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Abstract

The Sign-to-Text project explores the challenge of sign language recognition (SLR), in
the context of a system to recognise Auslan (Australian Sign Language) and translate
it into English text on a computer. This project was borne of a request from the Deaf
Can:Do group. Workers converse with deaf community members in Auslan, their mutual
first language, then must enter case-notes in English a second language with different
vocabulary and grammar.

SLR is ostensibly a well-studied field nearly as old as the first linguistic definition of
Auslan and has two known commercial solutions, neither of which meet the needs of Deaf
Can:Do. A thorough grounding of Auslan linguistics allows defining the components that
transform a series of gestures into a rich, expressive language. Auslan is a complex com-
bination of visuo-temporo-spatial cues, including the well-accepted but poorly-clarified
phonemes the irreducible, contrastive components of a lexeme and the more elusive
contextual elements, such as classifiers, modifiers, mime and the allocation of nouns to
spatial locations for deictic reference. A new taxonomic linguistic structure for Auslan
that includes all these elements is presented. The intrinsic challenges signed languages
present for recognition and translation are defined, including several new challenges.

Recognition begins by observing signing such as via instrumentation of the signer or
optical image capture. As non-manual elements are essential for language, an optical
input is currently required for true sign language recognition, however instrumentation
typically provides far higher fidelity suited to the higher complexity of manual elements.

A framework for sign language recognition and translation is proposed. A modular
approach encourages multi-modal input. Taking cues from speech recognition, SLR is
divided into a visual model that classifies individual phonemes and modifiers and a lan-
guage model that considers the unfolding sentence as it combines these into lexemes.
The integration modifiers, spatial referents and deixis locations are facilitated by addi-
tional classifiers and a new memory block within the visual model. The output lexemes
including context and modification would be glossed by the language model, completing
the recognition stage, leaving a final translation stage into the target language.

Using consumer-grade depth cameras, the framework is implemented up to phonemic
recognition (handshape), providing insight into the technical challenges faced by optical
sign-language recognition systems. A verification of the system using 5 handshapes and
classifying with a neural network achieved 87 % accuracy.
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Glossary

Auslan the sign language (SL) of the Australian deaf community; a contraction of

Australian Sign Language [59]. 1 6, 9, 26

Creative BlasterX Senz3D a consumer grade structured-light the combination of col-
our (specifically, RGB) and depth images (RGB-D) camera that uses an Intel Real-
Sense depth module and is supported by the Intel RealSense software development
kit (SDK) 1.0. 39 41, 65

Deaf Can:Do a charitable service provider formed by the joining of The Royal South
Australian Deaf Society and the Can:Do group. 1, 2, 4

deixis a contextual extralinguistic reference by means of expression. 9, 10

depth (of a camera) the distance from the camera sensor to the scene, obtained through
optical measurement; typically taken as the Z-axis, originating orthogonally to

sensor and extending positively towards the scene. xvii, xviii, 27

gloss encoding of a visual gesture into written form. See Appendix A for sylistic con-

ventions. 21

Intel RealSense D435 a consumer grade stereoscopic RGB-D camera. xi, xvii, 34, 39,
41, 42, 45, 50, 51, 54, 56

Intel RealSense D435i a variant of the Intel RealSense D435 that differs only by the
addition of an inertial measurement unit (IMU). xi, 41 43, 45, 52, 57, 62, 66

Intel RealSense SDK 2.0 the SDK for the Intel RealSense D400 series depth mod-
ules. xv, 43, 45, 47, 48, 65

joint (of a skeleton model) an intersection point between rigid segments where flexion
can occur or a point of interest (e.g. ‘hand’ or ‘head’), typically given as coordin-

ates in two-dimensional or three-dimensional space. 27
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Glossary

lexeme the minimal units of language, e.g. signs and words, per se, divorced from their

meaning. Stylised as LEXEME. xviii, 3, 6, 7, 11, 19, 21

lexicon the complete set of lexemes in a language. 2, 6, 23

manual related to the hands. 3, 6, 7

Microsoft Kinect 2.0 also known as ‘Microsoft Kinect for Xbox One’, a consumer-

grade time-of-flight depth camera. xv, 39 41, 66

phoneme base components of a word or sign. Stylised as /phoneme/. 6, 7, 11, 13, 19,
21

RASR The RWTH Aachen University open source speech recognition system [113]. 30

stereoscopic an optical depth-computation technology that uses trigonometry to es-

timate depth from the images produced by a (stereo) pair of sensors. 42

structured light an optical depth-computation technology that estimates depth based
on distortion of a unique pattern, projected by an infra-red (IR) projectector,
reflected of the scene and detected by an IR sensor. 34, 41

time-of-flight an optical depth-computation technology that estimates depth from the

time for pulses of IR light to reflect of the scene and return to the camera. 34, 41

xviii



Chapter 1

Introduction

SLR is the use of a machine to decipher gestural language. The first documented attempt
dates back to 1986 [95] and recent patents [33], [110] and commercial products [32], [111]

would seem to suggest that such systems are now technologically viable.

The South Australian community support group Deaf Can:Do have sought such a
system to facilitate the production case-notes in their case-worker’s native language:
Auslan, rather than type them in directly in English. While simply using a keyboard

and typing might be the ‘obvious solution’, there are limitations.

SLs are unique, natural languages, not ‘gestural equivalents’ of spoken languages, and
generally do not have a written form. This creates difficulty interacting with a computer:
for example, a hearing-impaired individual (PRO;') who’s first language (L1) is Auslan
may correspond with another individual (PRO3) who is fluent in Auslan using video chat,
but if video chat is not an option, PRO; must resort to written communication and thus

a different language.

Native Auslan speakers are typically hearing impaired and have never heard nor spoken
English  the classic counter example, a child of deaf adult (CODA), is not common  so
while the hearing impaired individual may learn English, it will most likely be through
reading and writing and therefore as a second language (L2). As Auslan and English
are dissimilar in lexicon and grammar, a native Auslan speaker typing in English can
be likened to a non-hearing impaired individual dictating to a computer in a spoken L2

with different sentence structure to their L1.

Deaf Can:Do have been unable to find a suitable SLR system for Auslan and so

suggested this project. The aims of this project are provided in Table 1.1.

!Linguistic conventions such as PRO3, and POSS, are defined in Appendix A.
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Table 1.1: Aims of the Sign-to-Text project.

Aim

To define the essential linguistic components of Auslan.

To develop a framework for SLR that incorporate those components.

To implement the framework for automatic recognition of a restricted Auslan
vocabulary for Deaf Can:Do case notes.

Pl S

1.1 Background

The background of this thesis, like much of the thesis itself, is presented in two sections,
each considering one of the two sides of SLR: first, linguistics, the study of (sign) language
and identification of the essential aspects that can then be targeted by the second side:

recognition of signs automatically by a machine.

1.1.1 Signed Languages

SLs are natural languages, they have a defined set of rules: ‘grammar’ and a defined
set of signs: ‘lexicon’ and, importantly, are not a gestural version or mime of spoken
language [10], [24], [59], [117]. Further, there is no one ‘universal’ or international SL,
but rather a deaf community in isolation will tend to develop their own, much like spoken
language [59], leading to national SLs as well as regional dialects.

SLs have only been recognised as ‘true’ languages since the 1960’s [59], following
a disruptive paper on American Sign Language (ASL) by linguist Stokoe [117] that
prompted global interest in and “serious” linguistic study of SLs. Since then there have
been several efforts [61] to analyse and quantify SLs including through the production of
lexicons and dictionaries?. Foremost in Australia are the works of Johnston, who coined
the term ‘Auslan’ and developed a lexicon using a hierarchical classification structure,
extending it to form an Auslan Dictionary [59] that has been maintained through several
forms, migrating to video recordings of signs [63] and eventually into an open-access
online format [62] with around 8000 video-based definitions.

Auslan differs from English both in vocabulary: the set of available words and in

grammar: the rules of how words are combined to form language. An example of the

2A trend in earlier SL lexicographical works is a seeming arbitrariness in the use of the terms ‘lexicon’
(defined as a complete set of words, without definitions) and ‘dictionary’ (a complete set of words,
with definitions), likely due to differences in opinion — with some pointed references [61]



1.1 Background

first are the distinct lexemes in Auslan for three different meanings of the single English
lexeme ‘party’: (birthday) party, (go out and) party and (e.g. a political) party. An
example of the latter is the order of words in sentences, fixed in English as: subject noun,
verb, object noun; while Auslan has no fixed order but tends to begin with context, such
as: actor, verb, undergoer, constituent [24], [64].

This thesis focuses on the engineering aspects of SLR and so avoids the greater gram-
matical complexities of SLs, delving deep enough only to define the linguistic elements re-

quired for unambiguous recognition. These elements are discussed at length in Chapter 2.

1.1.2 Automatic Sign Language Recognition

SLR can be viewed as the natural interaction of a signer with a computer: the computer
takes the place of PRO, in (unilateral) conversation, much like a speaker may dictate to
computer using automatic speech recognition.

There are two main approaches to SLR: instrumented and optical, each with their
advantages and disadvantages. Instrumentation, such as the application of sensors to
measure joint angles of the hand or tracking the location of the hand in space are highly
informative for manual elements but tend to be more difficult to set up, may restrict
the signers’ ability to sign and, crucially, simply cannot observe non-manual elements
(NME). Optical systems tend to be easier to setup, are capable of observing the entire
signing space and grant the signer the freedom they are used too, but provide lower

quality information thus requiring greater classification effort.

An option for optical systems is to use more cameras, providing more views and so
information while potentially reducing obstruction. Hybrid systems that utilise both
modalities, such as instrumentation for manual elements and optical systems for NME

present a powerful concept, but may still impede the signer.

In the past decade cameras that measure distance from the camera (‘depth’) as well as
colour (thus RGB-D) have become available at low cost. The addition of depth directly
provides a third dimension of information for optical classification, as well as providing

a simple, robust means to isolate, for example, a hand, from the background.

Given the limitations of instrumented approaches, the availability of depth cameras
and recent progress in computer vision, a purely optical modality was selected for this
study. The inherent challenges of an optical SLR system and the state-of-the-art for

computer vision techniques are discussed in Chapter 4.



Chapter 1 Introduction

1.1.3 Gap Analysis & Focus of this Thesis

Developing an automated system to convert sign language into text is a non-trivial task.
Efforts in SLR date back to the 1980’s and there are now commercially available solutions,
yet none fit the needs of Deaf Can:Do. Notably absent is a recognition framework that
takes a linguistic perspective to ensure it recognises all aspects that make sign language
a language, rather than just implementing sign recognition. As such, this thesis focuses
on defining the linguistics of signed languages, exploring existing recognition techniques
and producing a holistic sign language recognition framework.

The linguistics of signed languages and of Auslan in particular are covered in Chapter 2,
providing insight into foundations of SL and the elements required to capture them.

A literature review of the techniques used for the automatic recognition of signed
languages, both optical and instrumented, is presented in Chapter 4, along with research
into the particular challenges faced by optical systems.

With the requirements and techniques covered, Chapter 3 outlines an inclusive frame-
work for SLR and touches upon the extension of it to translation, which is not a focus
of this work.

A rudimentary implementation of the framework is detailed in Chapter 5, taking an
optical approach to static handshape recognition.

A validation of the implementation by means of a small trial is presented in Chapter 6.

The learnings from this thesis are summarised in Chapter 7.



Chapter 2
Linguistics

To achieve the goal of SLR it is necessary to first understand the SL in order to re-
cognize it. The contemporary linguistics of signed languages is a relatively young field,
with interest revived in the 1960’s [117] following a hiatus since the eighteenth century
linguists, who's efforts were largely forgotten [64]. Auslan itself is a young language: it is
estimated to have originated in the nineteenth century and has only been linguistically
defined in the past three decades [59].

There are many SLs, each with their similarities, differences and nuances, but there
does not appear to be any meta-study of these variations. The unspoken consensus of
SLR researchers seems to be that a system which proves effective for a particular SL

could reasonably be adapted for use with other SLs.

2.1 Sign Types

Signed languages contains four ‘sign types’: lexical signs, classifier signs, sign-mime and
mime [59)].

Lexical signs are the ‘words’ of a SL: they have a defined meaning and a prescribed,
unambiguous form which is discussed in detail in the following section.

Classifier signs are part of SL context and provide visual adjectives and emphasis.
Descriptive classifiers are where the hands ‘trace over’ an imaginary object, describing
its size and shape. Proform classifiers are where the hands represent an object per se
and perform its position, orientation and motion.

Sign-mime is an improvised, context-dependent sign used in the place of lexical signs
when an individual doesn’t know an established sign, or when there is no defined sign,

such as for niche, technical and compound terms. Mime is simply ‘acting out’ a scenario
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and discouraged in Auslan except for the use of ‘visual quoting’.

2.2 Phonological Structure

A lexicon is the set of all high-level units of a language, the lexemes. Lexemes, in turn,
are comprised of ‘phonemes’: the basic, irreducible, contrastive units of language [10].
Early sign linguistic works espoused Stokoe’s term for the sublexical unit: ‘chereme’, an
anagram for and modelled on phoneme, using the Greek base (xetp (cheir): “hand”)[117].
Recent works take the view that signed language should use generic linguistic terms,
rather than special SL-specific terms [10], [24], [125]. There are, however, recent works
that buck this trend, for example, using ‘viseme’ in the place of lexeme [73], presumably
a contraction of ‘visual’ and ‘lexeme’.

Phonemes in Auslan include, for example, a /closed-dominant-hand-with-the-index-
finger-out-and-hooked/, a /double-tap/ motion of the dominant hand, a location of the
dominant hand relative to the body, for example, /bridge-of-the-nose/. The Auslan
speaker will recognise these phonemes as part of the set that form the lexeme SISTER.
If one of these phonemes were to change, for example, the location from /bridge of the
nose/ to /chin/, the lexeme would change; in this case, to DINNER.

These three phonemes fit the phonological categories defined by Stokoe in 1960: con-
figuration, position and motion, but with ‘significant combination’ names: designation,
tabulation and signation, respectively,[117] and since commonly used in abbreviation:
‘Dez’, ‘Sig’, ‘Tab’.

A fourth ‘significant combination’ hand-arrangement ‘Ha’ can be added to this list
[12], [25] a structural choice Stokoe opposed, viewing arrangement as a subcategory of
‘position’ (using the term ‘attitude’) [59], [L17]. As an example by juxtaposition, consider
MINE and YOURS: both are formed by the /closed/ shape, start in the /neutral/location
and thrust in the direction of the palm, but in MINE the palm faces the signer (PRO;),
while in YOURS the palm faces PROs.

In his 1989 thesis, Johnston identified five core elements of a sign: handshape, loca-
tion, orientation, movement and expression [59]. The first four match those previously
described  with ‘hand-arrangement’ becoming orientation which is perhaps less illus-
trative and can be collectively referred to as the manual elements. The fifth category,
expression, acknowledges that SL is more than hand-waving [59]; a view not commonly
held at the time [34] but seemingly taken as ‘common knowledge’ now [17], [18], [24]

The importance of expression can be demonstrated by /flat hand, digits together/,



2.2 Phonological Structure

/dominant hand on chest/, /palm facing chest/ and /no movement/: the addition of
an /enthusiastic/ (facial) expression and /nodding/ head creating LIKE, while /stern/
expression and /shaking/ head create DON'T LIKE.

This also shows that expression itself can be considered a list of subcategories, includ-
ing body posture, head movements, facial expression, gaze direction, eye and eyebrow
movements and mouthings [24], [59], [73], collectively referred to non-manual elements
(NME): ‘everything other than the hands’.

The ‘classical’ five phonological categories that combine to form a single sign are [10],
[24], [59], [125]:

Shape (previously Designation ‘Dez’) shape of the dominant (and subordinate) hand(s).

Location (previously Tabulation ‘Tab’) place or position of articulation of the hand(s)

relative to the body.

Orientation (previously Hand Arrangement ‘Ha’) orientation of the dominant (and
subordinate) hand(s)

Movement (previously Signation ‘Sig’) the dynamic action or articulation of the hand(s).

Expression or NME, everything other than the hands, including body posture, head

gestures, facial expressions and gaze direction.

Each of five phonological categories include many possible phonemes; Johnston cre-
ated a detailed decision schema for “Cheremic Order” [61], shown in Figure 2.1 with
the accompanying notes shown in Figure 2.2, to illustrate how the phonological (then,
cheremic) categories combine to form lexemes. The first phonological category is the
shape of the dominant hand, listed as “Cheremic Order”, of which Johnston enumerated
62 phonemes in 1989 and 60 phonemes in 2003 [59], [61].

2.2.1 Locative Terms

An important consideration when discussing locations and orientations in signed lan-
guages is both the frame of reference and validity of sublexical combinations, particularly
in the case of handedness. It is common for texts to use terms such as 'towards the left’,
or 'the right hand’, both suggesting a requirement for right-handed signing which is not
the case, at least for Auslan. If the signs are mirrored appropriately, that is, become

‘towards the right’” and ’the left hand’, respectively, the sign is interpreted the same. An
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Image removed due to copyright restriction.

Figure 2.1: Johnston’s detailed decision schema for “Cheremic Order” [61], showing the
cascading identification of phonemes that combine to define a lexeme.
The accompanying notes are shown in Figure 2.2
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Image removed due to copyright restriction.

Figure 2.2: Notes that accompanied Johnston’s “Cheremic Order”, shown in Figure 2.1
[61].

appropriate change in terminology is therefore to use generic terminology, in this case,

medial & lateral and dominant & subordinate, respectively.

2.2.2 Contextual Information

Context is the meta information of SL that provides tone and richness to conversation.
Emphasis, adjectives and deixis are all conveyed through how the signs are performed
[59], [61]. Morphology, timing and space all play a part in context.

Classifiers, particularly proform classifiers, are a constant feature of Auslan. For ex-
ample, WINDY: is ‘a breeze’ if performed gently while looking nonchalant, ‘ceaseless’
if repeated many times while looking haggard and wary or ‘a gale’ if made by large,
emphatic movements using the whole upper body with an intense expression.

Signs can be modified by altering their performance temporally or spatially; this al-
most always seems to be with respect to hand movement and expression. Tempo-spatial
inflections include changing: the frequency of repetition, the number of repetitions (‘re-
currence’), the ‘duty cycle’ of repetitions (‘duration)’) and the duration of holds (‘per-
manence’) the duration of holds, number of repetitions and changing the path of the
motion (‘trajectory’) [18].

Deixis is the ‘pointing’ aspect of language, such as ‘you’ (person), ¢ there’, ‘that’ (place)
and ‘yesterday’ (time), which are included in Auslan, as well as discourse, empathetic

and social deixis which are not included [59], [61], [118].
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Image removed due to copyright restriction.

Figure 2.3: A representation of addressable locations for spatial deixis within a single
horizontal layer of three-dimensional signing space, adapted from [59, p. 139].

An example of place deixis is simply pointing, THERE, at the target entity, which is
trivial when the entity is present and is necessary when there is no lexeme for the entity,

such as for many body parts.

Deixis is appropriate even when the target entity cannot be unambiguously pointed
at in the prevailing context. The entity is signed or mimed and allocated a particular
location within the signing space, either by simply moving the sign there or by pointing
at the space after performing the sign. Pointing at that space is then taken as if pointing
directly at the target entity. A diagram of some addressable locations is provided in
Figure 2.3.

A more subtle aspect of deixis is the context provided by informative inter-sign move-
ment, termed contextual deixis. For example, to sign the sentence ‘I got a book from the
library’ one might sign LIBRARY off to one side, establishing it as a location in space,
then, without moving the hands from the finish of LIBRARY, immediately start BOOK
at that location, pause, draw the hands to neutral position and then complete the sign.
That is, the almost incidental movement from the location where library was signed to
the the neutral position provides both ‘got a’ and ‘from the’ in the equivalent English

sentence.

Deixis means the assignment of entities to locations in space must be remembered and

the movement between signs can be communicative: an exception to the general rule.

10
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Figure 2.4: A new phonological structure: a taxonomy of sub-sign elements, acknow-
ledging that phonemes are not necessarily sub-lexical but rather phonemes
combine to form all aspects of signed languages.

The bottom level of this taxonomy are the phonemic categories; the numer-
ous possible phonemes for each category are not shown.

Manual elements previously gave no distinction to hand.

(Manual) Orientation and (Manual) Arrangement were previously one phon-
emic category; arrangement is now expanded as part of the categorical struc-
ture, rather than an individual phonemic category.

NME were previously bundled together as a single phonemic category.
Deixis is a new phonemic category that can be articulated by either hand
and/or gaze direction.

The two main branches of the taxonomy are shown at full-scale in Figures 2.5
& 2.6.

2.2.3 A New Phonological Taxonomy

If one considers the definition of lexeme as “a unique combination of the smallest con-
trastive units of language” (i.e. phonemes), then the current “five major components of
sign structure” [59, p. 46] does form a basis for a lexeme as expression can have different
‘sub-phonemes’. One must then consider each of the ‘sub-phonemes’ of expression to be
phonemes in their own right.

Then there is the consideration of deixis. Superficially, the distinction between MINE
and YOURS is the orientation of the hand and direction of the movement. If one rotates
the frame of reference such that it is with respect to the palm, not the signer, then
the combination of phonemes is identical. This illustrates the importance of the spatial
referent and clearly identifies it a a crucial part of the combination that defines the
lexeme. As such, ‘motion with respect to defined locations within the signing space’
must be considered a phoneme.

A hierarchical structure that takes both of these considerations into account yet still
supports the notion of ‘non-manual elements’ can be obtained by dividing the phono-
logical categories into those related to the hands and those not related to the hands,

resulting in the phonological taxonomy presented in Figure 2.4.

11
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Figure 2.5: Manual elements branch of phonological taxonomy.
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Figure 2.6: Non-manual element branch of phonological taxonomy.
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2.3 Challenges

SL specific challenges arise from the diverse, dynamic and variable gestures and nuanced
differences between ‘critical contextual cue’ and ‘non-informative connecting movement’.
The complexity of understanding SL and so the challenges it poses for automated re-
cognition is apparent in the literature, for example confusion over the distinction of the
terms coarticulation and epenthesis in [18] or treating them as the same concept [48].

Indeed, there is seemingly no single comprehensive glossary of challenges. The best
lead is a linguistically-motivated group of Dutch researchers lead by ten Holt have pub-
lished two discussions of SLR challenges [120], [121], Caridakis, Asteriadis and Karpouzis
have also contributed.

A clarified, unique list of challenges as present in the literature is presented here:

Intra-signer variation is the slight difference in the way a signer performs a sign. It
may be due to “whether the person is agitated or happy” [121, p. 418] or simply
the random variation that occurs naturally in human performance, including due

to other movement of the signer [18].

Inter-signer variation is the difference between the performances of a sign by different
signers [18]; as such, this might be considered an accent [121]. The change may be
subtle mechanical difference, such as the level of care taken to form the handshape
or the gracefulness of the movement. The change may also be a mental difference,
where both signers believe they are signing correctly but in truth have different
ideas of how the sign should be performed, even down to different perceptions of

how a single phoneme is performed.

Inter-signer variation does not extend to regional dialects, as here the sign is truly

different, being formed by a different combination of phonemes.

Sign-sign interaction is change to the articulation of a given sign that arises due to
the ending of the preceding sign and due to the beginning of the succeeding sign
[121]. For example, the performance of a sign starting with the hands in neutral
position will be different to a performance that begins with the hands above the
head.

Movement epenthesis is the additional, non-informative movement that occurs as
the hands move from the end location of one sign to the starting location for the

subsequent sign [121].

13
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Anticipation is the additional, non-informative movement of the non-dominant hand
in preparation for a bi-manual shape; thus, anticipation is a subset of movement
epenthesis [121].

Coarticulation arises when two discrete signs are performed in parallel; that is, the

phonemes for two separate signs are articulated at the same time [18], [121].

Repetition is repeated motion, which can either be phonemic or emphatic [121]. In
phonemic repetition, the simple act of repeating forms the entirety of the inform-
ation: the number of repeats are irrelevant. In emphatic repetition, the frequency,
duty cycle and number of cycles are all informative and almost certainly occur in

parallel with expressions.

Occlusion refers to the inability to view part of a sign, be it due to other body parts
or simply it being on the other side of the scene to the current point of view, such

as self-occlusion of the hand [18].

