
i

Preserving Queries within Relational Databases

By:
Somaia Alaofe

2139515
Alao0003@flinders.edu.au

College of Science and Engineering

Supervisor: Dr Denise de Vries

March 2018

 “Submitted to the School of Computer Science, Engineering, and Mathematics in the Faculty of

Science and Engineering in partial fulfilment of the requirements for the degree of master of

computer science at Flinders University – Adelaide Australia.”

mailto:Alao0003@flinders.edu.au

ii

DECLARATION

"I certify that this work does not incorporate without acknowledgment any material previously

submitted for a degree or diploma in any university; and that to the best of my knowledge and belief

it does not contain any material previously published or written by another person except where due

reference is made in the text."

Signature Date
___________________________ ___________________________
Somaia Alaofe 09/03/2018

iii

ABSTRACT

Most scientific research is stored in digital formats; however, with technology obsolescence,

important resources for future research can be lost. Relational databases (RDBs), including

component tables, relationships, and queries, are an important digital format for preserving research

results. Therefore, preserving databases for a long time, regardless of any software or hardware

issues, is critical. Previous studies have developed database preservation but have focused on

preserving data, relationships, and keys rather than reports, pages, and queries within a database.

Therefore, this study proposes a strategy for long-term digital preservation of queries within RDBs

because queries are a major component of providing accurate, relevant data that lead to better

insights, better decision making, and improved business. This research surveyed literature on RDB

preservation and identified a gap in query preservation. There are a range of challenges in place

regarding the variation of manipulation languages between RDBs, and four database management

systems were surveyed to determine how queries can be manipulated on each platform.

The proposed solution analyses relational algebra trees to preserve queries and researches

eXtensible Markup Language (XML) to present relational algebra trees in XML format. Therefore,

this research suggests an optimal approach to query preservation in various RDB platforms. A

preservation methodology for queries is proposed based on converting all data manipulation

language representation among various RDBs into one format: an XML file. This XML file does not

preserve the data manipulation language itself but rather the relational algebra trees of queries.

Thus, the logic of queries will be preserved in both human and computer readable formats.

iv

ACKNOWLEDGMENTS

I would like to take this opportunity to first and foremost thank God for being my strength and guide

in the writing of this thesis.

Also, I would like to thank my husband Badr and my parents for their continuous support and

encouragement throughout my research. This achievement would not have been possible without

them.

I would like to express my sincere gratitude to my advisor Dr Denis De Vries for her continuous

support of my thesis, as well as her patience, motivation, enthusiasm and immense knowledge. Also,

I thank Dr Carl Mooney who has supported my thesis through the database sample that he has

provided me with.

Finally, I would like to thank my wonderful children, Leen and Hassan, for always making me smile

and for understanding those times when I had to work on this thesis instead of spending time with

them. I hope I have been a good mother and that I have not lost too much during the tenure of my

study.

v

TABLE OF CONTENTS

DECLARATION ii

ABSTRACT iii

ACKNOWLEDGMENTS iv

TABLE OF CONTENTS v

LIST OF FIGURES vii

LIST OF TABLES viii

CHAPTER ONE: INTRODUCTION 9

1.1 Background .. 9

1.2 Research Problem .. 10

1.3 Research Objective .. 10

1.4 Research Questions ... 10

1.5 Research Significance... 10

1.6 Research Methodology .. 11

1.7 Thesis Structure ... 11

CHAPTER TWO: LITERATURE REVIEW 13

2.1 Introduction ... 13

2.2 RDBs ... 13

2.2.1 Digital Data 13

2.2.2 Databases 14

2.2.3 RDBs 14

2.2.4 Queries 14

2.3 Long-Term Preservation .. 16

2.3.1 Preservation Context 16

2.3.2 Current Implementation Practices 16

2.3.3 Repositories 16

2.3.4 Emerging Database Preservation Technologies 17

2.3.5 Challenges to Data Preservation 17

2.4 Relational algebra .. 18

2.4.1 Algebra Definition 18

2.5 Limits of Existing Practices ... 19

2.6. Optimisation ... 19

2.7 Research Gaps .. 19

CHAPTER THREE: METHODOLOGY 21

3.1 Introduction ... 21

vi

3.2 Research Procedures ... 21

3.3 RDB Characteristics .. 22

3.3.1 MS Access 22

3.3.2 MS SQL Server 24

3.3.3 MySQL 26

3.3.4 Oracle 27

3.4 Survey Results .. 29

3.5 Proposed Solution .. 32

3.5.1 Relational Algebra 32

3.5.2 XML as a Preservation Strategy 33

3.6 Discussion .. 34

CHAPTER FOUR: CASE STUDY 36

4.1 Introduction ... 36

4.2 Queries Translation .. 36

4.2.1 Ms Access 37

4.2.2 MS SQL Server 40

4.2.3 MYSQL 43

4.2.4 Oracle 48

CHAPTER FIVE: CONCLUSION 54

5.1 Conclusion .. 54

5.2 Future Work ... 54

REFERENCES 56

Appendices 63

Appendix: Conversion Algorithm ... 63

vii

LIST OF FIGURES

Figure 1. MS Access architecture (Oracle, 2013) .. 23

Figure 2. Relational algebra tree for previous expression.. 33

Figure 3. RA tree for select query represented by union ... 37

Figure 4. RA tree for select query represented by minus ... 39

Figure 5. RA tree for select query in MS SQL Server .. 40

Figure 6. RA tree for update query in MS SQL Server .. 42

Figure 7. RA tree for select query in MY SQL ... 43

Figure 8. RA tree for second select query in MY SQL ... 43

Figure 9. RA tree for third select query in MY SQL .. 44

Figure 10. RA tree for fourth select query in MY SQL ... 45

Figure 11. RA tree for update query in MY SQL .. 47

Figure 12. RA tree for select query in Oracle .. 48

Figure 13. RA tree for delete query in Oracle .. 49

Figure 14. RA tree for select query with join in Oracle ... 50

Figure 15. RA tree for select query with cross and join in Oracle .. 51

viii

LIST OF TABLES

Table 1. Datatype characteristics of four RDBs ... 29

Table 2. Data saved in the four databases .. 30

Table 3. SQL language support in the four databases .. 30

Table 4. Referential integrity of the four databases ... 30

TABLE 5: Operations of relational algebra .. 35

9

CHAPTER ONE: INTRODUCTION

The recent information boom has caused an information revolution, creating a heritage of data in

various formats, such as media, links, and images, and a cognitive need to preserve these data in

structured digital collections (Woods, 2010). This requires a type of program known as a database

management system (DBMS) to manage storage, access, and retrieval of data (Freitas and

Ramalho, 2010). According to data utilisation and retrieval statistics, only 15% of data are accessed

daily by users, while remaining data are archived. Long-term preservation has been developed for

digital dataset management as a result of evolving technologies for which long-term preservation

ensures long-term access to data (Schaefer et al., 2016). Thus, the data lifecycle can be categorised

into the following stages (Lindley, 2013).

Active state: Data are actively generated and modified in a system.

Archive state: Data are easily accessed and stored in such a way to ease processing without

alteration (i.e., data cannot be edited, only retrieved and processed).

Long-term archiving: Only some parts of a dataset are preserved for a specified, long-term period.

1.1 Background

Data availability over an indefinite time period requires long-term preservation, which includes tools,

strategies, and processes that protect the availability and accessibility of data in a readable state.

Here, indefinite refers to a time period that covers technology and data obsolescence due to changes

in technology that interrupt management of digital objects. Because less is known about digital

objects compared to physical objects, digital objects require continual maintenance and refined

support systems (National Library of Scotland, 2014).

Long-term preservation of digital data also requires novel security, data integrity measures, and

satisfying long-term preservation. Security mitigates software failure and unauthorised data access

due to software evolution (Seoane, 2014). Data integrity threats include storage media degradation

or data format and software architecture annihilation caused by data formats only being supported

by specific software or operating systems (Kremser et al., 2012). It is difficult to ensure satisfactory

long-term preservation because success depends on future testing and requires extensive research

efforts and innovations (Gorsel et al., 2014).

A database describes information and related data based on categories and is conveniently and

efficiently managed, maintained, and accessed using a DBMS, which defines storage structures,

manipulates and interrupts strategies, and ensures data security (Date, 2014). A DBMS can be

accessed during the data creation phase by restarting applications or using independent software

10

for information access. A relational database management system (RDBMS) provides an extra

condition relevant to creating and defining relationships between tables, namely tabular structures.

The distinguishing feature between a DBMS and a RDBMS is that the former does not support

tabular structures and does not impose relational creation (Sabău, 2007). A relationship in this

context is defined as an association between entities and is a mathematically formal term that

represents logical relationships among entities or things; therefore, a relational model is a description

of data tables and their relationships (Date, 2014).

1.2 Research Problem

Long-term preservation is a topic that first emerged at the beginning of 2000 and that changed the

focus of research and scholarly concerns. Cumulative research efforts defined various aspects of

long-term preservation, such as strategies, utilisation, limitations, costs, legalities, preserving data

and metadata, and preservation as policy (Backus et al., 2016). Research to develop an efficient

method for preserving accurate representations of entire databases, which include data, metadata,

structures, relations, and data keys, is ongoing. No research has addressed preservation of queries

as an optimisation for data storage, data genre preservation, access capabilities, or (most

importantly) execution plans. Therefore, this research addresses queries as a database optimisation

option for long-term data preservation.

1.3 Research Objective

The primary objective of this research is to formulate a proposal to preserve database queries as a

long-term preservation model. Secondary objectives include reviewing the properties of four

common relational databases (RDBs), converting query languages in relational algebra structures,

which will provide the optimum execution plan providing the lowest execution plans' cost chosen

from set of alternative plans for same query, and proposing XML as a preservation strategy for

queries.

1.4 Research Questions

The research question is: what is the proposed model for long-term preservation of queries?

Additional questions include: what are the properties implemented in four common RDBs; what is

the structure of database queries; and how can XML be used as a preservation strategy for queries?

1.5 Research Significance

This research considers a form of query preservation that simplifies data retrieval, handles query

creation and complexity among various databases, and takes into consideration the fact that few

database users explore database documentation or tutorials for help. Such preservation increases

database utilisation and the consistency of database access, regardless of an individual database’s

11

query structure or format. This will benefit the referential integrity of databases, independent of the

degree to which it supports Structured Query Language (SQL), and will create opportunities for

further research of query preservation strategies, benefits, and rules.

1.6 Research Methodology

This research utilised both descriptive and experimental methodologies that divide the research into

two phase: descriptive and experimental. The descriptive methodology is based on a survey of

RDBs, while the experimental methodology is based on a proposed model for preserving queries in

XML. The research sample in the first phase includes four common RDBs to which the preservation

property was applied: MS Access, MySQL, MS SQL Server, and Oracle. The experimental phase

included four common RDBMS: MSs Access Database, MS-SQL, MYSQL, and Oracle. The

proposed model will preserve queries in an XML file as a preservation strategy. Then, the

transformation of queries into relational algebra will be addressed to define the XML file’s structure.

Finally, the procedure for retrieving XML queries will be discussed.

1.7 Thesis Structure

This thesis is arranged into five main chapters. The introduction introduces the research background,

research problem, main objectives, methodology, and significant research. The second chapter

provides a literature review discussing relevant research. The third chapter describes the research

methodology, and the fourth chapter presents a case study implementing the methodology and the

results. The final chapter provides a brief conclusion of the research with recommendations for future

research.

