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Summary

Breast cancer is one of the most common cancers among women and early de-
tection plays an important role in reducing the mortality and morbidity due to breast
cancer. Importantly, early breast cancer detection is facilitated by accurate breast
cancer risk assessment. This thesis aims to develop computer methods for analyzing
tissue texture in screening mammograms in order to assess the risk of breast cancer.

According to the literature, the breast density is a strong indicator of breast can-
cer risk and is independent of non-mammographic risk factors (age, race, family
history, etc.). In addition, texture from screening mammograms is also considered
to play an important role in predicting breast cancer risk. However, the contribution
of texture alone to breast cancer risk is unclear and the role of texture for assessing
breast cancer risk over time is also unknown. The focus of this thesis is on studying
the role of texture, independent of density, in breast cancer risk assessment.

In this thesis, the emphasis is on characterizing texture through the use of textons.
Textons can be described as ubiquitous local texture patterns. The distribution of
conventional textons (referred to as first-order textons in this thesis) has been shown
to characterize texture in visual images and has been successful in tasks such as
separating regions corresponding to grass from regions representing trees or animals.
An important contribution of this thesis is the introduction of higher-order textons.
The notion of higher-order textons is to extend the power of the first-order textons.
Higher-order textons allow quantitative analysis of commonly occurring patterns of
patterns, offering a mechanism for understanding more complex texture structure
in images. In this thesis, textons and higher-order textons are used to distinguish
mammograms from women having a high risk of breast cancer from women having
a low risk of breast cancer.

A number of experiments were conducted to determine the best implementation
of textons and higher-order textons for breast cancer risk assessment. Results indi-
cate that texture analysis based on higher-order textons predicts risk at least as well
as any method currently available for estimating breast cancer risk from mammo-
grams. Risk of breast cancer can be measured using texture at least four years prior
to the cancer becoming apparent mammographically.

In addition, a number of discoveries were made in the course of the study. Tex-
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ture features from CC view mammograms (top view) perform better than texture
features from MLO view mammograms (side view). Better risk assessment is ob-
tained by measuring texture over the full breast than any particular local region of
the breast. Texture features calculated from 3 x 3 local neighborhoods perform as
good or better than texture features based on larger patches. Texture information
relevant to breast cancer risk is more pronounced in the breast in which cancer even-
tually occurs than in the breast without known cancer of the same woman. These
discoveries have potential impact on the fields of image analysis and computer-aided

mammography and so form natural seeds for future work.
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