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Abstract

Diaphragmatic electromyography (EMGdi) signals can be recorded from surface electrodes
placed on the chestwall, intra-muscular electrodes placed directly into the muscle, or via
multi-channelintra-oesophageal electrode recordings. EMGdi recordings contain detailed
information regarding the central neural drive to breathe and mechanoreflex mediated
changes in muscle electrical activity over the course of each breath, and well knownto
operate inother respiratory modulated pump muscles such as the scalene, and upper
airway dilator muscles such as the genioglossus. Thus, assessment of EMGdi activity can
help with the assessment of overall neural drive to breathe, and in exploringrespiratory
pathological mechanismsand respiratory reflex mechanisms. Although somewhatinvasive,
intra-oesphageal recordings provide high quality EMGdi recordings without contamination
by intercostal muscle activity or the attendant risks of pneumothorax and infection
associated withintramuscular recordings. However, raw EMGdi signals are heavily
contaminated by ECG artefact, particularly when recorded viaan intra-osephageal catheter.
Thus, reliable assessment of respiratory related intra-esophageal EMGdi requires removal of
ECG interference. Conventional methods for ECG denoising of EMGdi predominantly rely on
simplistic ECG blanking methods that ignore EMGdi periods containing ECG artefact, or
substitute artefact periods with delayed EMGdi recorded a few hundred milliseconds earlier
withinthe respiratory cycle. Whilst these methods are adequate for assessing overall tonic
and peak inspiratory levels of EMGdi activity (e.g. from rectified and moving averaged
EMGdi after ECG blanking), they are not appropriate for examining within breath reflex
changes in inspiratory activity in response to within-breath changes ininspiratory loads,
such as mid-inspiratory occlusion. Examination of these reflexes requires signal averaging of
raw rectified EMG over many replicated stimuliin order to sufficientlyimprove signal-to-
noise to discern small EMG changes associated with these reflexes. Given that conventional
ECG blanking methods destroy large segments of underlying EMGdi activity, signal averaging

methods cannot reliably be applied. Averaging of raw unfiltered EMGdi inevitably remains



heavily contaminated with ECG. Consequently, meaningful examination of EMGdi reflex
responses to mid-inspiratory occlusion has not previously been possible. Recently described
ECG filtering methods offersignificant promise, but have yet to be appliedto examine
EMGdi reflex responses. The purpose of the work described in this thesis was to apply newly
described EMGdi filtering methods to test, for the first time, if this new approach can allow

for assessment of EMGdi reflex responsesto mid-inspiratory occlusion.

Chapter 1. Introduction

1.1 Overview

The diaphragm is the main inspiratory muscle (Figure 1). Electromyographic recordings
obtained from the diaphragm are non-stationary bioelectrical signals produced by
depolarisation and repolarisation of muscle motor unitsin the vicinity of the recording
electrodes. Thus, EMG recordings allow for a detailed assessment of the motor control of
respiration. Assessment of EMGdi activity can be potentially very useful forinvestigating
respiratory pathological mechanisms, respiratory reflex mechanisms and investigating
bettertreatment methods ina range of pulmonary diseases such as diaphragmatic fatigue,
chronic obstructive pulmonary disease (COPD) and obstructive sleep apneasyndrome
(OSAS)(Luo 2009). EMGdi recordings are thus an attractive methodfor research into
diaphragm pathology, and has become an active topicinrecent years to monitor
insufficient/abnormal muscle activity. Raw EMGdi signals can be obtainedvia an esophageal
catheter, invasive intra-muscular electrodes, or surface electrodes (Zhan, Yeung & Yang
2010). EMGdi signals obtained from esophageal electrodesis usually heavily contaminated
by non-respiratorysignal “noise” such as ECG, motion artefacts, and esophageal peristalsis.
The heaviestinterference is ECG artefact, which has a major impact on breath-by-breath
measures such as Root Mean Square (RMS), peak inspiratory activity, and EMG reflex
assessmentvia application of signal averagingtechniques. This, reliable timing and
algorithm based assessment of EMGdi activity requires good cardiac artefact filtering
methods. ECG interference displays two main characteristics: in the time domain, the
amplitude of the ECG interference is typically much higherthan the amplitude of the EMGdi
signal;in the frequency domain, the spectrum of ECG artefact partially overlaps with the

spectrum of EMGdi signal.



Figure 1 Location of Diaphragm (Tan, J 2017)

1.2 Inspiratory EMG reflex responses to inspiratory loads

An important mechanismin disordered breathingin Obstructive Sleep Apnoea (OSA) that
controls why a patient with OSA can have periods of stable breathingand periods of
obstructed flow limitationis not fully understood. One assumption is muscle activity, and
augmented effort/reflex response to flow limitation might be important. Previous research
has shown inspiratory muscle reflex activation and suppression responses to sudden airway
obstruction in muscles such as the genioglossus and scalene (Eckert et al. 2008). Figure 2
shows areflexinresponse to a suddendrop in pressure induced viaa facial mask. Reflex
suppression and excitation of muscle activity are observedin both the genioglossus and
scalene muscles (Eckert et al. 2008). This reflex activity of Genioglossus Electromyogram
(EMGgg) and Scalene Electromyogram (EMGsc) has been established using signal averaging
of raw rectified EMG that is not contaminated by ECG artefact, averaged over many
replicated applications of an externally appliedinspiratoryload. However, the raw EMGdi
signal is badly contaminated by cardiogenic artefact which likely obscures similarexpected
reflexesresponsesin EMGdi (Figure 3). Thus, denoisingisrequiredto evaluate these
reflexesinthe EMGdi. However, respiratory research groups currently lack the toolsto
adequately denoise EMGdi ahead of a range of subsequent EMGdi measurements, andin

particular EMG reflexes obscured by ECG artefact in EMGdi.
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Prior work demonstrates that the most of the power of ECG signal contamination in EMGdi
occurs in a frequency band between 0-70 Hz whilst the most respiratory related EMGdi
signal energy is between 25-250 Hz. Thus, there is significant frequency overlap between 25-
70 Hz (Wu, Tong & Yang 2016). The main methods currently used for EMGdi noise reduction
are simple band-pass filters, gating (e.g. ECG triggered blanking) or subtraction which
inevitably contains some residual ECG and destroy a significant component of the real

underlying EMGdi signal given overlappingfrequenciesin ECG and EMGdi.

Traditional hardware or software based “ECG blankers” simply cut and paste a short EMG
segmentfrom a nearby part of the breathingcycle. This can effectively clean the signal for
the purpose of measuring peak EMG activity during each breath from peak rectified and
typically 50-100 msec movingtime averaged signal. Simple band-passfilters can also
substantially attenuate ECG artefact for this purpose. However, neither method is suitable
for assessing short-latency EMG reflex responsesto sudden breathing loads on a within-
breath time scale, which requires signal averaging of hundreds of replicate trials to obtain
the small EMG reflex activity time-locked to stimulus onset. As with genioglossus and
scalene, within breath EMG reflex modulation of EMGdi is expected to be smalland thus
require signal averaging of many replicate responsesinorder to discern stimulus related
reflex activity from non-stimulus activity and noise. However, given that ECG artefact can
occur throughout the respiratory cycle, and not necessarily entirely atrandom given overlap
in respiratory and cardiac control, ECG artefact will inevitable regularly obscure the period

of interest for assessing EMG reflexes.

1.3 Thesis aim and research direction

Improved methods for denoising EMGdi signals are of significantinterestinthe field of
respiratory and sleep medicine. No previous studies have attempted to examine within-
breath EMGdi reflex responsesto breathingloads due to the technical problemsassociated
with major contamination by cardiogenic artefact. The aim of this project was to overcome
this significant technical problemin order to look at these reflexesin the diaphragm via
more sophisticated filtering methods and less destruction of underlying EMG.

Understanding short latency muscle reflexes known to operate in other muscles such as
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genioglossus and scalene requires better EMGdi filteringthanis currently possible with
traditional methods such as simple blanking. In the process of the EMGdi signal noise
reduction, the effects of noise should be reduced as much as possible and the integrity of
the EMGdi signals should be maintained. To denoise the heavily contaminated raw EMGdi
signal (Figure 4), several new methods were considered, includinga simple subtraction
technique, a newlyreported wavelet-based adaptive filter, ICA-wavelet filter. The ICA-
waveletapproach has conceptual advantages over conventional ECG filtering methods such
as band-pass filterand blanking methods, and has the potential to minimise the loss of real
signal, and avoiding temporal artefacts introduced with simple ECG blanking. However, this
novel filter has yetto be adopted and used routinelyinresearch, and has not previously
beentestedfor examining EMGdi reflexes. The worked described in this thesisaimedto
optimize and apply the ICA-wavelet denoising approach to allow for the assessmentand
comparison of EMGdi compared to EMGgg reflexes expected to be elicited by mid-

inspiratory occlusion.

Figure 4 Raw signals (top: Air flow; middle: raw EMGgg signal; bottom: raw EMGdi signal)

1.4 Independent Component Analysis (ICA)

Traditional frequency domain analysisis limited to analyse overlapped spectrum features.
Independent componentanalysis (ICA) is an efficienttool to decompose raw signalsinto
independent components. The basic principle of ICA is to separate the implicitindependent
source signals from the multi-channel signals (Aapo, Erkki & Juha 2001). According to the

classical ‘cocktail-party problem’, different with Principal Component Analysis (PCA), the
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purpose of ICA is not to reduce data variable dimension, butto remove correlations
between different components, then find out meaningful physiological or physical signal

sources from mixed signals.