Chapter One: Introduction

This chapter introduces the research motivation and problem, providing a brief description of the

research objectives, questions, methodology, and research significance.

Chapter Two: Literature Review

This chapter presents the theoretical background of this research, including definitions of research

variables, theories, models, perspectives, studies, and scholarly achievements. The literature review

focuses on RDBs and long-term preservation theory to show the theoretical framework for long-term

preservation and RDBs prior to the research analysis.

Chapter Three: Methodology

This chapter provides details about the research methodology. The appropriate research method for

each topic is described with both descriptive and experimental methods. This chapter also defines

research samples, procedures, and a proposed solution model.

12

Chapter Four: Case Study

The case study chapter presents the proposed model and its implementation and organisation,

descriptions associated with research questions and objectives, and the suitability of the proposed

model for solving the research problem.

Chapter Five: Conclusion

This chapter discusses the results extracted from the deployment of the proposed model in database

structures and integration between results and the theoretical background. It also discusses plans

for developing the research findings.

13

CHAPTER TWO: LITERATURE REVIEW

2.1 Introduction

The digitisation of data has created issues pertaining to data storage and, more importantly,

preservation, in terms of both authenticity and data integrity over long periods of time and across

different types of database systems, including those currently in use and those that might be used

for future data retrieval. The collection of digital data to populate a database is limited by factors such

as the cost of operation, availability of data for time-limited cases, and the availability of resources.

These factors prevent the instant creation of databases with relevant data and create a need for a

means of preserving existing databases for future use. Other types of data, such as geological and

scientific data, require continual collection and preservation over long periods of time without integrity

loss (Gordon and Chaczko, 2015). Thus, long-term preservation of digital data involves a series of

well-managed activities undertaken to ensure the long-term accessibility of databases (Ashraf and

Kumar, 2016). In this context, the preservation of databases is not only concerned with data but also

with the structure, description, and other components of database, such as queries and reports. This

paper specifically proposes a methodology for preserving RDB queries.

2.2 RDBs

2.2.1 Digital Data

Digital data are discrete and discontinuous representations of information or objects rather than

continuous representations of information in a wave or other continuous functions. Although digital

information represents discrete information, such as numbers and letters, this information can also

be continuous, such as in audio and video data. Digital data are characterised by a synchronisation

scheme that presents the beginning and end of a sequence of ordered symbols and requires a formal

language to communicate digital information between a sender and a receiver. Because data are

represented as a sequence of symbols, digital data can be copied indefinitely and without error (Van

Tassel, 2013). This property has led to new services, such as persistent identifiers (e.g., ISBNs) that

may not provide direct access to digital media or identifier–resolver networks that allow data to be

transferred remotely.

Representing analogue values in a digital form entails selecting a sequence of symbols to represent

the analogue values, which often introduces quantisation errors caused by differences between

stored values and original analogue values, such as when decimals from analogue values are

rounded off (i.e., the granularity property of digital data; Kumar, 2014). Finally, digital data are easily

compressed for transmission and decompressed at their destination, allowing for faster transfer of

information (James et al., 2013). These properties allow for easy storage of data in computer

systems that can be accessed when necessary. Although storage methods may differ, each

14

represents a different form of data, different levels of compression, and different use cases (Miller,

2014).

2.2.2 Databases

Databases are an organised collection of digital data that specify structure, queries, tables, and

relevant views of objects. This collection is organised to represent the real aspects of these objects;

for example, a school may be categorised based on classes and the number of students each class

can accommodate. This makes data retrieval simple by using structured queries to locate desired

information (Bourgeois, 2014). Databases are created and maintained by a DBMS that facilitates

interaction between users, other applications, and the databases themselves and allows for the

collection and analysis of data. Each DBMS provides mechanisms for delivering features, such as

data availability, administrative controls, security, and performance (Lake and Crowther, 2013).

2.2.3 RDBs

Relational refers to the mathematical representation of a logical relational aspect of a database in

which data are presented in tables isomorphic to mathematical relations (MAHMOOD et al., 2010).

RDBs store data in models that represent data as tuples (i.e., rows) grouped by relationships and

reset into a solid mathematical foundation. An RDB provides a declarative means of specifying data

and available queries, allowing the user to query for the information they want, while the DBMS

handles the structure in which the data are stored, the procedures for retrieval, and user queries. As

database technology evolves, relational data and RDBs have become more technically complex and

grown in size, with archives, such as the National Climatic Data Centre (NCDC) database, storing

more than 18 petabytes worth of data (NCDC, 2017).

Such large databases create new challenges for long-term preservation of data. Most RDBMSs are

sophisticated and provide features, such as highly linked tables, that would otherwise be impossible

to handle outside the system and that create adverse consequences when links are broken (Saikia

et al., 2015). The data stored in such databases include specifically defined domains and data types,

from basic data types, such as integers, dates, and strings, to more complex user-defined types,

such as character encoding for multi-lingual support. Additionally, RDBMSs implement varying levels

of features, such as the ability to assert predefined conditions, check constraints, generate

customised views, automate triggers initiated by user activity, store procedures, use basic and user-

defined functions in addition to foreign keys to ensure the integrity of referential data, and create

roles to determine which actions specific users are allowed to perform (Dignös et al., 2016).

2.2.4 Queries

A query is a programming language that translates and reflects corresponding natural language

questions or informational demands (Stajano, 1998). Commonly, a query is defined as a statement

written in a specific programming language to extract information or data previously preserved in

15

readable formats (Plew and Stephens, 2002). A database query is an expression written in a query

language designed specifically to define data to be retrieved from the database. These languages

have similar structures and formats to programming languages. Queries are used in several

scenarios, the most popular being a request from an end user who is directly looking for information

related to a database’s content or structure (Upadhyaya et al., 2013). A query action asks a database

to perform additional tasks or operations to change or manipulate data, such as updates or deletions;

other actions are determined by genres in the DBMS or the query language (Beaumont, 2011).

The most used query statement is the SELECT statement, which is an accessing query that can be

converted into an action query (Cox, 2009). SELECT query composition includes both SELECT and

FROM clauses (i.e., preserved keywords) and can include various other clauses, such as WHERE

and ORDER BY, each of which has distinguishing functions. This research uses the simple and

formal syntax composition of the SELECT statement (Plew and Stephens, 2002).

 SELECT [* | ALL | DISTINCT COLUMN1, COLUMN2]

FROM TABLE1 [, TABLE2];

Query statements cannot be summarised in one section, and this brief description of SELECT

statements is given due to their wide usage in database management programming languages. The

list of columns following the SELECT statement is defined as the output column of query execution

and specifies the required data. The FROM statement is followed by table names from which data

are extracted, defined as the table source of data. The SELECT statement in conjunction with various

clauses adds conditions to data retrieval; in this case, the WHERE clause was used to define

execution with a condition using the following syntax formula.

select [all | * | distinct column1, column2]

from table1 [, table2]

where [condition1 | expression1]

[and condition2 | expression2]

Query optimisation involves the execution of a query plan because a query can have many possible

execution plans deployed by different DBMSs. Each plan has a different cost of execution; thus,

16

optimisation of selected queries requires choosing from a set of alternative plans for same the query,

which is addressed in the current research (Kaur, 2013). The cost difference between alternative

execution plans can be significant, making the necessity of optimisation inevitable (Wu et al., 2013).

2.3 Long-Term Preservation

2.3.1 Preservation Context

Long-term preservation of databases requires the ability to collect data from different database

systems and to ensure data accessibility for long periods of time. This means that databases should

be maintained independently of their specific management systems, which can be short-lived

(Roland and Bawden, 2012). While most major RDBMSs implement standard SQL support, it is

almost impossible to port database layouts and SQL codes between management systems without

modification and functionality loss (Jark et al., 2014). This makes the process of data preservation

complex because it must handle intricately different database layouts and present data in a uniform

and independently accessible manner. While RDBMSs implement core SQL standards, they have a

large number of custom, product-specific, and non-standard functionalities that result in significant

incompatibilities between databases. Modern RDBMSs also implement application-level data

storage by moving physical data storage from file levels managed by the operating system to internal

storage managed independently (Hellerstein et al., 2007).

2.3.2 Current Implementation Practices

A number of mechanisms are used to preserve highly and intricately linked databases in an

accessible form for long periods of time despite technological changes (Locuratolo and Palomäki,

2015). Database preservation requires preservation of all data characteristics, including behaviour,

context, appearance, and content. One common means of converting data for storage is

denormalisation of databases to produce plain text files that contain tabulated data stored in tables

with fixed lengths and delimited columns (IBM Knowledge Centre, 2017). These files are

accompanied by separate data dictionaries and metadata files that provide a context for

understanding the information and its provenance (Date, 2013). These descriptive files can be stored

physically or electronically with copies of the data made every few years to prevent degradation

(Stefanova, 2013). However, this method of archiving cannot present multiple data structures and

tables in a single table, leading to the loss of precision in the archived data and inefficient long-term

preservation.

2.3.3 Repositories

Repositories or the grouping of separate but related databases is another database preservation

strategy. Repositories can be maintained individually or institutionally and collect data from various

databases in a single logical entity that allows users to interact with that data in a single database.

One means of operating a repository is to maintain a single system that directly accesses data items

17

stored in another database. The principle use of repositories is to provide a logical aggregation of

data from multiple databases and to provide functions that would not otherwise be logical when using

each database individually (Koopman and de Jager, 2016). Repositories function as a database

preservation method when they make local copies of databases, although they do not fully describe

the data they store and are only linked to the parts of the databases that provide relevant data.

Commercial repositories, such as institutional repositories, provide libraries for publishing databases

for long-term storage and are preferable over personally managed repositories (Perrina et al., 2016).

While these libraries offer different functionality from digital archives, they are an incomplete form of

database preservation because they store copied data over long periods of time (Perrin, Winkler and

Yang, 2015).

2.3.4 Emerging Database Preservation Technologies

Modern RDBMS structure differs from the structure of databases resulting from RDBMSs, making it

difficult to create a universal digital data management standard. Although current technology, such

as the Software Independent Archiving of Relational Databases (SIARD), has advanced the

extraction of database properties, little research has been done on query preservation to enhance

long-term preservation of databases (Thomson, 2016). SIARD has attempted to extract data

automatically or manually for unknown or custom RDBMSs and archive these data as separate .zip

or .zipx or as XML files containing descriptive information of data structures (Swiss Federal Archives,

2017).

The use of XML to store metadata is not a new concept, and it uses the same schema used to

capture data and table structures in the database mark-up language. XML was chosen for its ability

to extend to linked resource description frameworks for further optimisation based on the type of

data being stored (Hardesty, 2016). This model of database preservation integrates different

databases into a single archive without the complexity of changing data or structures to fit a DBMS-

specific structure. Such preservation is efficient and preserves data integrity and authenticity over

time.

2.3.5 Challenges to Data Preservation

Apart from the need to incorporate different database structures and schemas defined by different

RDBMSs, data preservation must also take into account factors that ensure successful data

preservation. Among the primary requirements for preserving data is the maintenance of the integrity

of stored data—data must represent the same information as it describes in its original state.

Additionally, archives should be stored in an accessible environment to provide continual operability

over long periods of time. Stored data should be independently accessible without requiring the use

of a specific DBMS to read the information, which should be kept in secure storage both physically

and virtually for protection from unauthorised access and manipulation (Elhai, Levine and Hall,

2017). To provide this capability, researchers often make compromises between the safety and

18

stability of archives and must choose between outsourcing to stable data-preservation platforms and

storage facilities or commercial cloud-service providers, both of which risk data exposure to third

parties (Stancic, Rajh and Brzica, 2015). Choosing the latter may also expose archives to targeted

hacking activities.

