
Flinders University
College of Science & Engineering

ENGR9700
Masters Thesis

Sign-to-Text
Putting the ‘language’ into Sign Language Recognition

David Mansueto

Supervisors

David Hobbs & Trent Lewis

November 2019

Submitted to the College of Science and Engineering in partial fulfilment of the
requirements of the degree of Bachelor of Engineering (Biomedical) (Honours), Master

of Engineering (Biomedical) at Flinders University Adelaide Australia

Declaration

I certify that this work does not incorporate without acknowledgement any material
previously submitted for a degree or diploma at any university; and that to the best of
my knowledge and belief it does not contain any material previously published or written
by another person except where due reference is made in the text.

Signed: David Mansueto

Date: November 2019

i

Acknowledgements

My first and foremost acknowledgement must go to my principle supervisor Dr. David Hobbs
for his enthusiasm, guidance and steadfast support during this journey and my co-
supervisor Dr. Trent Lewis for his grounding cynicism.

Thank you to Jenna Mayne and Debbie Kennewell of Deaf Can:Do for proposing this
topic and sponsoring me to attend their Auslan courses “Talking Hands” 1, 2 & 3.

And thank you to A/Prof. Kenneth Pope for the vitalising lunchtime games of ping-
pongo.

Last but certainly not least, thank you to Dee for getting me through a thesis that
seemed like it would never end.

iii

Abstract

The Sign-to-Text project explores the challenge of sign language recognition (SLR), in
the context of a system to recognise Auslan (Australian Sign Language) and translate
it into English text on a computer. This project was borne of a request from the Deaf
Can:Do group. Workers converse with deaf community members in Auslan, their mutual
first language, then must enter case-notes in English a second language with different
vocabulary and grammar.

SLR is ostensibly a well-studied field nearly as old as the first linguistic definition of
Auslan and has two known commercial solutions, neither of which meet the needs of Deaf
Can:Do. A thorough grounding of Auslan linguistics allows defining the components that
transform a series of gestures into a rich, expressive language. Auslan is a complex com-
bination of visuo-temporo-spatial cues, including the well-accepted but poorly-clarified
phonemes the irreducible, contrastive components of a lexeme and the more elusive
contextual elements, such as classifiers, modifiers, mime and the allocation of nouns to
spatial locations for deictic reference. A new taxonomic linguistic structure for Auslan
that includes all these elements is presented. The intrinsic challenges signed languages
present for recognition and translation are defined, including several new challenges.

Recognition begins by observing signing such as via instrumentation of the signer or
optical image capture. As non-manual elements are essential for language, an optical
input is currently required for true sign language recognition, however instrumentation
typically provides far higher fidelity suited to the higher complexity of manual elements.

A framework for sign language recognition and translation is proposed. A modular
approach encourages multi-modal input. Taking cues from speech recognition, SLR is
divided into a visual model that classifies individual phonemes and modifiers and a lan-
guage model that considers the unfolding sentence as it combines these into lexemes.
The integration modifiers, spatial referents and deixis locations are facilitated by addi-
tional classifiers and a new memory block within the visual model. The output lexemes
including context and modification would be glossed by the language model, completing
the recognition stage, leaving a final translation stage into the target language.

Using consumer-grade depth cameras, the framework is implemented up to phonemic
recognition (handshape), providing insight into the technical challenges faced by optical
sign-language recognition systems. A verification of the system using 5 handshapes and
classifying with a neural network achieved 87% accuracy.

v

Contents

Declaration i

Acknowledgements iii

Abstract v

Figures xi

Tables xiii

Listings xv

Glossary xvii

1 Introduction 1
1.1 Background . 2

1.1.1 Signed Languages . 2
1.1.2 Automatic Sign Language Recognition 3
1.1.3 Gap Analysis & Focus of this Thesis 4

2 Linguistics 5
2.1 Sign Types . 5
2.2 Phonological Structure . 6

2.2.1 Locative Terms . 7
2.2.2 Contextual Information . 9
2.2.3 A New Phonological Taxonomy 11

2.3 Challenges . 13
2.3.1 New Challenges . 14

2.4 Summary . 15

vii

Contents

3 Framework 17
3.1 Framework Composition . 19

4 Recognition 23
4.1 Observation . 23
4.2 Literature Review . 24

4.2.1 Summary . 30
4.3 Visual Challenges . 30

4.3.1 Spatial Segmentation . 35
4.4 Pattern Recognition Techniques . 36

5 Implementation 37
5.1 Hardware Selection/Capture Modality 37

5.1.1 RGB-D Camera Requirements . 37
5.1.2 RGB-D Camera Selection . 40

5.2 Intel RealSense D435i . 42
5.3 Software . 43

5.3.1 RealSense in MATLAB . 45
5.3.2 RealSense in Python . 48

5.4 Accuracy & Resolution . 50
5.4.1 Testing Accuracy . 52
5.4.2 Testing Resolution . 56

5.5 Recording . 62
5.5.1 Recording via RealSense Viewer 63

5.6 Prompting . 63
5.7 Skeleton . 65
5.8 Microsoft Kinect . 66

5.8.1 Recording Kinect . 66
5.8.2 Kinect in MATLAB . 69

5.9 Temporal Segmentation . 71
5.9.1 Label-Frame Alignment Verification 73

5.10 Spatial Segmentation . 74
5.10.1 Binary Image of Hand . 77
5.10.2 Implementation . 77

viii

Contents

5.11 Feature Selection . 79
5.11.1 Multi-layer PCA Selection . 79

5.12 Classification . 79
5.12.1 Measuring Performance . 80

6 Validation 83
6.1 Introduction . 83
6.2 Method . 83

6.2.1 Study Parameters . 83
6.2.2 Setup . 85
6.2.3 Session Flow . 86
6.2.4 Segmentation . 87
6.2.5 Feature Extraction and Selection 89
6.2.6 Classification . 90

6.3 Results . 90
6.4 Discussion . 90
6.5 Conclusion . 93

7 Conclusion 95
7.1 Future Work . 96

Appendices 99

A Linguistic Conventions 99

B Recognition Code 101
B.1 Teleprompter script . 102
B.2 Kinect Recording script . 112
B.3 Temporal Segmentation . 118
B.4 Spatial Segmentation and Feature Extraction 126
B.5 Feature Selection and Classification . 136
B.6 Support Scripts . 142

References 151

ix

Figures

2.1 Johnston’s “Cheremic Order” . 8
2.2 Notes that accompanied Johnston’s Cheremic Order 9
2.3 Deixis locations in signing space . 10
2.4 Phonological Taxonomy . 11
2.5 Manual elements branch of phonological taxonomy. 12
2.6 Non-manual element branch of phonological taxonomy. 12

3.1 Auslan gloss in SignWriting . 19
3.2 Framework block diagram . 20

4.1 Venn diagram of language and recognition 24

5.1 Comparison of depth camera projector patterns 42
5.2 Intel RealSense D435i on Manfrotto Pixi Mini tripod. 43
5.3 The Intel RealSense Viewer . 44
5.4 Sensors of the Intel RealSense D435 . 45
5.5 A false-coloured depth frame produced via MATLAB 46
5.6 Comparison of D435 outputs via USB2 versus USB3 48
5.7 Accuracy plots of an Intel RealSense D435 measured by Intel 51
5.8 Auslan signs l, n & v are difficult to distinguish 52
5.9 Accuracy of an Intel RealSense D435 with Calvert’s Calibration 54
5.10 Calvert’s calibration target . 55
5.11 Realisation of Calvert’s calibration target 55
5.12 Ground truth distance between Intel RealSense D435 and scene 56
5.13 Drawing of resolution test board. 58
5.14 Photograph of actual resolution test board. 59
5.15 Plot of D435 measurements of resolution board overlaid by resolution

board profile . 59

xi

Figures

5.16 Plot of changes in depth measurement from resolution test 62
5.17 Telepromting window produced by prompter.py 64
5.18 Placeholder produced by prompter.py. 65
5.19 RGB pointcloud with joint segment overlay using Kinect for Windows

SDK 2.0 in C++ . 68
5.20 Kinect for Windows SDK 2.0 viewer . 69
5.21 Depth intensity values mapped onto colour frame 71
5.22 The initial screen of SelectFramesFromRecordings.mlapp 72
5.23 View of SelectFramesFromRecordings.mlapp once a recording has been

loaded . 73
5.24 Automatic segmentation using depth data 74
5.25 Variability of Kinect ‘joint’ locations . 75
5.26 Comparison of methods to define region of interest around hand 76

6.1 Validation lexicon images . 84
6.2 Recording setup with Kinect and a computer monitor on tripods 85
6.3 Example of participant signing in front of camera. 86
6.4 Example of motion artefact in recording 89
6.5 Plot of composition of principal components used for classification. . . . 91

xii

Tables

1.1 Aims of the Sign-to-Text project. 2

4.1 Literature review tables . 25
4.2 Literature review: Sources . 26
4.3 Literature review: Segmentation . 27
4.4 Literature review: Recognition . 28
4.5 Literature review: Signing participants in sign language recognition (SLR)

studies . 29

5.1 Summary of required camera parameters. 39
5.2 Comparison of several consumer-grade depth cameras against required

parameters. 40
5.3 Intel RealSense Viewer settings during resolution test. 60
5.4 Depth values of D435 measurements of resolution board 61
5.5 Contingency matrix . 81

6.1 Validation study classification accuracy 92

xiii

Listings

5.1 depth_example.m: a simple script used to validate Intel RealSense SDK
2.0 . 47

5.2 Validating the Python 3 SDK build . 50

5.3 Microsoft Kinect SDK 2.0 Joint Type definition 67

5.4 Windows 10 Registry modification to enable USB power support for Mi-
crosoft Kinect 2.0. 68

6.1 First 15 lines of Prompter_2019Sep17Tue20h22.log, the logfile produced
by prompter.py for the validation study. 88

B.1 prompter.py: Python 3 script written to provide randomised visual que
from pool of lexemes at regular time intervals, recording timing and label
information to a log file. 111

B.2 KinectRecorder.m: MATLAB script written to record depth frames, col-
our frames and body data from Microsoft Kinect 2.0. 117

B.3 SelectFramesFromRecordings.mlapp: MATLAB ‘App’ graphical user
interface (GUI) to manually select one representative frame per sign. . . 125

B.4 ProcessRecordings.m: MATLAB script to automate processing of selec-
ted frames of Microsoft Kinect 2.0 data. 127

B.5 RoiImagesFromSelectedFrames.m: MATLAB function to spatially seg-
ment frames into region of interest (ROI) for colour and depth and pro-
duce a binary image (or ‘mask’) of the hand. 131

B.6 VerifySelectionAndLabelling.m: MATLAB function for manual visual
verification that selected images and labels match. 132

B.7 ExtractFeaturesFromRoiImages.m: MATLAB function that extracts
numerical features for classification. 134

xv

Listings

B.8 FeatureStructToArrayWithPca.m: MATLAB script that selects features
from the lexeme-indexed row of struct containing numerical features,
using principal component analysis (PCA) to reduce covariance. 138

B.9 ClassifyMl.m: MATLAB script that uses machine learning (neural net-
work) to performed supervised learning classification. 141

B.10 DUtils.py: Python 3 package containing generic support functions used
by prompter.py. 147

B.11 ValidatedLoad.m: MATLAB function to automatically ‘unwrap’ loaded
MAT-files and validate the variable name. 149

xvi

Glossary

Auslan the sign language (SL) of the Australian deaf community; a contraction of
Australian Sign Language [59]. 1 6, 9, 26

Creative BlasterX Senz3D a consumer grade structured-light the combination of col-
our (specifically, RGB) and depth images (RGB-D) camera that uses an Intel Real-
Sense depth module and is supported by the Intel RealSense software development
kit (SDK) 1.0. 39 41, 65

Deaf Can:Do a charitable service provider formed by the joining of The Royal South
Australian Deaf Society and the Can:Do group. 1, 2, 4

deixis a contextual extralinguistic reference by means of expression. 9, 10

depth (of a camera) the distance from the camera sensor to the scene, obtained through
optical measurement; typically taken as the Z-axis, originating orthogonally to
sensor and extending positively towards the scene. xvii, xviii, 27

gloss encoding of a visual gesture into written form. See Appendix A for sylistic con-
ventions. 21

Intel RealSense D435 a consumer grade stereoscopic RGB-D camera. xi, xvii, 34, 39,
41, 42, 45, 50, 51, 54, 56

Intel RealSense D435i a variant of the Intel RealSense D435 that differs only by the
addition of an inertial measurement unit (IMU). xi, 41 43, 45, 52, 57, 62, 66

Intel RealSense SDK 2.0 the SDK for the Intel RealSense D400 series depth mod-
ules. xv, 43, 45, 47, 48, 65

joint (of a skeleton model) an intersection point between rigid segments where flexion
can occur or a point of interest (e.g. ‘hand’ or ‘head’), typically given as coordin-
ates in two-dimensional or three-dimensional space. 27

xvii

Glossary

lexeme the minimal units of language, e.g. signs and words, per se, divorced from their
meaning. Stylised as lexeme. xviii, 3, 6, 7, 11, 19, 21

lexicon the complete set of lexemes in a language. 2, 6, 23

manual related to the hands. 3, 6, 7

Microsoft Kinect 2.0 also known as ‘Microsoft Kinect for Xbox One’, a consumer-
grade time-of-flight depth camera. xv, 39 41, 66

phoneme base components of a word or sign. Stylised as /phoneme/. 6, 7, 11, 13, 19,
21

RASR The RWTH Aachen University open source speech recognition system [113]. 30

stereoscopic an optical depth-computation technology that uses trigonometry to es-
timate depth from the images produced by a (stereo) pair of sensors. 42

structured light an optical depth-computation technology that estimates depth based
on distortion of a unique pattern, projected by an infra-red (IR) projectector,
reflected of the scene and detected by an IR sensor. 34, 41

time-of-flight an optical depth-computation technology that estimates depth from the
time for pulses of IR light to reflect of the scene and return to the camera. 34, 41

xviii

Chapter 1

Introduction

SLR is the use of a machine to decipher gestural language. The first documented attempt
dates back to 1986 [95] and recent patents [33], [110] and commercial products [32], [111]
would seem to suggest that such systems are now technologically viable.

The South Australian community support group Deaf Can:Do have sought such a
system to facilitate the production case-notes in their case-worker’s native language:
Auslan, rather than type them in directly in English. While simply using a keyboard
and typing might be the ‘obvious solution’, there are limitations.

SLs are unique, natural languages, not ‘gestural equivalents’ of spoken languages, and
generally do not have a written form. This creates difficulty interacting with a computer:
for example, a hearing-impaired individual (pro1

1) who’s first language (L1) is Auslan
may correspond with another individual (pro2) who is fluent in Auslan using video chat,
but if video chat is not an option, pro1 must resort to written communication and thus
a different language.

Native Auslan speakers are typically hearing impaired and have never heard nor spoken
English the classic counter example, a child of deaf adult (CODA), is not common so
while the hearing impaired individual may learn English, it will most likely be through
reading and writing and therefore as a second language (L2). As Auslan and English
are dissimilar in lexicon and grammar, a native Auslan speaker typing in English can
be likened to a non-hearing impaired individual dictating to a computer in a spoken L2
with different sentence structure to their L1.

Deaf Can:Do have been unable to find a suitable SLR system for Auslan and so
suggested this project. The aims of this project are provided in Table 1.1.

1Linguistic conventions such as pro3a and poss2 are defined in Appendix A.

1

Chapter 1 Introduction

Table 1.1: Aims of the Sign-to-Text project.

Aim

1. To define the essential linguistic components of Auslan.
2. To develop a framework for SLR that incorporate those components.
3. To implement the framework for automatic recognition of a restricted Auslan

vocabulary for Deaf Can:Do case notes.

1.1 Background

The background of this thesis, like much of the thesis itself, is presented in two sections,
each considering one of the two sides of SLR: first, linguistics, the study of (sign) language
and identification of the essential aspects that can then be targeted by the second side:
recognition of signs automatically by a machine.

1.1.1 Signed Languages

SLs are natural languages, they have a defined set of rules: ‘grammar’ and a defined
set of signs: ‘lexicon’ and, importantly, are not a gestural version or mime of spoken
language [10], [24], [59], [117]. Further, there is no one ‘universal’ or international SL,
but rather a deaf community in isolation will tend to develop their own, much like spoken
language [59], leading to national SLs as well as regional dialects.

SLs have only been recognised as ‘true’ languages since the 1960’s [59], following
a disruptive paper on American Sign Language (ASL) by linguist Stokoe [117] that
prompted global interest in and “serious” linguistic study of SLs. Since then there have
been several efforts [61] to analyse and quantify SLs including through the production of
lexicons and dictionaries2. Foremost in Australia are the works of Johnston, who coined
the term ‘Auslan’ and developed a lexicon using a hierarchical classification structure,
extending it to form an Auslan Dictionary [59] that has been maintained through several
forms, migrating to video recordings of signs [63] and eventually into an open-access
online format [62] with around 8000 video-based definitions.

Auslan differs from English both in vocabulary: the set of available words and in
grammar: the rules of how words are combined to form language. An example of the

2A trend in earlier SL lexicographical works is a seeming arbitrariness in the use of the terms ‘lexicon’
(defined as a complete set of words, without definitions) and ‘dictionary’ (a complete set of words,
with definitions), likely due to differences in opinion – with some pointed references [61]

2

1.1 Background

first are the distinct lexemes in Auslan for three different meanings of the single English
lexeme ‘party’: (birthday) party, (go out and) party and (e.g. a political) party. An
example of the latter is the order of words in sentences, fixed in English as: subject noun,
verb, object noun; while Auslan has no fixed order but tends to begin with context, such
as: actor, verb, undergoer, constituent [24], [64].

This thesis focuses on the engineering aspects of SLR and so avoids the greater gram-
matical complexities of SLs, delving deep enough only to define the linguistic elements re-
quired for unambiguous recognition. These elements are discussed at length in Chapter 2.

1.1.2 Automatic Sign Language Recognition

SLR can be viewed as the natural interaction of a signer with a computer: the computer
takes the place of pro2 in (unilateral) conversation, much like a speaker may dictate to
computer using automatic speech recognition.

There are two main approaches to SLR: instrumented and optical, each with their
advantages and disadvantages. Instrumentation, such as the application of sensors to
measure joint angles of the hand or tracking the location of the hand in space are highly
informative for manual elements but tend to be more difficult to set up, may restrict
the signers’ ability to sign and, crucially, simply cannot observe non-manual elements
(NME). Optical systems tend to be easier to setup, are capable of observing the entire
signing space and grant the signer the freedom they are used too, but provide lower
quality information thus requiring greater classification effort.

An option for optical systems is to use more cameras, providing more views and so
information while potentially reducing obstruction. Hybrid systems that utilise both
modalities, such as instrumentation for manual elements and optical systems for NME
present a powerful concept, but may still impede the signer.

In the past decade cameras that measure distance from the camera (‘depth’) as well as
colour (thus RGB-D) have become available at low cost. The addition of depth directly
provides a third dimension of information for optical classification, as well as providing
a simple, robust means to isolate, for example, a hand, from the background.

Given the limitations of instrumented approaches, the availability of depth cameras
and recent progress in computer vision, a purely optical modality was selected for this
study. The inherent challenges of an optical SLR system and the state-of-the-art for
computer vision techniques are discussed in Chapter 4.

3

Chapter 1 Introduction

1.1.3 Gap Analysis & Focus of this Thesis

Developing an automated system to convert sign language into text is a non-trivial task.
Efforts in SLR date back to the 1980’s and there are now commercially available solutions,
yet none fit the needs of Deaf Can:Do. Notably absent is a recognition framework that
takes a linguistic perspective to ensure it recognises all aspects that make sign language
a language, rather than just implementing sign recognition. As such, this thesis focuses
on defining the linguistics of signed languages, exploring existing recognition techniques
and producing a holistic sign language recognition framework.

The linguistics of signed languages and of Auslan in particular are covered in Chapter 2,
providing insight into foundations of SL and the elements required to capture them.

A literature review of the techniques used for the automatic recognition of signed
languages, both optical and instrumented, is presented in Chapter 4, along with research
into the particular challenges faced by optical systems.

With the requirements and techniques covered, Chapter 3 outlines an inclusive frame-
work for SLR and touches upon the extension of it to translation, which is not a focus
of this work.

A rudimentary implementation of the framework is detailed in Chapter 5, taking an
optical approach to static handshape recognition.

A validation of the implementation by means of a small trial is presented in Chapter 6.
The learnings from this thesis are summarised in Chapter 7.

4

Chapter 2

Linguistics

To achieve the goal of SLR it is necessary to first understand the SL in order to re-
cognize it. The contemporary linguistics of signed languages is a relatively young field,
with interest revived in the 1960’s [117] following a hiatus since the eighteenth century
linguists, who’s efforts were largely forgotten [64]. Auslan itself is a young language: it is
estimated to have originated in the nineteenth century and has only been linguistically
defined in the past three decades [59].

There are many SLs, each with their similarities, differences and nuances, but there
does not appear to be any meta-study of these variations. The unspoken consensus of
SLR researchers seems to be that a system which proves effective for a particular SL
could reasonably be adapted for use with other SLs.

2.1 Sign Types

Signed languages contains four ‘sign types’: lexical signs, classifier signs, sign-mime and
mime [59].

Lexical signs are the ‘words’ of a SL: they have a defined meaning and a prescribed,
unambiguous form which is discussed in detail in the following section.

Classifier signs are part of SL context and provide visual adjectives and emphasis.
Descriptive classifiers are where the hands ‘trace over’ an imaginary object, describing
its size and shape. Proform classifiers are where the hands represent an object per se
and perform its position, orientation and motion.

Sign-mime is an improvised, context-dependent sign used in the place of lexical signs
when an individual doesn’t know an established sign, or when there is no defined sign,
such as for niche, technical and compound terms. Mime is simply ‘acting out’ a scenario

5

Chapter 2 Linguistics

and discouraged in Auslan except for the use of ‘visual quoting’.

2.2 Phonological Structure

A lexicon is the set of all high-level units of a language, the lexemes. Lexemes, in turn,
are comprised of ‘phonemes’: the basic, irreducible, contrastive units of language [10].
Early sign linguistic works espoused Stokoe’s term for the sublexical unit: ‘chereme’, an
anagram for and modelled on phoneme, using the Greek base (χειρ (cheír): “hand”)[117].
Recent works take the view that signed language should use generic linguistic terms,
rather than special SL-specific terms [10], [24], [125]. There are, however, recent works
that buck this trend, for example, using ‘viseme’ in the place of lexeme [73], presumably
a contraction of ‘visual’ and ‘lexeme’.

Phonemes in Auslan include, for example, a /closed-dominant-hand-with-the-index-
finger-out-and-hooked/, a /double-tap/ motion of the dominant hand, a location of the
dominant hand relative to the body, for example, /bridge-of-the-nose/. The Auslan
speaker will recognise these phonemes as part of the set that form the lexeme sister.
If one of these phonemes were to change, for example, the location from /bridge of the
nose/ to /chin/, the lexeme would change; in this case, to dinner.

These three phonemes fit the phonological categories defined by Stokoe in 1960: con-
figuration, position and motion, but with ‘significant combination’ names: designation,
tabulation and signation, respectively,[117] and since commonly used in abbreviation:
‘Dez’, ‘Sig’, ‘Tab’.

A fourth ‘significant combination’ hand-arrangement ‘Ha’ can be added to this list
[12], [25] a structural choice Stokoe opposed, viewing arrangement as a subcategory of
‘position’ (using the term ‘attitude’) [59], [117]. As an example by juxtaposition, consider
mine and yours: both are formed by the /closed/ shape, start in the /neutral/ location
and thrust in the direction of the palm, but in mine the palm faces the signer (pro1),
while in yours the palm faces pro2.

In his 1989 thesis, Johnston identified five core elements of a sign: handshape, loca-
tion, orientation, movement and expression [59]. The first four match those previously
described with ‘hand-arrangement’ becoming orientation which is perhaps less illus-
trative and can be collectively referred to as the manual elements. The fifth category,
expression, acknowledges that SL is more than hand-waving [59]; a view not commonly
held at the time [34] but seemingly taken as ‘common knowledge’ now [17], [18], [24]

The importance of expression can be demonstrated by /flat hand, digits together/,

6

2.2 Phonological Structure

/dominant hand on chest/, /palm facing chest/ and /no movement/: the addition of
an /enthusiastic/ (facial) expression and /nodding/ head creating like, while /stern/
expression and /shaking/ head create don’t like.

This also shows that expression itself can be considered a list of subcategories, includ-
ing body posture, head movements, facial expression, gaze direction, eye and eyebrow
movements and mouthings [24], [59], [73], collectively referred to non-manual elements
(NME): ‘everything other than the hands’.

The ‘classical’ five phonological categories that combine to form a single sign are [10],
[24], [59], [125]:

Shape (previously Designation ‘Dez’) shape of the dominant (and subordinate) hand(s).

Location (previously Tabulation ‘Tab’) place or position of articulation of the hand(s)
relative to the body.

Orientation (previously Hand Arrangement ‘Ha’) orientation of the dominant (and
subordinate) hand(s)

Movement (previously Signation ‘Sig’) the dynamic action or articulation of the hand(s).

Expression or NME, everything other than the hands, including body posture, head
gestures, facial expressions and gaze direction.

Each of five phonological categories include many possible phonemes; Johnston cre-
ated a detailed decision schema for “Cheremic Order” [61], shown in Figure 2.1 with
the accompanying notes shown in Figure 2.2, to illustrate how the phonological (then,
cheremic) categories combine to form lexemes. The first phonological category is the
shape of the dominant hand, listed as “Cheremic Order”, of which Johnston enumerated
62 phonemes in 1989 and 60 phonemes in 2003 [59], [61].

2.2.1 Locative Terms

An important consideration when discussing locations and orientations in signed lan-
guages is both the frame of reference and validity of sublexical combinations, particularly
in the case of handedness. It is common for texts to use terms such as ’towards the left’,
or ’the right hand’, both suggesting a requirement for right-handed signing which is not
the case, at least for Auslan. If the signs are mirrored appropriately, that is, become
’towards the right’ and ’the left hand’, respectively, the sign is interpreted the same. An

7

Chapter 2 Linguistics

Figure 2.1: Johnston’s detailed decision schema for “Cheremic Order” [61], showing the
cascading identification of phonemes that combine to define a lexeme.
The accompanying notes are shown in Figure 2.2

8

Image removed due to copyright restriction.

2.2 Phonological Structure

Figure 2.2: Notes that accompanied Johnston’s “Cheremic Order”, shown in Figure 2.1
[61].

appropriate change in terminology is therefore to use generic terminology, in this case,
medial & lateral and dominant & subordinate, respectively.

2.2.2 Contextual Information

Context is the meta information of SL that provides tone and richness to conversation.
Emphasis, adjectives and deixis are all conveyed through how the signs are performed
[59], [61]. Morphology, timing and space all play a part in context.

Classifiers, particularly proform classifiers, are a constant feature of Auslan. For ex-
ample, windy: is ‘a breeze’ if performed gently while looking nonchalant, ‘ceaseless’
if repeated many times while looking haggard and wary or ‘a gale’ if made by large,
emphatic movements using the whole upper body with an intense expression.

Signs can be modified by altering their performance temporally or spatially; this al-
most always seems to be with respect to hand movement and expression. Tempo-spatial
inflections include changing: the frequency of repetition, the number of repetitions (‘re-
currence’), the ‘duty cycle’ of repetitions (‘duration)’) and the duration of holds (‘per-
manence’) the duration of holds, number of repetitions and changing the path of the
motion (‘trajectory’) [18].

Deixis is the ‘pointing’ aspect of language, such as ‘you’ (person), ‘ there’, ‘that’ (place)
and ‘yesterday’ (time), which are included in Auslan, as well as discourse, empathetic
and social deixis which are not included [59], [61], [118].

9

Image removed due to copyright restriction.

Chapter 2 Linguistics

Figure 2.3: A representation of addressable locations for spatial deixis within a single
horizontal layer of three-dimensional signing space, adapted from [59, p. 139].

An example of place deixis is simply pointing, there, at the target entity, which is
trivial when the entity is present and is necessary when there is no lexeme for the entity,
such as for many body parts.

Deixis is appropriate even when the target entity cannot be unambiguously pointed
at in the prevailing context. The entity is signed or mimed and allocated a particular
location within the signing space, either by simply moving the sign there or by pointing
at the space after performing the sign. Pointing at that space is then taken as if pointing
directly at the target entity. A diagram of some addressable locations is provided in
Figure 2.3.

A more subtle aspect of deixis is the context provided by informative inter-sign move-
ment, termed contextual deixis. For example, to sign the sentence ‘I got a book from the
library’ one might sign library off to one side, establishing it as a location in space,
then, without moving the hands from the finish of library, immediately start book
at that location, pause, draw the hands to neutral position and then complete the sign.
That is, the almost incidental movement from the location where library was signed to
the the neutral position provides both ‘got a’ and ‘from the’ in the equivalent English
sentence.

Deixis means the assignment of entities to locations in space must be remembered and
the movement between signs can be communicative: an exception to the general rule.

10

Image removed due to copyright restriction.

2.2 Phonological Structure

Sign

Manual

Unimanual Bimanual

Homocheremic

Dominant Hand

Shape Orientation Location Movement Deixis

Heterocheremic

Non-dominant Hand

Shape Orientation Location Movement Deixis

Non-Manual

Mouthings

Body Posture

Head Pose Shoulders Chest

Facial Expression

Eyes Eyebrows Cheeks Mouth Gaze Deixis

Figure 2.4: A new phonological structure: a taxonomy of sub-sign elements, acknow-
ledging that phonemes are not necessarily sub-lexical but rather phonemes
combine to form all aspects of signed languages.
The bottom level of this taxonomy are the phonemic categories; the numer-
ous possible phonemes for each category are not shown.
Manual elements previously gave no distinction to hand.
(Manual) Orientation and (Manual) Arrangement were previously one phon-
emic category; arrangement is now expanded as part of the categorical struc-
ture, rather than an individual phonemic category.
NME were previously bundled together as a single phonemic category.
Deixis is a new phonemic category that can be articulated by either hand
and/or gaze direction.
The two main branches of the taxonomy are shown at full-scale in Figures 2.5
& 2.6.

2.2.3 A New Phonological Taxonomy

If one considers the definition of lexeme as “a unique combination of the smallest con-
trastive units of language” (i.e. phonemes), then the current “five major components of
sign structure” [59, p. 46] does form a basis for a lexeme as expression can have different
‘sub-phonemes’. One must then consider each of the ‘sub-phonemes’ of expression to be
phonemes in their own right.

Then there is the consideration of deixis. Superficially, the distinction between mine
and yours is the orientation of the hand and direction of the movement. If one rotates
the frame of reference such that it is with respect to the palm, not the signer, then
the combination of phonemes is identical. This illustrates the importance of the spatial
referent and clearly identifies it a a crucial part of the combination that defines the
lexeme. As such, ‘motion with respect to defined locations within the signing space’
must be considered a phoneme.

A hierarchical structure that takes both of these considerations into account yet still
supports the notion of ‘non-manual elements’ can be obtained by dividing the phono-
logical categories into those related to the hands and those not related to the hands,
resulting in the phonological taxonomy presented in Figure 2.4.

11

Chapter 2 Linguistics

Sign

Manual

Unimanual Bimanual

Homocheremic

Dominant Hand

Shape Orientation Location Movement Deixis

Heterocheremic

Non-dominant Hand

Shape Orientation Location Movement Deixis

. . .

Figure 2.5: Manual elements branch of phonological taxonomy.

