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Abstract

Polyketides are considered not only the largest class of secondary metabolites that
share a common biosynthesis, but are also one of the most interesting classes of
natural products due to their enormous structural diversity and broad spectrum
biological activities. Chapter one introduces the reader to polyketide natural
products, including their origin, structure and activity. This is followed by an
overview of the aldol reaction, a highly useful synthetic tool in the biomimetic
construction of polyketide motifs. The aldol reaction will feature extensively in the

studies to follow.

Chapter two describes studies towards the synthesis of spirangien A (1), a highly
cytotoxic and antifungal polyketide metabolite, isolated from the myxobacterium
Sorangium cellulosum. The synthetic approach to spirangien A exploited the
obvious C22-C23 acetate aldol disconnection in linear precursor 158. Model studies
were conducted which showed that the diastereoselectivity of this aldol reaction is
highly substrate controlled and depends heavily on the hydroxyl protecting group
strategy. This model system lacked the C17 stereocentre of the natural product,
which evidently exhibited strong 1,7-stereoinduction, therefore the model was

concluded to be an inadequate representation of the natural product system.

The aldehyde coupling partner 150 was synthesised in 10 steps (10% yield), utilising

a highly efficient cross-coupling of zinc homoenolate 144 with (E)-2-bromo-2-



butene (48) to install the C28 stereocentre and two successive Evans syn aldol
reactions to give the desired C24-27 stereotetrad and differential protection of the
resulting hyroxyl groups. Ketone coupling partner 130 was synthesised from (R)-
Roche ester (R)-32 in 16 steps (22% vyield), using a mercury catalysed hydration of
the terminal alkynyl functionality derived from ethynylmagnesium bromide (35) to
afford the methyl ketone, and a syn,syn selective aldol reaction with (S)-Roche ester
derived dipropionate equivalent (S)-10 to give the C14-17 stereotetrad. Coupling of
the resulting aldehyde 150 and ketone 130 was achieved using a LiHMDS aldol to
give 1.2-2.5:1 ds in favour of the desired product 158. The stereochemistry of aldol
adduct 158 was assigned by conversion to the corresponding hemiacetal and
subsequent nOe analysis. Spirocyclisation of the major product hemiacetal gave
165, from which stereochemical assignment was confirmed. Further manipulation
of 165 in 3 steps (removal of the TBS groups, re-protecting with TES groups and
finally cleavage of the PMB ether) would result in a formal synthesis of spirangien A,

however limited availability of material prevented completion of the total synthesis.
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Chapter three details the total synthesis of (+)-ascosalipyrone [(6S,8S5)-4] and ent-
micropyrone [(6S,8S5)-5]. Ascosalipyrone (4), isolated from the obligate marine
fungus A. salicorniae, and micropyrone (5), isolated from the plant H. italicum, are
two novel, structurally related polyketide natural products. Both compounds have
the same 4-hydroxy-a-pyrone containing core structure, differing only by an extra
methyl group at C4 in micropyrone (5). Ascosalipyrone was reported as an
inseparable mixture of diastereomers, while micropyrone was reported as a single

isomer with a non-zero specific rotation.

OH (6585)-4 OH (65898)-5

The synthesis of two potential diastereomers of each natural product from a
common intermediate was achieved. A highly diastereoslective syn aldol reaction
between both the (R)-77 and (S)-77 enantiomers of Evans’ auxiliary and chiral
aldehyde 178 was exploited to produce aldehydes (6R,7S,85)-177 and (6S,7R,8S)-
177. The linear precursors (6R,7S5,85)-193 and (6R,7S,8S5)-194 were constructed by
addition of (3-ketoesters 175 or 176 respectively to aldehyde (6R,7S,8S)-177, with
DBU promoted cyclisation to install the 4-hydroxy-a-pyrone ring system. Removal
of the protecting groups and Jones oxidation gave two possible isomers of each
ascosalipyrone and micropyrone. No epimerisation of the a-stereocentre was
observed for the micropyrone isomers but partial epimerisastion (3:1) was seen for
ascosalipyrone isomers. This was attributed to less steric congestion for
ascosalipyrone, which lacks one pyrone methyl. Comparison of the NMR and
specific rotation assigned the structure of (+)-ascosalipyrone [(6S,85)-4] and

micropyrone [(6R,8R)-5].
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Glossary

°C degrees Celsius

A angstroms

AcOH acetic acid (glacial)

Ac,0 acetic anhydride

aq. agqueous

AR analytical reagent

Ar aromatic

atm atmospheres

9-BBN 9-borabicyclo[3.3.1]nonane

Bn benzyl

Bz benzoyl

bp. boiling point

Bu butyl

Bz,0 benzoic anhydride

c concentration (g/100 mL)

cat. catalytic

CAN cerium ammonium nitrate
CDCl3 deuterated chloroform

CsDs deuterated benzene

CD;0D deuterated methanol

COosy correlation spectroscopy

CSA 10-camphorsulfonic acid

0 chemical shift (parts per million)
DBU 1,8-diazabicyclo[5.4.0]Jundec-7-ene
(c-Hex),BCl dicyclohexylboron chloride
DDQ 2,3-dichloro-5,6-dicyano-1,4-benzoquinone
DIBAL diisobutylaluminium hydride
DMA N,N-dimethylacetamide

DMAP 4-(N,N-dimethylamino)pyridine

DMF N,N-dimethylformamide
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DMP
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dr

ds
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ee
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disiamylborane
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dimethylsulfoxide
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electrospray ionisation

et alia (and others)
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Functional Group Interconversions
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hydrofluoric acid

heteronuclear multiple bond connectivity
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high resolution electrospray ionization mass
spectroscopy (spectrum)
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iso-

diisopinocampheyl
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coupling constant (Hz)
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millimole
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