Assuming a setof random variables X (t) = [x1(t), x5 (t), ..., x,(®)]7, wherei = (1,2, ..., n)
is the channel number of the observedsignal, t is the sampleindex, itis generated by M
mutuallyindependent statistical implicitvariables, thatis, the source signals S(t) =

[s1(1), s5(t), ..., s; (®)]T (m < n) are mixed linearly through an unknown matrix A =

[all alm]
Apn1 - Aum

x1(t) 11 - A1m s1(t)
ol el

To apply ICA validly, source signals should be mutually independent; And the distribution of

each source variable should be non-Gaussian (Wang, Kuruoglu & Zhang 2009).

ICA also have limitations: It cannot calculate the source variance index or energy intensity; It

is not able to solve the positive and negative sign of the source (Aapo, Erkki & Juha 2001).

1.4.1 FastICA
FastICA is an algorithm to perform Independent component analysis based on fixed point
iteration, which allows convergence fast and stable and achieve blind source separation

(the procedures are stated in Chapter 3) (Oja & Yuan 2006).

Comparing with other ICA algorithms, FastICA has many advantages (Hyvarinen, Karhunen &
Oja 2004). Convergence speed s fast. Unlike gradientalgorithm, it is easy to use without
step size parameter. Any nonlinearfunction can be usedto findthe independent
component of any non-Gaussian distribution directly. For other algorithms, the estimation
of the probability density function has to be carried out first, so selecting nonlinearis
necessary. Its performance can be optimized by selectingthe appropriate nonlinear
functions. Independent components can be estimated one by one, which reduces the
amount of computation in the case that only a few independentcomponents needto be
estimated. It isdistributed, computationally simple and requires little memory (Hyviirinen

2001).
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EMGdi are biomedical signals, which contain sub-Gaussian signals. The FastICA algorithm
based on fixed pointiterationisa very efficient batch algorithm, so FastICA algorithm is

oftenused in ICA-Waveletfiltering.

In addition, as a lineardecomposition method, ICA can separate the source signal as long as
the number of collected signal channels is not less than the numberof independent source
signals. However, for the analyzation of complicated biomedical signals such as EMGdi, the
output of decompositionis oftenincomplete. Nevertheless, wavelet transformation (WT) is
efficientforthe analysis of non-stable biomedical signals based on its variable timing-
window feature. Combining ICA and WT to denoise EMGdi signals can not only overcome
the drawbacks of ICA thoroughness but also avoid some drawbacks of wavelet threshold

denoising.
1.5 Wavelet analysis

1.5.1 Overview

Wavelettheory isdeveloped onthe basis of Fourier transform (FT). Because the Fourier
transform analyses the signal completelyinthe frequency domain, it cannot show the
change of the signal at a certain time (Bates 1998). Short-time Fourier transform (STFT) isa
tool of time-frequency analysis, which slices the waveforminto a number of short segments
and performs Fourieranalysis on each of these segments (Semmlow & Griffel 2014). The
drawback of STFT is that the size of time-window isfixed forall frequencies that can be
examined overthe chosentime window. The relative duration of high frequency signalsis
very short, while the duration of low frequency signalsis longer. Therefore, we expecta
small time window for high frequency signals and a large time window for low frequency
signals. Wavelettransform overcomes the deficiency of STFT by allowingfor a window
function with variable size regions, which is most suited for analysing nonstationary signals
such as EMG (Figure 5) (Lu 2013). In the low frequency part, it has higher frequency
resolution and lowertime resolution, while for high frequenciesit has highertime
resolution and lowerfrequency resolution. As a result, WT can more effectively distinguish
and extract mutation information from the non-stationary signals, and perform multi-scale

analysis by dilation and translation (Semmlow & Griffel 2014). Overall, WT is a time-
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frequency, localized and multi-resolution method, which has unique advantages in the

processing of clinical non-stationary EMGdi signals.

Fourier Short time Fourier Wavelet

frequency

time

Figure 5 Time windows of FT, STFT and WT (Lu 2013)

Medical signals such as EMG are usually one-dimensional signals. In one-dimensional
waveletanalysis, the Continuous Wavelet Transform (CWT) is defined as the integral
transform of the signal x (t) with a family of mother wavelet 14, (t)whichis given by
(Seljuq, Himayun & Rasheed 2014):

[oe]

W(a,b) = fx(t)Llp (t_ b)dt

|al a

—00

Aftershiftingand stretching mother wavelet, j, (t), the wavelet sequence can be

obtained, whichis given by (Pathak & Singh 2016):
Yar® =79 ()  abeRia=xo

The Discrete Wavelet Transform (DWT) can be obtained by applying binary

discretization of a and b, thatisa = 27/,b = k27, j,k € Z (He, Xing & Yang 2014):

| t—2k
WG R = ) (02 Y

Jk

The discrete wavelet sequence v, (t) is given by (He, Xing & Yang 2014):

P, (0) = 2292t — k)
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Where a, b and j, k are dilation and translation factors respectively.

1.5.2 Wavelet basis

Compared to the standard Fouriertransform, the waveletfunctionsinwaveletanalysis are
not unique, that is, there are a variety of wavelet functions can be chosen from. So the
construction and selection of a waveletbasisis a prerequisite forsignal analysis and
processing. Constructing a new wavelet basis for any specificapplicationsrequiresa deep
theoretical knowledge and research experience of the signals of interest. Basis functions are
generally chosen from classic wavelet functions such as Haar, Daubechies (dbN),
Biorthogonal (biorNr.Nd) and Coiflet (coifN) (Tan, HR etal. 2007). Table 1 shows a total of 52
wavelet basis which are common to use including 10 Daubechies, 7 Symlets, 5 Coiflet, 15
BiorSplinesand 15 ReverseBior. Optimal wavelet basis selectionisimportant in the wavelet
denoising process. Current methods of wavelet basis selection have some shortcomings
such as large computation and a signal optimal index (He, Xing & Yang 2014). Seljuq,
Himayun and Rasheed (2014) point out that performance of Daubechies waveletbasisis
best suitfor ECG signal denoising based on simulation results. Further, db waveletof order 9
(db9) is most appropriate in preservingthe features of a denoised ECG signal. However, no
research has yet concluded what the best suited wavelet basis functionis for EMGdi
denoising. Previous paperselected wavelet basis based on research experience for EMGdi

signals denoising (Wu, Tong & Yang 2016).

Table 1 General Wavelet family (Tan, HR et al. 2007)

Wavelet Wavelet function

Family

Daubechies dbl, db2, db3, db4, db5, dbb6, db7, db8, db9, dbl0
Symlets sym2, sym3, sym4, symS, sym6, sym7, sym8
Coiflet coifl, coif2, conf3, cofd, coifs

BiorSplines biorl.l, biorl.3, biorl.5

bior2.2, bior2.4, bior2.6, bior2.8

bior3.1, bior3.3, bior3.5, bior3.7, bior3 .9
biord4 .4, bior3.5, bior6.8

ReverseBior rbiol.1, rbiol.3, rbiol.5

rbio2.2, rbio2.4, rbio2.6, rbio2.8

rbio3.1, rbio3.3, rbio3.5, rbi103.7, rbio3.9
rbio4.4, rbio5.5, rbio6.8
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1.5.3 Wavelet decomposition layers

Multi-resolution analysis also called scale analysis. It uses multi-scale property of the
orthonormal wavelet basis functionto expandsignals at differentscales (Mallat, Stéphane
1999). The ability of multi-resolution analysisis the main reason of the extensive application
of WT (Donoho 1992). A sample 5-layer multi-resolution diagramis shownin Figure 6. The
relationship of multi-resolutionis:Y = cA5 + cD5 4+ cD4 + ¢D3 + ¢D2 + ¢D1. Multi-
resolution analysis only decomposesthe low frequency part (cA1, cA2,cA3,cA4), aimingto
construct ‘bandpass’ filters with different bandwidths, and therefore requires selection of
suitable decompositionlayers. ECG signal frequencies are concentrated inthe low
frequency range (0-70 Hz), where wavelet decomposition usually operatessois ideally

suited for decomposingthe noisy signal into low frequency components.

Redundant decomposition layersincrease computational complexity whilst the insufficient
decomposition layers will lead to unobvious denoising effect. Normally, 3to 5
decomposition layers are sufficient forsignal denoising (Wu, Tong & Yang 2016). This thesis

decided to decompose noisy EMGdi signalinto 5 layersto ensure the denoising effect.

——
on) WD
cA3 M)
oA B cD4 |
ons WcDs-

Figure 6 Structure of five-layer multi-resolution analysis

1.5.4 Wavelet threshold

The theoretical foundation of waveletthresholdis based on multi-resolution analysis of WT.
When the noisysignal is decomposed by multi-resolution of WT, the discrete detailed

coefficientssuch as ¢cD5 and approximate coefficients such as cA5 can be obtained after WT
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(Figure 6) (Wu, Tong & Yang 2016). Mallat, Stephane and Hwang (1992) proved that the
magnitude of the noise’s discrete detail signal decreases with the increase of the scale of
WT, but the relationship of WT coefficient of useful signal (EMGdi) and the scale is different.
Based on this difference, athreshold can be selected to deal with the discrete details of
each scale after the WT, followed by the reconstruction of discrete signals (waveletinverse
transformation) to achieve the signal denoising. Traditional threshold functions contain

‘hard threshold’ function and ‘soft threshold’ function.

‘Hard threshold’ functionis given by (Carré et al. 1998):

0if |x| <T;
x if x| >T;

0(x) ={

Where T;is threshold, x is wavelet coefficient after WT, 8(x) is wavelet coefficient after
threshold selection. ‘Hard threshold’ sets the wavelet coefficients of which absolute values

are lessthan the threshold to 0, and others remain unchanged.