Sign

Non-Manual

Mouthings

Body Posture

Head Pose Shoulders Chest

Facial Expression

Eyes Eyebrows Cheeks Mouth Gaze Deixis

. . .

Figure 2.6: Non-manual element branch of phonological taxonomy.

12

2.3 Challenges

2.3 Challenges

SL specific challenges arise from the diverse, dynamic and variable gestures and nuanced
differences between ‘critical contextual cue’ and ‘non-informative connecting movement’.
The complexity of understanding SL and so the challenges it poses for automated re-
cognition is apparent in the literature, for example confusion over the distinction of the
terms coarticulation and epenthesis in [18] or treating them as the same concept [48].

Indeed, there is seemingly no single comprehensive glossary of challenges. The best
lead is a linguistically-motivated group of Dutch researchers lead by ten Holt have pub-
lished two discussions of SLR challenges [120], [121], Caridakis, Asteriadis and Karpouzis
have also contributed.

A clarified, unique list of challenges as present in the literature is presented here:

Intra-signer variation is the slight difference in the way a signer performs a sign. It
may be due to “whether the person is agitated or happy” [121, p. 418] or simply
the random variation that occurs naturally in human performance, including due
to other movement of the signer [18].

Inter-signer variation is the difference between the performances of a sign by different
signers [18]; as such, this might be considered an accent [121]. The change may be
subtle mechanical difference, such as the level of care taken to form the handshape
or the gracefulness of the movement. The change may also be a mental difference,
where both signers believe they are signing correctly but in truth have different
ideas of how the sign should be performed, even down to different perceptions of
how a single phoneme is performed.

Inter-signer variation does not extend to regional dialects, as here the sign is truly
different, being formed by a different combination of phonemes.

Sign-sign interaction is change to the articulation of a given sign that arises due to
the ending of the preceding sign and due to the beginning of the succeeding sign
[121]. For example, the performance of a sign starting with the hands in neutral
position will be different to a performance that begins with the hands above the
head.

Movement epenthesis is the additional, non-informative movement that occurs as
the hands move from the end location of one sign to the starting location for the
subsequent sign [121].

13

Chapter 2 Linguistics

Anticipation is the additional, non-informative movement of the non-dominant hand
in preparation for a bi-manual shape; thus, anticipation is a subset of movement
epenthesis [121].

Coarticulation arises when two discrete signs are performed in parallel; that is, the
phonemes for two separate signs are articulated at the same time [18], [121].

Repetition is repeated motion, which can either be phonemic or emphatic [121]. In
phonemic repetition, the simple act of repeating forms the entirety of the inform-
ation: the number of repeats are irrelevant. In emphatic repetition, the frequency,
duty cycle and number of cycles are all informative and almost certainly occur in
parallel with expressions.

Occlusion refers to the inability to view part of a sign, be it due to other body parts
or simply it being on the other side of the scene to the current point of view, such
as self-occlusion of the hand [18].

2.3.1 New Challenges

From the linguistic perspective presented in this chapter, it is apparent there are three
challenges for sign language recognition not covered in the literature, namely:

Temporo-spatial memory of signs allocated a location within the signing space to
enable spatial deixis. For example, one may wish to refer to an individual who is not
present, (pro3), so allocate them to a location, for example loc3. Later the signer
could indicate possession of the absent person (poss3) by signing own towards
loc3; thus an SLR system must be able to remember the spatial assignment.

Entanglement of ‘contextual deixis’ with non-informative inter-sign movement (move-
ment epenthesis). Contextual deixis is a new term for additional informative intra-
sign movement where a sign is started at one spatial deixis location and finished at
another. For example, 3abook1: signing book, starting at some loc3a = library
and ending it at loc1: “I got a book from the library”, or signing 1walk3a: “I
walked to loc3a”, where loc3a is some defined shop, park or school, etc. Note
that the sign in the first example, book, does not normally contain any broad
spatial movement (just rotation of the hands about the ‘spine’ of the book), thus
there was a new phonemic element that changed the sense but not the meaning

14

2.4 Summary

of the sign; whereas the sign in the second example, walk, the existing spatial
movement during signing was repurposed to provide context.

Temporal boundaries are the points in time where one sign ends and the next begins;
even for humans the point where a sign is deemed to begin can vary enormously
between signers [5], [6], creating a ‘knock-on’ challenge for labelling.

2.4 Summary

In summary, signed language can be defined as a highly-context-dependent simultaneous
and sequential combinations of established gestural elements on multiple levels that
influence and are influenced by their adjacent signs.

Individual signs are defined by manual and non-manual elements that can be phon-
emic, modifying and deictic. Lexical signs are formed by pseudo-unique combinations
of phonemes with broad interpretive range. Verb sense is inferred through motion in
relative and absolute directions, provide adjectives and emphasis through dynamics such
as speed and repetition. Pronouns are occasionally uniquely defined, achieved through
spatial pointing, or else articulated by fingerspelling; spatial allocation allows pointing
at entities that could not otherwise be unambiguously pointed at.

Structurally, languages are the combination of a set of defined terms (lexicon) with
communicative actions (gestures) according to a set of defined rules (grammar). In
signed languages, the lexicon is formed by lexical signs and the gestures include classifier
signs, sign-mime, mime and deixis.

A single element of a lexicon is a lexeme, which are formed by unique combinations
of sub-lexical units: phonemes. In signed languages, the articulation of phonemes for a
single lexeme can be both parallel in space and serial in time.

Phonemes are divided into phonemic categories, which for signed languages are conven-
tionally divided into manual and non-manual subcategories. The phonological taxonomy
is shown in Figure 2.4.

The many complexities and subtleties of signed languages present significant challenges
for automatic sign language recognition.

15

Chapter 3

Framework

SLR is a topic of international research effort, with many technical challenges related
to observing and classifying a visual/gestural language. There are commercial packages
[32], [111] but no solutions which truly encapsulate all elements of signed language,
with notable exceptions being contextual signs and modifiers and supporting spatial
addressing memory. A subsequent challenge then looms in transcription, due mainly
to the absence of a written form of SLs coupled with translation to the target spoken
language, to say nothing of the different tolerable variations and contextual-ambiguities
of both languages.

Definitions of sign language in literature are often concise but without reference or
verbose to the point of obfuscation in authoritative works. The first section of this work
strove to define the essential elements that constitute sign language; not many examples
were found in SLR literature that considered more than a few elements. Indeed, much
work on SLR is more accurately labelled hand gesture recognition (HGR), but does
serve to reflect the central challenge: accurate observation and subsequent classification
of manual features. Moreover, HGR extends far beyond SLR and really lies in the domain
of human-computer interaction (HCI), where hand gestures are hoped to provide means
of control without the need for peripherals such as keyboards, mice and joysticks, being
particularly pertinent in the growing field of virtual reality (VR).

The question then becomes: what would a framework which covered all essential ele-
ments of sign language look like? In it’s most simplistic form, an ideal SLR machine
would take as input continuous ‘sign language’ and produce as output an encoded (‘writ-
ten’) form (to be used as-is or provided to a translation machine).

For true language recognition an optical system is currently essential, but hybrid
systems are also an option, combining the fidelity of instrumentation with the spatial
awareness of optical systems. To this end, an idealised framework for SLR should support

17

Chapter 3 Framework

and encourage multi-modal observation of the signing scene.
Extending this concept leads to a fully modular framework that defines the input and

expected output of individual sub-unit modules, allowing comparison between different
methods and changing of components to suit particular applications (for example where
a glove is appropriate versus where one is not) by the same system. For example, the
‘handshape’ module, required to output estimates of hand-shape, could be selected based
upon the input type (optical or instrumented) and internal method depending on the
application. This means in the first instance the selection of sub-unit modules is less
critical as the cohesion and throughput of the over-arching framework is established.

A framework that takes the traditional structured approach yet includes all of the
essential components of SL has been developed, shown as a simplified block diagram in
Figure 3.2.

The visual model is responsible for sub-lexical classification; it takes in the stream
of observations made about the signing space and slices it up to pass to classifiers for
each of the phonemic categories, as well as passing the information to ‘temporo-spatial
memory’. The temporo-spatial memory block considers how movements change over
time and recalls which entities have been allocated to which deictic location; as such it
also requires input from the corresponding phonemic classifiers.

In these estimations consideration should be given to ‘redundant’ fragments, the as-
pects of an isolated sign that do not provide any discriminative power and could be
‘omitted’ from the sign classification without any penalty to recognition accuracy [122].
These fragments are not necessarily a particular subunit, but appear to be temporal;
multiple studies have found that recognition of a sign by a human signer occurs within
the first third of the sign [6], [34], [40], [119]. Realization of a module that takes advant-
age of this fact could follow different paths; for example, a module could reduce overall
compute effort by terminating as soon as estimation reaches a pre-determined threshold,
or keep looking for new candidates until the rate of candidate or estimate change falls
below a threshold.

The phonemic estimates are passed to a language model that uses statistics, gram-
mar and memory to combine phonemes into lexemes. Having identified the meaning
within the grammar of the SL, it is then necessary to record that in a form that can be
transferred to a translation stage. The likely intermediate is ‘glossing’, the codification
of lexemes and their constituent elements, such as by Hamburg Notation System [44]
(HamNoSys) [46] or SignWriting [74], as shown in Figure 3.1.

It is worth mentioning that some classification models, e.g. HamNoSys, do not use

18

3.1 Framework Composition

Figure 3.1: Auslan encoded using the SignWriting glossing system1.

linguistic phonemes as the basic sub-units for glossing, but instead use a combination
of primitive-phoneme with modifier [46]. For example, HamNoSys produces the many
handshape phonemes through the convolution of two smaller sets: 12 basic shapes and
4 modifiers [25].

3.1 Framework Composition

The input observation stream can take many forms, such as a singular camera, be it colour
or depth, or an instrument such as one that measures joint angles, or any combination of
these elements. Key considerations are how much of the signing space can be observed,
avoiding occlusion and the spatial discriminative performance of the modality. The
stream should be continuous and have sufficient temporal resolution to avoid motion
artefact and data loss.

The SLR aspects of the framework are realised by a visual model and a language
model, building on the acoustic and language model framework established by automatic
speech recognition [19], [73], [85]. The visual model processes the observations of the
signing space to obtain estimations of phonemes while the language model uses statistics
to estimate lexemes and construct sentences.

The visual model begins with segmentation, both temporally of continuous stream into
individual frames and spatially of individual frames into ROIs. Both the segmented data
and the data about segmentation are then passed into individual phoneme sub-stages
as well as to a temporo-spatial memory stage. The phoneme sub-stages use the data
to extract features that can be used for classification that are then passed to phoneme
classification stages, producing estimates for each of the five phonologic categories as
well as for contextual cues.

19

3.1 Framework Composition

The language model considers phoneme estimates and temporo-spatial memory, using
statistical methods to produce the final lexemes estimate and so construct sentences. The
unmet challenge faced by this stage is thus the recognition deixis, contextual gesture and
classifier signs while ignoring non-informative sign transitions. As SLs have no written
form, it will likely be appropriate to gloss the sentences, that is, use a standardised
notation system to encode SL, such as HamNoSys [45], [60].

Finally, a language translation stage takes the glossed signs and converts the recognised
SL into the target output language.

21

Chapter 4

Recognition

Gesture recognition (GR) has applications for areas such as computer control, robot
control, smart infrastructure, computer gaming, smart-home applications, healthcare,
vehicle control [22], [31], [47], [57], [58], leading to fragmentation of efforts and nomen-
clature in the literature. GR is a primary component of natural user interface (NUI)
for HCI [21]. The Venn diagram provided in Figure 4.1 shows the overlap between sign
language recognition, hand gesture recognition and gesture recognition.

As a sign language lexicon is in essence a well-defined set of gestures, the signs of SL
are often used as in GR for consistency and comparability [74]. For some time the most
achievable aspect of SLR has been HGR, with much of the literature focused on new
devices and methods to improve performance. Combined, these two factors have lead to
some ambiguity in the term ‘sign language recognition’, where much of the purported
SLR literature is in reality ‘sign recognition’, devoid of any linguistic element, or worse,
simply ‘gesture recognition’ [58].

4.1 Observation

In the literature there are two main observation approaches for SLR: instrumented, such
as devices which measure joint angles and optical tracking of fiducial markers or different
coloured gloves; and optical (or visual) techniques that rely entirely upon cameras with
nothing attached to the signer.

Instrumented systems have been shown to provide excellent performance for HGR and
have been considered for SLR since 1996 [66], but they can be expensive, difficult to use,
such as requiring bespoke fitment and laborious positioning each session, as well as an
encumbrance to the user [30], [66]. Current implementations also require tethering to

23

Chapter 4 Recognition

90 mm

214 mm

Figure 4.1: Venn diagram of sign language (SL), gesture recognition (GR), hand gesture
recognition (HGR) and sign language recognition (SLR), showing that HGR
is a subset of GR and that SLR is formed in the overlap between SL and GR
which is only partially includes HGR.

a recording device, but this could likely be replaced by wireless data transmission or
miniaturisation to create wearable devices. The significant issue of instrumentation for
SLR is the complete inability to capture anything other than the shape, orientation,
arrangement and location of the hands, leaving them totally ignorant of all NMEs.

Optical is generally seen as the preferable solution by many due to the freedom for
natural, unimpeded signing as well as low financial cost, although they perform poorly
in terms of computational effort and classification accuracy. The great advantage is the
use of the same modality as human sight, meaning that theoretically an optical system
can “see” everything we can.

4.2 Literature Review

A literature review was conducted to answer the question: “what are the promising
modalities and techniques for SLR?” The results are shown in Tables 4.1 through 4.4.

These tables show that approaches are migrating towards optical modalities, with
depth providing an increase in performance, although instrumented approaches are the
most accurate. A confound in the reported accuracies are the simplicity of the recog-
nition task; the works on continuous televised broadcasts reporting accuracy as WER
(converted to word recognition rate (WRR)) face the greatest challenge: continuous sign-
ing. Even here, however, the vocabulary is greatly reduced with no contextual elements,

24

4.2 Literature Review

Table 4.1: Literature review: Survey of sign language and gesture recognition techniques.
Goal: gesture recognition (GR), hand gesture recognition (HGR), mouthing
recognition (MR), sign language recognition (SLR), sign language recognition
and translation (SLRT), sign language translation (SLT). Modality: optical
(O), instrumented (I).

Work Goal Mode Device(s)

Camgoz, Hadfield, Koller et al. [15] GR O red, green & blue (RGB)
Chen, Deng, Pang et al. [22] HGR I wrist-worn camera
Hernández-Vela, Bautista, Perez-Sala et al. [49] HGR O Kinect
Keskin, Kıraç, Kara et al. [68] HGR O Kinect
Ming and Jianbo [99] HGR O Kinect
Nai, Liu, Rempel et al. [101] HGR O Kinect
Marin, Dominio and Zanuttigh [87] HGR O Kinect + Leap Motion
Dominio, Donadeo and Zanuttigh [31] HGR O Kinect 1
Chen, Li, Sun et al. [21] HGR O RGB
Haria, Subramanian, Asokkumar et al. [47] HGR O RGB
Koller, Ney and Bowden [76] HGR O RGB
Ji, Song, Xiong et al. [57] HGR O Worn RGB
Koller, Ney and Bowden [75] MR O RGB
Galka, Masior, Zaborski et al. [39] SLR H IMU
Abhishek, Qubeley and Ho [1] SLR I glove with capacitive sensors
Kadous [66] SLR I Nintendo Powerglove
Camgoz, Hadfield, Koller et al. [16] SLR O RGB
Kelly, McDonald and Markham [67] SLR O Grayscale
Huang, Zhou, Li et al. [52] SLR O Kinect
Inoue, Shiraishi, Yoshioka et al. [53] SLR O Kinect
Kumar, Saini, Roy et al. [83] SLR O Kinect
Kumar, Gauba, Pratim Roy et al. [82] SLR O Kinect + Leap Motion
Agarwal and Thakur [2] SLR O Kinect 1
Conly, Zhang and Athitsos [23] SLR O Kinect 2
Cui, Liu and Zhang [28] SLR O RGB
Forster, Koller, Oberdörfer et al. [36] SLR O RGB
Hassan, Assaleh and Shanableh [48] SLR O RGB
Huang and Zhang [51] SLR O RGB
Kishore, Rao, Kumar et al. [70] SLR O RGB
Koller, Ney and Bowden [74] SLR O RGB
Koller, Forster and Ney [73] SLR O RGB
Koller, Zargaran, Ney et al. [78] SLR O RGB
Koller, Zargaran and Ney [77] SLR O RGB
Koller, Zargaran, Ney et al. [79] SLR O RGB
Koller, Camgoz, Ney et al. [72] SLR O RGB
Chai, Li, Lin et al. [19] SLRT O Kinect 1
Camgoz, Hadfield, Koller et al. [17] SLT O RGB

25

Chapter 4 Recognition

Table 4.2: Literature Review: Sources.
Lexicons: Arabic Sign Language (ArSL), American Sign Language (ASL),
Auslan, Chinese Sign Language (CSL), Indian Sign Language (ISL), Japanese
Sign Language (JSL), RWTH: RWTH-PHOENIX-Weather datasets.
N/R: not reported.

Work Source

Lexicon # Lexemes # Replicates # Signers # Samples

[15] N/R 249 N/R 23 47 933
[22] ASL: 0-9 10 10 10 1000
[49] ChaLearn 2011 N/R N/R N/R 50 000
[68] ASL: static A-Z 24 N/R N/R 65 000
[99] Hand shapes 5 8 5 200
[101] ASL: static A-Z 24 N/R 5 120
[87] Hand shapes 10 10 14 1400
[31] ASL 12 10 14 1680
[21] Hand shapes 5 100 1 500
[47] Hand shapes 6 N/R N/R N/R
[76] RWTH 2014 45 Varies 9 786 750
[57] Hand shapes 10 5 40 2000
[75] RWTH 2010 15 Varies 7 1832
[39] N/R 40 10 5 2000
[1] ASL: 0-9 or A-Z 36 30 1 1080
[66] Auslan 95 8 to 20 5 6550
[16] N/R N/R N/R 23 1 005 136
[67] N/R 10 2 24 480
[52] N/R 25 3 9 675
[53] JSL: static Hiragana 41 10 8 3280
[83] ISL 30 9 10 2700
[82] ISL 50 15 10 7500
[2] CSL: 0-9 10 N/R N/R N/R
[23] ASL 1113 3 5 450
[28] RWTH 2014 1081 Varies 9 65 227
[36] SIGNUM 455 Varies 25 11 109
[48] ArSL 80 10 N/R 400
[51] CSL N/R N/R 50 17 000
[70] ISL 200 3 5 3000
[74] RWTH 2010 421 Varies 7 1832
[73] RWTH 2014 1081 Varies 9 65 227
[78] RWTH 2014 1081 Varies 9 65 227
[77] RWTH 2014 1081 Varies 9 65 227
[79] RWTH 2014 1081 Varies 9 65 227
[72] RWTH 2014 1081 Varies 9 65 227
[19] CSL 239 5 1 239
[17] RWTH 2014 1066 N/R 9 7096

26

4.2 Literature Review

Table 4.3: Literature review: Segmentation.
Temporal: static = irrelevant, data intrinsically segmented; otherwise con-
tinuous: manually segmented or automatically segmented to sentences based
on transcript.
Spatial: thresholding: luminance, chrominanceblue & chrominancered (YCbCr)
colour-space, red, green & blue (RGB) colour-space, depth, joint.
N/R: not reported.

Work Data Segmentation

Temporal Spatial

[15] [t-1][t][t+1] None
[22] Static YCbCr
[49] None None
[68] Static Manual
[99] Static Joint + depth
[101] Static None
[87] Static None
[31] Depth
[21] Static GMM
[47] Static RGB
[76] None None
[57] None Assumes pre-segmented
[75] None None
[39] N/R N/A
[1] Static None
[66] None N/R
[16] None None
[67] Static Manual
[52] None None
[53] None Depth
[83] Static None
[82] Manual None
[2] Static None
[23] Manual N/R
[28] Sentences None
[36] None None
[48] [t]-[t-1] None
[51] None None
[70] None None
[74] None None
[73] None None
[78] None None
[77] None None
[79] None None
[72] None None
[19] N/R N/R
[17] Sentences None

27

Chapter 4 Recognition

Table 4.4: Literature review: Recognition.
Level: Phonemic: body movement (BM), body pose (BP), hand movement
(HM), hand shape (HS).
Classifiers: common methods: convolutional neural network (CNN), dynamic
time warping (DTW), hidden Markov model (HMM), histogram of oriented
gradients [29] (HoOG), scalar vector machine (SVM).
Performance measure: mean Jaccard Index (mJI), true positive rate (TPR),
word recognition rate (WRR) (entries marked * are converted from word error
rate (WER)).

Work Recognition

Level Features Classifier Performance Measure

[15] N/R N/R 3D CNN 31.4% mJI
[22] HS N/R Lookup table 99.4% ‘accuracy’
[49] Lexemes HoOG, HOF DTW 67.8% tpr
[68] HS PCF RDF 68.0% N/R
[99] HS SP-EMD N/R 99.6% ‘accuracy’
[101] HS coordinates, angles RDF 80.7% ‘accuracy’
[87] HS coordinates, angles SVM 91.3% ‘accuracy’
[31] HS N/R SVM 93.8% ‘accuracy’
[21] HS N/R K-SVD 98.7% ‘recognition’
[47] HS N/R Haar 64.0% ‘accuracy’
[76] HS Whole frame EM-CNN-HMM 55.0% WRR*
[57] HS BEHB* CNN-SVM 97.7% ‘accuracy’
[75] Mouthings N/R CNN 55.7% precision
[39] HM N/R HMM 99.8% ‘accuracy’
[1] HS N/R Lookup table 92.0% ‘accuracy’
[66] HS N/R decision tree 80.0% ‘accuracy’
[16] HS N/R LSTM CNN 80.3% ‘Top-1 accuracy’
[67] HS eigenspace SVM 95.2% WRR
[52] HS & BM HoOG + skeleton 3D CNN 92.4% ‘accuracy’
[53] HS TSC CNN 84.0% ‘accuracy’
[83] BP & HS coordinates, angles HMM 83.8% ‘accuracy’
[82] HS & HM coordinates HMM 95.6% ‘accuracy’
[2] FF N/R SVM 88.0% ‘accuracy’
[23] HS & HM N/R DTW 62.0% ‘accuracy’
[28] Lexeme N/R CNN + RNN-LSTM 61.3% WRR*
[36] Lexeme HOG3D HMM 87.5% WRR*
[48] Lexeme N/R HMM 94.5% WRR
[51] Lexeme N/R DTW 82.7% WRR
[70] Lexeme N/R CNN 89.0% WRR
[74] HM eigenvectors RASR 68.5% precision
[73] HM, FE HOG3D HMM 47.0% WRR*
[78] Lexeme Whole frame CNN-HMM 61.5% WRR*
[77] Lexeme Whole frame CNN-BLSTM-HMM 54.9% WRR*
[79] Lexeme Whole frame CNN-HMM 58.9% WRR*
[72] MS, HS Whole frame CNN-LSTM-HMM 71.7% WRR*
[19] HM N/R Nearest match N/R N/A
[17] Lexeme N/R CNN & RNN+HMM N/R N/A

28

4.2 Literature Review

Table 4.5: Literature review: Signers participating in SLR studies.
N/R: not reported.

Work Participants were signers?

Galka, Masior, Zaborski et al. [39] No
Abhishek, Qubeley and Ho [1] No
Kadous [66] Yes
Camgoz, Hadfield, Koller et al. [16] N/R
Kelly, McDonald and Markham [67] N/R
Huang, Zhou, Li et al. [52] N/R
Inoue, Shiraishi, Yoshioka et al. [53] N/R
Kumar, Saini, Roy et al. [83] N/R
Kumar, Gauba, Pratim Roy et al. [82] Yes
Agarwal and Thakur [2] N/R
Conly, Zhang and Athitsos [23] No
Cui, Liu and Zhang [28] Yes
Forster, Koller, Oberdörfer et al. [36] Yes
Hassan, Assaleh and Shanableh [48] N/R
Huang and Zhang [51] N/R
Kishore, Rao, Kumar et al. [70] Yes
Koller, Ney and Bowden [74] Yes
Koller, Forster and Ney [73] Yes
Koller, Zargaran, Ney et al. [78] Yes
Koller, Zargaran and Ney [77] Yes
Koller, Zargaran, Ney et al. [79] Yes
Koller, Camgoz, Ney et al. [72] Yes
Chai, Li, Lin et al. [19] N/R
Camgoz, Hadfield, Koller et al. [17] Yes

29

Chapter 4 Recognition

though likely considerable adjective modifiers were used.
Interestingly, of the 24 studies on SLR, only 16 reported whether the participants were

signers and of those only 13 were signers. Half of the 16 signer-based studies worked on
the RWTH-PHOENIX-Weather datasets.

4.2.1 Summary

An interesting progression is that of a group of researchers from RWTH Aachen Univer-
sity, Germany, lead by Kollor, who transitioned from a phonological classifier approach
to a whole-scene deep learning approach. The group started using ‘subunits’ (phon-
emes), ‘trajectories’ (hand movements) and speech recognition techniques (RASR) [74]
and pioneered the use of ‘real signing data’ through videos of freely-televised weather
broadcasts with (Deutsche Gebärdensprache; German Sign Language (DGS)) sign lan-
guage translation by interpreters1 complete with transcripts for labelling, which they
released as the ‘RWTH-PHOENIX-Weather’ corpus [74], evolving over time [15], [37]
and being augmented at others [16].

The large volume of real data from multiple signers enabled the use of deep learning
(convolutional neural network (CNN)) to push the state-of-the-art and classify mouthings
[75], multiple phonemes [16] and continuous sign [17], [72], [73], [78], [79].

Kollor’s most recent work [72] takes the group full circle, including mouth shape and
hand shape phonemic classification in a model that also analyses full frames to achieve
a WRR of 71.7% on a 9-signer dataset.

4.3 Visual Challenges

Visual approaches employ cameras to observe the signer. Challenges in visual gesture
recognition (VGR) include:

• Camera-related: image quality, adequate lighting without changes in illumination
(creating additional challenge for capture in uncontrolled environments, such as
outdoors) [20].

• Accurate capture of three-dimensional (3D) signing space, such as movement to-
wards the capture device [18], [20].

1The interpreters are claimed to be “hearing” in [75, p. 479] and “native” in [73, p. 109]; an unlikely
combination, but it seems reasonable to assume they are fluent signers.

30

4.3 Visual Challenges

• Appearance of a sign depends on the view-point of the observer [73].

• Spatial segmentation of the region of interest from the background. Multiple in-
dependent circumstances in which this arises: isolating the signer from the scene
background and isolating e.g. the hands from the signer’s chest, or the dominant
hand from the subordinate hand.

• Temporal segmentation of signs from a continuous stream of observations is in-
herently difficult due to the ambiguity of sign boundaries [3], [71], requirement
for per-frame labelling for training [51] and a ‘knock-on’ penalty for classification
performance in the event of incorrect segmentation [51], although [77] solve this
through iterative realignment.

• Real signing is fast; recording at low frame-rates and at low spatial resolutions
leads to motion artefacts [74].

• People come in different shapes and sizes [52].

• Some phonemes are ‘loosely constrained’ and can vary greatly, creating difficulty
in labelling let alone classification [75]

In terms of challenges not noted in the literature, one is skin colour, which no doubt
has an effect on both the methods used to create features and then the classification
performance of those features. Another challenge is classification of ‘sign language’
based on the performance of signs by ‘non signers’; much of the literature did not specify
whether the ‘signers’ used in their SLR study were, in fact, signers [3], [16], [19], [47],
[48], [51] [53]

Camera related constraints

In a visual system, the camera itself presents constraints, including spectral range, image
resolution, frame rate, optical characteristics and interface limitations [20].

In terms of spectral range, a trade-off exists between cost and tolerance to changes in
illumination infra-red (IR) sensors detecting body heat are highly robust but expens-
ive, while visual range (390 nm to 750 nm) sensors are less robust but far cheaper [20].
Sensitivity to changes in illumination in a holistic sense varies considerably by approach,
with some techniques such as full-frame deep-learning algorithms being impressively ro-
bust [78], [108] while others leverage additional modalities such as depth data to provide
more robust segmentation [35], [65], [83].

31

Chapter 4 Recognition

The optical setup of a camera dictates how light from the scene reaches the sensor,
with two key specifications being the distance from the front of the lens at which the
image is focused: ‘focal length’ f and the diameter of the light entrance hole (or pupil):
‘aperture’ D; two combine to form a third specification: focal ratio, or ‘f -number’ N ,
where N = f

D
. Focal length is important as it dictates the angle of light that is able

to reach the sensor, or field-of-view (FoV), with shorter f giving wider FoV. Aperture
dictates both the range of distances from the lens in which the subject remains in focus,
or depth-of-field (DoF) and volume of light reaching the sensor. Narrower aperture
gives greater DoF (more of the scene in focus), allowing greater tolerance to signer
position relative to the camera without loss of information. Wider aperture increases
light volume, permitting in an image with greater intensity variation (more information)
without requiring compensation by increased sensor gain, which introduces noise. Clearly
a compromise must thus be struck between DoF and light volume; in webcams aperture
is fixed and selection should consider the tolerance to low illumination[20].

Modern cameras tend to have far greater image resolution than those from a decade
ago, such as from 640ˆ 480 pixels to 1920ˆ 1080 pixels (‘1080p’), with a corresponding
increase in pixels-per-frame from 0.3 to 2 megapixels [20], [100]. Low-resolution images
create several difficulties for computer vision [100]; the most obvious being that the
pixel size should be small enough to visually distinguish descriptive features, such as
fingers and gaze. Higher resolution means more information available for distinction and
classification, but comes at a transfer penalty.

Frame rate also impacts classification ability. As frame rate drops greater periods
of time occur in which no image is recorded, increasing the chance that descriptive
movement may be missed. Standard video frame rates are around 25 frames per second
(fps), or Hertz, with ‘high frame rate’ cameras popular in action scenarios typically
recording at 60 fps. Although there is no known quantification of sign-rate for fluent
signing, one paper found a mean rate 2.7 words per second[8], but this was for finger-
spelled words; if the average word contained 5 letters, this would be around 25 distinct
signs formed per second2. Koller, Zargaran, Ney et al. specify a ‘frames per sign’ rate
of 9.8 for their RWTH-PHOENIX-Weather 2014 corpus, but the the frame rate of the
camera and the definition of sign boundaries is unknown [79]; estimating a frame rate in
the order of 30 Frames per Second (fps) gives a sign duration of around 0.3 s, or a sign

2This estimate of 25 signs per second is questionable as a proxy for sign rate in ‘conversational Auslan’,
as not only does fingerspelling occur rapidly, with little inter-sign movement required, but this paper
discussed ASL, which has uni-manual letter signs, thus representing perhaps the smallest possible
inter-sign movement.

32

4.3 Visual Challenges

frequency of 3Hz, far lower than the 25Hz estimate above.

Making a somewhat arbitrary compromise and assuming a sign frequency of 15Hz
and applying Nyquist-Shannon sampling theory proscribes a minimum sampling rate
of 30Hz, suggesting standard 24 to 29.97 fps video may be adequate for sign language
recognition.

There is also uncertainty in how sampling rate is defined as the exposure (period of
time for which time the sensor is receiving light) for each frame is unknown. For example,
a camera with a frame rate f = 10 fps suggests a period of T = 1/f = 1/10 = 0.1 = 10ms
per frame, the actual exposure period might be much less than that, resulting in less
motion blur than anticipated but also recording less information.

