Development of porous silicon as a scaffold for the delivery of cells into ocular tissue

Scanning electron micrograph of a human lens epithelial cell cultured on macroporous silicon

Suet Peng Low

School of Chemistry, Physics and Earth Sciences Faculty of Science and Engineering Flinders University

March 2008

Table of Contents

Summary	v
Declaration	vii
Acknowledgements	viii
Publications Arising From This Thesis	ix
List of Abbreviations	X

Chapter 1

Introduction to biomaterials, porous silicon production a	nd the
human cornea	1
Thesis Overview	2
1.1. Biomaterials	2
1.1.1. Current ocular biomaterials	5
1.2. Porous Silicon	8
1.2.1. Fabrication of porous silicon	12
1.2.2. Degradation mechanism of porous silicon	16
1.2.3. Porous silicon as a biomaterial	17
1.2.4. Porous silicon as a substrate for delivering cells into the eye	
1.3. The Cornea	
1.3.1. Corneal transplantation	
1.3.2. The limbus	
1.3.3. Limbal transplantation	
1.4. Current Support Substrates in Limbal Tissue Engineering	

Chapter 2

Evaluation of mammalian cell adhesion on surface-m	odified
porous silicon	
Introduction	
Methods and Materials	
2.1. Chemicals	
2.2. Preparation of Porous Silicon	
2.3. Preparation of Surface-Modified Porous Silicon	
2.3.1. Ozone oxidised samples	
2.3.2. Amine functionalised samples (APTMS)	
2.3.3. Polyethylene glycol functionalised samples (PEGS)	
2.3.4. Collagen coated samples (Collagen)	
2.3.5. Foetal bovine serum coated samples (FBS)	
2.3.6. Thermally oxidised samples	
2.4. Surface Characterisation	
2.4.1. Atomic force microscopy and scanning electron microscopy	
2.4.2. Porosity studies	
2.4.3. Contact angle measurements	
2.4.4. Interferometric reflectance spectroscopy	
2.4.5. Transmission FTIR	
2.5. Cell Experiments	

2.5.1. Cell lines	
2.5.2. Cell attachment	
2.5.3. Alamar Blue cell viability assay	
2.5.4. Neutral red cell viability assay	
2.5.5. Cell counts	
2.5.6. Statistical analysis on cell counts	
Results & Discussion	
2.6. Characterisation of Surface-Modified pSi	
2.6.1. AFM and contact angle measurements	
2.6.2. Transmission FTIR spectroscopy	
2.6.3. Degradation studies.	
2.7. Cell Attachment and Morphology	
2.8. Cell Viability Assays	60
2.8.1. Alamar Blue	60
2.8.2. Neutral red	69
2.9. Cell Counts	
Conclusions	77

Chapter 3

Porous silicon powder and pellets	
Introduction	
Methods and Materials	
3.1. Chemicals	
3.2. Porous Silicon Powder	
3.3. Pellet Formation	
3.3.1. Leaching agents	
3.3.2. Binding agent and lubricating agents	
3.4. Die Cast and Press	
3.5. Pellet Compositions	
3.5.1. Pellet fabrication from silicon powder	
3.5.2. Pellet fabrication from oxidised porous silicon powder	
3.5.3. Pellet fabrication from silanised porous silicon powder	
3.6. Cell Culture Studies	
3.6.1. Pellet composition used for cell culture studies	
3.6.2. Pellet stabilisation after pressing	
3.6.3. Cell culture on pellet	
3.7. Indirect Cell Viability Assay	
3.7.1. Indirect viability assay of pellet components	
3.8. Statistical Analysis	
Results and Discussion	
3.9. Silicon Powder	
3.10. Pellets Made From Oxidised Porous Silicon Powder	
3.11. Use of Lubricants During Pellet Fabrication	
3.11.1. Stearic acid as a lubricating agent	
3.12. Pellet Production from Aminosilanised Porous Silicon Powder	
3.12.1. Use of starch as a binding agent during pellet formation	