‘Soft threshold’ is given by (Deny, Wolf & Bullemer 1988):

0 if |x| <T;
6(x) = {sgn(x) x —=T| if |x| > T]J

Where T; is threshold, x is wavelet coefficient after WT, 6 (x) is wavelet coefficient after

threshold selection, sign(x) issign function. ‘Soft threshold’ means the wavelet coefficients
of which absolute values are lessthan the threshold are set to O, and other coefficients are

compressedto 0.

The threshold value is difficultto be selected, because it should be suitable for each
decomposition layer. The quality of the signal and thus signal to noise ratio (SNR) will be
reduced with selection of an inappropriate threshold value. A universal thresholdis given by

(Garg et al. 2010):
T = oy 2logN
Where N is the length of the noisy signal, o is that signal’s standard deviation.

In this thesis, before applying WT, noisy signal was pre-treated by ICA to obtain ECG and

EMGdi independent components. Further, this thesis used a novel ‘variable threshold’
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instead of universal threshold. It requires to adjust threshold settings for different layers

with different dataset.
The ‘variable threshold’ functionis defined as (Wu, Tong & Yang 2016):

0;(sig) if 16;(sig)| < T[j]

6(sig) = { 0 if x| = T[j]

Where T[j] = k[jlave[j]. k[j] is a weight matrix which can be manually selected depending

on differentdataset. ave[j] is the average amplitude.

1.6 Performance evaluation methods
Defining how successful a filteris can be hard because of unknown components. Therefore,

some evaluation techniques are used to assess ICA-Wavelet performance.

1.6.1 Root Mean Square (RMS)

For n numbers of a discrete distribution, the Root Mean Square of a signal is the square root

of mean of the values x7, defined as:

XprMS =

LS
i=1

1.6.2 Signal-to-noise Ratio (SNR)
Referto Signal-to-noise Ratio definition (Johnson 2006), SNR for this thesis defined as:

2
g, ;
SNR = S

noise

EMGdi gy

SNR;5 = 201og( T

SNRg4p
SNRineqr =10 20

Where 02y,54is the variance of EMGdi signal, 0,%;5,is the variance of noise value.
Theoretically, as the main ECG signal’senergyis between 0-70 Hz whilst the main EMG
signal’senergyis between 25-250 Hz, UEZMGdi can be obtained by producinga 25-250 Hz

band pass filterto the denoisedsignal, followed by calculating the variance. Similarly, the

variance of noise ,;, can be obtainedvia a 50 Hz low pass filter. However, using this
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methods only can estimate approximate values because pure EMGdi signalsis not able to be
direct detected. Thus, otherassessments such as medianfrequency also needto be applied

to support EMGdi denoising performance evaluation.

1.6.3 Median frequency
Median frequency can analyse main frequency components of EMGdi signals (Roy, Bonato &

Knaflitz 1998). Itis a corresponding frequency which dividesthe entire area of spectrum into
half sections (Merletti, Sabbahi & De Luca 1984). The formulais (Wu, Tong & Yang 2016):

fmid fo 1 fo
f PSD(f)df = f PSD()df = f PSD(F)df
0 fmid 0

Where PSD(f) is PowerSpectral Density of the EMGdi signal, f isthe frequency of EMGdi
signal, finiq is the median frequency of EMGdi signal, f; isthe maximum of frequency of
PSD.

If the median frequency of noisy EMGdi signal exhibitedin low frequency range (that is, ECG
frequency) and the median frequency of denoised signal deviated to a higher valuein
EMGdi range, it may indicate the ECG noise reduction performance.

Chapter 2. Literature review

2.1 Respiration physiology
This part introduced some common respiratory disease and the relevantanalysis using

EMGdi.

2.1.1 Diaphragm basics

2.1.1.1 Diaphragmatic fatigue

Diaphragmatic fatigue is associated with failure to maintain a predetermined load of
transdiaphragmatic pressure (Pdi) (Roussos & Macklem 1977). Gross et al. (1979)
demonstrated the applications and the utilities of EMG and EMGdi in detecting
diaphragmatic fatigue via experiments, and evaluated some parameters including
esophageal pressures, gastric pressures, pleural pressures, abdominal pressures,
transdiaphragmatic pressure (Pdi), bipolaresophageal electrode (EE) and surface electrode
(SE) to identify the respiratory muscle fatigue. These findingsillustrated the different

relative amplitudes of the EMGdi signal when breathing at differentlevels of Pdi.
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In Gross’s experiment, the EMGdi signal was passed via two band pass filters. For the power
containedin the high frequency band (H), the filterrange is 150 Hz to 350 Hz whilstthe
range of 20 Hz to 46.7 Hz is for the low frequency band (L). Then the ratio of power
containedin the H amplitude to the L amplitude ina forced pattern breathingwas been
calculated to analyse the EMGdi data. Some authors believe thatthe changes in the H/L
ratio of the EMGdi can reflect the diaphragmatic fatigue inthe metabolicaspect. Gross’s
experiment showed a20% decrease of H/L ratio from start recording so that he concluded
the EMGdi signal can detect diaphragmatic fatigue before exhaustion. Levine and Gillen
(1987)’s experimentalso proved this statement, which gives a fatigue threshold value (20%).
They demonstrated that changing featuresinthe power spectral density (PSD) of the EMGdi

signalis able to predictthe diaphragmatic fatigue (i.e the failure of Pdi maintenance).

It is worth mentioningthat the ECG artefact shows a large interference in obtaining H/L
ratio. Levine used a high pass filterto remove motion artefact and the cross-correlation

technique to remove the ECG artefact.

2.1.2 Central sleep apnea (CSA) & Obstructive sleep apnea (0SA)

Differentsleep apneaneeds differenttreatment process so that the differentiation of sleep
apneas is important for the subsequent analysis. The theme of article ‘Distinguishing
obstructive from central sleep apnea events’ is to distinguish central sleep apnea (CSA) from
Obstructive sleep apnea (OSA) based on the EMGdi and esophageal pressure (Pes) analysis
(Luo 2009). In this article, Luo believes EMGdi is an alternative technique to evaluate neural
respiratory drive especially withinapneiceventand compare the airway pressure patterns

and respiratory effortvia esophageal electrode device otherthan Pes.

As the ‘gold standard’ of inspiratory effort evaluation, Pes plays a significantrolein
analysingsleep apnea. Afterthe experiment, Luofound that both EMGdi and Pes
recordings decreased during a hypopneaepisode (central sleep apnea events), which leads

to the conclusion: The EMGdi signal can differentiate central from OSA.

Luo (2009) avoided ECG interference by measuring the root mean square (RMS) of the

EMGdi signal betweenthe QRS complexinterval.
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2.2 EMGdi Signal and ECG Signal

2.2.1 EMGdi signal

Like other skeletal muscle, activity of nervesinnervatingthe muscle influence muscle
activity, via changes in muscle fibre membrane potentials through depolarizationand
subsequentrepolarization processes controlled via the sarcoplasmic reticulum (Calcium
switching system). This process will produce electromyographicsignal (EMGdi), which can
be recorded by electromyography. EMGdi is an indicator which mainly reflects

electromyographicactivity and functional status of the diaphragm (Beck et al. 1996).

EMGdi signals can be recorded via an esophageal catheter which consists several sequential

electrode pairs (Beck et al. 1996). The esophageal catheter has multiple-array with

alternative electrode configurations. The esophageal catheter used in my project was similar

with Beck’s device (Figure 7). It contains 10 rings for the basic esophageal electrode.
Commercially catheters now in the market such as the one shown in Figure 8. Latest
catheters provide betteruser experience and more functions. For instance, the electrode
pairs (stainless steel rings) become narrower and smoother for swallow easier. There are
two balloonsin the two terminals which can measure respiratory pressures. Referto the
experimentappliedto Peter Catcheside in Flinders University (Figure 11), the esophageal
electrode catheter will be passed via nose, swallowed into the stomach, and placed down
side until all electrode rings can receive signals and show feedback onto the computer. It

was difficultto know the exact position of the esophageal catheter inside the body.
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Figure 7 Esophageal catheter used in the Lab

Figure 8 Updated esophageal catheter
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Beck’s articlein 1996 and Wu's research in 2016 provided the similarexperimental setup of
EMGdi recording (Figure 9 & Figure 10). The esophageal catheter was connected to an
electrode configuration adapter, followed by an amplifierassembly, which passbandis 0.1

to 1,000 HZ. Wu'’s device consists 10 electrodes (1 cm long, 2 mm diameter).
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Figure 9 EMGdi signal recording in Bech’s article (Beck et al. 1996)
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Figure 10 EMGdi signal recording in Wu’s article (Wu, Tong & Yang 2016)
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Figure 11 EMGdi signal obtaining (Catcheside 2017)

2.2.2 ECG signal

The small electrical current occurs whenthe heart muscle contracts (Horrobin 1973). This
current can be detected by electrodes and reflected by a recording machine which isthe
electrocardiograph (ECG). The appearance of ECG signal is associated with the cardiac
conduction system. This system mainly contains the sinoatrial (SA) node, atrioventricular
(AV) node, bundle of His, Purkinje fibres and bundle branches (West 1990). A typical ECG
waveform with the names of the deflectionsandintervalsfrom electrodes onthe right arm
and leftleg (leadll)is drawn in Figure 12 (West 1990). The P wave reflects atrial
depolarization (contraction of the atrial muscle fibres). QRS complex reflects ventricular
depolarization (start of ventricular muscle contraction). The T wave reflectsthe

repolarization (end of ventricular contraction).
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Figure 12 A typical ECG complex with the names of the deflections and intervals (West 1990)

2.3 Signal denoising methods

The evaluation of signal contaminationis important to increase the veracity.