Temporal resolution is only half of the equation, however; spatial resolution plays an
important role in motion blur. If an arm moves one third of the scene between a frame
on a low resolution camera where the arm is comprised of relatively few pixels a greater
number of pixels will blur than in an image captured by a camera with equivalent optics
but a higher sensor resolution.

The cost of higher image resolution and frame rates is the very thing it gains: inform-
ation. The increased information requires greater interface capability, storage capability
and processing time.

With the light intensity value at each pixel stored as a binary value (typically 8 bit)
for each colour channel (3 for RGB), the data transfer per second, or ‘bitrate’ can be
calculated: bitrate = WˆHˆbppˆfr, whereW is the frame width, H is the frame height,
bpp is the bits per pixel and fr is the frame rate. An RGB camera recording 640ˆ480 px
with 8 bit px−1 at a frame rate of 24Hz thus results in an approx. 177Mbit s−1 transfer
rate, while 1080p @ 60Hz requires nearly 3Gbit s−1! Add to that multiple infra-red
imagers and depth streams from onboard depth module and the transfer rate is quadruple
that.

Accommodation of this greatly increased data load is achievable using standard in-
terfaces, with USB 2.0 supporting 480Mbit s−1 being superseded by USB 3.0, which
supports a sufficient maximum transfer rate of 4.8Gbit s−1, in 2011 and subsequent re-
leases of USB 3.1, USB 3.2 and USB 4 supporting 10Gbit s−1, 20Gbit s−1 and 40Gbit s−1

[114], respectively, providing headroom for greater transfer rate requirements in the fu-
ture. Additionally, some webcams include internal processors that compress the data
prior to transmission, reducing interface requirements but potentially reducing classific-
ation power [20].

33

Chapter 4 Recognition

Capturing 3D Signing Space

Signs are formed in three-dimensional space, with critical information imparted using
relative and absolute spatial positioning [59]. Accordingly, a visual recognition system
will miss information if it only captures a two-dimensional image. Here again the extent
of this effect is dependent upon the techniques employed; state-of-the-art recognition is
currently held by a team analysing television-broadcast (2D) weather report signers [72].
There are several approaches to obtaining 3D data, including using singular depth or
‘3D’ cameras or ‘visual sensor networks’ (VSNs), arrays of 2D (non-depth) cameras,
3D cameras or mixed 2D/3D cameras [20], [127].

The most common 3D cameras couple a typical RGB sensor with an additional IR
sensor for time-of-flight depth to gain additional information about the scene without
altering that visible to humans [11], [80], [129].

Time-of-flight cameras use frequency-modulated flood illumination. Knowing the
speed of light c = 3 ˆ 108 ms 1 and measuring the time taken for reflected light to
reach the sensor (thus the name) allows computation of a depth map of the scene, with
the depth D of a given pixel given by: D = time of flight

2c
[11].

Despite their capability, time-of-flight cameras were expensive and the release of the
affordable consumer-grade depth camera Microsoft Kinect for Xbox 360 in 2010 [26]
ushered in numerous explorations of the Kinect for gesture recognition, particularly
between 2011 and 2013 [2], [9], [19], [43], [65], [109], [129], [130].

Another depth camera technology is structured light. These cameras project a unique
infra-red pattern onto the scene and observe the reflected pattern using a sensor. Dis-
tortion of the reflected pattern is then computed to determine depth [129].

Although ‘standard’ CMOS camera sensors are able to observe IR, RBG-D cameras
typically employ a discrete sensor for this purpose. The additional sensor often has a
lower resolution (e.g. D: 1280ˆ720 versus RGB:1920ˆ1080 in the Intel RealSense D435
[55]) but higher frame rate (e.g. D: 90 fps versus RGB: 30 fps in the Intel D435 [55])
This suggests manufacturers believe there is less need for spatial precision and increased
need for temporal precision in depth capture; regardless of intent, this fact may influence
approaches to classify motion.

Not only were Kinect cameras available ‘off-the-shelf’, they also provided much better
resolution: 640 ˆ 480 for the Kinect, versus 160 ˆ 124 for the SwissRanger SR2, a
popular time-of-flight camera of the same era [11], [80], [129]. Although the Kinect
was discontinued by Microsoft in 2017 [26], several other consumer devices had become

34

4.3 Visual Challenges

available, a common choice for gesture recognition being the Intel RealSense camera.
A notable development of the RealSense was the introduction of a second IR sensor,
providing in-camera stereo 3D vision akin to human sight [55]. Another depth camera
that had many investigations for gesture recognition was the Leap Motion sensor; a
purely IR depth camera designed to sit on a surface below the hands and fit a skeletal
model [20], [82], [87], [88], [106].

Visual sensor networks use multiple cameras simultaneously to obtain a variety of views
of the scene. The most basic approach is a pair of standard RGB cameras: ‘stereoscopic’,
which can be extended to an array of multiple RGB cameras, there are also mixed RGB
+ (RGB-)D VSNs and pure depth sensor VSNs [20], [102]. Although a purely RGB VSN
can generate a depth map, the inclusion of depth sensors greatly increases this ability
[127] and reduces computational effort [20]. It is worth noting that while many RBG-D
cameras are in fact a pairing of a 2D RGB sensor with a 3D depth sensor, they are not
considered a VSN as the pairing is not used for additional depth distinction purposes
per se; likely the pair are too closely co-located.

Issues with coordinating multiple cameras arise when attempting to match data to pro-
duce a singular correspondence, such as difficulty finding unique ‘landmarks’ for match-
ing, occlusion of landmarks and variations between recorded images due to physical
differences of any two cameras and noise [20]; of course the use of multiple cameras pro-
portionally increases data handling requirements, though techniques have been explored
to identify and remove the redundant, duplicated data inherent in this approach [127].

4.3.1 Spatial Segmentation

Visual techniques must identify regions of interest in order to achieve an ‘apples to
apples’ comparison. For example, it is common in hand gesture recognition to segment
the hand(s), allowing computation of features in that isolated region. Segmentation
through pure image analysis remains a challenge in computer vision in general, as pure
image analysis approaches rely upon the input data, rendering them limited by changes
in illumination and in situations in which the region of interest is visually similar to
other regions within the image [20]. Other ways around these issues are to use an
additional data source (e.g. depth data) that simplifies segmentation or to simply avoid
segmentation entirely, such as in deep learning, as will be discussed later.

35

Chapter 4 Recognition

4.4 Pattern Recognition Techniques

Automated recognition problems, such as facial recognition, gesture recognition, hand
shape recognition and so on are sub-problems of the broader pattern recognition problem
that is the essence of computer vision. While each sub-problem has its own region of
interest and solution space, the techniques used are common to all. Indeed, sign-language
recognition is a clear example of a clustered problem; solving for the overall sign involves
solving many smaller problems: the visual phonemes.

Approaches to pattern recognition are constantly evolving, with no one ideal technique
for any given problem. Techniques vary in accuracy, tolerance, robustness and efficiency.

Current efforts can be reduced to two categories, differentiated at the feature extraction
level. In classical manual feature extraction techniques, algorithms are hand-chosen and
tailored to isolate particular elements or image feature descriptors, while in automated
feature extraction an algorithm processes a large corpus to determine its own abstract
set of features with high classification power known as ‘deep learning’.

The most common pattern recognition technique for HGR is the histogram of oriented
gradients [29] (HoOG) algorithm, that divides an image into individual cells. The final
output is a set of histograms, one for each cell, produced from direction gradients: the
change in intensity value of each pixel compared to it’s immediate neighbours in both
horizontal and vertical directions (optionally, repeated for each colour) at each pixel in
the cell, binned by orientation angle [38], [50].

HoOG is by no means a new method [95]; it has been used for hand-gesture recognition
since at least 1995 [38] and remains the most common descriptor used in SVM-based
handshape-recognition literature [25], likely due to its aptitude for detecting edges such
as those of fingers that are generally challenging to discern in CV.

Although, courtesy of the cell-based approach, HoOG is invariant to scale, the greatest
pitfall of HoOG in ASLR may be its dependence on 3D rotation, although this could be
mitigated with, for example, stereoscopic cameras to model and correct for rotation.

36

Chapter 5

Implementation

5.1 Hardware Selection/Capture Modality

As discussed in lit rev, there are two base capture modalities: optical and instrumented,
that can be used alone or in combination, e.g. optical and instrumented, optical ˆ3 and
instrumented, etc. Both modalities have their advantages and disadvantages; for Sign-to-
Text it was decided that due to their tethering and hampered scalability, instrumented
mode would be avoided in preference of a purely optical systems. As a starting point, a
single, frontal depth camera provides a single view of 3D space as a pairing of a planar
(2D) colour image with ‘distance from camera’ values for each point: ‘depth’.

5.1.1 RGB-D Camera Requirements

Calculation of minimum requirements is based on assumptions regarding recording con-
ditions and the combined premises that: 1. the camera must observe the full span of the
signing space and 2. the camera should be as close to the signer as possible to reduce
loss of detail.

Scaling the anthropometric data provided in [81, Table 1.3] to suit a 2m individual
(selected somewhat arbitrarily on the basis of a ‘realistic large individual’), the signing
space occupies a horizontal width of 2.2m, corresponding to the 2m individual’s arm-
span. Subtracting ‘downward grip reach’ from ‘overhead grip reach’ gives a vertical
signing space span of 2.6m 0.8m = 1.8m.

Colour frame size also known as ‘resolution’, the size in pixels of a ‘frame’ (a single
still image produced by the camera), usually expressed as width by height (WˆH).
ASLR requires enough detail to optically recognise handshapes, i.e. individual

37

Chapter 5 Implementation

fingers must be visually discernible. If a finger is 10mm wide, being recorded in a
frame 2.2m wide, then 220 fingers could fit in the width of the frame; if it takes 5 px
to clearly delineate a finger, then the frame must be 220 fingers ˆ 5 px/finger =

1100 px wide. Similarly for a 1.8m high signing space, the frame height must
exceed 900 px.

Colour frame angle of view also known as field of view (FOV), angle of view (AoV)
refers to the angle of the field that is visible to the camera sensor. If the camera-
to-signer distance is limited to a maximum of 3m, then the angle of view must
exceed 41° horizontally and 34° vertically, based on geometric calculation:

Angle = 2 ˆ arctan
(span

2

distance

)
The greater the AoV, the smaller the camera-to-signer distance can be. There is a
third parameter often included in AoV specifications: diagonal angle; but as this
is purely a function of width and height it contains no new information and so is
not specified here.

Colour frame rate also known as fps, frame rate refers to the number of frames pro-
duced by a camera in one second, thus, the appropriate SI unit is Hertz (Hz) but
this conveys less information than fps as Hz only counts periodic behaviour and
ignores what is being counted. Considerations begin with loss of data: if the frame
rate is too low, it may miss information between frames as well as contain mo-
tion blur within frames. Further considerations come from the Nyquist-Shannon
sampling theorem: the discrete-time signal sample rate (here, frame rate) must
be at least twice that of the continuous-time signal it is observing to avoid data
loss. Unfortunately no clear data has been obtained on conversational sign fre-
quency so an assumption of less than 10 signs per second was made. Applying
Nyquist-Shannon gives a minimum frame rate of 20Hz.

Depth frame size height and width of the depth image produced by the camera are
not as exacting as the colour frame as the depth image is primarily used for auto-
mated background removal. If it takes 3 px to delineate a 10mm finger from the
background, then the depth frame must exceed 660 ˆ 540 px (W ˆ H).

Depth frame angle of view are subject to the same requirements as for colour, thus
must exceed 41° ˆ 34° (H ˆ V).

38

5.1 Hardware Selection/Capture Modality

Table 5.1: Summary of required camera parameters.

Parameter Criteria

Colour frame size / resolution ě 1100 ˆ 900 px (H ˆ V)
Colour frame angle of view ě 41° ˆ 34° (W ˆ H)
Colour frame rate ě 20Hz
Depth frame size / resolution ě 660 ˆ 540 px (H ˆ V)
Depth frame angle of view ě 41° ˆ 34° (W ˆ H)
Depth frame rate same as colour frame rate
Minimum depth ď 1m
Maximum depth ě 3m
Shutter Global

Depth frame rate for segmentation to be effective it must keep pace with the colour
image, thus the frame rate should match.

Minimum depth is the smallest camera-signer distance; a 2m tall signer standing 3m
from the camera could reach 1m forward, leaving 3m 1m = 2m separation
between hand and camera. Even if the camera-to-signer distance was 2m, there
would still be a 1m separation, so this makes a sensible minimum depth.

Maximum depth is the farthest distance the camera needs to observe; as this study
has not found an example of a sign that extends behind the signer (an example of
a sign that is close to reaching over the shoulder is last week1), depth need only
exceed the camera-to-signer distance: ě 3m.

Shutter refers to the capturing of an image by the sensor. Cameras with a ‘rolling’
shutter capture a scene row-by-row; thus, time passes between the recording of
each row in which motion can occur, causing image defects. ‘Global’ shutters
avoid this issue by capturing the entire scene instantaneously and so are required.

These parameters are summarised in Table 5.1. The relevant specifications of several
consumer-grade depth cameras (Creative BlasterX Senz3D [27]m Microsoft Kinect 2.0
[98] (A.K.A. ‘Microsoft Kinect for Xbox One’) and Intel RealSense D435 [54] are provided
in Table 5.2.

1http://www.auslan.org.au/dictionary/words/last%20week-2.html

39

Chapter 5 Implementation

Table 5.2: Comparison of several consumer-grade depth cameras against required para-
meters.

Parameter BlasterX Senz3D Kinect 2.0 RealSense D435

Colour
Resolution (pixels, W ˆ H) 1920 ˆ 1080 1920 ˆ 1080 1920 ˆ 1080
Angle of view (°, H ˆ V) 67 ˆ 38 No data 69 ˆ 43
Rate (Hz) 30 15 to 30 30

Depth
Resolution (pixel, W ˆ H) 640 ˆ 480 512 ˆ 424 1280 ˆ 720
Angle of view (°, H ˆ V) 68 ˆ 51 70 ˆ 60 87 ˆ 58
Rate (Hz) 60 30 90

Minimum depth (m) 0.2 0.5 0.28
Maximum depth (m) 1.5 4.5 10
Shutter Rolling Rolling Global

5.1.2 RGB-D Camera Selection

The Creative BlasterX Senz3D is included in the comparison as it was the only camera
immediately available at project commencement. While the colour sensor meets require-
ments, depth falls short. The depth resolution of 640ˆ 480 px (HˆV) is only just short
of the required ě 660 ˆ 540 px (H ˆ V); this corresponds to a pixel size of 3.4 ˆ 3.8mm
(HˆV) on the target 2.2ˆ 1.8m (HˆV) scene, which may prove adequate for segment-
ation at the cost of classification accuracy. The real issue is the limited maximum depth;
at a distance of 1.5m from the camera the signer is in a frame 2.0m wide but only 1.0m
high; appropriate for isolated hand-shape recognition but unsuitable for sign-language
recognition.

Microsoft Kinect 2.0, also known as Microsoft Kinect for Xbox One and Microsoft
Kinect for Windows 2.0 is the final version of the Kinect, released in 2013 and discon-
tinued without replacement in 2017 [128]. Kinect 2.0 was designed to observe human
activities in close range and so meets many of the requirements, with the exception of
low depth resolution (equivalent depth pixel size of 4.3ˆ4.2mm over 2.2ˆ1.8m (HˆV)
scene 30% larger than the 3.3 ˆ 3.3mm maximum pixel size) and a rolling shutter,
both of which may prove adequate but would compromise classification accuracy (the
latter severely).

The RealSense series of depth cameras are recommended by Microsoft as a replacement

40

5.1 Hardware Selection/Capture Modality

for the discontinued Kinect; the Intel RealSense D435 is the most suitable camera of the
RealSense line and meets all requirements. An oddity never fully unravelled are the
various specifications for depth resolution: the standard resolution given is 1280ˆ720 px
(H ˆ V) [55], however the specification sheet also lists the ‘Depth Sensor Active Pixels’
as 1280ˆ800 px (HˆV) [54, p. 34] and the ‘Depth Data Stream’ as 848ˆ480 px (HˆV)
[54, p. 54] this latter is the resolution specified as “optimal” (without rationale) by
Intel in a white paper on performance [42]. Taking the highest resolution option, in
combination with the wide angle-of-view means that the D435 can capture the entire
2.2ˆ1.8m (HˆV) scene from 1.7m; however the narrow vertical RGB AoV necessitates
a camera-to-signer distance of 2.3m.

The Creative BlasterX Senz3D must be dismissed due to it’s short maximum depth.
Although a Microsoft Kinect for Xbox One was available for use and came close to the
requirements, having reached end-of-life presents issues for utilisation of this work: any
group implementing this work, for example stakeholder Deaf Can:Do, would be required
to obtain a Kinect 2.0.

As the only option that exceeds the requirements, an Intel RealSense D435i was pur-
chased for this project (the ‘i’ designates the inclusion of an inertial measurement unit
(IMU) that has no bearing on the current study but may prove beneficial to other pro-
jects using the camera in the future; the D435i is for this project’s purposes identical to
a D435 [54, Table 2-2]).

Depth Technology

It is worth mentioning the underlying mechanism by which a depth camera obtains
distance from light, although the extent to which different technologies may impact the
results is unknown with no discovered comparison in literature.

The Creative BlasterX Senz3D, the original Microsoft Kinect and the RealSense D435’s
stable-mate the D415 are structured light depth cameras, using a combination of a pro-
jector emitting IR and a dedicated sensor for receiving IR2. The projector emits a unique
pattern (hence the name), reversing the distortion observed by the sensor then allows cal-
culation of distance; this is typically computed in real-time using an internal module[27],
[42], [54].

Microsoft Kinect 2.0 is a time-of-flight depth camera, which work by projecting pulses
of IR and computing distance by the time taken for the reflected pulse to return to the

2Camera sensors are typically sensitive to IR so cameras contain software filters to remove it, leaving
only ‘visible light’; it is likely an IR sensor has, in effect, an inverted filter.

41

Chapter 5 Implementation

Figure 5.1: Comparison of IR projector patterns: simple ‘texture’ increasing pattern on
left from Intel RealSense D435 where the actual pattern is not important
or even necessary, versus ‘structured light’ pattern on the right where de-
formation in the pattern observed by the camera are the basis of the depth
calculation, such as in the Intel RealSense D415 [42].

camera [11], [98].
The Intel RealSense D435 is a stereoscopic depth camera: it uses the differences in the

scene observed by two IR sensors separated by a precise distance to compute distance in
real-time using an onboard module (“Intel RealSense Vision Processor D4 (DS5 ASIC)”).
This camera also contains a projector that emits IR in a pattern, as shown in Figure 5.1,
but this is only to increase the ‘texture’ of the scene, improving depth performance of
flat surfaces [54].

5.2 Intel RealSense D435i

The Intel RealSense D435i purchased for this project has serial number 843112070952.
It came with a USB cable and miniature tripod.

The USB cable is 1114mm long with one male ‘A’ type connector and one male ‘C’
type connector that matches the socket on the camera3.

The miniature tripod has a ball-head and extendable legs, but is quite light compared
to the D435i making the assembly easy to topple; even the stiffness of coils in the USB
cable are enough to cause it to sit unevenly. For this the early parts of this study the

3Quality of the cable appears to be important; similar looking cables were not able to provide enough
power and/or bandwidth to run all streams at once. Print on the cable claims it meets 3.1 specific-
ations and handles 30V; perhaps it has higher gauge wire so lower resistance?)

42

5.3 Software

Figure 5.2: Intel RealSense D435i on Manfrotto Pixi Mini tripod.

tripod was replaced by a Manfrotto Pixi Mini tripod as shown in Figure 5.2

5.3 Software

To use a depth camera (or indeed, any non-standard device) a computer requires a
driver : an interface or set of instructions that define how the device is to be controlled.
For the D435i, Intel has produced a SDK they call Intel RealSense SDK 2.0 that includes
device drivers, basic utility programs and an application programming interface (API)
that allows developers to create their own software.

One of the bundled utilities is the Intel RealSense Viewer, shown in Figure 5.3. This
is a convenient way of observing the operation of the camera and it’s output as well as
discovering the effects of various settings. The three optical sensors of the Intel RealSense
D435i, shown in Figure 5.4 can be independently streamed and the depth stream can
also be displayed.

Through playing with Intel RealSense D435i in the Viewer it was discovered that the
IR projector does not have a significant effect on the depth stream, but ambient lighting
conditions do. In particular, light from artificial sources and the reflections of that light
seemed to ‘blow out’ the depth image, with some sources causing interference, perhaps
in the IR. Natural light can also cause issues; while Intel specifies that natural light is
actually a boon to the depth performance of the D435 [42], the variability was passed

43

Chapter 5 Implementation

Figure 5.3: The Intel RealSense Viewer allows interaction with RealSense D400 series
cameras, viewing and recording individual streams and write-access to para-
meters. Note the 3 streams corresponding to the 3 optical sensors of the
D435: one colour/RGB (top left) sensor and stereo infra-red sensors (top
right & bottom right); the ‘Depth Stream’ is computed in real-time from
an onboard module. Also note the ‘noise’ in the depth data: a slight ‘haze’
around the silhouette, variability in the background.

44

5.3 Software

Figure 5.4: Sensors of the Intel RealSense D435 [54]. From the perspective of the camera:
the circle with an eight-sided gear-like shape on the extreme left is the RGB
Imager; the set of concentric circles next to it is the Left (IR) Imager; the
identical looking set of concentric cirles on the far right is the Right (IR)
Imager and the remaining circle inside a rounded oblong is the IR projector.

onto depth readings. As a work-around, recordings with the Intel RealSense D435i were
made in a small room with no windows and fixed intensity linear fluorescent lighting
that was found to produced consistent depth readings.

For applications such as an SLR system, the SDK, in particular Intel RealSense SDK
2.0 [56], provides a means of developing bespoke software to regulate control of the
camera. Intel RealSense SDK 2.0 is open source, meaning that the code from which it
is compiled is freely accessible, a feature that has several benefits, foremost of which for
this project is access to documentation. The SDK is primarily written for C++ but has
‘wrappers’ (translator code that encapsulates functions for use in another language) for
several other programming languages, including C#, LabVIEW, Python & MATLAB.
Due to familiarity, MATLAB was initially selected for this project.

5.3.1 RealSense in MATLAB

The latest version SDK4 was downloaded and the Windows Installer used to obtain
the pre-compiled wrapper. The result is a ‘package’5 +realsense that was copied to
a MATLAB working directory. Importantly, for MATLAB to recognise the package,
it’s parent directory must be on the MATLAB search path; for example, if the package

4At the time, v2.19.2.
5MATLAB package folders are denoted by a ‘+’ (plus symbol) [94]

45

Image removed due to copyright restriction.

Chapter 5 Implementation

Figure 5.5: A depth frame produced by depth_example.m in MATLAB. Note the vari-
able depth of the background (much red and yellow = far, some black =
uncertain and bit of blue = close); these are blinds that are blocking natural
light and reflecting internal light.

was located at D:/SignToText/Matlab/+realsense, the MATLAB command to add
the package to the user search path6 would be: addpath 'D:/SignToText/Matlab/'

With the package available on the MATLAB search path the simple example script
depth_example.m from the SDK7, shown in Listing 5.1, can be run to validate the setup,
producing depth-colourised frames as shown in Figure 5.5.

Although some frames were successfully obtained from the D435i, issues began to
appear, seemingly all related to the USB connection and controller. The most reliable
way of producing the issues was to run the script a second time: rarely, it would work;
most of the time MATLAB would give an error. After investigation, interrogating the
camera’s connection mode (usb_type_descriptor) revealed that sometimes the con-
nection was initially as required: ‘USB 3.2’, but at other times it reported ‘USB 2.1’
which was workable, but reduced bandwidth meant the camera provided much smaller
frames: 640 ˆ 480 px, as shown in Figure 5.6; after calling the camera once the camera

6A note on directory separators: POSIX specifies ‘/’ (forward slash), as used by UNIX-like systems
(e.g. Linux & MacOS), while Windows uses ‘\’ (backslash). Conveniently, however, Windows accepts
forward slashes in input, so ‘/’ can be used as the directory separator for most platforms (as is the
goal of POSIX).

7https://github.com/IntelRealSense/librealsense/blob/master/wrappers/matlab/depth_
example.m

46

5.3 Software

1 % Make Pipeline object to manage streaming
2 pipe = realsense.pipeline();
3 % Make Colorizer object to prettify depth output
4 colorizer = realsense.colorizer();
5

6 % Start streaming on an arbitrary camera with default settings
7 profile = pipe.start();
8 % Get streaming device's name
9 dev = profile.get_device();

10 name = dev.get_info(realsense.camera_info.name);
11

12 % Get frames. We discard the first couple to allow the camera time to settle
13 for i = 1:5
14 fs = pipe.wait_for_frames();
15 end
16

17 % Stop streaming
18 pipe.stop();
19

20 % Select depth frame
21 depth = fs.get_depth_frame();
22 % Colorize depth frame
23 color = colorizer.colorize(depth);
24

25 % Get actual data and convert into a format imshow can use
26 % (Color data arrives as [R, G, B, R, G, B, ...] vector)
27 data = color.get_data();
28 img = permute(reshape(data',[3,color.get_width(),color.get_height()]),[3 2

1]);ãÑ

29

30 % Display image
31 imshow(img);
32 title(sprintf("Colorized depth frame from %s", name));

Listing 5.1: depth_example.m: a script included with Intel RealSense SDK 2.0 that
demonstrates the basic function of the SDK in MATLAB and thus can be
used for validation [56].

47

Chapter 5 Implementation

Figure 5.6: A small 640 ˆ 480 px depth frame produced by depth_example.m when the
D435 is connected in USB 2 mode (compared to 1280ˆ720 px when connected
in USB 3 mode), shown at relative scale to Figure 5.5.

simply was not available. To resolve the issue, restarting MATLAB, un-plugging and
re-connecting the camera and restarting the computer (and permutations thereof) were
tried; restarting proved the most reliable but there were cases where a second restart
was required.

With the D435i proving unreliable in MATLAB, other options were considered, such
as recording footage by other means (for example, using the Viewer) and using MATLAB
to process the files offline. Another option would be to change language: C++ would be
a sensible choice as the core language of the SDK; Python is also supported and was
ultimately selected as a means of skill development.

5.3.2 RealSense in Python

The Python wrapper for Intel RealSense SDK 2.0: pyrealsense2, available as a PyPI
distribution8, can ostensibly be installed via Python’s package manager ‘Python Installs
Packages’ (pip) via the shell command: pip install pyrealsense2 [56]. However,
this distribution is pre-compiled using Python 2(.7), which has ‘End of Life’ set for 2020
[104], so for continuity reasons Python 3 was preferred.

Compiling pyrealsense2 for Python 3 is complicated and the instructions provided
by Intel are in two places: ‘Python Wrapper’9 and ‘Windows 8.1 & Windows 10 In-

8https://pypi.org/project/pyrealsense2/
9https://github.com/IntelRealSense/librealsense/blob/master/wrappers/python/readme.
md

48

5.3 Software

stallation’10 , that overlap and are generally vague, so the steps taken are summarized
here.

Compiling Intel RealSense SDK 2.0 for Python 3 under Windows

First, the SDK source (https://github.com/IntelRealSense/librealsense.git) was
cloned to a working directory: C:/librealsense; it could also have been downloaded
as a compressed .zip file and unpacked to the same directory. The following programs
were installed:

Python 3.6+ Target compiler, https://www.python.org/downloads/windows/

CMake 3.8+ Coordinates build process, https://cmake.org/download/

Visual Studio 2015+ Mandated build compiler, https://visualstudio.microsoft.
com/downloads/, including ‘Desktop Development with C++’ and Windows 10
SDK 10.0.10586+.

The ‘Windows 8.1 & Windows 10 Installation’ instructions were followed until the step
‘Compiling Librealsense with Metadata support’, at which point the ‘Python Wrapper’
instructions were followed, from Building From Source: Windows onwards.

CMake GUI was opened by running the shell command
cmake-gui -DPYTHON_EXECUTABLE=C:/Program Files/Python37/python.exe,
the ‘Source’ was set to C:/librealsense and the ‘Build’ folder set to
C:/librealsense/build. During Configuration the ‘Generator’ was set to ‘Visual Stu-
dio 16 2019’, ‘Optional Platform’ left at ‘x64’ along with all other defaults. In the big red
panel, the following items were checked: BUILD_PYTHON_BINDINGS, BUILD_PYTHON_DOCS
& ENFORCE_METADATA. Running CMake (‘Generate’) then produced a Visual Studio
‘Solution’ file: librealsense2.sln. The Solution was opened in Visual Studio, the
‘Active Path’ set to ‘Release|x64’ and Build initiated.

The produced package, pyrealsense2.cp37-win_amd64.pyd, was located in
C:/librealsense/build/Release, along with realsense2.dll. The package was re-
named to pyrealsense2.pyd and both files were moved to the Python package directory:
C:/Program Files/Python37/Lib/site-packages.

Finally, build was verified using the interactive mode of the Python Interpreter, as
shown in Listing 5.2, where the absence of an error message indicated success.
10https://github.com/IntelRealSense/librealsense/blob/master/doc/installation_

windows.md

49

Chapter 5 Implementation

1 > python
2 Python 3.7.4 (tags/v3.7.4:e09359112e, Jul 8 2019, 20:34:20) [MSC v.1916 64

bit (AMD64)] on win32ãÑ

3 Type "help", "copyright", "credits" or "license" for more information.
4 >>> import pyrealsense2 as rs
5 >>> pipe = rs.pipeline()
6 >>> profile = pipe.start()
7 >>> frames = pipe.wait_for_frames()
8 >>> pipe.stop()

Listing 5.2: Testing pyrealsense2 in Python 3 by importing the package; the absence
of error messages indicates success.

5.4 Accuracy & Resolution

With hardware and software cooperating, the recording environment can be considered.
The primary purpose of a depth channel in SLR is for segmentation: using a ‘threshold’
distance from the camera to include only pixels related to the hands in the colour image,
excluding those further from the camera. It is possible, however, that depth itself is valu-
able as a source of features for classification [86], [101], [105]. In both cases, the accuracy:
the absolute error between reported distance and ground truth, is not important, but
more critical is the resolution: the smallest reported change in measurement.

At the 2.3m camera-to-signer distance determined previously for the Intel RealSense
D435 to capture the full arms’ reach of a nominal 2m signer, the accuracy specified by
Intel: ď 2% at up to 2m and 80% AoV [54, p. 61] translates to an error of ˘46mm
or 92mm in absolute terms, with the error tending to increase linearly with distance, as
shown in Figure 5.7.

To distinguish signs where changes occur at depths corresponding to a single finger,
such as shown in Figure 5.8, the depth channel would need resolution smaller than the
thickness or width of the finger. Despite robust discussion on accuracy, little can be
found on resolution in Intel’s documentation; the most useful comment is this:

“Alternatively, when operating at very close range, the D4xx cameras can
inherently deliver depth resolution well below 1 mm. To avoid quantization
effects, it then becomes necessary to reduce the depth unit to 100 µm, and
the max range will be „ 6.5m.” [42, p. 6]

In summary, the Intel RealSense D435 has accuracy of ˘2% and a resolution of ď

50

5.4 Accuracy & Resolution

Figure 5.7: Measured depth ‘Z’ (mm), accuracy (%) and error (subpixel RMS) of a par-
ticular Intel RealSense D435 and theoretical error of the Intel RealSense D435
as accuracy (%) (note the change in target range: 0 to 4000mm for the the-
oretical plot rather than 1000 to 1160mm for the top 3 plots); collated from
[41].