3.13. Increasing Pellet Wettability	
3.13.1. Glucose as a wetting agent	
3.13.2. Glycine as a wetting agent	
3.14. Effect of Compaction Force on Pellet Stability	
3.15. Heat Treatment of Pellets	
3.16. Cell Culture Studies	
3.16.1. Stability of pellets in cell culture medium	
3.16.2. Cell culture on pellets	
3.17. Indirect Cell Viability Assay	
3.17.1. Indirect cell viability assay on pellet components	
Conclusions	

Chapter 4 Primary cell culture and <i>in vivo</i> studies on porous silicon	
membranes	117
Introduction	118
Methods and Materials	120
4.1. Chemicals and Antibodies	
4.2. Membrane Preparation	
4.3. Pore Size and Surface Roughness	121
4.4. Energy Dispersive X-Ray Spectroscopy (EDX)	121
4.5. Degradation Studies	121
4.5.1. Ammonium molybdate assay in Tris-HCl	121
4.5.2. Silicic acid assay in artificial tear fluid (ATF)	123
4.6. Human Lens Epithelial Cells	124
4.6.1. Human lens epithelial cell growth on porous silicon membranes	124
4.6.2. Fluorescence imaging	125
4.6.3. SEM preparation	125
4.7. Human Corneal Rims	125
4.7.1. Expansion of human corneal cells on glass coverslips	126
4.7.2. Expansion of limbal tissue on membranes	126
4.8. Identification of Cell Populations	127
4.8.1. Immunohistochemistry	127
4.9. MicroCT (X-ray Micro Computerised Tomography)	128
4.10. Animal Studies	128
4.10.1. Surgical technique for the implantation of porous silicon membranes	s into
the eye	129
4.10.2. Histology	129
4.10.3. Membranes with Corneal Cell Outgrowths	130
Results and Discussion	133
4.11. Characterisation of Porous Silicon Membranes	133
4.11.1. AFM analysis	133
4.11.2. Energy dispersive X-ray analysis	133
4.12. Degradation Studies	137
4.12.1. Ammonium molybdate assay	137
4.12.2. Calibration curve in Tris-HCl	138

4.12.3. Artificial tear fluid (ATF)	141
4.13. Cell Culture Studies	
4.13.1. Immortalized cells	146
4.13.2. Primary cell culture	147
4.14. Animal Studies	
4.14.1. Implantation of thermal APTMS membranes into the eye	
4.14.2. Histology of eyes implanted with porous silicon membranes	
4.15. Implantation of Membranes Containing Cultured Primary Cells	
Conclusions	
Chapter 5 Overall findings and conclusions	177
References	

Scanning electron images presented on the title page and proceeding chapter title pages were all conducted on a Philips XL30 scanning electron microscope operating at 10 keV with a working distance of 10 mm. Samples shown on the title page and Chapter 1, 2 & 5 title pages, were all prepared as described on page 124. Samples shown on Chapter 3 & 4 title pages were prepared by coating with a thin layer of platinum.

Summary

Porous silicon has been shown to support the growth of cells and its capacity to fully degrade into harmless silicic acid, two properties that make porous silicon an appealing biomaterial. In this thesis, porous silicon was first tested in its suitability to support the growth of two different cell lines *in vitro*. The porous silicon surface was also surface-modified by oxidation, silanisation and by protein coatings to enhance its attachment properties. We found that silanisation with 3-aminopropyltrimethoxysilane (APTMS) was the simplest surface modification method that yielded the best cellular attachment characteristics and cellular morphology in comparison to the other surface modification methods tested. It was also discovered that surface modification was necessary to control the degradation rate of the porous silicon surface. APTMS-modified surfaces and thermally oxidised surfaces were both able to slow the degradation rate of the porous silicon surface and were thus used for subsequent experimentation.