2.3.1 Double-subtraction technique

Sinderby et al. (1997) evaluated the concept of ‘electrically active region’ (EARdi) and
effective center (EARdictr) as well as introduced the method of EMGdi signal quality

enhancement.

Sinderby’s data supports that esophageal electrodes are approximately perpendiculartothe
fiberdirection of a sheet of muscle, where the crural EMGdi comes from. The electrode
pairs were placed in 10mm towards EARdictr, whichis the bestto minimize the influence of
muscle to electrode distance-filtering effectand bipolarelectrode filtering effect (Sinderby
et al. 1997). Therefore, the array of electrode pairs and the signals which come from 10mm
towards the EARdictr have the ability to get rid of bipolarelectrode filteringand muscle to
electrode distance filtering effects. Through the hardware setting, a more accurate EMGdi
signal can be obtained. The purpose is to decrease the influence of movement of the

EARdictr.
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Sinderby also indicated that the EMGdi signalsand ECG signals were both amplified during
the experiment, and 10 HZ high pass filter was also used. According to Schweitzeret al.’s
paper, the high pass filter has been proved not an effective wayto analyse the EMGdi signal
(Lake, Finucane & Hillman 1999). One benefit of the double-subtractiontechniqueisthat it
can still receive quality signals when the diaphragm contraction levelislow. However, if the
subjectis suffering neuromuscularabnormalities, the distance between electrode pairs
probably will be changed. It is difficult to control the position of EARdictr relevantto the
electrode array, which leads to the failure of the experimentand data collection. Moreover,
the subtraction method only can be seenas an amplifierwhich is useful toamplify the
EMGdi signal. A separate ECG signal recording, as statedin the article, is not helpful to
denoise other EMG channels. It cannot remove the noisessuch as ECG artifact. More
procedures are needed to deal with the EMGdi denoising. Therefore, using hardware to

remove the noise and obtain the cleansignal seemsimproper.

2.3.2 Cross-correlation procedure

Levine et al. (1986) used cross-correlation procedure to help remove contaminating ECG
noise from the EMGdi signal, compared with other existingapproaches. According to
Levine’sarticle, ECG frequency spectrum overlaps with the EMGdi signal’s power spectral

density (PSD).

Previous research employing EMGdi measurements have mainly focused on removing QRS
segments of the ECG signal contaminating EMGdi using “gating” methods to detectand
remove the QRS segment whichis the most obvious contaminating waveformin the ECG
spectrum (Bartolo et al. 1996). Figure 13 isan example of using a gating technique which
cuts ECG artifacts from the EMGdi signal, replacingeitherwith a zero signal (middle trace) or
delayed EMGdi from a non-ECG contaminated part of the signal. However, at high heart
rates, the availability of uncontaminated EMGdi is reduced. Moreover, this method destroys
part of the real underlying EMGdi signal and introduces temporal artefacts. Another
traditional approach has beento use a high pass filterto remove ECG signal. However, high
pass filters actually magnified ECG powerfrom direct current-25 HZ to 20 HZ-40 HZ, which
has beentested by Schweitzerand colleagues that high-pass filter was not an effective

method for denoising EMGdi signal (Levine et al. 1986).
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Figure 13 "gating" ECG signal

A further approach isthe method that Levine et al. used which isable to detect and subtract
ECG components from the EMGdi signals. This approach basically achieved extractinga
stationary signal (ECG) from an unstable signal (EMGdi), which includes three procedures.
Firstly, atemplate was identified by the operator during expiration. It depended on the
visual determination of the artefact complex. The second stepis to determine ECG
detection-template correlation and produce Power Spectral Density analysis (PSD). The
template is been shifted and correlated to find the correlation coefficients (0.75). Then a
program is used to calculate the least-squares linearregression of the EMGdi and judge if
the amplitude of EMGdi islarger than 50% of the template amplitude. This step was
complex and the accuracy may be questionable. The template should be adjustedin order
to match the ECG complex. Thirdly, correlationis used to generate removal-template

subtraction. The EMGdi signal can get rid of the modified template.

Itis worth mentioningthat Levine payed some attention to the influence of ventilation
phase, which was a useful to consider. However, as cross-correlation method required
selection of a template for analysis, the practicability of this methodis potentially limited.
The template should be chosen inthe inactive EMG interval and close to the ECG waveforms
which was still near the contaminated interval of EMGdi. If the subject was dyspnoeicor
showinglaboured breathing, the effectiveness of this approach may be more limited.
Furthermore, arrhythmias or frequent ectopic heart beats make template selection more
difficultand negatively impact thismethod. Levine et al. (1986) only compared PSD analysis
results from their gating method, which lacked of the error analysis compared with the
original EMGdi signal. Better solutions for obtaining clean EMGdi signals needto be

considered.

There isan article particularly compared approaches which describedin 4.1.1 and 4.2.1

(Bartolo et al. 1996). The subtraction technique isbeenset as the “gold standard” to
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compare the waveformand the extenterror betweenthe original EMGdi signal, the signal

processed by gating method and by the subtraction technique.

Bartolo’s experiment datawere collected from four dogs instead of simulated data. Some

EMG variableswere applied to support the signal analysisincluding mean rectified EMG

(mrEMG), normalized power (nPWR), median frequency (MF) and mean power frequency

(MPF) in thisarticle. The presentation of the outputs was by six bar graphs (Figure 14).
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Figure 14 Within-breath analysis refer to data sequence: I-1V represents mean average, SD represents combined data, white

bar represents original data, black bar represents the subtracted filter, hatch bar represents the gated filter, MF is median

frequency, MPF is power frequency, E[ZC] is expected zero-crossing frequency, nPWR is normalized power, mrEMG is mean

rectified EMG, ZC is zero-crossing frequency (Bartolo et al. 1996)

From the bar chart, it can be seenthat withinthe breath, the data derived from gating filter

and subtracted filter have not shown a great gap overall whilstthey both have great gap

from the original data. ‘nPWR’ and ‘mrEMG’ value show a drop after both the subtraction

and gating filtering, but other values show an increase caused by the subtraction and gating

filtering. The EMG-to-ECG powerratio is considered to evaluate the influence of the ECG

artifact on the EMGdi signal. For instance, data sequence IV shows very little difference

between gatingand subtraction, which means the EMG-to-ECG powerratio is large (around
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13.3 dB) and the ECG interference issmall. Therefore it can be concluded that the optimal

position and orientation of the electrodesindeed can minimize the ECG interference.

2.3.3 Wavelet-based adaptive filter

Zhan, Yeung and Yang (2010) ’s article focuses on a newer attempt to analyse complex
signals such as EMGdi: waveletanalysis. Zhan believes waveletanalysisis useful in
multiresolution analysis (MRA), which can be developed as a wavelet-based adaptive filter
to denoise the EMGdi signal. The new wavelet-based adaptive filter should be more
effective and reference ECG will be unnecessary. The main procedures of denoising EMGdi
signalsare (Figure 15): 1. Waveletdecomposition 2. Wavelet-based adaptive filter 3.

Reconstruction signal.

EMGdi Signal Measurment Part EMGdi Signal
Denoise part

—» Decompositi

(b)

Figure 15 EMGdi signal denoising method (Zhan, Yeung & Yang 2010)
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Figure 16 Signals comparison: (a) The ECG artifact signal (b) The pure EMGdi signal (c) The corrupted EMGdi signal (d) Hard
thresholding result of EMGdi (e) ‘Inverse’ hard thresholding result of EMGdi (f) High pass filter result of EMGdi (g) Gating

technique result of EMGdi (h) wavelet-based adaptive filter result of EMGdi (Zhan, Yeung & Yang 2010)

Figure 16 shows a summary of simulation example of eight typical signalsin Zhan’s article.
Afterthe comparison, it can be seenthat the hard thresholding method will destroy the
EMGdi signal while preserve ECG signal. The ‘inverse’ hard thresholding method preserves
the majority of EMGdi signal but ECG artifact also maintain. The high pass filterhas been
proved not available for ECG interference. The gating method have the capability of
removing ECG interference. However, the EMGdi signals which are overlapped with ECG
artifact have beenremovedas well. Itcan be concluded that so far the wavelet-based

adaptive filtercan trigger the most similarresult with the pure EMGdi signal visually.

Itis worth mentioning that some published articles stated that the QRS complex has larger
amplitude than EMGdi. Afterthe experimentin Flinders University, it can be seenthat

EMGdi signal will overlap ECG signal in PSD whenthe subject produces a deep breath
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(Figure 17). It means the amplitude of the QRS complexis not always larger than EMGdi.

However, the raw EMGdi signal also contains Gaussian white noise. More investigation need

to be applied to the abnormal signals to test the validity of the denoising method.