51

Chapter 5 Implementation

(a) l (b) n (c) v

Figure 5.8: An example of signs that differ by the use or movement of a single finger:
several letters (l, n & v) of the Auslan manual alphabet [62].

1mm; both specifications are compatible with SLR but have scope for improvement.
Tests were conducted to determine if the particular Intel RealSense D435i specimen
performs within that specification and potential improvements explored.

5.4.1 Testing Accuracy

As shown in Figure 5.7, the D400 series cameras exhibit linear sensitivity drift: accuracy
is proportional to the reading. Simply put, the further from the camera, the less reliable
the measurement. A signer standing 3m from the camera could be measured anywhere
between 2.94m to 3.06m and be within specification: a tolerable uncertainty of 120mm.
There are two key points of discussion here: first, foreground isolation and second, depth
as a classification feature.

Foreground Isolation using Depth

The primary purpose of the depth camera is improving the performance of automated
segmentation; there are computer vision techniques for identifying e.g. ‘skin colour’ and
isolating corresponding pixels from a 2D colour image, but performance is low and highly
dependent upon uniformity and consistency of lighting as well as whether any of the
background contains colour similar to that defined as ‘skin colour’. Depth provides ‘an
extra dimension’; once a feature, say a hand, has been identified, the pixels corresponding
to the hand can be segmented from those of it’s surroundings by comparing the depth
values of those pixels.

In simple terms, the experiment can be defined such that accuracy does not impact
segmentation: if the signer is standing at 3m, the furthest the camera can measure

52

5.4 Accuracy & Resolution

them is 3.06m, so if the camera is at least 3.06m + 2% ˆ 3.06m = 3.12m from the
background, or equivalently, if the signer is standing at least 3.12m 3m = 120mm
from the background, then depth data can be used to distinguish between them. This
distance is easily achievable, but the real problem is not so simple: the hands are likely
in front of the signer’s body or in contact with it; the separation distance then becomes
the thickness of the hand.

For a hand of a thickness of, for example, 12mm, at 2% accuracy, the error would be
˘12mmˆ 0.5 = ˘6mm, so the camera would need to be no further than 6mm˜ 2% =

300mm from the hand for accurate segmentation; clearly this is not feasible. Another
option for improving hand segmentation performance is improving the accuracy of the
camera.

Manufacturer’s Best-Known-Methods for Depth Performance

As a means of improving performance, Intel recommends: setting the camera to the
‘optimal’ depth resolution and using low gain and checking for good exposure, manually
adjusting if necessary [42].

Intel states the optimal depth resolution for the D435 as 848ˆ 480 px, yet as justifica-
tion states “The higher the input resolution, …, the better the depth precision” [42, p. 1].
The D435 has an ‘active sensor pixel’ resolution of 1280ˆ 800 px [42, p. 9] and supports
a resolution of 1280 ˆ 720 px, so the stated ‘optimal’ resolution is not the highest input
resolution11.

Appropriate exposure means that the light received by the camera sensor correspond-
ing to the object of interest uses as much of the light intensity range of the sensor as
possible, rather than ‘saturating’ at full or no illumination, losing all distinction. To this
end, recordings were conducted in a well illuminated room but relied upon automatic
exposure compensation.

Should camera performance not meet the specified accuracy, Intel recommends calib-
ration. An individual named Calvert has developed their own calibration tool, claiming
“accuracy can be improved by an order of magnitude at 2.5 metres and becomes almost
linear in the depth” [13, p. 1].

11It was realised while writing this that the 848 ˆ 480 px likely corresponds to the output of the depth
module, so presumably there is some scaling involved to match the resolution to that of the source
IR sensors; this would mean that 848 ˆ 480 px is the ‘raw’ depth resolution.

53

Chapter 5 Implementation

Figure 5.9: Plot of average Z (depth) error (mm) against distance for Intel RealSense
D435: specification (grey, middle line), measured/stock (red, top line) and
after Calvert calibration (green, bottom line) [13].

Calvert’s Calibration Tool

The Calvert RealSense Calibrator [14] uses the depth stream for calibrating depth
rather than the colour sensor, as per the Intel Calibration Tool [55] and averages mul-
tiple measurements to obtain nearly-linear accuracy, as shown in Figure 5.9.

Calibration requires a target be produced precisely for accurate calibration, with the
instructions suggesting printing five copies of the target on a sheet of paper and fixing
them to a flat board. For greater precision than manually-positioned and squared tar-
gets, the entire target was drawn in computer software in vector format, as shown in
Figure 5.10. The target was printed on an A1 sheet of Tyvek (flash-spun non-woven
high-density polyethylene, providing high dimensional stability and durability) at high
precision by a commercial printer. Finally, the target was fixed to a board and clamped
to a stand, as shown in Figure 5.11, then, using a bubble level, the target was levelled
horizontally and vertically.

The camera was installed on a floor-standing tripod with three-axis angle adjustment

54

Image removed due to copyright restriction.

Available to view online:
https://www.calvert.ch/maurice/improving-
the-depth-map-accuracy-of-realsense-
cameras-by-an-order-of-magnitude/

https://www.calvert.ch/maurice/improving-the-depth-map-accuracy-of-realsense-cameras-by-an-order-of-magnitude/

Chapter 5 Implementation

Figure 5.12: Diagrammatic derivation ground truth depth Z: the distance between the
scene and the depth sensor of the Intel RealSense D435. Note that the
sensor is displaced behind the front glass a distance Z1 = 4.2mm [54].

and levelled horizontally and vertically. Using a tape measure, the camera was positioned
such that the ground truth depth Z was 2000mm ˘ 1mm, accounting for the 4.2mm
distance between the depth start point and the front glass [54] shown in Figure 5.12.
Using real-time visual feedback, the camera was positioned orthogonally to the centre of
the target; this proved challenging and the results were likely out by some few millimetres
and a degree or so both vertically and horizontally.

At this point the software [14] was run, gave an error and crashed. The issue appeared
to be related to building from source, potentially resolvable but likely requiring consid-
erable learning. With limited time left for the project and stock accuracy adequate for
at least background segmentation, Calvert calibration was abandoned.

5.4.2 Testing Resolution

With the settings adjusted appropriately: depth_unit=100, the D435 should offer ample
depth resolution of around 100 µm: more than enough to distinguish between finger
widths an order of magnitude larger; indeed, even with depth_unit at it’s default setting
the depth resolution is more than adequate. Unfortunately, the depth resolution is still
bounded by individual pixels, with a lateral resolution of around 3mm that will limit
distinction.

To test if actual resolution matched promised resolution, a resolution test board was

56

Image removed due to copyright restriction.

5.4 Accuracy & Resolution

conceived that used nominal 8 ˆ 19mm dress-all-round timber that produces depth
changes of 3, 8, 11, 16 & 19 mm across lateral spacings of 8 & 19mm; the technical
drawing of the board is shown in Figure 5.13 and a photograph of the produced board
in Figure 5.14.

The board was positioned on a stand with the strips running horizontally and, using
bubble levels, adjusted until it was level horizontally and vertically. The Intel RealSense
D435i was positioned on a tripod, set 1000mm from the basal platen of the board to the
glass of the camera and, using bubble levels, set level horizontally and vertically. Using
real-time visual feedback via the RGB sensor, the camera was translated relative to the
width of the board and rotated until they appeared to be coplanar.

With the Intel RealSense Viewer version 2.25.0 set as shown in Table 5.3, a brief
recording was made. From the recording, a single depth frame was taken after allowing
a few seconds for any automatic settings to stabilise (e.g. auto exposure), manually
cropped to a region-of-interest (ROI) within the board and then depths for an arbitrarily-
selected single column of pixels (intersecting all wooden strips) were extracted. The
column was then down-sampled by retaining every 12 value such that the remaining
number of values corresponded with the height of the board in mm (i.e. one value for
each mm).

The column of depths was then converted from floats in metres to truncated integers
in millimetres and the step-change between pixels was then calculated.

A plot of the raw data showing measured distance (in RealSense ‘depth units’) against
vertical displacement (mm), overlaid with the profile of the resolution test board is
shown in Figure 5.15; it shows that there is some general agreement between where
transitions occur and changes in depth, but there appears to be no correlation between
the magnitudes of the change (real-to-measured) and there are changes in depth where
there is no change in the board.

The distance (float, m and integer, mm) and measured step (mm) values for the first 15
pixels are shown in Table 5.4, along with the full sequence of expected step-changes from
the physical board. A stem-plot of the measured step-changes is provided in Figure 5.16.
Interestingly, there are many small steps, rather than the theoretical result: infrequent
large steps separated by many zero steps. As each pixel represents a lateral translation
of around 3 mm, these results indicate that changes are not ‘abrupt’; the D435i is not
producing high-frequency changes in depth, but rather smoothing the depth changes out.

From these findings it is clear that accuracy is low, with considerable fluctuation the
depth results that could cause issues in segmentation and that although depth resolution

57

Chapter 5 Implementation
11

22

33

44

55

66

A
A

B
B

C
C

D
D

300

2
0
0

1
2

8

1
6

1
9

1
1

3

2
0

2
8

3
1

19

198

8

Figure
5.13:D

raw
ing

ofresolution
test

board.

58

5.4 Accuracy & Resolution

Figure 5.14: Photograph of actual resolution test board.

Figure 5.15: Stem plot of raw depth (RealSense ‘depth units’) against vertical displace-
ment (mm) overlaid with profile of resolution test board.

59

Chapter 5 Implementation

Table 5.3: Intel RealSense Viewer settings during resolution test.

Setting Value

Stereo Module
Resolution 1280 × 720
Frame Rate 6
Depth Z16
Infrared 1 Y8
Infrared 2 Y8
Emitter Enabled
Auto Exposure Enabled
AE ROI Manually selected ROI within board
Controls
Depth Unit 0.0010
all others as per defaults
Advanced Controls
all as per defaults
Depth Visualisation
Visual Preset Fixed
Color Scheme Jet
Histogram Equalization Disabled
Min Distance 0.95 m
Max Distance 1.05 m
Post Processing
all Disabled
RGB Camera
all Disabled
Motion Module
all Disabled

60

5.4 Accuracy & Resolution

Table 5.4: Depth values from resolution test: first 15 values, top-to-bottom of distance
(float, m), truncated distance (integer, mm) and measured step change (dif-
ference between this pixel and one below it, mm) compared against expected
step change of board profile.

Float (m) Integer (mm) Measured Step (mm) Expected Step (mm)

1.01800005 1018 -2 8
1.01600005 1016 -3 -8
1.01300005 1013 -3 16
1.01000005 1010 -2 -16
1.00800005 1008 -3 19
1.00500005 1005 -2 -11
1.00300005 1003 -1 8
1.00200005 1002 -2 3
1.00000005 1000 -1 -19
0.99900005 999 -1 16
0.99800005 998 -1 3
0.99700005 997 -1 -19
0.99600005 996 -1 19
0.99500005 995 0 -11
0.99500005 995 -1 -8

61

5.6 Prompting

5.5.1 Recording via RealSense Viewer

The Intel RealSense Viewer provides means for adjusting camera settings, sav-
ing/loading those settings to file for repeatability and recording to file, thus,
Viewer met all requirements. A trial recording saved silently (without prompt) to
%HOMEPATH%/Documents/20190824_114547.bag; the save directory can be changed in
Viewer settings.

The .bag extension denotes a ‘bag’ file: a container-type developed as part of the
Robot Operating System [103]. The reason for Intel’s adoption of the bag file here
can only be speculated upon, but the bag file does have the highly desirable prop-
erty of supporting play black [103]. The RealSense SDK provides an example12 for
reloading a recording session from a bag file in Python; the key element being the func-
tion pyrealsense2.config.enable_device_from_file(pyrealsense2.config(), u

'bag_path_as_string'), from which point the code is identical to streaming directly
from a camera.

In summary, the Viewer utility included in the Intel RealSense SDK can be used to
record footage streaming from the D435i depth camera and save the data to a ‘bag’ file,
which can then be used to ‘play back’ the stream, facilitating comparative offline studies.

5.6 Prompting

The role of the prompter is to provide the participant with a cue of which sign to
perform. A lexicon must be provided, along with number of replicates per lexeme, with
classification robustness increasing with number of replicates. To reduce confounds in
recordings it is appropriate to present cues in a random order, however the resulting
sequence of labels should be recorded. Finally, the prompter must consider the timing
of the cues. A script, prompter.py, shown in Listing B.1, was written in Python 3.

The script specifies a lLexicon, a bespoke Lexicon class object containing a list of
lexeme labels and paths to corresponding images (in hindsight, the class was redundant;
a simple Python Dictionary data structure would suffice.) Using the labels of lLexicon,
along with the number of replicates per lexeme nReplicates, a list of strings lsTrials
is created that contains each lexeme label repeated the appropriate number of times in
random order.
12https://github.com/IntelRealSense/librealsense/blob/master/wrappers/python/

examples/read_bag_example.py

63

Chapter 5 Implementation

Figure 5.17: Example teleprompting produced by prompter.py, showing visual cue (in
this case, the /animal/ handshape) and the opaque countdown animation
(currently around the ‘20 seconds’ mark).

The script uses the OpenCV package to create a window, shown in Figure 5.17, in
which the lexeme images are displayed and handle interrupts. It also allows for specifica-
tion of which monitor the prompter is to be displayed on, hence, if the computer system
has multiple monitors, the prompter and recorder can run on separate monitors.

The prompter shows a ‘placeholder’, shown in Figure 5.18, while it waits for the user
to start the session; this allows, for example, the user to initiate the recorder and the
participant to get into position. The session is started by pressing Enter ; facilitated in
this study by a foot switch such that the user can control and participate at the same
time. The session can be terminated early by pressing Escape .

Once the session begins, the prompter shows the first lexeme image and begins a
countdown, displaying a partially translucent overlay that sweeps like the hand of a
clock, from the 12 O’Clock position in a clockwise manner until it covers the lexeme.
This overlay provides the user with an indication of time remaining at that lexeme while
inducing minimal cognitive load. Once the countdown is complete the screen is blanked,
allowing time for the participant to lower their hands to a neutral position, reducing
sign-sign interaction and possibly encouraging more repeatable performances.

Timing is controlled by nSecondsPerCountdown, the amount of time for which the
image for that lexeme is displayed and nSecondsPerTrial, the amount of time from the

64

5.7 Skeleton

Figure 5.18: Placeholder produced by prompter.py.

start of one lexeme image until the display of the next. The screen blank time is the
intervening time (nSecondsPerTrial - nSecondsPerCountdown). The overlay increases
by 1° every 60th of nSecondsPerCountdown.

For largely unexplored reasons, observed countdown timing exceeds that specified by
a large zero offset (around 1 s) and a small linear offset; this was managed by setting
nSecondsPerCountdown lower than the calculated time by, for example, 1 s.

The prompter saves the session details including a list of lexemes as they were presented
to a log file. In anticipation of the eventual development of an automatic temporal
segmentation routine, such as using the first derivative of optical flow, the log also
provides detailed information regarding timing.

5.7 Skeleton

One of the major advances of consumer grade depth cameras are skeleton models [116]
that provide 3D coordinates of ‘joints’. These joints can be used for both for pose
estimation (one of the target phonemes) as well as to locate regions of interest, such as
the hands. While the RealSense SDK and Creative BlasterX Senz3D used at the start
of this study provided a skeleton model, Intel RealSense SDK 2.0 does not.

Intel suggested users acquire a skeleton model from ‘middleware’, recommending Nu-
iTrack (a contraction of ‘natural user interface’ and ‘tracker’), proprietary software that

65

Chapter 5 Implementation

offers a free trial. The trial limits recording duration to three minutes, but that was
deemed adequate (and could certainly be worked around). NuiTrack runs in either of
the game engines Unreal or Unity; both are proprietary but free for students. The prior
is scripted in C++ and the latter in C#. Unity was selected somewhat arbitrarily, largely
based on chance to learn C#.

Both NuiTrack and Unity were installed as per manufacturer recommendations; how-
ever, despite overcoming several roadblock errors, NuiTrack could not be made to work.
In the interest of time, NuiTrack and, hence, the Intel RealSense D435i, were abandoned.

5.8 Microsoft Kinect

Although Microsoft Kinect 2.0 has a far smaller depth sensor than the Intel RealSense
D435: 512 ˆ 424 px versus 1280 ˆ 720 px, only 23.5% of the area and a rolling shutter,
the Kinect for Windows SDK 2.0 provides a 25-joint skeletal model, as enumerated
in the SDK in Listing 5.3 includes hand ‘joints’ and, critically, was available for use
immediately.

It was discovered that for Microsoft Kinect 2.0 to work with Microsoft Windows 10,
the Registry must be modified, as shown in Listing 5.4.

The Kinect for Windows SDK 2.0 is natively scripted in C++ so for familiarity, a series
of tutorials were followed and extended to overlay the RGB frame with lines connecting
arm joints and triangles connecting hand ‘joints’, as shown in Figure 5.19.

5.8.1 Recording Kinect

Like the Intel RealSense SDK 2.0, Kinect for Windows SDK 2.0 includes a viewer ap-
plication, Kinect Studio, shown in Figure 5.20 that has the ability to record directly,
saving the inevitable API issues13. After fastidiously setting up the recording space a
trial recording was performed and some peculiarities were noticed of the output file.

By default, the file saves silently to %userprofile%/Documents/<date>.xef. The
location was changed in the settings but there is still no success dialogue. The xef file
extension indicates a proprietary Microsoft file format that can only be read back inside
Kinect Studio. Several attempts were made using various applications and instructions
from online forums to access the recording from inside Kinect for Windows SDK 2.0 in
C++ but without success.
13Technically, the Intel SDK Viewer is ‘like’ the Microsoft SDK viewer which is around 4 years senior.

66

5.8 Microsoft Kinect

1 typedef enum _JointType
2 {
3 JointType_SpineBase = 0,
4 JointType_SpineMid = 1,
5 JointType_Neck = 2,
6 JointType_Head = 3,
7 JointType_ShoulderLeft = 4,
8 JointType_ElbowLeft = 5,
9 JointType_WristLeft = 6,

10 JointType_HandLeft = 7,
11 JointType_ShoulderRight = 8,
12 JointType_ElbowRight = 9,
13 JointType_WristRight = 10,
14 JointType_HandRight = 11,
15 JointType_HipLeft = 12,
16 JointType_KneeLeft = 13,
17 JointType_AnkleLeft = 14,
18 JointType_FootLeft = 15,
19 JointType_HipRight = 16,
20 JointType_KneeRight = 17,
21 JointType_AnkleRight = 18,
22 JointType_FootRight = 19,
23 JointType_SpineShoulder = 20,
24 JointType_HandTipLeft = 21,
25 JointType_ThumbLeft = 22,
26 JointType_HandTipRight = 23,
27 JointType_ThumbRight = 24,
28 JointType_Count = (JointType_ThumbRight+1)
29 }

Listing 5.3: Kinect for Windows SDK 2.0 joint type enumeration definition [97]. There
are several ‘joints’ per hand: wrist, hand, tip and thumb for each left and
right hand, which, while clearly not joints in the true sense of the word (or
even as defined in the API: “Connects two bones of a skeleton” [96]), these
coordinates are very useful for automatic segmentation.

67

Chapter 5 Implementation

1 Windows Registry Editor Version 5.00
2

3 ; Fixes Kinect infinite disconnect/reconnect issue on Windows 10
4 ; https://support.microsoft.com/en-us/help/4032123/kinect-sensor-is-not-

recognized-on-a-surface-bookãÑ

5

6 [HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Class\{36fc9e60-c465-
11cf-8056-444553540000}]ãÑ

7 "LowerFilters"=""

Listing 5.4: Windows 10 Registry modification to enable USB power support for Mi-
crosoft Kinect 2.0.

Figure 5.19: Kinect skeleton joint overlay on ‘coloured pointcloud’ (RGB pixel values
mapped to 3D coordinates in synthetic ‘camera’ space); triangle vertices cor-
respond to Wrist<Side>, HandTip<Side> & Thumb<Side>, coloured green
for the left side and blue on the right-hand-side. Note low-quality out-
put with substantial shadow and artefact, particularly the right hand and
estimated joint in space.

68

5.8 Microsoft Kinect

Figure 5.20: Kinect for Windows SDK 2.0 viewer: Kinect Studio, showing pointcloud
view with connected-joint ‘skeleton’ (yellow) and hand tracking (red and
green circles).

A successful attempt involved using a third-party utility to convert the Kinect Studio
data file (.xef) into a Matlab data file (.mat) [115]. While the utility did (eventually)
work, the resulting file only contained an array of depth frames, an array of infra-red
frames and a vector of timestamps: no colour frames or joint data.

5.8.2 Kinect in MATLAB

The final approach to obtaining data from Kinect was to record in MATLAB directly,
using Kin2 [124]. Although it can be downloaded precompiled from GitHub14 the package
does not work ‘out of the box’. After investigation, the culprit was found to be the MEX
file. The MEX file was eventually rebuilt following the author’s instructions [123], that
absolutely require use of the Visual C++ compiler from Microsoft Visual Studio 2012
onwards (MinGW-64 cannot be made to work, despite assurances to the contrary [69].

A MATLAB script, shown in Listing B.2, captures the Microsoft Kinect 2.0 data to a
as a vector of struct that is finally saved to disk.

When run, the script attempts to connect to a Microsoft Kinect 2.0, creating a Kin2
object oKin2 that streams colour frames, depth frames and body data. Two figure
windows are created, one showing the RGB stream overlaid with joints, the second the
14https://github.com/jrterven/Kin2

69

Chapter 5 Implementation

depth stream. This allows the user to ensure the participant is being correctly recognised
and is well within the frame. Once the session is ready to begin, the participant initiates
recording by forming a fist with their right hand (ideally, this would be programatically
set to the non-dominant hand, rather than hardcoded). The session can be terminated
early by pressing Escape .

The recording session duration dSession = nSecondsPerTrial ˆ nTrials +

dBreathingRoom, where nTrials = nSigns ˆ nReplicates. nSigns, nReplicates
(per sign) and nSecondsPerTrial are manually set in accordance with the Prompter.
dBreathingRoom is a temporal buffer to account for peace of mind, arbitrarily set to 5 s
(this has not proved necessary and may be omitted).

The capture rate is set at nSamplesPerSecond = 2, selected somewhat arbitrarily as
having sufficient temporal resolution to ensure there are a few stable frames in a sign
dwell time of around 3 s (set in the Prompter). Samples are taken using a for loop,
using MATLAB’s cputime and pause to control timing while accounting for time taken
in sample acquisition and containing a ‘timeout’ condition.

For each sample, oKin2 returns: the colour frame, as a 1920 × 1080 × 3 array of 8-bit
unsigned integers, the depth frame, as a 512 × 424 array of 16-bit unsigned integers and
body data as a struct. These, along with a millisecond-resolution datestamp, are saved
(out) to a sample-indexed row (r) vector of struct (u): ruOut.

Kinect Registration in MATLAB

One of the glaring omissions of the Kin2 wrapper is an offline method for registration: the
mapping between colour and depth frames such that the depth (distance from camera)
can be defined for any given pixel on the colour frame; as such, registration is essential
for depth-based spatial segmentation of the colour image. There are online methods,
such as Kin2.mapDepthPoints2Color, however these require a Kinect to be connected
and take about 20 s to align all pixels in the (far faster) depth to colour direction.

As the RGB & D sensors are unable to move relatively and the light received by
the sensors has no bearing upon their spatial relationship, it was deemed reasonable
to assume that depth-pixel-to-colour-pixel mapping should be constant. A map was
made 5 times, with the output being identical between two pairs of maps and generally
being close between all five maps, although no real statistical analysis was conducted. A
concession to this variability was to incorporate the map generation into the recording
script, such that each recording session would have a map created for that camera and

70

5.9 Temporal Segmentation

Figure 5.21: Image produced by mapping the 512 × 424 depth frame’s intensity values
onto the 1920 × 1080 pixel colour frame, histogram equalized for clarity.
Note the limitations to usable space due to the curious banding (perhaps an
artefact of different lens curvature?) and discrepancy between sensor aspect
ratios.

that setup.
The code shown on lines 187 to 193 of Listing B.2, produces a depth-frame-sized, two-

dimensional array of integer coordinates to the corresponding pixel in the colour frame.
Code on lines 195 to 209 then invert the map, providing a quick way to access the depth
corresponding to a given colour pixel. Aligning the depth frame intensity values onto the
colour frame provides the image in Figure 5.21. Both maps are saved to disk alongside
the recording data.

5.9 Temporal Segmentation

The ultimate realisation of SLR includes temporal segmentation where the system ob-
serves both dynamic changes of motion in time and from that determines when to cap-
ture static snapshots. This implementation of SLR simply uses manual selection of a
single static representation of a sign. This temporal segmentation is achieved by a be-
spoke MATLAB ‘AppDesigner’ GUI SelectFramesFromRecordings.mlapp, shown in
Listing B.3. The initial screen of the GUI is shown in Figure 5.22.

71

Chapter 5 Implementation

Figure 5.22: The initial screen of SelectFramesFromRecordings.mlapp

The GUI provides a graphical file browser via Browse to select a target output mat file
from KinectRecorder.m that is then loaded and stored as a global variable: app.ruRec;
the selected path is displayed in the status text and the first colour frame is then dis-
played, as shown in Figure 5.23.

The user is provided controls to move forwards Next or backwards Previous through
frames; the current frame number is displayed in the status text. When they are satisfied
the current frame is a good instance of the sign (e.g. little or no motion blur, well framed),
they may Select it, appending the corresponding struct from ruRec to the selections
app.ruSln.

If the user makes an error in selection it may be reversed by navigating to a preferable
frame and pressing Replace . While this allows recovering from a mis-click by replacing
it with the next correct frame it relies upon user memory to press the correct button
and will not work for the final sign. An appropriate extension to the app would be the
inclusion of a ‘filmstrip’ of selected frames that could be navigated by and deleted.

When the app is closed, the output file is saved to the source directory the user
browsed to initially. As MATLAB is unable to save files ě 2GB using the default MAT-
file version (7) and the files produced may be tens of GB so the MAT-file version is set
to 7.3 using the tag ('-7.3') [92].

72

5.9 Temporal Segmentation

Figure 5.23: The GUI SelectFramesFromRecordings.mlapp showing the first colour
frame of a MATLAB recording file (produced by KinectRecorder.m) that
has been loaded. Note the right-hand is formed into a fist; this is the cue
that started the recorder.

5.9.1 Label-Frame Alignment Verification

A vital stage is verification of alignment between frames selected by
SelectFramesFromRecordings.mlapp and expected labels generated by prompter.py.
For this study they have been manually validated via the MATLAB function
VerifySelectionAndLabelling.m, shown in Listing B.6, which displays the images
one-by-one in a Figure window, the title of which is the expected label. If the label
matches, the user presses c , if there is a mismatch they press m and they may quit
by pressing q . At the end of the session the function prints a list of mismatch indices
and labels to the command window.

While on one hand it is easy to idealise integration this process into the frame selection
GUI, upon greater inspection integration does not present a long-term solution: once an
automatic temporal segmentation script has been developed, for example by taking the
median of the first derivative of optical flow of the sampled frames, the verification would
again need to be a post-segmentation process. So despite the current implementation
being very basic and not particularly user friendly, it was deemed suitable for purpose.

73

Chapter 5 Implementation

(a) Cropped ROI of the hand: colour on the left and
depth on the right.

(b) Red channel of colour ROI with
distant pixels masked out.

Figure 5.24: Automatic segmentation by determining depth at the Hand point and ex-
cluding more distant pixels. This /bad/ example demonstrates a weakness
of this naïve method: failure to exclude parts of the forearm and shoulder.
The misalignment of registration can be just discerned in (a) and is all-too-
evident in (b).

5.10 Spatial Segmentation

Spatial segmentation refers to the isolation of the pixels corresponding to the target
from the rest of the image. In this case, the target is the dominant hand. This was
preformed inside a MATLAB script ProcessRecordings.m, shown in Listing B.4, that
automates all steps from loading the selected frames to producing the numerical features
for classification.

There are several ‘joints’ that could be of use for segmentation, particularly the Hand,
Wrist and HandTip for manual segmentation. The entire skeleton is useful for body pose
estimation and the ‘head joint’ provides a starting point for facial segmentation. This
study has only implemented unimanual segmentation.

The initial concept was to use depth data to segment colour pixels corresponding to
the hand from the background. This is achieved by finding the depth at, for example
the Hand joint and excluding points with greater depth. Unfortunately, there was a
misalignment between depth and colour frames, as shown in Figure 5.24.

The misalignment is likely an artefact of registration and attempts were made at
discovering the source and at applying correction algorithms, both without success. At
first glance the misalignment in Figure 5.24b appears to be translation to (frame) left as
the medial edge of the hand is obscured; however, the separation between the mask and
shoulder is much less, suggesting a non-linear relationship.

74

5.10 Spatial Segmentation

(a) (b)

Figure 5.25: Two different instances of /good/ marked with joints: HandLeft (©),
WristLeft (ˆ) and ElbowLeft (˙); the points are both inaccurate and
imprecise (as this is a 2D view of 3D space, it is possible there is a ‘paral-
lax’ viewing error, but it was judged that any such error could not explain
the variation observed).

An alternative method was conceived, using the Hand point to define the centre of the
ROI and use HandTip or a ratio of the distance between the Wrist and Elbow points to
define the distal extent. For the proximal extent of the ROI a line through the Wrist
perpendicular to the Elbow was envisaged. For the width, a ratio of lengths or the Thumb
joint were considered.

A brief exploration of points, shown in Figure 5.25, shows how wildly they vary,
precluding this approach.

Finally an automatic segmentation method was arrived at that defined a square ROI
around the HandLeft joint, as shown in Figure 5.26. Initially attempts were made to
dynamically scale the size of the square based on the distance between the wrist and
the elbow, but due to variability this was not effective. In the interest of time, a static
definition of 200 px was provided, being wide enough to encompass the outstretched hand
of the participant standing 2m from the Microsoft Kinect 2.0. For height, the square
was translated up 20 % of the diameter to better include the fingers and reduce inclusion
of the forearm that would likely otherwise negatively impact classification accuracy.

Once the ROI has been defined on the colour frame it is ‘cropped’ (by means of

75

Chapter 5 Implementation

(a) 0.5% (b) 0.75% (c) 200 px

Figure 5.26: Different approaches to define the diameter of square ROI around the Hand
joint (©). (a) and (b) are dynamic, defining the diameter as a proportion
of the Euclidean distance between the Wrist (ˆ) and Elbow (˙) in three-
dimensional space. (c) applies a fixed diameter (in this case, 200 px) and is
translated vertically up 20% of the diameter.

76

5.10 Spatial Segmentation

array slicing) to produce the final RGB ROI. Using the depth map created during the
recording, the ROI is mapped onto the depth frame which is likewise cropped.

5.10.1 Binary Image of Hand

The binary image, or ‘mask’, is the realisation of the depth segmentation discussed in
the preceding section; points in the depth ROI more distant than the hand are set to
0 (‘off’) and points no more distant than the hand are set to 1 (‘on’), hence, binary,
or ‘logical’ in MATLAB datatype vernacular. To account for parts of the hand slightly
more distant than the distance of the pixel at HandLeft, a tolerance is added by means
of iMaxHandDepthMm.

Although the binary image is not used for segmentation via masking, it may hold
information that empowers classification so is output to disk along with the colour and
depth ROIs.

5.10.2 Implementation

As mentioned, the automatic implementation of spatial segmentation through to fea-
ture extraction is performed by the MATLAB script ProcessRecordings.m, shown in
Listing B.4.

