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Abstract 
Diaphragmatic electromyography (EMGdi) signals can be recorded from surface electrodes 

placed on the chest wall, intra-muscular electrodes placed directly into the muscle, or via 

multi-channel intra-oesophageal electrode recordings. EMGdi recordings contain detailed 

information regarding the central neural drive to breathe and mechanoreflex mediated 

changes in muscle electrical activity  over the course of each breath, and well known to 

operate in other respiratory modulated pump muscles such as the scalene, and upper 

airway dilator muscles such as the genioglossus. Thus, assessment of EMGdi activity can 

help with the assessment of overall neural drive to breathe, and in exploring respiratory 

pathological mechanisms and respiratory reflex mechanisms. Although somewhat invasive, 

intra-oesphageal recordings provide high quality EMGdi recordings without contamination 

by intercostal muscle activity or the attendant risks of pneumothorax and infection 

associated with intramuscular recordings. However, raw EMGdi signals are heavily 

contaminated by ECG artefact, particularly when recorded via an intra-osephageal catheter. 

Thus, reliable assessment of respiratory related intra-esophageal EMGdi requires removal of 

ECG interference. Conventional methods for ECG denoising of EMGdi predominantly rely on 

simplistic ECG blanking methods that ignore EMGdi periods containing ECG artefact, or 

substitute artefact periods with delayed EMGdi recorded a few hundred milliseconds earlier 

within the respiratory cycle. Whilst these methods are adequate for assessing overall tonic 

and peak inspiratory levels of EMGdi activity (e.g. from rectified and moving averaged 

EMGdi after ECG blanking), they are not appropriate for examining within breath reflex 

changes in inspiratory activity in response to within-breath changes in inspiratory loads, 

such as mid-inspiratory occlusion. Examination of these reflexes requires signal averaging of 

raw rectified EMG over many replicated stimuli in order to sufficiently improve signal-to-

noise to discern small EMG changes associated with these reflexes. Given that conventional 

ECG blanking methods destroy large segments of underlying EMGdi activity, signal averaging 

methods cannot reliably be applied. Averaging of raw unfiltered EMGdi inevitably remains 
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heavily contaminated with ECG. Consequently, meaningful examination of EMGdi reflex 

responses to mid-inspiratory occlusion has not previously been possible. Recently described 

ECG filtering methods offer significant promise, but have yet to be applied to examine 

EMGdi reflex responses. The purpose of the work described in this thesis was to apply newly 

described EMGdi filtering methods to test, for the first time, if this new approach can allow 

for assessment of EMGdi reflex responses to mid-inspiratory occlusion. 

Chapter 1. Introduction 

1.1 Overview 

The diaphragm is the main inspiratory muscle (Figure 1). Electromyographic recordings 

obtained from the diaphragm are non-stationary bioelectrical signals produced by 

depolarisation and repolarisation of muscle motor units in the vicinity of the recording 

electrodes. Thus, EMG recordings allow for a detailed assessment of the motor control of 

respiration. Assessment of EMGdi activity can be potentially very useful for investigating 

respiratory pathological mechanisms, respiratory reflex mechanisms and investigating 

better treatment methods in a range of pulmonary diseases such as diaphragmatic fatigue, 

chronic obstructive pulmonary disease (COPD) and obstructive sleep apnea syndrome 

(OSAS)(Luo 2009). EMGdi recordings are thus an attractive method for research into 

diaphragm pathology, and has become an active topic in recent years to monitor 

insufficient/abnormal muscle activity. Raw EMGdi signals can be obtained via an esophageal 

catheter, invasive intra-muscular electrodes, or surface electrodes (Zhan, Yeung & Yang 

2010). EMGdi signals obtained from esophageal electrodes is usually heavily contaminated 

by  non-respiratory signal “noise” such as ECG, motion artefacts, and esophageal peristalsis. 

The heaviest interference is ECG artefact, which has a major impact on breath-by-breath 

measures such as Root Mean Square (RMS), peak inspiratory activity, and EMG reflex 

assessment via application of signal averaging techniques. This, reliable timing and 

algorithm based assessment of EMGdi activity requires good cardiac artefact filtering 

methods. ECG interference displays two main characteristics: in the time domain, the 

amplitude of the ECG interference is typically much higher than the amplitude of the EMGdi 

signal; in the frequency domain, the spectrum of ECG artefact partially overlaps with the 

spectrum of EMGdi signal.  
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Figure 1 Location of Diaphragm (Tan, J 2017) 

 

1.2 Inspiratory EMG reflex responses to inspiratory loads 

An important mechanism in disordered breathing in Obstructive Sleep Apnoea (OSA) that 

controls why a patient with OSA can have periods of stable breathing and periods of 

obstructed flow limitation is not fully understood. One assumption is muscle activity, and 

augmented effort/reflex response to flow limitation might be important. Previous research 

has shown inspiratory muscle reflex activation and suppression responses to sudden airway 

obstruction in muscles such as the genioglossus and scalene (Eckert et al. 2008). Figure 2 

shows a reflex in response to a sudden drop in pressure induced via a facial mask. Reflex 

suppression and excitation of muscle activity are observed in both the genioglossus and 

scalene muscles (Eckert et al. 2008).  This reflex activity of Genioglossus Electromyogram 

(EMGgg) and Scalene Electromyogram (EMGsc) has been established using signal averaging 

of raw rectified EMG that is not contaminated by ECG artefact, averaged over many 

replicated applications of an externally applied inspiratory load. However, the raw EMGdi 

signal is badly contaminated by cardiogenic artefact which likely obscures similar expected 

reflexes responses in EMGdi (Figure 3). Thus, denoising is required to evaluate these 

reflexes in the EMGdi. However, respiratory research groups currently lack the tools to 

adequately denoise EMGdi ahead of a range of subsequent EMGdi measurements, and in 

particular EMG reflexes obscured by ECG artefact in EMGdi.  
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Figure 2 EMGgg and EMGsc reflex responses to  mid-inspiratory negative pressure pulse (A: EMGgg reflex; B: EMGsc reflex) 
(Eckert et al. 2008) 

 

Figure 3 Signal averaged airflow (top) and rectified raw EMGdi (bottom) responses to sudden airway occlusion (N around 
100 replicate occlusions) 
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Prior work demonstrates that the most of the power of ECG signal contamination in EMGdi 

occurs in a frequency band between 0-70 Hz whilst the most respiratory related EMGdi 

signal energy is between 25-250 Hz. Thus, there is significant frequency overlap between 25-

70 Hz (Wu, Tong & Yang 2016). The main methods currently used for EMGdi noise reduction 

are simple band-pass filters, gating (e.g. ECG triggered blanking) or subtraction which 

inevitably contains some residual ECG and destroy a significant component of the real 

underlying EMGdi signal given overlapping frequencies in ECG and EMGdi.  

Traditional hardware or software based “ECG blankers” simply cut and paste a short EMG 

segment from a nearby part of the breathing cycle. This can effectively clean the signal for 

the purpose of measuring peak EMG activity during each breath from peak rectified and 

typically 50-100 msec moving time averaged signal. Simple band-pass filters can also 

substantially attenuate ECG artefact for this purpose. However, neither method is suitable 

for assessing short-latency EMG reflex responses to sudden breathing loads on a within-

breath time scale, which requires signal averaging of hundreds of replicate trials to obtain 

the small EMG reflex activity time-locked to stimulus onset. As with genioglossus and 

scalene, within breath EMG reflex modulation of EMGdi is expected to be small and thus 

require signal averaging of many replicate responses in order to discern stimulus related 

reflex activity from non-stimulus activity and noise. However, given that ECG artefact can 

occur throughout the respiratory cycle, and not necessarily entirely at random given overlap 

in respiratory and cardiac control, ECG artefact will inevitable regularly obscure the period 

of interest for assessing EMG reflexes.   

 

1.3 Thesis aim and research direction 

Improved methods for denoising EMGdi signals are of significant interest in the field of 

respiratory and sleep medicine. No previous studies have attempted to examine within-

breath EMGdi reflex responses to breathing loads due to the technical problems associated 

with major contamination by cardiogenic artefact. The aim of this project was to overcome 

this significant technical problem in order to look at these reflexes in the diaphragm via 

more sophisticated filtering methods and less destruction of underlying EMG. 

Understanding short latency muscle reflexes known to operate in other muscles such as 
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genioglossus and scalene requires better EMGdi filtering than is currently possible with 

traditional methods such as simple blanking. In the process of the EMGdi signal noise 

reduction, the effects of noise should be reduced as much as possible and the integrity of 

the EMGdi signals should be maintained. To denoise the heavily contaminated raw EMGdi 

signal (Figure 4), several new methods were considered, including a simple subtraction 

technique, a newly reported wavelet-based adaptive filter, ICA-wavelet filter. The ICA-

wavelet approach has conceptual advantages over conventional ECG filtering methods such 

as band-pass filter and blanking methods, and has the potential to minimise the loss of real 

signal, and avoiding temporal artefacts introduced with simple ECG blanking.  However, this 

novel filter has yet to be adopted and used routinely in research, and has not previously 

been tested for examining EMGdi reflexes. The worked described in this thesis aimed to 

optimize and apply the ICA-wavelet denoising approach to allow for the assessment and 

comparison of EMGdi compared to EMGgg reflexes expected to be elicited by mid-

inspiratory occlusion. 

 

Figure 4 Raw signals (top: Air flow; middle:  raw EMGgg signal; bottom: raw EMGdi signal) 

 

1.4 Independent Component Analysis (ICA) 

Traditional frequency domain analysis is limited to analyse overlapped spectrum features. 

Independent component analysis (ICA) is an efficient tool to decompose raw signals into 

independent components. The basic principle of ICA is to separate the implicit independent 

source signals from the multi-channel signals (Aapo, Erkki & Juha 2001). According to the 

classical ‘cocktail-party problem’, different with Principal Component Analysis (PCA), the 
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purpose of ICA is not to reduce data variable dimension, but to remove correlations 

between different components, then find out meaningful physiological or physical signal 

sources from mixed signals.  