Figure 17 Raw EMGdi signal obtained

The algorithm of the wavelet-based adaptive filteris:

e Obtain wavelet coefficient
e (Calculate the average value and adaptive threshold
e Calculate the attenuated decomposition coefficient

e Reconstruct the EMGdi signal
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Figure 18 Signals comparison of PSD: (a) Wavelet-based adaptive filter result (b) expanded scale (c) Hard threshold result

(d) ‘inverse’ hard threshold result (e) High pass filter result (f) gating technique result

The article also applied the PSD analysis for different denoising methods. Accordingto PSD

results, the wavelet-based adaptive filter has the smallest error of magnitude and shape

compared with the pure EMGdi signal. The gating technique result of PSD (Figure 18 (f))

have the same shape but smaller magnitude, which is understandable. PSD analysisis a

great idea to identify the filter's quality. Three parameters of PSD analysis are produced in
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this article: High to low ratio, total power and centroid frequency. For instance, the EMGdi
signal via gating technique processed shows a much lowertotal power, which means much
useful EMGdi signals are also been destroyed. Further parameters can be attempted to
obtain more accurate analysisin the near future. Another considerationis that visually we
cannot distinguish if the filter has removedall the ECG interference in the overlapped
spectrum of EMGdi signal (deep breath area). PSD analysisis not sufficient to prove this

problemin the article.

2.3.4 ICA decomposition and wavelet transform

Independent componentanalysis (ICA) isan emerging EMGdi signal denoising method
which has become more and more popular. Wu, Tong and Yang (2016)’s article established
the new solution which combined ICA decomposition and wavelet transform to denoise the

EMGdi signal, which is updated from wavelet-based adaptive filter.

The algorithm of the traditional ICA used to denoise the surface electromyographyincludes

four main procedures (Wu, Tong & Yang 2016):

e Using ICA to obtain independent components
e Obtain ECG componentsvia a band pass filter
e Recover the contribution of ECG signals

e Subtract the ECG artifacts

However, the traditional ICA contains some shortages. It based on the band pass filterto
denoise everyindependent component of the signal, which has low efficiency ontemporal-
frequency resolution (Wu, Tong & Yang 2016). It meansthe denoising capability of
traditional ICA is limited. Therefore, Wu indicated FastICAin the article, which used wavelet
domain threshold to analyse the independent components instead of traditional band pass

filter.

I shall be claimingthat the methodis under the condition that the hypothesis which ECG

artifact owns the largest energyis valid. Therefore the ECG components can be gained fist.
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Figure 19 EMGdi signal denoising outputs comparison: (a) raw EMGdi signal (b) hard thresholding filter (c) inverse hard
thresholding filter (d) traditional ICA filter (e) ICA—wavelet filter (Wu, Tong & Yang 2016)

Wu compared the different EMGdi signal denoising outputsin his article including WTHT,
IWTHT, TICA and ICA—wavelet (Figure 19). Obviously, ICA—waveletfilteris more efficientin
removing ECG interference comparing with other filters, especiallyinthe flatinterval. As the
ECG signalsare regularly occurs and the amplitudeislarger than every EMGdi signal
amplitude especially QRS complex, itcan be visually seeing that the ICA-waveletfilter can
remove ECG interference inthe overlapped spectrum. Nevertheless, the amplitude of the
EMGdi signal seems alsodecreased to a certain extent. Besides, the raw signalin Wu's
experimentis simulated whilst the clinical EMGdi signal also contains other interference
such as esophageal peristalsis and Gaussian white noise which is more complex. The

efficiency thatapplyingto the clinical data needsto be tested.

Wu also compared the EMGdi signal denoising outputs between high pass filter, normalized
least mean square (NLMS) filterand ICA—waveletfilter (Figure 20). Visually, all the ECG
interference has beenremoved by ICA—waveletfilterfrom EMGdi signal without destroying

the EMGdi signal.
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Figure 20 EMGdi signal denoising outputs comparison: (a) Raw EMGdi signal (b) Normalized least mean square filter (c)
High pass filter (d) ICA—wavelet filter (Wu, Tong & Yang 2016)

In addition to apply PSD and CF analysis, the average rectified value ratio (ARVR) has also
been generatedto identify the signal amplitude directly, whichis a tool to assess the
efficiency of these denoising methods (Figure 21). The ARVR value of ICA—Waveletfilteris
close to 1, which means the ECG signal is weak whilst the EMGdi signal is maintained. By
calculating ARVR, another evidence shows that the ICA—waveletfilter has the capability to
denoise the EMGdi signal to a great extent. Further, more analysis such as mrEMG, nPWR,
MF and MPF, as generated in Bartolo’s article, can be attempted to testthe wavelet-based
adaptive filterand the ICA—waveletfilter. Personally, PSD graph and ARVR graph are clear,
more intuitive, less messing and easierto draw a conclusion comparing with Bartolo’s bar

chart.
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So far ICA—waveletfilteris the latest and the most effective approach to remove the ECG
interference from the EMGdi signal. We are planningto test thismethod with Flinders

University’s clinical data and considering the improvement.

Chapter 3. Theoretical methodology and Experiment details

3.1 Experiment 1: Exploration of ICA-Wavelet algorithm

The implemetation of ICAinvolvesthree componentsincluding centering data (remove
mean), whiteing process (sphere data) and optimizingalgorithm to maximize non-
Gaussianity of each source (Hyvarinen, Karhunen & Oja 2004). Whitening process aimsto

decorrelate variables and scale variables so that their variance equal to 1.

The implementation of Wavelet Transform (WT) also contains three parts including wavelet
decomposition, waveletthreshold denoising and wavelet reconstruction (Wu, Tong & Yang

2016).
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Figure 22 The block chart of ICA-Wavelet algorithm (Wu, Tong & Yang 2016)

Figure 22 shows the block chart of ICA-Wavelet process for the EMGdi noise reduction (Wu,

Tong & Yang 2016). The 5x6,474,640 clinical data usedin the Experiment1comes from a

study measured by an honours studentin Flinders University. The detail of the block chart is

as follows:

1)

2)

3)

Firstly, FastlCA was applied to the corresponding 5-channel signal X =

[x1,%2,%5... x,]¢ to obtainthe five independent components, which helpsto
identify the ‘ECG related’ components (0-70 Hz) which have larger energy and ‘EMG
related’ components (25-250 Hz) containing lowerenergy.

Secondly, ‘EMGdi related’ components were extracted and ‘ECG related’
components Y = [yq, ¥2, V3 ... Vo |'Wwere decomposedinto 5 layers by Db1 Wavelet,
as ‘ECG related’ components still contain some weak EMGdi contributions which
should be preserved (Figure 6). The fifth layer (cA5 and cD5) should contain the most
of the ECG artefact coefficients whilst otherlayers should contain weak ECG energy.
It means 1-4 layers (cD1, cD2, cD3 and cD4) mainly contain relatively lower
frequency part of the EMGdi energy.

To purifythe ‘ECG related’ components, variable threshold developed by Wu (2016)
were used to remove residual ECG energy in each waveletdecomposition levels.

Small wavelet coefficients should be ignored as they are dominated by white noise.
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4) Then, the purified ‘ECG related’ components were reconstructed to Y (S4_gc¢) and
the total signal components including ‘EMGdi related’ part and purified S 4_g part

were reconstructed back to the original signal V-1W 1.

3.2 Experiment 2: Performance evaluation
RMS valuesand medianfrequenciesare calculated to compare the performance of ICA-

Waveletfilterin Experiment 1. The spectrum is also plotted to show power features.

3.3 Experiment 3: Optimize the ICA-Wavelet approach

3.3.1 Wavelet basis selection

Not only parameters such as Mean Square Error (MSE), Signal-to-Noise ratio, and
correlation coefficient can estimate performance of wavelet basis, but it also requires to
retain the valuable features such as peaks of an EMG signal, which shows significant clinical
information for early diagnostic purpose (Seljug, Himayun & Rasheed 2014). This
experimentbased on the assumption that: performance of dbN waveletis most appropriate

for EMGdi signal; channel one has the best filtering outputin Experiment 1.

e First, dbl, db4, db5and db7 are selected respectively to decompose raw signals. Plot
filtered Channel 1 signalsand compare theirfeatures.

e Second, select some more representative orders of Daubechies waveletfamily (e.g.
db1, db3, db4, db5, db6 and db7) to compare their performance including RMS and

median frequency.

Chapter 4. Results of experiments
This chapter shows the results of testingthe ICA-Waveletalgorithm and optimisingto
perform ECG removal on EMGdi. It also involved selectingand testing most effective basis,

and verifyingremoved cardiac frequencies.

4.1 Denoising effect

The sample clinical 5-channel signals are displayedin MATLAB (Figure 23), which contains
ECG artefact, other noises and clear peaks of the EMGdi signal. The EMGdi feature (peak
blocks) of Channel 4 and Channel 5 are weak. Especially, there are almost all the ECG

artefact in Channel 5 with few EMGdi signal. Figure 24 shows the output of the cleaned
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signals using ICA-Waveletfilter. Visually, the ICA-Wavelet filter can efficiently remove ECG
noise and preserve complete peak details of EMGdi signalin our study. Channel 1, Channel 2
and Channel 3 retain the most accurate features comparing with other two channels which

show deficiency on EMGdi blocks in varying degreesvisually.
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Figure 23 5-Channel raw signals
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4.2 Performance analysis

The 5-channel RMS values of raw signal and denoised signal in Experiment 1 are shown in
Table 2 while the medianfrequencies are shown in Table 3. The RMS power dramatically
decreased from around 133.90 to 23.90 and the medianfrequencyincreased from

approximately 14.80 to 111.85.

It has beenstatedin Chapter 1 that the most ECG signal energyis between 0-70 Hz whilst
the most EMGdi signal energyis between 25-250 Hz. So if the central frequency can convert
from ECG’s main frequency range to the EMGdi’s frequency range, the ECG componentis

considered being suppressed.

Median frequency is the frequency value which separate the entire EMGdi signal spectrum
area into half equal energy content (Merletti, Sabbahi & De Luca 1984). Table 3 shows the
central frequency after ICA-Wavelet filtering has converted from ECG’S main frequency

range to the EMGdi’s frequency range.