Automatic Spatial Segmentation

ProcessRecordings.m calls the RoiImagesFromSelectedFrames.m function, shown in
Listing B.5, which requires a physically connected Microsoft Kinect 2.0, passing the
selected-frame-indexed row vector of struct containing Kinect data, map from col-
our to depth pixels, setting the diameter of the square ROI to 200 px and setting
the maximum distance further than the hand joint to include to 200mm15. The
function returns three selected-frame-indexed row vectors of cell, one containing an
iRoiDiamPx ˆ iRoiDiamPx ˆ nchannels (where nchannels = 3 7 RGB) array of 8 bit un-
signed integers for the colour ROI image, one containing an iRoiDiamPx ˆ iRoiDiamPx
array of 16 bit unsigned integers for the depth ROI image and one containing an
iRoiDiamPx ˆ iRoiDiamPx array of logical values for the binary hand ROI image.

The selected frames MAT-file is loaded using ValidatedLoad.m, shown in Listing B.11,
in order to making the loading of files clearer, as it was discovered MATLAB ‘wraps’
15A distance of 200mm was selected as being approximately the distance from the fingertips to wrist

when forming ‘deep’ signs such as /animal/.

77

Chapter 5 Implementation

loaded files inside a struct; this function simply uses a provided expected variable name
to unwrap the file and validate that it is the correctly-named variable.

Feature Extraction

Features are extracted using the MATLAB function
ExtractFeaturesFromRoiImages.m, shown in Listing B.7, which takes as input
the serial number of the current sign and the cropped ROIs for colour, depth and the
binary image and collates them to a single struct.

From the binary image, geometric properties are extracted using region properties
from the MATLAB Image Processing Toolbox [93]: area per convex area (the area of
the convex hull), area per filled area, perimeter per area, perimeter per convex area and
perimeter per filled area. Each of these features are a single normalised scalar.

The MATLAB Computer Vision Toolbox [91] was used to extract more complex fea-
tures from the depth and colour images. As the colour image comprises three channels,
most of the functions cannot be applied directly, with the exception of HoOG, so that is
performed separately. HoOG, speeded-up robust features [7] (SURF), maximally stable
extremal regions [89] (MSER), KAZE (not actually an abbreviation, but a stylized form
of a Japanese word that means ‘wind’ [4]), binary robust invariant scalable keypoints [84]
(BRISK) and oriented FAST and rotated BRIEF [112] (ORB) were applied to each of:
each channel of the RGB image, the MATLAB-calculated greyscale version of the RGB
image, the depth image and a histogram-equalized version of the depth image. Each of
these functions return a variable number of scalars that are reshaped into a column.

The not particularly readable code on lines 46 through 55 are creating the labels,
slicing and collating the individual images and creating anonymous functions to perform
the extraction. The loops in lines 57 through 63 is where the extraction actually occurs.
This separation allows for dynamic naming of the structure’s fields and is perhaps a little
more readable than the alternative.

ProcessRecordings.m collates the individual feature structs into a row vec-
tor and saves them to the source directory as the original filename suffixed by
"_extractedFeatures.mat".

78

5.11 Feature Selection

5.11 Feature Selection

To reduce the enormous number of features produced by ProcessRecordings.m (ą
600 000) the features are pruned by FeatureStructToArrayWithPca.m, shown in List-
ing B.8. PCA is used to reduce the number of features down to the number of principal
components specified by nPcaComponents, ranked by explanation of the data.

First, any empty fields are removed, along with fields that are thought to correlate
strongly with one another (that is, ones that are linear combinations).

For each of the remaining features, the feature values for each lexeme are trimmed
to the height of the shortest column, then vertically concatenated into one column;
the columns for all the lexemes are then horizontally concatenated, forming a two-
dimensional array.

Once transposed, this array forms a “design matrix”, nˆp where n (rows) is the number
of ‘observations’, or instances (in this case, lexemes) and p (columns) is the number of
‘variables’, or features. The design matrix is saved to disk as anIxFCollated.mat along
with the labels of the surviving features.

5.11.1 Multi-layer PCA Selection

To clarify the multi-layer PCA selection strategy: the first layer is per-
formed inside FeatureStructToArrayWithPca.m, where PCA can be used to select
FeatureStructToArrayWithPca.nPcaComponents principal components at the function
value column stage; that is, selecting the number of components per feature (where, for
example, the BRISK featue set may have « 90 ‘subfeature’ columns). The second layer
occurs within ClassifyMl.m where PCA is used to select ClassifyMl.nComponents
principal components; classification is then performed on these components, rather than
individual features. This layered approach arose organically as a way of reducing linear
combinations and may be redundant; a single, more considered approach could likely
provide the same result and be easier to interoperate but unfortunately has not been
explored due to time constraints.

5.12 Classification

Classification is performed in MATLAB using newff from the R2010a version of the
Neural Network Toolbox [90] using the script ClassifyMl.m shown in Listing B.9. The

79

Chapter 5 Implementation

design matrix anIxFCollated.mat is loaded, constant rows are removed and the mean of
each row is mapped to 0 while the standard deviation of each row is mapped to 1. PCA
is performed to select the nComponents principal components ranked by explanation of
variance of the data.

10-fold cross-validation is used to perform supervised learning. For each fold, a neural
network with a single hidden layer of 10 neurons is created. Early stopping is achieved
by validation and by limiting the maximum number of training iterations. The out-
put transfer function is log-sigmoid, mapping values to between 0 and 1. The training
algorithm is Levenberg-Marquardt back-propagation.

Finally, Rand accuracy and Bookmaker Informedness are calculated and printed to
the command window.

5.12.1 Measuring Performance

The traditional measure of machine learning performance, accuracy, is generally provided
by ‘precision’, a measure that only accounts for ‘true positive accuracy’ tpa = ratio of
times a class was correctly predicted (or ‘true positive’ tp) to the total number of times
the class was predicted (or ‘predicted positive’ pp, which in turn is the sum of tp and
‘false positives’ fp). The accuracy of results are presented using two measures that take
‘true negatives’ tn into account: Rand Index, a weighted mean of correct predictions
to the total number of cases and Bookmaker Informedness, which specifies probability
versus chance; both measures are calculated from values in the Contingency matrix
(Table 5.5) as follows [107]:

Rand Index = rp ˆ tpr + rn ˆ tnr

= rp ˆ
pp
rp

+ rp ˆ
pn
rn

Informedness = Recall+ Inverse Recall 1

= tpr + tnr 1

=
tp
pp

+
tn
pn

1

80

5.12 Classification

Table 5.5: The binary Contingency table [107]. Inside the matrix, the prefix t denotes
‘true’ while the prefix f denotes ‘false’; the suffix p denotes ‘positive’ and the
suffix n denotes ‘negative’. The rows and columns are summated: labels with
prefix p denote ‘predicted’ and prefix r denotes ‘real’; the suffixes are as before
(‘positive’ and ‘negative’). For example, tp is ‘true positive’, pp is ‘predicted
positive’ and rn is ‘real negative’.

tp fp pp
fn tn pn
rp rn 1

81

Chapter 6

Validation

6.1 Introduction

The purpose of the validation study is to test the developed method for static handshape
recognition. A set of signs, or lexicon, was selected that provided achievable challenge,
as per the literature [47], [101], [126].

6.2 Method

The validation study follows that detailed in Chapter 5; only a summary of method and
the rational for decisions are provided here.

6.2.1 Study Parameters

Lexicon

Several possible sets of signs, or lexicons, were considered for the validation study. The
Auslan alphabet is a convenient self-contained set of which only two letters include
motion h and j but being predominantly bimanual means it is more difficult to
automatically segment images to a regular region of interest, increasing classification
challenge. One could select just the static unimanual signs, or reduce that further to
similar signs, such as the pairs l & r, n & v and d & p, which would be challenging for
any system to distinguish between. Auslan numbers 0 to 9 are unimanual and almost
static they are performed with a slight forward jerk, but this could be omitted but
the silhouettes are quite similar. For simplicity, a lexicon of five basic handshapes (thus,
phonemes), all with distinct silhouettes, was selected for the validation: /five/, /closed/,

83

Chapter 6 Validation

(a) /five/ (b) /closed/ (c) /animal/ (d) /good/ (e) /bad/

Figure 6.1: Images of the lexicon of five basic handshape phonemes used for the validation
study of the Sign-to-Text system.

/animal/, /good/ and /bad/, as shown in Figure 6.1.

Performance Guidelines

To improve consistency in the validation it was decided to perform the handshapes
laterally and anteriorly at approximately chest height that is, by a natural rotation of
the elbow such that the forearm moves ‘upwards’ and ‘outwards’ while the elbow hung
naturally from the shoulder without consciously restricting elbow translation. The hand
was to return to a ‘hanging’ neutral position between performances. The participant
was to stand in the same spot and reduce other movements for the duration.

Replicates and Timing

For this first validation study the number of replicates per lexeme nReplicates was set
to 10, being adequate for basic classification without being too time consuming during
the initial vetting of the system.

The time between lexemes, nSecondsPerTrial was set to 5 s and the dwell time
per lexeme, nSecondsPerCountdown in propmter.py was set to 2 s, knowing that on
the hardware employed 2 s resolved to an empirically-measured actual dwell time of
(2.92 ˘ 0.04) s.

The total time ttotal:

ttotal = nTrials ˆ nReplicates ˆ nSecondsPerTrial

= 5 ˆ 10 ˆ 5 s

= 250 s

84

6.2 Method

Figure 6.2: Recording setup with Microsoft Kinect 2.0 and a computer monitor set up
on tripods. A Intel RealSense D435i is also mounted on the tripod in this
image: this was purely for interest and served no functional purpose.

6.2.2 Setup

Recording was performed in a room with no natural light to reduce illumination vari-
ability and linear fluorescent artificial lighting that had been confirmed not to interfere
with the depth measurement. The setup is mostly1 shown in Figures 6.2 and 6.3.

The Microsoft Kinect 2.0 was set up on a floor-standing tripod with three-axis ad-
justability and levelled horizontally and vertically. As the wall was not flat, the recording
setup was aligned by means of carpet squares. The position where the participant would
stand was set at an intersection between carpet tile seams approximately 0.5m from
the wall. The camera was positioned atop the seam that ran perpendicular to the wall,
such that it was 2.00m from the signer position. The Calvert Calibration Target was
set up carefully aligned atop the intersection of the carpet tile seams; using real-time
visual feedback via the RealSense Viewer the camera & tripod were carefully positioned
such that the camera was inline with and perpendicular to the central vertical line of
the target. The camera was levelled, alignment reviewed and the target removed.

1The setup as shown was staged hastily for the capture of these photographs and is not actually aligned
as specified.

85

Chapter 6 Validation

Figure 6.3: Example of participant signing in front of camera.

A computer monitor was clamped to a second floor-standing tripod, positioned just
behind the first tripod and adjusted such that the display was just higher than the top
of the Microsoft Kinect 2.0 and hence, not obscured.

The FootSwitch3-F3.4 was placed on the floor just in front (towards the camera) of
the target carpet seam. The left key (1) was set to Left Mouse , the central key (2) to
Escape and the right key (3) to Enter .
The Microsoft Kinect 2.0, mounted monitor and foot-switch were connected to a (non-

University) desktop computer on an adjacent desk; the Microsoft Kinect 2.0 was also
connected to power. As the desktop computer had two monitors already and had in-
adequate graphical ability to run all three monitors, one of the regular monitors was
disabled and the mounted monitor enabled in software.

6.2.3 Session Flow

Due to the disjointed nature of the software used to prompt and record, care was taken
in sequencing events. First, the Python prompter script prompter.py (Listing B.1) was
run. During initialisation the display window was adjusted to appear on the mounted
monitor and Enter pressed, taking the script into the placeholder screen. Second, the

86

6.2 Method

MATLAB recorder script KinectRecorder.m (Listing B.2) was initialised and the figure
windows moved to be visible on the desktop’s monitor. Third, the Prompter window
was selected, completing initialisation.

When the participant was in position and confirmed to be fully within the RGB
frame with the skeleton overlay functioning correctly, the recording session was begun
by forming a fist with the non-dominant (right) hand and the prompting session by
pressing Enter key 3 on the foot-switch.

At the end of the prompting session the script closed silently; the recording script
took a few seconds longer than expected to complete, then left a success message in the
Command Window.

The ‘recording’ output file from KinectRecorder.m was saved to sDirOut
(default "D:/KinectRecordings/"), as a timestamped mat file, in this case:
2019Sep17Tue20h28_Recording.mat.

The Recorder script also created a map of pixel coordinates from the depth frame to
the colour frame, saved to the same directory as 2019Sep17Tue20h28_aiD2C.mat and a
reverse map (colour to depth) as 2019Sep17Tue20h28_aiD2C.mat.

6.2.4 Segmentation

Temporal segmentation, the selection of one frame per lexeme, was performed
manually in the MATLAB AppDesigner GUI SelectFramesFromRecordings.mlapp
(Listing B.3). The MATLAB recording was loaded from disk, eventually2 res-
ulting in the screen shown in Figure 5.23. While making frame selections, care
was taken to select frames without perceptible motion artefact, as shown in Fig-
ure 6.4. On closing the GUI the selections file was saved to the source directory as
2019Sep17Tue20h28_Recording.mat_selectedFrames.mat.

Frame-to-label verification was performed manually in
VerifySelectionAndLabelling.m (Listing B.6), visually comparing the se-
lected frames to expected labels as extracted from the prompter.py log file
Prompter_2019Sep17Tue20h22.log, the first 15 lines of which are shown in List-
ing 6.1; all frames were correctly labelled.

2Loading a large recording file (> 2GB) does take considerable time during which the GUI does not
appear to be doing anything…

87

Chapter 6 Validation

1 INFO:root:This is:
d:\Dropbox\Uni\2019S1\ENGR9700\signtotext\Python\prompter.pyãÑ

2 INFO:root:It is: 2019-09-17 20:22:08.429736
3 INFO:root:Timing: trials: 5 s, countdown: 2 s
4 INFO:root:Lexicon: ['animal', 'bad', 'closed', 'five', 'good'] (5 items.)
5 INFO:root:Repeats per sign: 10; 50 total trials, taking 250 s.
6 INFO:root:Trial sequence: ['bad', 'closed', 'good', 'animal', 'bad', 'five',

'five', 'bad', 'animal', 'five', 'animal', 'good', 'good', 'closed',
'five', 'five', 'animal', 'good', 'closed', 'good', 'good', 'animal',
'closed', 'bad', 'five', 'animal', 'bad', 'animal', 'bad', 'animal',
'good', 'good', 'bad', 'bad', 'closed', 'five', 'bad', 'animal', 'closed',
'bad', 'closed', 'animal', 'five', 'closed', 'five', 'good', 'good',
'five', 'closed', 'closed']

ãÑ

ãÑ

ãÑ

ãÑ

ãÑ

ãÑ

7 INFO:root:Starting trial 1/50: 'bad' at 20:23:25
8 INFO:root:Countdown completed in 0:00:02.831060, next trial starts in

0:00:02.168940ãÑ

9 INFO:root:Starting trial 2/50: 'closed' at 20:23:30
10 INFO:root:Countdown completed in 0:00:02.791286, next trial starts in

0:00:02.208714ãÑ

11 INFO:root:Starting trial 3/50: 'good' at 20:23:34
12 INFO:root:Countdown completed in 0:00:02.771153, next trial starts in

0:00:02.228847ãÑ

13 INFO:root:Starting trial 4/50: 'animal' at 20:23:39
14 INFO:root:Countdown completed in 0:00:02.759979, next trial starts in

0:00:02.240021ãÑ

15 INFO:root:Starting trial 5/50: 'bad' at 20:23:44
16 ...

Listing 6.1: First 15 lines of Prompter_2019Sep17Tue20h22.log, the logfile produced
by prompter.py for the validation study.

88

6.2 Method

(a) Motion artefact (b) Steady

Figure 6.4: Example of motion artefact in the recording: in (a) movement of the arm
was fast enough that it changed location while the shutter was open, so the
image captured is an averaging of that motion over that time. In (b) the arm
is fairly steady: any motion artefact is too small to perceive.

Region-of-Interest Images

Region of interest images were produced by RoiImagesFromSelectedFrames.m, shown in
Listing B.5, passing arguments iRoiDiamPx = 200 and iMaxHandDepthMm = 120. The
position of the ROI was established by the coordinates of the HandLeft joint in the colour
frame, which was then cropped to produce the 200ˆ200 px RGB ROI image. The depth
ROI image was then produced by mapping the colour ROI into the depth frame. Finally,
the depth value at HandLeft plus iMaxHandDepthMm was used as a threshold to binarize
the depth ROI, forming the binary ROI image.

6.2.5 Feature Extraction and Selection

ProcessRecordings.m then called ExtractFeaturesFromRoiImages.m, shown in List-
ing B.7, to perform feature selection from the ROI images. The feature value structs
for each lexeme were horizontally concatenated. The row of struct was saved to disk,
completing the ProcessRecordings.m script.

Feature selection was performed by SelectFeaturesFromStructWithPca.m twice,
once with nComponents = 2 and once at three principal components. The design matrix
anIxFCollated.mat was saved to disk.

89

Chapter 6 Validation

6.2.6 Classification

Classification was performed by a neural network in MATLAB using the script
ClassifyMl.m, shown in Listing B.9. anIxFCollated.mat was loaded from disk, con-
stant rows were removed and the mean value of each row mapped to 0 and deviation of
each row mapped to 1.

The neural network was supervised, using 10-fold cross-validation. A single hidden
layer with 10 neurons was created for each fold. Early stopping was triggered using
validation by 20% of within-fold data or reaching a limit of 500 epochs. A log-sigmoid
output transfer function mapped the results to between 0 and 1, matching the mapping
of the design matrix.

Classification was repeated a number of times, once using the 2 PCA set and six times
using the 3 PCA set. For the last five, an additional layer of selection by PCA was
performed within ClassifyMl.m, choosing the 15, 5, 4, 3 and then 2 most explanatory
principal components. The accuracy as reported by ClassifyMl.m was recorded.

6.3 Results

The results of classification are presented in Table 6.1, the composition of the three
principal components used in Set 6. are shown in Figure 6.5.

6.4 Discussion

In terms of feature selection, the plot of contribution to classified components (Figure 6.5)
shows that Component 1 largely dominated by geometric properties of the binary image,
with the 27% of the variance explained by: the ratio of perimeter to area of the binary
image, the ratio of perimeter to filled area of the binary image and the area per convex
hull area of the binary image. 21% of the variance was explained by HoOG features:
the first principal component for each of the colour ROI, depth ROI and histogram-
equalized-depth ROI (these last two then are likely linear combinations).

Component 2 was dominated by the second principal component of the HoOG for
the depth ROI, histogram-equalized-depth ROI and colour ROI, explaining 33% of the
variance. The perimeter per convex area of the binary image accounted for a further
10% of the variance.

90

6.4 Discussion

Fi
gu

re
6.
5:

Pl
ot

of
fe
at
ur
e’
s
co
nt
rib

ut
io
ns

to
th
e
th
re
e
pr
in
ci
pa

lc
om

po
ne
nt
s
th
at

fo
rm

ed
th
e
se
t
w
ith

gr
ea
te
st

ac
cu
ra
cy

(6
.).

91

Chapter 6 Validation

Table 6.1: Results of classification for the verification study of 5 handshapes and 10
replicates (50 observations/instances). Feature extraction was the same for
all result sets. The first layer of feature selection (L1) uses PCA to select which
subfeatures of a feature set are include by ranking contribution to explanation
of variance. Layer two (L2) uses PCA again produce principal components
containing these features.

Set # Components Rand Index Bookmaker Informedness

L1 L2 Mean SD Mean SD

1. 2 49 0.43 0.06 0.33 0.07
2. 3 47 0.55 0.06 0.48 0.09
3. 3 15 0.76 0.05 0.71 0.07
4. 3 5 0.79 0.04 0.78 0.05
5. 3 4 0.86 0.02 0.86 0.03
6. 3 3 0.86 0.03 0.87 0.03
7. 3 2 0.78 0.03 0.77 0.04

The third principal component of HoOG for each of the: colour, depth, histogram-
equalized depth and grayscale ROIs explained 43% of the variance for Component 3.
The second principal component of HoOG for both grey and colour accounted for a
further 13% of the variance.

The geometric properties of the binary image and HoOG explained most of the variance
across the components; the other Computer Vision Toolbox features contributed little,
with the exception of the third component of ORB and the second component of BRISK,
both of the histogram-equalised depth ROI, which both accounted for 6% of the variance
in Component 2. This result is inline with much of the literature, where geometric
properties can clearly be seen to be highly informative for these diverse silhouettes and
HoOG is prevalent.

A mean Bookmaker Informedness of 87% gives high accuracy compared to chance and
outperforms a similar study [47] but not as well as [126] who achieved 99% ‘accuracy’
(definition unknown) using super-pixel earth mover’s distance on distinct silhouettes or
[31] who achieved 93% on a set of 1680 samples.

92

6.5 Conclusion

6.5 Conclusion

This validation study aimed to assess the groundwork implementation of the proposed
framework via static handshape recognition. The development of the capture system and
supporting software was non-trivial, but has been shown to perform at a level comparable
to the literature for a small basic lexicon and a single signer.

93

Chapter 7

Conclusion

This project investigated the enduring challenge of automatically recognising sign lan-
guage, interpreting it and translating it to a second language. Although attempts have
been made to address this challenge for over 30 years, SL remains a challenge for both
linguistic and technical reasons.

The linguistics of signed languages were explored thoroughly, providing insight into the
elements that define sign language and synthesising the various components and scholarly
views to provide a new taxonomy of linguistic structure. Untangling the phonemic
categories and setting them all at the same basal level, rather than having reducible
irreducible phonemes provides a more complete and rigorous representation.

Challenges intrinsic to signed languages were also researched, finding valuable inform-
ation in the linguistic literature but some confused interpretations within the recognition
literature. The existing challenges are laid out in a single, detailed list with examples
for the more commonly misconstrued labels. Through an understanding of both sides
of the SLR coin, three additional challenges are proposed, including the requirement for
remembering the assignment of entities to particular locations within the signing space,
the entanglement of spatial referents with movement epenthesis and the well-known but
not previously listed challenge of identifying temporal edges between signs.

A framework that incorporates all the elements of signed language is presented. The
‘acoustic model, linguistic model’ approach from speech recognition is adapted to form
linguistic hierarchy of ‘visual model’ then ‘linguistic model’. A modular approach sup-
ports and hopefully encourages multiple input modalities. The addition of temporo-
spatial memory block is essential to support spatial deictic signs and contextual deictic
modifiers, but the actual implementation and requirements have not been considered.

The recognition of sign languages is an evolving field where new technologies such as
depth cameras and new techniques such as deep learning are slowly helping researchers

95

Chapter 7 Conclusion

overcome long-standing barriers. The use of multi-modal sign observation helps reduce
occlusion and making use of existing large labelled datasets such as televised weather
forecasts provide the means to drastically improve inter-signer accuracy.

A rudimentary implementation of the framework was undertaken as a means of vetting
the systems and enhancing concepts, providing an excellent exercise in technical hurdle-
jumping. Despite issues with both hardware and software, a system was eventually
devised to recognise static handshapes. The implementation was validated by means of
a trial of 5 handshapes, achieving a Bookmaker Informedness accuracy of 87%.

7.1 Future Work

Future work should extend this implementation to include greater phonemic recognition;
first adding to handshape recognition then adding additional categories using established
pattern recognition techniques and possibly instrumentation. Once several classifiers
are producing phonemes, the ‘puzzle pieces’ of temporo-spatial memory and contextual
deictic modifiers can be explored. Development of a language model will require a stat-
istical approach from a linguistic perspective, before glossing and language translation.

96

Appendices

97

Appendix A

Linguistic Conventions

The stylistic conventions for annotating the linguistics of signed language used in this
thesis are taken from the works of Johnston, albeit some of them with definition inter-
preted through context as their explicit definition could not be discovered.

pro3a stand3a when 3aask3b why pro3b angry
Hea was standing just there when hea asked himb why heb was angry.

yesterday, 1meet3a poss2 brother.
I met your brother yesterday.

pro3a = tell1 pro2 engaged
They told me you were engaged.

99

Appendix B

Recognition Code

101

Appendix B Recognition Code

B.1 Teleprompter script

1 import cv2

2 import numpy as np

3 import logging

4 import DUtils

5 from random import shuffle

6 from screeninfo import get_monitors

7 from datetime import datetime, timedelta

8

9

10 class Lexicon:

11 def __init__(self, lsSigns, pPath, sPrefix, sSuffix, lsImages=None):

12 self.lsSigns = lsSigns

13 self.pPath = pPath

14 self.sPrefix = sPrefix

15 self.sSuffix = sSuffix

16 self.lsImages = lsImages if type(lsImages) is list and len(lsImages) > 0

else [str(pPath / (sPrefix + sSign + sSuffix)) for sSign in lsSigns]ãÑ

17 self.dSignImages = dict(zip(lsSigns, self.lsImages))

18

19 def __repr__(self):

20 return self.lsSigns

21

22 def centre_window_on_monitor(sWinName = None):

23 # Use global version if no argument provided

24 # (sometimes overloading would really be sensible...)

25 if sWinName == None:

26 sWinName = sWindowName

27 iWinX, iWinY, iWinW, iWinH = cv2.getWindowImageRect(sWinName)

28 mMonitor = get_monitors()[iMonitor]

29 iDelX = mMonitor.x + int((mMonitor.width - iWinW) * 0.5)

30 iDelY = mMonitor.y + int((mMonitor.height - iWinH) * 0.5)

31 cv2.moveWindow(sWinName, iDelX, iDelY)

32

33

34 def setup_checker(lLexicon):

102

B.1 Teleprompter script

35

36 global iMonitor

37

38 nSetupTimeoutSeconds = 10

39 nMilliSecondsPerSecond = 1000

40 nSetupTimeoutMilliSconds = nSetupTimeoutSeconds * nMilliSecondsPerSecond

41

42 print(f'Attempting to load image with path: { lLexicon.lsImages[0]}')

43

44 nPressedKey = None

45 lmMonitors = get_monitors()

46 sMonitors = DUtils.list_to_pretty_string(list(range(1, len(lmMonitors) +

1)))ãÑ

47

48 print('You should see a window showing the image.')

49 print("If the image does not work, press 'Esc'")

50 print(f'Regardless of where the image is shown, press the key of the number

of the monitor it should be on: {sMonitors}')ãÑ

51 print("If the image works and is on the correct screen, press 'Enter'")

52

53 while not DUtils.keypress_matches(nPressedKey, 'enter'):

54 # print(f'Current monitor: {lmMonitors[0]}')

55 nPressedKey = show_image(cv2.imread(lLexicon.lsImages[0]),

nSetupTimeoutMilliSconds)ãÑ

56

57 if len(lmMonitors) > 1:

58 bKeyMatched = False

59 for i in range(1, len(lmMonitors) + 1):

60 if DUtils.keypress_matches(nPressedKey, str(i)):

61 logging.debug(f'i: { i}, iM: { iMonitor}, iMNew: { i - 1}')

62 bKeyMatched = True

63 iMonitor = i - 1 # convert to list index

64 centre_window_on_monitor()

65 break

66 if bKeyMatched:

67 continue

68

103

Appendix B Recognition Code

69 if DUtils.keypress_matches(nPressedKey, 'enter'):

70 cv2.destroyAllWindows()

71 return True

72 if DUtils.keypress_matches(nPressedKey, 'esc'):

73 return False

74 else:

75 raise Exception('Invalid keypress or timeout')

76

77

78 def combine_images(anSector, anImage):

79 nAlpha = 0.4

80 nBeta = 1

81 nGamma = 0

82 return cv2.addWeighted(anSector, nAlpha, anImage, nBeta, nGamma)

83

84

85 def show_image(anImage, nDelayMilliSeconds):

86 cv2.imshow(sWindowName, anImage)

87 return cv2.waitKey(nDelayMilliSeconds)

88

89

90 def resize_image_maintain_aspect(anImage, tnResolution):

91

92 # Resize image, maintaining aspect ratio

93

94 nTgtW, nTgtH = tnResolution

95 nOldH, nOldW, _ = anImage.shape

96

97 nScaleW = nTgtW / nOldW

98 nScaleH = nTgtH / nOldH

99

100 nScale = min(nScaleW, nScaleH)

101

102 nNewW = int(nOldW * nScale)

103 nNewH = int(nOldH * nScale)

104

105 anImage = cv2.resize(anImage, (nNewW, nNewH))

104

B.1 Teleprompter script

106

107 # Pad resized image to window size

108

109 nPadW = nTgtW - nNewW

110 nPadH = nTgtH - nNewH

111

112 nPadT = nPadB = nPadL = nPadR = 0

113

114 if nPadW:

115 nPadL = nPadW // 2

116 nPadR = nPadW - nPadL

117 if nPadH:

118 nPadT = nPadH // 2

119 nPadB = nPadH - nPadT

120

121 return cv2.copyMakeBorder(anImage, nPadT, nPadB, nPadL, nPadR,

cv2.BORDER_CONSTANT, value=[0, 0, 0])ãÑ

122

123

124 def clock_sector(nEndAngle, tnResolution):

125 nWidth, nHeight = tnResolution

126

127 anSector = np.zeros((nHeight, nWidth, 3), np.uint8) # reset

128

129 nAxisScale = 0.71 # slightly larger than 1/sqrt(2) so radius greater than

diagonalãÑ

130

131 tnCenter = (int(nWidth * 0.5), int(nHeight * 0.5))

132 tnAxes = (int(nHeight * nAxisScale), int(nWidth * nAxisScale))

133 nRotation = -90 # rotation of major axis CW from x+ in degrees

134 nStartAngle = 0 # rotation of start CW from major in degrees

135 # nEndAngle = 45 # rotation of end CW from major in degrees

136 tnColour = (128, 128, 128) # BGR in [0,255]

137 nThickness = -1 # guessing -1 means 'solid'?

138

139 cv2.ellipse(anSector, tnCenter, tnAxes, nRotation, nStartAngle, nEndAngle,

tnColour, nThickness)ãÑ

105

Appendix B Recognition Code

140

141 return anSector

142

143 def show_placeholder_until_ready():

144 sWinName = "When you're quite ready..."

145 anImg = np.zeros((nWindowHeight,nWindowWidth,3), np.uint8)

146 sText = "When you are ready, press 'Enter'"

147 fFontFace = cv2.FONT_HERSHEY_SIMPLEX

148 nFontScale = 2

149 tnFontColor = (0, 255, 0)

150 nLineThickness = 1

151 nTextWidth, nTextHeight = cv2.getTextSize(sText, fFontFace, nFontScale,

nLineThickness)[0]ãÑ

152 tnOrigin = (

153 int((nWindowWidth - nTextWidth) * 0.5),

154 int((nWindowHeight - nTextHeight) * 0.5)) # bottom, left corner of text

155

156 cv2.putText(anImg, sText, tnOrigin, fFontFace, nFontScale, tnFontColor,

nLineThickness)ãÑ

157

158 cv2.imshow(sWinName, anImg)

159 centre_window_on_monitor(sWinName)

160 nPressedKey = cv2.waitKey(0)

161 logging.debug(f'Placehold exit key: { DUtils.keypress_string(

nPressedKey)}')ãÑ

162 cv2.destroyAllWindows()

163 if DUtils.keypress_matches(nPressedKey, 'enter'):

164 return True

165 else:

166 raise Exception('Invalid keypress during placeholder')

167

168

169 def initialise_logging(sLogFile):

170 logging.basicConfig(filename =s LogFile, level = logging.DEBUG)

171 logging.info(f'This is: { __file__}')

172 logging.info(f'It is: { datetime.now()}')

173 print(f'Logging to { sLogFile}.')