2.4 Relational algebra

This study represents a model of preserving queries in a relational algebra format; thus, this section

provides a brief background for the theory of relational algebra.

2.4.1 Algebra Definition

Algebra takes a defined set of variables and modifies them using a set of defined applicable

operators. An operator and one or more variables make an algebraic expression. The rules can be

defined in an expression but not every rule can be applied to all operators (Trissl, 2012). Algebraic

operators are applied to an expression and can be defined as single or multiple relation operators.

Single relation operators are listed below (Franchitti, 2014).

 Selection operator (): Extracts relation tuples (rows)

 Projection operator (): Extracts relation attributes (columns)

 Renaming operator (): Changes relation names

Multiple relation operators include the following (Franchitti, 2014).

 Set operators (,): Perform union and intersection functions

 Cartesian product (): Extract all tuples from two relations

 Join operators (⋈): Select joined tuples from two relations based on a condition

 Minus (-): Extracts all tuples excluded in the relational

 Semi-join (): Extracts the tuples from one of the joined tables.

 DIVISION (∻):gives a relation that includes all tuples in one relation in combination of other

relation

 Left/right outer (): all tuple in left(first)/ right(seconed) relation are kept in the result of R

S

Rules related to writing expressions contain numerous relations and operators in different orders

without affecting execution results, which is similar to mathematical operators. For example, the

selection and join operators in Equation 1 can be rewritten as in Equation 2 (Franchitti, 2014).

σc(R ⋈ S) = σc(R) ⋈ S iff a ∈ A ……… (1)

σc (R ⋈ S) = R ⋈ σc(S) iff a ∈ B…..….. (2)

http://www.databasteknik.se/webbkursen/relalg-lecture/huge-semijoin.gif

19

The extracted list from R joined S and satisfied the condition (C), which executes the joined group

and selection operators based on the join property. The selection of all tuples in R satisfied the first

condition and executed the join with S to ensure the the tuples in R satisfied the condition and joined

one in the S and the vice versa.

2.5 Limits of Existing Practices

One of the limitations of current practices of database preservation is the inefficiency of the resulting

archives, in terms of their ability to accurately depict the databases they seek to preserve (e.g.,

exported archived element limitations, data access and performance, and data exchange formats;

Lindley, 2013). As requirements, long-term data preservation should not alter the structure, content,

appearance, or meaning of data, and current data-preservation methods fail to meet these

requirements (IBM, 2010). The reason of this problem is due to the existence of a variety of RDBMSs

that, despite being SQL-compliant, create databases that are customized or optimized for use with

only one DBMS. This makes the process of porting databases from different RDBMSs much more

difficult to achieve and even more difficult to automate (Park and Brenza, 2015).

Although these archiving methods demonstrate the necessity of preserving database queries in

various forms as part of the preserved databases, they have not explored the possibility of using

queries as a method of enhancing the preservation process. Given the varying capabilities of

RDBMSs, the extraction and building of queries differs for each RDBMS, and the creation and

performance of queries in these systems are supported by different functions. The same problem

arises for accessing archived data from RDBMSs that are different from those in the original ported

databases, which requires modifications for compatibility. Although current methods have been

successful for preserving data in some form or another, preserving whole databases without altering

structure and content remains a challenge. Current methods have advanced query transformation;

however, they have not attempted to integrate query use to enhance long-term preservation of

databases.

2.6. Optimisation

Optimising a query occurs during the process of extraction from an RDBMS by converting a query

from an SQL format to a relational algebra expression for easy transfer and cost savings in data

retrieval. This also optimises compatibility between different RDBMSs and preserves complete query

structures of databases while maintaining usability across different platforms over time. This is

achieved through a process that isolates queries to fit the profiles of different RDBMSs (IBM, 2013).

2.7 Research Gaps

Although there has been extensive research conducted about data preservation methods, extraction

of metadata, and data storage and accessibility over long periods of time, research on preserving

20

whole databases, including different components, is still ongoing. The current research proposes the

use of relational algebra expressions to represent all queries, stored in a format that simplifies data-

retrieval from RDBs and maintains optimal execution and preservation of data, regardless of the

specific RDBMS used to create them. This process transforms the query from being a non-preserved

part of a database to being part of the preservation process by not only improving the process of

data retrieval but also by optimising the same data for presentation across various RDBMSs. This

research also explores optimisation of the execution strategy and the processing time for queries

through the reduction of redundant procedures and transformations. It does this by separating

database-specific and dynamic features that are common versus those that need to be changed for

each database. Thus, queries are not only used as basic data-retrieval tools but also as a way to

improve databases by preserving referential integrity, authenticity, and accessibility independent of

the software used to access or create them.

21

CHAPTER THREE: METHODOLOGY

3.1 Introduction

This chapter presents the proposed method and procedures to satisfy the research objective and

answer the research questions put forth in the introduction. The main objective of this research is to

propose an appropriate prototype for long-term preservation of queries within RDBs, ensuring

consistency and functionality in the databases that are aligned with organisational needs. This

chapter covers both research methods and research designs, presenting research tools and a

comprehensive overview of the research procedures.

3.2 Research Procedures

The first phase of the research involved collecting characteristics for each RDB, while the second

phase involved tabulating and categorising these characteristics, focusing on the important and

unique features of each database. Based on this table, the research defined the main characteristics,

functions, and compatibility needs that must be preserved through the proposed approach.

The experimental phase consisted of two steps. First, all common features among the

implementation and database structures of RDBMSs were identified to generate a list of common

features, functions, compatibilities, and incompatibilities for each system. These were organised into

subcategories for common, cross-platform features that required no modification (e.g., core

implementation of SQL and descriptions of table columns) and placed in the first level of the

schematic representation of the database. Second, features available but implemented differently in

all databases were identified to create an intermediary model to translate databases into a common

relational algebra form to preserve queries. This allowed the field to accommodate all data from the

various RDBMSs. Finally, the research defined a translation model from basic SQL query structures

in relational algebra, including customised views, functions, and triggers to provide query building

and preservation stored in XML syntax form as follow:

22

 This XML file will then provided complex, consistent mapping of a relational algebra tree for queries,

creating an expressive XML schema as a preservation strategy.

3.3 RDB Characteristics

The aim of this survey was to determine the main differences among database and query languages

deployed to verify that XML could be used an intermediate language for all databases.

3.3.1 MS Access

MS Access is a Microsoft product that is widely available as an RDB tool and that combines a

graphical user interface with software-development tools. MS Access is a desktop database, which

means all data must be preserved on an individual computer. The tools preserves, systematises,

and administers data retrieved in various formats and from various reports and navigates database

objects, such as tables, queries, forms, relations, and reports (Lemons 2016). MS Access consists

of two main elements: a Jet/ACE database engine and a Rapid Application Development tool, both

of which facilitate form- and report-building restrained to the database.

MS Access stores all database objects in one file format (‘mdb’) that stores tables, relations, queries,

forms, and reports in a single-user session file stored on the user’s devices. In a multi-user

environment, the 'mdb' file is located on a file server so that all users can share the file. MS Access

supports both user and administrator environments; in a user environment, one can insert and

retrieve data, while in the administrator environment, one can use additional functions, such as

design, modify, create and define relations, create new form, and define index (Lauesen 2011). The

variety of access objects allows users to easily manage access and analyse stored data. The

following is a brief description of access objects (MSDN Library, 2017).

<?XML version= “1.0” encoding=“ISO-8859-1”?>
<root describes=”common_features”>

…
Features, structures, functions and other implementations common to all RDBMSs.
…

<translated describes=”common_but_different_features”>
 …
Cross-compatible features, functions and other implementations.
…

<custom describes=”custom_features”>
 <for dbms=”dbmsA”>
 Features unique to dbmsA
 </for>
 <for dbma=”dbmaB”>
 Features unique to dbmsB
 </for>

</custom>
</translated>

<root>

23

Figure 1. MS Access architecture (Oracle, 2013)

Table: A combination of columns and rows. Each column has a unique name and a header called a

‘field’ that is assigned to a specific data type. Each row represents data information, called a record

for particular instances.

Query: A basic data-retrieval process used to explore, edit, and analyse stored data. Queries can

be created using a wizard or through query design functions. Queries can be created in numerous

forms, including the following (Roman, 1999).

1. SELECT queries retrieve data from one or more tables based on criteria such as category,

range, and Boolean operators.

2. PARAMTER queries are prompt queries based on the value of defined parameters in the

database.

3. CROSSTAB queries are synonyms of the pivot table wizard. A CROSSTAB query is a wizard

query displaying value summarisations, such as sums, counts, and averages.

4. ACTION queries influence multiple records in a single query. An ACTION query is associated

with one of four actions: delete, update, append, or table.

5. SQL queries are made using SQL statements, such as union (which combines multiple fields

into one), pass through (which sends orders to the open database connectivity [ODBC] data

sources to retrieve records), and edit data or run.

6. Data definition queries utilise the data definition language (DDL) to create, delete, or edit

tables and create indexes.

7. Sub-queries are a combination of two select queries or one select query and one action

query.

Form: A customised tool for inserting, exploring, and printing data from a database in a simple

manner to ensure reliability.

Report: A customised tool for extracting and analysing data and for creating an easy-to-read

summary of the database.

24

MS Access supports several data types, including text, memo, numbers (e.g., integer, long number,

single, double, and decimal), date/time, and Boolean. It also supports datatype changes in previously

stored records (Lauesen, 2011).

The Jet database engine controls channels to external data sources and ODBC. The advanced

version of Jet contains an access database engine (ACE) and creative security features not

implemented in earlier versions. During the query process, the ACE returns a record set based on

query criteria as either snapshots or dynasets. Snapshots are an image of data representing status

at query time; while editing data in snapshot images is not allowed, other operations are, such as

query, forms, and reports. Dynasets are a live view of data, and key values are extracted and stored

in the memory by the Jet engine, which uses key values to index and retrieve data from external

databases instantaneously upon request (Microsoft Office, 2010). MS Access supports indexes by

preserving them in tables and defining them as primary keys that are created automatically or defined

by a user (Tutorials Point, 2017).

MS Access partially supports the referential integrity of SQL commands and supports the creation

of various relationships between tables to provide an entity relationship model (i.e., a graphical tool

that simplifies the relation set between tables). The main contribution of referential integrity is to

check matches between foreign keys and primary keys when defining relationships. The entity

relationship interface demonstrates referential integrity in cascades and no-action referential actions.

A cascade action is when the user removes the corresponding foreign key for a deleted record, while

a no-action action is an unauthorised deletion process for records that are dependent on foreign

keys (Blaha, 2005; Lauesen, 2011). Three types of relationship creation are supported: 1) ‘one to

many,’ in which a single field with a primary key is related to another record in the table; 2) ‘one to

one,’ in which a single record in a table is related to a single record in a different table; and 3) ‘many

to many,’ in which multiple records are related without a unique value or a relationship is composed

of two one-to-many relations (McFadyen, 2015).

3.3.2 MS SQL Server

SQL Server is a cloud-ready Microsoft information platform that guarantees security and scalability

of data across devices or in private and public clouds. It is a dependent platform that supports the

structured english query language (SEQUEL). MS SQL Server uses a client–server architecture, in

which a workstation is equipped with operators, such as the SQL server management studio and

SQL server configuration manager, and the server station is equipped with a centralised server, such

as the SQL server, SQL server agent, Microsoft SQL Server integration services, SQL server

analysis services, SQL server reporting services, or SQL browser (Tutorials Point, 2016a).