Further, via powerspectrum (Figure 25), it can be seenthat the amplitude below 50 Hz is
much higher than the amplitude at other frequenciesinthe original signal. It meansthe

energy of ECG signal ismuch larger than the energy of EMGdi signal inthe original signal,
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that is, the EMGdi signal is been covered by ECG signal. Afterthe ICA-Waveletfiltering, the
amplitude below 50 Hz has an obvious decrease instead of simple removal, which shows
ICA-Waveletfilter can effectively decrease ECG artefact in the EMGdi signal. The covered
EMGdi signal has emergedfrom noisy signal. Further, overall power of the signal has
dropped and dominated frequency peak around 0-40 Hz cardiac has beensignificantly

reduced.

It's worth mentioningthat the median frequency of Channel 4 and Channel 5 are
‘unexpected’ values. Itreflects the atypical clinical collected data (few EMGdi contained),

which can be ignoredin the future research.

Table 2 RMS values for whole channels

Channel number RMS (Original) RMS: (Haar Denoised)

Channel 1 177.9353 34.454

Channel 2 163.4780 21.1514
Channel 3 130.7913 22.4971
Channel 4 110.4564 18.7511
Channel 5 86.8514 22.6370
Mean value 133.9025 23.8981

Table 3 Median frequency for whole channels

Channel number Fmid (Original) Fmid: (Haar Denoised)

Channel 1 18.2378 125.0320
Channel 2 20.427 180.6559
Channel 3 21.8387 168.2920
Channel 4 13.4792 42.0074
Channel 5 0 43.2716
Mean value 14.7965 111.8518
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Figure 25 Power spectrum (Channel 1, Haar)

4.3 Wavelet basis comparison

Previousresearch indicated that low numberof db wavelet basis such as db1 is highly
localized and the singularity index is small, which can preserve more peakblocks. On the
contrary, high number of db wavelet basis such as db8 are highly smooth (Wu, Tong & Yang
2016). After testingall db waveletfamily, the output for applying haar, db4, db5 and db7 on
the clinical data are shownin Figure 26. There is not much difference onthe EMGdi signal
visually. Relatively, using haar wavelet basis preserves more ‘burrs’ via comparison of peak
blocks, which has beencircled on the figure. The most smooth peak blocks displayedin
diagram is with db4 wavelet basisinstead of db7, which is differentfrom Wu, Tong and Yang
(2016)’s statement. The order of db wavelet basis cannot determine smoothness of the

signal in this experiment.

The RMS and median frequencyin Table 4 are calculated to compare the performance of
different waveletbasisincluding Haar, db3, db4, db5, db6 and db7. The valuesare similar
and all displayedinavalidrange, as stated in4.2. Hence, ICA-Waveletfilteris robust with db

waveletfamily. Moreover, Haar waveletbasis has the largest RMS (34.4954) and median
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frequency (125.0320), which can be best acceptable inour research to preserve more

EMGdi features.

*

Figure 26 Output comparison of applying Daubechies wavelet family

Table 4 Influence of different wavelet basis on RMS and Median frequency (Channel 1)

I

344954 339653 33.9503 33.8184 339993 34.1284

Median  125.0320 121.7785 121.3799 122.7603 120.6966 119.3981
frequenc

y

Chapter 5. Discussion

5.1 The family of ‘db’ wavelet basis

Experiment 3 based on the assumption that performance of dbN waveletis most
appropriate for EMGdi signal so that other wavelet families such as Biorthogonal
(biorNr.Nd) and Coiflet (coifN) are not compared in this thesis. This assumption based on
previous research’s conclusion for ECG signal noise reduction (Seljug, Himayun & Rasheed

2014), although Zhan, Yeung and Yang (2010) tested that the performances with different
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waveletbasissuch as Meyer, Symletand Daubechies are almost the same. However, db4
wavelet basis produces the best performance in theirtest, while db1 shows the best

performance inthis thesis.

5.2 Validation of the outputs

Itis difficultto evaluate filtering performance and objectively quantify the overlapped
cardiac and diaphragm signal. The lost quantity of real EMG signal and the remaining
amount of the ECG artefact are unknown by comparing unfiltered and ICA-Wavelet filtered
EMGdi signal. EMGgg reflexesisagood comparator to support the results, which provided
the significant confidence that filtered EMGdi is preserving expected underlying features. In
addition, based on the prior knowledge, visually comparison, investigation of RMS value,

mean frequencies/spectrum and otherobservations also can provide some supports.

5.3 Test with new data

Moreover, a set of neural data was sent by the NeuRA group based in the University of New
South Wales from a recent study. The data which measured both intramuscular diaphragm
EMG and EMGdi from the catheterisallowed to test ICA-Waveletfilter. Different with
previous dataset, raw ‘neural’ data is messier with abnormal ECG artefact (Figure 28), which
should be pre-filtered:astandard 10 Hz high pass filteris selected. The pre-filtered signal is
shown inFigure 29 and enlarged Channel 3 isdisplayed to observe clearer (Figure 30). After

ICA-Waveletfiltering, the ECG artefact has beenfiltered visually (Figure 31).
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Chapter 6 Filter application

6.1 Theoretical methodology and Experiment details

An EMGdi reflex response to obstruction could be an important mechanism used by
patients with sleep apnea, Neutrally Adjusted Ventilator Assistance (NAVA), and a relatively
new mode of mechanical ventilation forcriticallyill patients, which could influence the
disease treatmentin the future. Participants were worn a nasal mask which attached to a
non-rebreathingvalve to control breath (Stadleret al. 2010). The equipmentwasapplied by
a solenoid to suddenly cut airflow for about 200ms before airflow was restored within
breath and 80 occlusion breaths were applied to each study participant. All of these
collected data were time correlated to the point of occlusionand ensembled averaged +1 s
to give flow and EMG traces. The hypothesis was there would be reflexesin EMGgg and
EMGdi. Aftercollectingdata, signal averaged airfow, rectified raw EMGdi responsesand
rectified filtered EMGdi responsesto this suddenairway occlusion were plotted to show
response features and test the performance of the filter. The EMGgg reflex was also applied

to compare with EMGdi responses.

6.2 Results of experiments
The ICA — Wavelet combined algorithm was tested and optimised to perform ECG removal
on EMGdi, which involved selecting and testing most effective basis, and verifyingremoved

cardiac frequencies.

Figure 32 and 33 show the output of the application. We cannot observe any expected
response in unfiltered EMGdi reflex. Unfiltered EMGdi signal has no capability to expose
accurate reflexes because the cardiac signal dominates trace. Comparing with raw signal,
filtered EMGdi revealsinspiratory EMGdi activity and expected reflex responsestosudden
airway occlusion (Figure 32). The magnitude of unfiltered EMGdi signal is much higheras it
was dominated by averaging cardiac peaks. Any short-term reflexes were completely
obscured by this cardiac noise. However, the magnitude of filtered EMGdi reflex was lower
than raw signal’s magnitude. The overall trend of EMGdi reflex wasrisingin +1 seconds
with the increased airflow volume. It indicated the ICA-Waveletfilter can be successfully

usedin the EMGdi reflex study.
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Besides, overall pattern of inspiratory EMG activity appears to be similarin the EMGgg and
EMGdi (Figure 33). Brief EMGgg reflex activation appeared at the onset of occlusion,
assuming more prolonged EMGdi reflex are suppressed. The red arrow on the figure shows
the first peak airflow volume occurred at averaging 0 second point which reflected the
sudden airflow blocking. The response of EMGdi and EMGgg both increased during —1~0
sec period. The airflow was then restored and airflow volume decreased until approximately
0.25 sec, which was highlightedinyellow arrow. The EMGdi reflex duringthis period also
decreased same with airflow trend whilst EMGgg reflex keptrising. Then, aftera deep
inspirary, the airflow decreased gradually. The EMGgg reflex had the same trend with the

airflow, but EMGdi reflex still increased a bit.
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Figure 31 Raw and cleaned EMGdi reflexes elicited by sudden airway occlusion
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Figure 32 Cleaned EMGdi reflexes and EMGgg reflexes elicited by sudden airway occlusion

6.3 Discussion

The ICA-Waveletfilterhas beentested and appears to be very useful for denoising EMGdi to

reveal underlyinginspiratory activity and reflex responsesto airway occlusion.

Chapter 7. Conclusion

In conclusion, this thesis established a novel ICA-Wavelet denoisingfilter which has been
successfully usedin the study of respiratory reflex mediated changesin muscle electrical
activity. Several experimentsincluding ICA-Wavelet testing, performance evaluationand

ICA-Wavelet optimization were designed to explore algorithm performance. 5-channel
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signalswere filtered and the result showed that ICA-Wavelet filter can efficiently remove
ECG noise and relatively preserve underlying respiratory activity within the EMGdi signal.
The medianfrequency after ICA-Wavelet filtering converged away from the main frequency
range expected of ECG towards that expected for EMGdi. Overall power of the EMGdi signal
also dropped with a dominated frequency peak about 0-40 Hz consistent with cardiac
activity becoming significantly reduced. Comparsons of different wavelet basisinthe db
waveletfamily, suggested there was not much difference onthe EMGdi filtering
performance. RMS and medianfrequency also suggested that the ICA-Waveletfilteris
relatively robust to basis function choice withinthe db waveletfamily. Validation of filtering
output is inherently difficultsince itis not possible to quantify real EMG signal versus the
remaining amount of ECG artefact inreal signals. Performance on simulated signals can be
helpful, but simulated signals can only approximate real-world signals so we elected instead
to focus on real signals collected during experimental paradigms where we expected that
underlying EMGdi features should emerge following successful denoising. Visual inspection
of pre-vs post-filtered signals as well as evidence from RMS, mean frequencies/spectrum
comparisonssupport the utility of the ICA approach. We also tested the filterusinganother
group of clinical data. The resultshowed that thistechnique is suitable for general EMGdi
data although some parameters such as threshold value could be adjusted for different

condition.