106

B.1 Teleprompter script

174

175 # *** BEGIN ACTUAL SCRIPT ***

176

177 # Begin logging

178 sRunId = datetime.now().strftime('%Y%b%d%a%Hh%M')

179 initialise_logging('PrompterLogs/Prompter_' + sRunId + '.log')

180

181 # Global variables

182 sWindowName = "Press 'Esc' to exit"

183 iMonitor = 0

184

185 # Timing

186 # * NOTE: countdown time is considerably more than specified (likely due to

mechanism of CV2 drawing); e.g. a specified 2 second countdown might take

around 6 seconds in reality. Accordingly, make sure trial period time is

much larger than countdown time.

ãÑ

ãÑ

ãÑ

187 # Examples:

188 # @ nStepsPerCircle = 60:

189 # Trials: 5 s, Countdown: 3 s, Actual 3.75 ± 0.15 s - i3-3220

190 # Trials: 5 s, Countdown: 3 s, Actual 4.1 s - i3-3220, Kv2 recording

191 # Trials: 5 s, Countdown: 2 s, Actual 2.92 ± 0.04 s - i3-3220, Kv2 recording

192 nSecondsPerTrial = 3 #! USER CONFIG

193 nSecondsPerCountdown = 1 #! USER CONFIG

194 nMilliSecondsPerSecond = 1000

195 nMilliSecondsPerCountdown = nSecondsPerCountdown * nMilliSecondsPerSecond

196 nDegreesPerCircle = 360

197 nStepsPerCircle = 60 #! USER CONFIG

198 nDegreesPerStep = nDegreesPerCircle / nStepsPerCircle

199 nMilliSecondsPerStep = int(nMilliSecondsPerCountdown / nStepsPerCircle)

200 logging.info(f'Timing: trials: { nSecondsPerTrial} s, countdown: {

nSecondsPerCountdown} s')ãÑ

201

202 # Signs & Trials

203 pRoot = DUtils.get_abs_path_to_named_parent('signtotext')

204 pRel = pRoot / 'Images' / 'Auslan'

205

206 lAlphabetDistinct = Lexicon(['a', 'b', 's', 'w', 'z'], pRel, '', '.jpg')

107

Appendix B Recognition Code

207 lAlphabetSimilarPairs = Lexicon(['l', 'r', 'n', 'v', 'd', 'p'], pRel, '',

'.jpg')ãÑ

208 lAlphabetStatic = Lexicon(['a', 'b', 'c', 'd', 'e', 'f', 'g', 'i', 'k', 'l',

'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z'],

pRel, '', '.jpg') # omits dynamic signs: H, J

ãÑ

ãÑ

209 lShapesSimple = Lexicon(['animal', 'bad', 'closed', 'five', 'good'], pRel,

'', '.png')ãÑ

210

211 lLexicon = lShapesSimple #! USER CONFIG

212 nReplicates = 2 #! USER CONFIG

213 lsTrials = lLexicon.lsSigns * nReplicates

214 shuffle(lsTrials) # works on argument without return

215 lsTrialPaths = [lLexicon.dSignImages[sSign] for sSign in lsTrials]

216 logging.info(f'Lexicon: { lLexicon.lsSigns} ({ len(lLexicon.lsSigns)}

items.)')ãÑ

217 logging.info(f'Repeats per sign: { nReplicates}; { len(lsTrials)} total

trials, taking {len(lsTrials)*nSecondsPerTrial} s.')ãÑ

218 logging.info(f'Trial sequence: { lsTrials}')

219

220

221 # Check images are loading and we've got correct monitor

222 iMonitor = 0

223 if not setup_checker(lLexicon):

224 raise Exception('Setup not correct')

225

226

227 # Define size of window on target monitor

228 nWindowScale = 0.9 #! USER CONFIG

229 nWindowWidth = int(get_monitors()[iMonitor].width * nWindowScale)

230 nWindowHeight = int(get_monitors()[iMonitor].height * nWindowScale)

231 anBlackRect = np.zeros((nWindowHeight, nWindowWidth, 3), np.uint8)

232

233 # Wait until ready to begin...

234 show_placeholder_until_ready()

235

236

237 # Start the trials!

108

B.1 Teleprompter script

238 dtSessionStart = datetime.now()

239 bEarlyExitByKeypress = False

240 for iTrial, sSign in enumerate(lsTrials):

241 dtTrialStart = datetime.now()

242 logging.info(f"Starting trial { iTrial + 1}/{ len(lsTrials)}: '{ sSign}'

at { dtTrialStart.strftime('%H:%M:%S')}")ãÑ

243

244 anImage = cv2.imread(lLexicon.dSignImages[sSign])

245 anImage = resize_image_maintain_aspect(anImage, (nWindowWidth,

nWindowHeight))ãÑ

246

247 # Establish window on correct monitor once per image

248 tdUntilEstimatedCompletion = timedelta(seconds=(nSecondsPerTrial * (len(

lsTrials) - iTrial)))ãÑ

249 dtEstimatedCompletion = dtTrialStart + tdUntilEstimatedCompletion

250 sWindowName = f"Trial { iTrial + 1}/{ len(lsTrials)} ({ int((iTrial +1)

/ len(lsTrials) * 100)} %), {tdUntilEstimatedCompletion} remaining:

estimated completion at {dtEstimatedCompletion.strftime('%H:%M:%S')}

(currently {datetime.now().strftime('%H:%M:%S')}). Press 'Esc' to break

prematurely."

ãÑ

ãÑ

ãÑ

ãÑ

251 cv2.destroyAllWindows() # in case they linger

252 cv2.imshow(sWindowName, anImage)

253 centre_window_on_monitor()

254

255 # Countdown overlay for this trial

256 for iStep in range(nStepsPerCircle + 1):

257 anSector = clock_sector(iStep * nDegreesPerStep, (nWindowWidth,

nWindowHeight))ãÑ

258 nPressedKey = show_image(combine_images(anSector, anImage),

nMilliSecondsPerStep)ãÑ

259 if DUtils.keypress_matches(nPressedKey, 'escape'):

260 bEarlyExitByKeypress = True

261 break

262 if bEarlyExitByKeypress:

263 break

264

265 dtCountdownEnd = datetime.now()

109

Appendix B Recognition Code

266 tdCountdownTook = dtCountdownEnd - dtTrialStart

267 tdNextTrialStart = dtTrialStart + timedelta(seconds = nSecondsPerTrial) -

dtCountdownEndãÑ

268 logging.info(f'Countdown completed in { tdCountdownTook}, next trial starts

in { NextTrialStart}')ãÑ

269 # logging.debug(f'Start: {fTrialStartTime}')

270 # logging.debug(f'Exit: {fTrialEndTime}')

271 # logging.debug(f'Cycle: {nTrialPeriodSeconds}')

272 # logging.debug(f'Actual: {fTrialEndTime - fTrialStartTime}')

273 # logging.debug(f'Next: {fTrialStartTime + nTrialPeriodSeconds}')

274 # logging.debug(f'Remaining: {fTimeUntilNextTrial}')

275

276 if tdNextTrialStart.total_seconds() < 0:

277 raise Exception('Countdown time exceeded trial time!')

278

279 nPressedKey = show_image(anBlackRect, int(

tdNextTrialStart.total_seconds()) * nMilliSecondsPerSecond)ãÑ

280 if DUtils.keypress_matches(nPressedKey, 'escape'):

281 bEarlyExitByKeypress = True

282 break

283

284 # Destroy this trial's window (not sure if necessary!)

285 cv2.destroyAllWindows

286

287 dtSessionEnd = datetime.now()

288

289 if bEarlyExitByKeypress:

290 logging.info(f'Exited prematurely on trial { iTrial + 1}/{ len(lsTrials)}

at { dtSessionEnd}.')ãÑ

291 else:

292 logging.info(f'Session complete at { dtSessionEnd}.')

293 logging.info(f'Session took { dtSessionEnd - dtSessionStart} at { (

dtSessionEnd - dtSessionStart).total_seconds / len(lsTrials)} seconds

per trial.')

ãÑ

ãÑ

294 print(lsTrials)

295

296 cv2.destroyAllWindows()

110

B.1 Teleprompter script

Listing B.1: prompter.py: Python 3 script written to provide randomised visual que
from pool of lexemes at regular time intervals, recording timing and label
information to a log file.

111

Appendix B Recognition Code

B.2 Kinect Recording script

1 %% Record Kinect Colour, Depth and Skeleton data

2

3

4 %% Session Parameters

5

6 sDirOut = "D:/KinectRecordings/";

7 nSamplesPerSecond = 2;

8 nSigns = 5;

9 nReplicates = 20;

10 nTrials = nSigns * nReplicates;

11 nSecondsPerTrial = seconds(5);

12 dBreathingRoom = seconds(5);

13 dSession = nSecondsPerTrial * nTrials + dBreathingRoom;

14

15 %% Preparation

16

17 % Create and init Kinect 2 object

18 if exist('oKin2', 'var'), oKin2.delete; end

19 oKin2 = Kin2('color','depth','body');

20

21 % User control keys

22 cKeyEsc = char(27);

23 cExitKey = cKeyEsc;

24 cKeyEnter = char(13);

25 cAcknKey = cKeyEnter;

26

27 sInputPrompt = "When you are ready, start recording by making a " + ...

28 "fist with your right hand, or press 'Exit' to cancel";

29 disp(sInputPrompt)

30 cPressedKey = '';

31

32 %% Create figures

33 % [...if only MATLAB had classes...]

34

35 % Depth

112

B.2 Kinect Recording script

36 uD.sName = "Depth Source";

37 uD.nWidth = oKin2.cDepthWidth;

38 uD.nHeight = oKin2.cDepthHeight;

39 uD.nUpperLimit = 4000;

40 uD.nLowerLimit = 255 / uD.nUpperLimit;

41 uD.sBitDepth = "uint16";

42 uD.anImage = zeros(uD.nHeight, uD.nWidth, uD.sBitDepth);

43 uD.oFigure = figure('Name', uD.sName + ": " + sInputPrompt, ...

44 'NumberTitle', 'off');

45 uD.axes = axes;

46 uD.show = imshow(uD.anImage);

47 % Listen to keypress in this figure

48 set(gcf, 'keypress', 'cPressedKey = get(gcf, ''currentchar'');');

49

50 % Colour

51 uC.sName = "Colour Source";

52 uC.nWidth = oKin2.cColorWidth;

53 uC.nHeight = oKin2.cColorHeight;

54 uC.nChannels = 3; % RGB

55 uC.sBitDepth = "uint8";

56 uC.anImage = zeros(uC.nHeight, uC.nWidth, uC.nChannels, uC.sBitDepth);

57 uC.oFigure = figure('Name', uC.sName + ": " + sInputPrompt, ...

58 'NumberTitle', 'off');

59 uC.axes = axes;

60 uC.show = imshow(uC.anImage);

61 % Listen to keypress in this figure

62 set(gcf, 'keypress', 'cPressedKey = get(gcf, ''currentchar'');');

63

64 %% Get system warm and wait for user...

65

66 % Calculate session parameters and pre-allocate output struct array

67 dSample = seconds(1 / nSamplesPerSecond);

68 nSamples = round(nSamplesPerSecond * seconds(dSession));

69 ruOut = struct(...

70 'nTimestamp', cell(1, nSamples), ...

71 'dCpuTime', cell(1, nSamples), ...

72 'anD', cell(1, nSamples), ...

113

Appendix B Recognition Code

73 'anC', cell(1, nSamples), ...

74 'uBody', cell(1, nSamples));

75

76 lUserWantsToCancel = false;

77 i = 0;

78 while true

79 i = i + 1;

80

81 % Check for input

82 if ~isempty(cPressedKey)

83 disp("Pressed: " + cPressedKey)

84 if cPressedKey == cExitKey

85 disp("Exiting")

86 lUserWantsToCancel = true;

87 break;

88 elseif cPressedKey == cAcknKey

89 disp("Moving on")

90 break

91 else

92 cPressedKey = ''; % reset mis-press

93 end

94 end

95

96 % Get sensor data

97 nValidData = oKin2.updateData;

98 if not(nValidData)

99 pause(0.02) % essential!

100 continue

101 end

102

103 % Update images

104 imshow(repmat(uint8(oKin2.getDepth * uD.nLowerLimit), [1 1 3]), ...

105 'Parent', uD.axes);

106 imshow(oKin2.getColor, 'Parent', uC.axes);

107

108 % Get & draw skeleton

109 [ruBodies, ~, ~] = oKin2.getBodies('Quat');

114

B.2 Kinect Recording script

110 if isempty(ruBodies), continue; end

111 oKin2.drawBodies(uD.axes, ruBodies, 'depth', 5, 3, 15);

112 oKin2.drawBodies(uC.axes, ruBodies, 'color', 10, 6, 30);

113

114 % Continue by gesture

115 if ruBodies(1).RightHandState == 3

116 disp("Right-hand fist detected, moving on")

117 break

118 end

119

120 end

121 close all

122 if lUserWantsToCancel

123 disp("Session cancelled")

124 oKin2.delete

125 return

126 end

127

128 %% Run recording

129 cPressedKey = '';

130 tSessionStart = tic;

131 for iSample = 1 : round(nSamples)

132

133 dSampleStart = seconds(cputime);

134

135 % Allow user to break out early

136 if ~isempty(cPressedKey)

137 disp("Pressed: " + cPressedKey)

138 if strcmp(cPressedKey, cExitKey)

139 break;

140 else

141 cPressedKey = ''; % reset mis-press

142 end

143 end

144

145 % I will have data!

146 nValidData = oKin2.updateData;

115

Appendix B Recognition Code

147 [cuBodies, ~, nTimestamp] = oKin2.getBodies('Quat');

148 dSampleTime = seconds(cputime);

149 lTimedOut = false;

150 iAttempt = 1;

151 while(not(nValidData) || isempty(cuBodies))

152 iAttempt = iAttempt + 1;

153 pause(0.02) % essential!

154 nValidData = oKin2.updateData;

155 [cuBodies, ~, nTimestamp] = oKin2.getBodies('Quat');

156 dSampleTime = seconds(cputime);

157 if dSampleTime - dSampleStart >= dSample

158 lTimedOut = true;

159 break

160 end

161 end

162 if lTimedOut, continue; end

163

164 ruOut(iSample).dCpuTime = dSampleTime; % duration

165 ruOut(iSample).nTimestamp = nTimestamp; % seconds * 1E7

166 ruOut(iSample).anD = oKin2.getDepth; % uint16

167 ruOut(iSample).anC = oKin2.getColor; % uint8

168 ruOut(iSample).uBody = cuBodies(1); % body struct

169

170 pause(seconds(dSample + dSampleStart) - cputime)

171

172 end

173 disp("Session complete.")

174 toc(tSessionStart)

175

176 sTimeStamp = strcat(datestr(now, "yyyymmmdd"), datestr(now, "dddHH"), ...

177 'h' , datestr(now, "MM"));

178

179 sOutputFile = fullfile(sDirOut, strcat(sTimeStamp, "_Recording.mat"));

180 save(sOutputFile, 'ruOut', '-v7.3')

181 disp("Saved to " + sOutputFile)

182

183 %% Get map for current session (should be the same every time, but hey)

116

B.2 Kinect Recording script

184

185 % Map from pixel (x, y) in depth frame to pixel (x, y) in colour frame

186 aiD2C = zeros(oKin2.cDepthWidth, oKin2.cDepthHeight, 2);

187 for iX = 1 : oKin2.cDepthWidth

188 for iY = 1 : oKin2.cDepthHeight

189 aiD2C(iX, iY, :) = oKin2.mapDepthPoints2Color([iX iY]);

190 end

191 end

192

193 % Map from pixel (x, y) in colour frame to pixel (x, y) in depth frame

194 aiC2D = nan(oKin2.cColorWidth, oKin2.cColorHeight, 2);

195 for iXD = 1 : oKin2.cDepthWidth

196 for iYD = 1 : oKin2.cDepthHeight

197 riC = reshape(aiD2C(iXD, iYD, :), 1, 2);

198 iXC = riC(1);

199 iYC = riC(2);

200 if iXC == 0 || iYC == 0 || ...

201 iXC > oKin2.cColorWidth || iYC > oKin2.cColorHeight

202 continue

203 end

204 aiD = cat(3, repmat(iXD, 3), repmat(iYD, 3));

205 aiC2D(iXC : iXC + 2, iYC : iYC + 2, :) = aiD;

206 end

207 end

208

209 save(fullfile(sDirOut, strcat(sTimeStamp, "_aiC2D.mat")), 'aiC2D')

210 save(fullfile(sDirOut, strcat(sTimeStamp, "_aiD2C.mat")), 'aiD2C')

211

212 %% Wrap up

213

214 oKin2.delete;

215 close all

Listing B.2: KinectRecorder.m: MATLAB script written to record depth frames, colour
frames and body data from Microsoft Kinect 2.0.

117

Appendix B Recognition Code

B.3 Temporal Segmentation

1 classdef SelectFramesFromRecordings_mlapp < matlab.apps.AppBase

2

3 % Properties that correspond to app components

4 properties (Access = public)

5 UIFigure matlab.ui.Figure

6 BrowseButton matlab.ui.control.Button

7 UIAxes matlab.ui.control.UIAxes

8 SelectButton matlab.ui.control.Button

9 NextButton matlab.ui.control.Button

10 PreviousButton matlab.ui.control.Button

11 ReplaceButton matlab.ui.control.Button

12 LabelStatus matlab.ui.control.Label

13 LabelFile matlab.ui.control.Label

14 end

15

16

17 properties (Access = private)

18 sFile % Input file

19 sPath % File path

20 ruRec % Loaded recording

21 ruSln = nan; % Selected recordings, nan because isempty(struct()) = 0

22 % oKin2 = Kin2();

23 iSample = 0; % Sample iterator

24 anImage % Buffered image

25 uBody % Buffered body

26 end

27

28 methods (Access = private)

29

30 function LoadAndDisplay(app)

31 LoadFile(app)

32 DisplayNextFrame(app)

33 end

34

35 function LoadFile(app)

118

B.3 Temporal Segmentation

36 uLoaded = load(fullfile(app.sPath, app.sFile)); % always gives a

1x1 struct of var...ãÑ

37 app.ruRec = uLoaded.cuOut; % so peel off outer layer to target row

of structs.ãÑ

38 UpdateFileText(app)

39 end

40

41 function UpdateFileText(app)

42 SetFileText(app, "File: " + app.sFile);

43 end

44

45 function SetFileText(app, sFile)

46 app.LabelFile.Text = sFile;

47 end

48

49 function BufferNextFrame(app)

50 if app.iSample >= numel(app.ruRec), return; end

51 app.iSample = app.iSample + 1;

52 BufferFrame(app);

53 end

54

55 function BufferLastFrame(app)

56 if app.iSample <= 1, return; end

57 app.iSample = app.iSample - 1;

58 BufferFrame(app);

59 end

60

61 function BufferFrame(app)

62 app.anImage = app.ruRec(app.iSample).anC;

63 app.uBody = app.ruRec(app.iSample).uBody;

64 end

65

66 function DisplayBufferedFrame(app)

67 imshow(app.anImage, 'Parent', app.UIAxes);

68 % app.oKin2.drawBodies(app.UIAxes, app.uBody, 'color', 10, 6,

30);ãÑ

69 UpdateStatus(app)

119

Appendix B Recognition Code

70 end

71

72 function DisplayNextFrame(app)

73 BufferNextFrame(app)

74 DisplayBufferedFrame(app)

75 end

76

77 function DisplayLastFrame(app)

78 BufferLastFrame(app)

79 DisplayBufferedFrame(app)

80 end

81

82 function SelectCurrentFrame(app)

83 SelectFrame(app)

84 end

85

86 function ReplacePreviousFrame(app)

87 if isstruct(app.ruSln)

88 if numel(app.ruSln) > 1

89 app.ruSln = app.ruSln(1 : end - 1);

90 else

91 app.ruSln = nan;

92 end

93 end

94 SelectFrame(app)

95 end

96

97 function SelectFrame(app)

98 if ~isstruct(app.ruSln)

99 app.ruSln = app.ruRec(app.iSample);

100 else

101 app.ruSln(end + 1) = app.ruRec(app.iSample);

102 end

103 UpdateStatus(app)

104 end

105

106 function SetStatusText(app, sStatus)

120

B.3 Temporal Segmentation

107 app.LabelStatus.Text = sStatus;

108 end

109

110 function UpdateStatus(app)

111 if ~isstruct(app.ruSln)

112 nSelected = 0;

113 else

114 nSelected = numel(app.ruSln);

115 end

116

117 SetStatusText(app, "Sample " + app.iSample + '/' + numel(

app.ruRec) + ", " + nSelected + " selected. Use buttons below

to select one sample per sign.");

ãÑ

ãÑ

118 end

119 end

120

121

122 % Callbacks that handle component events

123 methods (Access = private)

124

125 % Code that executes after component creation

126 function startupFcn(app)

127 SetStatusText(app, "Press 'Browse' to select input file.");

128 end

129

130 % Button pushed function: NextButton

131 function NextButtonPushed(app, event)

132 DisplayNextFrame(app)

133 end

134

135 % Button pushed function: BrowseButton

136 function BrowseButtonPushed(app, event)

137 [app.sFile, app.sPath] = uigetfile("*.mat");

138 LoadAndDisplay(app);

139 end

140

141 % Button pushed function: PreviousButton

121

Appendix B Recognition Code

142 function PreviousButtonPushed(app, event)

143 DisplayLastFrame(app)

144 end

145

146 % Button pushed function: SelectButton

147 function SelectButtonPushed(app, event)

148 SelectCurrentFrame(app)

149 end

150

151 % Button pushed function: ReplaceButton

152 function ReplaceButtonPushed(app, event)

153 ReplacePreviousFrame(app)

154 end

155

156 % Close request function: UIFigure

157 function UIFigureCloseRequest(app, event)

158 if isstruct(app.ruSln)

159 ruSln = app.ruSln; %#ok<ADPROPLC>

160 save(fullfile(app.sPath, app.sFile + "_selectedFrames.mat"),

...ãÑ

161 "ruSln", "-mat");

162 end

163 delete(app)

164 end

165 end

166

167 % Component initialization

168 methods (Access = private)

169

170 % Create UIFigure and components

171 function createComponents(app)

172

173 % Create UIFigure and hide until all components are created

174 app.UIFigure = uifigure('Visible', 'off');

175 app.UIFigure.Position = [100 100 1280 760];

176 app.UIFigure.Name = 'UI Figure';

122

B.3 Temporal Segmentation

177 app.UIFigure.CloseRequestFcn = createCallbackFcn(app,

@UIFigureCloseRequest, true);ãÑ

178

179 % Create BrowseButton

180 app.BrowseButton = uibutton(app.UIFigure, 'push');

181 app.BrowseButton.ButtonPushedFcn = createCallbackFcn(app,

@BrowseButtonPushed, true);ãÑ

182 app.BrowseButton.Position = [261 729 100 22];

183 app.BrowseButton.Text = 'Browse';

184

185 % Create UIAxes

186 app.UIAxes = uiaxes(app.UIFigure);

187 title(app.UIAxes, '')

188 xlabel(app.UIAxes, '')

189 ylabel(app.UIAxes, '')

190 app.UIAxes.Position = [11 41 1260 680];

191

192 % Create SelectButton

193 app.SelectButton = uibutton(app.UIFigure, 'push');

194 app.SelectButton.ButtonPushedFcn = createCallbackFcn(app,

@SelectButtonPushed, true);ãÑ

195 app.SelectButton.Position = [701 9 100 22];

196 app.SelectButton.Text = 'Select';

197

198 % Create NextButton

199 app.NextButton = uibutton(app.UIFigure, 'push');

200 app.NextButton.ButtonPushedFcn = createCallbackFcn(app,

@NextButtonPushed, true);ãÑ

201 app.NextButton.Position = [841 9 100 22];

202 app.NextButton.Text = 'Next';

203

204 % Create PreviousButton

205 app.PreviousButton = uibutton(app.UIFigure, 'push');

206 app.PreviousButton.ButtonPushedFcn = createCallbackFcn(app,

@PreviousButtonPushed, true);ãÑ

207 app.PreviousButton.Position = [361 9 100 22];

208 app.PreviousButton.Text = 'Previous';

123

Appendix B Recognition Code

209

210 % Create ReplaceButton

211 app.ReplaceButton = uibutton(app.UIFigure, 'push');

212 app.ReplaceButton.ButtonPushedFcn = createCallbackFcn(app,

@ReplaceButtonPushed, true);ãÑ

213 app.ReplaceButton.Position = [501 9 100 22];

214 app.ReplaceButton.Text = 'Replace';

215

216 % Create LabelStatus

217 app.LabelStatus = uilabel(app.UIFigure);

218 app.LabelStatus.Position = [381 729 890 22];

219 app.LabelStatus.Text = 'LabelStatus';

220

221 % Create LabelFile

222 app.LabelFile = uilabel(app.UIFigure);

223 app.LabelFile.Position = [21 729 220 22];

224 app.LabelFile.Text = 'LabelFile';

225

226 % Show the figure after all components are created

227 app.UIFigure.Visible = 'on';

228 end

229 end

230

231 % App creation and deletion

232 methods (Access = public)

233

234 % Construct app

235 function app = ExtractFrames_mlapp

236

237 % Create UIFigure and components

238 createComponents(app)

239

240 % Register the app with App Designer

241 registerApp(app, app.UIFigure)

242

243 % Execute the startup function

244 runStartupFcn(app, @startupFcn)

124

B.3 Temporal Segmentation

245

246 if nargout == 0

247 clear app

248 end

249 end

250

251 % Code that executes before app deletion

252 function delete(app)

253

254 % Delete UIFigure when app is deleted

255 delete(app.UIFigure)

256 end

257 end

258 end

Listing B.3: SelectFramesFromRecordings.mlapp: MATLAB ‘App’ GUI to manually
select one representative frame per sign.

125

Appendix B Recognition Code

B.4 Spatial Segmentation and Feature Extraction

1 %% Specify recording set

2

3 % Validation 1: 5 signs 10 replicates

4 sFileDir = "D:/KinectRecordings/";

5 sInputFileName = "2019Sep17Tue20h28_Recording.mat_selectedFrames.mat";

6 rsLabels = ["bad", "closed", "good", "animal", "bad", "five", "five", ...

7 "bad", "animal", "five", "animal", "good", "good", "closed", ...

8 "five", "five", "animal", "good", "closed", "good", "good", ...

9 "animal", "closed", "bad", "five", "animal", "bad", "animal", ...

10 "bad", "animal", "good", "good", "bad", "bad", "closed", "five", ...

11 "bad", "animal", "closed", "bad", "closed", "animal", "five", ...

12 "closed", "five", "good", "good", "five", "closed", "closed"];

13 sMapFileName = "2019Sep17Tue20h28_aiC2D.mat";

14

15 % % Validation 2: 5 signs 20 replicates

16 % sFileDir = "D:/KinectRecordings/";

17 % sInputFileName = "2019Sep21Sat16h07_Recording.mat_selectedFrames.mat";

18 % rsLabels = ["closed", "animal", "five", "bad", "animal", "good", ...

19 % "closed", "five", "five", "five", "animal", "five", "good", "bad", ...

20 % "good", "closed", "bad", "bad", "five", "good", "five", "good", ...

21 % "five", "bad", "animal", "good", "bad", "closed", "five", "closed", ...

22 % "good", "five", "good", "five", "bad", "bad", "five", "animal", ...

23 % "good", "five", "animal", "closed", "good", "good", "good", "bad", ...

24 % "closed", "animal", "closed", "closed", "bad", "closed", "bad", ...

25 % "good", "closed", "bad", "animal", "good", "good", "closed", ...

26 % "animal", "closed", "bad", "closed", "closed", "five", "animal", ...

27 % "closed", "good", "closed", "bad", "bad", "good", "closed", "bad", ...

28 % "animal", "closed", "animal", "animal", "five", "animal", "good", ...

29 % "animal", "five", "good", "five", "closed", "animal", "animal", ...

30 % "bad", "animal", "bad", "bad", "good", "five", "animal", "animal", ...

31 % "five", "five", "bad"];

32 % rsLabels = [rsLabels(2 : end) rsLabels(1)];

33 % sMapFileName = "2019Sep21Sat16h07_aiC2D.mat";

34

35 %% Groundwork

126

B.4 Spatial Segmentation and Feature Extraction

36

37 iRoiDiamPx = 200;

38 iMaxHandDepthMm = 120;

39 nSamples = numel(rsLabels);

40 U16toU8 = @(aiImg16) uint8(255 * double(aiImg16) / 65535);

41

42 %% Region-of-Interest Images

43 % Load selected-frame data file from disk and

44 % get region-of-interest images for colour, depth and the binary image

45

46 [rcanCRoi, rcanDRoi, rcalBRoi] = RoiImagesromSelection(...

47 LoadDataFromDiskAndVerify(...

48 fullfile(sFileDir, sInputFileName), nSamples), ...

49 ValidatedLoad(fullfile(sFileDir, sMapFileName), 'aiC2D', 'strict'), ...

50 iRoiDiamPx, iMaxHandDepthMm);

51

52 %% Verify Selection and Labelling

53 % Basic imshow/Figure based GUI for manual verification

54

55 VerifySelectionAndLabelling(rcanCRoi, rsLabels);

56

57 %% Extract features!

58

59 ruFeats = arrayfun(@(iSample) ExtractFeaturesFromRoiImages(iSample, ...

60 rcanCRoi{ iSample}, U16toU8(rcanDRoi{ iSample}), rcalBRoi{ iSample}), ...

61 1 : nSamples);

62

63 %% Save features to disk

64

65 save(fullfile(sFileDir, sInputFileName + "_extractedFeatures.mat"), ...

66 'ruFeats');

Listing B.4: ProcessRecordings.m: MATLAB script to automate processing of selected
frames of Microsoft Kinect 2.0 data.

127

Appendix B Recognition Code

1 function [rcanCRoi, rcanDRoi, rcalBRoi] = RoiImagesFromSelectedFrames(...

2 ruData, aiC2D, iRoiDiamPx, iMaxHandDepthMm)

3 % Spatially segments square about non-dominant hand from Kinect data files.

4 % *** Requires physically-connected Kinect! ***

5 % Arguments:

6 % ruData : lexeme-indexed row of struct, each of which contains:

7 % * a colour frame

8 % * a depth frame

9 % * body data

10 % aiC2D : colour-frame-width x colour-frame-height x coordinate-pair

11 % array of integers that map pixels locations in colour frame to

12 % the location of the corresponding pixel in depth frame.

13 % iRoiDiamPx : diameter of the square region-of-interest surrounding

14 % the hand. Units = px.

15 % [default = 200]

16 % iMaxHandDepthMm : maximum distance farther than the distance of the hand

17 % joint to include in the binary image. Units = mm.

18 % [default = 200]

19 %

20 % Returns:

21 % rcanCRoi : lexeme-indexed row of cells containing colour ROI as

22 % iRoiDiamPx-by-iRoiDiamPx-by-3 channel array of uint8.

23 % rcanDRoi : lexeme-indexed row of cells containing depth ROI as

24 % iRoiDiamPx-by-iRoiDiamPx array of uint16.

25 % rcalBRoi : lexeme-indexed row of cells containing binary image (mask) as

26 % iRoiDiamPx-by-iRoiDiamPx array of logicals.

27 %

28 % Note: the ROI is centred about the hand joint horizontally but

29 % translated vertically up from the hand joint by 20 % of iRoiDiamPx.