Assuming a set of random variables 𝑋𝑋(𝑡𝑡) = [𝑥𝑥1(𝑡𝑡), 𝑥𝑥2(𝑡𝑡), … , 𝑥𝑥𝑛𝑛(𝑡𝑡)]𝑇𝑇 , where 𝑖𝑖 = (1,2, … , 𝑛𝑛) 

is the channel number of the observed signal, 𝑡𝑡 is the sample index, it is generated by M 

mutually independent statistical implicit variables, that is, the source signals 𝑆𝑆(𝑡𝑡) =

[𝑠𝑠1(𝑡𝑡), 𝑠𝑠2(𝑡𝑡), … , 𝑠𝑠𝑚𝑚(𝑡𝑡)]𝑇𝑇  (𝑚𝑚 ≤ 𝑛𝑛) are mixed linearly through an unknown matrix 𝐴𝐴 =

�
𝑎𝑎11 … 𝑎𝑎1𝑚𝑚
⋮ ⋱ ⋮
𝑎𝑎𝑛𝑛1 … 𝑎𝑎𝑛𝑛𝑛𝑛

� : 

�
𝑥𝑥1(𝑡𝑡)
⋮

𝑥𝑥𝑛𝑛(𝑡𝑡)
� = �

𝑎𝑎11 … 𝑎𝑎1𝑚𝑚
⋮ ⋱ ⋮
𝑎𝑎𝑛𝑛1 … 𝑎𝑎𝑛𝑛𝑛𝑛

��
𝑠𝑠1(𝑡𝑡)
⋮

𝑠𝑠𝑚𝑚(𝑡𝑡)
� 

To apply ICA validly, source signals should be mutually independent; And the distribution of 

each source variable should be non-Gaussian (Wang, Kuruoglu & Zhang 2009). 

ICA also have limitations: It cannot calculate the source variance index or energy intensity; It 

is not able to solve the positive and negative sign of the source (Aapo, Erkki & Juha 2001). 

1.4.1 FastICA 

FastICA is an algorithm to perform Independent component analysis based on fixed point 

iteration, which allows convergence fast and stable and achieve blind source separation 

(the procedures are stated in Chapter 3) (Oja & Yuan 2006).   

Comparing with other ICA algorithms, FastICA has many advantages (Hyvärinen, Karhunen & 

Oja 2004). Convergence speed is fast. Unlike gradient algorithm, it is easy to use without 

step size parameter. Any nonlinear function can be used to find the independent 

component of any non-Gaussian distribution directly. For other algorithms, the estimation 

of the probability density function has to be carried out first, so selecting nonlinear is 

necessary. Its performance can be optimized by selecting the appropriate nonlinear 

functions. Independent components can be estimated one by one, which reduces the 

amount of computation in the case that only a few independent components need to be 

estimated. It is distributed, computationally simple and requires little memory (Hyviirinen 

2001). 
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EMGdi are biomedical signals, which contain sub-Gaussian signals. The FastICA algorithm 

based on fixed point iteration is a very efficient batch algorithm, so FastICA algorithm is 

often used in ICA-Wavelet filtering.    

In addition, as a linear decomposition method, ICA can separate the source signal as long as 

the number of collected signal channels is not less than the number of independent source 

signals. However, for the analyzation of complicated biomedical signals such as EMGdi, the 

output of decomposition is often incomplete. Nevertheless, wavelet transformation (WT) is 

efficient for the analysis of non-stable biomedical signals based on its variable timing-

window feature. Combining ICA and WT to denoise EMGdi signals can not only overcome 

the drawbacks of ICA thoroughness but also avoid some drawbacks of wavelet threshold 

denoising.   

1.5 Wavelet analysis  

1.5.1 Overview 

Wavelet theory is developed on the basis of Fourier transform (FT). Because the Fourier 

transform analyses the signal completely in the frequency domain, it cannot show the 

change of the signal at a certain time (Bates 1998). Short-time Fourier transform (STFT) is a 

tool of time-frequency analysis, which slices the waveform into a number of short segments 

and performs Fourier analysis on each of these segments (Semmlow & Griffel 2014). The 

drawback of STFT is that the size of time-window is fixed for all frequencies that can be 

examined over the chosen time window. The relative duration of high frequency signals is 

very short, while the duration of low frequency signals is longer. Therefore, we expect a 

small time window for high frequency signals and a large time window for low frequency 

signals. Wavelet transform overcomes the deficiency of STFT by allowing for a window 

function with variable size regions, which is most suited for analysing nonstationary signals 

such as EMG (Figure 5) (Lu 2013). In the low frequency part, it has higher frequency 

resolution and lower time resolution, while for high frequencies it has higher time 

resolution and lower frequency resolution. As a result, WT can more effectively distinguish 

and extract mutation information from the non-stationary signals, and perform multi-scale 

analysis by dilation and translation (Semmlow & Griffel 2014). Overall, WT is a time-
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frequency, localized and multi-resolution method, which has unique advantages in the 

processing of clinical non-stationary EMGdi signals.  

 

 

Figure 5 Time windows of FT, STFT and WT  (Lu 2013) 

Medical signals such as EMG are usually one-dimensional signals. In one-dimensional 

wavelet analysis, the Continuous Wavelet Transform (CWT) is defined as the integral 

transform of the signal 𝑥𝑥(𝑡𝑡) with a family of mother wavelet 𝜓𝜓𝑎𝑎,𝑏𝑏(𝑡𝑡) which is given by 

(Seljuq, Himayun & Rasheed 2014): 

𝑊𝑊(𝑎𝑎,𝑏𝑏) = � 𝑥𝑥(𝑡𝑡)
1

�|𝑎𝑎|
𝜓𝜓 �

𝑡𝑡− 𝑏𝑏
𝑎𝑎

�𝑑𝑑𝑑𝑑
∞

−∞

 

After shifting and stretching mother wavelet 𝜓𝜓𝑎𝑎,𝑏𝑏(𝑡𝑡), the wavelet sequence can be 

obtained, which is given by (Pathak & Singh 2016): 

                                                          𝜓𝜓𝑎𝑎,𝑏𝑏(𝑡𝑡) = 1
�|𝑎𝑎| 𝜓𝜓�

𝑡𝑡−𝑏𝑏
𝑎𝑎
�         𝑎𝑎,𝑏𝑏 ∈ 𝑅𝑅;𝑎𝑎 ≠ 0  

The Discrete Wavelet Transform (DWT) can be obtained by applying binary 

discretization of 𝑎𝑎 and 𝑏𝑏, that is 𝑎𝑎 = 2−𝑗𝑗, 𝑏𝑏 = 𝑘𝑘2−𝑗𝑗, 𝑗𝑗,𝑘𝑘 ∈ 𝑍𝑍 (He, Xing & Yang 2014): 

𝑊𝑊(𝑗𝑗,𝑘𝑘) = �𝑥𝑥𝑗𝑗,𝑘𝑘(𝑡𝑡)2−
𝑗𝑗
2

𝑗𝑗,𝑘𝑘

𝜓𝜓(
𝑡𝑡 − 2𝑗𝑗𝑘𝑘

2𝑗𝑗 ) 

The discrete wavelet sequence 𝜓𝜓𝑗𝑗,𝑘𝑘(𝑡𝑡) is given by (He, Xing & Yang 2014): 

𝜓𝜓𝑗𝑗,𝑘𝑘(𝑡𝑡) = 2
1
2𝜓𝜓(2𝑗𝑗𝑡𝑡 − 𝑘𝑘) 
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Where 𝑎𝑎, 𝑏𝑏 𝑎𝑎𝑎𝑎𝑎𝑎 𝑗𝑗,𝑘𝑘 are dilation and translation factors respectively.  

1.5.2 Wavelet basis 

Compared to the standard Fourier transform, the wavelet functions in wavelet analysis are 

not unique, that is, there are a variety of wavelet functions can be chosen from. So the 

construction and selection of a wavelet basis is a prerequisite for signal analysis and 

processing. Constructing a new wavelet basis for any specific applications requires a deep 

theoretical knowledge and research experience of the signals of interest. Basis functions are 

generally chosen from classic wavelet functions such as Haar, Daubechies (dbN), 

Biorthogonal (biorNr.Nd) and Coiflet (coifN) (Tan, HR et al. 2007). Table 1 shows a total of 52 

wavelet basis which are common to use including 10 Daubechies, 7 Symlets, 5 Coiflet, 15 

BiorSplines and 15 ReverseBior. Optimal wavelet basis selection is important in the wavelet 

denoising process. Current methods of wavelet basis selection have some shortcomings 

such as large computation and a signal optimal index (He, Xing & Yang 2014). Seljuq, 

Himayun and Rasheed (2014) point out that performance of Daubechies wavelet basis is 

best suit for ECG signal denoising based on simulation results. Further, db wavelet of order 9 

(db9) is most appropriate in preserving the features of a denoised ECG signal. However, no 

research has yet concluded what the best suited wavelet basis function is for EMGdi 

denoising. Previous paper selected wavelet basis based on research experience for EMGdi 

signals denoising (Wu, Tong & Yang 2016).  

Table 1 General Wavelet family  (Tan, HR et al. 2007) 
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1.5.3 Wavelet decomposition layers 

Multi-resolution analysis also called scale analysis. It uses multi-scale property of the 

orthonormal wavelet basis function to expand signals at different scales (Mallat, Stéphane 

1999). The ability of multi-resolution analysis is the main reason of the extensive application 

of WT (Donoho 1992). A sample 5-layer multi-resolution diagram is shown in Figure 6. The 

relationship of multi-resolution is: Y = cA5 + cD5 + cD4 + cD3 + cD2 + cD1. Multi-

resolution analysis only decomposes the low frequency part (𝑐𝑐𝑐𝑐1, 𝑐𝑐𝑐𝑐2,𝑐𝑐𝑐𝑐3,𝑐𝑐𝑐𝑐4), aiming to 

construct ‘bandpass’ filters with different bandwidths, and therefore requires selection of 

suitable decomposition layers. ECG signal frequencies are concentrated in the low 

frequency range (0-70 Hz), where wavelet decomposition usually operates so is ideally 

suited for decomposing the noisy signal into low frequency components.  

Redundant decomposition layers increase computational complexity whilst the insufficient 

decomposition layers will lead to unobvious denoising effect. Normally, 3 to 5 

decomposition layers are sufficient for signal denoising (Wu, Tong & Yang 2016). This thesis 

decided to decompose noisy EMGdi signal into 5 layers to ensure the denoising effect.  