2.3.1 New Challenges

From the linguistic perspective presented in this chapter, it is apparent there are three

challenges for sign language recognition not covered in the literature, namely:

Temporo-spatial memory of signs allocated a location within the signing space to
enable spatial deixis. For example, one may wish to refer to an individual who is not
present, (PRO3), so allocate them to a location, for example LOC3. Later the signer
could indicate possession of the absent person (POSS3) by signing OWN towards

LOC3; thus an SLR system must be able to remember the spatial assignment.

Entanglement of ‘contextual deixis’ with non-informative inter-sign movement (move-
ment epenthesis). Contextual deixis is a new term for additional informative intra-
sign movement where a sign is started at one spatial deixis location and finished at
another. For example, 3,BOOK;: signing BOOK, starting at some LOC3, = LIBRARY
and ending it at LOC;: “I got a book from the library”, or signing ;WALK3,: “I

’

walked to LOC3,”, where LOC3, is some defined shop, park or school, etc. Note
that the sign in the first example, BOOK, does not normally contain any broad
spatial movement (just rotation of the hands about the ‘spine’ of the book), thus

there was a new phonemic element that changed the sense but not the meaning

14
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of the sign; whereas the sign in the second example, WALK, the existing spatial

movement during signing was repurposed to provide context.

Temporal boundaries are the points in time where one sign ends and the next begins;
even for humans the point where a sign is deemed to begin can vary enormously

between signers [5], [6], creating a ‘knock-on’ challenge for labelling.

2.4 Summary

In summary, signed language can be defined as a highly-context-dependent simultaneous
and sequential combinations of established gestural elements on multiple levels that
influence and are influenced by their adjacent signs.

Individual signs are defined by manual and non-manual elements that can be phon-
emic, modifying and deictic. Lexical signs are formed by pseudo-unique combinations
of phonemes with broad interpretive range. Verb sense is inferred through motion in
relative and absolute directions, provide adjectives and emphasis through dynamics such
as speed and repetition. Pronouns are occasionally uniquely defined, achieved through
spatial pointing, or else articulated by fingerspelling; spatial allocation allows pointing
at entities that could not otherwise be unambiguously pointed at.

Structurally, languages are the combination of a set of defined terms (lexicon) with
communicative actions (gestures) according to a set of defined rules (grammar). In
signed languages, the lexicon is formed by lexical signs and the gestures include classifier
signs, sign-mime, mime and deixis.

A single element of a lexicon is a lexeme, which are formed by unique combinations
of sub-lexical units: phonemes. In signed languages, the articulation of phonemes for a
single lexeme can be both parallel in space and serial in time.

Phonemes are divided into phonemic categories, which for signed languages are conven-
tionally divided into manual and non-manual subcategories. The phonological taxonomy
is shown in Figure 2.4.

The many complexities and subtleties of signed languages present significant challenges

for automatic sign language recognition.
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Chapter 3

Framework

SLR is a topic of international research effort, with many technical challenges related
to observing and classifying a visual/gestural language. There are commercial packages
[32], [L11] but no solutions which truly encapsulate all elements of signed language,
with notable exceptions being contextual signs and modifiers and supporting spatial
addressing memory. A subsequent challenge then looms in transcription, due mainly
to the absence of a written form of SLs coupled with translation to the target spoken
language, to say nothing of the different tolerable variations and contextual-ambiguities
of both languages.

Definitions of sign language in literature are often concise but without reference or
verbose to the point of obfuscation in authoritative works. The first section of this work
strove to define the essential elements that constitute sign language; not many examples
were found in SLR literature that considered more than a few elements. Indeed, much
work on SLR is more accurately labelled hand gesture recognition (HGR), but does
serve to reflect the central challenge: accurate observation and subsequent classification
of manual features. Moreover, HGR extends far beyond SLR and really lies in the domain
of human-computer interaction (HCI), where hand gestures are hoped to provide means
of control without the need for peripherals such as keyboards, mice and joysticks, being
particularly pertinent in the growing field of virtual reality (VR).

The question then becomes: what would a framework which covered all essential ele-
ments of sign language look like? In it’s most simplistic form, an ideal SLR machine
would take as input continuous ‘sign language’ and produce as output an encoded (‘writ-
ten’) form (to be used as-is or provided to a translation machine).

For true language recognition an optical system is currently essential, but hybrid
systems are also an option, combining the fidelity of instrumentation with the spatial

awareness of optical systems. To this end, an idealised framework for SLR should support
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and encourage multi-modal observation of the signing scene.

Extending this concept leads to a fully modular framework that defines the input and
expected output of individual sub-unit modules, allowing comparison between different
methods and changing of components to suit particular applications (for example where
a glove is appropriate versus where one is not) by the same system. For example, the
‘handshape’ module, required to output estimates of hand-shape, could be selected based
upon the input type (optical or instrumented) and internal method depending on the
application. This means in the first instance the selection of sub-unit modules is less
critical as the cohesion and throughput of the over-arching framework is established.

A framework that takes the traditional structured approach yet includes all of the
essential components of SL has been developed, shown as a simplified block diagram in
Figure 3.2.

The visual model is responsible for sub-lexical classification; it takes in the stream
of observations made about the signing space and slices it up to pass to classifiers for
each of the phonemic categories, as well as passing the information to ‘temporo-spatial
memory’. The temporo-spatial memory block considers how movements change over
time and recalls which entities have been allocated to which deictic location; as such it
also requires input from the corresponding phonemic classifiers.

In these estimations consideration should be given to ‘redundant’ fragments, the as-
pects of an isolated sign that do not provide any discriminative power and could be
‘omitted’ from the sign classification without any penalty to recognition accuracy [122].
These fragments are not necessarily a particular subunit, but appear to be temporal;
multiple studies have found that recognition of a sign by a human signer occurs within
the first third of the sign [6], [34], [40], [119]. Realization of a module that takes advant-
age of this fact could follow different paths; for example, a module could reduce overall
compute effort by terminating as soon as estimation reaches a pre-determined threshold,
or keep looking for new candidates until the rate of candidate or estimate change falls
below a threshold.

The phonemic estimates are passed to a language model that uses statistics, gram-
mar and memory to combine phonemes into lexemes. Having identified the meaning
within the grammar of the SL, it is then necessary to record that in a form that can be
transferred to a translation stage. The likely intermediate is ‘glossing’, the codification
of lexemes and their constituent elements, such as by Hamburg Notation System [44]
(HamNoSys) [46] or SignWriting [74], as shown in Figure 3.1.

It is worth mentioning that some classification models, e.g. HamNoSys, do not use
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Figure 3.1: AUSLAN encoded using the SignWriting glossing system®.

linguistic phonemes as the basic sub-units for glossing, but instead use a combination
of primitive-phoneme with modifier [46]. For example, HamNoSys produces the many
handshape phonemes through the convolution of two smaller sets: 12 basic shapes and
4 modifiers [25].

3.1 Framework Composition

The input observation stream can take many forms, such as a singular camera, be it colour
or depth, or an instrument such as one that measures joint angles, or any combination of
these elements. Key considerations are how much of the signing space can be observed,
avoiding occlusion and the spatial discriminative performance of the modality. The
stream should be continuous and have sufficient temporal resolution to avoid motion
artefact and data loss.

The SLR aspects of the framework are realised by a wisual model and a language
model, building on the acoustic and language model framework established by automatic
speech recognition [19], [73], [85]. The visual model processes the observations of the
signing space to obtain estimations of phonemes while the language model uses statistics
to estimate lexemes and construct sentences.

The visual model begins with segmentation, both temporally of continuous stream into
individual frames and spatially of individual frames into ROIs. Both the segmented data
and the data about segmentation are then passed into individual phoneme sub-stages
as well as to a temporo-spatial memory stage. The phoneme sub-stages use the data
to extract features that can be used for classification that are then passed to phoneme
classification stages, producing estimates for each of the five phonologic categories as

well as for contextual cues.
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Figure 3.2: Block diagram of framework for automatic sign language recognition accounting for temporo-spatial cues and
translation into the target language.
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The language model considers phoneme estimates and temporo-spatial memory, using
statistical methods to produce the final lexemes estimate and so construct sentences. The
unmet challenge faced by this stage is thus the recognition deixis, contextual gesture and
classifier signs while ignoring non-informative sign transitions. As SLs have no written
form, it will likely be appropriate to gloss the sentences, that is, use a standardised
notation system to encode SL, such as HamNoSys [15], [60].

Finally, a language translation stage takes the glossed signs and converts the recognised

SL into the target output language.
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Chapter 4
Recognition

Gesture recognition (GR) has applications for areas such as computer control, robot
control, smart infrastructure, computer gaming, smart-home applications, healthcare,
vehicle control [22], [31], [47], [57], [58], leading to fragmentation of efforts and nomen-
clature in the literature. GR is a primary component of natural user interface (NUI)
for HCI [21]. The Venn diagram provided in Figure 4.1 shows the overlap between sign
language recognition, hand gesture recognition and gesture recognition.

As a sign language lexicon is in essence a well-defined set of gestures, the signs of SL
are often used as in GR for consistency and comparability [74]. For some time the most
achievable aspect of SLR has been HGR, with much of the literature focused on new
devices and methods to improve performance. Combined, these two factors have lead to
some ambiguity in the term ‘sign language recognition’, where much of the purported
SLR literature is in reality ‘sign recognition’, devoid of any linguistic element, or worse,

simply ‘gesture recognition’ [58].

4.1 Observation

In the literature there are two main observation approaches for SLR: instrumented, such
as devices which measure joint angles and optical tracking of fiducial markers or different
coloured gloves; and optical (or visual) techniques that rely entirely upon cameras with
nothing attached to the signer.

Instrumented systems have been shown to provide excellent performance for HGR and
have been considered for SLR since 1996 [66], but they can be expensive, difficult to use,
such as requiring bespoke fitment and laborious positioning each session, as well as an

encumbrance to the user [30], [66]. Current implementations also require tethering to
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Gesture Recognition

Sign Language

Figure 4.1: Venn diagram of sign language (SL), gesture recognition (GR), hand gesture
recognition (HGR) and sign language recognition (SLR), showing that HGR
is a subset of GR and that SLR is formed in the overlap between SL and GR
which is only partially includes HGR.

a recording device, but this could likely be replaced by wireless data transmission or
miniaturisation to create wearable devices. The significant issue of instrumentation for
SLR is the complete inability to capture anything other than the shape, orientation,
arrangement and location of the hands, leaving them totally ignorant of all NMEs.
Optical is generally seen as the preferable solution by many due to the freedom for
natural, unimpeded signing as well as low financial cost, although they perform poorly
in terms of computational effort and classification accuracy. The great advantage is the
use of the same modality as human sight, meaning that theoretically an optical system

can “see” everything we can.

4.2 Literature Review

A literature review was conducted to answer the question: “what are the promising
modalities and techniques for SLR?” The results are shown in Tables 4.1 through 4.4.
These tables show that approaches are migrating towards optical modalities, with
depth providing an increase in performance, although instrumented approaches are the
most accurate. A confound in the reported accuracies are the simplicity of the recog-
nition task; the works on continuous televised broadcasts reporting accuracy as WER
(converted to word recognition rate (WRR)) face the greatest challenge: continuous sign-

ing. Even here, however, the vocabulary is greatly reduced with no contextual elements,
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Table 4.1: Literature review: Survey of sign language and gesture recognition techniques.
Goal: gesture recognition (GR), hand gesture recognition (HGR), mouthing
recognition (MR), sign language recognition (SLR), sign language recognition
and translation (SLRT), sign language translation (SLT). Modality: optical
(O), instrumented (I).

Work Goal  Mode Device(s)

Camgoz, Hadfield, Koller et al. [15] GR 0) red, green & blue (RGB)
Chen, Deng, Pang et al. [22] HGR 1 wrist-worn camera
Hernandez-Vela, Bautista, Perez-Sala et al. [49] HGR O Kinect

Keskin, Kirag, Kara et al. [68] HGR O Kinect

Ming and Jianbo [99] HGR O Kinect

Nai, Liu, Rempel et al. [101] HGR O Kinect

Marin, Dominio and Zanuttigh [87] HGR O Kinect + Leap Motion
Dominio, Donadeo and Zanuttigh [31] HGR O Kinect 1

Chen, Li, Sun et al. [21] HGR O RGB

Haria, Subramanian, Asokkumar et al. [47] HGR O RGB

Koller, Ney and Bowden [76] HGR O RGB

Ji, Song, Xiong et al. [57] HGR O Worn RGB

Koller, Ney and Bowden [75] MR O RGB

Galka, Masior, Zaborski et al. [39] SLR H IMU

Abhishek, Qubeley and Ho [1] SLR 1 glove with capacitive sensors
Kadous [66] SLR 1 Nintendo Powerglove
Camgoz, Hadfield, Koller et al. [16] SLR O RGB

Kelly, McDonald and Markham [67] SLR O Grayscale

Huang, Zhou, Li et al. [52] SLR O Kinect

Inoue, Shiraishi, Yoshioka et al. [53] SLR O Kinect

Kumar, Saini, Roy et al. [83] SLR O Kinect

Kumar, Gauba, Pratim Roy et al. [82] SLR O Kinect + Leap Motion
Agarwal and Thakur [2] SLR O Kinect 1

Conly, Zhang and Athitsos [23] SLR O Kinect 2

Cui, Liu and Zhang [28] SLR O RGB

Forster, Koller, Oberdérfer et al. [36] SLR O RGB

Hassan, Assaleh and Shanableh [48] SLR O RGB

Huang and Zhang [51] SLR O RGB

Kishore, Rao, Kumar et al. [70] SLR O RGB

Koller, Ney and Bowden [74] SLR O RGB

Koller, Forster and Ney [73] SLR O RGB

Koller, Zargaran, Ney et al. [78] SLR O RGB

Koller, Zargaran and Ney [77] SLR O RGB

Koller, Zargaran, Ney et al. [79] SLR O RGB

Koller, Camgoz, Ney et al. [72] SLR O RGB

Chai, Li, Lin et al. [19] SLRT O Kinect 1

Camgoz, Hadfield, Koller et al. [17] SLT O RGB
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Table 4.2: Literature Review: Sources.
Lexicons: Arabic Sign Language (ArSL), American Sign Language (ASL),
Auslan, Chinese Sign Language (CSL), Indian Sign Language (ISL), Japanese
Sign Language (JSL), RWTH: RWTH-PHOENIX-Weather datasets.
N/R: not reported.

Work Source
Lexicon # Lexemes # Replicates # Signers # Samples

[15]  N/R 249 N/R 23 47933
22 ASL: 0-9 10 10 10 1000
[49] ChaLearn 2011 N/R N/R N/R 50000
[68] ASL: static A-Z 24 N/R N/R 65000
[99] Hand shapes 5 8 5 200
[101]  ASL: static A-Z 24 N/R 5 120
[87] Hand shapes 10 10 14 1400
[31]  ASL 12 10 14 1680
[21] Hand shapes 5 100 1 500
[47] Hand shapes 6 N/R N/R N/R
[76] RWTH 2014 45 Varies 9 786 750
[57] Hand shapes 10 5 40 2000
[75] RWTH 2010 15 Varies 7 1832
[39] N/R 40 10 5 2000
[1]  ASL: 0-9 or A-Z 36 30 1 1080
[66] Auslan 95 8 to 20 5 6550
6]  N/R N/R N/R 23 1005 136
671 N/R 10 2 24 480
52]  N/R 25 3 9 675
[53] JSL: static Hiragana 41 10 8 3280
[83]  ISL 30 9 10 2700
[82]  ISL 50 15 10 7500
2] CSL: 0-9 10 N/R N/R N/R
23]  ASL 1113 3 5 450
[28] RWTH 2014 1081 Varies 9 65227
[36]  SIGNUM 455 Varies 25 11109
[48] ArSL 80 10 N/R 400
[51]  CSL N/R N/R 50 17000
[70] ISL 200 3 5 3000
[74] RWTH 2010 421 Varies 7 1832
(73] RWTH 2014 1081 Varies 9 65227
[78] RWTH 2014 1081 Varies 9 65227
[77] RWTH 2014 1081 Varies 9 65 227
[79] RWTH 2014 1081 Varies 9 65227
[72] RWTH 2014 1081 Varies 9 65 227
[19] CSL 239 5 1 239
[17]  RWTH 2014 1066 N/R 9 7096
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Table 4.3: Literature review: Segmentation.
Temporal: static = irrelevant, data intrinsically segmented; otherwise con-
tinuous: manually segmented or automatically segmented to sentences based
on transcript.
Spatial: thresholding: luminance, chrominancey, & chrominance,oq (YC,C;)
colour-space, red, green & blue (RGB) colour-space, depth, joint.
N/R: not reported.

Data Segmentation

Work

Temporal Spatial
[15] [t-1][t][t+1] None
[22] Static YC,Cr
[49] None None
[68] Static Manual
[99] Static Joint + depth
[101]  Static None
[87] Static None
[31] Depth
[21] Static GMM
[47] Static RGB
[76] None None
[57] None Assumes pre-segmented
[75] None None
3]  N/R N/A
[1] Static None
[66] None N/R
[16] None None
[67] Static Manual
[52] None None
[53] None Depth
[83] Static None
[82] Manual None
2] Static None
[23] Manual N/R
[28] Sentences ~ None
[36] None None
[48] [t]-[t-1] None
[51] None None
[70] None None
[74] None None
[73] None None
[78] None None
[77] None None
[79] None None
[72] None None
[19] N/R N/R
[17] Sentences ~ None
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Table 4.4: Literature review: Recognition.

Level: Phonemic: body movement (BM), body pose (BP), hand movement
(HM), hand shape (HS).

Classifiers: common methods: convolutional neural network (CNN), dynamic
time warping (DTW), hidden Markov model (HMM), histogram of oriented
gradients [29] (HoOG), scalar vector machine (SVM).

Performance measure: mean Jaccard Index (mJI), true positive rate (TPR),
word recognition rate (WRR) (entries marked * are converted from word error

rate (WER)).

Work Recognition
Level Features Classifier Performance Measure
5]  N/R N/R 3D CNN 31.4% mJI
[22]  HS N/R Lookup table 99.4 % ‘accuracy’
[49] Lexemes HoOG, HOF DTW 67.8% tpr
68  HS PCF RDF 68.0% N/R
[99] HS SP-EMD N/R 99.6 % ‘accuracy’
[101]  HS coordinates, angles RDF 80.7 % ‘accuracy’
[87] HS coordinates, angles SVM 91.3% ‘accuracy’
[31] HS N/R SVM 93.8% ‘accuracy’
[21] HS N/R K-SVD 98.7% ‘recognition’
[47] HS N/R Haar 64.0 % ‘accuracy’
[76]  HS Whole frame EM-CNN-HMM 55.0 % WRR*
[57] HS BEHB* CNN-SVM 97.7 % ‘accuracy’
[75]  Mouthings N/R CNN 55.7 % precision
[39] HM N/R HMM 99.8% ‘accuracy’
[1] HS N/R Lookup table 92.0% ‘accuracy’
[66] HS N/R decision tree 80.0 % ‘accuracy’
[16] HS N/R LSTM CNN 80.3 % ‘Top-1 accuracy’
[67] HS eigenspace SVM 95.2% WRR
[52]  HS & BM HoOG + skeleton 3D CNN 92.4% ‘accuracy’
[53] HS TSC CNN 84.0 % ‘accuracy’
[83] BP & HS  coordinates, angles HMM 83.8 % ‘accuracy’
[82] HS & HM  coordinates HMM 95.6 % ‘accuracy’
2] FF N/R SVM 88.0 % ‘accuracy’
[23] HS & HM N/R DTW 62.0 % ‘accuracy’
[28] Lexeme N/R CNN + RNN-LSTM  61.3% WRR*
[36]  Lexeme HOG3D HMM 87.5% WRR*
[48] Lexeme  NJ/R HIMM 94.5% WRR
[51] Lexeme N/R DTW 82.7% WRR
[70] Lexeme N/R CNN 89.0 % WRR
[74] HM eigenvectors RASR 68.5 % precision
(73]  HM,FE  HOG3D HIMM 47.0% WRR*
[78] Lexeme Whole frame CNN-HMM 61.5% WRR*
[77]  Lexeme Whole frame CNN-BLSTM-HMM  54.9% WRR*
[79] Lexeme Whole frame CNN-HMM 58.9 % WRR*
282]  MS, HS Whole frame CNN-LSTM-HMM 71.7% WRR*
[19] HM N/R Nearest match N/R N/A
17 Lexeme  N/R CNN & RNN+HMM  N/R N/A




4.2 Literature Review

Table 4.5: Literature review: Signers participating in SLR studies.
N/R: not reported.

Work Participants were signers?
Galka, Masior, Zaborski et al. [39] No
Abhishek, Qubeley and Ho [1] No
Kadous [66] Yes
Camgoz, Hadfield, Koller et al. [16] N/R
Kelly, McDonald and Markham [67] N/R
Huang, Zhou, Li et al. [52] N/R
Inoue, Shiraishi, Yoshioka et al. [53] N/R
Kumar, Saini, Roy et al. [83] N/R
Kumar, Gauba, Pratim Roy et al. [82] Yes
Agarwal and Thakur [2] N/R
Conly, Zhang and Athitsos [23] No
Cui, Liu and Zhang [28§] Yes

Forster, Koller, Oberdoérfer et al. [36]  Yes
Hassan, Assaleh and Shanableh [48] N/R

Huang and Zhang [51] N/R
Kishore, Rao, Kumar et al. [70] Yes
Koller, Ney and Bowden [74] Yes
Koller, Forster and Ney [73] Yes
Koller, Zargaran, Ney et al. [78] Yes
Koller, Zargaran and Ney [77] Yes
Koller, Zargaran, Ney et al. [79] Yes
Koller, Camgoz, Ney et al. [72] Yes
Chai, Li, Lin et al. [19] N/R

Camgoz, Hadfield, Koller et al. [17] Yes

29



Chapter 4 Recognition

though likely considerable adjective modifiers were used.

Interestingly, of the 24 studies on SLR, only 16 reported whether the participants were
signers and of those only 13 were signers. Half of the 16 signer-based studies worked on
the RWTH-PHOENIX-Weather datasets.

4.2.1 Summary

An interesting progression is that of a group of researchers from RWTH Aachen Univer-
sity, Germany, lead by Kollor, who transitioned from a phonological classifier approach
to a whole-scene deep learning approach. The group started using ‘subunits’ (phon-
emes), ‘trajectories’ (hand movements) and speech recognition techniques (RASR) [74]
and pioneered the use of ‘real signing data’ through videos of freely-televised weather
broadcasts with (Deutsche Gebdrdensprache; German Sign Language (DGS)) sign lan-
guage translation by interpreters' complete with transcripts for labelling, which they
released as the ‘RWTH-PHOENIX-Weather’ corpus [74], evolving over time [15], [37]
and being augmented at others [16].

The large volume of real data from multiple signers enabled the use of deep learning
(convolutional neural network (CNN)) to push the state-of-the-art and classify mouthings
[75], multiple phonemes [16] and continuous sign [17], [72], [73], [78], [79].

Kollor’s most recent work [72] takes the group full circle, including mouth shape and
hand shape phonemic classification in a model that also analyses full frames to achieve
a WRR of 71.7% on a 9-signer dataset.

4.3 Visual Challenges

Visual approaches employ cameras to observe the signer. Challenges in visual gesture

recognition (VGR) include:

o Camera-related: image quality, adequate lighting without changes in illumination
(creating additional challenge for capture in uncontrolled environments, such as
outdoors) [20].

o Accurate capture of three-dimensional (3D) signing space, such as movement to-

wards the capture device [18], [20].