MS SQL Server consists of three main elements: 1) SQLOS, which enforces basic SQL server

services; 2) the relational engine, which enforces RDB elements; and 3) the protocol layer, which

25

demonstrates SQL server functionality (Acronics, 2008). SQLOS executes primary functions related

to the operating system, such as thread scheduling, memory management, synchronisation

primitives and locking, and deadlock detection. MS SQL Server has a special standalone memory-

and-thread management system that executes tasks (Delaney et al., 2009). The relational engine

associates stored relational data by utilising SQLOS features in the SQLOS API and supports and

defines data types authorized by the software. It consists of a storage engine that manages data

preserved on defined devices. In addition to controlling data access, the engine also executes log-

based transactions to ensure analysis console for intrusion databases (ACID) compliance when

changing data. The relational engine also includes a query processor that handles data retrieval

through the SQL query form, using a query parser, query optimiser, and query executor to translate

a query into a series of operations scheduled for execution by SQLOS (Acronics, 2008). The protocol

layer provides a user interface for the SQL server. All operations performed by the user go through

this layer to the tabular data stream defined by Microsoft; these are then transmitted to the lower

physical layer to reach the SQL server (Delaney et al., 2009).

MS SQL Server supports numerous datatypes, including text and characters (char, varchar, nchar,

and nvarchar), numbers (tinyint, smallint, integer, and decimal), currency (smallmoney and money),

date/time (smalldatetime and datetime), Boolean (bit), and a special type of image binary (Mistry and

Misner, 2012). MS SQL cooperates with the Business Intelligence Studio to offer report services,

and it has a unique architecture for data files, as described below (Tutorials Point, 2016a).

File groups: These data files are constructed from a combination of files for allocation and

management purposes. The file group is defined as one of two types: primary and user-defined. The

primary file group consists of primary data files with miscellaneous files that are not classified or

related to any group. The user-defined file group is a group of files assigned to utilise keywords for

database creation or statement editing. Initially, the SQL Server creates one primary file group as

the default file group (Delaney et al., 2009).

Files: SQL Server supports three types of files: the primary data file, secondary data file, and log file.

The primary data file is the initial file used for database creation with a common extension of ‘mdf’.

The secondary data file is not a necessary file in the database; thus, some databases do not have

secondary data files and others might have multiple files with the common extension ‘ndf’. Log files

save the essential log information for recovering the database and have a common extension of ‘ldf’.

All file locations are stored in both the master database and the primary data file. However, metadata

are stored only in the master data files (Tutorials Point, 2016a).

Extents: These are the spaces allocated to tables and indexes. An extent consists of eight adjacent

pages. There are two types of extents: uniform, consisting of a single object, and mixed type,

consisting of up to eight objects (Delaney et al., 2009).

26

Pages: These are the elementary unit of MS SQL Server data storage. Each page has a header

used to save system information. There are nine types of pages: a data page consisting of data rows

without text, ntext, and image row data; an index page that handles index entries; a text/image page

that handles text, ntext, and image data; a GAM page that handles allocated extent information; an

SGAM page that handles system-level allocated extent information; page free spaces that handle

information about available page spaces; an index allocation map page that handles extent

information utilised by the table or index; a bulk-changed map that handles modified extents by bulk

operation; and a differential-changed map that handles extent information changed since the last

backup of database statements (Tutorials Point, 2016a).

Query execution and procedures preserved in a procedure cache reduce the number of queries

generated. MS SQL Server supports all SQL query languages, including data query language (DQL),

data-manipulating language (DML), data-definition language (DDL), and data-control language

(DCL). This allows for common commands, such as select, query, creation of table, check, like, insert

to, update, and delete (Halvorsen, 2016). For referential integrity, MS SQL Server utilises a foreign

key as the reference to a primary key or a special combination of columns. Even though MS SQL

Server does not support referential actions as set null or set default, it fully supports cascade actions

and no-action actions, which are different from the SQL standard (Blaha, 2005).

3.3.3 MySQL

MySQL is an open-source RDBMS that supports SQL and multi-user access and implements various

communication protocols for authentication, querying, and server administration. MySQL also has

inner API support for C, C++, and Eiffel and can be connected to other databases, such as Object

linking and embedding, database (OLE DB) and ODBC, in Microsoft environments. MySQL supports

various storage engines, although the InnoDB storage engine is recommended due to its support of

various relation creations (Shirish, 2010).

The MySQL structure consists of tables grouped in columns and rows, in which columns contain

data associated with a column-defined datatype. MySQL data are saved in separate tables, and the

user can define the relation between fields as one-to-one, one-to-many, unique, required, or optional,

with pointers between tables. MySQL also supports temporary tables that save temporary data

during sessions that are deleted when a session is terminated. As a client–server platform, it

preserves database metadata, which the user can fetch using a select query (MySQL, 2017). MySQL

supports the following data types: text (char, varchar, tiny text, text, medium text, long text, and set),

numeric (tinyint, smallint, mediumint, int, bigint, float, and real), currency (decimal), date/time (date,

time, and datetime), Boolean (tinyint and enum), and special types (tinyblob, blob, mediumblob, and

long blob; Tutorials Point 2016b).

The InnoDB engine ensures ACID compliant features in all transactions and save and query

27

processes that satisfy data integrity. It is also includes in-row level locking in multi-user sessions,

and user data are stored in cluster indexes to reduce input/output (I/O) operations. All queries are

based on a primary key (Shirish, 2010). Queries defined in MySQL are categorised using the SQL

query languages, including DQL, DML, DDL, and DCL. It supports commands, such as insert for

data insertion, select for retrieving data from the database, update for modifying stored data, and

delete for record deleting (Tutorials Point, 2016b). MySQL also supports indexes, which can be

defined as a primary key, unique, index, and fulltext. Thus, MySQL enhances referential integrity

and fully supports the SQL standard because it supports all referential actions (cascade, set default,

no action, and set null) for deleting and updating. Database indexes are created for foreign keys and

reference keys, where the referenced column can be the primary key or unique (Blaha, 2005).

3.3.4 Oracle

Oracle has two disconnected structures: logical and physical. The disconnect ensures that the logical

structures can be accessed without affecting the administration of physical structures that include

data files consisting of data from databases. Redo files contain redo records describing all changes

made to data, which are utilised for recovery and control of files. These data files describe a

database’s meta-information, such as the name of the database and location. The logical structures

contain data blocks, extents, and segments to facilitate storage space control in tablespace (Oracle,

2017).

Oracle defines several objects in the database. Tables are the fundamental unit, containing data

entered by users. Indexes are optional objects that improve retrieval performance, especially for

large databases, and also indicate the location of information. Views are customised data in tables

and can also consist of stored queries. Clusters are groups of tables sharing one location based on

column similarity between tables. The database instance is a memory architecture set for managing

database; it is intentionally saved separately from the database file and contains a system global

area set and a background process set (Oracle, 2017).

Oracle supports communication over several networking protocols, such as TCP/IP, HTTP, FTP,

and WebDAV, and transaction implementation in which each SQL statement performs a logical

transaction (Oracle, 2013). It also supports PL/SQL programming used to write programs and

triggers in Oracle and allows users to save codes (PL/SQL procedures or functions) aligned with the

database. There are stored procedures in pre-compiled forms on the server as well as a general

form that can be used by user (Kytes, 2005).

Oracle utilises SQL query statements in SQL query languages, including DQL, DML, and DDL, and

can handle commands such as update, insert, delete, select, merge, great, alter, drop, rename,

grant, revoke, commit, and rollback (Singh and Pottle, 2009). Oracle supports the following

datatypes: text (char, varchar2, nchar, long, and clob), numeric (byte, smallInt, integer, number, float,

28

and real), currency (money), date/time (date), Boolean (bit), and special characters (blob, raw, and

long raw). It also includes a data dictionary that contains read-only metadata tables. Indexing is

supported by defining a candidate key that is assigned to one or more columns. The primary key is

a candidate key that has special characteristics. The index for tablespaces uses a primary key and

a foreign key, which is a group of columns that have a primary key value (Loney, 2009). In Oracle,

the primary key or the column group can be referenced by a foreign key. Oracle also supports delete

actions that allow the following referential actions: cascade, no action, and set null. It does not

support update actions or set defaults; however, no actions are implied based on the referential

integrity weakness (Blaha, 2005).

29

3.4 Survey Results

The following table shows the characteristics of the four RDBs described in this section.

30

Table 1. Datatype characteristics of four RDBs

Data type Text Numeric Currency Date Boolean Special

Description alphanumeric

data

Numerical data type

variation in length

money fields datetime, date two value data

yes/no

check box

represent graphics,

sound, hyperlink

MS Access text memo integer, long number,

single, double,

decimal

currency datetime yes/no OLE object hyperlink

MS SQL

Server

char, vchar,

nchar, nvarchar

tinyint, smallint,

integer, decimal

Smallmoney,

money

smalldatetime

datetime

bit image, binary

MySQL char, varchar,

tinytext, text,

meduimtext, set,

long text

tinyint, smallint,

mediumint, int, bigint,

float, real

decimal date, time, datetime tinyint, enum tinyblob, blob,

mediumblob, longblob

Oracle char, nchar,

varchar2, long,

clob

byte, smallint, integer,

number, float, real

money date bit blob, raw, long raw

31

Table 2 summarises the types of data saved in the four databases. As shown, the SQL is not stored

in any of the databases except MS Access, which has some SQL queries saved in the wizard while

most are saved in the front end or in the documentation database, which are rarely accessed or lost

over time. The common element among these databases is recognition of basic query languages,

but data saved varies among databases, as shown in Table 2. All databases save data, although

MYSQL does not save indexes, and MS Access has a distinguished query wizard (SQL) and SQL

server that provides query execution.

Table 2. Data saved in the four databases

MS Access SQL Server My SQL Oracle

data, indexes,

forms, reports,

query wizard (SQL)

data, indexes, extents, log

file for recovery, location

saved in master data file,

query execution

data,

database,

metadata

data, indexes, stored queries,

PLSQL procedures or

functions, metadata in redo

log

Table 3 summarises the SQL supported languages (i.e., DQL, DML, DDL, and DCL) in the four

databases. SQL is not fully supported in some databases; SQL Server and Oracle support all SQL,

while MS Access and MySQL support some but not all.

Table 3. SQL language support in the four databases

MS Access SQL Server My SQL Oracle

DQL , DDL All SQL (DQL, DDL,

DML, DCL)

Select (DQL), DDL

(insert, update, delete)

All SQL (DQL, DDL, DML,

DCL)

Table 4 summarises the four RDBs’ referential integrity, which is fully defined in the supported SQL;

thus some databases partially support the SQL standard, while some fully support it.

Table 4. Referential integrity of the four databases

MS Access SQL Server My SQL Oracle

Based on partial SQL

support, referential

integrity is lacking, but

the E/R graphical is able

to cover this shortage

as well as cascade and

no action in the

referential integrity

action.

Does not fully support

SQL standards, and

support varies for set

null and set default

actions. It only

supports cascade and

no actions. Also, the

no-action syntax is

varied from the SQL

standard.

Fully supports SQL

standard. Supports

all actions in delete

and updates. Also

requires an index

defined in the foreign

key and the

referenced key.