Different forms of porous silicon were also tested, including membranes and particles. It was also discovered that certain colorimetric cell viability assays have the ability to interact with the redox-active porous silicon surface, thus yielding false positives. We focused upon assays such as Alamar Blue and the dye neutral red, both of which were able to generate a positive result with the porous silicon surface in the absence of cells.

We have shown that the porous silicon membranes were capable of supporting immortalised cells as well as primary cells isolated from human tissue. The biocompatibility of the porous silicon membranes was tested in a rat eye model, where the tissue response to the membrane could be observed macroscopically. It was noticed that there was a small inflammatory response around the membranes. Vascularisation and noticeable swelling was isolated to monofilament nylon sutures rather than the implanted membranes. The biocompatibility of porous silicon in the eye was also investigated through histological methods. The implanted porous silicon membranes only induced a small foreign body response which was noticeably smaller than the inflammatory response observed around commonly-used monofilament nylon sutures.

This is the first time that histological and microscopy evidence is given to show that porous silicon has good tissue biocompatibility. We offer evidence that the porous silicon membranes are able to degrade whilst implanted and the evidence also suggests that they are able to undergo full degradation.

Porous silicon was also investigated for its ability to act as a support scaffold for the delivery of cells into tissue. Primary cells were successfully cultured and implanted into eye of an animal. After one week, cells could be observed migrating away from the membrane into the surrounding tissue.

Therefore an enhanced porous silicon-based support has been developed that supports the attachment and growth of mammalian cells. This support is also biocompatible, biodegradable and can be used to deliver cells into tissue.

Declaration

I certify that this thesis does not incorporate without acknowledgment any material previously submitted for a degree or diploma in any university; and that to the best of my knowledge and belief it does not contain any material previously published or written by another person except where due reference is made in the text.

Suet Peng Low

Acknowledgements

This work would not have been possible without the supervision and guidance of my principal supervisor Associate Professor Nicolas Voelcker and I would like to thank my co-supervisor Associate Professor Keryn Williams for encouragement and advice during my PhD.

I gratefully acknowledge Professor Leigh Canham for his advice and discussions on different aspects of my project. I would also like to thank Dr Armando Loni and the members of pSiMedica for looking after me and making me feel welcome during my short stay in Malvern. I would also like to thank Dr Peter Self and the rest of the Adelaide Microscopy staff for assistance with the SEM and microCT examinations.

I especially thank Kirsty Marshall for conducting all animal surgery, histology work as well as teaching me animal handling techniques and tissue preparation for microscopy. I thank Margaret Philpott from the Eye Bank for her dedication in liaising with the Flinders Eye Centre in retaining human cornea rims from corneal graft surgery. I am also grateful for the help from members of the Ophthalmology department in helping me in the lab.

I thank all members of the SoCPES mechanical and electrical workshops for their constant dedication in maintaining equipment crucial to my work. I would also like to thank Dr Sean Graney and Rachel Lowe for stimulating discussions. I appreciate the work done by Evelyn Yap for the development of the silicic acid assay which was used in this thesis. Thanks must be extended to the members of the Voelcker group for helping in the maintenance of the lab, constant discussions and consultations.

I would not have been able to do this without the love and support from my family, Stimpy and friends for helping me throughout this period. Finally I would like to thank Endre for his love and encouragement for me.

Publications Arising From This Thesis

Low, SP; Williams, KA; Canham, LT and Voelcker, NH (2006) Evaluation of mammalian cell adhesion on surface-modified porous silicon. *Biomaterials*, **27**:4538-4546.

Low, SP; Voelcker, NH; Canham, LT and Williams, KA. (2008) Porous silicon as a biomaterial for ophthalmic implants. *Biomaterials*. (Submitted October 2008)

Low, SP; Williams, KA; Canham, LT and Voelcker, NH (2008) Generation of reactive oxygen species from porous silicon particles in cell culture medium. (In preparation).

