 0.997 0.994 195.084 

Screw7 0.992 0.993 49.206 0.987 0.978 227.871 

Screw8 0.988 1.00 35.677 0.991 0.968 91.055 

Screw9 0.976 0.978 36.115 0.973 0.986 136.542 

Screw10 0.991 0.984 41.085 0.993 0.972 80.115 

Screw11 0.985 0.991 29.794 0.991 1.006 78.650 

Screw12 0.996 0.987 51.315 0.997 0.979 85.294 

 

 

Table A.4 - Linear regression model’s predictions of bone principal strain around each screw 

 50th percentile min principal strain 90th percentile min principal strain 

 R2 Slope RMSE, μ strain R2 Slope RMSE, μ strain 

Screw6 0.979 0.977 315.43 0.939 0.944 875.413 

Screw7 0.916 0.921 160.50 0.692 0.674 1107.041 

Screw8 0.501 0.498 229.62 0.685 0.602 526.478 

Screw9 0.908 0.915 71.388 0.899 0.872 267.430 

Screw10 0.942 0.924 105.676 0.940 0.917 226.851 

Screw11 0.114 0.140 235.037 0.970 0.985 150.473 

Screw12 0.965 0.950 153.212 0.967 0.956 283.566 
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Appendix B: Supplementary material for 

Chapter 5 

GNN development 

Performance of the GNN described in section 5.2.1.2 on the dataset described in section 5.2.2.1, 

regarding the dataset on the variation of screw orientation (Figure B.1). 

  

Figure B.1 - Performance of the GNNScrewDirection developed with the model described in section 5.2.1.2 for each 

training set. The original size of the training set is shown with the reduced one in brackets 
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Appendix C: Supplementary material for 

Chapter 6 

GNN training results 

Performance of the training process of the GNN described in section 6.2.3 (Figure C.1, Table 

C.1). 

 

Figure C.1 - Performance variation of the training of 10 GNNs developed for each training set. The variation for the 

training set prediction and the testing set prediction is shown. 
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Table C.1 - Performance of the training of the GNN on the testing set of 34 simulations for the prediction of minimal, middle and maximum principal strain of the bone around 

all the screws. The influence of the training set size is shown. Results are displayed for the model with the lowest error, while the average of 100 models is shown in brackets. The 

computational time difference between the FE and the GNN processes is also displayed 

 Minimal Principal strain Mid Principal strain Maximum principal strain 

Training 

set size 

(n) 

FE 

Running 

time (h) 

GNN 

training 

time (h) 

R2 Slope 
RMSE 

(µstrain) 

RMSE 

(%) 
R2 Slope 

RMSE 

(µstrain) 

RMSE 

(%) 
R2 Slope 

RMSE 

(µstrain) 

RMSE 

(%) 

100 61-70 1 
0.75 

(0.76) 

0.80 

(0.82) 
641 (689) 

5.02 

(5.14) 

0.41 

(0.40) 

0.43 

(0.40) 
107 (108) 

10.2 

(10.5) 

0.75 

(0.74) 

0.84 

(0.82) 
651 (657) 

5.65 

(5.98) 

200 122-140 2 
0.78 

(0.77) 

0.81 

(0.82) 
651 (655) 

4.77 

(4.91) 

0.44 

(0.43) 

0.45 

(0.43) 
103 (104) 

9.97 

(10.3) 

0.76 

(0.76) 

0.80 

(0.82) 
625 (624) 

5.59 

(5.71) 

300 183-210 3 
0.78 

(0.78) 

0.84 

(0.83) 
629 (652) 

4.78 

(4.88) 

0.44 

(0.44) 

0.43 

(0.43) 
102 (103) 

10.1 

(10.2) 

0.77 

(0.76) 

0.82 

(0.82) 
594 (621) 

5.55 

(5.69) 

400 244-280 4 
0.79 

(0.78) 

0.83 

(0.83) 
627 (654) 

4.72 

(4.91) 

0.45 

(0.44) 

0.43 

(0.44) 
102 (103) 

9.98 

(10.1) 

0.78 

(0.77) 

0.84 

(0.83) 
593 (624) 

5.43 

(5.72) 
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