!The interpreters are claimed to be “hearing” in [75, p. 479] and “native” in [73, p. 109]; an unlikely
combination, but it seems reasonable to assume they are fluent signers.
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« Appearance of a sign depends on the view-point of the observer [73].

o Spatial segmentation of the region of interest from the background. Multiple in-
dependent circumstances in which this arises: isolating the signer from the scene
background and isolating e.g. the hands from the signer’s chest, or the dominant

hand from the subordinate hand.

o Temporal segmentation of signs from a continuous stream of observations is in-
herently difficult due to the ambiguity of sign boundaries [3], [71], requirement
for per-frame labelling for training [51] and a ‘knock-on’ penalty for classification
performance in the event of incorrect segmentation [51], although [77] solve this

through iterative realignment.

o Real signing is fast; recording at low frame-rates and at low spatial resolutions

leads to motion artefacts [74].
 People come in different shapes and sizes [52].

e Some phonemes are ‘loosely constrained’ and can vary greatly, creating difficulty

in labelling let alone classification [75]

In terms of challenges not noted in the literature, one is skin colour, which no doubt
has an effect on both the methods used to create features and then the classification
performance of those features. Another challenge is classification of ‘sign language’
based on the performance of signs by ‘non signers’; much of the literature did not specify
whether the ‘signers’ used in their SLR study were, in fact, signers [3], [16], [19], [47],
[48], [51] [53]

Camera related constraints

In a visual system, the camera itself presents constraints, including spectral range, image
resolution, frame rate, optical characteristics and interface limitations [20].

In terms of spectral range, a trade-off exists between cost and tolerance to changes in
illumination infra-red (IR) sensors detecting body heat are highly robust but expens-
ive, while visual range (390 nm to 750 nm) sensors are less robust but far cheaper [20].
Sensitivity to changes in illumination in a holistic sense varies considerably by approach,
with some techniques such as full-frame deep-learning algorithms being impressively ro-
bust [78], [108] while others leverage additional modalities such as depth data to provide

more robust segmentation [35], [65], [83].
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The optical setup of a camera dictates how light from the scene reaches the sensor,
with two key specifications being the distance from the front of the lens at which the
image is focused: ‘focal length’ f and the diameter of the light entrance hole (or pupil):
‘aperture’ D; two combine to form a third specification: focal ratio, or ‘f-number’ N,
where N = %. Focal length is important as it dictates the angle of light that is able
to reach the sensor, or field-of-view (FoV), with shorter f giving wider FoV. Aperture
dictates both the range of distances from the lens in which the subject remains in focus,
or depth-of-field (DoF) and volume of light reaching the sensor. Narrower aperture
gives greater DoF (more of the scene in focus), allowing greater tolerance to signer
position relative to the camera without loss of information. Wider aperture increases
light volume, permitting in an image with greater intensity variation (more information)
without requiring compensation by increased sensor gain, which introduces noise. Clearly
a compromise must thus be struck between DoF and light volume; in webcams aperture
is fixed and selection should consider the tolerance to low illumination[20].

Modern cameras tend to have far greater image resolution than those from a decade
ago, such as from 640 x 480 pixels to 1920 x 1080 pixels (‘1080p’), with a corresponding
increase in pixels-per-frame from 0.3 to 2 megapixels [20], [100]. Low-resolution images
create several difficulties for computer vision [100]; the most obvious being that the
pixel size should be small enough to visually distinguish descriptive features, such as
fingers and gaze. Higher resolution means more information available for distinction and
classification, but comes at a transfer penalty.

Frame rate also impacts classification ability. As frame rate drops greater periods
of time occur in which no image is recorded, increasing the chance that descriptive
movement may be missed. Standard video frame rates are around 25 frames per second
(fps), or Hertz, with ‘high frame rate’ cameras popular in action scenarios typically
recording at 60 fps. Although there is no known quantification of sign-rate for fluent
signing, one paper found a mean rate 2.7 words per second[8], but this was for finger-
spelled words; if the average word contained 5 letters, this would be around 25 distinct
signs formed per second?. Koller, Zargaran, Ney et al. specify a ‘frames per sign’ rate
of 9.8 for their RWTH-PHOENIX-Weather 2014 corpus, but the the frame rate of the
camera and the definition of sign boundaries is unknown [79]; estimating a frame rate in

the order of 30 Frames per Second (fps) gives a sign duration of around 0.3 s, or a sign

2This estimate of 25 signs per second is questionable as a proxy for sign rate in ‘conversational Auslan’,
as not only does fingerspelling occur rapidly, with little inter-sign movement required, but this paper
discussed ASL, which has uni-manual letter signs, thus representing perhaps the smallest possible
inter-sign movement.
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frequency of 3 Hz, far lower than the 25 Hz estimate above.

Making a somewhat arbitrary compromise and assuming a sign frequency of 15 Hz
and applying Nyquist-Shannon sampling theory proscribes a minimum sampling rate
of 30 Hz, suggesting standard 24 to 29.97 fps video may be adequate for sign language

recognition.

There is also uncertainty in how sampling rate is defined as the exposure (period of
time for which time the sensor is receiving light) for each frame is unknown. For example,
a camera with a frame rate f = 10 fps suggests a period of T'=1/f = 1/10 = 0.1 = 10 ms
per frame, the actual exposure period might be much less than that, resulting in less

motion blur than anticipated but also recording less information.

Temporal resolution is only half of the equation, however; spatial resolution plays an
important role in motion blur. If an arm moves one third of the scene between a frame
on a low resolution camera where the arm is comprised of relatively few pixels a greater
number of pixels will blur than in an image captured by a camera with equivalent optics

but a higher sensor resolution.

The cost of higher image resolution and frame rates is the very thing it gains: inform-
ation. The increased information requires greater interface capability, storage capability

and processing time.

With the light intensity value at each pixel stored as a binary value (typically 8 bit)
for each colour channel (3 for RGB), the data transfer per second, or ‘bitrate’ can be
calculated: bitrate = W x H xbpp x f,, where W is the frame width, H is the frame height,
bpp is the bits per pixel and f, is the frame rate. An RGB camera recording 640 x 480 px
with 8 bit px~! at a frame rate of 24 Hz thus results in an approx. 177 Mbits™! transfer
rate, while 1080p @ 60 Hz requires nearly 3 Gbits™!! Add to that multiple infra-red
imagers and depth streams from onboard depth module and the transfer rate is quadruple
that.

Accommodation of this greatly increased data load is achievable using standard in-
terfaces, with USB 2.0 supporting 480 Mbits™! being superseded by USB 3.0, which
supports a sufficient maximum transfer rate of 4.8 Gbits~!, in 2011 and subsequent re-
leases of USB 3.1, USB 3.2 and USB 4 supporting 10 Gbit s, 20 Gbit s~! and 40 Gbit s~*
[114], respectively, providing headroom for greater transfer rate requirements in the fu-
ture. Additionally, some webcams include internal processors that compress the data
prior to transmission, reducing interface requirements but potentially reducing classific-

ation power [20].
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Capturing 3D Signing Space

Signs are formed in three-dimensional space, with critical information imparted using
relative and absolute spatial positioning [59]. Accordingly, a visual recognition system
will miss information if it only captures a two-dimensional image. Here again the extent
of this effect is dependent upon the techniques employed; state-of-the-art recognition is
currently held by a team analysing television-broadcast (2D) weather report signers [72].
There are several approaches to obtaining 3D data, including using singular depth or
‘3D’ cameras or ‘visual sensor networks’ (VSNs), arrays of 2D (non-depth) cameras,
3D cameras or mixed 2D/3D cameras [20], [127].

The most common 3D cameras couple a typical RGB sensor with an additional IR
sensor for time-of-flight depth to gain additional information about the scene without
altering that visible to humans [11], [30], [129].

Time-of-flight cameras use frequency-modulated flood illumination. Knowing the
speed of light ¢ = 3 x 108 ms ! and measuring the time taken for reflected light to
reach the sensor (thus the name) allows computation of a depth map of the scene, with
the depth D of a given pixel given by: D = W [11].

Despite their capability, time-of-flight cameras were expensive and the release of the
affordable consumer-grade depth camera Microsoft Kinect for Xbox 360 in 2010 [206]
ushered in numerous explorations of the Kinect for gesture recognition, particularly
between 2011 and 2013 [2], [9], [19], [43], [65], [109], [129], [L30].

Another depth camera technology is structured light. These cameras project a unique
infra-red pattern onto the scene and observe the reflected pattern using a sensor. Dis-
tortion of the reflected pattern is then computed to determine depth [129].

Although ‘standard” CMOS camera sensors are able to observe IR, RBG-D cameras
typically employ a discrete sensor for this purpose. The additional sensor often has a
lower resolution (e.g. D: 1280 x 720 versus RGB:1920 x 1080 in the Intel RealSense D435
[55]) but higher frame rate (e.g. D: 90 fps versus RGB: 30 fps in the Intel D435 [55])
This suggests manufacturers believe there is less need for spatial precision and increased
need for temporal precision in depth capture; regardless of intent, this fact may influence
approaches to classify motion.

Not only were Kinect cameras available ‘off-the-shelf’, they also provided much better
resolution: 640 x 480 for the Kinect, versus 160 x 124 for the SwissRanger SR2, a
popular time-of-flight camera of the same era [11], [80], [129]. Although the Kinect

was discontinued by Microsoft in 2017 [26], several other consumer devices had become
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available, a common choice for gesture recognition being the Intel RealSense camera.
A notable development of the RealSense was the introduction of a second IR sensor,
providing in-camera stereo 3D vision akin to human sight [55]. Another depth camera
that had many investigations for gesture recognition was the Leap Motion sensor; a
purely IR depth camera designed to sit on a surface below the hands and fit a skeletal
model [20], [82], [87], [88], [106].

Visual sensor networks use multiple cameras simultaneously to obtain a variety of views
of the scene. The most basic approach is a pair of standard RGB cameras: ‘stereoscopic’,
which can be extended to an array of multiple RGB cameras, there are also mixed RGB
+ (RGB-)D VSNs and pure depth sensor VSNs [20], [102]. Although a purely RGB VSN
can generate a depth map, the inclusion of depth sensors greatly increases this ability
[127] and reduces computational effort [20]. It is worth noting that while many RBG-D
cameras are in fact a pairing of a 2D RGB sensor with a 3D depth sensor, they are not
considered a VSN as the pairing is not used for additional depth distinction purposes

per se; likely the pair are too closely co-located.

Issues with coordinating multiple cameras arise when attempting to match data to pro-
duce a singular correspondence, such as difficulty finding unique ‘landmarks’ for match-
ing, occlusion of landmarks and variations between recorded images due to physical
differences of any two cameras and noise [20]; of course the use of multiple cameras pro-
portionally increases data handling requirements, though techniques have been explored

to identify and remove the redundant, duplicated data inherent in this approach [127].

4.3.1 Spatial Segmentation

Visual techniques must identify regions of interest in order to achieve an ‘apples to
apples’ comparison. For example, it is common in hand gesture recognition to segment
the hand(s), allowing computation of features in that isolated region. Segmentation
through pure image analysis remains a challenge in computer vision in general, as pure
image analysis approaches rely upon the input data, rendering them limited by changes
in illumination and in situations in which the region of interest is visually similar to
other regions within the image [20]. Other ways around these issues are to use an
additional data source (e.g. depth data) that simplifies segmentation or to simply avoid

segmentation entirely, such as in deep learning, as will be discussed later.
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4.4 Pattern Recognition Techniques

Automated recognition problems, such as facial recognition, gesture recognition, hand
shape recognition and so on are sub-problems of the broader pattern recognition problem
that is the essence of computer vision. While each sub-problem has its own region of
interest and solution space, the techniques used are common to all. Indeed, sign-language
recognition is a clear example of a clustered problem; solving for the overall sign involves
solving many smaller problems: the visual phonemes.

Approaches to pattern recognition are constantly evolving, with no one ideal technique
for any given problem. Techniques vary in accuracy, tolerance, robustness and efficiency.

Current efforts can be reduced to two categories, differentiated at the feature extraction
level. In classical manual feature extraction techniques, algorithms are hand-chosen and
tailored to isolate particular elements or image feature descriptors, while in automated
feature extraction an algorithm processes a large corpus to determine its own abstract
set of features with high classification power known as ‘deep learning’

The most common pattern recognition technique for HGR is the histogram of oriented
gradients [29] (HoOG) algorithm, that divides an image into individual cells. The final
output is a set of histograms, one for each cell, produced from direction gradients: the
change in intensity value of each pixel compared to it’s immediate neighbours in both
horizontal and vertical directions (optionally, repeated for each colour) at each pixel in
the cell, binned by orientation angle [38], [50].

HoOG is by no means a new method [95]; it has been used for hand-gesture recognition
since at least 1995 [38] and remains the most common descriptor used in SVM-based
handshape-recognition literature [25], likely due to its aptitude for detecting edges such
as those of fingers that are generally challenging to discern in CV.

Although, courtesy of the cell-based approach, HoOG is invariant to scale, the greatest
pitfall of HoOG in ASLR may be its dependence on 3D rotation, although this could be

mitigated with, for example, stereoscopic cameras to model and correct for rotation.
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Implementation

5.1 Hardware Selection/Capture Modality

As discussed in lit rev, there are two base capture modalities: optical and instrumented,
that can be used alone or in combination, e.g. optical and instrumented, optical x3 and
instrumented, etc. Both modalities have their advantages and disadvantages; for Sign-to-
Text it was decided that due to their tethering and hampered scalability, instrumented
mode would be avoided in preference of a purely optical systems. As a starting point, a
single, frontal depth camera provides a single view of 3D space as a pairing of a planar

(2D) colour image with ‘distance from camera’ values for each point: ‘depth’.

5.1.1 RGB-D Camera Requirements

Calculation of minimum requirements is based on assumptions regarding recording con-
ditions and the combined premises that: 1. the camera must observe the full span of the
signing space and 2. the camera should be as close to the signer as possible to reduce
loss of detail.

Scaling the anthropometric data provided in [81, Table 1.3] to suit a 2m individual
(selected somewhat arbitrarily on the basis of a ‘realistic large individual’), the signing
space occupies a horizontal width of 2.2m, corresponding to the 2m individual’s arm-
span. Subtracting ‘downward grip reach’ from ‘overhead grip reach’ gives a vertical

signing space span of 2.6 m 0.8m = 1.8 m.
Colour frame size also known as ‘resolution’, the size in pixels of a ‘frame’ (a single

still image produced by the camera), usually expressed as width by height (W x H).

ASLR requires enough detail to optically recognise handshapes, i.e. individual
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fingers must be visually discernible. If a finger is 10 mm wide, being recorded in a
frame 2.2 m wide, then 220 fingers could fit in the width of the frame; if it takes 5 px
to clearly delineate a finger, then the frame must be 220 fingers x 5 px/finger =
1100 px wide. Similarly for a 1.8 m high signing space, the frame height must
exceed 900 px.

Colour frame angle of view also known as field of view (FOV), angle of view (AoV)

refers to the angle of the field that is visible to the camera sensor. If the camera-
to-signer distance is limited to a maximum of 3m, then the angle of view must

exceed 41° horizontally and 34° vertically, based on geometric calculation:

span
Angle = 2 x arctan | —2—
distance
The greater the AoV, the smaller the camera-to-signer distance can be. There is a
third parameter often included in AoV specifications: diagonal angle; but as this
is purely a function of width and height it contains no new information and so is

not specified here.

Colour frame rate also known as fps, frame rate refers to the number of frames pro-

duced by a camera in one second, thus, the appropriate SI unit is Hertz (Hz) but
this conveys less information than fps as Hz only counts periodic behaviour and
ignores what is being counted. Considerations begin with loss of data: if the frame
rate is too low, it may miss information between frames as well as contain mo-
tion blur within frames. Further considerations come from the Nyquist-Shannon
sampling theorem: the discrete-time signal sample rate (here, frame rate) must
be at least twice that of the continuous-time signal it is observing to avoid data
loss. Unfortunately no clear data has been obtained on conversational sign fre-
quency so an assumption of less than 10 signs per second was made. Applying

Nyquist-Shannon gives a minimum frame rate of 20 Hz.

Depth frame size height and width of the depth image produced by the camera are

not as exacting as the colour frame as the depth image is primarily used for auto-
mated background removal. If it takes 3 px to delineate a 10 mm finger from the
background, then the depth frame must exceed 660 x 540 px (W x H).

Depth frame angle of view are subject to the same requirements as for colour, thus
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Table 5.1: Summary of required camera parameters.

Parameter Criteria

Colour frame size / resolution > 1100 x 900 px (H x V)

Colour frame angle of view > 41° x 34° (W x H)
Colour frame rate > 20Hz

Depth frame size / resolution > 660 x 540px (H x V)
Depth frame angle of view > 41° x 34° (W x H)
Depth frame rate same as colour frame rate
Minimum depth <1lm

Maximum depth =>3m

Shutter Global

Depth frame rate for segmentation to be effective it must keep pace with the colour

image, thus the frame rate should match.

Minimum depth is the smallest camera-signer distance; a 2m tall signer standing 3 m
from the camera could reach 1m forward, leaving 3m 1m = 2m separation
between hand and camera. Even if the camera-to-signer distance was 2m, there

would still be a 1 m separation, so this makes a sensible minimum depth.

Maximum depth is the farthest distance the camera needs to observe; as this study
has not found an example of a sign that extends behind the signer (an example of
a sign that is close to reaching over the shoulder is LAST WEEK'), depth need only

exceed the camera-to-signer distance: > 3m.

Shutter refers to the capturing of an image by the sensor. Cameras with a ‘rolling’
shutter capture a scene row-by-row; thus, time passes between the recording of
each row in which motion can occur, causing image defects. ‘Global’ shutters

avoid this issue by capturing the entire scene instantaneously and so are required.

These parameters are summarised in Table 5.1. The relevant specifications of several
consumer-grade depth cameras (Creative BlasterX Senz3D [27]m Microsoft Kinect 2.0
[98] (A.K.A. ‘Microsoft Kinect for Xbox One’) and Intel RealSense D435 [54] are provided
in Table 5.2.

http://www.auslan.org.au/dictionary/words/last%20week-2.html
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Table 5.2: Comparison of several consumer-grade depth cameras against required para-

meters.
Parameter BlasterX Senz3D Kinect 2.0  RealSense D435
Colour
Resolution (pixels, W x H) 1920 x 1080 1920 x 1080 1920 x 1080
Angle of view (°, H x V) 67 x 38 No data 69 x 43
Rate (Hz) 30 15 to 30 30
Depth
Resolution (pixel, W x H) 640 x 480 512 x 424 1280 x 720
Angle of view (°, H x V) 68 x 51 70 x 60 87 x 58
Rate (Hz) 60 30 90
Minimum depth (m) 0.2 0.5 0.28
Maximum depth (m) 1.5 4.5 10
Shutter Rolling Rolling Global

5.1.2 RGB-D Camera Selection

The Creative BlasterX Senz3D is included in the comparison as it was the only camera
immediately available at project commencement. While the colour sensor meets require-
ments, depth falls short. The depth resolution of 640 x 480 px (H x V) is only just short
of the required > 660 x 540 px (H x V); this corresponds to a pixel size of 3.4 x 3.8 mm
(H x V) on the target 2.2 x 1.8 m (H x V) scene, which may prove adequate for segment-
ation at the cost of classification accuracy. The real issue is the limited maximum depth;
at a distance of 1.5 m from the camera the signer is in a frame 2.0 m wide but only 1.0 m
high; appropriate for isolated hand-shape recognition but unsuitable for sign-language
recognition.

Microsoft Kinect 2.0, also known as Microsoft Kinect for Xbox One and Microsoft
Kinect for Windows 2.0 is the final version of the Kinect, released in 2013 and discon-
tinued without replacement in 2017 [128]. Kinect 2.0 was designed to observe human
activities in close range and so meets many of the requirements, with the exception of
low depth resolution (equivalent depth pixel size of 4.3 x 4.2 mm over 2.2 x 1.8 m (H x V)
scene 30 % larger than the 3.3 x 3.3mm maximum pixel size) and a rolling shutter,
both of which may prove adequate but would compromise classification accuracy (the

latter severely).

The RealSense series of depth cameras are recommended by Microsoft as a replacement
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for the discontinued Kinect; the Intel RealSense D435 is the most suitable camera of the
RealSense line and meets all requirements. An oddity never fully unravelled are the
various specifications for depth resolution: the standard resolution given is 1280 x 720 px
(H x V) [55], however the specification sheet also lists the ‘Depth Sensor Active Pixels’
as 1280 x 800 px (H x V) [54, p. 34] and the ‘Depth Data Stream’ as 848 x 480 px (H x V)
[54, p. b4]  this latter is the resolution specified as “optimal” (without rationale) by
Intel in a white paper on performance [42]. Taking the highest resolution option, in
combination with the wide angle-of-view means that the D435 can capture the entire
2.2x1.8m (H x V) scene from 1.7 m; however the narrow vertical RGB AoV necessitates
a camera-to-signer distance of 2.3 m.

The Creative BlasterX Senz3D must be dismissed due to it’s short maximum depth.
Although a Microsoft Kinect for Xbox One was available for use and came close to the
requirements, having reached end-of-life presents issues for utilisation of this work: any
group implementing this work, for example stakeholder Deaf Can:Do, would be required
to obtain a Kinect 2.0.

As the only option that exceeds the requirements, an Intel RealSense D435i was pur-
chased for this project (the ‘i’ designates the inclusion of an inertial measurement unit
(IMU) that has no bearing on the current study but may prove beneficial to other pro-
jects using the camera in the future; the D435i is for this project’s purposes identical to
a D435 [54, Table 2-2]).

Depth Technology

It is worth mentioning the underlying mechanism by which a depth camera obtains
distance from light, although the extent to which different technologies may impact the
results is unknown with no discovered comparison in literature.

The Creative BlasterX Senz3D, the original Microsoft Kinect and the RealSense D435’s
stable-mate the D415 are structured light depth cameras, using a combination of a pro-
jector emitting IR and a dedicated sensor for receiving IR?. The projector emits a unique
pattern (hence the name), reversing the distortion observed by the sensor then allows cal-
culation of distance; this is typically computed in real-time using an internal module[27],
[42], [54].

Microsoft Kinect 2.0 is a time-of-flight depth camera, which work by projecting pulses
of IR and computing distance by the time taken for the reflected pulse to return to the

2Camera sensors are typically sensitive to IR so cameras contain software filters to remove it, leaving
only ‘visible light’; it is likely an IR sensor has, in effect, an inverted filter.
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Figure 5.1: Comparison of IR projector patterns: simple ‘texture’ increasing pattern on
left from Intel RealSense D435 where the actual pattern is not important
or even necessary, versus ‘structured light’ pattern on the right where de-
formation in the pattern observed by the camera are the basis of the depth
calculation, such as in the Intel RealSense D415 [12].

camera [11], [98].

The Intel RealSense D435 is a stereoscopic depth camera: it uses the differences in the
scene observed by two IR sensors separated by a precise distance to compute distance in
real-time using an onboard module (“Intel RealSense Vision Processor D4 (DS5 ASIC)”).
This camera also contains a projector that emits IR in a pattern, as shown in Figure 5.1,
but this is only to increase the ‘texture’ of the scene, improving depth performance of

flat surfaces [54].

5.2 Intel RealSense D435i

The Intel RealSense D435i purchased for this project has serial number 843112070952.
It came with a USB cable and miniature tripod.

The USB cable is 1114 mm long with one male ‘A’ type connector and one male ‘C’
type connector that matches the socket on the camera3.

The miniature tripod has a ball-head and extendable legs, but is quite light compared
to the D435i making the assembly easy to topple; even the stiffness of coils in the USB

cable are enough to cause it to sit unevenly. For this the early parts of this study the

3Quality of the cable appears to be important; similar looking cables were not able to provide enough
power and/or bandwidth to run all streams at once. Print on the cable claims it meets 3.1 specific-
ations and handles 30 V; perhaps it has higher gauge wire so lower resistance?)
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Figure 5.2: Intel RealSense D435i on Manfrotto Pixi Mini tripod.

tripod was replaced by a Manfrotto Pixi Mini tripod as shown in Figure 5.2

5.3 Software

To use a depth camera (or indeed, any non-standard device) a computer requires a
driver: an interface or set of instructions that define how the device is to be controlled.
For the D435i, Intel has produced a SDK they call Intel RealSense SDK 2.0 that includes
device drivers, basic utility programs and an application programming interface (APT)
that allows developers to create their own software.

One of the bundled utilities is the Intel RealSense Viewer, shown in Figure 5.3. This
is a convenient way of observing the operation of the camera and it’s output as well as
discovering the effects of various settings. The three optical sensors of the Intel RealSense
D435i, shown in Figure 5.4 can be independently streamed and the depth stream can
also be displayed.