Supports delete action

but not the set default

or update actions. The

no-action syntax

differs from the SQL

standard as well as

from the SQL server

database.

32

3.5 Proposed Solution

Based on Tables 2 and 3, SQL is either not fully supported by the databases or not fully stored in

the databases. One solution is to access the SQL code of the databases and scan for the DML of

the SQL to represent the code in a common language (i.e., relational algebra). This means

converting all queries based on SQL into relational algebra, which is proposed because it is

understood by both users and database software. Thus, a conversion tree is proposed to be saved

and stored as one main database structure that supports preservation regardless of which SQL

version a database uses because main queries are built based on the relational algebra tree stored

in the database as either a tuple or an XML file. Relational algebra has a solid mathematical

representation that considers the basics of any new development or improvement theorem. The

main feature of relational algebra is that it can be substituted with the most efficient plan of execution.

3.5.1 Relational Algebra

Relational algebra is an algebraic query language correlating with a relational model. The algebraic

query is a combined set of algebraic operators corresponding to a structured relation expression

model (i.e., tree). The input relation is represented as a leaf node and the relational algebra as an

internal node where the executions are involved. There are many relational algebra operators;

however, only some operators are described below.

 Select (): Selects a set of records

 Project (): Deletes unwanted columns

 Rename (): Renames a relation or attribute

 Set difference (-): Explores records in one table but not in another

 Union (): Clarifies all records in two tables

 Cartesian product (×): Combines two relations

 Join (⋈): Combines similar tuples from two relations into longer tuples

Each set of SQL operators corresponds to relational algebra operators. For example, the SELECT

query in SQL is a basic retrieval query defined in all databases considered in the research. The

syntax for the SELECT command is as follows.

SELECT x, y, z

FROM R1, …., R2

WHERE where-condition

This is converted to the following in relational algebra:

 x, y, z. where-condition (R1 × …… × R2).

33

Below is a more complicated SELECT statement with a join operation.

SELECT x, y, z

FROM R1 as R

INNER JOIN w as w1

ON w.x = ci.z

AND i.y = C.z

INNER JOIN tt As T

ON T.y = i.y

This is converted to the following,

 x, y, z. where-condition ((R1 ⋈ w.x = ci.z w) ⋈ T.y = i.y tt)).

Thus, the query tree is given as below.

Figure 2. Relational algebra tree for previous expression

3.5.2 XML as a Preservation Strategy

XML converts a range of file formats to one normalised representation (XML, 2002), and it has been

described as a general purpose data manipulation language for both structures and content (Hunter

et al., 2004). XML is an open standard defined by the Wide Web Consortium and is a straightforward

means to preserve data in accordance with document type definition standards as well as an

appropriate format for digital object preservation, regardless of the objects original format. Thus,

⋈ w.x = ci.z

⋈ T.y = i.y
R1

w tt

 x, y, z.

34

XML is optimal for normalisation and provides the most cost-effective and simple format that

mitigates data loss or corruption risks (Ball, 2006; Hunter and Choudhury, 2003). Future

programmers and software will always be able to work with XML, and it is easy to convert XML to

any new format because it uses well-structured data tools with metadata. This research adopted the

XML format for the following reasons.

 XML is platform independent in that it does not depend on any specific software or application

platform.

 XML can be converted to any accessible format by future users, allowing data to be

represented in new formats readable in a human language. XML is simple, which allows for

easy conversion to new formats, especially those developed from XML.

 XML provides a clear, detailed description of a digital object’s structure.

 XML storage for query preservation upgrades any database redundancy problems by

manipulating XML design documents, which are free of redundancy and based on relational

schemas (Kolahi, 2008).

 XML provides an accurate digital reproduction, and its output is suitable for any data scheme

based on an RDBMS.

 XML guarantees authenticity and integrity due to the XML signature property.

3.6 Discussion

Based on the survey of the four databases, all databases are primarily concerned with preserving

data or digital material using unique record and field forms. All databases are similar in terms of

primary defined properties, such as name, datatype, size, foreign key, and primary key. With respect

to datatypes, all databases support text, numerals, Boolean, and date and time, but differ in terms

of support for datatype length or category. For example, MS Access supports alphabetic text in one

type (text memo), while the three RDBs have numerous categories for this datatype. However, each

database supports a specially defined datatype different from the other databases. For example, MS

Access supports the hyperlink datatype, while the other three databases support large binary files

for audio or video to various degrees.

The main concerns of optimisation for data retrieval are refraction of long-term preservation ideas,

retrieval based on query build, query preservation, and referential integrity. These concerns

constrain data-manipulation functionality. The tables show that most referential integrity is

associated with indexes and primary keys, which preserve data. The four databases all save indexes

along with data files, but SQL saves extra records and files to facilitate retrieval and recovery of data.

Referential integrity is defined in several actions, such as set null, set default, no action, and cascade,

that are defined in SQL languages (i.e., DQL, DDL, DML, DCL), although some databases do not

fully recognise SQL (e.g., MS Access). Additionally, the partial implementation and recognition of

35

SQL languages constrain the functionality of databases to meet all data requirements and provide

functions to support data storage for manipulating and retrieving purposes. Thus, the optimisation

proposed in the query requires two main principles. First, data must be freed from SQL dependency

by converting all SQL statements into relational algebraic functions, which are commonly and fully

defined and supported by all RDBs. This will create opportunities to utilise database-functionalities.

Second, the relational algebraic tree must be stored with data files.

36

CHAPTER FOUR: CASE STUDY

4.1 Introduction

This chapter presents an example of the proposed solution. The case study structure includes three

steps.

1. Extract the SQL query manually from the DBMS.

2. Convert each selected query into a corresponding relational algebra expression and tree.

3. Transform the algebraic relational tree into an XML tree structure and code for preservation.

To prove the proposed concept, these steps were applied in MS Access, MS SQL Server, My SQL,

and Oracle.

4.2 Queries Translation

Because of time limitations, only basic queries were extracted manually to demonstrate the proposed

procedures, and because of resource limitations, the work does not consider automation of the

proposed operation, although the work illustrated creates a baseline. Another problem is that the

differences among the databases in SQL standard compliance mean that one specific standard was

not applied. The relational operations have their own symbols. For clarity, the term for the symbol is

used in this study, but symbols for each term are given below.

TABLE 5: Operations of relational algebra

37

For further elaboration, the symbolic relational algebra operators are written in verbal form as in the

following example

PROJECTx (SELECTy < 3 (5).)

This corresponds to the symbolic notation:

𝝅𝒙(𝝈𝒚<𝟑(𝟓)).

The main algorithm of conversion is described in the Appendix.

4.2.1 Ms Access

In Ms Access, SELECT query is the main query, and the relational algebra for SELECT query is

represented as UNION, INTERSECTION, or MINUS as following. It is necessary to determine how

a relation is preserved before conversion.

 Union relation:

The UNION relation is presented in the following relation as a relational algebra (RA) tree.

Figure 3. RA tree for select query represented by union

The XML code and XML tree are illustrated in the following:

SELECT * FROM Graduates

Union

select * from Managers

38

 INTERSECTION and MINUS is given as:

It corresponds to the following RA representation.

Figure 4. RA tree for select query represented by union

However, the MINUS considers alternative operations for INTERSECTION, which is represented as

follows.

<UnionDetails>
 <union>
 <Id>1</Id>
 <Name>Robinson</Name>
 <age>25</age>
</union>
<union>
 <Id>1</Id>
 <Name>Seth</Name>
 <age>24</age>
</union>
<union>
 <Id>2</Id>
 <Name>Darkes</Name>
 <age>27</age>
</union>
<union>
 <Id>2</Id>
 <Name>Eve</Name>
 <age>28</age>
</union>
<union>
 <Id>3</Id>
 <Name>Ishmael</Name>
 <age>24</age>
</union>
<union>
 <Id>3</Id>
 <Name>Sarah</Name>
 <age>29</age>
</union>

</UnionDetails>

SELECT * FROM Graduates

minus

select * from Managers

SELECT * FROM Graduates

Intersect

select * from Managers

39

Figure 4. RA tree for select query represented by minus

Both INTERSECTION and MINUS are represented by the same XML statement and tree.

Based on the following illustration of relational representations, the conversion deploys the following

rules.

Query Relational algebra
select *
from x, y
where Vol = Size

equivalent to
select *
from (x join y on vol = Size)

X JOINVol = Size Y

The recursive query, in terms of relational algebra, is impossible, but a special operation (i.e.,

transitive closure) is proposed to handle unidentified operators in standard SQL (SQL2) that uses a

SQL+ combined loop in the host language or recursion.

<MinusDetails>
 <Minus>
 <Id>1</Id>
 <Name>Seth</Name>
 <age>24</age>
</Minus>
<Minus>
 <Id>2</Id>
 <Name>Eve</Name>
 <age>28</age>
</Minus>
<Minus>
 <Id>3</Id>
 <Name>Sarah</Name>
 <age>29</age>
</Minus>
</MinusDetails>

40

4.2.2 MS SQL Server

 SELECT query has multiple forms, and the following illustrate the common ones:

It can be translated into the following RA expression and tree.

Figure 5. RA tree for select query in MS SQL Server

The XML tree and code are represented as follows.

Select distinct Name, Subject, TeacherName, Marks from

Student;

<StudentDetails>

 <Student>

 <Name>David</Name>

 <Subject>Management</Subject>

 <TeacherName>Mak</TeacherName>

 <Marks>81</Marks>

 </Student>

 <Student>

 <Name>Jhon</Name>

 <Subject>Computers</Subject>

 <TeacherName>Doe</TeacherName>

 <Marks>81</Marks>

 </Student>

 <Student>

 <Name>Jhonty</Name>

 <Subject>Business</Subject>

 <TeacherName>Doei</TeacherName>

 <Marks>81</Marks>

 </Student>

 <Student>

 <Name>Mark</Name>

 <Subject>Social</Subject>

 <TeacherName>Clark</TeacherName>

 <Marks>81</Marks>

 </Student>

</StudentDetails>

41

The algorithms that comply with conversion include common compositions and can be summarised

as the following.

Query Relational algebra
select Job
from Fin

PROJECTjob(Fin)

select fy, job
from Fin

PROJECTfy, job(Fin)

select *
from Stu
where Num < 300

SELECTNum < 300(stu)

select *
from Rest
where Pl < 30
and num >= 15

SELECTPl < 30 and num >= 15(rest)

select stu.name
from fu Ra, Se
Stu
where Ra.Fun =
Stu.ref
and ra.Title =
"hospital"

PROJECTstu.name ([SELECTra.Title=

"hospital"(RENAMERa(raref, ratitle, Ra.Fun)(Fin))] JOIN RaFun =

Sturef [RENAMESTU(Sturef, stu.name, Ra.Fun)(fin)])

or, in a shortage way,

PROJECTstu.name([SELECT ra.Title = "hospital"
(RENAMERa(Fin))] JOINRa.Fun = Stu.ref [RENAMESTU(Fin)])

or

Ra <- RENAMERa(raref, raTitle, Rafun)(fin)
STU <- RENAMESTU(Sturef, stuname, stufun)(fin)
J <- SELECTtitle = "hosiptal"(Ra)
C <- J JOINRafun = sturef STU
R <- PROJECTstu.name(C)

42

 Update query:

The RA expression and tree is as follows.