 

 

Figure 6 Structure of five-layer multi-resolution analysis 

1.5.4 Wavelet threshold  

The theoretical foundation of wavelet threshold is based on multi-resolution analysis of WT. 

When the noisy signal is decomposed by multi-resolution of WT, the discrete detailed 

coefficients such as 𝑐𝑐𝑐𝑐5 and approximate coefficients such as 𝑐𝑐𝑐𝑐5 can be obtained after WT 
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(Figure 6) (Wu, Tong & Yang 2016). Mallat, Stephane and Hwang (1992) proved that the 

magnitude of the noise’s discrete detail signal decreases with the increase of the scale of 

WT, but the relationship of WT coefficient of useful signal (EMGdi) and the scale is different. 

Based on this difference, a threshold can be selected to deal with the discrete details of 

each scale after the WT, followed by the reconstruction of discrete signals (wavelet inverse 

transformation) to achieve the signal denoising. Traditional threshold functions contain 

‘hard threshold’ function and ‘soft threshold’ function.   

‘Hard threshold’ function is given by (Carré et al. 1998): 

𝜃𝜃(𝑥𝑥) = �
0 𝑖𝑖𝑖𝑖 |𝑥𝑥| ≤ 𝑇𝑇𝑗𝑗
𝑥𝑥 𝑖𝑖𝑖𝑖 |𝑥𝑥| > 𝑇𝑇𝑗𝑗

 

Where 𝑇𝑇𝑗𝑗 is threshold, 𝑥𝑥 is wavelet coefficient after WT, 𝜃𝜃(𝑥𝑥) is wavelet coefficient after 

threshold selection. ‘Hard threshold’ sets the wavelet coefficients of which absolute values 

are less than the threshold to 0, and others remain unchanged.  

‘Soft threshold’ is given by (Deny, Wolf & Bullemer 1988): 

𝜃𝜃(𝑥𝑥) = �
0                                𝑖𝑖𝑖𝑖 |𝑥𝑥| ≤ 𝑇𝑇𝑗𝑗
𝑠𝑠𝑠𝑠𝑠𝑠(𝑥𝑥) ∙ |𝑥𝑥 − 𝑇𝑇|   𝑖𝑖𝑖𝑖 |𝑥𝑥| > 𝑇𝑇𝑗𝑗

 

Where 𝑇𝑇𝑗𝑗 is threshold, 𝑥𝑥 is wavelet coefficient after WT, 𝜃𝜃(𝑥𝑥) is wavelet coefficient after 

threshold selection, 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑥𝑥) is sign function. ‘Soft threshold’ means the wavelet coefficients 

of which absolute values are less than the threshold are set to 0, and other coefficients are 

compressed to 0.  

The threshold value is difficult to be selected, because it should be suitable for each 

decomposition layer. The quality of the signal and thus signal to noise ratio (SNR) will be 

reduced with selection of an inappropriate threshold value. A universal threshold is given by 

(Garg et al. 2010):  

𝑇𝑇 = 𝜎𝜎�2𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 

Where 𝑁𝑁 is the length of the noisy signal, 𝜎𝜎 is that signal’s standard deviation.   

In this thesis, before applying WT, noisy signal was pre-treated by ICA to obtain ECG and 

EMGdi independent components. Further, this thesis used a novel ‘variable threshold’ 
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instead of universal threshold. It requires to adjust threshold settings for different layers 

with different dataset.  

The ‘variable threshold’ function is defined as (Wu, Tong & Yang 2016): 

𝜃𝜃(𝑠𝑠𝑠𝑠𝑠𝑠) = �𝜃𝜃𝑗𝑗
(𝑠𝑠𝑠𝑠𝑠𝑠)              𝑖𝑖𝑖𝑖 |𝜃𝜃𝑗𝑗(𝑠𝑠𝑠𝑠𝑠𝑠)| < 𝑇𝑇[𝑗𝑗]

0               𝑖𝑖𝑖𝑖 |𝑥𝑥| ≥ 𝑇𝑇[𝑗𝑗]  

Where 𝑇𝑇[𝑗𝑗] = 𝑘𝑘[𝑗𝑗]𝑎𝑎𝑎𝑎𝑎𝑎[𝑗𝑗]. 𝑘𝑘[𝑗𝑗] is a weight matrix which can be manually selected depending 

on different dataset. 𝑎𝑎𝑎𝑎𝑎𝑎[𝑗𝑗] is the average amplitude.  

1.6 Performance evaluation methods 

Defining how successful a filter is can be hard because of unknown components. Therefore, 

some evaluation techniques are used to assess ICA-Wavelet performance.  

1.6.1 Root Mean Square (RMS) 

For n numbers of a discrete distribution, the Root Mean Square of a signal is the square root 

of mean of the values 𝑥𝑥𝑖𝑖2, defined as: 

𝑥𝑥𝑅𝑅𝑅𝑅𝑅𝑅 = �
1
𝑛𝑛 (�𝑥𝑥𝑖𝑖2

𝑛𝑛

𝑖𝑖=1

) 

1.6.2 Signal-to-noise Ratio (SNR) 

Refer to Signal-to-noise Ratio definition (Johnson 2006), SNR for this thesis defined as: 

𝑆𝑆𝑆𝑆𝑆𝑆 =
𝜎𝜎𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸2

𝜎𝜎𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛2  

𝑆𝑆𝑆𝑆𝑅𝑅𝑑𝑑𝑑𝑑 = 20 log10(
𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑅𝑅𝑅𝑅𝑅𝑅
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑅𝑅𝑅𝑅𝑅𝑅

) 

𝑆𝑆𝑆𝑆𝑅𝑅𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 10
𝑆𝑆𝑆𝑆𝑅𝑅𝑑𝑑𝑑𝑑
20  

Where 𝜎𝜎𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸2 is the variance of EMGdi signal, 𝜎𝜎𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛2 is the variance of noise value. 

Theoretically, as the main ECG signal’s energy is between 0-70 Hz whilst the main EMG 

signal’s energy is between 25-250 Hz, 𝜎𝜎𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸2  can be obtained by producing a 25-250 Hz 

band pass filter to the denoised signal, followed by calculating the variance. Similarly, the 

variance of noise 𝜎𝜎𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛2  can be obtained via a 50 Hz low pass filter. However, using this 
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methods only can estimate approximate values because pure EMGdi signals is not able to be 

direct detected. Thus, other assessments such as median frequency also need to be applied 

to support EMGdi denoising performance evaluation.  

1.6.3 Median frequency 
Median frequency can analyse main frequency components of EMGdi signals (Roy, Bonato & 
Knaflitz 1998). It is a corresponding frequency which divides the entire area of spectrum into 
half sections (Merletti, Sabbahi & De Luca 1984). The formula is (Wu, Tong & Yang 2016): 

� 𝑃𝑃𝑃𝑃𝑃𝑃(𝑓𝑓)𝑑𝑑𝑑𝑑
𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚

0
= � 𝑃𝑃𝑃𝑃𝑃𝑃(𝑓𝑓)𝑑𝑑𝑑𝑑

𝑓𝑓0

𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚

=
1
2
� 𝑃𝑃𝑃𝑃𝑃𝑃(𝑓𝑓)𝑑𝑑𝑑𝑑
𝑓𝑓0

0
 

Where 𝑃𝑃𝑃𝑃𝑃𝑃(𝑓𝑓) is Power Spectral Density of the EMGdi signal, 𝑓𝑓 is the frequency of EMGdi 
signal, 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚 is the median frequency of EMGdi signal, 𝑓𝑓0 is the maximum of frequency of 
PSD.  

If the median frequency of noisy EMGdi signal exhibited in low frequency range (that is, ECG 
frequency) and the median frequency of denoised signal deviated to a higher value in 
EMGdi range, it may indicate the ECG noise reduction performance.     

Chapter 2. Literature review 

2.1 Respiration physiology 

This part introduced some common respiratory disease and the relevant analysis using 

EMGdi.  

2.1.1 Diaphragm basics 

2.1.1.1 Diaphragmatic fatigue 

Diaphragmatic fatigue is associated with failure to maintain a predetermined load of 

transdiaphragmatic pressure (Pdi) (Roussos & Macklem 1977). Gross et al. (1979) 

demonstrated the applications and the utilities of EMG and EMGdi in detecting 

diaphragmatic fatigue via experiments, and evaluated some parameters including 

esophageal pressures, gastric pressures, pleural pressures, abdominal pressures, 

transdiaphragmatic pressure (Pdi), bipolar esophageal electrode (EE) and surface electrode 

(SE) to identify the respiratory muscle fatigue. These findings illustrated the different 

relative amplitudes of the EMGdi signal when breathing at different levels of Pdi. 
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In Gross’s experiment, the EMGdi signal was passed via two band pass filters. For the power 

contained in the high frequency band (H), the filter range is  150 Hz to 350 Hz whilst the 

range of 20 Hz to 46.7 Hz is for the low frequency band (L). Then the ratio of power 

contained in the H amplitude to the L amplitude in a forced pattern breathing was been 

calculated to analyse the EMGdi data. Some authors believe that the changes in the H/L 

ratio of the EMGdi can reflect the diaphragmatic fatigue in the metabolic aspect. Gross’s 

experiment showed a 20% decrease of H/L ratio from start recording so that he concluded 

the EMGdi signal can detect diaphragmatic fatigue before exhaustion. Levine and Gillen 

(1987)’s experiment also proved this statement, which gives a fatigue threshold value (20%). 

They demonstrated that changing features in the power spectral density (PSD) of the EMGdi 

signal is able to predict the diaphragmatic fatigue (i.e the failure of Pdi maintenance).  

It is worth mentioning that the ECG artefact shows a large interference in obtaining H/L 

ratio. Levine used a high pass filter to remove motion artefact and the cross-correlation 

technique to remove the ECG artefact. 

2.1.2 Central sleep apnea (CSA) & Obstructive sleep apnea (OSA) 

Different sleep apnea needs different treatment process so that the differentiation of sleep 

apneas is important for the subsequent analysis. The theme of article ‘Distinguishing 

obstructive from central sleep apnea events’ is to distinguish central sleep apnea (CSA) from 

Obstructive sleep apnea (OSA) based on the EMGdi and esophageal pressure (Pes) analysis 

(Luo 2009). In this article, Luo believes EMGdi is an alternative technique to evaluate neural 

respiratory drive especially within apneic event and compare the airway pressure patterns 

and respiratory effort via esophageal electrode device other than Pes.  