Through playing with Intel RealSense D435i in the Viewer it was discovered that the
IR projector does not have a significant effect on the depth stream, but ambient lighting
conditions do. In particular, light from artificial sources and the reflections of that light
seemed to ‘blow out’ the depth image, with some sources causing interference, perhaps
in the IR. Natural light can also cause issues; while Intel specifies that natural light is

actually a boon to the depth performance of the D435 [412], the variability was passed
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Figure 5.3: The Intel RealSense Viewer allows interaction with RealSense D400 series

44

cameras, viewing and recording individual streams and write-access to para-
meters. Note the 3 streams corresponding to the 3 optical sensors of the
D435: one colour/RGB (top left) sensor and stereo infra-red sensors (top
right & bottom right); the ‘Depth Stream’ is computed in real-time from
an onboard module. Also note the ‘noise’ in the depth data: a slight ‘haze’
around the silhouette, variability in the background.
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Image removed due to copyright restriction.

Figure 5.4: Sensors of the Intel RealSense D435 [54]. From the perspective of the camera:
the circle with an eight-sided gear-like shape on the extreme left is the RGB
Imager; the set of concentric circles next to it is the Left (IR) Imager; the
identical looking set of concentric cirles on the far right is the Right (IR)
Imager and the remaining circle inside a rounded oblong is the IR projector.

onto depth readings. As a work-around, recordings with the Intel RealSense D435i were
made in a small room with no windows and fixed intensity linear fluorescent lighting
that was found to produced consistent depth readings.

For applications such as an SLR system, the SDK, in particular Intel RealSense SDK
2.0 [56], provides a means of developing bespoke software to regulate control of the
camera. Intel RealSense SDK 2.0 is open source, meaning that the code from which it
is compiled is freely accessible, a feature that has several benefits, foremost of which for
this project is access to documentation. The SDK is primarily written for C++ but has
‘wrappers’ (translator code that encapsulates functions for use in another language) for
several other programming languages, including C#, LabVIEW, Python & MATLAB.
Due to familiarity, MATLAB was initially selected for this project.

5.3.1 RealSense in MATLAB

The latest version SDK* was downloaded and the Windows Installer used to obtain
the pre-compiled wrapper. The result is a ‘package’® +realsense that was copied to
a MATLAB working directory. Importantly, for MATLAB to recognise the package,
it’s parent directory must be on the MATLAB search path; for example, if the package

4At the time, v2.19.2.
SMATLAB package folders are denoted by a ‘+’ (plus symbol) [94]
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Figure 5.5: A depth frame produced by depth_example.m in MATLAB. Note the vari-
able depth of the background (much red and yellow = far, some black =
uncertain and bit of blue = close); these are blinds that are blocking natural
light and reflecting internal light.

was located at D:/SignToText/Matlab/+realsense, the MATLAB command to add
the package to the user search path® would be: addpath 'D:/SignToText/Matlab/'

With the package available on the MATLAB search path the simple example script
depth_example.m from the SDK”, shown in Listing 5.1, can be run to validate the setup,
producing depth-colourised frames as shown in Figure 5.5.

Although some frames were successfully obtained from the D435i, issues began to
appear, seemingly all related to the USB connection and controller. The most reliable
way of producing the issues was to run the script a second time: rarely, it would work;
most of the time MATLAB would give an error. After investigation, interrogating the
camera’s connection mode (usb_type_descriptor) revealed that sometimes the con-
nection was initially as required: ‘USB 3.2°, but at other times it reported ‘USB 2.1’
which was workable, but reduced bandwidth meant the camera provided much smaller

frames: 640 x 480 px, as shown in Figure 5.6; after calling the camera once the camera

6A note on directory separators: POSIX specifies ‘/ (forward slash), as used by UNIX-like systems
(e.g. Linux & MacOS), while Windows uses ‘\’ (backslash). Conveniently, however, Windows accepts
forward slashes in input, so ¢/’ can be used as the directory separator for most platforms (as is the
goal of POSIX).

"https://github.com/IntelRealSense/librealsense/blob/master/wrappers/matlab/depth_
example.m
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% Make Pipeline object to manage streaming

pipe = realsense.pipeline();

% Make Colorizer object to prettify depth output
colorizer = realsense.colorizer();

% Start streaming on an arbitrary camera with default settings
profile = pipe.start();

% Get streaming device's name

dev = profile.get_device();

name = dev.get_info(realsense.camera_info.name);

% Get frames. We discard the first couple to allow the camera time to settle
for i = 1:5

fs = pipe.wait_for_frames();
end

% Stop streaming
pipe.stop();

% Select depth frame

depth = fs.get_depth_frame();

% Colorize depth frame

color = colorizer.colorize(depth);

% Get actual data and convert into a format imshow can use

% (Color data arrives as [R, G, B, R, G, B, ...] vector)

data = color.get_data();

img = permute(reshape(data', [3,color.get_width(),color.get_height()]),[3 2
< 11);

% Display image
imshow (img) ;
title(sprintf ("Colorized depth frame from %s", name));

Listing 5.1: depth_example.m: a script included with Intel RealSense SDK 2.0 that
demonstrates the basic function of the SDK in MATLAB and thus can be
used for validation [56].
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Figure 5.6: A small 640 x 480 px depth frame produced by depth_example.m when the
D435 is connected in USB 2 mode (compared to 1280 x 720 px when connected
in USB 3 mode), shown at relative scale to Figure 5.5.

simply was not available. To resolve the issue, restarting MATLAB, un-plugging and
re-connecting the camera and restarting the computer (and permutations thereof) were
tried; restarting proved the most reliable but there were cases where a second restart
was required.

With the D435i proving unreliable in MATLAB, other options were considered, such
as recording footage by other means (for example, using the Viewer) and using MATLAB
to process the files offline. Another option would be to change language: C++ would be
a sensible choice as the core language of the SDK; Python is also supported and was

ultimately selected as a means of skill development.

5.3.2 RealSense in Python

The Python wrapper for Intel RealSense SDK 2.0: pyrealsense2, available as a PyPI
distribution®, can ostensibly be installed via Python’s package manager ‘Python Installs
Packages’ (pip) via the shell command: pip install pyrealsense2 [56]. However,
this distribution is pre-compiled using Python 2(.7), which has ‘End of Life’ set for 2020
[104], so for continuity reasons Python 3 was preferred.

Compiling pyrealsense?2 for Python 3 is complicated and the instructions provided

by Intel are in two places: ‘Python Wrapper’® and ‘Windows 8.1 & Windows 10 In-

8https://pypi.org/project/pyrealsense2/
Shttps://github.com/IntelRealSense/librealsense/blob/master/wrappers/python/readme.
md
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stallation’® | that overlap and are generally vague, so the steps taken are summarized

here.

Compiling Intel RealSense SDK 2.0 for Python 3 under Windows

First, the SDK source (https://github.com/IntelRealSense/librealsense.git) was
cloned to a working directory: C:/librealsense; it could also have been downloaded
as a compressed .zip file and unpacked to the same directory. The following programs

were installed:
Python 3.6+ Target compiler, https://www.python.org/downloads/windows/
CMake 3.84 Coordinates build process, https://cmake.org/download/

Visual Studio 2015+ Mandated build compiler, https://visualstudio.microsoft.

com/downloads/, including ‘Desktop Development with C++’ and Windows 10
SDK 10.0.10586+4.

The ‘Windows 8.1 & Windows 10 Installation’ instructions were followed until the step
‘Compiling Librealsense with Metadata support’, at which point the ‘Python Wrapper’
instructions were followed, from Building From Source: Windows onwards.

CMake GUI was opened by running the shell command
cmake-gui -DPYTHON_ EXECUTABLE=C:/Program Files/Python37/python.exe,
the ‘Source’ was set to C:/librealsense and the ‘Build’ folder set to
C:/librealsense/build. During Configuration the ‘Generator’ was set to ‘Visual Stu-
dio 16 2019, ‘Optional Platform’ left at ‘x64” along with all other defaults. In the big red
panel, the following items were checked: BUILD_PYTHON BINDINGS, BUILD PYTHON DOCS
& ENFORCE_METADATA. Running CMake (‘Generate’) then produced a Visual Studio
‘Solution’ file: librealsense2.sln. The Solution was opened in Visual Studio, the
‘Active Path’ set to ‘Release|x64’ and Build initiated.

The produced package, pyrealsense2.cp37-win_amd64.pyd, was located in
C:/librealsense/build/Release, along with realsense2.d11l. The package was re-
named to pyrealsense?2.pyd and both files were moved to the Python package directory:
C:/Program Files/Python37/Lib/site-packages.

Finally, build was verified using the interactive mode of the Python Interpreter, as

shown in Listing 5.2, where the absence of an error message indicated success.

Onttps://github.com/IntelRealSense/librealsense/blob/master/doc/installation_
windows.md
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> python

Python 3.7.4 (tags/v3.7.4:e09359112e, Jul 8 2019, 20:34:20) [MSC v.1916 64
— bit (AMD64)] on win32

Type "help", "copyright", "credits" or "license" for more information.

>>> import pyrealsense2 as rs

>>> pipe = rs.pipeline()

>>> profile = pipe.start()

>>> frames = pipe.wait_for_frames()

>>> pipe.stop()

Listing 5.2: Testing pyrealsense2 in Python 3 by importing the package; the absence
of error messages indicates success.

5.4 Accuracy & Resolution

With hardware and software cooperating, the recording environment can be considered.
The primary purpose of a depth channel in SLR is for segmentation: using a ‘threshold’
distance from the camera to include only pixels related to the hands in the colour image,
excluding those further from the camera. It is possible, however, that depth itself is valu-
able as a source of features for classification [36], [L01], [105]. In both cases, the accuracy:
the absolute error between reported distance and ground truth, is not important, but
more critical is the resolution: the smallest reported change in measurement.

At the 2.3 m camera-to-signer distance determined previously for the Intel RealSense
D435 to capture the full arms’ reach of a nominal 2m signer, the accuracy specified by
Intel: < 2% at up to 2m and 80% AoV [54, p. 61] translates to an error of +46 mm
or 92mm in absolute terms, with the error tending to increase linearly with distance, as
shown in Figure 5.7.

To distinguish signs where changes occur at depths corresponding to a single finger,
such as shown in Figure 5.8, the depth channel would need resolution smaller than the
thickness or width of the finger. Despite robust discussion on accuracy, little can be

found on resolution in Intel’s documentation; the most useful comment is this:

“Alternatively, when operating at very close range, the D4xx cameras can
inherently deliver depth resolution well below 1 mm. To avoid quantization
effects, it then becomes necessary to reduce the depth unit to 100 pm, and

the max range will be ~ 6.5m.” [12, p. 6]

In summary, the Intel RealSense D435 has accuracy of +2% and a resolution of <
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Figure 5.7: Measured depth ‘Z’ (mm), accuracy (%) and error (subpixel RMS) of a par-
ticular Intel RealSense D435 and theoretical error of the Intel RealSense D435
as accuracy (%) (note the change in target range: 0 to 4000 mm for the the-

oretical plot rather than 1000 to 1160 mm for the top 3 plots); collated from
[41].
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Figure 5.8: An example of signs that differ by the use or movement of a single finger:
several letters (L, N & V) of the Auslan manual alphabet [62].

1mm; both specifications are compatible with SLR but have scope for improvement.
Tests were conducted to determine if the particular Intel RealSense D435i specimen

performs within that specification and potential improvements explored.

5.4.1 Testing Accuracy

As shown in Figure 5.7, the D400 series cameras exhibit linear sensitivity drift: accuracy
is proportional to the reading. Simply put, the further from the camera, the less reliable
the measurement. A signer standing 3m from the camera could be measured anywhere
between 2.94m to 3.06 m and be within specification: a tolerable uncertainty of 120 mm.
There are two key points of discussion here: first, foreground isolation and second, depth

as a classification feature.

Foreground Isolation using Depth

The primary purpose of the depth camera is improving the performance of automated
segmentation; there are computer vision techniques for identifying e.g. ‘skin colour” and
isolating corresponding pixels from a 2D colour image, but performance is low and highly
dependent upon uniformity and consistency of lighting as well as whether any of the
background contains colour similar to that defined as ‘skin colour’ Depth provides ‘an
extra dimension’; once a feature, say a hand, has been identified, the pixels corresponding
to the hand can be segmented from those of it’s surroundings by comparing the depth
values of those pixels.

In simple terms, the experiment can be defined such that accuracy does not impact

segmentation: if the signer is standing at 3m, the furthest the camera can measure
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them is 3.06 m, so if the camera is at least 3.06m + 2% x 3.06m = 3.12m from the
background, or equivalently, if the signer is standing at least 3.12m 3m = 120 mm
from the background, then depth data can be used to distinguish between them. This
distance is easily achievable, but the real problem is not so simple: the hands are likely
in front of the signer’s body or in contact with it; the separation distance then becomes
the thickness of the hand.

For a hand of a thickness of, for example, 12 mm, at 2 % accuracy, the error would be
+12mm x 0.5 = +6 mm, so the camera would need to be no further than 6 mm + 2% =
300mm from the hand for accurate segmentation; clearly this is not feasible. Another
option for improving hand segmentation performance is improving the accuracy of the

camera.

Manufacturer’s Best-Known-Methods for Depth Performance

As a means of improving performance, Intel recommends: setting the camera to the
‘optimal’ depth resolution and using low gain and checking for good exposure, manually
adjusting if necessary [42].

Intel states the optimal depth resolution for the D435 as 848 x 480 px, yet as justifica-
tion states “The higher the input resolution, ..., the better the depth precision” [42, p. 1].
The D435 has an ‘active sensor pixel” resolution of 1280 x 800 px [42, p. 9] and supports
a resolution of 1280 x 720 px, so the stated ‘optimal’ resolution is not the highest input

resolution!!.

Appropriate exposure means that the light received by the camera sensor correspond-
ing to the object of interest uses as much of the light intensity range of the sensor as
possible, rather than ‘saturating’ at full or no illumination, losing all distinction. To this
end, recordings were conducted in a well illuminated room but relied upon automatic

exposure compensation.

Should camera performance not meet the specified accuracy, Intel recommends calib-
ration. An individual named Calvert has developed their own calibration tool, claiming
“accuracy can be improved by an order of magnitude at 2.5 metres and becomes almost
linear in the depth” [13, p. 1].

1Tt was realised while writing this that the 848 x 480 px likely corresponds to the output of the depth
module, so presumably there is some scaling involved to match the resolution to that of the source
IR sensors; this would mean that 848 x 480 px is the ‘raw’ depth resolution.
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Image removed due to copyright restriction.

Available to view online:
https://www.calvert.ch/maurice/improving-
the-depth-map-accuracy-of-realsense-
cameras-by-an-order-of-magnitude/

Figure 5.9: Plot of average Z (depth) error (mm) against distance for Intel RealSense
D435: specification (grey, middle line), measured/stock (red, top line) and
after Calvert calibration (green, bottom line) [13].

Calvert’s Calibration Tool

The Calvert RealSense Calibrator [14] uses the depth stream for calibrating depth
rather than the colour sensor, as per the Intel Calibration Tool [55] and averages mul-
tiple measurements to obtain nearly-linear accuracy, as shown in Figure 5.9.
Calibration requires a target be produced precisely for accurate calibration, with the
instructions suggesting printing five copies of the target on a sheet of paper and fixing
them to a flat board. For greater precision than manually-positioned and squared tar-
gets, the entire target was drawn in computer software in vector format, as shown in
Figure 5.10. The target was printed on an Al sheet of Tyvek (flash-spun non-woven
high-density polyethylene, providing high dimensional stability and durability) at high
precision by a commercial printer. Finally, the target was fixed to a board and clamped
to a stand, as shown in Figure 5.11, then, using a bubble level, the target was levelled

horizontally and vertically.

The camera was installed on a floor-standing tripod with three-axis angle adjustment
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5.4 Accuracy & Resolution

Figure 5.10: Scalar vector graphic of calibration target drawn as per [14].

Figure 5.11: Calvert calibration target fixed to a board, levelled vertically and horizont-
ally on a stand. The slight shadows visible across the sheet show it is not
perfectly flat; this may have caused issues had the calibration tool worked.
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Image removed due to copyright restriction.

Figure 5.12: Diagrammatic derivation ground truth depth Z: the distance between the
scene and the depth sensor of the Intel RealSense D435. Note that the
sensor is displaced behind the front glass a distance Z/ = 4.2mm [54].

and levelled horizontally and vertically. Using a tape measure, the camera was positioned
such that the ground truth depth Z was 2000 mm + 1 mm, accounting for the 4.2 mm
distance between the depth start point and the front glass [54] shown in Figure 5.12.
Using real-time visual feedback, the camera was positioned orthogonally to the centre of
the target; this proved challenging and the results were likely out by some few millimetres
and a degree or so both vertically and horizontally.

At this point the software [14] was run, gave an error and crashed. The issue appeared
to be related to building from source, potentially resolvable but likely requiring consid-
erable learning. With limited time left for the project and stock accuracy adequate for

at least background segmentation, Calvert calibration was abandoned.

5.4.2 Testing Resolution

With the settings adjusted appropriately: depth_unit=100, the D435 should offer ample
depth resolution of around 100pm: more than enough to distinguish between finger
widths an order of magnitude larger; indeed, even with depth_unit at it’s default setting
the depth resolution is more than adequate. Unfortunately, the depth resolution is still
bounded by individual pixels, with a lateral resolution of around 3 mm that will limit
distinction.

To test if actual resolution matched promised resolution, a resolution test board was
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conceived that used nominal 8 x 19mm dress-all-round timber that produces depth
changes of 3, 8, 11, 16 & 19 mm across lateral spacings of 8 & 19mm; the technical
drawing of the board is shown in Figure 5.13 and a photograph of the produced board
in Figure 5.14.

The board was positioned on a stand with the strips running horizontally and, using
bubble levels, adjusted until it was level horizontally and vertically. The Intel RealSense
D435i was positioned on a tripod, set 1000 mm from the basal platen of the board to the
glass of the camera and, using bubble levels, set level horizontally and vertically. Using
real-time visual feedback via the RGB sensor, the camera was translated relative to the
width of the board and rotated until they appeared to be coplanar.

With the Intel RealSense Viewer version 2.25.0 set as shown in Table 5.3, a brief
recording was made. From the recording, a single depth frame was taken after allowing
a few seconds for any automatic settings to stabilise (e.g. auto exposure), manually
cropped to a region-of-interest (ROT) within the board and then depths for an arbitrarily-
selected single column of pixels (intersecting all wooden strips) were extracted. The
column was then down-sampled by retaining every 12 value such that the remaining
number of values corresponded with the height of the board in mm (i.e. one value for
each mm).

The column of depths was then converted from floats in metres to truncated integers
in millimetres and the step-change between pixels was then calculated.

A plot of the raw data showing measured distance (in RealSense ‘depth units’) against
vertical displacement (mm), overlaid with the profile of the resolution test board is
shown in Figure 5.15; it shows that there is some general agreement between where
transitions occur and changes in depth, but there appears to be no correlation between
the magnitudes of the change (real-to-measured) and there are changes in depth where
there is no change in the board.

The distance (float, m and integer, mm) and measured step (mm) values for the first 15
pixels are shown in Table 5.4, along with the full sequence of expected step-changes from
the physical board. A stem-plot of the measured step-changes is provided in Figure 5.16.
Interestingly, there are many small steps, rather than the theoretical result: infrequent
large steps separated by many zero steps. As each pixel represents a lateral translation
of around 3 mm, these results indicate that changes are not ‘abrupt’; the D435i is not
producing high-frequency changes in depth, but rather smoothing the depth changes out.

From these findings it is clear that accuracy is low, with considerable fluctuation the

depth results that could cause issues in segmentation and that although depth resolution
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Figure 5.13: Drawing of resolution test board.
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Figure 5.14: Photograph of actual resolution test board.

Figure 5.15: Stem plot of raw depth (RealSense ‘depth units’) against vertical displace-
ment (mm) overlaid with profile of resolution test board.
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Table 5.3: Intel RealSense Viewer settings during resolution test.

Setting Value

Stereo Module

Resolution 1280 x 720
Frame Rate 6

Depth 716

Infrared 1 Y8

Infrared 2 Y8

Emitter Enabled

Auto Exposure Enabled

AE ROI Manually selected ROI within board
Controls

Depth Unit 0.0010

all others as per defaults

Advanced Controls
all

Depth Visualisation
Visual Preset

Color Scheme
Histogram Equalization
Min Distance

Max Distance

Post Processing

all

RGB Camera

all

Motion Module

all

as per defaults
Fixed

Jet

Disabled

0.95 m
1.05 m

Disabled
Disabled

Disabled




5.4 Accuracy & Resolution

Table 5.4: Depth values from resolution test: first 15 values, top-to-bottom of distance
(float, m), truncated distance (integer, mm) and measured step change (dif-
ference between this pixel and one below it, mm) compared against expected
step change of board profile.

Float (m) Integer (mm) Measured Step (mm) Expected Step (mm)

1.01800005 1018 -2 8
1.01600005 1016 -3 -8
1.01300005 1013 -3 16
1.01000005 1010 -2 -16
1.00800005 1008 -3 19
1.00500005 1005 -2 -11
1.00300005 1003 -1 8
1.00200005 1002 -2 3
1.00000005 1000 -1 -19
0.99900005 999 -1 16
0.99800005 998 -1 3
0.99700005 997 -1 -19
0.99600005 996 -1 19
0.99500005 995 0 -11
0.99500005 995 -1 -8
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5.6 Prompting

5.5.1 Recording via RealSense Viewer

The Intel RealSense Viewer provides means for adjusting camera settings, sav-
ing/loading those settings to file for repeatability and recording to file, thus,
Viewer met all requirements. A trial recording saved silently (without prompt) to
%HOMEPATHY,/Documents/20190824_ 114547 .bag; the save directory can be changed in
Viewer settings.

The .bag extension denotes a ‘bag’ file: a container-type developed as part of the
Robot Operating System [103]. The reason for Intel’s adoption of the bag file here
can only be speculated upon, but the bag file does have the highly desirable prop-
erty of supporting play black [103]. The RealSense SDK provides an example'? for
reloading a recording session from a bag file in Python; the key element being the func-
tion pyrealsense2.config.enable_device_from_file( pyrealsense2.config(),
'bag_path_as_string'), from which point the code is identical to streaming directly
from a camera.

In summary, the Viewer utility included in the Intel RealSense SDK can be used to
record footage streaming from the D435i depth camera and save the data to a ‘bag’ file,

which can then be used to ‘play back’ the stream, facilitating comparative offline studies.

5.6 Prompting

The role of the prompter is to provide the participant with a cue of which sign to
perform. A lexicon must be provided, along with number of replicates per lexeme, with
classification robustness increasing with number of replicates. To reduce confounds in
recordings it is appropriate to present cues in a random order, however the resulting
sequence of labels should be recorded. Finally, the prompter must consider the timing
of the cues. A script, prompter.py, shown in Listing B.1, was written in Python 3.
The script specifies a 1Lexicon, a bespoke Lexicon class object containing a list of
lexeme labels and paths to corresponding images (in hindsight, the class was redundant;
a simple Python Dictionary data structure would suffice.) Using the labels of 1Lexicon,
along with the number of replicates per lexeme nReplicates, a list of strings 1sTrials
is created that contains each lexeme label repeated the appropriate number of times in

random order.

2https://github.com/IntelRealSense/librealsense/blob/master/wrappers/python/
examples/read_bag_example.py
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Figure 5.17: Example teleprompting produced by prompter.py, showing visual cue (in
this case, the /animal/ handshape) and the opaque countdown animation
(currently around the ‘20 seconds’ mark).

The script uses the OpenCV package to create a window, shown in Figure 5.17, in
which the lexeme images are displayed and handle interrupts. It also allows for specifica-
tion of which monitor the prompter is to be displayed on, hence, if the computer system

has multiple monitors, the prompter and recorder can run on separate monitors.

The prompter shows a ‘placeholder’, shown in Figure 5.18, while it waits for the user
to start the session; this allows, for example, the user to initiate the recorder and the
participant to get into position. The session is started by pressing ; facilitated in

this study by a foot switch such that the user can control and participate at the same
time. The session can be terminated early by pressing .