Figure 6. RA tree for update query in MS SQL Server

The XML is given below.

update Student set Name='Andrew' ,marks=84 where StudentId=2

Select * from Student where StudentId=2

<StudentDetails>
 <Student>
 <StudentId>2</StudentId>
 <Name>David</Name>
 <Subject>Computers</Subject>
 <DOB>1993-02-02T00:00:00</DOB>
 <RegistrationDate>2018-02-
01T00:00:00</RegistrationDate>
 <TeacherName>Doe</TeacherName>
 <Marks>84</Marks>
 </Student>
</StudentDetails>

43

4.2.3 MYSQL

 The following query was extracted from the database as a SELECT query with different

compositions.

The RA expression and tree representation is as follows.

Figure 7. RA tree for select query in MY SQL

The XML representation and code is given below.

 The second form of select query is given as follows:

with the following RA expression and tree:

Figure 8. RA tree for second select query in MY SQL

SELECT Name FROM User WHERE Age > 25;

<EmployeesDetails>
<Employees>
<Name>Victor</Name>
</Employees>

<Employees>
<Name>Jane</Name>
</Employees>
</EmployeesDetails>

SELECT * FROM User WHERE id>2 OR Age != 31;

44

The corresponding XML code and tree for second query are:

 The third form of select query is

This query is represented in RA as

Figure 9. RA tree for third select query in MY SQL

<EmployeesDetail>
<Employees>
<Id>1</Id>
<Name>John</Name>
<Age>25</Age>
<Gender>Male</Gender>
<OccupationId>1</OccupationId>
<CityId>3</CityId>
</Employees>
<Employees>
<Id>2</Id>
<Name>Sara</Name>
<Age>20</Age>
<Gender>FeMale</Gender>
<OccupationId>3</OccupationId>
<CityId>4</CityId>
</Employees>
<Employees>
<Id>3</Id>
<Name>Victor</Name>
<Age>31</Age>
<Gender>Male</Gender>
<OccupationId>2</OccupationId>
<CityId>5</CityId>
</Employees>
<Employees>
<Id>4</Id>
<Name>Jane</Name>
<Age>27</Age>
<Gender>Female</Gender>
<OccupationId>1</OccupationId>
<CityId>3</CityId>
</Employees>
</EmployeesDetail>

SELECT Name, Gender FROM User NATURAL JOIN City WHERE CityName = ”Boston”;

45

The corresponding XML tree and code is represented as below:

 The fourth form of select query is

With a RA representation of

Figure 10. RA tree for fourth select query in MY SQL

<EmployeeDetail>
<Employees>
<Name>John</Name>
<Gender>Male</Gender>
</Employees>
<Employees>
<Name>Jane</Name>
<Gender>Female</Gender>
</Employees>
</EmployeeDetail>

SELECT * FROM Employees as E join Occupation as o on E.OccupationId = o.OccupationId

46

corresponding XML code and tree for fourth query are as follows.

 The update query

<EmployeesDetail>
<Employees>
 <Id>1</Id>
 <Name>John</Name>
 <Age>25</Age>
 <Gender>Male</Gender>
 <OccupationId>1</OccupationId>
 <CityId>3</CityId>
 <OccupationId>1</OccupationId>
 <OccupationName>Software
Engineer</OccupationName>
</Employees>
<Employees>
 <Id>2</Id>
 <Name>Sara</Name>
 <Age>20</Age>
 <Gender>FeMale</Gender>
 <OccupationId>3</OccupationId>
 <CityId>4</CityId>
 <OccupationId>3</OccupationId>

<OccupationName>Pharmacist</OccupationName>
</Employees>
<Employees>
 <Id>3</Id>
 <Name>Victor</Name>
 <Age>31</Age>
 <Gender>Male</Gender>
 <OccupationId>2</OccupationId>
 <CityId>5</CityId>
 <OccupationId>2</OccupationId>

<OccupationName>Accountant</OccupationName>
</Employees>
<Employees>
 <Id>4</Id>
 <Name>Jane</Name>
 <Age>27</Age>
 <Gender>Female</Gender>
 <OccupationId>1</OccupationId>
 <CityId>3</CityId>
 <OccupationId>1</OccupationId>
 <OccupationName>Software
Engineer</OccupationName>
</Employees>
</EmployeesDetail>

update employees set OccupationId=1 where Id=3

select * from Employees as E

join Occupation as O on E.OccupationId=O.OccupationId

join City as C on E.CityId=C.CityId

where C.CityId ='3'

47

It has the following RA representation,

Figure 11. RA tree for update query in MY SQL

.

XML code and tree representation are:

<EmployeeDetails>
<Employees>
 <Id>1</Id>
 <Name>John</Name>
 <Age>25</Age>
 <Gender>Male</Gender>
 <OccupationId>1</OccupationId>
 <CityId>3</CityId>
 <OccupationId>1</OccupationId>
 <OccupationName>Software
Engineer</OccupationName>
 <CityId>3</CityId>
 <CityName>Boston</CityName>
</Employees>
<Employees>
 <Id>4</Id>
 <Name>Jane</Name>
 <Age>27</Age>
 <Gender>Female</Gender>
 <OccupationId>1</OccupationId>
 <CityId>3</CityId>
 <OccupationId>1</OccupationId>
 <OccupationName>Software
Engineer</OccupationName>
 <CityId>3</CityId>
 <CityName>Boston</CityName>
</Employees>
 </EmployeeDetails>

48

4.2.4 Oracle

 The SELECT query is given as:

It has the following RA representation:

Figure 12. RA tree for select query in Oracle

The XML representation is given below:

select * from teacher where departmentid=1001

<Teacher>
<id>1</id>
<name>Monty</name>
<departmentid>1001</departmentid>
<salary>1000</salary>
</Teacher>
<Teacher>
<id>2</id>
<name>Pintu</name>
<departmentid>1001</departmentid>
<salary>1500</salary>

</Teacher>

49

 The DELETE query:

The RA representation is as follow:

 Figure 13. RA tree for delete query in Oracle

XML representation is given below:

delete from teacher where teacherid=2

 select * from teacher as t join department as d on t.departmentid =d.departmentid

50

 The SELECT query with a JOIN function is given as

The RA representation is as follow:

Figure 14. RA tree for select query with join in Oracle

and the following is XML representation.

 The SELECT query with CROSS and JOIN functions is given as

select max(salary) as Salary, departmentid from teacher as t join department

as d on t.departmentid=d.departmentid

group by t.departmentid

<TeacherDetails>
<Teacher>
 <Salary>1500</Salary>
 <departmentid>1001</departmentid>
</Teacher>
<Teacher>
 <Salary>3000</Salary>
 <departmentid>1003</departmentid>
</Teacher>
</TeacherDetails>

select * from teacher cross join department

51

The RA representation is:

Figure 15. RA tree for select query with cross and join in Oracle

the following is XML representation

<TeacherDetails>
 <teacher>
 <id>1</id>
 <name>Monty</name>
 <departmentid>1001</departmentid>
 <salary>1000</salary>
 <departmentid>1001</departmentid>
 <departmentname>Accounting</departmentname>
</teacher>
<teacher>
 <id>2</id>
 <name>Pintu</name>
 <departmentid>1001</departmentid>
 <salary>1500</salary>
 <departmentid>1001</departmentid>
 <departmentname>Accounting</departmentname>
</teacher>
<teacher>
 <id>3</id>
 <name>David</name>
 <departmentid>1003</departmentid>
 <salary>3000</salary>
 <departmentid>1001</departmentid>
 <departmentname>Accounting</departmentname>
</teacher>
<teacher>
 <id>1</id>
 <name>Monty</name>
 <departmentid>1001</departmentid>
 <salary>1000</salary>
 <departmentid>1002</departmentid>
 <departmentname>Science</departmentname>
</teacher>
<teacher>
 <id>2</id>
 <name>Pintu</name>
 <departmentid>1001</departmentid>
 <salary>1500</salary>
 <departmentid>1002</departmentid>
 <departmentname>Science</departmentname>
</teacher>

52

<teacher>
 <id>3</id>
 <name>David</name>
 <departmentid>1003</departmentid>
 <salary>3000</salary>
 <departmentid>1002</departmentid>
 <departmentname>Science</departmentname>
</teacher>
<teacher>
 <id>1</id>
 <name>Monty</name>
 <departmentid>1001</departmentid>
 <salary>1000</salary>
 <departmentid>1003</departmentid>
 <departmentname>Maths</departmentname>
</teacher>
<teacher>
 <id>2</id>
 <name>Pintu</name>
 <departmentid>1001</departmentid>
 <salary>1500</salary>
 <departmentid>1003</departmentid>
 <departmentname>Maths</departmentname>
</teacher>
<teacher>
 <id>3</id>
 <name>David</name>
 <departmentid>1003</departmentid>
 <salary>3000</salary>
 <departmentid>1003</departmentid>
 <departmentname>Maths</departmentname>
</teacher>
</TeacherDetails>

53

The SELECT query can be combined with the aggregation function to discard duplicates by ignoring

null values.

SQL Relational algebra
select sum(marks)
from D

Fsum(marks)(D)

select count(marks)
from D

Fcount(Marks)(D)

select count(distinct
mark)
from D

Fcount(mark)(PROJECTmark(D))

However, aggregation can be grouped as follows.

SQL Relational algebra
select sum(mark)
from d
group by aps

apsFsum(mark)(D)

select sum(mark), count(*)
from D
group by aps

apsFsum(mark), count(*)(D)

54

CHAPTER FIVE: CONCLUSION

5.1 Conclusion

This study identified the types of data that has to be preserved in the long term and proposed a

methodology for preserving queries. The majority of databases satisfy long-term preservation of

data. However, RDBs do not have only data, they are composed of many components such as

queries, pages, metadata and so forth. Thus, this research proposed a methodology for preserving

queries. The proposed approach was based on representation of all data-manipulating languages

among RDBs as XML files, which preserve relational algebra trees for queries as XML queries. This

simplifies the data retrieval process, regardless of when initial data preservation took place, because

data associated with these queries can be read or extracted without using the original language

standards. This research also provided a small case study using the MS Access database to retrieve

an SQL query and convert it into relational algebra presented as an XML tree.

The data collection analysis revealed that database management depends on SQL support that

constrains and restricts feature and function capabilities. The SQL dependency of databases means

that SQL is a predominant query language defined and recognised in the applications’ cores and the

database optimisation process. This research proposes freeing databases of SQL dependency to

exploit the unique features of each database’s functionality for long-term data preservation.

Database management translates SQL declaratives as subsets of procedural operations similar to

relational procedural operation series. Based on this, the research suggests that query optimisation

could be enhanced by converting SQL statements into relational algebra. Additionally, relational

algebra operators are commonly recognised and defined by both users and devices. This will give

databases the rationality-complete features that have been restricted by SQL support in each

database. Thus, this research attempts to normalise query support for the various features of

databases by interpreting queries as relational algebra trees in XML format.

XML was chosen as a long-term data-preserving format due to several different features of query

storage and archiving. These make XML capable of being adapted regardless of any preservation

strategy. XML is a simple and normalised format for data exchange, regardless of software, format,

or time. This proposed approach supports long-term preservation of RDBs where queries play a vital

role in the database management process. It will also enhance storage-space utilisation and reduces

the possibility for inconsistent data.

5.2 Future Work

Future work will contribute to this approach by implementing the strategy in large RDBs to evaluate

the retrieval process over a period of time, including the processing time required to retrieve saved

55

queries compared to the time required for newly written queries. Future studies should look for new

kinds of data-preservation methods that align with data preservation in RDBs or that provide the best

performance in combination with the XML format. However, future research should also investigate

the differences in SQL compliance standards among RDBMSs and how to overcome these

differences using relational algebra. Additionally, an automated version of the current study rather

than manual conversion should be explored to facilitate the process and save time; automation can

be integrated with database management and any improvements can be observes. Finally, future

research should investigate alternatives to XML, such as JSON, to determine suitability for long-term

data preservation.