As the ‘gold standard’ of inspiratory effort evaluation, Pes plays a significant role in 

analysing sleep apnea.  After the experiment, Luo found that both EMGdi and Pes 

recordings decreased during a hypopnea episode (central sleep apnea events), which leads 

to the conclusion: The EMGdi signal can differentiate central from OSA.  

Luo (2009) avoided ECG interference by measuring the root mean square (RMS) of the 

EMGdi signal between the QRS complex interval.  
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2.2 EMGdi Signal and ECG Signal 

2.2.1 EMGdi signal 

Like other skeletal muscle, activity of nerves innervating the muscle influence muscle 

activity, via changes in muscle fibre membrane potentials through depolarization and 

subsequent repolarization processes controlled via the sarcoplasmic reticulum (Calcium 

switching system). This process will produce electromyographic signal (EMGdi), which can 

be recorded by electromyography. EMGdi is an indicator which mainly reflects 

electromyographic activity and functional status of the diaphragm (Beck et al. 1996).  

EMGdi signals can be recorded via an esophageal catheter which consists several sequential 

electrode pairs (Beck et al. 1996). The esophageal catheter has multiple-array with 

alternative electrode configurations. The esophageal catheter used in my project was similar 

with Beck’s device (Figure 7). It contains 10 rings for the basic esophageal electrode. 

Commercially catheters now in the market such as the one shown in Figure 8.  Latest 

catheters provide better user experience and more functions. For instance, the electrode 

pairs (stainless steel rings) become narrower and smoother for swallow easier. There are 

two balloons in the two terminals which can measure respiratory pressures. Refer to the 

experiment applied to Peter Catcheside in Flinders University (Figure 11), the esophageal 

electrode catheter will be passed via nose, swallowed into the stomach, and placed down 

side until all electrode rings can receive signals and show feedback onto the computer. It 

was difficult to know the exact position of the esophageal catheter inside the body. 
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Figure 7 Esophageal catheter used in the Lab 

 

Figure 8 Updated esophageal catheter 
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Beck’s article in 1996 and Wu’s research in 2016 provided the similar experimental setup of 

EMGdi recording (Figure 9 & Figure 10). The esophageal catheter was connected to an 

electrode configuration adapter, followed by an amplifier assembly, which passband is 0.1 

to 1,000 HZ.  Wu’s device consists 10 electrodes (1 cm long, 2 mm diameter). 

 

Figure 9 EMGdi signal recording in Bech’s article (Beck et al. 1996) 

 

Figure 10 EMGdi signal recording in Wu’s article  (Wu, Tong & Yang 2016) 
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Figure 11 EMGdi signal obtaining (Catcheside 2017) 

 

2.2.2 ECG signal  

The small electrical current occurs when the heart muscle contracts (Horrobin 1973). This 

current can be detected by electrodes and reflected by a recording machine which is the 

electrocardiograph (ECG). The appearance of ECG signal is associated with the cardiac 

conduction system. This system mainly contains the sinoatrial (SA) node, atrioventricular 

(AV) node, bundle of His, Purkinje fibres and bundle branches (West 1990). A typical ECG 

waveform with the names of the deflections and intervals from electrodes on the right arm 

and left leg (lead II) is drawn in Figure 12 (West 1990). The P wave reflects atrial 

depolarization (contraction of the atrial muscle fibres). QRS complex reflects ventricular 

depolarization (start of ventricular muscle contraction). The T wave reflects the 

repolarization (end of ventricular contraction).  
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Figure 12 A typical ECG complex with the names of the deflections and intervals (West 1990) 

2.3 Signal denoising methods 

The evaluation of signal contamination is important to increase the veracity.  

2.3.1 Double-subtraction technique 

Sinderby et al. (1997) evaluated the concept of ‘electrically active region’ (EARdi) and 

effective center (EARdictr) as well as introduced the method of EMGdi signal quality 

enhancement.   

Sinderby’s data supports that esophageal electrodes are approximately perpendicular to the 

fiber direction of a sheet of muscle, where the crural EMGdi comes from. The electrode 

pairs were placed in 10mm towards EARdictr, which is the best to minimize the influence of 

muscle to electrode distance-filtering effect and bipolar electrode filtering effect (Sinderby 

et al. 1997). Therefore, the array of electrode pairs and the signals which come from 10mm 

towards the EARdictr have the ability to get rid of bipolar electrode filtering and muscle to 

electrode distance filtering effects. Through the hardware setting, a more accurate EMGdi 

signal can be obtained. The purpose is to decrease the influence of movement of the 

EARdictr.  
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Sinderby also indicated that the EMGdi signals and ECG signals were both amplified during 

the experiment, and 10 HZ high pass filter was also used. According to Schweitzer et al.’s 

paper, the high pass filter has been proved not an effective way to analyse the EMGdi signal 

(Lake, Finucane & Hillman 1999). One benefit of the double-subtraction technique is that it 

can still receive quality signals when the diaphragm contraction level is low. However, if the 

subject is suffering neuromuscular abnormalities, the distance between electrode pairs 

probably will be changed. It is difficult to control the position of EARdictr relevant to the 

electrode array, which leads to the failure of the experiment and data collection. Moreover, 

the subtraction method only can be seen as an amplifier which is useful to amplify the 

EMGdi signal. A separate ECG signal recording, as stated in the article, is not helpful to 

denoise other EMG channels. It cannot remove the noises such as ECG artifact. More 

procedures are needed to deal with the EMGdi denoising. Therefore, using hardware to 

remove the noise and obtain the clean signal seems improper.  

2.3.2 Cross-correlation procedure 

Levine et al. (1986) used cross-correlation procedure to help remove contaminating ECG 

noise from the EMGdi signal, compared with other existing approaches. According to 

Levine’s article, ECG frequency spectrum overlaps with the EMGdi signal’s power spectral 

density (PSD).  

Previous research employing EMGdi measurements have mainly focused on removing QRS 

segments of the ECG signal contaminating EMGdi using “gating” methods to detect and 

remove the QRS segment which is the most obvious contaminating waveform in the ECG 

spectrum (Bartolo et al. 1996). Figure 13 is an example of using a gating technique which 

cuts ECG artifacts from the EMGdi signal, replacing either with a zero signal (middle trace) or 

delayed EMGdi from a non-ECG contaminated part of the signal. However, at high heart 

rates, the availability of uncontaminated EMGdi is reduced. Moreover, this method destroys 

part of the real underlying EMGdi signal and introduces temporal artefacts.  Another 

traditional approach has been to use a high pass filter to remove ECG signal. However, high 

pass filters actually magnified ECG power from direct current-25 HZ to 20 HZ-40 HZ, which 

has been tested by Schweitzer and colleagues that high-pass filter was not an effective 

method for denoising EMGdi signal (Levine et al. 1986). 
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Figure 13 "gating" ECG signal   

A further approach is the method that Levine et al. used which is able to detect and subtract 

ECG components from the EMGdi signals. This approach basically achieved extracting a 

stationary signal (ECG) from an unstable signal (EMGdi), which includes three procedures. 

Firstly, a template was identified by the operator during expiration. It depended on the 

visual determination of the artefact complex. The second step is to determine ECG 

detection-template correlation and produce Power Spectral Density analysis (PSD). The 

template is been shifted and correlated to find the correlation coefficients (0.75). Then a 

program is used to calculate the least-squares linear regression of the EMGdi and judge if 

the amplitude of EMGdi is larger than 50% of the template amplitude. This step was 

complex and the accuracy may be questionable. The template should be adjusted in order 

to match the ECG complex. Thirdly, correlation is used to generate removal-template 

subtraction. The EMGdi signal can get rid of the modified template.  

It is worth mentioning that Levine payed some attention to the influence of ventilation 

phase, which was a useful to consider. However, as cross-correlation method required 

selection of a template for analysis, the practicability of this method is potentially limited. 

The template should be chosen in the inactive EMG interval and close to the ECG waveforms 

which was still near the contaminated interval of EMGdi. If the subject was dyspnoeic or 

showing laboured breathing, the effectiveness of this approach may be more limited. 

Furthermore, arrhythmias or frequent ectopic heart beats make template selection more 

difficult and negatively impact this method. Levine et al. (1986) only compared PSD analysis 

results from their gating method, which lacked of the error analysis compared with the 

original EMGdi signal. Better solutions for obtaining clean EMGdi signals need to be 

considered.  

There is an article particularly compared approaches which described in 4.1.1 and 4.2.1 

(Bartolo et al. 1996). The subtraction technique is been set as the “gold standard” to 
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compare the waveform and the extent error between the original EMGdi signal, the signal 

processed by gating method and by the subtraction technique.  

Bartolo’s experiment data were collected from four dogs instead of simulated data. Some 

EMG variables were applied to support the signal analysis including mean rectified EMG 

(mrEMG), normalized power (nPWR), median frequency (MF) and mean power frequency 

(MPF) in this article.  The presentation of the outputs was by six bar graphs (Figure 14).  

 

Figure 14 Within-breath analysis refer to data sequence: I-IV represents mean average, SD represents combined data, white 

bar represents original data, black bar represents the subtracted filter, hatch bar represents the gated filter, MF is median 

frequency, MPF is power frequency, E[ZC] is expected zero-crossing frequency, nPWR is normalized power, mrEMG is mean 

rectified EMG, ZC is zero-crossing frequency (Bartolo et al. 1996) 

From the bar chart, it can be seen that within the breath, the data derived from gating filter 

and subtracted filter have not shown a great gap overall whilst they both have great gap 

from the original data. ‘nPWR’ and ‘mrEMG’ value show a drop after both the subtraction 

and gating filtering, but other values show an increase caused by the subtraction and gating 

filtering. The EMG-to-ECG power ratio is considered to evaluate the influence of the ECG 

artifact on the EMGdi signal. For instance, data sequence IV shows very little difference 

between gating and subtraction, which means the EMG-to-ECG power ratio is large (around 
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13.3 dB) and the ECG interference is small. Therefore it can be concluded that the optimal 

position and orientation of the electrodes indeed can minimize the ECG interference.  