Once the session begins, the prompter shows the first lexeme image and begins a
countdown, displaying a partially translucent overlay that sweeps like the hand of a
clock, from the 12 O’Clock position in a clockwise manner until it covers the lexeme.
This overlay provides the user with an indication of time remaining at that lexeme while
inducing minimal cognitive load. Once the countdown is complete the screen is blanked,
allowing time for the participant to lower their hands to a neutral position, reducing

sign-sign interaction and possibly encouraging more repeatable performances.

Timing is controlled by nSecondsPerCountdown, the amount of time for which the

image for that lexeme is displayed and nSecondsPerTrial, the amount of time from the
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5.7 Skeleton

Figure 5.18: Placeholder produced by prompter.py.

start of one lexeme image until the display of the next. The screen blank time is the
intervening time (nSecondsPerTrial - nSecondsPerCountdown). The overlay increases
by 1° every 60th of nSecondsPerCountdown.

For largely unexplored reasons, observed countdown timing exceeds that specified by
a large zero offset (around 1s) and a small linear offset; this was managed by setting
nSecondsPerCountdown lower than the calculated time by, for example, 1s.

The prompter saves the session details including a list of lexemes as they were presented
to a log file. In anticipation of the eventual development of an automatic temporal
segmentation routine, such as using the first derivative of optical flow, the log also

provides detailed information regarding timing.

5.7 Skeleton

One of the major advances of consumer grade depth cameras are skeleton models [116]
that provide 3D coordinates of ‘joints’ These joints can be used for both for pose
estimation (one of the target phonemes) as well as to locate regions of interest, such as
the hands. While the RealSense SDK and Creative BlasterX Senz3D used at the start
of this study provided a skeleton model, Intel RealSense SDK 2.0 does not.

Intel suggested users acquire a skeleton model from ‘middleware’, recommending Nu-

iTrack (a contraction of ‘natural user interface’ and ‘tracker’), proprietary software that
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offers a free trial. The trial limits recording duration to three minutes, but that was
deemed adequate (and could certainly be worked around). NuiTrack runs in either of
the game engines Unreal or Unity; both are proprietary but free for students. The prior
is scripted in C++ and the latter in C#. Unity was selected somewhat arbitrarily, largely
based on chance to learn C#.

Both NuiTrack and Unity were installed as per manufacturer recommendations; how-
ever, despite overcoming several roadblock errors, NuiTrack could not be made to work.

In the interest of time, NuiTrack and, hence, the Intel RealSense D435i, were abandoned.

5.8 Microsoft Kinect

Although Microsoft Kinect 2.0 has a far smaller depth sensor than the Intel RealSense
D435: 512 x 424 px versus 1280 x 720 px, only 23.5% of the area and a rolling shutter,
the Kinect for Windows SDK 2.0 provides a 25-joint skeletal model, as enumerated
in the SDK in Listing 5.3 includes hand ‘joints’ and, critically, was available for use
immediately.

It was discovered that for Microsoft Kinect 2.0 to work with Microsoft Windows 10,
the Registry must be modified, as shown in Listing 5.4.

The Kinect for Windows SDK 2.0 is natively scripted in C++ so for familiarity, a series
of tutorials were followed and extended to overlay the RGB frame with lines connecting

arm joints and triangles connecting hand ‘joints’, as shown in Figure 5.19.

5.8.1 Recording Kinect

Like the Intel RealSense SDK 2.0, Kinect for Windows SDK 2.0 includes a viewer ap-
plication, Kinect Studio, shown in Figure 5.20 that has the ability to record directly,

saving the inevitable API issues'?.

After fastidiously setting up the recording space a
trial recording was performed and some peculiarities were noticed of the output file.
By default, the file saves silently to j%userprofile},/Documents/<date>.xef. The
location was changed in the settings but there is still no success dialogue. The xef file
extension indicates a proprietary Microsoft file format that can only be read back inside
Kinect Studio. Several attempts were made using various applications and instructions
from online forums to access the recording from inside Kinect for Windows SDK 2.0 in

CH++ but without success.

13Technically, the Intel SDK Viewer is ‘like’ the Microsoft SDK viewer which is around 4 years senior.
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5.8 Microsoft Kinect

typedef enum _JointType

{

JointType_SpineBase

=O’

JointType_SpineMid = 1,

JointType_Neck = 2,
JointType_Head = 3,

JointType_ShoulderLeft = 4,

JointType_ElbowLeft

=5,

JointType_WristLeft = 6,
JointType_HandLeft = 7,
JointType_ShoulderRight = 8,

JointType_ElbowRigh
JointType_WristRigh
JointType_HandRight

t =

t

9,
= 10,
= 11,

JointType_HipLeft = 12,
JointType_KneelLeft = 13,

JointType_AnkleLleft
JointType_FootLeft
JointType_HipRight
JointType_KneeRight

= 14,
15,
16,
= 17,

JointType_AnkleRight = 18,

JointType_FootRight

JointType_SpineShoulder =

=19,

JointType_HandTipLeft = 21,

JointType_ThumbLeft

= 22,

JointType_HandTipRight = 23,
JointType_ThumbRight = 24,

JointType_Count = (JointType_ThumbRight+1)

20,

Listing 5.3: Kinect for Windows SDK 2.0 joint type enumeration definition [97]. There
are several ‘joints’ per hand: wrist, hand, tip and thumb for each left and
right hand, which, while clearly not joints in the true sense of the word (or
even as defined in the API: “Connects two bones of a skeleton” [96]), these
coordinates are very useful for automatic segmentation.
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Windows Registry Editor Version 5.00

; Fixes Kinect infinite disconnect/reconnect issue on Windows 10
; https://support.microsoft.com/en-us/help/4032123/kinect-sensor-is-not-
— Trecognized-on-a-surface-book

[HKEY LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Class\{36fc9e60-c465-
— 11cf-8056-4445535400001}]
"LowerFilters"=""

Listing 5.4: Windows 10 Registry modification to enable USB power support for Mi-
crosoft Kinect 2.0.

Figure 5.19: Kinect skeleton joint overlay on ‘coloured pointcloud’ (RGB pixel values
mapped to 3D coordinates in synthetic ‘camera’ space); triangle vertices cor-
respond to Wrist<Side>, HandTip<Side> & Thumb<Side>, coloured green
for the left side and blue on the right-hand-side. Note low-quality out-
put with substantial shadow and artefact, particularly the right hand and
estimated joint in space.
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Figure 5.20: Kinect for Windows SDK 2.0 viewer: Kinect Studio, showing pointcloud
view with connected-joint ‘skeleton’ (yellow) and hand tracking (red and
green circles).

A successful attempt involved using a third-party utility to convert the Kinect Studio
data file (.xef) into a Matlab data file (.mat) [115]. While the utility did (eventually)
work, the resulting file only contained an array of depth frames, an array of infra-red

frames and a vector of timestamps: no colour frames or joint data.

5.8.2 Kinect in MATLAB

The final approach to obtaining data from Kinect was to record in MATLAB directly,
using Kin2 [124]. Although it can be downloaded precompiled from GitHub!* the package
does not work ‘out of the box’. After investigation, the culprit was found to be the MEX
file. The MEX file was eventually rebuilt following the author’s instructions [123], that
absolutely require use of the Visual C++ compiler from Microsoft Visual Studio 2012
onwards (MinGW-64 cannot be made to work, despite assurances to the contrary [69].

A MATLAB script, shown in Listing B.2, captures the Microsoft Kinect 2.0 data to a
as a vector of struct that is finally saved to disk.

When run, the script attempts to connect to a Microsoft Kinect 2.0, creating a Kin2
object oKin2 that streams colour frames, depth frames and body data. Two figure

windows are created, one showing the RGB stream overlaid with joints, the second the

Uhttps://github. com/jrterven/Kin2
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depth stream. This allows the user to ensure the participant is being correctly recognised
and is well within the frame. Once the session is ready to begin, the participant initiates
recording by forming a fist with their right hand (ideally, this would be programatically
set to the non-dominant hand, rather than hardcoded). The session can be terminated
early by pressing .

The recording session duration dSession = nSecondsPerTrial x nTrials +
dBreathingRoom, where nTrials = nSigns x nReplicates. nSigns, nReplicates
(per sign) and nSecondsPerTrial are manually set in accordance with the Prompter.
dBreathingRoom is a temporal buffer to account for peace of mind, arbitrarily set to 5s
(this has not proved necessary and may be omitted).

The capture rate is set at nSamplesPerSecond = 2, selected somewhat arbitrarily as
having sufficient temporal resolution to ensure there are a few stable frames in a sign
dwell time of around 3s (set in the Prompter). Samples are taken using a for loop,
using MATLAB’s cputime and pause to control timing while accounting for time taken
in sample acquisition and containing a ‘timeout’ condition.

For each sample, oKin2 returns: the colour frame, as a 1920 x 1080 x 3 array of 8-bit
unsigned integers, the depth frame, as a 512 x 424 array of 16-bit unsigned integers and
body data as a struct. These, along with a millisecond-resolution datestamp, are saved

(out) to a sample-indexed row (r) vector of struct (u): ruOut.

Kinect Registration in MATLAB

One of the glaring omissions of the Kin2 wrapper is an offline method for registration: the
mapping between colour and depth frames such that the depth (distance from camera)
can be defined for any given pixel on the colour frame; as such, registration is essential
for depth-based spatial segmentation of the colour image. There are online methods,
such as Kin2.mapDepthPoints2Color, however these require a Kinect to be connected
and take about 20s to align all pixels in the (far faster) depth to colour direction.

As the RGB & D sensors are unable to move relatively and the light received by
the sensors has no bearing upon their spatial relationship, it was deemed reasonable
to assume that depth-pixel-to-colour-pixel mapping should be constant. A map was
made 5 times, with the output being identical between two pairs of maps and generally
being close between all five maps, although no real statistical analysis was conducted. A
concession to this variability was to incorporate the map generation into the recording

script, such that each recording session would have a map created for that camera and

70



5.9 Temporal Segmentation

Figure 5.21: Image produced by mapping the 512 x 424 depth frame’s intensity values
onto the 1920 x 1080 pixel colour frame, histogram equalized for clarity.
Note the limitations to usable space due to the curious banding (perhaps an
artefact of different lens curvature?) and discrepancy between sensor aspect
ratios.

that setup.

The code shown on lines 187 to 193 of Listing B.2, produces a depth-frame-sized, two-
dimensional array of integer coordinates to the corresponding pixel in the colour frame.
Code on lines 195 to 209 then invert the map, providing a quick way to access the depth
corresponding to a given colour pixel. Aligning the depth frame intensity values onto the
colour frame provides the image in Figure 5.21. Both maps are saved to disk alongside

the recording data.

5.9 Temporal Segmentation

The ultimate realisation of SLR includes temporal segmentation where the system ob-
serves both dynamic changes of motion in time and from that determines when to cap-
ture static snapshots. This implementation of SLR simply uses manual selection of a
single static representation of a sign. This temporal segmentation is achieved by a be-
spoke MATLAB ‘AppDesigner’ GUI SelectFramesFromRecordings.mlapp, shown in
Listing B.3. The initial screen of the GUI is shown in Figure 5.22.
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Figure 5.22: The initial screen of SelectFramesFromRecordings.mlapp

The GUI provides a graphical file browser via to select a target output mat file
from KinectRecorder.m that is then loaded and stored as a global variable: app.ruRec;
the selected path is displayed in the status text and the first colour frame is then dis-
played, as shown in Figure 5.23.

The user is provided controls to move forwards or backwards through

frames; the current frame number is displayed in the status text. When they are satisfied
the current frame is a good instance of the sign (e.g. little or no motion blur, well framed),
they may it, appending the corresponding struct from ruRec to the selections
app.ruSln.

If the user makes an error in selection it may be reversed by navigating to a preferable
frame and pressing . While this allows recovering from a mis-click by replacing
it with the next correct frame it relies upon user memory to press the correct button
and will not work for the final sign. An appropriate extension to the app would be the

inclusion of a ‘filmstrip’ of selected frames that could be navigated by and deleted.

When the app is closed, the output file is saved to the source directory the user
browsed to initially. As MATLAB is unable to save files > 2 GB using the default MAT-
file version (7) and the files produced may be tens of GB so the MAT-file version is set
to 7.3 using the tag ('-7.3") [92].
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Figure 5.23: The GUI SelectFramesFromRecordings.mlapp showing the first colour
frame of a MATLAB recording file (produced by KinectRecorder.m) that
has been loaded. Note the right-hand is formed into a fist; this is the cue
that started the recorder.

5.9.1 Label-Frame Alignment Verification

A wvital stage is verification of alignment between frames selected by
SelectFramesFromRecordings.mlapp and expected labels generated by prompter.py.
For this study they have been manually validated via the MATLAB function
VerifySelectionAndLabelling.m, shown in Listing B.6, which displays the images
one-by-one in a Figure window, the title of which is the expected label. If the label
matches, the user presses [c], if there is a mismatch they press and they may quit
by pressing [q . At the end of the session the function prints a list of mismatch indices

and labels to the command window.

While on one hand it is easy to idealise integration this process into the frame selection
GUI, upon greater inspection integration does not present a long-term solution: once an
automatic temporal segmentation script has been developed, for example by taking the
median of the first derivative of optical flow of the sampled frames, the verification would
again need to be a post-segmentation process. So despite the current implementation

being very basic and not particularly user friendly, it was deemed suitable for purpose.
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(a) Cropped ROI of the hand: colour on the left and (b) Red channel of colour ROI with
depth on the right. distant pixels masked out.

Figure 5.24: Automatic segmentation by determining depth at the Hand point and ex-
cluding more distant pixels. This /bad/ example demonstrates a weakness
of this naive method: failure to exclude parts of the forearm and shoulder.
The misalignment of registration can be just discerned in (a) and is all-too-
evident in (b).

5.10 Spatial Segmentation

Spatial segmentation refers to the isolation of the pixels corresponding to the target
from the rest of the image. In this case, the target is the dominant hand. This was
preformed inside a MATLAB script ProcessRecordings.m, shown in Listing B.4, that
automates all steps from loading the selected frames to producing the numerical features
for classification.

There are several ‘joints’ that could be of use for segmentation, particularly the Hand,
Wrist and HandTip for manual segmentation. The entire skeleton is useful for body pose
estimation and the ‘head joint’” provides a starting point for facial segmentation. This
study has only implemented unimanual segmentation.

The initial concept was to use depth data to segment colour pixels corresponding to
the hand from the background. This is achieved by finding the depth at, for example
the Hand joint and excluding points with greater depth. Unfortunately, there was a
misalignment between depth and colour frames, as shown in Figure 5.24.

The misalignment is likely an artefact of registration and attempts were made at
discovering the source and at applying correction algorithms, both without success. At
first glance the misalignment in Figure 5.24b appears to be translation to (frame) left as
the medial edge of the hand is obscured; however, the separation between the mask and

shoulder is much less, suggesting a non-linear relationship.

74



5.10 Spatial Segmentation

(a) (b)

Figure 5.25: Two different instances of /good/ marked with joints: HandLeft (()),
WristLeft (x) and ElbowLeft (%); the points are both inaccurate and
imprecise (as this is a 2D view of 3D space, it is possible there is a ‘paral-
lax’ viewing error, but it was judged that any such error could not explain
the variation observed).

An alternative method was conceived, using the Hand point to define the centre of the
ROI and use HandTip or a ratio of the distance between the Wrist and Elbow points to
define the distal extent. For the proximal extent of the ROI a line through the Wrist
perpendicular to the Elbow was envisaged. For the width, a ratio of lengths or the Thumb
joint were considered.

A Dbrief exploration of points, shown in Figure 5.25, shows how wildly they vary,
precluding this approach.

Finally an automatic segmentation method was arrived at that defined a square ROI
around the HandLeft joint, as shown in Figure 5.26. Initially attempts were made to
dynamically scale the size of the square based on the distance between the wrist and
the elbow, but due to variability this was not effective. In the interest of time, a static
definition of 200 px was provided, being wide enough to encompass the outstretched hand
of the participant standing 2m from the Microsoft Kinect 2.0. For height, the square
was translated up 20 % of the diameter to better include the fingers and reduce inclusion
of the forearm that would likely otherwise negatively impact classification accuracy.

Once the ROI has been defined on the colour frame it is ‘cropped’ (by means of
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(a) 0.5% (b) 0.75% (c) 200 px

Figure 5.26: Different approaches to define the diameter of square ROI around the Hand
joint (()). (a) and (b) are dynamic, defining the diameter as a proportion
of the Euclidean distance between the Wrist (x) and Elbow (%) in three-
dimensional space. (c) applies a fixed diameter (in this case, 200 px) and is
translated vertically up 20 % of the diameter.

76



5.10 Spatial Segmentation

array slicing) to produce the final RGB ROI. Using the depth map created during the
recording, the ROI is mapped onto the depth frame which is likewise cropped.

5.10.1 Binary Image of Hand

The binary image, or ‘mask’, is the realisation of the depth segmentation discussed in
the preceding section; points in the depth ROI more distant than the hand are set to
0 (‘off’) and points no more distant than the hand are set to 1 (‘on’), hence, binary,
or ‘logical’ in MATLAB datatype vernacular. To account for parts of the hand slightly
more distant than the distance of the pixel at HandLeft, a tolerance is added by means
of iMaxHandDepthMm.

Although the binary image is not used for segmentation via masking, it may hold
information that empowers classification so is output to disk along with the colour and
depth ROIs.

5.10.2 Implementation

As mentioned, the automatic implementation of spatial segmentation through to fea-
ture extraction is performed by the MATLAB script ProcessRecordings.m, shown in
Listing B.4.

Automatic Spatial Segmentation

ProcessRecordings.m calls the RoiImagesFromSelectedFrames.m function, shown in
Listing B.5, which requires a physically connected Microsoft Kinect 2.0, passing the
selected-frame-indexed row vector of struct containing Kinect data, map from col-
our to depth pixels, setting the diameter of the square ROI to 200px and setting
the maximum distance further than the hand joint to include to 200mm'®. The
function returns three selected-frame-indexed row vectors of cell, one containing an
iRoiDiamPx x iRoiDiamPxX X Mchannes (Where nepannes = 3 °.° RGB) array of 8 bit un-
signed integers for the colour ROI image, one containing an iRoiDiamPx x iRoiDiamPx
array of 16bit unsigned integers for the depth ROI image and one containing an
iRoiDiamPx x iRoiDiamPx array of logical values for the binary hand ROI image.
The selected frames MAT-file is loaded using ValidatedLoad .m, shown in Listing B.11,

in order to making the loading of files clearer, as it was discovered MATLAB ‘wraps’

15 A distance of 200mm was selected as being approximately the distance from the fingertips to wrist
when forming ‘deep’ signs such as /animal/.
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loaded files inside a struct; this function simply uses a provided expected variable name

to unwrap the file and validate that it is the correctly-named variable.

Feature Extraction

Features are extracted using the MATLAB function
ExtractFeaturesFromRoiImages.m, shown in Listing B.7, which takes as input
the serial number of the current sign and the cropped ROIs for colour, depth and the

binary image and collates them to a single struct.

From the binary image, geometric properties are extracted using region properties
from the MATLAB Image Processing Toolbox [93]: area per convex area (the area of
the convex hull), area per filled area, perimeter per area, perimeter per convex area and

perimeter per filled area. Each of these features are a single normalised scalar.

The MATLAB Computer Vision Toolbox [91] was used to extract more complex fea-
tures from the depth and colour images. As the colour image comprises three channels,
most of the functions cannot be applied directly, with the exception of HoOG, so that is
performed separately. HoOG, speeded-up robust features [7] (SURF), maximally stable
extremal regions [89] (MSER), KAZE (not actually an abbreviation, but a stylized form
of a Japanese word that means ‘wind’ [4]), binary robust invariant scalable keypoints [84]
(BRISK) and oriented FAST and rotated BRIEF [112] (ORB) were applied to each of:
each channel of the RGB image, the MATLAB-calculated greyscale version of the RGB
image, the depth image and a histogram-equalized version of the depth image. Each of

these functions return a variable number of scalars that are reshaped into a column.

The not particularly readable code on lines 46 through 55 are creating the labels,
slicing and collating the individual images and creating anonymous functions to perform
the extraction. The loops in lines 57 through 63 is where the extraction actually occurs.
This separation allows for dynamic naming of the structure’s fields and is perhaps a little

more readable than the alternative.

ProcessRecordings.m collates the individual feature structs into a row vec-
tor and saves them to the source directory as the original filename suffixed by

" extractedFeatures.mat".
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5.11 Feature Selection

To reduce the enormous number of features produced by ProcessRecordings.m (>
600000) the features are pruned by FeatureStructToArrayWithPca.m, shown in List-
ing B.8. PCA is used to reduce the number of features down to the number of principal
components specified by nPcaComponents, ranked by explanation of the data.

First, any empty fields are removed, along with fields that are thought to correlate
strongly with one another (that is, ones that are linear combinations).

For each of the remaining features, the feature values for each lexeme are trimmed
to the height of the shortest column, then vertically concatenated into one column;
the columns for all the lexemes are then horizontally concatenated, forming a two-
dimensional array.

Once transposed, this array forms a “design matrix”, nxp where n (rows) is the number
of ‘observations’, or instances (in this case, lexemes) and p (columns) is the number of
‘variables’, or features. The design matrix is saved to disk as anIxFCollated.mat along

with the labels of the surviving features.

5.11.1 Multi-layer PCA Selection

To clarify the multi-layer PCA selection strategy:  the first layer is per-
formed inside FeatureStructToArrayWithPca.m, where PCA can be used to select
FeatureStructToArrayWithPca.nPcaComponents principal components at the function
value column stage; that is, selecting the number of components per feature (where, for
example, the BRISK featue set may have ~ 90 ‘subfeature’ columns). The second layer
occurs within ClassifyMl.m where PCA is used to select ClassifyM1.nComponents
principal components; classification is then performed on these components, rather than
individual features. This layered approach arose organically as a way of reducing linear
combinations and may be redundant; a single, more considered approach could likely
provide the same result and be easier to interoperate but unfortunately has not been

explored due to time constraints.

5.12 Classification

Classification is performed in MATLAB using newff from the R2010a version of the
Neural Network Toolbox [90] using the script ClassifyMl.m shown in Listing B.9. The
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design matrix anIxFCollated.mat is loaded, constant rows are removed and the mean of
each row is mapped to 0 while the standard deviation of each row is mapped to 1. PCA
is performed to select the nComponents principal components ranked by explanation of
variance of the data.

10-fold cross-validation is used to perform supervised learning. For each fold, a neural
network with a single hidden layer of 10 neurons is created. Early stopping is achieved
by validation and by limiting the maximum number of training iterations. The out-
put transfer function is log-sigmoid, mapping values to between 0 and 1. The training
algorithm is Levenberg-Marquardt back-propagation.

Finally, Rand accuracy and Bookmaker Informedness are calculated and printed to

the command window.

5.12.1 Measuring Performance

The traditional measure of machine learning performance, accuracy, is generally provided
by ‘precision’, a measure that only accounts for ‘true positive accuracy’ tpa = ratio of
times a class was correctly predicted (or ‘true positive’ tp) to the total number of times
the class was predicted (or ‘predicted positive’ pp, which in turn is the sum of tp and
‘false positives’ £p). The accuracy of results are presented using two measures that take
‘true negatives’ tn into account: Rand Index, a weighted mean of correct predictions
to the total number of cases and Bookmaker Informedness, which specifies probability
versus chance; both measures are calculated from values in the Contingency matrix
(Table 5.5) as follows [107]:

Rand Index = rp x tpr + rn x tnr
19% pn

=Irp X —+7rpXxX —
Ip rn

Informedness = Recall + Inverse Recall 1

=tpr+tnr 1

tp  tn
— T4
pp pn
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Table 5.5: The binary Contingency table [107]. Inside the matrix, the prefix t denotes
‘true’ while the prefix £ denotes ‘false’; the suffix p denotes ‘positive’ and the
suffix n denotes ‘negative’. The rows and columns are summated: labels with
prefix p denote ‘predicted’ and prefix r denotes ‘real’; the suffixes are as before
(‘positive’ and ‘negative’). For example, tp is ‘true positive’, pp is ‘predicted
positive’ and rn is ‘real negative’.

tp | fp | PP
fn | tn | pn
rp rn 1
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Chapter 6

Validation

6.1 Introduction

The purpose of the validation study is to test the developed method for static handshape
recognition. A set of signs, or lexicon, was selected that provided achievable challenge,
as per the literature [47], [101], [126].