56

REFERENCES

Acronics. (2008). MS SQL Server: An overview. Available at:

http://hosteddocs.ittoolbox.com/AcronisSQL012308.pdf. (Accessed: 23 August 2017).

Amano, S., David, C., Libkin, L. and Murlak, F. (2014). ‘XML schema mappings’, Journal of the ACM,

61(2), pp.1–48.

Ashraf, T. & Kumar, N. (2016). Interdisciplinary digital preservation tools and technologies, 1st edn.

Hershey, PA, USA: IGI Global.

Backus, J., Cartolano, R., Drummond, C., Gebert, A., Hanson, B., Hilton, J., Martone, M., Michalak,

S., Ovenden, R., Pritchard, S. and Scheman, R. (2016). Report from the repositories and

preservation workgroup, Proceedings of the Open Scholarship Initiative, Location: George Mason

University, 1, pp. 2–6.

Ball, A. (2006). Briefing paper: File format and XML scheme registries. Available at:

http://www.ukoln.ac.uk/projects/grand-challenge/papers/registryBriefing.pdf. (Accessed: 27

September 2017).

Beaumont, R. (2011). Introduction to LibreOffice Base (LOB)-6: Queries using multiple tables.

Available at:

http://www.floppybunny.org/robin/web/virtualclassroom/chap8/libreoffice/libreoffice_base_tut6.pdf.

(Accessed: 1 August 2018).

Blaha, M. (2005). Referential integrity is important for databases. Available at:

http://www.odbms.org/wp-content/uploads/2005/11/007.02-Blaha-Referential-Integrity-Is-Important-

For-Databases-November-2005.pdf. (Accessed: 16 August 2017).

Bourgeois, D. (2014). Data and databases, Information system for business and beyond.

Washington, DC, USA: Sayllor Academy Open Textbook Publisher.

Chen, Y., Davidson, S., Hara, C. and Zheng, Y. (2003). -RRXS: Redundancy reducing XML storage

in relations, Proceedings of the 2003 VLDB Conference, pp. 189–200.

Cox, P. (2009). ‘Action queries: Manipulating your data’, Strategic Finance, 91.1, pp. 56–57.

Date, C. (2013). Database design and relational theory. Sebastopol, CA, USA: O’Reilly.

Date, C.J. (2014). Introduction to database system, 8th edn. Pearson.

http://hosteddocs.ittoolbox.com/AcronisSQL012308.pdf
http://www.ukoln.ac.uk/projects/grand-challenge/papers/registryBriefing.pdf

57

Delaney, K. Randal, P., Tripp, K.L., Cunningham, C., Machanic, A. and Nevarez, B. (2009). Microsoft

SQL Server 2008 internals. Redmond, Washington, USA: Microsoft Press.

Dignös, A., Böhlen, M., Gamper, J. and Jensen, C. (2016). ‘Extending the kernel of a relational

DBMS with comprehensive support for sequenced temporal queries’, ACM Transactions on

Database Systems, 41(4), pp.1–46.

Elhai, J., Levine, J. and Hall, B. (2017). ‘Anxiety about electronic data hacking’, Internet Research,

27(3), pp. 631–649.

Franchitti, J.C. (2014). Relational algebra, relational calculus, and SQL: Presentation based on

textbook slides, in Ramez E. and Shamkant N. (eds.) Fundamentals of database systems, 7th edn.

New York University, pp. 7–130.

Freitas, R.A.P. and Ramalho, J.C. (2010). Significant properties in the preservation of relational

databases, Proceedings of the Research and Advanced Technology for Digital Libraries, 14th

European Conference, Glasgow, UK. September 2010. Springer.

Gordon, L.C. and Chaczko, Z. (2015). Digital patterns for heritage and data preservation standards,

Computational Intelligence and Efficiency in Engineering Systems. Switzerland: Springer

International Publishing, pp. 47–59.

Gorsel, M.V., Leenaars, M., Milic-Frayling, N. and Palm, J. (2014). Evaluation and strategies of digital

preservation and UNESCO’s role in facing the technical challenges, Proceedings of the 2nd Annual

Conference of the ICA, Girona. October 2014

Halvorsen, H.P. (2016). Structured query language. Available at:

http://home.hit.no/~hansha/documents/database/documents/Structured%20Query%20Language.p

df. (Accessed: 24 August 2017).

Hardesty, J. (2016). ‘Transitioning from XML to RDF: Considerations for an effective move towards

linked data and the semantic web’, Information Technology and Libraries, 35(1), p. 51.

Hedstrom, M., Dawes, S., Fleischhuer, C., Gray, J., Lynch, C., Mccrary, V., Moore, R., Thibodeau,

K. and Waters, D. (2002). ‘It's about time: Research challenges in digital archiving and long term

preservation’, Preserving our digital heritage plan for national digital information infrastructure and

preservation program, USA, Congress Library, pp. 205–220.

Hellerstein, J., Stonebraker, M. and Hamilton, J. (2007). ‘Architecture of a database system’,

Foundations and Trends in Databases, 1(2), pp.141–259.

Hunter, D., Watt, A., Dukkett, J., Ayres, D., Chase, N., Fawcett, J., Gaven, T. and Patterson, B.

http://home.hit.no/~hansha/documents/database/documents/Structured%20Query%20Language.pdf
http://home.hit.no/~hansha/documents/database/documents/Structured%20Query%20Language.pdf

58

(2004). Beginning XML. USA: Willey.

Hunter, J. and Choudhury, S. (2003). Implementing preservation strategies for complex multimedia

objects, Proceedings of the International Conference on Theory and Practice of Digital Libraries

ECDL, Norway, Trondheim. August 2003. Berlin, Heidelberg: Springer, pp. 473–486.

IBM Knowledge Centre. (2017). Database design with denormalization. Available at:

https://www.ibm.com/support/knowledgecenter/en/SSEPEK_10.0.0/intro/src/tpc/db2z_denormaliza

tionforperformance.html . (Accessed: 4 July 2017).

IBM. (2010). ‘Proven strategies for archiving complex relational data’, (white paper). USA: IBM

Software Thought Leadership.

IBM. (2013). Database performance and query optimization, IBM i Version 7.2, Licensed internal

code. IBM Corp.

James, G., Witten, D., Hastie, T. and Tibshirani, R. (2013). An introduction to statistical

learning, Springer Texts in Statistics. New York: springer.

Jarke, M., Mylopoulos, J., Quix, C.H., Rolland, C., Manoplopoulos, Y., Mouratidis, H. and Horkoff, J.

(2014). Advanced information system engineering, Proceedings of the 26th International Conference

CAiSE, Greece, 16–20 June 2014. Springer.

Kender, R. (2016). Most popular relational databases (2016 edition). Available at:

https://dzone.com/articles/most-popular-relational-databases-2016-edition. (Accessed: 2 August

2018).

Kolahi, S. (2008). Design guidelines for reducing redundancy in relational and XML data. PhD.

University of Toronto.

Koopman, M. and de Jager, K. (2016). ‘Archiving South African digital research data: How ready are

we?’, South African Journal of Science, 112(7/8), pp.1– 6

Kremser, J., Kovacova, B., Pavlovska, M., Hejtmanek, L. and Antos, D. (2012). Long term

preservation of digital data—Background research, (technical report) Czech Republic: CESNET.

Kumar, A. (2014). Digital signal processing. 2nd edn. New Delhi, Delhi: PHI Learning Pvt. Ltd.

Kytes, T. (2005). Expert Oracle. signature edn. USA: Springer.

Lake, P. and Crowther, P. (2013). Concise guide to databases, London: Springer.

Lauesen, S. (2011). Microsoft-Access tutorial. Available at:

59

https://www.itu.dk/~slauesen/UID/AccessTutorial.pdf. (Accessed: 22 August 2017).

Lemons, M. (2016). Microsoft Access 2016. Available at:

https://dit.ie/media/ittraining/msoffice/MOAC_Access_2016.pdf. (Accessed: 22 August 2017).

Lindley, A. (2013). Database preservation evaluation report: SIARD vs. CHRONOS. Proceedings of

the 10th International Conference on Preservation of Digital Objects. Lisbon. 2 September 2013.

Locuratolo, E. and Palomäki, J. (2015). Perspective for database preservation, Encyclopedia of

Information Science and Technology, 3rd edn, pp.1855–1866.

Loney, K. (2009). Oracle database 11g: The complete reference. New York, US: Oracle Press,

McGraw-Hill Companies.

lv, J. and Ren, H. (2016). 'Heterogeneous database synchronization mechanism based on ETL and

XML', RISTI (Revista Iberica De Sistemas E Tecnologias De Informacao), 17A, p. 153.

Mahmood, N., Burney, A., Ahsan, K. (2010). A Logical Temporal Relational Data Model, International

Journal of Computer Science, 7(1).

McFadyen, R. (2015). Relational databases and Microsoft Access. Available at:

http://www.acs.uwinnipeg.ca/rmcfadyen/CreativeCommons/Relational%20Databases%20and%20

Microsoft%20Access%20V2.0.pdf. (Accessed: 23 August 2017).

Microsoft Office. (2010). Data programming with Microsoft Access 2010. Available at:

https://msdn.microsoft.com/en-us/library/office/ff965871(v=office.14).aspx. (Accessed: 27

September 2017).

Miller, V. (2014). Understanding digital culture. Sage Publications.

Mistry, R. and Misner, S. (2012). Introducing Microsoft SQL Server, Microsoft Corporation.

Available at:

https://www.google.jo/url?sa=t&rct=j&q=&esrc=s&source=web&cd=4&cad=rja&uact=8&ved=0ahU

KEwjK2MPotO3VAhUFuhoKHWyxCzgQFghBMAM&url=http%3A%2F%2Fdownload.microsoft.com

%2Fdownload%2Ff%2Ff%2F6%2Fff62cae0-ce38-4228-9025-

fbf729312698%2Fmicrosoft_press_ebook_introducing_microsoft_sql_server_2012_pdf.pdf&usg=A

FQjCNECw3mIohTUH7VUSpKfYoMEI5bROg. (Accessed: 23 August 2017).