 

2.3.3 Wavelet-based adaptive filter 

Zhan, Yeung and Yang (2010) ’s article focuses on a newer attempt to analyse complex 

signals such as EMGdi: wavelet analysis. Zhan believes wavelet analysis is useful in 

multiresolution analysis (MRA), which can be developed as a wavelet-based adaptive filter 

to denoise the EMGdi signal. The new wavelet-based adaptive filter should be more 

effective and reference ECG will be unnecessary. The main procedures of denoising EMGdi 

signals are (Figure 15): 1. Wavelet decomposition 2. Wavelet-based adaptive filter 3. 

Reconstruction signal.   

 

Figure 15 EMGdi signal denoising method (Zhan, Yeung & Yang 2010) 
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Figure 16 Signals comparison: (a) The ECG artifact signal (b) The pure EMGdi signal (c) The corrupted EMGdi signal (d) Hard 

thresholding result of EMGdi (e) ‘Inverse’ hard thresholding result of EMGdi (f) High pass filter result of EMGdi (g) Gating 

technique result of EMGdi (h) wavelet-based adaptive filter result of EMGdi (Zhan, Yeung & Yang 2010) 

Figure 16 shows a summary of simulation example of eight typical signals in Zhan’s article.  

After the comparison, it can be seen that the hard thresholding method will destroy the 

EMGdi signal while preserve ECG signal. The ‘inverse’ hard thresholding method preserves 

the majority of EMGdi signal but ECG artifact also maintain. The high pass filter has been 

proved not available for ECG interference. The gating method have the capability of 

removing ECG interference. However, the EMGdi signals which are overlapped with ECG 

artifact have been removed as well. It can be concluded that so far the wavelet-based 

adaptive filter can trigger the most similar result with the pure EMGdi signal visually.      

It is worth mentioning that some published articles stated that the QRS complex has larger 

amplitude than EMGdi. After the experiment in Flinders University, it can be seen that 

EMGdi signal will overlap ECG signal in PSD when the subject produces a deep breath 
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(Figure 17). It means the amplitude of the QRS complex is not always larger than EMGdi. 

However, the raw EMGdi signal also contains Gaussian white noise. More investigation need 

to be applied to the abnormal signals to test the validity of the denoising method.  

 

Figure 17 Raw EMGdi signal obtained 

The algorithm of the wavelet-based adaptive filter is: 

• Obtain wavelet coefficient 

• Calculate the average value and adaptive threshold 

• Calculate the attenuated decomposition coefficient 

• Reconstruct the EMGdi signal 

 

Figure 18 Signals comparison of PSD: (a) Wavelet-based adaptive filter result (b) expanded scale (c) Hard threshold result 

(d) ‘inverse’ hard threshold result (e) High pass filter result (f) gating technique result 

The article also applied the PSD analysis for different denoising methods. According to PSD 

results, the wavelet-based adaptive filter has the smallest error of magnitude and shape 

compared with the pure EMGdi signal. The gating technique result of PSD (Figure 18 (f)) 

have the same shape but smaller magnitude, which is understandable. PSD analysis is a 

great idea to identify the filter’s quality. Three parameters of PSD analysis are produced in 
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this article: High to low ratio, total power and centroid frequency. For instance, the EMGdi 

signal via gating technique processed shows a much lower total power, which means much 

useful EMGdi signals are also been destroyed. Further parameters can be attempted to 

obtain more accurate analysis in the near future. Another consideration is that visually we 

cannot distinguish if the filter has removed all the ECG interference in the overlapped 

spectrum of EMGdi signal (deep breath area). PSD analysis is not sufficient to prove this 

problem in the article.     

2.3.4 ICA decomposition and wavelet transform  

Independent component analysis (ICA) is an emerging EMGdi signal denoising method 

which has become more and more popular. Wu, Tong and Yang (2016)’s article established 

the new solution which combined ICA decomposition and wavelet transform to denoise the 

EMGdi signal, which is updated from wavelet-based adaptive filter. 

The algorithm of the traditional ICA used to denoise the surface electromyography includes 

four main procedures (Wu, Tong & Yang 2016): 

• Using ICA to obtain independent components 

• Obtain ECG components via a band pass filter 

• Recover the contribution of ECG signals 

• Subtract the ECG artifacts 

However, the traditional ICA contains some shortages. It based on the band pass filter to 

denoise every independent component of the signal, which has low efficiency on temporal-

frequency resolution (Wu, Tong & Yang 2016). It means the denoising capability of 

traditional ICA is limited. Therefore, Wu indicated FastICA in the article, which used wavelet 

domain threshold to analyse the independent components instead of traditional band pass 

filter.  

I shall be claiming that the method is under the condition that the hypothesis which ECG 

artifact owns the largest energy is valid. Therefore the ECG components can be gained fist.  
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Figure 19 EMGdi signal denoising outputs comparison: (a) raw EMGdi signal (b) hard thresholding filter (c) inverse hard 

thresholding filter (d) traditional ICA filter (e) ICA—wavelet filter (Wu, Tong & Yang 2016) 

Wu compared the different EMGdi signal denoising outputs in his article including WTHT, 

IWTHT, TICA and ICA—wavelet (Figure 19). Obviously, ICA—wavelet filter is more efficient in 

removing ECG interference comparing with other filters, especially in the flat interval. As the 

ECG signals are regularly occurs and the amplitude is larger than every EMGdi signal 

amplitude especially QRS complex, it can be visually seeing that the ICA-wavelet filter can 

remove ECG interference in the overlapped spectrum. Nevertheless, the amplitude of the 

EMGdi signal seems also decreased to a certain extent. Besides, the raw signal in Wu’s 

experiment is simulated whilst the clinical EMGdi signal also contains other interference 

such as esophageal peristalsis and Gaussian white noise which is more complex. The 

efficiency that applying to the clinical data needs to be tested.     

Wu also compared the EMGdi signal denoising outputs between high pass filter, normalized 

least mean square (NLMS) filter and ICA—wavelet filter (Figure 20).  Visually, all the ECG 

interference has been removed by ICA—wavelet filter from EMGdi signal without destroying 

the EMGdi signal.  
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Figure 20 EMGdi signal denoising outputs comparison: (a) Raw EMGdi signal (b) Normalized least mean square filter (c) 

High pass filter (d) ICA—wavelet filter (Wu, Tong & Yang 2016) 

In addition to apply PSD and CF analysis, the average rectified value ratio (ARVR) has also 

been generated to identify the signal amplitude directly, which is a tool to assess the 

efficiency of these denoising methods (Figure 21). The ARVR value of ICA—Wavelet filter is 

close to 1, which means the ECG signal is weak whilst the EMGdi signal is maintained. By 

calculating ARVR, another evidence shows that the ICA—wavelet filter has the capability to 

denoise the EMGdi signal to a great extent. Further, more analysis such as mrEMG, nPWR, 

MF and MPF, as generated in Bartolo’s article, can be attempted to test the wavelet-based 

adaptive filter and the ICA—wavelet filter. Personally, PSD graph and ARVR graph are clear, 

more intuitive, less messing and easier to draw a conclusion comparing with Bartolo’s bar 

chart.  
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Figure 21 ARVR comparison (Wu, Tong & Yang 2016) 

So far ICA—wavelet filter is the latest and the most effective approach to remove the ECG 

interference from the EMGdi signal. We are planning to test this method with Flinders 

University’s clinical data and considering the improvement. 

Chapter 3. Theoretical methodology and Experiment details 

3.1 Experiment 1: Exploration of ICA-Wavelet algorithm  

The implemetation of ICA involves three components including centering data (remove 

mean), whiteing process (sphere data) and optimizing algorithm to maximize non-

Gaussianity of each source (Hyvärinen, Karhunen & Oja 2004). Whitening process aims to 

decorrelate variables and scale variables so that their variance equal to 1. 

The implementation of Wavelet Transform (WT) also contains three parts including wavelet 

decomposition, wavelet threshold denoising and wavelet reconstruction (Wu, Tong & Yang 

2016). 
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Figure 22 The block chart of ICA-Wavelet algorithm (Wu, Tong & Yang 2016) 

Figure 22 shows the block chart of ICA-Wavelet process for the EMGdi noise reduction (Wu, 

Tong & Yang 2016). The 5×6,474,640 clinical data used in the Experiment 1 comes from a 

study measured by an honours student in Flinders University. The detail of the block chart is 

as follows:  

1) Firstly, FastICA was applied to the corresponding 5-channel signal 𝑋𝑋 =

[𝑥𝑥1,𝑥𝑥2,𝑥𝑥3… 𝑥𝑥𝑚𝑚]𝑡𝑡 to obtain the five independent components, which helps to 

identify the ‘ECG related’ components (0-70 Hz) which have larger energy and ‘EMG 

related’ components (25-250 Hz) containing lower energy.  

2) Secondly, ‘EMGdi related’ components were extracted and ‘ECG related’ 

components 𝑌𝑌 = [𝑦𝑦1, 𝑦𝑦2,𝑦𝑦3 … 𝑦𝑦𝑛𝑛]𝑡𝑡were decomposed into 5 layers by Db1 Wavelet, 

as ‘ECG related’ components still contain some weak EMGdi contributions which 

should be preserved (Figure 6). The fifth layer (cA5 and cD5) should contain the most 

of the ECG artefact coefficients whilst other layers should contain weak ECG energy. 

It means 1-4 layers (cD1, cD2, cD3 and cD4) mainly contain relatively lower 

frequency part of the EMGdi energy.  

3) To purify the ‘ECG related’ components, variable threshold developed by Wu (2016) 

were used to remove residual ECG energy in each wavelet decomposition levels. 

Small wavelet coefficients should be ignored as they are dominated by white noise.  
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4) Then, the purified ‘ECG related’ components were reconstructed to 𝑌𝑌 (𝑆̃𝑆𝑑𝑑−𝐸𝐸𝐸𝐸𝐺𝐺) and 

the total signal components including ‘EMGdi related’ part and purified 𝑆̃𝑆𝑑𝑑−𝐸𝐸𝐸𝐸𝐸𝐸 part 

were reconstructed back to the original signal 𝑉𝑉−1𝑊𝑊−1. 

3.2 Experiment 2: Performance evaluation 

RMS values and median frequencies are calculated to compare the performance of ICA-

Wavelet filter in Experiment 1. The spectrum is also plotted to show power features.  