6.2 Method

The validation study follows that detailed in Chapter 5; only a summary of method and

the rational for decisions are provided here.

6.2.1 Study Parameters

Lexicon

Several possible sets of signs, or lexicons, were considered for the validation study. The
Auslan alphabet is a convenient self-contained set of which only two letters include
motion H and J  but being predominantly bimanual means it is more difficult to
automatically segment images to a regular region of interest, increasing classification
challenge. One could select just the static unimanual signs, or reduce that further to
similar signs, such as the pairs L & R, N & VvV and D & P, which would be challenging for
any system to distinguish between. Auslan numbers 0 to 9 are unimanual and almost
static  they are performed with a slight forward jerk, but this could be omitted but
the silhouettes are quite similar. For simplicity, a lexicon of five basic handshapes (thus,

phonemes), all with distinct silhouettes, was selected for the validation: /five/, /closed/,
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(a) /five/ (b) /closed/ (¢) /animal/ (d) /good/ (e) /bad/

Figure 6.1: Images of the lexicon of five basic handshape phonemes used for the validation
study of the Sign-to-Text system.

/animal/, /good/ and /bad/, as shown in Figure 6.1.

Performance Guidelines

To improve consistency in the validation it was decided to perform the handshapes
laterally and anteriorly at approximately chest height that is, by a natural rotation of
the elbow such that the forearm moves ‘upwards’ and ‘outwards’ while the elbow hung
naturally from the shoulder without consciously restricting elbow translation. The hand
was to return to a ‘hanging’ neutral position between performances. The participant

was to stand in the same spot and reduce other movements for the duration.

Replicates and Timing

For this first validation study the number of replicates per lexeme nReplicates was set
to 10, being adequate for basic classification without being too time consuming during
the initial vetting of the system.

The time between lexemes, nSecondsPerTrial was set to 5s and the dwell time
per lexeme, nSecondsPerCountdown in propmter.py was set to 2s, knowing that on
the hardware employed 2s resolved to an empirically-measured actual dwell time of
(2.92 4 0.04) s.

The total time te0::

tiotal — DTrials x nReplicates x nSecondsPerTrial
=5Hx10x5s
= 250s
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Figure 6.2: Recording setup with Microsoft Kinect 2.0 and a computer monitor set up
on tripods. A Intel RealSense D435i is also mounted on the tripod in this
image: this was purely for interest and served no functional purpose.

6.2.2 Setup

Recording was performed in a room with no natural light to reduce illumination vari-
ability and linear fluorescent artificial lighting that had been confirmed not to interfere
with the depth measurement. The setup is mostly! shown in Figures 6.2 and 6.3.

The Microsoft Kinect 2.0 was set up on a floor-standing tripod with three-axis ad-
justability and levelled horizontally and vertically. As the wall was not flat, the recording
setup was aligned by means of carpet squares. The position where the participant would
stand was set at an intersection between carpet tile seams approximately 0.5m from
the wall. The camera was positioned atop the seam that ran perpendicular to the wall,
such that it was 2.00m from the signer position. The Calvert Calibration Target was
set up carefully aligned atop the intersection of the carpet tile seams; using real-time
visual feedback via the RealSense Viewer the camera & tripod were carefully positioned
such that the camera was inline with and perpendicular to the central vertical line of

the target. The camera was levelled, alignment reviewed and the target removed.

!The setup as shown was staged hastily for the capture of these photographs and is not actually aligned
as specified.
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Figure 6.3: Example of participant signing in front of camera.

A computer monitor was clamped to a second floor-standing tripod, positioned just
behind the first tripod and adjusted such that the display was just higher than the top
of the Microsoft Kinect 2.0 and hence, not obscured.

The FootSwitch3-F3.4 was placed on the floor just in front (towards the camera) of
the target carpet seam. The left key (1) was set to | Left Mouse |, the central key (2) to

and the right key (3) to [ Enter |

The Microsoft Kinect 2.0, mounted monitor and foot-switch were connected to a (non-
University) desktop computer on an adjacent desk; the Microsoft Kinect 2.0 was also
connected to power. As the desktop computer had two monitors already and had in-
adequate graphical ability to run all three monitors, one of the regular monitors was

disabled and the mounted monitor enabled in software.

6.2.3 Session Flow

Due to the disjointed nature of the software used to prompt and record, care was taken
in sequencing events. First, the Python prompter script prompter.py (Listing B.1) was
run. During initialisation the display window was adjusted to appear on the mounted
monitor and pressed, taking the script into the placeholder screen. Second, the
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MATLAB recorder script KinectRecorder.m (Listing B.2) was initialised and the figure
windows moved to be visible on the desktop’s monitor. Third, the Prompter window

was selected, completing initialisation.

When the participant was in position and confirmed to be fully within the RGB
frame with the skeleton overlay functioning correctly, the recording session was begun

by forming a fist with the non-dominant (right) hand and the prompting session by

pressing key 3 on the foot-switch.
At the end of the prompting session the script closed silently; the recording script

took a few seconds longer than expected to complete, then left a success message in the

Command Window.

The ‘recording’ output file from KinectRecorder.m was saved to sDirOut
(default "D:/KinectRecordings/"), as a timestamped mat file, in this case:
20198ep17Tue20h28_Recording.mat.

The Recorder script also created a map of pixel coordinates from the depth frame to
the colour frame, saved to the same directory as 2019Sep17Tue20h28_aiD2C.mat and a
reverse map (colour to depth) as 2019Sep17Tue20h28_aiD2C.mat.

6.2.4 Segmentation

Temporal segmentation, the selection of one frame per lexeme, was performed
manually in the MATLAB AppDesigner GUI SelectFramesFromRecordings.mlapp
(Listing B.3). The MATLAB recording was loaded from disk, eventually? res-
ulting in the screen shown in Figure 5.23. While making frame selections, care
was taken to select frames without perceptible motion artefact, as shown in Fig-
ure 6.4. On closing the GUI the selections file was saved to the source directory as
20198ep17Tue20h28_Recording.mat_selectedFrames.mat.

Frame-to-label verification was performed manually in
VerifySelectionAndLabelling.m (Listing B.6), visually comparing the se-
lected frames to expected labels as extracted from the prompter.py log file
Prompter_2019Sep17Tue20h22.1log, the first 15 lines of which are shown in List-

ing 6.1; all frames were correctly labelled.

2Loading a large recording file (> 2 GB) does take considerable time during which the GUI does not
appear to be doing anything...
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INFO:root:This is:

— d:\Dropbox\Uni\2019S1\ENGR9700\signtotext\Python\prompter.py
INFO:root:It is: 2019-09-17 20:22:08.429736

INFO:root:Timing: trials: & s,

countdown: 2 s

INFO:root:Lexicon: ['animal', 'bad', 'closed', 'five', 'good'] (5 items.)
INFO:root:Repeats per sign: 10; 50 total trials, taking 250 s.

INFO:root:Trial sequence: ['bad', 'closed', 'good', 'animal', 'bad', 'five',
— 'five', 'bad', 'animal', 'five', 'animal', 'good', 'good', 'closed',

— 'five', 'five', 'animal', 'good', 'closed', 'good', 'good', 'animal',

— 'closed', 'bad', 'five', 'animal', 'bad', 'animal', 'bad', 'animal',

— 'good', 'good', 'bad', 'bad', 'closed', 'five', 'bad', 'animal', 'closed',
— 'bad', 'closed', 'animal', 'five', 'closed', 'five', 'good', 'good',

— 'five', 'closed', 'closed']

INFO:root:Starting trial 1/50:
INFO:root:Countdown completed
— 0:00:02.168940
INFO:root:Starting trial 2/50:
INFO:root:Countdown completed
— 0:00:02.208714
INFO:root:Starting trial 3/50:
INFO:root:Countdown completed
— 0:00:02.228847
INFO:root:Starting trial 4/50:
INFO:root:Countdown completed
— 0:00:02.240021
INFO:root:Starting trial 5/50:

'bad' at 20:23:25
in 0:00:02.831060, next trial starts

'closed' at 20:23:30
in 0:00:02.791286, next trial starts

'good' at 20:23:34
in 0:00:02.771153, next trial starts

'animal' at 20:23:39
in 0:00:02.759979, next trial starts

'bad' at 20:23:44

in

in

in

in

Listing 6.1: First 15 lines of Prompter_2019Sep17Tue20h22.1log, the logfile produced
by prompter.py for the validation study.
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(a) Motion artefact (b) Steady

Figure 6.4: Example of motion artefact in the recording: in (a) movement of the arm
was fast enough that it changed location while the shutter was open, so the
image captured is an averaging of that motion over that time. In (b) the arm
is fairly steady: any motion artefact is too small to perceive.

Region-of-Interest Images

Region of interest images were produced by RoiImagesFromSelectedFrames.m, shown in
Listing B.5, passing arguments iRoiDiamPx = 200 and iMaxHandDepthMm = 120. The
position of the ROI was established by the coordinates of the HandLeft joint in the colour
frame, which was then cropped to produce the 200 x 200 px RGB ROI image. The depth
ROI image was then produced by mapping the colour ROI into the depth frame. Finally,
the depth value at HandLeft plus iMaxHandDepthMm was used as a threshold to binarize
the depth ROI, forming the binary ROI image.

6.2.5 Feature Extraction and Selection

ProcessRecordings.m then called ExtractFeaturesFromRoiImages.m, shown in List-
ing B.7, to perform feature selection from the ROI images. The feature value structs
for each lexeme were horizontally concatenated. The row of struct was saved to disk,

completing the ProcessRecordings.m script.

Feature selection was performed by SelectFeaturesFromStructWithPca.m twice,
once with nComponents = 2 and once at three principal components. The design matrix

anIxFCollated.mat was saved to disk.
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6.2.6 Classification

(Classification was performed by a neural network in MATLAB using the script
ClassifyMl.m, shown in Listing B.9. anIxFCollated.mat was loaded from disk, con-
stant rows were removed and the mean value of each row mapped to 0 and deviation of
each row mapped to 1.

The neural network was supervised, using 10-fold cross-validation. A single hidden
layer with 10 neurons was created for each fold. Early stopping was triggered using
validation by 20 % of within-fold data or reaching a limit of 500 epochs. A log-sigmoid
output transfer function mapped the results to between 0 and 1, matching the mapping
of the design matrix.

Classification was repeated a number of times, once using the 2 PCA set and six times
using the 3 PCA set. For the last five, an additional layer of selection by PCA was
performed within ClassifyM1.m, choosing the 15, 5, 4, 3 and then 2 most explanatory

principal components. The accuracy as reported by ClassifyMl.m was recorded.

6.3 Results

The results of classification are presented in Table 6.1, the composition of the three

principal components used in Set 6. are shown in Figure 6.5.

6.4 Discussion

In terms of feature selection, the plot of contribution to classified components (Figure 6.5)
shows that Component 1 largely dominated by geometric properties of the binary image,
with the 27 % of the variance explained by: the ratio of perimeter to area of the binary
image, the ratio of perimeter to filled area of the binary image and the area per convex
hull area of the binary image. 21 % of the variance was explained by HoOG features:
the first principal component for each of the colour ROI, depth ROI and histogram-
equalized-depth ROI (these last two then are likely linear combinations).

Component 2 was dominated by the second principal component of the HoOG for
the depth ROI, histogram-equalized-depth ROI and colour ROI, explaining 33 % of the
variance. The perimeter per convex area of the binary image accounted for a further

10 % of the variance.
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Table 6.1: Results of classification for the verification study of 5 handshapes and 10
replicates (50 observations/instances). Feature extraction was the same for
all result sets. The first layer of feature selection (L1) uses PCA to select which
subfeatures of a feature set are include by ranking contribution to explanation
of variance. Layer two (L2) uses PCA again produce principal components
containing these features.

# Components Rand Index Bookmaker Informedness

Set

L1 L2 Mean SD Mean SD
1 2 49 0.43 0.06 0.33 0.07
2 3 47 0.55 0.06 048 0.09
3 3 15 0.76 0.05 0.71 0.07
4 3 5 0.79 0.04 0.78 0.05
5 3 4 0.86 0.02 0.86 0.03
6 3 3 0.86 0.03 0.87 0.03
7 3 2 0.78 0.03 0.77 0.04

The third principal component of HoOG for each of the: colour, depth, histogram-
equalized depth and grayscale ROIs explained 43 % of the variance for Component 3.
The second principal component of HoOG for both grey and colour accounted for a

further 13 % of the variance.

The geometric properties of the binary image and HoOG explained most of the variance
across the components; the other Computer Vision Toolbox features contributed little,
with the exception of the third component of ORB and the second component of BRISK,
both of the histogram-equalised depth ROI, which both accounted for 6 % of the variance
in Component 2. This result is inline with much of the literature, where geometric
properties can clearly be seen to be highly informative for these diverse silhouettes and

HoOG is prevalent.

A mean Bookmaker Informedness of 87 % gives high accuracy compared to chance and
outperforms a similar study [47] but not as well as [126] who achieved 99 % ‘accuracy’
(definition unknown) using super-pixel earth mover’s distance on distinct silhouettes or
[31] who achieved 93 % on a set of 1680 samples.
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6.5 Conclusion

This validation study aimed to assess the groundwork implementation of the proposed
framework via static handshape recognition. The development of the capture system and
supporting software was non-trivial, but has been shown to perform at a level comparable

to the literature for a small basic lexicon and a single signer.
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Chapter 7

Conclusion

This project investigated the enduring challenge of automatically recognising sign lan-
guage, interpreting it and translating it to a second language. Although attempts have
been made to address this challenge for over 30 years, SL remains a challenge for both
linguistic and technical reasons.

The linguistics of signed languages were explored thoroughly, providing insight into the
elements that define sign language and synthesising the various components and scholarly
views to provide a new taxonomy of linguistic structure. Untangling the phonemic
categories and setting them all at the same basal level, rather than having reducible
irreducible phonemes provides a more complete and rigorous representation.

Challenges intrinsic to signed languages were also researched, finding valuable inform-
ation in the linguistic literature but some confused interpretations within the recognition
literature. The existing challenges are laid out in a single, detailed list with examples
for the more commonly misconstrued labels. Through an understanding of both sides
of the SLR coin, three additional challenges are proposed, including the requirement for
remembering the assignment of entities to particular locations within the signing space,
the entanglement of spatial referents with movement epenthesis and the well-known but
not previously listed challenge of identifying temporal edges between signs.

A framework that incorporates all the elements of signed language is presented. The
‘acoustic model, linguistic model’ approach from speech recognition is adapted to form
linguistic hierarchy of ‘visual model” then ‘linguistic model’. A modular approach sup-
ports and hopefully encourages multiple input modalities. The addition of temporo-
spatial memory block is essential to support spatial deictic signs and contextual deictic
modifiers, but the actual implementation and requirements have not been considered.

The recognition of sign languages is an evolving field where new technologies such as

depth cameras and new techniques such as deep learning are slowly helping researchers
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overcome long-standing barriers. The use of multi-modal sign observation helps reduce
occlusion and making use of existing large labelled datasets such as televised weather
forecasts provide the means to drastically improve inter-signer accuracy.

A rudimentary implementation of the framework was undertaken as a means of vetting
the systems and enhancing concepts, providing an excellent exercise in technical hurdle-
jumping. Despite issues with both hardware and software, a system was eventually
devised to recognise static handshapes. The implementation was validated by means of

a trial of 5 handshapes, achieving a Bookmaker Informedness accuracy of 87 %.

7.1 Future Work

Future work should extend this implementation to include greater phonemic recognition;
first adding to handshape recognition then adding additional categories using established
pattern recognition techniques and possibly instrumentation. Once several classifiers
are producing phonemes, the ‘puzzle pieces’ of temporo-spatial memory and contextual
deictic modifiers can be explored. Development of a language model will require a stat-

istical approach from a linguistic perspective, before glossing and language translation.
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Appendix A

Linguistic Conventions

The stylistic conventions for annotating the linguistics of signed language used in this
thesis are taken from the works of Johnston, albeit some of them with definition inter-
preted through context as their explicit definition could not be discovered.

PROs3, STAND3, WHEN 5,ASKs, WHY PRO3, ANGRY
He, was standing just there when he, asked himy why hey, was angry.

YESTERDAY, |MEET3, POSS; BROTHER.
I met your brother yesterday.

PRO3, = TELL; PROs ENGAGED
They told me you were engaged.
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Recognition Code
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B.1 Teleprompter script

import cv2

import numpy as np

import logging

import DUtils

from random import shuffle

from screeninfo import get_monitors

from datetime import datetime, timedelta

class Lexicon:
def __init__( self, 1sSigns, pPath, sPrefix, sSuffix, lsImages=None):
self.1sSigns = 1sSigns
self.pPath = pPath

sPrefix

sSuffix

self.sPrefix

self.sSuffix

self.lsImages = lsImages if type( lsImages) is list and len( lsImages) > O
— else [str( pPath / ( sPrefix + sSign + sSuffix)) for sSign in lsSigns]
self.dSignImages = dict( zip( lsSigns, self.lsImages))

def __repr__( self):

return self.lsSigns

def centre_window_on_monitor( sWinName = None):
# Use global version if no argument provided
# (sometimes overloading would really be sensible...)
if sWinName == None:
sWinName = sWindowName
iWinX, iWinY, iWinW, iWinH = cv2.getWindowImageRect( sWinName)
mMonitor = get_monitors() [ iMonitor]
iDelX = mMonitor.x + int( ( mMonitor.width - iWinW) * 0.5)
iDelY = mMonitor.y + int( ( mMonitor.height - iWinH) * 0.5)

cv2.moveWindow( sWinName, iDelX, iDelY)

def setup_checker( lLexicon):
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B.1 Teleprompter script

global iMonitor

nSetupTimeoutSeconds = 10
nMilliSecondsPerSecond = 1000

nSetupTimeoutMilliSconds = nSetupTimeoutSeconds * nMilliSecondsPerSecond

print( f'Attempting to load image with path: { 1lLexicon.lsImages[0]}')

nPressedKey = None

lmMonitors = get_monitors()

sMonitors = DUtils.list_to_pretty_string( list( range( 1, len( lmMonitors) +
-~ 1N

print( 'You should see a window showing the image.')

print( "If the image does not work, press 'Esc'")

print( f'Regardless of where the image is shown, press the key of the number
— of the monitor it should be on: {sMonitors}')

print( "If the image works and is on the correct screen, press 'Enter'")

while not DUtils.keypress_matches( nPressedKey, 'enter'):
# print( f'Current monitor: {lmMonitors[0]}')
nPressedKey = show_image( cv2.imread( lLexicon.lsImages[0]),

— nSetupTimeoutMilliSconds)

if len( 1lmMonitors) > 1:
bKeyMatched = False
for i in range( 1, len(lmMonitors) + 1):
if DUtils.keypress_matches( nPressedKey, str( i)):

logging.debug( f£'i: { i}, iM: { iMonitor}, iMNew: { i - 1}')
bKeyMatched = True
iMonitor = i - 1 # convert to list index
centre_window_on_monitor ()
break

if bKeyMatched:

continue
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if DUtils.keypress_matches( nPressedKey, 'enter'):
cv2.destroyAllWindows ()
return True

if DUtils.keypress_matches( nPressedKey, 'esc'):

return False

else:

raise Exception( 'Invalid keypress or timeout')

def combine_images( anSector, anImage):

nAlpha
nBeta =

nGamma

return cv2.addWeighted( anSector, nAlpha, anImage, nBeta, nGamma)

def show_image( anImage, nDelayMilliSeconds):

cv2.imshow( sWindowName, anImage)

return cv2.waitKey( nDelayMilliSeconds)

def resize_image_maintain_aspect( anImage, tnResolution):

# Resize image, maintaining aspect ratio

nTgtW, nTgtH = tnResolution
n01dH, n01dW,

nScaleW = nTgtW / n0ldW
nScaleH = nTgtH / n01dH

nScale

nNewW

nNewH

anImage

104

_ = anlmage.shape

min( nScaleW, nScaleH)

int( n01dW * nScale)
int( n01dH * nScale)

cv2.resize( anImage, ( nNewW, nNewH))
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B.1 Teleprompter script

# Pad resized image to window size

nPadW = nTgtW - nNewW

nPadH = nTgtH - nNewH

nPadT = nPadB = nPadl = nPadR = 0O
if nPadW:

nPadl. = nPadW // 2

nPadR = nPadW - nPadl
if nPadH:

nPadT = nPadH // 2

nPadB = nPadH - nPadT

return cv2.copyMakeBorder( anImage, nPadT, nPadB, nPadlL, nPadR,
— cv2.BORDER_CONSTANT, value=[ 0, 0, 0])

def clock_sector( nEndAngle, tnResolution):

nWidth, nHeight = tnResolution

anSector = np.zeros( ( nHeight, nWidth, 3), np.uint8) # reset

nAxisScale = 0.71 # slightly larger than 1/sqrt(2) so radius greater than

— diagonal

tnCenter = ( int( nWidth * 0.5), int( nHeight * 0.5))

tnAxes = ( int( nHeight * nAxisScale), int( nWidth * nAxisScale))

nRotation = -90 # rotation of major axis CW from x+ in degrees

nStartAngle
# nEndAngle
tnColour = (128, 128, 128) # BGR in [0,255]

nThickness = -1 # guessing -1 means 'solid'?

O # rotation of start CW from major in degrees

45 # rotation of end CW from major in degrees

cv2.ellipse( anSector, tnCenter, tnAxes, nRotation, nStartAngle, nEndAngle,

— tnColour, nThickness)
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return anSector

def show_placeholder_until_ready(Q):
sWinName = "When you're quite ready..."
anImg = np.zeros((nWindowHeight,nWindowWidth,3), np.uint8)
sText = "When you are ready, press 'Enter'"
fFontFace = cv2.FONT_HERSHEY_SIMPLEX
nFontScale = 2
tnFontColor = ( 0, 255, 0)
nLineThickness = 1
nTextWidth, nTextHeight = cv2.getTextSize( sText, fFontFace, nFontScale,
— nLineThickness) [0]
tnOrigin = (
int( ( nWindowWidth - nTextWidth) * 0.5),
int( ( nWindowHeight - nTextHeight) * 0.5)) # bottom, left corner of text

cv2.putText( anImg, sText, tnOrigin, fFontFace, nFontScale, tnFontColor,

— nLineThickness)

cv2.imshow( sWinName, anImg)
centre_window_on_monitor( sWinName)
nPressedKey = cv2.waitKey(0)
logging.debug( f'Placehold exit key: { DUtils.keypress_string(
— nPressedKey)}')
cv2.destroyAllWindows ()
if DUtils.keypress_matches( nPressedKey, 'enter'):
return True
else:

raise Exception( 'Invalid keypress during placeholder')

def initialise_logging( sLogFile):
logging.basicConfig( filename =s LogFile, level = logging.DEBUG)
logging.info( f'This is: { __file__}"')
logging.info( f'It is: { datetime.now()}')
print( f'Logging to { sLogFilel}.')
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B.1 Teleprompter script

# **xx BEGIN ACTUAL SCRIPT x*x*x

# Begin logging
sRunId = datetime.now() .strftime( '%Y%bld%a%kHhiM')
initialise_logging( 'PrompterLogs/Prompter_' + sRunId + '.log')

# Global variables
sWindowName = "Press 'Esc' to exit"

iMonitor = 0O

# Timing

# * NOTE: countdown time is considerably more than specified (likely due to

— mechanism of CV2 drawing); e.g. a specified 2 second countdown might take
— around 6 seconds in reality. Accordingly, make sure trial period time is
— much larger than countdown time.