The signal averaged airfow, rectified raw EMGdi responses, rectified filtered EMGdi
responses and EMGgg responsesto the sudden airway occlusion were collected to present
response features and test the performance of the filter. The results showed that denoised
EMGdi appeared to reveal both inspiratory activation and short-latency reflex responses
expectedto emergein the presence of successful denoising. This overall pattern of
inspiratory EMGdi activity appeared to be very similarto that of simultaneously recorded
EMGgg uncontaminated by ECG. These very promisinginitial data support that further work

with more participants to examine EMGgg vs EMGdi responsesin more detail.

Chapter 8. Appendix

7.1 Code for ICA-Wavelet algorithm

function ICA_Wavelet_main
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clear;clc;close all;
load ('new_neura.mat')
raw=neura(:,:);
% load slp; raw=slp;
figure(1);
winrect=[200,200,540,400];%[distance left bottom length height]
set(gcf,'position’,winrect)
set(gca,'box’,'on','fontname’,'Calibri', 'fontsize',9)
% hold on; title('raw’)
wplot(raw);
% ylabel('Amplitude [mV]','fontname’,'Calibri','fontsize',9);
xlabel('Time [sec]','fontname’,'Calibri', 'fontsize',9);
% hold off;
%% %% % % % % %% % % % % %% % % % % %% % %% % %% % % %% %% % % % % %% %% % %% %
[y,v,w]=fastICA(raw);
%% %% % % % %% %% % % % %% % % % % %% % %% % %% % % %% %% % % % % %% %% % %% %
figure(2);
title('ICs")
mplot(y);
%% %% % % % %% %% % % % % %% % % % %% % %% % %% % % % % %% % % % % %% %% % %% %
y(1,:)=0;
%% %% % % % %% %% % % % %% % % % % %% % %% % %% % % %% %% % % % % %% %% % %% %
for i=2:size(raw,1)-1
y(i+1,:)=wavewu(y(i+1,:));
end
emgdi_wu=inv(v)*w'*y;

% save('neura_channell.mat','emgdi_wu');

51



%% %% % % % %% %% % % % %% % % % % %% % % % % %% % % %% %% % % % % %% % % % %% % %
figure(3);
title('Results')
wplot(emgdi_wu);
function [y,v,w]=fastICA(x)
tic; %Start a stopwatch timer.
[r,c]=size(x);%r=8;c=24121
x=x-mean(x')'*ones(1,c);
[E,D]=eig(cov(x',1));
v=E*(D”(-0.5))*E";
z=v¥x;
epsilon=1e-6;
m=r;
w=zeros(r,1);
for p=1:m
w(:,p)=ones(r,1);
w(:,p)=w(:,p)/norm(w(:, p));
exit=0;
count=0;
iter=1;
while exit==0
count=count+1;
temp=w(:,p);
for i=1:m
w(i,p)=mean(z(i,:). *tanh(temp'*z))-(mean(1-(tanh(temp'*z).A2)).*temp(i,1));
end

ssum=zeros(r,1);
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for counter=1:p-1
ssum=ssum+(w(:,p)'*w(:,counter))*w(:,counter);
end
w(:, p)=w(:,p)-ssum;
w(:,p)=w(:,p)/norm(w(:,p));
if(abs((dot(w(:, p),temp)))<1+epsilon)&(abs((dot(w(:,p),temp)))>1-epsilon)
exit=1;
end
iter=iter+1;
end
end
w=w';
%[m,in]=sort(power);
%w=w(in,:);
y=w*z;
togc;
function emg=wavewu(emgdi)
% load slp; emgdi=slp(size(slp,1),:);
Is = length(emgdi); %find length the vector
f=(1:1s)/2000;
de={];
[c,I] = wavedec(emgdi,5,'db1'); % decomposed.c:coefficient l:length
figure;
subplot(2,1,1);
plot(f,emgdi,'b'); %title('Original signal');
xlabel('(a)');

ylabel('Amp(V)');
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axis([0 1s/2000 -500 500]);

upbound = 15;
lowbound = 8;

step = upbound - lowbound;

ca5={];

ca5=c(1:1(1));

num =1(1);

n=1;

th=[223455];

% th=5*ones(1,6);

k=[1;

for i = 1:upbound*n
ave = sum(abs(ca5((i+lowbound*n):(i+upbound*n-n))))/step*n;
k(i) = abs(ca5(i))/ave;
if k(i) >=th(1)

ca5(i)=0;

end

end

for i = (num-upbound*n+1):num
ave = sum(abs(ca5((i-upbound*n+n):(i-lowbound*n))))/step*n;
k(i) = abs(ca5(i))/ave;
if k(i) >=th(1)

ca5(i)=0;



end
end
for i = upbound*n:(num-upbound*n)

ave = (sum(abs(ca5((i-upbound*n+n):(i-lowbound*n)))) +
sum(abs(ca5((i+lowbound*n):(i+upbound*n-n)))))/(2*step*n);

k(i) = abs(ca5(i))/ave;
if k(i) >=th(1)
ca5(i) = 0;
else
end
end

dc(1:1(1)) = ca5;

cd5=];

cd5 = c((1+1(1)):(1(1)+1(2)));
%hold on

num =1(2);

n=1;

k=[l;
for i = 1:(upbound*n-1)
ave = sum(abs(cd5((i+lowbound*n):(i+upbound*n-n))))/step*n;
k(i) = abs(cd5(i))/ave;
if k(i) >=th(2)
cd5(i) =0;
end
end

for i = (num-upbound*n+1):num
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ave = sum(abs(cds((i-upbound*n+n): (i-lowbound*n)))) /step*n;
k(i) = abs(cd5(i))/ave;
if k(i) >= th(2)
cds (i) = 0;
end

end

for i = upbound*n:(num-upbound*n)

ave = (sum(abs(cd5((i-upbound*n+n):(i-lowbound*n)))) +
sum(abs(ca5((i+lowbound*n):(i+upbound*n-n)))))/(2*step*n);

k(i) = abs(cd5(i))/ave;

if k(i) >= th(2)
cds(i) = 0;

else

end

end

de((1+1(21)):(1(1)+1(2))) = cd5;

%% % % % % % % % % % % % % % % % % % % %% % % % % %% % % % % %% % % % % %% % % % %6% % % % % %% % % % % %%
%% % % % % % % % % % % % % % % % % % % %% % % %0 %6 %% % % % % %% % % % % %% % % % %% Y%

cd4 = c(1+1(2)+1(2):1(1)+1(2)+1(3));
ca5=1J;

ca5=cd4;

%hold on

num =1(3);
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k=[1;

for i = 1:(upbound*n-1)
ave = sum(abs(ca5((i+lowbound*n):(i+upbound*n-n))))/step*n;
k(i) = abs(ca5(i))/ave;
if k(i) >=th(3)
ca5(i)=0;
end
end
for i = (num-upbound*n+1):num
ave = sum(abs(ca5((i-upbound*n+n):(i-lowbound*n))))/step*n;
k(i) = abs(ca5(i))/ave;
if k(i) >=th(3)
ca5(i)=0;
end
end
for i = upbound*n:(num-upbound*n)

ave = (sum(abs(ca5((i-upbound*n+n):(i-lowbound*n)))) +
sum(abs(ca5((i+lowbound*n):(i+upbound*n-n))))) /(2*step*n);

k(i) = abs(ca5(i))/ave;

if k(i) >= th(3)
cas5(i) = 0;

else

end

end
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de(1+(1)+(2):1(1)+1(2)+(3)) = ca5;

%% %%% %%6% %% % %% % %% % %6 % % %% % % %6 % %6 %6 % %6 %6 %% %% % %6 %6% % %6 % %% %6 % %% %% %% % % %%
%%6%%% %%6% %% % %% % %% %% % %K% % %% % %% % %% %% %6 % %% %% %% %%

cd3 = c(L+(1)+(2)+(3):1(1)+1(2)+(3)+(4));

ca5={];
ca5=cd3;
%hold on
num =1(4);
n=4;
k=[1;

fori = 1:(upbound*n-1)
ave = sum(abs(ca5((i+lowbound*n):(i+upbound*n-n))))/step*n;
k(i) = abs(ca5(i))/ave;
if k(i) >=th(4)
ca5(i)=0;
end
end
for i = (num-upbound*n+1):num
ave = sum(abs(ca5((i-upbound*n+n):(i-lowbound*n))))/step*n;
k(i) = abs(ca5(i))/ave;
if k(i) >=th(4)

ca5(i)=0;
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end

end

for i = upbound*n:(num-upbound*n)

ave = (sum(abs(ca5((i-upbound*n+n):(i-lowbound*n)))) +
sum(abs(ca5((i+lowbound*n):(i+upbound*n-n)))))/(2*step*n);

k(i) = abs(ca5(i))/ave;

if k(i) >=th(4)
% author: wfy@nwpu.edu.cn
ca5(i)=0;

else

end

end

de(1+I(2)+1(2)+1(3):1(1)+1(2)+1(3)+(4)) = ca5;