3.3 Experiment 3: Optimize the ICA-Wavelet approach 

3.3.1 Wavelet basis selection 

Not only parameters such as Mean Square Error (MSE), Signal-to-Noise ratio, and 

correlation coefficient can estimate performance of wavelet basis, but it also requires to 

retain the valuable features such as peaks of an EMG signal, which shows significant clinical 

information for early diagnostic purpose (Seljuq, Himayun & Rasheed 2014).  This 

experiment based on the assumption that: performance of dbN wavelet is most appropriate 

for EMGdi signal; channel one has the best filtering output in Experiment 1.  

• First, db1, db4, db5 and db7 are selected respectively to decompose raw signals. Plot 

filtered Channel 1 signals and compare their features.  

• Second, select some more representative orders of Daubechies wavelet family (e.g. 

db1, db3, db4, db5, db6 and db7) to compare their performance including RMS and 

median frequency.  

Chapter 4. Results of experiments  
This chapter shows the results of testing the ICA-Wavelet algorithm and optimising to 

perform ECG removal on EMGdi. It also involved selecting and testing most effective basis, 

and verifying removed cardiac frequencies.  

4.1 Denoising effect  

The sample clinical 5-channel signals are displayed in MATLAB (Figure 23), which contains 

ECG artefact, other noises and clear peaks of the EMGdi signal. The EMGdi feature (peak 

blocks) of Channel 4 and Channel 5 are weak. Especially, there are almost all the ECG 

artefact in Channel 5 with few EMGdi signal. Figure 24 shows the output of the cleaned 
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signals using ICA-Wavelet filter. Visually, the ICA-Wavelet filter can efficiently remove ECG 

noise and preserve complete peak details of EMGdi signal in our study. Channel 1, Channel 2 

and Channel 3 retain the most accurate features comparing with other two channels which 

show deficiency on EMGdi blocks in varying degrees visually.  

 

Figure 23 5-Channel raw signals 
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Figure 24 Cleaned 5-channel EMGdi signal 

4.2 Performance analysis 

The 5-channel RMS values of raw signal and denoised signal in Experiment 1 are shown in 

Table 2 while the median frequencies are shown in Table 3. The RMS power dramatically 

decreased from around 133.90 to 23.90 and the median frequency increased from 

approximately 14.80 to 111.85.  

It has been stated in Chapter 1 that the most ECG signal energy is between 0-70 Hz whilst 

the most EMGdi signal energy is between 25-250 Hz. So if the central frequency can convert 

from ECG’s main frequency range to the EMGdi’s frequency range, the ECG component is 

considered being suppressed.  

Median frequency is the frequency value which separate the entire EMGdi signal spectrum 

area into half equal energy content (Merletti, Sabbahi & De Luca 1984). Table 3 shows the 

central frequency after ICA-Wavelet filtering has converted from ECG’S main frequency 

range to the EMGdi’s frequency range.  

Further, via power spectrum (Figure 25), it can be seen that the amplitude below 50 Hz is 

much higher than the amplitude at other frequencies in the original signal. It means the 

energy of ECG signal is much larger than the energy of EMGdi signal in the original signal, 
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that is, the EMGdi signal is been covered by ECG signal. After the ICA-Wavelet filtering, the 

amplitude below 50 Hz has an obvious decrease instead of simple removal, which shows 

ICA-Wavelet filter can effectively decrease ECG artefact in the EMGdi signal.  The covered 

EMGdi signal has emerged from noisy signal. Further, overall power of the signal has 

dropped and dominated frequency peak around 0-40 Hz cardiac has been significantly 

reduced. 

It’s worth mentioning that the median frequency of Channel 4 and Channel 5 are 

‘unexpected’ values. It reflects the atypical clinical collected data (few EMGdi contained), 

which can be ignored in the future research.  

 

Table 2 RMS values for whole channels 

 

Table 3 Median frequency for whole channels  
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Figure 25 Power spectrum (Channel 1, Haar) 

4.3 Wavelet basis comparison 

Previous research indicated that low number of db wavelet basis such as db1 is highly 

localized and the singularity index is small, which can preserve more peak blocks. On the 

contrary, high number of db wavelet basis such as db8 are highly smooth (Wu, Tong & Yang 

2016). After testing all db wavelet family, the output for applying haar, db4, db5 and db7 on 

the clinical data are shown in Figure 26. There is not much difference on the EMGdi signal 

visually. Relatively, using haar wavelet basis preserves more ‘burrs’ via comparison of peak 

blocks, which has been circled on the figure. The most smooth peak blocks displayed in 

diagram is with db4 wavelet basis instead of db7, which is different from Wu, Tong and Yang 

(2016)’s statement. The order of db wavelet basis cannot determine smoothness of the 

signal in this experiment. 

The RMS and median frequency in Table 4 are calculated to compare the performance of 

different wavelet basis including Haar, db3, db4, db5, db6 and db7. The values are similar 

and all displayed in a valid range, as stated in 4.2. Hence, ICA-Wavelet filter is robust with db 

wavelet family. Moreover, Haar wavelet basis has the largest RMS (34.4954) and median 
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frequency (125.0320), which can be best acceptable in our research to preserve more 

EMGdi features.  

 

 

Figure 26 Output comparison of applying Daubechies wavelet family 

Table 4 Influence of different wavelet basis on RMS and Median frequency (Channel 1) 

 

Chapter 5. Discussion 

5.1 The family of ‘db’ wavelet basis  

Experiment 3 based on the assumption that performance of dbN wavelet is most 

appropriate for EMGdi signal so that other wavelet families such as Biorthogonal 

(biorNr.Nd) and Coiflet (coifN) are not compared in this thesis. This assumption based on 

previous research’s conclusion for ECG signal noise reduction (Seljuq, Himayun & Rasheed 

2014), although Zhan, Yeung and Yang (2010) tested that the performances with different 
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wavelet basis such as Meyer, Symlet and Daubechies are almost the same. However, db4 

wavelet basis produces the best performance in their test, while db1 shows the best 

performance in this thesis.  

5.2 Validation of the outputs 

It is difficult to evaluate filtering performance and objectively quantify the overlapped 

cardiac and diaphragm signal. The lost quantity of real EMG signal and the remaining 

amount of the ECG artefact are unknown by comparing unfiltered and ICA-Wavelet filtered 

EMGdi signal. EMGgg reflexes is a good comparator to support the results, which provided 

the significant confidence that filtered EMGdi is preserving expected underlying features. In 

addition, based on the prior knowledge, visually comparison, investigation of RMS value, 

mean frequencies/spectrum and other observations also can provide some supports.   

5.3 Test with new data 

Moreover, a set of neural data was sent by the NeuRA group based in the University of New 

South Wales from a recent study. The data which measured both intramuscular diaphragm 

EMG and EMGdi from the catheter is allowed to test ICA-Wavelet filter. Different with 

previous dataset, raw ‘neural’ data is messier with abnormal ECG artefact (Figure 28), which 

should be pre-filtered: a standard 10 Hz high pass filter is selected. The pre-filtered signal is 

shown in Figure 29 and enlarged Channel 3 is displayed to observe clearer (Figure 30). After 

ICA-Wavelet filtering, the ECG artefact has been filtered visually (Figure 31).  
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Figure 27 Raw EMGdi signal 

 

Figure 28 Pre-filtered EMGdi signal 
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Figure 29 Signal of Channel 3 

 

 

Figure 30 Channel 1 using ICA-Wavelet filter 
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Chapter 6 Filter application  

6.1 Theoretical methodology and Experiment details  

An EMGdi reflex response to obstruction could be an important mechanism used by 

patients with sleep apnea, Neutrally Adjusted Ventilator Assistance (NAVA), and a relatively 

new mode of mechanical ventilation for critically ill patients, which could influence the 

disease treatment in the future. Participants were worn a nasal mask which attached to a 

non-rebreathing valve to control breath (Stadler et al. 2010). The equipment was applied by 

a solenoid to suddenly cut airflow for about 200ms before airflow was restored within 

breath and 80 occlusion breaths were applied to each study participant. All of these 

collected data were time correlated to the point of occlusion and ensembled averaged ±1 s 

to give flow and EMG traces. The hypothesis was there would be reflexes in EMGgg and 

EMGdi. After collecting data, signal averaged airfow, rectified raw EMGdi responses and 

rectified filtered EMGdi responses to this sudden airway occlusion were plotted to show 

response features and test the performance of the filter. The EMGgg reflex was also applied 

to compare with EMGdi responses.   

6.2 Results of experiments  

The ICA – Wavelet combined algorithm was tested and optimised to perform ECG removal 

on EMGdi, which involved selecting and testing most effective basis, and verifying removed 

cardiac frequencies.  

Figure 32 and 33 show the output of the application. We cannot observe any expected 

response in unfiltered EMGdi reflex. Unfiltered EMGdi signal has no capability to expose 

accurate reflexes because the cardiac signal dominates trace. Comparing with raw signal, 

filtered EMGdi reveals inspiratory EMGdi activity and expected reflex responses to sudden 

airway occlusion (Figure 32). The magnitude of unfiltered EMGdi signal is much higher as it 

was dominated by averaging cardiac peaks. Any short-term reflexes were completely 

obscured by this cardiac noise. However, the magnitude of filtered EMGdi reflex was lower 

than raw signal’s magnitude. The overall trend of EMGdi reflex was rising in ±1 seconds 

with the increased airflow volume. It indicated the ICA-Wavelet filter can be successfully 

used in the EMGdi reflex study. 
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Besides, overall pattern of inspiratory EMG activity appears to be similar in the EMGgg and 

EMGdi (Figure 33). Brief EMGgg reflex activation appeared at the onset of occlusion, 

assuming more prolonged EMGdi reflex are suppressed. The red arrow on the figure shows 

the first peak airflow volume occurred at averaging 0 second point which reflected the 

sudden airflow blocking. The response of EMGdi and EMGgg both increased during −1~0 

sec period. The airflow was then restored and airflow volume decreased until approximately 

0.25 sec, which was highlighted in yellow arrow. The EMGdi reflex during this period also 

decreased same with airflow trend whilst EMGgg reflex kept rising. Then, after a deep 

inspirary, the airflow decreased gradually. The EMGgg reflex had the same trend with the 

airflow, but EMGdi reflex still increased a bit.  