# Examples:

# @ nStepsPerCircle = 60:

# Trials: 5 s, Countdown: 3 s, Actual 3.75 + 0.15 s - i13-3220

# Trials: 5 s, Countdown: 3 s, Actual 4.1 s - 13-3220, Kv2 recording
# Trials: 5 s, Countdown: 2 s, Actual 2.92 + 0.04 s - 13-3220, Kv2 recording
nSecondsPerTrial = 3 #! USER CONFIG

nSecondsPerCountdown = 1 #! USER CONFIG

nMilliSecondsPerSecond = 1000

nMilliSecondsPerCountdown = nSecondsPerCountdown * nMilliSecondsPerSecond
nDegreesPerCircle = 360

60 #! USER CONFIG

nDegreesPerStep = nDegreesPerCircle / nStepsPerCircle

nStepsPerCircle
nMilliSecondsPerStep = int( nMilliSecondsPerCountdown / nStepsPerCircle)
logging.info( f'Timing: trials: { nSecondsPerTriall} s, countdown: {

— nSecondsPerCountdown} s')

# Signs & Trials

pRoot = DUtils.get_abs_path_to_named_parent( 'signtotext')

pRel = pRoot / 'Images' / 'Auslan'

lAlphabetDistinct = Lexicon( [ 'a', 'b', 's', 'w', 'z'], pRel, '', '.jpg')
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1AlphabetSimilarPairs = Lexicon( [ '1l', 'r', 'n', 'v', 'd', 'p']l, pRel, '',
- '.jpg")

1AlphabetStatic = Lexicon( [ 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'i', 'k', '1',

- 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z'],
— pRel, '', '.jpg') # omits dynamic signs: H, J

1ShapesSimple = Lexicon( ['animal', 'bad', 'closed', 'five', 'good'], pRel,
-~ '', '.png")

lLexicon = 1ShapesSimple #! USER CONFIG

nReplicates = 2 #! USER CONFIG

1sTrials = lLexicon.lsSigns * nReplicates

shuffle( 1sTrials) # works on argument without return

1sTrialPaths = [ lLexicon.dSignImages[ sSign] for sSign in 1sTrials]
logging.info( f'Lexicon: { lLexicon.lsSigns} ({ len( 1lLexicon.lsSigns)}
— items.)')

logging.info( f'Repeats per sign: { nReplicates}; { len( 1sTrials)} total
- trials, taking {len(lsTrials)#*nSecondsPerTrial} s.')

logging.info( f'Trial sequence: { 1lsTrials}')

# Check images are loading and we've got correct monitor
iMonitor = 0
if not setup_checker( 1lLexicon):

raise Exception( 'Setup not correct')

# Define size of window on target monitor

nWindowScale = 0.9 #! USER CONFIG

nWindowWidth = int( get_monitors() [ iMonitor].width * nWindowScale)
nWindowHeight = int( get_monitors() [ iMonitor].height * nWindowScale)
anBlackRect = np.zeros( ( nWindowHeight, nWindowWidth, 3), np.uint8)

# Wait until ready to begin...

show_placeholder_until_ready()

# Start the trials!
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dtSessionStart = datetime.now()

bEarlyExitByKeypress = False

for iTrial, sSign in enumerate( lsTrials):
dtTrialStart = datetime.now()
logging.info( f"Starting trial { iTrial + 1}/{ len( 1lsTrials)}: '{ sSign}'
< at { dtTrialStart.strftime('%H:%M:%S')}")

anImage = cv2.imread( lLexicon.dSignImages[ sSign])

anImage = resize_image_maintain_aspect( anImage, ( nWindowWidth,

— nWindowHeight))

# Establish window on correct monitor once per image
tdUntilEstimatedCompletion = timedelta( seconds=( nSecondsPerTrial * ( len(
— 1sTrials) - iTrial)))

dtEstimatedCompletion = dtTrialStart + tdUntilEstimatedCompletion
sWindowName = f"Trial { iTrial + 1}/{ len( 1lsTrials)} ({ int( ( iTrial +1 )
— / len( 1sTrials) * 100)} %), {tdUntilEstimatedCompletion} remaining:

- estimated completion at {dtEstimatedCompletion.strftime('}H:%M:%S')}

< (currently {datetime.now().strftime('%H:%M:%S')}). Press 'Esc' to break
— prematurely."

cv2.destroyAllWindows() # in case they linger

cv2.imshow( sWindowName, anImage)

centre_window_on_monitor ()

# Countdown overlay for this trial
for iStep in range( nStepsPerCircle + 1):
anSector = clock_sector( iStep * nDegreesPerStep, ( nWindowWidth,
- nWindowHeight))
nPressedKey = show_image( combine_images( anSector, anlImage),
— nMilliSecondsPerStep)
if DUtils.keypress_matches( nPressedKey, 'escape'):
bEarlyExitByKeypress = True
break
if bEarlyExitByKeypress:
break

dtCountdownEnd = datetime.now()
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tdCountdownTook = dtCountdownEnd - dtTrialStart

tdNextTrialStart = dtTrialStart + timedelta( seconds = nSecondsPerTrial) -
— dtCountdownEnd

logging.info(f'Countdown completed in { tdCountdownTook}, next trial starts
— in { NextTrialStart}')

# logging.debug(f'Start: {fTrialStartTime}"')

# logging.debug(f'Exit: {fTrialEndTimel}')

# logging.debug(f'Cycle: {nTrialPeriodSeconds}')

# logging.debug(f'Actual: {fTrialEndTime - fTrialStartTime}')

# logging.debug(f'Next: {fTrialStartTime + nTrialPeriodSeconds}')

# logging.debug(f'Remaining: {fTimeUntilNextTriall}')

if tdNextTrialStart.total_seconds() < O:

raise Exception( 'Countdown time exceeded trial time!')

nPressedKey = show_image( anBlackRect, int(
< tdNextTrialStart.total_seconds()) * nMilliSecondsPerSecond)
if DUtils.keypress_matches( nPressedKey, 'escape'):
bEarlyExitByKeypress = True
break

# Destroy this trial's window (not sure if necessary!)

cv2.destroyAllWindows

dtSessionEnd = datetime.now()

if bEarlyExitByKeypress:
logging.info( f'Exited prematurely on trial { iTrial + 1}/{ len( 1lsTrials)}
— at { dtSessionEnd}.')

else:
logging.info( f'Session complete at { dtSessionEnd}.')
logging.info( f'Session took { dtSessionEnd - dtSessionStart} at { (
— dtSessionEnd - dtSessionStart).total_seconds / len( 1sTrials)} seconds
— per trial.')

print( 1sTrials)

cv2.destroyAllWindows ()
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B.1 Teleprompter script

Listing B.1: prompter.py: Python 3 script written to provide randomised visual que
from pool of lexemes at regular time intervals, recording timing and label
information to a log file.
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B.2 Kinect Recording script

%% Record Kinect Colour, Depth and Skeleton data

%% Session Parameters

sDirOut = "D:/KinectRecordings/";
nSamplesPerSecond = 2;

nSigns = 5;

nReplicates = 20;

nTrials = nSigns * nReplicates;
nSecondsPerTrial = seconds( 5);
dBreathingRoom = seconds( 5);

dSession = nSecondsPerTrial * nTrials + dBreathingRoom;

%% Preparation

% Create and init Kinect 2 object
if exist('oKin2', 'var'), oKin2.delete; end

oKin2 = Kin2('color', 'depth', 'body"');

% User control keys
cKeyEsc = char(27);
cExitKey = cKeyEsc;
cKeyEnter = char(13);
cAcknKey = cKeyEnter;

sInputPrompt = "When you are ready, start recording by making a " + ...

"fist with your right hand, or press 'Exit' to cancel";
disp( sInputPrompt)

cPressedKey = '';

%% Create figures

% [...if only MATLAB had classes...]

% Depth
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B.2 Kinect Recording script

uD.sName = "Depth Source";

uD.nWidth = oKin2.cDepthWidth;

uD.nHeight = oKin2.cDepthHeight;

uD.nUpperLimit = 4000;

uD.nLowerLimit = 255 / uD.nUpperLimit;

uD.sBitDepth = "uint16";

uD.anImage = zeros( uD.nHeight, uD.nWidth, uD.sBitDepth);

uD.oFigure = figure( 'Name', uD.sName + ": " + sInputPrompt,
'NumberTitle', 'off');

uD.axes = axes;

uD.show = imshow( uD.anImage);

% Listen to keypress in this figure

set( gcf, 'keypress', 'cPressedKey = get( gcf, ''currentchar'');');

% Colour

uC.sName = "Colour Source";

uC.nWidth = oKin2.cColorWidth;

uC.nHeight = oKin2.cColorHeight;

uC.nChannels = 3; % RGB

uC.sBitDepth = "uint8";

uC.anImage = zeros( uC.nHeight, uC.nWidth, uC.nChannels, uC.sBitDepth);

uC.oFigure = figure( 'Name', uC.sName + ": " + sInputPrompt,
'NumberTitle', 'off');

uC.axes = axes;

uC.show = imshow( uC.anImage);

% Listen to keypress in this figure

set( gcf, 'keypress', 'cPressedKey = get( gcf, ''currentchar'');');

%% Get system warm and wait for user...

% Calculate session parameters and pre-allocate output struct array
dSample = seconds(1l / nSamplesPerSecond);
nSamples = round( nSamplesPerSecond * seconds( dSession));
ruQut = struct(
'nTimestamp', cell( 1, nSamples),
'dCpuTime', cell( 1, nSamples),
'anD', cell( 1, nSamples),
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'anC', cell( 1, nSamples),
'uBody', cell( 1, nSamples));

1lUserWantsToCancel = false;
i = 0;
while true

i=1i+1;

% Check for input
if ~isempty( cPressedKey)
disp( "Pressed: " + cPressedKey)
if cPressedKey == cExitKey
disp( "Exiting")
1UserWantsToCancel = true;
break;
elseif cPressedKey == cAcknKey
disp( "Moving on")
break
else
cPressedKey = ''; 7, reset mis-press
end

end

% Get sensor data

nValidData = oKin2.updateData;

if not( nValidData)
pause(0.02) 7 essential!
continue

end

% Update images
imshow( repmat( uint8( oKin2.getDepth * uD.nLowerLimit), [ 1 1 31),
'"Parent', uD.axes);

imshow( oKin2.getColor, 'Parent', uC.axes);

% Get & draw skeleton
[ruBodies, ~, ~] = oKin2.getBodies( 'Quat');
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B.2 Kinect Recording script

if isempty( ruBodies), continue; end
oKin2.drawBodies( uD.axes, ruBodies, 'depth', 5, 3, 15);

oKin2.drawBodies( uC.axes, ruBodies, 'color', 10, 6, 30);

% Continue by gesture

if ruBodies(1l) .RightHandState ==
disp( "Right-hand fist detected, moving on")
break

end

end

close all

if 1UserWantsToCancel
disp("Session cancelled")
oKin2.delete
return

end

%% Run recording

cPressedKey = '';

tSessionStart tic;

for iSample = 1 : round( nSamples)

dSampleStart = seconds( cputime) ;

% Allow user to break out early
if ~isempty( cPressedKey)
disp( "Pressed: " + cPressedKey)
if strcmp( cPressedKey, cExitKey)
break;
else
cPressedKey = ''; Y, reset mis-press
end

end

% I will have data!
nValidData = oKin2.updateData;
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[ cuBodies, ~, nTimestamp] = oKin2.getBodies( 'Quat');
dSampleTime = seconds( cputime);
1TimedOut = false;
iAttempt = 1;
while( not( nValidData) || isempty( cuBodies))
iAttempt = iAttempt + 1;
pause( 0.02) 7% essential!
nValidData = oKin2.updateData;
[ cuBodies, ~, nTimestamp] = oKin2.getBodies( 'Quat');
dSampleTime = seconds( cputime);
if dSampleTime - dSampleStart >= dSample
1TimedOut = true;
break
end
end

if 1TimedOut, continue; end

ruQut ( iSample) .dCpuTime = dSampleTime; % duration
ruQut ( iSample) .nTimestamp = nTimestamp; 7 seconds * 1E7
ruOut ( iSample) .anD = oKin2.getDepth; % uintl6

rulut ( iSample) .anC = oKin2.getColor; % uint8

rulut ( iSample) .uBody = cuBodies( 1); % body struct

pause( seconds(dSample + dSampleStart) - cputime)
end
disp( "Session complete.")

toc( tSessionStart)

sTimeStamp = strcat( datestr( now, "yyyymmmdd"), datestr( now, "dddHH"),
'h' , datestr( now, "MM"));

sOutputFile = fullfile( sDirOut, strcat( sTimeStamp, "_Recording.mat"));
save( sOutputFile, 'ruQut', '-v7.3')

disp( "Saved to " + sOutputFile)

%% Get map for current session (should be the same every time, but hey)

116



184

185

186

187

188

189

190

191

192

193

194

195

196

198

199

200

201

202

203

204

205

206

207

209

210

211

212

213

214

215
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% Map from pixel ( x, y) in depth frame to pixel ( x, y) in colour frame

aiD2C = zeros( oKin2.cDepthWidth, oKin2.cDepthHeight, 2);
for iX = 1 : oKin2.cDepthWidth
for iY = 1 : oKin2.cDepthHeight

aiD2C( iX, iY, :) = oKin2.mapDepthPoints2Color( [ iX iY]);

end

end

% Map from pixel ( x, y) in colour frame to pixel ( x, y) in depth frame

aiC2D = nan( oKin2.cColorWidth, oKin2.cColorHeight, 2);
for iXD = 1 : oKin2.cDepthWidth

for i¥YD = 1 : oKin2.cDepthHeight
riC = reshape( aiD2C( iXD, iYD, :), 1, 2);
iXC = riC( 1);
iYC = riC( 2);
if iXC == |l iYC == N
iXC > oKin2.cColorWidth || iYC > oKin2.cColorHeight
continue
end

aiD = cat( 3, repmat( iXD, 3), repmat( iYD, 3));
aiC2D( iXC : iXC + 2, iYC : iYC + 2, :) = aiD;
end

end

save( fullfile( sDirOut, strcat( sTimeStamp, "_aiC2D.mat")),
save( fullfile( sDirOut, strcat( sTimeStamp, "_aiD2C.mat")),

%% Wrap up

oKin2.delete;

close all

'aiC2D')
'aiD2C")

Listing B.2: KinectRecorder.m: MATLAB script written to record depth frames, colour

frames and body data from Microsoft Kinect 2.0.
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B.3 Temporal Segmentation

classdef SelectFramesFromRecordings_mlapp < matlab.apps.AppBase

% Properties that correspond to app components

10

11

12

13

14

16

17

18

19

20
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23

24
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27

28

29

30

31

32

33

34
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properties (Access = public)

UIFigure matlab.ui.Figure
BrowseButton matlab.ui.control.Button
UIAxes matlab.ui.control.UIAxes
SelectButton matlab.ui.control.Button
NextButton matlab.ui.control.Button
PreviousButton matlab.ui.control.Button
ReplaceButton matlab.ui.control.Button
LabelStatus matlab.ui.control.Label
LabelFile matlab.ui.control.Label

end

properties (Access = private)

sFile
sPath %
ruRec %
ruSln =
h oKin2
iSample
anlImage
uBody %

end

methods (Acc

Input file
File path

Loaded recording

nan; % Selected recordings, nan because isempty(struct()) = 0

Kin2(Q);

= 0; % Sample iterator

% Buffered image

Buffered body

ess = private)

function LoadAndDisplay(app)

LoadFile (app)

DisplayNextFrame (app)

end

function LoadFile(app)
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1x1

30);

uLoaded = load( fullfile(app.sPath, app.sFile)); 7 always gives a

struct of var...

app.ruRec = ulLoaded.cuOut; 7% so peel off outer layer to target row

— of structs.
UpdateFileText( app)

end

function UpdateFileText( app)
SetFileText( app, "File: " + app.sFile);

end

function SetFileText( app, sFile)
app.LabelFile.Text = sFile;

end

function BufferNextFrame (app)
if app.iSample >= numel( app.ruRec), return; end
app.iSample = app.iSample + 1;
BufferFrame (app) ;

end

function BufferLastFrame (app)
if app.iSample <= 1, return; end
app.iSample = app.iSample - 1;
BufferFrame (app) ;

end

function BufferFrame (app)
app.anImage = app.ruRec( app.iSample).anC;
app.uBody = app.ruRec( app.iSample).uBody;

end

function DisplayBufferedFrame (app)

imshow( app.anlmage, 'Parent', app.UIAxes);

app.oKin2.drawBodies( app.UIAxes, app.uBody, 'color',

UpdateStatus( app)

10, 6,
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120

end

function DisplayNextFrame (app)
BufferNextFrame (app)
DisplayBufferedFrame (app)

end

function DisplayLastFrame (app)
BufferLastFrame (app)
DisplayBufferedFrame (app)

end

function SelectCurrentFrame (app)
SelectFrame( app)

end

function ReplacePreviousFrame (app)
if isstruct( app.ruSln)
if numel( app.ruSln) > 1
app.ruSln = app.ruSln(l : end - 1);
else
app.ruSln = nan;
end
end
SelectFrame( app)

end

function SelectFrame( app)
if ~isstruct( app.ruSln)
app.ruSln = app.ruRec( app.iSample);
else
app.ruSln( end + 1) = app.ruRec( app.iSample);
end
UpdateStatus (app)

end

function SetStatusText(app, sStatus)
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B.3 Temporal Segmentation

app.LabelStatus.Text = sStatus;

end

function UpdateStatus(app)
if ~isstruct( app.ruSln)
nSelected = 0;

else

nSelected = numel( app.ruSln);

end

SetStatusText( app, "Sample " + app.iSample + '/' + numel(
— app.ruRec) + ", " + nSelected + " selected. Use buttons below
— to select one sample per sign.");

end

end

% Callbacks that handle component events

methods (Access = private)

% Code that executes after component creation
function startupFcn(app)
SetStatusText( app, "Press 'Browse' to select input file.");

end

% Button pushed function: NextButton
function NextButtonPushed(app, event)
DisplayNextFrame (app)

end

% Button pushed function: BrowseButton

function BrowseButtonPushed(app, event)
[ app.sFile, app.sPath] = uigetfile("*.mat");
LoadAndDisplay (app) ;

end

% Button pushed function: PreviousButton
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function PreviousButtonPushed(app, event)

DisplayLastFrame (app)

% Button pushed function: SelectButton
function SelectButtonPushed(app, event)
SelectCurrentFrame (app)

% Button pushed function: ReplaceButton
function ReplaceButtonPushed(app, event)

ReplacePreviousFrame (app)

% Close request function: UIFigure
function UIFigureCloseRequest(app, event)
if isstruct( app.ruSln)
app.ruSln; %#ok<ADPROPLC>
save( fullfile( app.sPath, app.sFile + "_selectedFrames.mat"),

"ruSln", "-mat");

delete(app)

% Component initialization

methods (Access = private)

% Create UIFigure and components

function createComponents (app)

% Create UIFigure and hide until all components are created

app.UIFigure = uifigure('Visible', 'off');
app.UIFigure.Position = [100 100 1280 760];
app.UIFigure.Name = 'UI Figure';
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app.UIFigure.CloseRequestFcn = createCallbackFcn(app,
— QUIFigureCloseRequest, true);

% Create BrowseButton

app.BrowseButton = uibutton(app.UIFigure, 'push');
app.BrowseButton.ButtonPushedFcn = createCallbackFcn(app,
—» @BrowseButtonPushed, true);

app.BrowseButton.Position = [261 729 100 22];

app.BrowseButton.Text = 'Browse';

% Create UIAxes

app.UIAxes = uiaxes(app.UIFigure);
title(app.UIAxes, '')

xlabel (app.UIAxes, '')

ylabel (app.UIAxes, '')
app.UIAxes.Position = [11 41 1260 680];

% Create SelectButton

app.SelectButton = uibutton(app.UIFigure, 'push');
app.SelectButton.ButtonPushedFcn = createCallbackFcn(app,
—» @SelectButtonPushed, true);

app.SelectButton.Position = [701 9 100 22];
app.SelectButton.Text = 'Select';

% Create NextButton

app.NextButton = uibutton(app.UIFigure, 'push');
app.NextButton.ButtonPushedFcn = createCallbackFcn(app,
<> @NextButtonPushed, true);

app.NextButton.Position = [841 9 100 22];
app.NextButton.Text = 'Next';

% Create PreviousButton

app.PreviousButton = uibutton(app.UIFigure, 'push');

app.PreviousButton.ButtonPushedFcn = createCallbackFcn(app,
—» @PreviousButtonPushed, true);
app.PreviousButton.Position = [361 9 100 22];

app.PreviousButton.Text = 'Previous';
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% Create ReplaceButton

app.ReplaceButton = uibutton(app.UIFigure, 'push');
app.ReplaceButton.ButtonPushedFcn = createCallbackFcn(app,
— G@ReplaceButtonPushed, true);
app.ReplaceButton.Position = [501 9 100 22];
app.ReplaceButton.Text = 'Replace’;

% Create LabelStatus

app.LabelStatus = uilabel (app.UIFigure);
app.LabelStatus.Position = [381 729 890 22];
app.LabelStatus.Text = 'LabelStatus';

% Create LabelFile

app.LabelFile = uilabel(app.UIFigure);
app.LabelFile.Position = [21 729 220 22];
app.LabelFile.Text = 'LabelFile';

% Show the figure after all components are created
app.UIFigure.Visible = 'on';
end

end

% App creation and deletion

methods (Access = public)

% Construct app

function app = ExtractFrames_mlapp

% Create UIFigure and components

createComponents (app)

% Register the app with App Designer
registerApp(app, app.UIFigure)

% Execute the startup function

runStartupFcn(app, @startupFcn)
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if nargout ==
clear app
end

end

% Code that executes before app deletion

function delete(app)

% Delete UIFigure when app is deleted
delete(app.UIFigure)
end
end

end

Listing B.3: SelectFramesFromRecordings.mlapp: MATLAB ‘App’ GUI to manually

select one representative frame per sign.
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B.4 Spatial Segmentation and Feature Extraction

%% Specify recording set

% Validation 1: 5 signs 10 replicates

sFileDir = "D:/KinectRecordings/";

sInputFileName = "2019Sep17Tue20h28_Recording.mat_selectedFrames.mat";

rsLabels = [ "bad", "closed", "good", "animal", "bad", "five", "five",
"bad", "animal", "five", "animal", "good", "good", "closed",
"five", "five", "animal", "good", "closed", "good", "good",
"animal", "closed", "bad", "five", "animal", "bad", "animal",
"bad", "animal", "good", "good", "bad", "bad", "closed", "five",
"bad", "animal", "closed", "bad", "closed", "animal", "five",
"closed", "five", "good", "good", "five", "closed", "closed"];

sMapFileName = "2019Sep17Tue20h28_aiC2D.mat";

% % Validation 2: 5 signs 20 replicates
% sFileDir = "D:/KinectRecordings/";
% sInputFileName = "2019Sep21Sat16h07_Recording.mat_selectedFrames.mat";

% rsLabels = ["closed", "animal", "five", "bad", "animal", "good",

% "closed", "five", "five", "five", "animal", "five", "good", "bad",
% "good", "closed", "bad", "bad", "five", "good", "five", "good",

% "five", "bad", "animal", "good", "bad", "closed", "five", "closed",
% "good", "five", "good", "five", "bad", "bad", "five", "animal",

% "good", "five", "animal", "closed", "good", "good", "good", "bad",
% "closed", "animal", "closed", "closed", "bad", "closed", "bad",

% "good", "closed", "bad", "animal", "good", "good", "closed",

% "animal", "closed", "bad", "closed", "closed", "five", "animal",

% "closed", "good", "closed", "bad", "bad", "good", "closed", "bad",
% "animal", "closed", "animal", "animal", "five", "animal", "good",
% "animal", "five", '"good", "five", "closed", "animal", "animal",

% "bad", "animal", "bad", "bad", "good", "five", "animal", "animal",
% "five", "five", "bad"];

% rsLabels = [ rsLabels( 2 : end) rsLabels( 1)];
% sMapFileName = "2019Sep21Sat16h07_aiC2D.mat";

%% Groundwork
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B.4 Spatial Segmentation and Feature Extraction

iRoiDiamPx = 200;
iMaxHandDepthMm = 120;
nSamples = numel( rsLabels);

U16toU8 = @( ailmgl6) uint8( 255 * double( ailmgl6) / 65535);

%% Region-of-Interest Images
% Load selected-frame data file from disk and

% get region-of-interest images for colour, depth and the binary image

[ rcanCRoi, rcanDRoi, rcalBRoi] = RoilmagesromSelection(
LoadDataFromDiskAndVerify(
fullfile( sFileDir, sInputFileName), nSamples),
ValidatedLoad( fullfile( sFileDir, sMapFileName), 'aiC2D', 'strict'),
iRoiDiamPx, iMaxHandDepthMm) ;

%% Verify Selection and Labelling

% Basic imshow/Figure based GUI for manual verification

VerifySelectionAndLabelling( rcanCRoi, rsLabels);

%% Extract features!

ruFeats = arrayfun( @( iSample) ExtractFeaturesFromRoiImages( iSample,
rcanCRoi{ iSamplel}, U16toU8( rcanDRoi{ iSamplel}), rcalBRoi{ iSamplel}),
1 : nSamples);

%% Save features to disk

save( fullfile( sFileDir, sInputFileName + "_extractedFeatures.mat"),

'ruFeats');

Listing B.4: ProcessRecordings.m: MATLAB script to automate processing of selected

frames of Microsoft Kinect 2.0 data.
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functioﬂ [[ rcanCRoi, rcanDRoi, rcalBRoi] = RoilmagesFromSelectedFrames(

T

ruData, aiC2D, iRoiDiamPx, iMaxHandDepthMm)
Spatially segments square about non-dominant hand from Kinect data files.