30

31 % Parse optional arguments & provide default values as required

32 if nargin > 4

33 error("GetRoiAndMaskFromRecording:TooManyInputs", ...

34 "Takes at most 3 arguments.");

35 end

128

B.4 Spatial Segmentation and Feature Extraction

36 if nargin < 4, iMaxHandDepthMm = 200; end

37 if nargin < 3, iRoiDiamPx = 200; end

38 if nargin < 2, load aiC2D.mat aiC2D; end

39

40 % Ensure we have the correct data type

41 iMaxHandDepthMm = cast(iMaxHandDepthMm, 'uint16');

42 iRoiDiamPx = cast(iRoiDiamPx, 'uint16');

43 aiC2D = cast(aiC2D, 'uint16');

44

45 % Calculate region of interest (ROI) offests (left & down from hand pixel)

46 iRoiXOffset = idivide(iRoiDiamPx, 2);

47 iRoiYOffset = 2 * idivide(iRoiDiamPx, 3); % only down 1/3

48

49 % Initialise Kinect and ensure it's ready

50 oKin2 = Kin2('color','depth','body'); % theoretically just need methods,

51 while true % but need to be sure it works...

52 % Get sensor data

53 nValidData = oKin2.updateData;

54 if (nValidData)

55 break

56 end

57 pause(0.02) % essential

58 end

59

60 %% Segment!

61 nSamples = numel(ruData);

62 rcanCRoi = cell(1, nSamples);

63 rcanDRoi = cell(1, nSamples);

64 rcalBRoi = cell(1, nSamples);

65 for iSample = 1 : nSamples

66

67 % Localise data from input struct

68 anC = ruData(iSample).anC;

69 anD = ruData(iSample).anD;

70 uBody = ruData(iSample).uBody;

71

72 % Find hand, use to define region of interest (ROI)

129

Appendix B Recognition Code

73 % * Requires real connected Kinect!

74 anPos3D = uBody.Position';

75 aiPosC = oKin2.mapCameraPoints2Color(anPos3D);

76 riHandC = aiPosC(oKin2.JointType_HandLeft, :);

77 assert(min(riHandC) > 0, "Kinect not properly initialised.")

78 iXHandC = riHandC(1);

79 iYHandC = riHandC(2);

80 try

81 iRoiW = iRoiDiamPx;

82 iRoiH = iRoiW;

83 iRoiX = iXHandC - iRoiXOffset;

84 iRoiY = iYHandC - iRoiYOffset;

85 catch

86 disp("i=" + iSample + " XHC=" + iXHandC + ...

87 " YHC=" + iYHandC)

88 end

89 % Crop colour image to ROI

90 rcanCRoi{ iSample} = imcrop(anC, [iRoiX iRoiY iRoiW iRoiH]);

91

92 % Use map to register colour ROI with depth ROI

93 aiDRoi = aiC2D(iRoiX : iRoiX + iRoiW, iRoiY : iRoiY + iRoiH, :);

94 % Get depth value at those depth pixels

95 anDRoi = zeros(201, 201, 'uint16');

96 for iX = 1 : 201

97 for iY = 1 : 201

98 riM = reshape(aiDRoi(iX, iY, :), 1, 2);

99 iXHandD = riM(1);

100 iYHandD = riM(2);

101 if iXHandD <= 0 || iXHandD > oKin2.cDepthWidth || ...

102 iYHandD <= 0 || iYHandD > oKin2.cDepthHeight

103 continue

104 end

105 anDRoi(iY, iX) = anD(iYHandD, iXHandD);

106 end

107 end

108 rcanDRoi{ iSample} = anDRoi;

109

130

B.4 Spatial Segmentation and Feature Extraction

110 % Create binary image using depth value at hand 'joint'

111 riHandD = aiC2D(iXHandC, iYHandC, :);

112 iXHandD = riHandD(1);

113 iYHandD = riHandD(2);

114

115 try

116 nDepthAtHand = anD(iYHandD, iXHandD);

117 catch

118 error("i=" + iSample + ...

119 " XHC=" + iXHandC + " YHC=" + iYHandC + ...

120 " XHD=" + iXHandD + " YHD=" + iYHandD);

121 end

122

123 alBRoi = anDRoi <= nDepthAtHand + iMaxHandDepthMm & ...

124 anDRoi ~= 0;

125 alBRoi = imfill(alBRoi, 'holes');

126 [naMaskWithLabelledRegions, nRegions] = bwlabel(alBRoi);

127 if nRegions > 1 % hope like crazy first region is hand...

128 alBRoi = naMaskWithLabelledRegions == 1;

129 end

130 [~, nRegions] = bwlabel(alBRoi);

131 if nRegions < 1

132 warning("No regions in mask for sample %d", iSample);

133 end

134 rcalBRoi{ iSample} = alBRoi;

135

136 end

137

138 oKin2.delete

139

140 end

Listing B.5: RoiImagesFromSelectedFrames.m: MATLAB function to spatially seg-
ment frames into ROI for colour and depth and produce a binary image
(or ‘mask’) of the hand.

131

Appendix B Recognition Code

1 function VerifySelectionAndLabelling(rcanImages, rsLabels)

2 % Function for manual validation that selected frames match the labels.

3 %

4 % Arguments:

5 % rcanImages : row of cell containing images.

6 % rsLabels : row of strings containing labels.

7

8 if numel(rcanImages) ~= numel(rsLabels)

9 error("Number of elements do not match!")

10 end

11

12 riMismatches = [];

13 for i = 1 : numel(rcanImages)

14 oFig = figure(...

15 'Name', "Press 'c' for match, 'm' for mismatch, or 'q' to quit", ...

16 'NumberTitle', 'off');

17 imshow(rcanImages{ i});

18 title(strcat(num2str(i), ": ", rsLabels(i)));

19 waitfor(oFig, 'CurrentCharacter')

20 if strcmp(oFig.CurrentCharacter, 'q')

21 break

22 elseif strcmp(oFig.CurrentCharacter, 'm')

23 riMismatches = [riMismatches i]; %#ok<AGROW>

24 end

25 % close gcf

26 end

27 end

Listing B.6: VerifySelectionAndLabelling.m: MATLAB function for manual visual
verification that selected images and labels match.

132

B.4 Spatial Segmentation and Feature Extraction

1 function uFeats = ExtractFeaturesFromRoiImages(...

2 iSample, anCRoi, anDRoi, alBRoi)

3 % Extracts numerical features for classification.

4 %

5 % Arguments:

6 % iSample : integer, serial number of the current sample; only used

7 % for diagnostic purposes.

8 % anCRoi : square array by 3-channel (RGB) of uint8: the colour

9 % region-of-interest.

10 % anDRoi : square array of uint16: the depth region-of-interest.

11 % alBRoi : square array of logical values: mask of the hand within the

12 % region-of-interest.

13 %

14 % Returns:

15 % uFeats : struct containing one field per feature;

16 % * feature values are single or columns

17

18 %% Geometric Features

19 % Using the binary mask of the hand.

20

21 uMaskProps = regionprops(alBRoi, ...

22 { 'Area', 'ConvexArea', 'FilledArea', 'Perimeter'});

23 % We may get multiple prop structs (if there are multiple regions in image)

24 % so check and only take first row -- hope it's the hand!

25 if numel(uMaskProps) > 1

26 warning('ExtractFeaturesFromHandRoi:multipleRegions', ...

27 '%s detected multiple regions (%i) in sample %i.', ...

28 mfilename, numel(uMaskProps), iSample)

29 uMaskProps = uMaskProps(1);

30 end

31

32 uFeats.nAreaPerConvexArea = uMaskProps.Area / uMaskProps.ConvexArea;

33 uFeats.nAreaPerFilledArea = uMaskProps.Area / uMaskProps.FilledArea;

34 uFeats.nPerimeterPerArea = uMaskProps.Perimeter / uMaskProps.Area;

35 uFeats.nPerimeterPerConvexArea = uMaskProps.Perimeter / uMaskProps.ConvexArea;

133

Appendix B Recognition Code

36 uFeats.nPerimeterPerFilledArea = uMaskProps.Perimeter / uMaskProps.FilledArea;

37

38 %% CV Features

39 % Functions from MATLAB Computer Vision Toolbox

40

41 % HoOG works on RGB (3D array)

42 uFeats.rnHoogC = extractHOGFeatures(anCRoi, 'CellSize', [4 4]);

43

44 % Others only work on single-channel (2D) input

45 % First prepare and label the images and the functions

46 rsImages = ["Red", "Green", "Blue", "Grey", "Depth", "DepthHistEq"];

47 rcanImages = { anCRoi(:, :, 1), anCRoi(:, :, 2), anCRoi(:, :, 3), ...

48 rgb2gray(anCRoi), anDRoi, histeq(anDRoi)};

49 rsFunctions = ["HoOG", "SURF", "MSER", "KAZE", "BRISK", "ORB"];

50 rcFunctions = { @(naImg) extractHOGFeatures(naImg, 'CellSize', [4 4]), ...

51 @(naImg) reshape(extractFeatures(naImg, detectSURFFeatures(

naImg)), 1, []), ...ãÑ

52 @(naImg) reshape(extractFeatures(naImg, detectMSERFeatures(

naImg)), 1, []), ...ãÑ

53 @(naImg) reshape(extractFeatures(naImg, detectKAZEFeatures(

naImg)), 1, []), ...ãÑ

54 @(naImg) reshape(getfield(extractFeatures(naImg,

detectBRISKFeatures(naImg)), 'Features'), 1, []), ...ãÑ

55 @(naImg) reshape(getfield(extractFeatures(naImg,

detectORBFeatures(naImg, 'NumLevels', 5)), 'Features'), 1, [])};ãÑ

56 % Then actually extract the features, stored in dynamically-named fields

57 for iImage = 1 : numel(rsImages)

58 naImage = rcanImages{ iImage};

59 for iFunction = 1 : numel(rsFunctions)

60 uFeats.("rn" + rsImages{ iImage} + rsFunctions{ iFunction}) = ...

61 rcFunctions{ iFunction}(naImage);

62 end

63 end

64

65 end

134

B.4 Spatial Segmentation and Feature Extraction

Listing B.7: ExtractFeaturesFromRoiImages.m: MATLAB function that extracts nu-
merical features for classification.

135

Appendix B Recognition Code

B.5 Feature Selection and Classification

1 %% Convert struct of features to 2D array, using PCA to select the components

2

3 % [coeff, score, latent] = pca(X):

4 % X : 'design matrix', n-by-p.

5 % : n (rows) = 'observations', 'number of samples observed' ==

"instances"ãÑ

6 % : p (cols) = 'variables', 'number of variables (features) measured' ==

"features"ãÑ

7 % coeff : principal component coefficients

8 % : features-by-components

9 % score : instances-by-components

10

11 nPcaComponents = 3;

12

13 % load variables

14 load ruFeats;

15 load riLabels;

16

17 % Remove empty fields

18 ccacFieldNames = fieldnames(ruFeats);

19 rlEmptyFields = any(cell2mat(arrayfun(@(iFeat) cellfun(@(sField)

isempty(ruFeats(iFeat).(sField)), ccacFieldNames), 1 : numel(ruFeats),

'UniformOutput', false))', 1);

ãÑ

ãÑ

20 ruFeats = cell2mat(arrayfun(@(iFeat) rmfield(ruFeats(iFeat),

ccacFieldNames(rlEmptyFields)), 1 : numel(ruFeats), 'UniformOutput',

false));

ãÑ

ãÑ

21 rsFieldNames = string(fieldnames(ruFeats)');

22

23 % Remove some fields

24 rsTermsToRemove = ["Red", "Green", "Blue"];

25 rlFieldsToRemove = any(cell2mat(arrayfun(@(sTerm) contains(rsFieldNames,

sTerm), rsTermsToRemove, 'UniformOutput', false)'), 1);ãÑ

26 ruFeats = cell2mat(arrayfun(@(iFeat) rmfield(ruFeats(iFeat),

rsFieldNames(rlFieldsToRemove)), 1 : numel(ruFeats), 'UniformOutput',

false));

ãÑ

ãÑ

136

B.5 Feature Selection and Classification

27 rsFieldNames = string(fieldnames(ruFeats)');

28

29 nFields = numel(rsFieldNames);

30 nInstances = numel(riLabels);

31

32 %% Collate features

33 rcrnMaximums = arrayfun(@(uFeat) structfun(@(Field) max(size(Field)),

uFeat), ruFeats, 'UniformOutput', false);ãÑ

34 anFxIMaximums = cell2mat(rcrnMaximums);

35 cnFMinimums = min(anFxIMaximums, [], 2);

36 nFeatures = sum(cnFMinimums == 1) + sum(cnFMinimums > 1) * nPcaComponents;

37 anFxICollated = zeros(nInstances, nFeatures);

38 rsFeatures = string(zeros(1, nFeatures));

39 fSliceField = @(Field, nMinimum) Field(1 : nMinimum);

40

41 iColStart = 1;

42 for iField = 1 : nFields

43 if cnFMinimums(iField) > 1

44 anFxI = cell2mat(arrayfun(@(iFeat) fSliceField(ruFeats(iFeat).(

rsFieldNames{ iField}), cnFMinimums(iField)), 1 : numel(

ruFeats), 'UniformOutput', false)');

ãÑ

ãÑ

45 [~, anFxI, ~] = pca(double(anFxI), 'NumComponents',

nPcaComponents);ãÑ

46 iColEnd = iColStart + nPcaComponents - 1;

47 rsF = strcat(repmat(rsFieldNames(iField) + "PcaComp", [1

nPcaComponents]) + (1 : nPcaComponents));ãÑ

48 else

49 anFxI = vertcat(ruFeats(:).(rsFieldNames{ iField}));

50 iColEnd = iColStart;

51 rsF = rsFieldNames{ iField};

52 end

53 % Append new features on the right

54 anFxICollated(:, iColStart : iColEnd) = anFxI;

55 rsFeatures(1, iColStart : iColEnd) = rsF;

56 iColStart = iColEnd + 1;

57 end

58

137

Appendix B Recognition Code

59 % transpose so the matrix conforms to 'design matrix' convention

60 % n (rows) are "observations" = instances = lexemes

61 % p (cols) are "variables" = features

62 anIxFCollated = anFxICollated';

63

64 %% save!

65 save rsFeatures

66 save anIxFCollated

Listing B.8: FeatureStructToArrayWithPca.m: MATLAB script that selects features
from the lexeme-indexed row of struct containing numerical features, using
PCA to reduce covariance.

138

B.5 Feature Selection and Classification

1 %% load the data

2 clear

3 load riLabels

4 load anIxFCollated

5

6 P = anIxFCollated;

7 T = full(ind2vec(riLabels));

8

9 %% preprocess the data

10

11 [mP, mSettings] = mapstd(removeconstantrows(P));

12

13 %% Principle Component Analysis

14

15 nComponents = 3;

16 [coeff, score, latent, tsquared, explained, mu] = pca(...

17 mP', 'NumComponents', nComponents);

18

19 %% choose a P

20

21 ptrain = score';

22

23 %% learn!

24 % out loop

25 nouter = 10;

26 for noi = 1:nouter % 10x

27

28 % get the partitions for 10-fold cross validation

29 CVO = cvpartition(vec2ind(T),'KFold',10);

30

31 fprintf('outer %d...\n', noi);

32

33 clear acc

34 for cvi = 1:CVO.NumTestSets

35

139

Appendix B Recognition Code

36 % create a new neural network without test data

37 % single hidden layer with 10 neurons

38 net = newff(ptrain(:,CVO.training(cvi)),T(:,CVO.training(cvi)),10);

39

40 % early stopping

41 % by validation (using 20 % of the not-held-out data)

42 net.divideParam.trainRatio = 0.8; % with 1.0 use everything for training

43 net.divideParam.valRatio = 0.2;

44 net.divideParam.testRatio = 0.0; % since doing kfold CV anyway...

45 % or by maximum training iterations

46 net.trainParam.epochs = 500; % when to stop

47 net.trainParam.showWindow = true;

48

49 % output transfer function

50 % Log-sigmoid maps all values to between 0 and 1

51 net.layers{2}.transferFcn = 'logsig';

52

53 % train the network with data from this fold

54 % uses default trainlm algorithm ("Levenberg-Marquardt backpropagation")

55 [net,tr{noi}(cvi)] =

train(net,ptrain(:,CVO.training(cvi)),T(:,CVO.training(cvi)));ãÑ

56

57 % test network with the held out fold data

58 out = net(ptrain(:,CVO.test(cvi)));

59 cm{noi}(:,:,cvi) = compet(out) * T(:,CVO.test(cvi))';

60

61 acc(cvi) = sum(diag(cm{noi}(:,:,cvi))/sum(sum(cm{noi}(:,:,cvi))));

62

63 fprintf('\tcv %d, acc = %0.2f\n', cvi, acc(cvi));

64

65 end

66

67 % get the total of the confusion matrix

68 tcm(:,:,noi) = sum(cm{noi},3);

69

70 [bm(noi).res,bm(noi).vec] = bookmaker(tcm(:,:,noi));

71 bmval(noi) = bm(noi).res.bookmaker;

140

B.5 Feature Selection and Classification

72 accval(noi) = bm(noi).res.randAverage;

73 fprintf('\tbm %.2f\n', bm(noi).res.bookmaker);

74 end

75

76 % print results!

77 fprintf(1, 'bookmaker informedness, mean: %.2f, sd: %.2f\n', mean(bmval),

std(bmval,0));ãÑ

78 fprintf(1, 'accuracy, mean: %.2f, sd: %.2f\n', mean(accval), std(accval,0));

Listing B.9: ClassifyMl.m: MATLAB script that uses machine learning (neural net-
work) to performed supervised learning classification.

141

Appendix B Recognition Code

B.6 Support Scripts

1 from pathlib import Path

2 import cv2

3 import numpy as np

4 import ctypes

5 from screeninfo import get_monitors

6

7

8 def list_enumeration_to_pretty_string(lItems):

9

10 sOut = "'1'"

11

12 if type(lItems) == type(None):

13 return None

14 if type(lItems) is not list:

15 return sOut

16

17 nItems = len(lItems)

18

19 for i in range(2, nItems + 1):

20 sSep = "," if i < nItems else " or"

21 sOut += f"{ sSep} '{ i}'"

22 return sOut

23

24

25 def list_to_pretty_string(lsItems):

26

27 if type(lsItems) == type(None) or type(lsItems) is not list:

28 return None

29

30 for i, s in enumerate(lsItems):

31 if i == 0:

32 sOut = f"'{ s}'"

33 continue

34 sSep = "," if i < len(lsItems) - 1 else " or"

35 sOut += f"{ sSep} '{ s}'"

142

B.6 Support Scripts

36

37 return sOut

38

39

40 def coords_of_new_monitor(iOldMonitor, iNewMonitor):

41 lmMonitors = get_monitors()

42 return (lmMonitors[iNewMonitor].x - lmMonitors[iOldMonitor].x,

43 lmMonitors[iNewMonitor].y - lmMonitors[iOldMonitor].y)

44

45

46 def get_monitor_resolution():

47 """

48 Returns resolution of ?current monitor as (width, height).

49 Requires `ctypes` module; only works on Microsoft Windows.

50 """

51 user32 = ctypes.windll.user32

52 user32.SetProcessDPIAware()

53 return [user32.GetSystemMetrics(0), user32.GetSystemMetrics(1)]

54

55

56 def get_abs_path_to_named_parent(sNamedParent):

57 p = Path.cwd()

58 # until the immediate parent is a match

59 while p.parts[-1].lower() != sNamedParent.lower():

60

61 if len(p.parents) <= 0:

62 raise Exception(f'Reached root directory before finding target

directory: { sNamedParent} from: { Path.cwd()}')ãÑ

63

64 p = p.parents[0] # 'go up one level'

65

66 return p

67

68 def keypress_string(nPressedKey):

69 return '%d (0x%x), 2LSB: %d (%s)' % (

70 nPressedKey,

71 nPressedKey,

143

Appendix B Recognition Code

72 nPressedKey % 2 ** 16,

73 repr(chr(nPressedKey % 256)) if nPressedKey % 256 < 128 else '?'

74)

75

76

77 def explore_keypresses():

78 nPressedKey = None

79 nKeyEsc = 27

80 while nPressedKey != nKeyEsc:

81 cv2.imshow('Press any key; Esc breaks out', np.zeros((1, 1, 3),

np.uint8))ãÑ

82 nPressedKey = cv2.waitKey(0)

83 print(keypress_string(nPressedKey))

84 cv2.destroyAllWindows()

85

86 def keypress_matches(nPressedKey, *lsKeyNames):

87 # ASCII Table

88 dAscii = {

89 'nul': 0, 'null':0,

90 'bs': 8, 'backspace': 0,

91 'tab': 9,

92 'lf':10, 'nl':10, 'new line':10, 'line feed':10, # e.g. CTRL + Enter

93 'cr':13, 'enter':13, 'return':13,

94 'esc':27, 'escape':27,

95 ' ':32, 'space':32,

96 '!':33, 'exclamation mark':33,

97 '"':34, 'double quote':34,

98 '#':35, 'number':35, 'pound':35, 'hash':35,

99 '$':36, 'dollar':36,

100 '%':37, 'percent':37,

101 '&':38, 'ampersand':38, 'and':38,

102 "'":39, 'single quote':39,

103 '(':40, 'left parenthesis':40, 'open parenthesis':40,

104 '(':41, 'right parenthesis':41, 'close parenthesis':41,

105 '*':42, 'asterisk':42,

106 '+':43, 'plus':43,

107 ',':44, 'comma':44,

144

B.6 Support Scripts

108 '-':45, 'hyphen':45, 'dash':45,

109 '.':46, 'period':46, 'dot':46, 'full stop':46,

110 '/':47, 'slash':47, 'forward slash':47, 'divide':47,

111 '0':48, 'zero':48,

112 '1':49, 'one':49,

113 '2':50, 'two':50,

114 '3':51, 'three':51,

115 '4':52, 'four':52,

116 '5':53, 'five':53,

117 '6':54, 'six':54,

118 '7':55, 'seven':55,

119 '8':56, 'eight':56,

120 '9':57, 'nine':57,

121 ':':58, 'colon':58,

122 ';':59, 'semicolon':59,

123 '<':60, 'less than':60,

124 '=':61, 'equals':61,

125 '>':62, 'greater than':61,

126 '?':63, 'question mark':63,

127 '@':64, 'at':64,

128 'A':65,

129 'B':66,

130 'C':67,

131 'D':68,

132 'E':69,

133 'F':70,

134 'G':71,

135 'H':72,

136 'I':73,

137 'J':74,

138 'K':75,

139 'L':76,

140 'M':77,

141 'N':78,

142 'O':79,

143 'P':80,

144 'Q':81,

145

Appendix B Recognition Code

145 'R':82,

146 'S':83,

147 'T':84,

148 'U':85,

149 'V':86,

150 'W':87,

151 'X':88,

152 'Y':89,

153 'Z':90,

154 '[':91, 'left bracket':91, 'open bracket':91,

155 '\\':92, 'backslash':92, 'back slash':92,

156 ']':93, 'right bracket':93, 'close bracket':93,

157 '^':94, 'circumflex':94, 'caret':94,

158 '_':95, 'underscore':95,

159 '`':65, 'grave':96,

160 'a':97,

161 'b':98,

162 'c':99,

163 'd':100,

164 'e':101,

165 'f':102,

166 'g':103,

167 'h':104,

168 'i':105,

169 'j':106,

170 'k':107,

171 'l':108,

172 'm':109,

173 'n':110,

174 'o':111,

175 'p':112,

176 'q':113,

177 'r':114,

178 's':115,

179 't':116,

180 'u':117,

181 'v':118,

146

B.6 Support Scripts

182 'w':119,

183 'x':120,

184 'y':121,

185 'z':122,

186 '{':123, 'left brace':123, 'open brace':123,

187 '|':124, 'bar':124, 'vertical bar':124, 'pipe':124,

188 '}':125, 'right brace':125, 'close brace':125,

189 '~':126, 'tilde':126,

190 'del':127, 'delete':127

191 }

192

193 for sKeyName in lsKeyNames:

194 if nPressedKey == dAscii.get(sKeyName.lower(), -1):

195 return True

196 return False

Listing B.10: DUtils.py: Python 3 package containing generic support functions used
by prompter.py.

147

Appendix B Recognition Code

1 function varOut = ValidatedLoad(sFileFull, sVarName, varargin)

2 % Loads the specified file and, if necessary, unwraps the loaded

3 % file to get to the target variable name.

4 %

5 % Arguments:

6 % sFileFull : string, absolute path and filename of target file.

7 % sVarName : string, name of the target variable.

8 % Optional : By default, ValidatedLoad will return what it loaded

9 % but display a warning in the Command Window;

10 % passing the tag 'strict' will prevent return if the

11 % loaded variable name does not match sVarName, throwing

12 % an error instead.

13 %

14 % Returns:

15 % varOut : the loaded variable.

16

17 if ismember(varargin, 'strict')

18 lStrict = true;

19 else

20 lStrict = false;

21 end

22

23 uLoaded = load(sFileFull);

24

25 try

26 varOut = uLoaded.(sVarName);

27 catch

28 if lStrict

29 error('ValidatedFile:strictInvalidLoad', ...

30 "%s could not find '%s' in %s.", ...

31 mfilename, sVarName, sFileFull)

32 else

33 rcFieldNames = fieldnames(uLoaded);

34 varOut = uLoaded.(rcFieldNames{ 1});

35 warning('ValidatedFile:relaxedInvalidLoad', ...

148

B.6 Support Scripts

36 "%s could not find '%s' in %s; loading '%s' instead.", ...

37 mfilename, sVarName, sFileFull, rcFieldNames{ 1})

38 end

39 end

40 end

Listing B.11: ValidatedLoad.m: MATLAB function to automatically ‘unwrap’ loaded
MAT-files and validate the variable name.

149

References

[1] K. S. Abhishek, L. C. K. Qubeley and D. Ho, ‘Glove-based hand gesture recognition
sign language translator using capacitive touch sensor’, in 2016 IEEE International
Conference on Electron Devices and Solid-State Circuits (EDSSC), Hong Kong: IEEE,
2016, pp. 334–337. doi: 10.1109/EDSSC.2016.7785276.

[2] A. Agarwal and M. K. Thakur, ‘Sign language recognition using Microsoft Kinect’, in
2013 Sixth International Conference on Contemporary Computing (IC3), Noida, India:
IEEE, Aug. 2013, pp. 181–185. doi: 10.1109/IC3.2013.6612186.

[3] S. C. Agrawal, A. S. Jalal and R. K. Tripathi, ‘A survey on manual and non-manual sign
language recognition for isolated and continuous sign’, International Journal of Applied
Pattern Recognition, vol. 3, no. 2, pp. 99–134, 1 Jan. 2016. doi: 10.1504/IJAPR.2016.
079048.

[4] P. F. Alcantarilla, A. Bartoli and A. J. Davison, ‘KAZE Features’, in Computer Vision
– ECCV 2012, A. Fitzgibbon, S. Lazebnik, P. Perona, Y. Sato and C. Schmid, Eds., red.
by D. Hutchison, T. Kanade, J. Kittler, J. M. Kleinberg, F. Mattern, J. C. Mitchell, M.
Naor, O. Nierstrasz, C. Pandu Rangan, B. Steffen, M. Sudan, D. Terzopoulos, D. Tygar,
M. Y. Vardi and G. Weikum, vol. 7577, Berlin, Heidelberg: Springer Berlin Heidelberg,
2012, pp. 214–227. doi: 10.1007/978-3-642-33783-3_16.

[5] J. Arendsen, A. J. van Doorn and H. de Ridder, ‘When and how well do people see the
onset of gestures?’, Gesture, vol. 7, no. 3, pp. 305–342, 2007. doi: 10.1075/gest.7.3.
03are.

[6] ——, ‘When do people start to recognize signs?’, Gesture, vol. 9, no. 2, pp. 207–236,
2009. doi: 10.1075/gest.9.2.03are.

[7] H. Bay, A. Ess, T. Tuytelaars and L. Van Gool, ‘Speeded-up robust features (SURF)’,
Computer Vision and Image Understanding, vol. 110, no. 3, pp. 346–359, Jun. 2008.
doi: 10.1016/j.cviu.2007.09.014.

[8] U. Bellugi and S. Fischer, ‘A comparison of sign language and spoken language’, Cog-
nition, vol. 1, no. 2-3, pp. 173–200, Jan. 1972. doi: 10.1016/0010-0277(72)90018-2.

151

References

[9] K. K. Biswas and S. K. Basu, ‘Gesture recognition using Microsoft Kinect’, in The 5th
International Conference on Automation, Robotics and Applications, Wellington, New
Zealand: IEEE, Dec. 2011, pp. 100–103. doi: 10.1109/ICARA.2011.6144864.

[10] D. Brentari, J. Fenlon and K. Cormier, Sign Language Phonology. Oxford University
Press, 30 Jul. 2018, vol. 1. doi: 10.1093/acrefore/9780199384655.013.117.

[11] P. Breuer, C. Eckes and S. Müller, ‘Hand gesture recognition with a novel ir time-of-flight
range camera–a pilot study’, in MIRAGE 2007: Computer Vision/Computer Graphics
Collaboration Techniques, vol. 4418, 28 Mar. 2007, pp. 247–260. doi: 10.1007/978-3-
540-71457-6_23.

[12] British Deaf Association, Dictionary of British Sign Language/English. London: Faber
and Faber Ltd, 1992.

[13] M. Calvert. (3 Nov. 2018). Improving the depth map accuracy of RealSense cameras
– by an order of magnitude, [Online]. Available: http://www.calvert.ch/maurice/
improving-the-depth-map-accuracy-of-realsense-cameras-by-an-order-of-

magnitude/ (visited on 14/10/2019).

[14] ——, RealSense-Calibrator, 20 Sep. 2019. [Online]. Available: https://github.com/
smirkingman/RealSense-Calibrator (visited on 14/10/2019).

[15] N. C. Camgoz, S. Hadfield, O. Koller and R. Bowden, ‘Using convolutional 3d neural
networks for user-independent continuous gesture recognition’, in 2016 23rd Interna-
tional Conference on Pattern Recognition (ICPR), Cancun: IEEE, Dec. 2016, pp. 49–
54. doi: 10.1109/ICPR.2016.7899606.

[16] ——, ‘SubUNets: End-to-end hand shape and continuous sign language recognition’, in
2017 IEEE International Conference on Computer Vision (ICCV), Venice: IEEE, Oct.
2017, pp. 3075–3084. doi: 10.1109/ICCV.2017.332.

[17] N. C. Camgoz, S. Hadfield, O. Koller, H. Ney and R. Bowden, ‘Neural sign language
translation’, in 2018 IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion, Salt Lake City, UT: IEEE, Jun. 2018, pp. 7784–7793. doi: 10.1109/CVPR.2018.
00812.

[18] G. Caridakis, S. Asteriadis and K. Karpouzis, ‘Non-manual cues in automatic sign
language recognition’, Personal and Ubiquitous Computing, vol. 18, no. 1, pp. 37–46,
Jan. 2014. doi: 10.1007/s00779-012-0615-1.

[19] X. Chai, G. Li, Y. Lin, Z. Xu, Y. Tang, X. Chen and M. Zhou, ‘Sign language recognition
and translation with Kinect’, p. 2, 2013.

152

References

[20] B. K. Chakraborty, D. Sarma, M. Bhuyan and K. F. MacDorman, ‘Review of constraints
on vision-based gesture recognition for human–computer interaction’, IET Computer
Vision, vol. 12, no. 1, pp. 3–15, 1 Feb. 2018. doi: 10.1049/iet-cvi.2017.0052.