 

Figure 31 Raw and cleaned EMGdi reflexes elicited by sudden airway occlusion 
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Figure 32 Cleaned EMGdi reflexes and EMGgg reflexes elicited by sudden airway occlusion 

 

6.3 Discussion 

The ICA-Wavelet filter has been tested and appears to be very useful for denoising EMGdi to 

reveal underlying inspiratory activity and reflex responses to airway occlusion.  

Chapter 7. Conclusion 
In conclusion, this thesis established a novel ICA-Wavelet denoising filter which has been 

successfully used in the study of respiratory reflex mediated changes in muscle electrical 

activity. Several experiments including ICA-Wavelet testing, performance evaluation and 

ICA-Wavelet optimization were designed to explore algorithm performance. 5-channel 
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signals were filtered and the result showed that ICA-Wavelet filter can efficiently remove 

ECG noise and relatively preserve underlying respiratory activity within the EMGdi signal. 

The median frequency after ICA-Wavelet filtering converged away from the main frequency 

range expected of ECG towards that expected for EMGdi. Overall power of the EMGdi signal 

also dropped with a dominated frequency peak about 0-40 Hz consistent with cardiac 

activity becoming significantly reduced. Comparsons of different wavelet basis in the db 

wavelet family, suggested there was not much difference on the EMGdi filtering 

performance. RMS and median frequency also suggested that the ICA-Wavelet filter is 

relatively robust to basis function choice within the db wavelet family. Validation of filtering 

output is inherently difficult since it is not possible to quantify real EMG signal versus the 

remaining amount of ECG artefact in real signals. Performance on simulated signals can be 

helpful, but simulated signals can only approximate real-world signals so we elected instead 

to focus on real signals collected during experimental paradigms where we expected that 

underlying EMGdi features should emerge following successful denoising. Visual inspection 

of pre- vs post-filtered signals as well as evidence from RMS, mean frequencies/spectrum 

comparisonssupport the utility of the ICA approach. We also tested the filter using another 

group of clinical data. The result showed that this technique is suitable for general EMGdi 

data although some parameters such as threshold value could be adjusted for different 

condition. 

The signal averaged airfow, rectified raw EMGdi responses, rectified filtered EMGdi 

responses and EMGgg responses to the sudden airway occlusion were collected to present 

response features and test the performance of the filter. The results showed that denoised 

EMGdi appeared to reveal both inspiratory activation and short-latency reflex responses 

expected to emerge in the presence of successful denoising. This overall pattern of 

inspiratory EMGdi activity appeared to be very similar to that of simultaneously recorded 

EMGgg uncontaminated by ECG. These very promising initial data support that further work 

with more participants to examine EMGgg vs EMGdi responses in more detail.  

Chapter 8. Appendix 

7.1 Code for ICA-Wavelet algorithm  
function ICA_Wavelet_main 
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clear;clc;close all; 

load ('new_neura.mat') 

raw=neura(:,:); 

% load slp;  raw=slp; 

figure(1); 

winrect=[200,200,540,400];%[distance left bottom length height] 

set(gcf,'position',winrect) 

set(gca,'box','on','fontname','Calibri','fontsize',9) 

% hold on; title('raw') 

wplot(raw); 

% ylabel('Amplitude [mV]','fontname','Calibri','fontsize',9); 

xlabel('Time [sec]','fontname','Calibri','fontsize',9); 

% hold off; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

[y,v,w]=fastICA(raw); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

figure(2); 

title('ICs') 

mplot(y); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

y(1,:)=0; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

for i=2:size(raw,1)-1 

    y(i+1,:)=wavewu(y(i+1,:)); 

end  

emgdi_wu=inv(v)*w'*y; 

% save('neura_channel1.mat','emgdi_wu'); 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

figure(3); 

title('Results') 

wplot(emgdi_wu); 

function [y,v,w]=fastICA(x) 

tic; %Start a stopwatch timer. 

[r,c]=size(x);%r=8;c=24121 

x=x-mean(x')'*ones(1,c); 

[E,D]=eig(cov(x',1)); 

v=E*(D^(-0.5))*E'; 

z=v*x; 

epsilon=1e-6; 

m=r; 

w=zeros(r,1); 

for p=1:m 

  w(:,p)=ones(r,1); 

  w(:,p)=w(:,p)/norm(w(:,p)); 

  exit=0; 

  count=0; 

  iter=1; 

 while exit==0 

 count=count+1; 

 temp=w(:,p); 

  for i=1:m 

      w(i,p)=mean(z(i,:).*tanh(temp'*z))-(mean(1-(tanh(temp'*z).^2)).*temp(i,1)); 

  end 

  ssum=zeros(r,1); 



53 
 

  for counter=1:p-1 

      ssum=ssum+(w(:,p)'*w(:,counter))*w(:,counter); 

  end 

  w(:,p)=w(:,p)-ssum; 

  w(:,p)=w(:,p)/norm(w(:,p)); 

  if(abs((dot(w(:,p),temp)))<1+epsilon)&(abs((dot(w(:,p),temp)))>1-epsilon) 

     exit=1; 

  end 

  iter=iter+1; 

  end 

end 

w=w'; 

%[m,in]=sort(power); 

%w=w(in,:); 

y=w*z; 

toc; 

 function emg=wavewu(emgdi) 

% load slp; emgdi=slp(size(slp,1),:); 

ls = length(emgdi); %find length the vector 

f=(1:ls)/2000; 

dc = []; 

[c,l] = wavedec(emgdi,5,'db1'); % decomposed.c:coefficient l:length 

figure; 

subplot(2,1,1); 

plot(f,emgdi,'b');%title('Original signal'); 

xlabel('(a)'); 

ylabel('Amp(V)'); 
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axis([0 ls/2000 -500 500]); 

  

upbound = 15; 

lowbound = 8; 

step = upbound - lowbound; 

  

ca5 = []; 

ca5 = c(1:l(1)); 

  

num = l(1); 

n = 1; 

th=[2 2 3 4 5 5]; 

% th=5*ones(1,6); 

k=[]; 

for i = 1:upbound*n 

    ave = sum(abs(ca5((i+lowbound*n):(i+upbound*n-n))))/step*n; 

    k(i) = abs(ca5(i))/ave; 

    if k(i) >= th(1) 

        ca5(i) = 0; 

    end 

end 

  

for i = (num-upbound*n+1):num 

    ave = sum(abs(ca5((i-upbound*n+n):(i-lowbound*n))))/step*n; 

    k(i) = abs(ca5(i))/ave; 

    if k(i) >= th(1) 

        ca5(i) = 0; 
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    end 

end 

for i = upbound*n:(num-upbound*n)     

    ave = (sum(abs(ca5((i-upbound*n+n):(i-lowbound*n)))) + 
sum(abs(ca5((i+lowbound*n):(i+upbound*n-n)))))/(2*step*n); 

    k(i) = abs(ca5(i))/ave; 

    if k(i) >= th(1) 

        ca5(i) = 0; 

    else 

    end 

end 

dc(1:l(1)) = ca5; 

  

cd5 = []; 

cd5 = c((1+l(1)):(l(1)+l(2))); 

%hold on 

num = l(2); 

n = 1; 

  

k=[]; 

for i = 1:(upbound*n-1) 

    ave = sum(abs(cd5((i+lowbound*n):(i+upbound*n-n))))/step*n; 

    k(i) = abs(cd5(i))/ave; 

    if k(i) >= th(2) 

        cd5(i) = 0; 

    end 

end 

for i = (num-upbound*n+1):num 
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    ave = sum(abs(cd5((i-upbound*n+n):(i-lowbound*n))))/step*n; 

    k(i) = abs(cd5(i))/ave; 

    if k(i) >= th(2) 

        cd5(i) = 0; 

    end 

end 

  

for i = upbound*n:(num-upbound*n)     

    ave = (sum(abs(cd5((i-upbound*n+n):(i-lowbound*n)))) + 
sum(abs(ca5((i+lowbound*n):(i+upbound*n-n)))))/(2*step*n); 

    k(i) = abs(cd5(i))/ave; 

  

    if k(i) >= th(2) 

        cd5(i) = 0; 

    else 

    end 

end 

  

dc((1+l(1)):(l(1)+l(2))) = cd5; 

  

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

cd4 = c(1+l(1)+l(2):l(1)+l(2)+l(3)); 

ca5 = []; 

ca5 = cd4; 

%hold on 

num = l(3); 
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n = 2; 

  

k=[]; 

  

for i = 1:(upbound*n-1) 

    ave = sum(abs(ca5((i+lowbound*n):(i+upbound*n-n))))/step*n; 

    k(i) = abs(ca5(i))/ave; 

    if k(i) >= th(3) 

        ca5(i) = 0; 

    end 

end 

for i = (num-upbound*n+1):num 

    ave = sum(abs(ca5((i-upbound*n+n):(i-lowbound*n))))/step*n; 

    k(i) = abs(ca5(i))/ave; 

    if k(i) >= th(3) 

        ca5(i) = 0; 

    end 

end 

for i = upbound*n:(num-upbound*n)     

    ave = (sum(abs(ca5((i-upbound*n+n):(i-lowbound*n)))) + 
sum(abs(ca5((i+lowbound*n):(i+upbound*n-n)))))/(2*step*n); 

    k(i) = abs(ca5(i))/ave; 

  

    if k(i) >= th(3) 

        ca5(i) = 0; 

    else 

    end 

end 
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dc(1+l(1)+l(2):l(1)+l(2)+l(3)) = ca5; 

  

  

  

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

cd3 = c(1+l(1)+l(2)+l(3):l(1)+l(2)+l(3)+l(4)); 

ca5 = []; 

ca5 = cd3; 

%hold on 

num = l(4); 

n = 4; 

  

k=[]; 