**x*x Requires physically-connected Kinect! x*x*x*

Arguments:
ruData : lexeme-indexed row of struct, each of which contains:
* a colour frame
* a depth frame
* body data
aiC2D : colour-frame-width x colour-frame-height x coordinate-pair

array of integers that map pixels locations in colour frame to
the location of the corresponding pixel in depth frame.
iRoiDiamPx : diameter of the square region-of-interest surrounding
the hand. Units = px.
[default = 200]
iMaxHandDepthMm : maximum distance farther than the distance of the hand
joint to include in the binary image. Units = mm.

[default = 200]

Returns:

rcanCRoi : lexeme-indexed row of cells containing colour ROI as
iRoiDiamPx-by-iRoiDiamPx-by-3 channel array of uint8.

rcanDRoi : lexeme-indexed row of cells containing depth ROI as
iRoiDiamPx-by-iRoiDiamPx array of uintil6.

rcalBRoi : lexeme-indexed row of cells containing binary image (mask) as

iRoiDiamPx-by-iRoiDiamPx array of logicals.

Note: the ROI is centred about the hand joint horizontally but
translated vertically up from the hand joint by 20 % of iRoiDiamPx.

Parse optional arguments & provide default values as required

if nargin > 4

error( "GetRoiAndMaskFromRecording:TooManyInputs",

"Takes at most 3 arguments.");

end
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if nargin < 4, iMaxHandDepthMm = 200; end
if nargin < 3, iRoiDiamPx = 200; end

if nargin < 2, load aiC2D.mat aiC2D; end

% Ensure we have the correct data type
iMaxHandDepthMm = cast( iMaxHandDepthMm, 'uintl6');
iRoiDiamPx = cast( iRoiDiamPx, 'uinti16');

aiC2D = cast( aiC2D, 'uintl6');

% Calculate region of interest (ROI) offests (left & down from hand pixel)
iRoiX0ffset = idivide( iRoiDiamPx, 2);
iRoiY0ffset = 2 * idivide( iRoiDiamPx, 3); 7% only down 1/3

% Initialise Kinect and ensure it's ready
oKin2 = Kin2('color', 'depth','body'); 7 theoretically just need methods,
while true % but need to be sure it works...

% Get sensor data

nValidData = oKin2.updateData;

if ( nValidData)

break
end
pause( 0.02) 7, essential

end

%% Segment!

nSamples = numel( ruData);

rcanCRoi = cell( 1, nSamples);
rcanDRoi = cell( 1, nSamples);
rcalBRoi = cell( 1, nSamples);

for iSample = 1 : nSamples
% Localise data from input struct
anC = ruData( iSample).anC;
anD = ruData( iSample).anD;

uBody = ruData( iSample) .uBody;

% Find hand, use to define region of interest (ROI)
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130

% * Requires real connected Kinect!

anPos3D = uBody.Position';

aiPosC = oKin2.mapCameraPoints2Color( anPos3D);
riHandC = aiPosC( oKin2.JointType_HandLeft, :);

assert( min( riHandC) > 0, "Kinect not properly initialised.")

iXHandC = riHandC( 1);
iYHandC = riHandC( 2);
try
iRoiW = iRoiDiamPx;
iRoiH = iRoiW;
iRoiX = iXHandC - iRoiXOffset;
iRoiY = iYHandC - iRoiYOffset;
catch

disp( "i=" + iSample + " XHC=" + iXHandC + ...
" YHC=" + iYHandC)
end
% Crop colour image to ROI
rcanCRoi{ iSample} = imcrop( anC, [ iRoiX iRoiY iRoiW iRoiH]);

% Use map to register colour ROI with depth ROI
aiDRoi = aiC2D( iRoiX : iRoiX + iRoiW, iRoiY : iRoiY + iRoiH,
% Get depth value at those depth pixels
anDRoi = zeros( 201, 201, 'uinti6');
for iX =1 : 201
for iY =1 : 201
riM = reshape( aiDRoi( iX, iY, :), 1, 2);
iXHandD = riM( 1);
iYHandD = riM( 2);
if iXHandD <= 0 || iXHandD > oKin2.cDepthWidth ||
iYHandD <= O || iYHandD > oKin2.cDepthHeight
continue
end
anDRoi( iY, iX) = anD( iYHandD, iXHandD);
end
end

rcanDRoi{ iSample} = anDRoi;
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end

% Create binary image using depth value at hand 'joint'

riHandD = aiC2D( iXHandC, iYHandC, :);

iXHandD = riHandD( 1);
iYHandD = riHandD( 2);
try

nDepthAtHand = anD( iYHandD, iXHandD);
catch
error( "i=" + iSample + ...
" XHC=" + iXHandC + " YHC=" + iYHandC + ...
" XHD=" + iXHandD + " YHD=" + iYHandD);

end

alBRoi = anDRoi <= nDepthAtHand + iMaxHandDepthMm & ...
anDRoi ~= 0;

alBRoi = imfill( alBRoi, 'holes');

[ naMaskWithLabelledRegions, nRegions] = bwlabel( alBRoi);

if nRegions > 1 % hope like crazy first region is hand...
alBRoi = naMaskWithLabelledRegions == 1;

end

[~, nRegions] = bwlabel( alBRoi);

if nRegions < 1
warning( "No regions in mask for sample %d", iSample);

end

rcalBRoi{ iSample} = alBRoi;

oKin2.delete

end

Listing B.5: RoiImagesFromSelectedFrames.m: MATLAB function to spatially seg-

ment frames into ROI for colour and depth and produce a binary image
(or ‘mask’) of the hand.
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function VerifySelectionAndLabelling( rcanImages, rsLabels)

% Function for manual validation that selected frames match the labels.
o

% Arguments:

% rcanImages : row of cell containing images.

% rsLabels : row of strings containing labels.

if numel( rcanImages) ~= numel( rsLabels)
error( "Number of elements do not match!")

end

riMismatches = [];
for i = 1 : numel( rcanlImages)
oFig = figure(
'Name', "Press 'c' for match, 'm' for mismatch, or 'q' to quit",
'NumberTitle', 'off');
imshow( rcanImages{ i});
title( strcat( num2str( i), ": ", rsLabels( i)));
waitfor( oFig, 'CurrentCharacter')
if strcmp( oFig.CurrentCharacter, 'q')
break
elseif strcmp( oFig.CurrentCharacter, 'm')

riMismatches = [ riMismatches il; %#ok<AGROW>

end
b close gcf
end
end

Listing B.6: VerifySelectionAndLabelling.m: MATLAB function for manual visual

verification that selected images and labels match.
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function uFeats = ExtractFeaturesFromRoiImages(
iSample, anCRoi, anDRoi, alBRoi)

% Extracts numerical features for classification.

% Arguments:

% iSample : integer, serial number of the current sample; only used

% for diagnostic purposes.

% anCRoi : square array by 3-channel (RGB) of uint8: the colour

pA region-of-interest.

% anDRoi : square array of uintl6: the depth region-of-interest.

% alBRoi : square array of logical values: mask of the hand within the

b region-of-interest.

% Returns:
% uFeats : struct containing one field per feature;

yA * feature values are single or columns

17

18

19

20

21

%% Geometric Features

% Using the binary mask of the hand.

uMaskProps = regionprops(alBRoi,
{ 'Area', 'ConvexArea', 'FilledArea',6 'Perimeter'});
% We may get multiple prop structs (if there are multiple regions in image)
% so check and only take first row -- hope it's the hand!
if numel( uMaskProps) > 1
warning ('ExtractFeaturesFromHandRoi:multipleRegions',
'%s detected multiple regions (%i) in sample %i.',
mfilename, numel( uMaskProps), iSample)
uMaskProps = uMaskProps( 1);

end

uFeats.nAreaPerConvexArea = uMaskProps.Area / uMaskProps.ConvexArea;

uFeats.nAreaPerFilledArea = uMaskProps.Area / uMaskProps.FilledArea;

uFeats.nPerimeterPerArea = uMaskProps.Perimeter / uMaskProps.Area;

uFeats.nPerimeterPerConvexArea = uMaskProps.Perimeter / uMaskProps.ConvexArea;
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uFeats.nPerimeterPerFilledArea = uMaskProps.Perimeter / uMaskProps.FilledArea;

%% CV Features

% Functions from MATLAB Computer Vision Toolbox

% HoOG works on RGB (3D array)
uFeats.rnHoogC = extractHOGFeatures(anCRoi, 'CellSize', [4 4]);

% Others only work on single-channel (2D) input

% First prepare and label the images and the functions

rsImages = [ "Red", "Green", "Blue", "Grey", "Depth", "DepthHistEq"];

rcanImages = { anCRoi( :, :, 1), anCRoi( :, :, 2), anCRoi( :, :, 3),
rgb2gray( anCRoi), anDRoi, histeq( anDRoi)};

[ "HoOG", "SURF", "MSER", "KAZE", "BRISK", "ORB"];

{ @( naImg) extractHOGFeatures( nalmg, 'CellSize', [4 4]),

rsFunctions

rcFunctions
@( naImg) reshape( extractFeatures( nalmg, detectSURFFeatures(
— mnalmg)), 1, [1),
@( naImg) reshape( extractFeatures( nalmg, detectMSERFeatures(
— mnalmg)), 1, [1),
@( naImg) reshape( extractFeatures( nalmg, detectKAZEFeatures(
— mnalmg)), 1, [1),
@( nalmg) reshape( getfield( extractFeatures( nalmg,
— detectBRISKFeatures( nalmg)), 'Features'), 1, [1),
@( nalmg) reshape( getfield( extractFeatures( nalmg,
— detectORBFeatures( nalmg, 'NumLevels', 5)), 'Features'), 1, [1)};
% Then actually extract the features, stored in dynamically-named fields
for iImage = 1 : numel( rsImages)
nalmage = rcanImages{ iImage};
for iFunction = 1 : numel( rsFunctions)
uFeats.( "rn" + rsImages{ iImage} + rsFunctions{ iFunction}) = ...
rcFunctions{ iFunction}( nalmage) ;
end

end

end
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Listing B.7: ExtractFeaturesFromRoilImages.m: MATLAB function that extracts nu-
merical features for classification.
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B.5 Feature Selection and Classification

%% Convert struct of features to 2D array, using PCA to select the components

% [ coeff, score, latent] = pca( X):

% X : 'design matrix', n-by-p.

% : n (rows) = 'observations', 'number of samples observed' ==

— "instances"

% : p (cols) = 'variables', 'number of variables (features) measured' ==
— "features"

% coeff : principal component coefficients

pA : features-by-components

% score : instances-by-components

nPcaComponents = 3;

% load variables
load ruFeats;

load rilLabels;

% Remove empty fields

ccacFieldNames = fieldnames( ruFeats);

rlEmptyFields = any( cell2mat( arrayfun( @( iFeat) cellfun( @( sField)

— 1isempty( ruFeats( iFeat).( sField)), ccacFieldNames), 1 : numel( ruFeats),
— 'UniformOutput', false))', 1);

ruFeats = cell2mat( arrayfun( @( iFeat) rmfield( ruFeats( iFeat),

— ccacFieldNames( rlEmptyFields)), 1 : numel( ruFeats), 'UniformOutput',

— false));

rsFieldNames = string( fieldnames( ruFeats)');

% Remove some fields

rsTermsToRemove = [ "Red", "Green", "Blue"];

rlFieldsToRemove = any( cell2mat( arrayfun( @( sTerm) contains( rsFieldNames,
— sTerm), rsTermsToRemove, 'UniformOutput', false)'), 1);

ruFeats = cell2mat( arrayfun( @( iFeat) rmfield( ruFeats( iFeat),

— rsFieldNames( rlFieldsToRemove)), 1 : numel( ruFeats), 'UniformQutput',

- false));
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rsFieldNames = string( fieldnames( ruFeats)');

nFields = numel( rsFieldNames) ;

nInstances = numel( riLabels);

%% Collate features

rcrnMaximums = arrayfun( @( uFeat) structfun( @( Field) max( size( Field)),
— uFeat), ruFeats, 'UniformOutput', false);

anFxIMaximums = cell2mat (rcrnMaximums) ;

cnFMinimums = min( anFxIMaximums,
nFeatures = sum( cnFMinimums == 1) + sum( cnFMinimums > 1) * nPcaComponents;
anFxICollated = zeros( nInstances, nFeatures);

rsFeatures = string( zeros( 1, nFeatures));
fSliceField = @( Field, nMinimum) Field( 1

iColStart = 1;
for iField = 1 : nFields

if cnFMinimums( iField) > 1

anFxI = cell2mat( arrayfun( @( iFeat) fSliceField( ruFeats( iFeat). (

: nMinimum) ;

— rsFieldNames{ iField}), cnFMinimums( iField)), 1 : numel(
— ruFeats), 'UniformOutput', false)');

[ ~, anFxI, ~] = pca( double( anFxI), 'NumComponents',

— nPcaComponents) ;

iColEnd = iColStart + nPcaComponents - 1;

rsF = strcat( repmat( rsFieldNames( iField) + "PcaComp", [ 1

— nPcaComponents]) + ( 1 : nPcaComponents));
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else

anFxI = vertcat( ruFeats( :).( rsFieldNames{ iField}));

iColEnd = iColStart;

rsF = rsFieldNames{ iField};

end

% Append new features on the right

anFxICollated( :, iColStart
rsFeatures( 1, iColStart
iColStart = iColEnd + 1;

end
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% transpose so the matrix conforms to 'design matrix' convention
% n (rows) are "observations" = instances = lexemes
% p (cols) are "variables" = features

anIxFCollated = anFxICollated';

%% save!
save rsFeatures

save anIxFCollated

Listing B.8: FeatureStructToArrayWithPca.m: MATLAB script that selects features
from the lexeme-indexed row of struct containing numerical features, using
PCA to reduce covariance.
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%% load the data
clear

load rilabels

load anIxFCollated

anIxFCollated;
full( ind2vec( rilLabels));

%% preprocess the data

[ mP, mSettings] = mapstd( removeconstantrows( P));

%% Principle Component Analysis

nComponents = 3;

[ coeff, score, latent, tsquared, explained, mu] = pca(

mP', 'NumComponents', nComponents);
%% choose a P
ptrain = score';
%% learn!
% out loop
nouter = 10;

for noi = l:nouter % 10x

% get the partitions for 10-fold cross validation

CV0 = cvpartition(vec2ind(T), 'KFold',10);

fprintf ('outer %d...\n', noi);

clear acc

for cvi = 1:CV0.NumTestSets
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% create a new neural network without test data
% single hidden layer with 10 neurons

net = newff (ptrain(:,CV0.training(cvi)),T(:,CV0.training(cvi)),10);

% early stopping

% by validation (using 20 % of the not-held-out data)
net.divideParam.trainRatio = 0.8; % with 1.0 use everything for training
net.divideParam.valRatio = 0.2;

net.divideParam.testRatio = 0.0; % since doing kfold CV anyway...

% or by maximum training iterations

net.trainParam.epochs = 500; % when to stop

net.trainParam.showWindow = true;
% output transfer function
% Log-sigmoid maps all values to between O and 1
net.layers{2}.transferFcn = 'logsig';
% train the network with data from this fold
% uses default trainlm algorithm ("Levenberg-Marquardt backpropagation")
[net,tr{noi}(cvi)] =
— train(net,ptrain(:,CV0.training(cvi)),T(:,CV0.training(cvi)));
% test network with the held out fold data
out = net(ptrain(:,CV0.test(cvi)));
cm{noi}(:,:,cvi) = compet(out) * T(:,CV0.test(cvi))"';
acc(cvi) = sum(diag(cm{noi}(:,:,cvi))/sum(sum(cm{noi}(:,:,cvi))));
fprintf ('\tcv %d, acc = %0.2f\n', cvi, acc(cvi));

end

% get the total of the confusion matrix

tem(:,:,no0i) = sum(cm{noil},3);

[bm(noi) .res,bm(noi) .vec] = bookmaker (tcm(:,:,noi));

bmval (noi) = bm(noi).res.bookmaker;

140



72

74

75

76

s

78

B.5 Feature Selection and Classification

accval(noi) = bm(noi) .res.randAverage;
fprintf ('\tbm %.2f\n', bm(noi).res.bookmaker) ;

end

% print results!
fprintf (1, 'bookmaker informedness, mean: %.2f, sd: %.2f\n', mean(bmval),
— std(bmval,0));

fprintf (1, 'accuracy, mean: %.2f, sd: %.2f\n', mean(accval), std(accval,0));

Listing B.9: ClassifyMl.m: MATLAB script that uses machine learning (neural net-
work) to performed supervised learning classification.
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B.6 Support Scripts

from pathlib import Path
import cv2

import numpy as np
import ctypes

from screeninfo import get_monitors
def list_enumeration_to_pretty_string( 1lItems):
Sout = Illllll
if type( 1lItems) == type( None):
return None
if type( 1lItems) is not list:
return sOut
nltems = len( 1lItems)
for i in range( 2, nItems + 1):
sSep = "," if i < nItems else " or"
sOut += £"{ sSep} '{ i}'"
return sOut

def list_to_pretty_string( lsItems):

if type( lsItems) == type( None) or type( lsItems) is not list:

return None

for i, s in enumerate( lsItems):

if i ==
sOut = £"'{ s}'"
continue
sSep = "," if i < len( 1lsItems) - 1 else " or"

sOut += £"{ sSep} '{ s}'"
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return sOut

def coords_of_new_monitor( iOldMonitor, iNewMonitor):
lmMonitors = get_monitors()
return ( lmMonitors[ iNewMonitor].x - 1lmMonitors[ iOldMonitor].x,

lmMonitors[ iNewMonitor].y - lmMonitors[ i0ldMonitor].y)

def get_monitor_resolution():
nmnn
Returns resolution of 7current monitor as (width, height).
Requires “ctypes ™ module; only works on Microsoft Windows.
nmnn
user32 = ctypes.windll.user32
user32.SetProcessDPIAware ()

return [ user32.GetSystemMetrics( 0), user32.GetSystemMetrics( 1)]

def get_abs_path_to_named_parent( sNamedParent):
p = Path.cwd()
# until the immediate parent is a match

while p.parts[ -1].lower() != sNamedParent.lower():

if len( p.parents) <= 0:
raise Exception( f'Reached root directory before finding target

— directory: { sNamedParent} from: { Path.cwd()}')
p = p.-parents[0] # 'go up one level'
return p
def keypress_string( nPressedKey) :
return '%d (0x%x), 2LSB: %d (%s)' % (

nPressedKey,

nPressedKey,
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nPressedKey % 2 *x 16,
repr( chr( nPressedKey % 256)) if nPressedKey 7 256 < 128 else '7?'

def explore_keypresses():

nPressedKey = None

nKeyEsc = 27

while nPressedKey != nKeyEsc:
cv2.imshow( 'Press any key; Esc breaks out', np.zeros( ( 1, 1, 3),
< np.uint8))
nPressedKey = cv2.waitKey( 0)
print ( keypress_string( nPressedKey))

cv2.destroyAllWindows ()

def keypress_matches( nPressedKey, *lsKeyNames):

# ASCII Table

dAscii = {
'nul': O, 'null':0,
'bs': 8, 'backspace': O,
'tab': 9,
'1f':10, 'nl':10, 'mew line':10, 'line feed':10, # e.g. CTRL + Enter
'cr':13, 'enter':13, 'return':13,
'esc':27, 'escape':27,
' ':32, 'space':32,
"1':33, 'exclamation mark':33,
'"':34, 'double quote':34,
'#':35, 'number':35, 'pound':35, 'hash':35,
'$':36, 'dollar':36,
'%':37, 'percent':37,
'&':38, 'ampersand':38, 'and':38,
"'":39, 'single quote':39,
'(':40, 'left parenthesis':40, 'open parenthesis':40,
'(':41, 'right parenthesis':41, 'close parenthesis':41,
'x':42, 'asterisk':42,
'+':43, 'plus':43,

',':44, 'comma':44,
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108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

136

137

139

140

141

142

143

144

B.6 Support Scripts

N
1o
Q!
A
‘B!
e
D
R
E
X
Ty
T
L
K
K
M
N
'0':
'P':
Qe

145,
146,
147,
148,
149,
:50,
:51,
:52,
: 563,
:54,
:55,
:56,
.57,
:58,
:59,
160,
161,
162,
163,
164,
165,
166,
167,
168,
169,
170,
171,
172,
173,
174,
175,
176,
77,
178,

79,
80,
81,

'hyphen':45, 'dash':45,
'period':46, 'dot':46, 'full stop':46,

'slash':47, 'forward slash':47, 'divide':47,

'zero':48,
'one':49,
'two':50,
'three':51,
'four':52,
'five':53,
'six':54,
'seven':55,
'eight':56,
'nine':57,
'colon':58,
'semicolon':59,
'less than':60,
'equals':61,
'greater than':61,
'question mark':63,
'at':64,
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145

146

147

148

149

159

160

161

162

163

164

165

166

167

168

170

171

172

173

174

176

177

178

179

180

181
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146

:82,
:83,
:84,
:85,
: 86,
187,
:88,
:89,
:90,
191,

192,

:93,

194,

:95,

165,

197,

:98,

199,

1100,
1101,
1102,
1103,
1104,
1105,
1106,
1107,
:108,
:109,
1110,
:111,
1112,
1113,
1114,
1115,
1116,
:117,
1118,

'left bracket':91, 'open bracket':91,
'backslash':92, 'back slash':92,
'right bracket':93, 'close bracket':93,
'circumflex':94, 'caret':94,
'underscore' :95,

'grave':96,



182

183

184

185

186

187

188

190

191

192

193

194

196

B.6 Support Scripts

|{|
|||
|}|

1119,
1120,
1121,
1122,
1123,
1124,
1125,
1126,

'left brace':123,

'open brace':123,

'bar':124, 'vertical bar':124, 'pipe':124,

'right brace':125,
'tilde':126,

'del':127, 'delete':127

for sKeyName in lsKeyNames:

if nPressedKey == dAscii.get( sKeyName.lower(), -1):

return True

return False

'close brace':125,

Listing B.10: DUtils.py: Python 3 package containing generic support functions used

by prompter.py.
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11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

Appendix B Recognition Code

function varOut = ValidatedLoad( sFileFull, sVarName, varargin)

% Loads the

specified file and, if necessary, unwraps the loaded

% file to get to the target variable name.

% Arguments:

% sFileFull
% sVarName

% Optional

% Returns:

% varOut

string, absolute path and filename of target file.

string, name of the target variable.

: By default, ValidatedLoad will return what it loaded

but display a warning in the Command Window;
passing the tag 'strict' will prevent return if the
loaded variable name does not match sVarName, throwing

an error instead.

the loaded variable.

if ismember( varargin, 'strict')

1Strict
else
1Strict

end

= true;

= false;

uLoaded = load( sFileFull);

try

varOut = uLoaded. ( sVarName) ;
catch

if 1Strict

error( 'ValidatedFile:strictInvalidLoad',

else

"%s could not find '%s' in %s.",

mfilename, sVarName, sFileFull)

rcFieldNames = fieldnames( ulLoaded);
varOut = uLoaded.( rcFieldNames{ 1});

warning( 'ValidatedFile:relaxedInvalidLoad',
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36

37

38

39

40

B.6 Support Scripts

"%s could not find 'Ys' in %s; loading '%s' instead.",
mfilename, sVarName, sFileFull, rcFieldNames{ 1})
end
end

end

Listing B.11: ValidatedLoad.m: MATLAB function to automatically ‘unwrap’ loaded
MAT-files and validate the variable name.
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