[21] D. Chen, G. Li, Y. Sun, J. Kong, G. Jiang, H. Tang, Z. Ju, H. Yu and H. Liu, ‘An
interactive image segmentation method in hand gesture recognition’, Sensors, vol. 17,
no. 2, p. 253, 27 Jan. 2017. doi: 10.3390/s17020253.

[22] F. Chen, J. Deng, Z. Pang, M. Baghaei Nejad, H. Yang and G. Yang, ‘Finger angle-based
hand gesture recognition for smart infrastructure using wearable wrist-worn camera’,
Applied Sciences, vol. 8, no. 3, p. 369, 3 Mar. 2018. doi: 10.3390/app8030369.

[23] C. Conly, Z. Zhang and V. Athitsos, ‘An integrated RGB-D system for looking up the
meaning of signs’, in Proceedings of the 8th ACM International Conference on PErvasive
Technologies Related to Assistive Environments - PETRA ’15, Corfu, Greece: ACM
Press, 2015, pp. 1–8. doi: 10.1145/2769493.2769534.

[24] H. Cooper, B. Holt and R. Bowden, ‘Sign language recognition’, in Visual Analysis of
Humans, T. B. Moeslund, A. Hilton, V. Krüger and L. Sigal, Eds., London: Springer
London, 2011, pp. 539–562. doi: 10.1007/978-0-85729-997-0_27.

[25] H. Cooper, E.-J. Ong, N. Pugeault and R. Bowden, ‘Sign language recognition using
sub-units’, in Gesture Recognition, S. Escalera, I. Guyon and V. Athitsos, Eds., Springer
International Publishing, 2017, pp. 89–118. doi: 10.1007/978-3-319-57021-1_3.

[26] A. D. C. A. Coroiu and A. Coroiu, ‘Interchangeability of Kinect and Orbbec sensors
for gesture recognition’, in 2018 IEEE 14th International Conference on Intelligent
Computer Communication and Processing (ICCP), Sep. 2018, pp. 309–315. doi: 10.
1109/ICCP.2018.8516586.

[27] Creative. (2013). BlasterX Senz3D, [Online]. Available: https://us.creative.com/p/
peripherals/blasterx-senz3d (visited on 11/10/2019).

[28] R. Cui, H. Liu and C. Zhang, ‘Recurrent convolutional neural networks for continuous
sign language recognition by staged optimization’, 1 Jul. 2017, pp. 1610–1618. doi:
10.1109/CVPR.2017.175.

[29] N. Dalal and B. Triggs, ‘Histograms of oriented gradients for human detection’, in
2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition
(CVPR’05), vol. 1, San Diego, CA, USA: IEEE, 2005, pp. 886–893. doi: 10.1109/
CVPR.2005.177.

153

References

[30] M. Dilsizian, P. Yanovich, S. Wang, C. Neidle and D. Metaxas, ‘A new framework for
sign language recognition based on 3D handshape identification and linguistic model-
ing’, in Proceedings of the 9th International Conference on Language Resources and
Evaluation, LREC 2014, European Language Resources Association (ELRA), 1 Jan.
2014, pp. 1924–1929. [Online]. Available: https://www.researchwithrutgers.com/
en/publications/a-new-framework-for-sign-language-recognition-based-on-

3d-handsha (visited on 07/11/2019).

[31] F. Dominio, M. Donadeo and P. Zanuttigh, ‘Combining multiple depth-based descriptors
for hand gesture recognition’, Pattern Recognition Letters, vol. 50, pp. 101–111, Dec.
2014. doi: 10.1016/j.patrec.2013.10.010.

[32] M. Elwazer and C. Bentley. (2017). Home | Kintrans, [Online]. Available: https://www.
kintrans.com/ (visited on 08/10/2019).

[33] M. Elwazer, C. Bentley and H. S. A. Mohammed, ‘Automatic body movement re-
cognition and association system’, U.S. Patent 20170351910A1, 7 Dec. 2017. [Online].
Available: https://patents.google.com/patent/US20170351910A1/en (visited on
08/10/2019).

[34] K. Emmorey and D. Corina, ‘Lexical recognition in sign language: Effects of phonetic
structure and morphology’, Perceptual and Motor Skills, vol. 71, pp. 1227–1252, 3_suppl
Dec. 1990. doi: 10.2466/pms.1990.71.3f.1227.

[35] S. Escalera, V. Athitsos and I. Guyon, ‘Challenges in multi-modal gesture recognition’,
in Gesture Recognition, S. Escalera, I. Guyon and V. Athitsos, Eds., Cham: Springer
International Publishing, 2017, pp. 1–60. doi: 10.1007/978-3-319-57021-1_1.

[36] J. Forster, O. Koller, C. Oberdörfer, Y. Gweth and H. Ney, ‘Improving Continuous
Sign Language Recognition: Speech Recognition Techniques and System Design’, in
Proceedings of the Fourth Workshop on Speech and Language Processing for Assistive
Technologies, Grenoble, France: Association for Computational Linguistics, Aug. 2013,
pp. 41–46. [Online]. Available: https : / / www . aclweb . org / anthology / W13 - 3908
(visited on 07/11/2019).

[37] J. Forster, C. Schmidt, O. Koller, M. Bellgardt and H. Ney, ‘Extensions of the sign
language recognition and translation corpus RWTH-PHOENIX-Weather’, vol. 1, 1 May
2014.

[38] W. T. Freeman and M. Roth, ‘Orientation histograms for hand gesture recognition’,
International workshop on automatic face and gesture recognition, vol. 12, pp. 269–301,
1995.

154

References

[39] J. Galka, M. Masior, M. Zaborski and K. Barczewska, ‘Inertial motion sensing glove
for sign language gesture acquisition and recognition’, IEEE Sensors Journal, vol. 16,
no. 16, pp. 6310–6316, Aug. 2016. doi: 10.1109/JSEN.2016.2583542.

[40] F. Grosjean, ‘Sign & word recognition: A first comparison’, Sign Language Studies,
vol. 32, pp. 195–220, 1981. doi: 10.1353/sls.1982.0003.

[41] A. Grunnet-Jepsen, J. N. Sweetser, T. Khuong, D. Tong and J. Woodfill, Subpixel
linearity improvement for Intel® RealSense™ depth camera D400 series, 5 Jul. 2019.
[Online]. Available: https://www.intelrealsense.com/wp-content/uploads/2019/
07/White_Paper_on_Subpixel_Linearity_Improvement-1.pdf.

[42] A. Grunnet-Jepsen, J. N. Sweetser and J. Woodfill, Best-known-methods for tuning
Intel® RealSense™ D400 depth cameras for best performance, 2018. [Online]. Available:
https://www.intel.com/content/dam/support/us/en/documents/emerging-

technologies/intel-realsense-technology/BKMs_Tuning_RealSense_D4xx_Cam.

pdf.

[43] I. Guyon, V. Athitsos, P. Jangyodsuk, B. Hamner and H. J. Escalante, ‘ChaLearn
gesture challenge: Design and first results’, 21 Jun. 2012, pp. 1–6. doi: 10.1109/CVPRW.
2012.6239178.

[44] T. Hanke, ‘HamNoSys - Representing sign language data in language resources and
language processing contexts’, presented at the Workshop on the Representation and
Processing of Sign Languages at the Languages and Resources Evaluation Conference
(LREC 04), 2004, pp. 1–6.

[45] ——, ‘HamNoSys – Hamburg Notation System for Sign Languages’, 14 Nov. 2007.

[46] T. Hanke and Schmaling, Sign language notation system, 2004. [Online]. Available:
http://www.sign-lang.unihamburg.de/projects/hamnosys.html.

[47] A. Haria, A. Subramanian, N. Asokkumar, S. Poddar and J. S. Nayak, ‘Hand ges-
ture recognition for human computer interaction’, Procedia Computer Science, vol. 115,
pp. 367–374, 2017. doi: 10.1016/j.procs.2017.09.092.

[48] M. Hassan, K. Assaleh and T. Shanableh, ‘Multiple proposals for continuous arabic sign
language recognition’, Sensing and Imaging, vol. 20, no. 1, Dec. 2019. doi: 10.1007/
s11220-019-0225-3.

[49] A. Hernández-Vela, M. Á. Bautista, X. Perez-Sala, V. Ponce-López, S. Escalera, X.
Baró, O. Pujol and C. Angulo, ‘Probability-based dynamic time warping and bag-of-
visual-and-depth-words for human gesture recognition in RGB-D’, Pattern Recognition
Letters, vol. 50, pp. 112–121, Dec. 2014. doi: 10.1016/j.patrec.2013.09.009.

155

References

[50] C. Huang and J. Huang, ‘A fast HOG descriptor using lookup table and integral image’,
18 Mar. 2017. arXiv: 1703.06256 [cs]. [Online]. Available: http://arxiv.org/abs/
1703.06256 (visited on 11/07/2019).

[51] J. Huang and Q. Zhang, ‘Video-based sign language recognition without temporal seg-
mentation’, presented at the 32nd AAAI Conference on Artificial Intelligence, 2018.
arXiv: 1801.10111. [Online]. Available: https://www.academia.edu/35798439/
Video-based_Sign_Language_Recognition_without_Temporal_Segmentation (vis-
ited on 16/04/2019).

[52] J. Huang, W. Zhou, H. Li and W. Li, ‘Sign language recognition using 3d convolu-
tional neural networks’, in 2015 IEEE International Conference on Multimedia and
Expo (ICME), Jun. 2015, pp. 1–6. doi: 10.1109/ICME.2015.7177428.

[53] K. Inoue, T. Shiraishi, M. Yoshioka and H. Yanagimoto, ‘Depth sensor based automatic
hand region extraction by using time-series curve and its application to Japanese finger-
spelled sign language recognition’, Procedia Computer Science, vol. 60, pp. 371–380,
2015. doi: 10.1016/j.procs.2015.08.145.

[54] Intel, Intel® RealSense™ D400 series product family datasheet, revision 006, Jun. 2019.
[Online]. Available: https://www.intelrealsense.com/wp-content/uploads/2019/
07/Intel-RealSense-D400-Series-Datasheet-Jun-2019.pdf.

[55] ——, Intel® RealSense™ depth module D400 series custom calibration, revision 1.5.0,
Jan. 2019. [Online]. Available: https://www.intel.com/content/dam/support/us/
en/documents/emerging-technologies/intel-realsense-technology/RealSense_

D400%20_Custom_Calib_Paper.pdf (visited on 14/08/2019).

[56] ——, IntelRealSense/librealsense, Intel® RealSense™, 13 Oct. 2019. [Online]. Available:
https://github.com/IntelRealSense/librealsense (visited on 13/10/2019).

[57] P. Ji, A. Song, P. Xiong, P. Yi, X. Xu and H. Li, ‘Egocentric-vision based hand posture
control system for reconnaissance robots’, Journal of Intelligent & Robotic Systems,
vol. 87, no. 3-4, pp. 583–599, Sep. 2017. doi: 10.1007/s10846-016-0440-2.

[58] F. Jiang, S. Zhang, S. Wu, Y. Gao and D. Zhao, ‘Multi-layered gesture recognition with
Kinect’, in Gesture Recognition, S. Escalera, I. Guyon and V. Athitsos, Eds., Cham:
Springer International Publishing, 2017, pp. 387–416. doi: 10 . 1007 / 978 - 3 - 319 -
57021-1_13.

[59] T. Johnston, ‘Auslan: The sign language of the australian deaf community’, Ph.D.
University of Sydney, 1989, 267 pp.

156

References

[60] ——, ‘Transcription and glossing of sign language texts: Examples from Auslan (Aus-
tralian Sign Language)’, International journal of sign linguistics, vol. 2, no. 1, pp. 3–
28, 1991. [Online]. Available: https : / / www . academia . edu / 792079 / _1991 _

Transcription_and_glossing_of_sign_language_texts_Examples_from_Auslan_

Australian_Sign_Language_ (visited on 13/03/2019).

[61] ——, ‘Language standardization and signed language dictionaries’, Sign Language Stud-
ies, vol. 3, no. 4, pp. 431–468, 2003. doi: 10.1353/sls.2003.0012.

[62] ——, (2014). Signbank, [Online]. Available: http://www.auslan.org.au/dictionary/
(visited on 20/03/2019).

[63] T. A. Johnston, Signs of Australia on CD-ROM: A dictionary of Auslan (Australian
Sign Language), 1998.

[64] T. A. Johnston and A. Schembri, Australian Sign Language (Auslan): An Introduction
to Sign Language Linguistics. Cambridge: Cambridge University Press, 2007, xiv+323.

[65] Jungong Han, Ling Shao, Dong Xu and J. Shotton, ‘Enhanced computer vision with
Microsoft Kinect sensor: A review’, IEEE Transactions on Cybernetics, vol. 43, no. 5,
pp. 1318–1334, Oct. 2013. doi: 10.1109/TCYB.2013.2265378.

[66] M. W. Kadous, ‘Machine recognition of Auslan signs using PowerGloves: Towards large-
lexicon recognition of sign language’, p. 10, 1996.

[67] D. Kelly, J. McDonald and C. Markham, ‘A person independent system for recognition
of hand postures used in sign language’, Pattern Recognition Letters, vol. 31, no. 11,
pp. 1359–1368, Aug. 2010. doi: 10.1016/j.patrec.2010.02.004.

[68] C. Keskin, F. Kıraç, Y. E. Kara and L. Akarun, ‘Hand pose estimation and hand shape
classification using multi-layered randomized decision forests’, in Computer Vision –
ECCV 2012, A. Fitzgibbon, S. Lazebnik, P. Perona, Y. Sato and C. Schmid, Eds., red.
by D. Hutchison, T. Kanade, J. Kittler, J. M. Kleinberg, F. Mattern, J. C. Mitchell, M.
Naor, O. Nierstrasz, C. Pandu Rangan, B. Steffen, M. Sudan, D. Terzopoulos, D. Tygar,
M. Y. Vardi and G. Weikum, vol. 7577, Berlin, Heidelberg: Springer Berlin Heidelberg,
2012, pp. 852–863. doi: 10.1007/978-3-642-33783-3_61.

[69] S. Khailaie. (1 Jan. 2018). Manual setup of MinGW compilers for building Matlab MEX
files in Windows, [Online]. Available: http://khailaie.com/notes/MEX/MEX-MinGW-
setup-Windows.html (visited on 31/10/2019).

[70] P. V. V. Kishore, G. A. Rao, E. K. Kumar, M. T. K. Kumar and D. A. Kumar, ‘Selfie
sign language recognition with convolutional neural networks’, International Journal
of Intelligent Systems and Applications, vol. 10, no. 10, pp. 63–71, 8 Oct. 2018. doi:
10.5815/ijisa.2018.10.07.

157

References

[71] S. Kita, I. van Gijn and H. van der Hulst, ‘Movement phases in signs and co-speech
gestures, and their transcription by human coders’, in Gesture and Sign Language in
Human-Computer Interaction, I. Wachsmuth and M. Fröhlich, Eds., red. by J. G. Car-
bonell, J. Siekmann, G. Goos, J. Hartmanis and J. van Leeuwen, vol. 1371, Berlin,
Heidelberg: Springer Berlin Heidelberg, 1998, pp. 23–35. doi: 10.1007/BFb0052986.

[72] O. Koller, C. Camgoz, H. Ney and R. Bowden, ‘Weakly supervised learning with multi-
stream CNN-LSTM-HMMs to discover sequential parallelism in sign language videos’,
IEEE Transactions on Pattern Analysis and Machine Intelligence, pp. 1–1, 2019. doi:
10.1109/TPAMI.2019.2911077.

[73] O. Koller, J. Forster and H. Ney, ‘Continuous sign language recognition: Towards large
vocabulary statistical recognition systems handling multiple signers’, Computer Vision
and Image Understanding, vol. 141, pp. 108–125, Dec. 2015. doi: 10.1016/j.cviu.
2015.09.013.

[74] O. Koller, H. Ney and R. Bowden, ‘May the force be with you: Force-aligned signwriting
for automatic subunit annotation of corpora’, in 2013 10th IEEE International Con-
ference and Workshops on Automatic Face and Gesture Recognition (FG), Shanghai,
China: IEEE, Apr. 2013, pp. 1–6. doi: 10.1109/FG.2013.6553777.

[75] ——, ‘Deep learning of mouth shapes for sign language’, in 2015 IEEE International
Conference on Computer Vision Workshop (ICCVW), Dec. 2015, pp. 477–483. doi:
10.1109/ICCVW.2015.69.

[76] ——, ‘Deep Hand: How to train a CNN on 1 million hand images when your data
is continuous and weakly labelled’, in 2016 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), Jun. 2016, pp. 3793–3802. doi: 10.1109/CVPR.2016.412.

[77] O. Koller, S. Zargaran and H. Ney, ‘Re-Sign: Re-aligned end-to-end sequence modelling
with deep recurrent CNN-HMMs’, in 2017 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), Jul. 2017, pp. 3416–3424. doi: 10.1109/CVPR.2017.364.

[78] O. Koller, S. Zargaran, H. Ney and R. Bowden, ‘Deep Sign: Hybrid CNN-HMM for
continuous sign language recognition’, in Procedings of the British Machine Vision Con-
ference 2016, York, UK: British Machine Vision Association, 2016, pp. 136.1–136.12.
doi: 10.5244/C.30.136.

[79] ——, ‘Deep sign: Enabling robust statistical continuous sign language recognition via
hybrid cnn-hmms’, International Journal of Computer Vision, vol. 126, no. 12, pp. 1311–
1325, Dec. 2018. doi: 10.1007/s11263-018-1121-3.

158

References

[80] E. Kollorz, J. Penne, J. Hornegger and A. Barke, ‘Gesture recognition with a time-of-
flight camera’, International Journal of Intelligent Systems Technologies and Applica-
tions, vol. 5, no. 3/4, pp. 334–343, 1 Jan. 2008. doi: 10.1504/IJISTA.2008.021296.

[81] K. E. Kroemer Elbert, H. B. Kroemer and A. D. Kroemer Hoffman, ‘Chapter 1 - Size
and mobility of the human body’, in Ergonomics (Third Edition), K. E. Kroemer Elbert,
H. B. Kroemer and A. D. Kroemer Hoffman, Eds., Academic Press, 1 Jan. 2018, pp. 3–
44. doi: 10.1016/B978-0-12-813296-8.00001-3.

[82] P. Kumar, H. Gauba, P. Pratim Roy and D. Prosad Dogra, ‘A multimodal framework
for sensor based sign language recognition’, Neurocomputing, vol. 259, pp. 21–38, Oct.
2017. doi: 10.1016/j.neucom.2016.08.132.

[83] P. Kumar, R. Saini, P. P. Roy and D. P. Dogra, ‘A position and rotation invariant
framework for sign language recognition (SLR) using Kinect’, Multimedia Tools and
Applications, vol. 77, no. 7, pp. 8823–8846, Apr. 2018. doi: 10.1007/s11042-017-
4776-9.

[84] S. Leutenegger, M. Chli and R. Y. Siegwart, ‘BRISK: Binary robust invariant scalable
keypoints’, in 2011 International Conference on Computer Vision, Barcelona, Spain:
IEEE, Nov. 2011, pp. 2548–2555. doi: 10.1109/ICCV.2011.6126542.

[85] T. Lewis, ‘Noise-robust audio-visual phoneme recognition’, Ph.D. Flinders University,
South Australia, 2005, 282 pp.

[86] J. Lin, X. Ruan, N. Yu and J. Cai, ‘Multi-cue based moving hand segmentation for
gesture recognition’, Automatic Control and Computer Sciences, vol. 51, no. 3, pp. 193–
203, May 2017. doi: 10.3103/S0146411617030063.

[87] G. Marin, F. Dominio and P. Zanuttigh, ‘Hand gesture recognition with leap motion and
kinect devices’, in 2014 IEEE International Conference on Image Processing (ICIP),
Paris, France: IEEE, Oct. 2014, pp. 1565–1569. doi: 10.1109/ICIP.2014.7025313.

[88] ——, ‘Hand gesture recognition with jointly calibrated Leap Motion and depth sensor’,
Multimedia Tools and Applications, vol. 75, no. 22, pp. 14 991–15 015, Nov. 2016. doi:
10.1007/s11042-015-2451-6.

[89] J. Matas, O. Chum, M. Urba and T. Pajdla, ‘Robust wide baseline stereo from max-
imally stable extremal regions’, in Proceedings of British Machine Vision Conference,
2002, pp. 387–396. doi: 10.5244/C.16.36.

[90] MathWorks. (2010). Newff :: Functions (Neural Network Toolbox™), [Online]. Available:
https://au.mathworks.com/help/releases/R2010a/toolbox/nnet/newff.html

(visited on 02/11/2019).

159

References

[91] ——, (2019). Feature detection and extraction, [Online]. Available: https : / / au .

mathworks.com/help/vision/feature-detection-and-extraction.html (visited
on 02/11/2019).

[92] ——, (2019). MAT-file versions, [Online]. Available: https://au.mathworks.com/
help/matlab/import_export/mat-file-versions.html (visited on 02/11/2019).

[93] ——, (2019). Measure properties of image regions - MATLAB regionprops, [Online].
Available: https://au.mathworks.com/help/images/ref/regionprops.html (visited
on 02/11/2019).

[94] ——, (2019). Packages Create Namespaces, [Online]. Available: https : / / au .

mathworks.com/help/matlab/matlab_oop/scoping-classes-with-packages.html

(visited on 30/10/2019).

[95] R. K. McConnell, ‘Method of and apparatus for pattern recognition’, U.S. Patent
4567610A, 1986.

[96] Microsoft. (21 Oct. 2014). Joint Structure, [Online]. Available: https : / / docs .

microsoft.com/en-us/previous-versions/windows/kinect/dn758664(v%3dieb.

10) (visited on 31/10/2019).

[97] ——, (21 Oct. 2014). JointType Enumeration, [Online]. Available: https://docs.
microsoft.com/en-us/previous-versions/windows/kinect/dn758663(v%3dieb.

10) (visited on 31/10/2019).

[98] ——, (19 Dec. 2016). Kinect hardware, [Online]. Available: https://web.archive.
org/web/20161219032759/https://developer.microsoft.com/en-us/windows/

kinect/hardware (visited on 11/10/2019).

[99] C. Ming and X. Jianbo, ‘Fast gesture recognition algorithm based on superpixel distri-
bution and EMD metric’, in Recent Developments in Intelligent Systems and Interactive
Applications, F. Xhafa, S. Patnaik and Z. Yu, Eds., vol. 541, Cham: Springer Interna-
tional Publishing, 2017, pp. 267–274. doi: 10.1007/978-3-319-49568-2_38.

[100] Z. Mo and U. Neumann, ‘Real-time hand pose recognition using low-resolution depth
images’, in 2006 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition (CVPR’06), vol. 2, Jun. 2006, pp. 1499–1505. doi: 10/bpft92.

[101] W. Nai, Y. Liu, D. Rempel and Y. Wang, ‘Fast hand posture classification using depth
features extracted from random line segments’, Pattern Recognition, vol. 65, pp. 1–10,
May 2017. doi: 10.1016/j.patcog.2016.11.022.

160

References

[102] K. Ogawara, J. Takamatsu, K. Hashimoto and K. Ikeuchi, ‘Grasp recognition using a 3D
articulated model and infrared images’, in Proceedings 2003 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453),
vol. 2, Oct. 2003, 1590–1595 vol.2. doi: 10.1109/IROS.2003.1248871.

[103] Open Source Robotics Foundation and I. Saito. (2 May 2015). Bags - ROS Wiki, [On-
line]. Available: http://wiki.ros.org/Bags (visited on 15/10/2019).

[104] B. Peterson. (3 Nov. 2008). PEP 373 – Python 2.7 release schedule, [Online]. Available:
https://www.python.org/dev/peps/pep-0373/ (visited on 13/10/2019).

[105] V. Pitsikalis, A. Katsamanis, S. Theodorakis and P. Maragos, ‘Multimodal gesture
recognition via multiple hypotheses rescoring’, in Gesture Recognition, S. Escalera, I.
Guyon and V. Athitsos, Eds., Cham: Springer International Publishing, 2017, pp. 467–
496. doi: 10.1007/978-3-319-57021-1_16.

[106] L. E. Potter, J. Araullo and L. Carter, ‘The Leap Motion controller: A view on sign
language’, in Proceedings of the 25th Australian Computer-Human Interaction Confer-
ence on Augmentation, Application, Innovation, Collaboration - OzCHI ’13, Adelaide,
Australia: ACM Press, 2013, pp. 175–178. doi: 10.1145/2541016.2541072.

[107] D. M. W. Powers, Evaluation: From precision, recall and F-factor to ROC, informedness,
markedness & correlation, Dec. 2007. [Online]. Available: http://david.wardpowers.
info/BM/Evaluation_SIETR.pdf.

[108] G. A. Rao, K. Syamala, P. V. V. Kishore and A. S. C. S. Sastry, ‘Deep convolutional
neural networks for sign language recognition’, in 2018 Conference on Signal Processing
And Communication Engineering Systems (SPACES), Vijayawada: IEEE, Jan. 2018,
pp. 194–197. doi: 10.1109/SPACES.2018.8316344.

[109] Z. Ren, J. Yuan and Z. Zhang, ‘Robust hand gesture recognition based on finger-earth
mover’s distance with a commodity depth camera’, in Proceedings of the 19th ACM
International Conference on Multimedia - MM ’11, Scottsdale, Arizona, USA: ACM
Press, 2011, p. 1093. doi: 10.1145/2072298.2071946.

[110] D. Retek, D. Palhazi, M. Kajtar, A. Alvarez, P. Pocsi, A. Nemeth, M. Trosztel,
Z. Robotka and J. Rovnyai, ‘Computer vision based sign language interpreter’, pat.
WO2019094618A1, 16 May 2019. [Online]. Available: https://patents.google.com/
patent/WO2019094618A1/en?inventor=Zsolt+Robotka&oq=Zsolt+Robotka (visited
on 08/10/2019).

[111] Z. Robotka. (2018). Home - SignAll, [Online]. Available: https://www.signall.us/
(visited on 08/10/2019).

161

References

[112] E. Rublee, V. Rabaud, K. Konolige and G. Bradski, ‘ORB: An efficient alternative
to SIFT or SURF’, in 2011 International Conference on Computer Vision, Barcelona,
Spain: IEEE, Nov. 2011, pp. 2564–2571. doi: 10.1109/ICCV.2011.6126544.

[113] D. Rybach, C. Gollan, G. Heigold, B. Hoffmeister, J. Lööf, R. Schlüter and H. Ney,
‘The RWTH Aachen University open source speech recognition system’, presented at
the 10th Annual Conference of the International Speech Communication Association,
2009, pp. 2111–2114.

[114] B. Saunders and J. Balich, USB Promoter Group announces USB4 specification, 4 Mar.
2019. [Online]. Available: https://usb.org/sites/default/files/2019-03/USB_PG_
USB4_DevUpdate_Announcement_FINAL_20190226.pdf (visited on 16/03/2019).

[115] SergentMT. (16 Jul. 2014). Kinect Version 2 Depth Frame to .mat File Exporter Tool,
[Online]. Available: https://www.codeproject.com/Tips/819613/Kinect-Version-
Depth-Frame-to-mat-File-Exporter (visited on 30/10/2019).

[116] J. Shotton, T. Sharp, A. Kipman, A. Fitzgibbon, M. Finocchio, A. Blake, M. Cook
and R. Moore, ‘Real-time human pose recognition in parts from single depth images’,
Communications of the ACM, vol. 56, no. 1, p. 116, 1 Jan. 2013. doi: 10.1145/2398356.
2398381.

[117] W. C. Stokoe, ‘Sign language structure: An outline of the visual communication systems
of the American deaf (2005 reprint)’, The Journal of Deaf Studies and Deaf Education,
vol. 10, no. 1, pp. 3–37, 1960. doi: 10.1093/deafed/eni001.

[118] Summer Institiute of Lingistics, Inc. (SIL). (3 Dec. 2015). Deixis, [Online]. Available:
https://glossary.sil.org/term/deixis (visited on 19/03/2019).

[119] G. A. ten Holt, A. J. V. Doorn, M. J. Reinders, E. A. Hendriks and H. D. Ridder,
‘Human-inspired search for redundancy in automatic sign language recognition’, ACM
Transactions on Applied Perception (TAP), vol. 8, no. 2, p. 15, 2011. doi: 10.1145/
1870076.1870083.

[120] G. A. ten Holt, P. Hendriks and T. Andringa, ‘The eye of the beholder: Automatic
recognition of Dutch sign language’, Masters, University of Groningen, The Netherlands,
2004, 93 pp.

[121] ——, ‘Why don’t you see what I mean? Prospects and limitations of current automatic
sign recognition research’, Sign Language Studies, vol. 6, no. 4, pp. 416–437, 2006. doi:
10.1353/sls.2006.0024.

[122] G. A. ten Holt, M. J. Reinders, E. A. Hendriks, H. de Ridder and A. J. van Doorn, ‘Influ-
ence of handshape information on automatic sign language recognition’, in International
Gesture Workshop, Springer, 2009, pp. 301–312. doi: 10.1007/978-3-642-12553-9_27.

162

References

[123] J. R. Terven. (6 Jul. 2017). Kinect 2 Interface for Matlab, [Online]. Available: https:
//au.mathworks.com/matlabcentral/fileexchange/53439 (visited on 30/10/2019).

[124] J. R. Terven and D. M. Córdova-Esparza, ‘Kin2. A Kinect 2 toolbox for MATLAB’,
Science of Computer Programming, vol. 130, pp. 97–106, 15 Nov. 2016. doi: 10.1016/
j.scico.2016.05.009.

[125] C. Vogler and D. Metaxas, ‘Handshapes and movements: Multiple-channel american
sign language recognition’, in Gesture-Based Communication in Human-Computer In-
teraction, A. Camurri and G. Volpe, Eds., red. by G. Goos, J. Hartmanis and J. van
Leeuwen, vol. 2915, Berlin, Heidelberg: Springer Berlin Heidelberg, 2004, pp. 247–258.
doi: 10.1007/978-3-540-24598-8_23.

[126] C. Wang, Z. Liu and S.-C. Chan, ‘Superpixel-based hand gesture recognition with Kinect
depth camera’, IEEE Transactions on Multimedia, vol. 17, no. 1, pp. 29–39, Jan. 2015.
doi: 10.1109/TMM.2014.2374357.

[127] X. Wang, Y. Şekercioğlu, T. Drummond, V. Frémont, E. Natalizio and I. Fantoni,
‘Relative pose based redundancy removal: Collaborative RGB-D data transmission in
mobile visual sensor networks’, Sensors, vol. 18, no. 8, p. 2430, 26 Jul. 2018. doi:
10.3390/s18082430.

[128] M. Wilson. (25 Oct. 2017). Exclusive: Microsoft has stopped manufacturing the Kin-
ect, [Online]. Available: https : / / www . fastcompany . com / 90147868 / exclusive -

microsoft-has-stopped-manufacturing-the-kinect (visited on 11/10/2019).

[129] Z. Zafrulla, H. Brashear, T. Starner, H. Hamilton and P. Presti, ‘American sign language
recognition with the Kinect’, in Proceedings of the 13th International Conference on
Multimodal Interfaces - ICMI ’11, Alicante, Spain: ACM Press, 2011, p. 279. doi:
10.1145/2070481.2070532.

[130] Z. Zhang, ‘Microsoft Kinect sensor and Its effect’, IEEE Multimedia, vol. 19, no. 2,
pp. 4–10, Feb. 2012. doi: 10.1109/MMUL.2012.24.

163