  

for i = 1:(upbound*n-1) 

    ave = sum(abs(ca5((i+lowbound*n):(i+upbound*n-n))))/step*n; 

    k(i) = abs(ca5(i))/ave; 

    if k(i) >= th(4) 

        ca5(i) = 0; 

    end 

end 

for i = (num-upbound*n+1):num 

    ave = sum(abs(ca5((i-upbound*n+n):(i-lowbound*n))))/step*n; 

    k(i) = abs(ca5(i))/ave; 

    if k(i) >= th(4) 

        ca5(i) = 0; 
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    end 

end 

  

for i = upbound*n:(num-upbound*n)     

    ave = (sum(abs(ca5((i-upbound*n+n):(i-lowbound*n)))) + 
sum(abs(ca5((i+lowbound*n):(i+upbound*n-n)))))/(2*step*n); 

    k(i) = abs(ca5(i))/ave; 

  

    if k(i) >= th(4) 

        % author: wfy@nwpu.edu.cn        

        ca5(i) = 0; 

    else 

    end 

end 

  

dc(1+l(1)+l(2)+l(3):l(1)+l(2)+l(3)+l(4)) = ca5; 

  

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

cd2 = c(1+l(1)+l(2)+l(3)+l(4):l(1)+l(2)+l(3)+l(4)+l(5)); 

ca5 = []; 

ca5 = cd2; 

%hold on 

num = l(5); 

n = 8; 

  

k=[]; 
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for i = 1:(upbound*n-1) 

    ave = sum(abs(ca5((i+lowbound*n):(i+upbound*n-n))))/step*n; 

    k(i) = abs(ca5(i))/ave; 

    if k(i) >= th(5) 

        ca5(i) = 0; 

    end 

end 

for i = (num-upbound*n+1):num 

    ave = sum(abs(ca5((i-upbound*n+n):(i-lowbound*n))))/step*n; 

    k(i) = abs(ca5(i))/ave; 

    if k(i) >= th(5) 

        ca5(i) = 0; 

    end 

end 

  

for i = upbound*n:(num-upbound*n)     

    ave = (sum(abs(ca5((i-upbound*n+n):(i-lowbound*n)))) + 
sum(abs(ca5((i+lowbound*n):(i+upbound*n-n)))))/(2*step*n); 

    k(i) = abs(ca5(i))/ave; 

  

    if k(i) >= th(5) 

        ca5(i) = 0; 

    else 

    end 

end 

  

dc(1+l(1)+l(2)+l(3)+l(4):l(1)+l(2)+l(3)+l(4)+l(5)) = ca5; 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%figure(6) 

cd1 = c(1+l(1)+l(2)+l(3)+l(4)+l(5):l(1)+l(2)+l(3)+l(4)+l(5)+l(6)); 

ca5 = []; 

ca5 = cd1; 

%hold on 

num = l(6); 

n = 16; 

  

k=[]; 

  

for i = 1:(upbound*n-1) 

    ave = sum(abs(ca5((i+lowbound*n):(i+upbound*n-n))))/step*n; 

    k(i) = abs(ca5(i))/ave; 

    if k(i) >= th(6) 

        ca5(i) = 0; 

    end 

end 

for i = (num-upbound*n+1):num 

    ave = sum(abs(ca5((i-upbound*n+n):(i-lowbound*n))))/step*n; 

    k(i) = abs(ca5(i))/ave; 

    if k(i) >= th(6) 

        ca5(i) = 0; 

    end 

end 
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for i = upbound*n:(num-upbound*n)     

    ave = (sum(abs(ca5((i-upbound*n+n):(i-lowbound*n)))) + 
sum(abs(ca5((i+lowbound*n):(i+upbound*n-n)))))/(2*step*n); 

    k(i) = abs(ca5(i))/ave; 

  

    if k(i) >= th(6) 

        ca5(i) = 0; 

    else 

    end 

end 

  

dc(1+l(1)+l(2)+l(3)+l(4)+l(5):l(1)+l(2)+l(3)+l(4)+l(5)+l(6)) = ca5; 

  

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

emg = waverec(dc,l,'db1'); %wavelet reconstruction 

subplot(2,1,2); 

plot(f,emg,'r'); 

%title('Processed signal'); 

xlabel('(b)'); 

ylabel('Amp(V)'); 

axis([0 ls/2000 -500 500]); 

return 

function mplot(x) 

[dim,sample]=size(x); 

if dim>sample x=x'; 



63 
 

[dim,sample]=size(x); 

end 

if dim>10 

error ('dim can not more than ten'); 

end 

t=0:0.0005:(sample-1)*0.0005; 

  

winrect=[200,200,540,400]; 

%[distance left bottom length height] 

set(gcf,'position',winrect); 

set(gca,'box','on','fontname','Calibri','fontsize',9); 

hold on; 

for i=1:dim 

    subplot(dim,1,i); 

    plot(t,x(i,:),'k'); 

    ylabel('Amplitude [dV]','fontname','Calibri','fontsize',9); 

    xlabel('Time [sec]','fontname','Calibri','fontsize',9); 

    axis([0 sample*0.0005 min(x(i,:)) max(x(i,:))]); 

%    axis('tight'); 

end 

function wplot(x) 

[dim,sample]=size(x); 

if dim>sample x=x'; 

[dim,sample]=size(x); 

end 

t=0:0.0005:(sample-1)*0.0005; 

if dim>10 
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error ('dim can not more than ten'); 

end 

for i=1:dim 

    subplot(dim,1,i); 

    plot(t,x(i,:),'k'); 

    axis([0 sample*0.0005 -10 10]); 

    ylabel(['(',num2str(i),')']); 

end 

ylabel('Amplitude/mV','fontname','Calibri','fontsize',9); 

xlabel('Time/s','fontname','Calibri','fontsize',9); 

7.2 Code for SNR, RMS and Fmid 
%% RMS & SNR 
  
function y=RMS(x) 
clear;clc;close all; 
load('dia.mat') 
load('clean_db1.mat') 
s1=raw(:,1)';%noise signal 
s2=emgdi_wu(1,:);%cleaned signal 
  
% [p1,w1]=pwelch(s1); 
% sp1=size(p1); 
% sw1=size(w1); 
% M_orig=sum(p1.*w1); 
%  
% [p2,w2]=pwelch(s2); 
% sp2=size(p2); 
% sw2=size(w2); 
% M=sum(p2.*w2); 
rms_o=sqrt(sum(s1.^2)/size(s1,1)) 
rms_d=sqrt(sum(s2.^2)/size(s2,1)) 
snr_db=20*log10(rms_d/(rms_o-rms_d)); 
snr_lin=10^(snr_db/20); 
% rms_ICA=sqrt(M/length(p2)) 
 

7.3 Code for ‘pre filter’ 
% function filter = Hfilter(raw) 
fs=1000;%sample rate 
dt=1/2*fs; 
  
load ('neura data.mat') 
%% 
%channel one high pass filter 
  
N=length(raw1); 
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t=(0:N-1)*dt; 
data_fft=fft(raw1); 
df=(2*fs)/N; 
data_f=(0:N-1)*df; 
xlim([0,250]); 
  
id0=find(data_f<10);%apply 10 Hz high pass filter 
id0_len=length(id0); 
data_fft(id0)=0; 
data_fft(((end+1)-(id0_len-1)):end)=0; 
data_ifft1=real(ifft(data_fft)); 
%% 
%channel two 
raw2=raw(2,:); 
  
N=length(raw2); 
  
t=(0:N-1)*dt; 
data_fft=fft(raw2); 
df=(2*fs)/N; 
data_f=(0:N-1)*df; 
xlim([0,250]); 
  
id0=find(data_f<10); 
id0_len=length(id0); 
data_fft(id0)=0; 
data_fft(((end+1)-(id0_len-1)):end)=0; 
data_ifft2=real(ifft(data_fft)); 
%% 
%channel three 
raw3=raw(3,:); 
  
N=length(raw3); 
  
t=(0:N-1)*dt; 
data_fft=fft(raw3); 
df=(2*fs)/N; 
data_f=(0:N-1)*df; 
xlim([0,250]); 
  
id0=find(data_f<10); 
id0_len=length(id0); 
data_fft(id0)=0; 
data_fft(((end+1)-(id0_len-1)):end)=0; 
data_ifft3=real(ifft(data_fft)); 
%% 
%channel 4 
raw4=raw(4,:); 
  
N=length(raw4); 
  
t=(0:N-1)*dt; 
data_fft=fft(raw4); 
df=(2*fs)/N; 
data_f=(0:N-1)*df; 
xlim([0,250]); 
  
id0=find(data_f<10); 
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id0_len=length(id0); 
data_fft(id0)=0; 
data_fft(((end+1)-(id0_len-1)):end)=0; 
data_ifft4=real(ifft(data_fft)); 
%% 
%channel five 
raw5=raw(5,:); 
  
N=length(raw5); 
  
t=(0:N-1)*dt; 
data_fft=fft(raw5); 
df=(2*fs)/N; 
data_f=(0:N-1)*df; 
xlim([0,250]); 
  
id0=find(data_f<10); 
id0_len=length(id0); 
data_fft(id0)=0; 
data_fft(((end+1)-(id0_len-1)):end)=0; 
data_ifft5=real(ifft(data_fft)); 
%% 
%plot 
figure (1); 
subplot(5,1,1) 
plot(t,raw1,'k'); 
title('raw') 
ylabel(['(',num2str(1),')']); 
subplot(5,1,2) 
plot(t,raw2,'k'); 
ylabel(['(',num2str(2),')']); 
subplot(5,1,3) 
plot(t,raw3,'k'); 
ylabel(['(',num2str(3),')']); 
subplot(5,1,4) 
plot(t,raw4,'k'); 
ylabel(['(',num2str(4),')']); 
subplot(5,1,5) 
plot(t,raw5,'k'); 
ylabel(['(',num2str(5),')']); 
  
figure (2); 
subplot(5,1,1) 
plot(t,data_ifft1,'k'); 
title('High pass filtered') 
ylabel(['(',num2str(1),')']); 
subplot(5,1,2) 
plot(t,data_ifft2,'k'); 
ylabel(['(',num2str(2),')']); 
subplot(5,1,3) 
plot(t,data_ifft3,'k'); 
ylabel(['(',num2str(3),')']); 
subplot(5,1,4) 
plot(t,data_ifft4,'k'); 
ylabel(['(',num2str(4),')']); 
subplot(5,1,5) 
plot(t,data_ifft5,'k'); 
ylabel(['(',num2str(5),')']); 
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%% 
%combine channels 
neura=[data_ifft1;data_ifft2;data_ifft3;data_ifft4;data_ifft5]; 
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