%% %% %% %%6% %% %% %% %26 % %% %6%6% % %6 %2626 % %% %066 %6 %6 %o 6 K% %6 %o %66 % %6 %6 %% %% %% %%
%% %% %96 %%6%%% %% %% %% % %% K% %% %YL % %% %% % %6 %o K% %% % %% %

cd2 = c(2+I(2)+1(2)+I(3)+1(4):1(1)+1(2)+I(3)+1(4)+(5));

ca5=[];
ca5=cd2;
%hold on
num =1(5);
n=28;
k=[l;
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fori = 1:(upbound*n-1)

ave = sum(abs(ca5((i+lowbound*n):(i+upbound*n-n)))) /step*n;

k(i) = abs(ca5(i))/ave;
if k(i) >= th(5)
cas(i) = 0;
end
end
for i = (num-upbound*n+1):num
ave = sum(abs(ca5((i-upbound*n+n):(i-lowbound*n))))/step*n;
k(i) = abs(ca5(i))/ave;
if k(i) >= th(5)
cas(i) = 0;
end

end

for i = upbound*n:(num-upbound*n)

ave = (sum(abs(ca5((i-upbound*n+n):(i-lowbound*n)))) +
sum(abs(ca5((i+lowbound*n):(i+upbound*n-n)))))/(2*step*n);

k(i) = abs(ca5(i))/ave;

if k(i) >=th(5)
ca5(i) = 0;

else

end

end

de(1+(2)+1(2)+1(3)+1(4):1(1)+1(2)+I(3)+1(4)+(5)) = ca5;
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%6%%6%%%6%%6%%6%%6%%6 %% %% %% %K% % %6 %6626 % %6 %96 %6%6%6 %% % %% % %6 T K% %6 % %6 % %6% % %6 %% %%
%6%%6%%6%%6%%%%6 %% %% %% %% % 96% %% 6% %% % %6 %% %6%% %% % %% %%

%figure(6)

cd1 = c(1+I(1)+1(2)+(3)+I(4)+1(5):1(1)+1(2)+1(3)+I(4)+(5)+I(6));
ca5=[[;

ca5=cdl;

%hold on

num =1(6);

n=16;

k=[l;

fori = 1:(upbound*n-1)
ave = sum(abs(ca5((i+lowbound*n):(i+upbound*n-n))))/step*n;
k(i) = abs(ca5(i))/ave;
if k(i) >=th(6)
ca5(i)=0;
end
end
for i = (num-upbound*n+1):num
ave = sum(abs(ca5((i-upbound*n+n):(i-lowbound*n))))/step*n;
k(i) = abs(ca5(i))/ave;
if k(i) >=th(6)
ca5(i)=0;
end

end
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for i = upbound*n:(num-upbound*n)

ave = (sum(abs(ca5((i-upbound*n+n):(i-lowbound*n)))) +
sum(abs(ca5((i+lowbound*n):(i+upbound*n-n)))))/(2*step*n);

k(i) = abs(ca5(i))/ave;

if k(i) >= th(6)
ca5(i) = 0;

else

end

end

de(1+I(2)+1(2)+1(3)+1(4)+1(5):1(1)+I(2)+1(3)+(4)+I(5)+(6)) = ca5;

%6%6%%% %%6% %% % %% % %% % %% % %676 % % %6 % %6 %6 % %6 %6 %% %% % %6 %6% % %6 % %% %6 % % %6 %% %% % % %%

%% %% % % % %% %% % % % % %% % % % %% %% % % %% % % %% %%
emg = waverec(dc,l,'db1'); %wavelet reconstruction
subplot(2,1,2);

plot(f,emg,'r');

%title('Processed signal');

xlabel('(b)'");

ylabel('Amp(V)");

axis([0 Is/2000 -500 500]);

return

function mplot(x)

[dim,sample]=size(x);

if dim>sample x=x';
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[dim,sample]=size(x);

end

if dim>10

error ('dim can not more than ten');
end

t=0:0.0005:(sample-1)*0.0005;

winrect=[200,200,540,400];
%[distance left bottom length height]
set(gcf,'position’,winrect);
set(gca,'box’,'on’, 'fontname’,'Calibri', 'fontsize',9);
hold on;
for i=1:dim
subplot(dim,1,i);
plot(t,x(i,:),'k');
ylabel('Amplitude [dV]','fontname’,'Calibri','fontsize',9);
xlabel('Time [sec]','fontname’,'Calibri', 'fontsize',9);
axis([0 sample*0.0005 min(x(i,:)) max(x(i,:))1);
% axis('tight');
end
function wplot(x)
[dim,sample]=size(x);
if dim>sample x=x';
[dim,sample]=size(x);
end
t=0:0.0005:(sample-1)*0.0005;

if dim>10
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error ('dim can not more than ten');
end
for i=1:dim
subplot(dim,1,i);
plot(t,x(i,:),'k');
axis([0 sample*0.0005-10 10]);
ylabel(['(',num2str(i),")']);
end
ylabel('Amplitude/mV','fontname’,'Calibri', 'fontsize',9);
xlabel('Time/s','fontname’,'Calibri','fontsize',9);

7.2 Code for SNR, RMS and Fmid
%% RMS & SNR

function y=RMS(X)
clear;clc;close all;
load("dia.mat")
load("clean_dbl.mat")
sl=raw(:,1)";%noise signal
s2=emgdi_wu(1, ) ;%cleaned signal

% [pl,wl]=pwelch(sl);

% spl=size(pl);

% swl=size(wl);

% M_orig=sum(pl.-*wl);

%

% [p2,w2]=pwelch(s2);

% sp2=size(p2);

% sw2=size(W2);

% M=sum(p2.*w2);
rms_o=sqrt(sum(sl.”2)/size(sl, 1))
rms_d=sqrt(sum(s2.”2)/size(s2,1))
snr_db=20*1ogl0(rms_d/(rms_o-rms_d));
snr_lin=10"(snr_db/20) ;

% rms_ICA=sqrt(M/length(p2))

7.3 Code for ‘pre filter’

% function Filter = HFilter(raw)
Fs=1000;%sample rate
dt=1/2*fs;

load (“neura data.mat®)
%%
%channel one high pass filter

N=length(rawl);
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t=(0:N-1)*dt;
data_fft=Fft(rawl);
df=(2*fs)/N;
data_f=(0:N-1)*df;
x1im([0,250]);

idO=find(data_1<10);%apply 10 Hz high pass
idO_len=length(id0);

data_fft(id0)=0;

data fft(((end+1)-(id0_len-1)):end)=0;
data_ifftl=real(ifft(data fft));

%%

%channel two

raw2=raw(2,:);

N=length(raw2) ;

t=(0:N-1)*dt;
data_fft=Fft(raw2);
df=(2*fs)/N;
data_f=(0:N-1)*df;
x1im([0,250]);

ido=Ffind(data f<10);
idO_len=length(id0);

data_fft(id0)=0;

data fft(((end+1)-(id0_len-1)):end)=0;
data_ifft2=real(ifft(data fft));

%%

%channel three

raw3=raw(3,:);

N=length(raw3);

t=(0:N-1)*dt;
data_fft=Fft(raw3d);
df=(2*fs)/N;
data_f=(0:N-1)*df;
x1im([0,250]);

ido=Ffind(data f<10);
idO_len=length(id0);

data_fft(1d0)=0;
data_fft(((end+1)-(id0_len-1)) :end)=0;
data_ifft3=real(ifft(data fft));

%%

%channel 4

rawd=raw(4,:);

N=length(raw4) ;

t=(0:N-1)*dt;
data_fft=Fft(rawd);
df=(2*fs)/N;
data_f=(0:N-1)*df;
x1im([0,250]);

ido=Find(data f<10);

Ffilter
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id0_len=length(id0);

data_fft(1d0)=0;
data_fft(((end+1)-(id0_len-1)) :end)=0;
data_ifftd=real(ifft(data fft));

%%

%channel five

rawsS=raw(5,:);

N=length(raw5) ;

t=(0:N-1)*dt;
data_fft=Fft(rawb);
df=(2*fs)/N;
data_f=(0:N-1)*df;
x1im([0,250]);

idO=find(data_1<10);
id0_len=length(id0);
data_fft(1d0)=0;

data_ ffe(((end+1)-(id0_len-1)):end)=0;
data_ifftS=real(ifft(data_fft));
%%

%plot

figure (1);

subplot(5,1,1)

plot(t,rawl, "k");
title(C'raw™)

ylabel ([ (", num2str(1)," )" D:;
subplot(5,1,2)

plot(t,raw2, "k");

ylabel (["(",num2str(2),")"D:
subplot(5,1,3)

plot(t,raw3, "k");

ylabel (["(",num2str(3),")"D;
subplot(5,1,4)
plot(t,raw4d, k") ;

ylabel (["(",num2str(4),")"D;
subplot(5,1,5)

plot(t,raw5, "k");

ylabel ([*(",num2str(5),")"1D;

figure (2);

subplot(5,1,1)

plot(t,data ifftl, "k");
title("High pass filtered®)
ylabel ([ (", num2str(1)," )" D:;
subplot(5,1,2)

plot(t,data ifft2,"k");
ylabel (["(",num2str(2),")"D:
subplot(5,1,3)

plot(t,data ifft3, "k");
ylabel ([ (", num2str(3),")"D:;
subplot(5,1,4)

plot(t,data ifft4, "k");
ylabel (["(",num2str(4),")"D;
subplot(5,1,5)

plot(t,data ifft5, "k");
ylabel (["(",num2str(5),")"D;



%%
%combine channels
neura=[data_ifftl;data_ifft2;data_ifft3;data_ifft4;data_ifft5];
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