Moilanen, K., Niemi, T., Näppilä, T. and Kuru, M. (2015). ‘A visual XML dataspace approach for

satisfying ad hoc information needs’, Journal of the Association for Information Science and

Technology, 66(11), pp. 2304–2320.

https://www.itu.dk/~slauesen/UID/AccessTutorial.pdf
https://dit.ie/media/ittraining/msoffice/MOAC_Access_2016.pdf
http://www.acs.uwinnipeg.ca/rmcfadyen/CreativeCommons/Relational%20Databases%20and%20Microsoft%20Access%20V2.0.pdf
http://www.acs.uwinnipeg.ca/rmcfadyen/CreativeCommons/Relational%20Databases%20and%20Microsoft%20Access%20V2.0.pdf
https://msdn.microsoft.com/en-us/library/office/ff965871(v=office.14).aspx
https://www.google.jo/url?sa=t&rct=j&q=&esrc=s&source=web&cd=4&cad=rja&uact=8&ved=0ahUKEwjK2MPotO3VAhUFuhoKHWyxCzgQFghBMAM&url=http%3A%2F%2Fdownload.microsoft.com%2Fdownload%2Ff%2Ff%2F6%2Fff62cae0-ce38-4228-9025-fbf729312698%2Fmicrosoft_press_ebook_introducing_microsoft_sql_server_2012_pdf.pdf&usg=AFQjCNECw3mIohTUH7VUSpKfYoMEI5bROg
https://www.google.jo/url?sa=t&rct=j&q=&esrc=s&source=web&cd=4&cad=rja&uact=8&ved=0ahUKEwjK2MPotO3VAhUFuhoKHWyxCzgQFghBMAM&url=http%3A%2F%2Fdownload.microsoft.com%2Fdownload%2Ff%2Ff%2F6%2Fff62cae0-ce38-4228-9025-fbf729312698%2Fmicrosoft_press_ebook_introducing_microsoft_sql_server_2012_pdf.pdf&usg=AFQjCNECw3mIohTUH7VUSpKfYoMEI5bROg
https://www.google.jo/url?sa=t&rct=j&q=&esrc=s&source=web&cd=4&cad=rja&uact=8&ved=0ahUKEwjK2MPotO3VAhUFuhoKHWyxCzgQFghBMAM&url=http%3A%2F%2Fdownload.microsoft.com%2Fdownload%2Ff%2Ff%2F6%2Fff62cae0-ce38-4228-9025-fbf729312698%2Fmicrosoft_press_ebook_introducing_microsoft_sql_server_2012_pdf.pdf&usg=AFQjCNECw3mIohTUH7VUSpKfYoMEI5bROg
https://www.google.jo/url?sa=t&rct=j&q=&esrc=s&source=web&cd=4&cad=rja&uact=8&ved=0ahUKEwjK2MPotO3VAhUFuhoKHWyxCzgQFghBMAM&url=http%3A%2F%2Fdownload.microsoft.com%2Fdownload%2Ff%2Ff%2F6%2Fff62cae0-ce38-4228-9025-fbf729312698%2Fmicrosoft_press_ebook_introducing_microsoft_sql_server_2012_pdf.pdf&usg=AFQjCNECw3mIohTUH7VUSpKfYoMEI5bROg
https://www.google.jo/url?sa=t&rct=j&q=&esrc=s&source=web&cd=4&cad=rja&uact=8&ved=0ahUKEwjK2MPotO3VAhUFuhoKHWyxCzgQFghBMAM&url=http%3A%2F%2Fdownload.microsoft.com%2Fdownload%2Ff%2Ff%2F6%2Fff62cae0-ce38-4228-9025-fbf729312698%2Fmicrosoft_press_ebook_introducing_microsoft_sql_server_2012_pdf.pdf&usg=AFQjCNECw3mIohTUH7VUSpKfYoMEI5bROg

60

MSDN Library. (2017). MS Access architecture. (Accessed: 23 August 2017).

MySQL. (2017). MySQL 5.7 reference manual including MySQL NDB Cluster 7.5 and NDB Cluster

7.6. Available at: https://downloads.mysql.com/docs/refman-5.7-en.pdf. (Accessed: 24 August

2017).

National Library of Scotland. (2014). Long term preservation protects the availability and

accessibility. Scotland: Scotland Government.

NCDC. (2017). Preserving historical data in the NCDC archive: National Centers for Environmental

Information (NCEI) formerly known as National Climatic Data Centre (NCDC). Available at:

https://www.ncdc.noaa.gov/news/preserving-historical-data-ncdc-archive. (Accessed: 4 July 2017).

Oracle. (2013). Oracle migration workbench reference guide for Microsoft Access 2.0, 95, 97, 2000

migrations release 9.2.0 for Microsoft Windows 98/2000 and Microsoft Windows NT. Available at:

https://docs.oracle.com/cd/B10501_01/win.920/a97262/ch2.htm. (Accessed: 24 September 2017).

Oracle. (2017). Oracle database online documentation, 10g Release 2 (10.2). Available at:

https://docs.oracle.com/cd/B19306_01/server.102/b14220/intro.htm#i60803. (Accessed: 24 August

2017).

Park, J. and Brenza, A. (2015). 'Evaluation of semi-automatic metadata generation tools: A survey

of the current state of the art’, Information Technology & Libraries, 34(3)

Perrin, J., Winkler, H. and Yang, L. (2015). ‘Digital preservation challenges with an ETD collection—

A case study at Texas Tech University’, The Journal of Academic Librarianship, 41(1), pp. 98–104.

Plew, R. and Stephens, R. (2002). Introduction to the SQL database query. 6th edn. Indiana, USA:

Pearson Education Publisher.

Roland, L. and Bawden, D. (2012). ‘The future of history: Investigating the preservation of information

in the digital age’, Library & Information History, 28(3), pp. 220–236.

Roman, S. (1999). Access database design & Programming. 2nd edn. USA: O'Reilly Publishing.

Sabău, G. (2007). ‘Comparison of RDBMS, OODBMS and ORDBMS’, Informatica Economica, 4(44),

pp. 83–85.

Saikia, A., Joy, S., Dolma, D. and Mary, R. (2015). ‘Comparative performance analysis of MySQL

and SQL server relational database management systems in Windows environment’, IJARCCE,

4(3), pp. 160–164.

Schaefer, S., Smorul, M., Minor, D. and Ritter, M. (2016). A decade of preservation: System

https://downloads.mysql.com/docs/refman-5.7-en.pdf
https://www.ncdc.noaa.gov/news/preserving-historical-data-ncdc-archive
https://docs.oracle.com/cd/B10501_01/win.920/a97262/ch2.htm
https://docs.oracle.com/cd/B19306_01/server.102/b14220/intro.htm#i60803

61

migrations in Chronopolis, Proceedings of the 13th International Conference on Digital Preservation,

Bern. 3-6 October 2016. Swiss National Library, pp. 15–17.

Seoane, C.G. (2014). Digital preservation in the age of cloud and big data. (white paper) Spain: Atos

Scientific Community.

Shirish, K. C. (2010). Dynamical modeling of MySQL database server. Master’s thesis. Lund

University.

Singh, P. and Pottle, B. (2009). Oracle database 11g: SQL fundamentals I (electronic presentation).

Available at: https://www.computer-pdf.com/database/121-oracle-database-11g-sql-fundamentals-

course.html. (Accessed: 24 August 2017).

Stajano, F. (1998). An introduction to relational databases. 6th edn. Cambridge, UK: Addison-Wesley.

Stancic, H., Rajh, A. and Brzica, H. (2015). ‘Archival cloud services: Portability, continuity, and

sustainability aspects of long-term preservation of electronically signed records’, Canadian Journal

of Information and Library Science, 39(2), pp. 210–227.

Stefanova, S. (2013). Scalable preservation, reconstruction, and querying of databases in terms of

semantic web representations. Sweden. Uppsala: Acta Universitatis Upsaliensis.

Swiss Federal Archives. (2017). SIARD (Software Independent Archiving of Relational Databases)

Version 1.0. Available at: http://www.digitalpreservation.gov/formats/fdd/fdd000426.shtml.

(Accessed: 4 July 2017).

Thomson, S. (2016). Preserving transactional data. (report) UK: DPC Charles Beagrie Ltd, The

Economic and Social Research Council.

Trissl, S. (2012). Cost-based optimization of graph queries in relational database management

systems. PhD. Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät II.

Tutorials Point. (2016a). MS SQL Server. Available at:

https://www.tutorialspoint.com/ms_sql_server/ms_sql_server_tutorial.pdf. (Accessed: 24 August

2017).

Tutorials Point. (2016b). MYSQL database management system. Available at:

https://www.tutorialspoint.com/mysql/mysql_tutorial.pdf. (Accessed: 24 August 2017).

Tutorials Point. (2017). MS Access tutorial. Available at:

https://www.tutorialspoint.com/ms_access/ms_access_indexing.htm. (Accessed: 23 August 2017).

Upadhyaya, P., Anderson, N., Balazinska, M., Howe, B., Kaushik, R., Ramamurthy, R. and Suciu,

https://www.computer-pdf.com/database/121-oracle-database-11g-sql-fundamentals-course.html
https://www.computer-pdf.com/database/121-oracle-database-11g-sql-fundamentals-course.html
http://www.digitalpreservation.gov/formats/fdd/fdd000426.shtml
https://www.tutorialspoint.com/ms_sql_server/ms_sql_server_tutorial.pdf
https://www.tutorialspoint.com/mysql/mysql_tutorial.pdf
https://www.tutorialspoint.com/ms_access/ms_access_indexing.htm

62

D. (2013). Stop that Query! The need for managing data use, Proceedings of the CIDR 2013, 6th

Biennial Conference on Innovative Data Systems Research (CIDR ’13), Asilomar, California, USA.

6–9 January 2013. pp. 1–4.

Van Tassel, J. (2013). Digital TV over broadband. Hoboken: Taylor and Francis.

Woods, K. (2010). Preserving long term access to United States government documents in legacy

digital formats. PhD. Indiana University.

Wu, W., Chi, Y., Zhu, S., Tatemura, J., Hacigümüs, H. and Naughton, J.F. (2013). Predicting query

execution time: Are optimizer cost models really unusable?, Proceedings of the Data Engineering

(ICDE), 2013 IEEE 29th International Conference on IEEE. pp. 1081–1092.

XML. (2002). Normalizing XML. Available at:

https://www.xml.com/pub/a/2002/11/13/normalizing.html. (Accessed: 8 February 2018).

https://www.xml.com/pub/a/2002/11/13/normalizing.html

63

APPENDICES

Appendix: Conversion Algorithm

The following SQL was revised to find which schools had teachers of English courses.

 SELECT DISTINCT dno
 FROM school, course, te.course, teacher
 WHERE te.coursetitle = ` English'
 AND course.courseno = tecourse.courseno
 AND tecourse.teno = teacher.teno
 AND teacher.schoolno = school.schoolno;

The following is the algebraic formulation.

 PROJECTtename (school JOINschoolno = schoolno (
 PROJECTteno (teacher JOINteno = teno (
 PROJECTteno (tecourse JOINcourseno = courseno (
 PROJECTcourseno (SELECTctitle = `English' course)
))
))
))

Symbolic representation

Based on the above example, complicated cases using name operators for a large number of
statements, such as PROJECT and JOIN, should use common symbolic notations instead.

 SELECT ->σ
 PROJECT -> π
 PRODUCT -> ×
 JOIN -> |×|
 UNION -> ∪
 INTERSECTION -> ∩
 DIFFERENCE -> -
 RENAME ->ρ

Symbolic Usage

The symbolic operators correspond to the verbal ones.

 SELECTy = 1(F)
 In symbolic will be : σy = 1(F)

However, conditions can be grouped using ^ (AND) and v (OR).

 SELECTF = 1 ^ surname = `Hasan'(Taecher)
 In symbolic:
 σF = 1 ^ surname = `Hasan'(Teacher)

Thus, using symbols, an abbreviation can be represented as follows.

64

 PROJECTF (School JOINF = F (
 PROJECTno (Teacher JOINno = no (
 PROJECTSf (Subject JOINSf = Sf (
 PROJECTCs (SELECTCs = `English' Subject)))))))

The corresponding symbolic notation is given below.

 πF (School |×| (
 πno (Taecher |×| (
 πSf (Subject |×| (
 πCs (σCs = `English' Subject)))))))

Rename Operator

The rename operator changes the name of an existing relation; for example, ρ S(B) is the relation B

with its name changed to S.