List of Abbreviations

°C	Degrees Celsius
μg	Microgram
μm	Micrometre
μΜ	Micromolar
2-D	2- Dimensional
3-D	3- Dimensional
3T3	Mouse Fibroblast Cells
AFM	Atomic Force Microscopy
AM	Amniotic Membrane
APTMS	3-aminopropyltrimethoxysilane (modified surface)
ARVO	Association for Research in Vision and Ophthalmology
ATF	Artificial Tear Fluid
CCD	Charge Coupled Device
СНО	Chinese Hamster Ovary cells
СК	Cytokeratin
C _{OX}	Concentration of Oxidised Form (Alamar Blue)
C _{RED}	Concentration of Reduced Form (Alamar Blue)
DCM	Dichloromethane
dH ₂ O	Distilled Water
DMEM	Dullbecco's Modified Eagle's Medium
DMSO	Dimethyl Sulfoxide
ECM	Extra Cellular Matrix
EDTA	Ethylenediaminetetraacetic Acid
EDX	Energy Dispersive X-Ray
EOT	Effective Optical Thickness
F12	Cell Culture Medium Formulation by Ham ^[1]
FBS	Foetal Bovine Serum
FDA	Fluorescein diacetate

FITC	Fluorescein isothiocyanate
FTIR	Fourier Transform Infra-Red
g	Grams
H&E	Haematoxylin and Eosin
HEMA	hydroxyethyl methacrylate
HF	Hydrofluoric Acid
HLE	Human Lens Epithelial Cells
НО	Hoechst 33342 (cellular nuclear dye)
IOL	Intraocular Lens
IU	International Units
kD	KiloDalton
keV	Kilo Electron Volt
kHz	KiloHertz
kN	Kilo Newton
m	Metre
М	Molar
mA	Milliamps
MicroCT	X-ray Micro Computerised Tomography
MilliQ	Purified Deionised Water (with a resistivity of 18.2 $M\Omega$ cm at
	25 °C)
mins	Minutes
ml	Millilitre
mm	Millimetre
mM	Millimolar
mmol	Millimoles
MOPS	4-Morpholinepropanesulfonic Acid
MTT	3-(4, 5-Dimethylthiazol-2-yl)-2,5-Diphenyl Tetrazolium Bromide
MTS	3-(4,5-Dimethylthiazol-2-yl)-5-(3-Carboxymethoxyphenyl)-2-(4
	Sulfophenyl)-2H-Tetrazolium Inner Salt
mV	Millivolts
NADH	Nicotinamide Adenine Dinucleotide Hydride

NADPH	Nicotinamide Adenine Dinucleotide Phosphate
PBS	Phosphate Buffered Saline (pH 7.4)
	Containing: 8g/L NaCl + 0.2 g/L KCl + 2.68 g/L Na ₂ HPO ₄ .2H ₂ O
	+ 0.24 g/L KH ₂ PO ₄
PC12	Rat Pheochromocytoma (cell line)
PEG	Polyethylene glycol
PEGS	N-(triethoxysilylpropyl)-O-polyethylene glycol urethane (modified
	surface)
PHEMA	poly(hydroxyethyl methacrylate)
PKH26	Cell Tracker Dye
PLGA	Poly(lactic-co-glycolic acid)
PMMA	Poly(methyl methacrylate)
ppm	Parts per Million
pSi	Porous Silicon (abbreviation used in figure captions)
PTFE	Polytetrafluoroethylene
rms	Root Mean Square
SDS	Sodium Dodecyl Sulphate
SEM	Scanning Electron Microscopy
TAC	Transiently Amplifying Cells
TCPS	Tissue Culture Polystyrene
TRIS	Methacryloxypropyltris(trimethyl siloxy silane)
V	Volt
v/v	Volume per Volume
w/v	Weight per Volume
w/w	Weight per Weight
XTT	2,3-Bis(2-Methoxy-4-Nitro-5-Sulphophenyl)-5-Carboxanilide-2H-
	Tetrazolium, Monosodium Salt
Ω	Ohm