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ABSTRACT 

This dissertation delves into the predictive capabilities of two prominent modelling 

techniques, Extreme Learning Machine window (ELM) and the Adaptive Autoregressive 

Integrated Moving Average (ARIMA), for short-term forecasting of river water levels. With 

increasing environmental uncertainties, accurate predictions of water levels are crucial for 

effective water management and flood prevention. Through rigorous data processing and 

model training, this research employs recent river data to evaluate the performance of both 

models over four forecasting horizons: 1-day, 3-day, 5-day, and 7-day. 

 

The evaluation metrics, including Root Mean Squared Errors (RMSE), Mean Absolute 

Deviation (MAD), and Mean Squared Errors (MSE), revealed insightful patterns about the 

accuracy and reliability of each model. Further, the distribution of forecast errors was 

analysed to understand the consistency and potential biases in predictions. 

 

The thesis findings indicate nuanced differences in the performance of Adaptive ELM and 

Adaptive ARIMA, shedding light on the specific conditions and scenarios where one model 

may outperform the other. This comparative analysis serves as a comprehensive guide for 

researchers and practitioners in selecting the most suitable model for river water level 

forecasting under varying circumstances. The insights from this study also pave the way for 

future research opportunities, exploring the integration of both models or the incorporation of 

additional data sources to enhance forecasting accuracy.  
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Chapter 1: Introduction 

1.1 BACKGROUND 

1.1.1 Importance of forecasting river water levels 

Accurately forecasting river water levels has profound implications for various socio-

economic and environmental aspects. The immediate benefit lies in the realm of disaster 

preparedness. Flooding, a common and devastating natural disaster, can be better managed 

with an accurate forecast of river water levels (Ward et al., 2015). By predicting river 

swellings in advance, local authorities can implement evacuation plans, reducing economic 

damages and loss of life. 

Moreover, these forecasts play a pivotal role in water resource management. With increasing 

water scarcity issues worldwide, having precise data on river water levels helps distribute and 

efficiently use freshwater resources (Adamowski & Karapataki, 2010). Predictive models also 

aid in managing dams and reservoirs, ensuring optimal electricity generation and sustainable 

ecological flows downstream. 

1.1.2 Modern technological advancements in monitoring 

The last few decades have witnessed significant technological advancements in monitoring 

river water levels. Traditional methods, based on reading of physical river height gauges, 

often manual and susceptible to human error, have now been complemented and in many 

cases replaced by automated sensor networks. These networks can provide real-time, high-

resolution data, thus enhancing the accuracy and reliability of forecasts (Chen et al., 2014). 

Satellite-based remote sensing, combined with Geographic Information Systems (GIS), now 

offers an extensive spatial coverage, providing insights into even the most remote river basins 

(Tulbure et al., 2016). These tools can offer a broader context by assessing land use changes, 

riverbank erosion, and sediment transportation patterns. The emergence of the Internet of 

Things (IoT) has further revolutionized river monitoring. Sensors can now transmit data in 

real-time to centralized systems, enabling rapid response actions during critical situations 

(Gubbi et al., 2013). 
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1.2 PROBLEM STATEMENT 

1.2.1 Current forecasting models 

Hydrological forecasting has seen the development and application of several models over the 

years. Traditional forecasting models, like the Autoregressive Integrated Moving Average 

(ARIMA), have been heavily utilized in hydrological studies because of their capability to 

analyse and predict time series data (Hyndman & Athanasopoulos, 2018). ARIMA models 

rely on past data patterns to predict future trends, making them ideal for short-term forecasts. 

On the contrary, the recent surge in artificial intelligence research has given birth to newer 

forecasting models, including the Extreme Learning Machine (ELM). As a part of Single 

Layer Feedforward Neural Networks, ELM possesses the advantage of swiftly training large 

datasets and can effectively capture non-linear patterns, thus potentially improving forecast 

precision (Huang et al., 2012). 

1.2.2 Need for model comparisons 

The plethora of available models has created a necessity to understand which models are more 

adept at predicting river water levels, especially in unique hydrological contexts such as 

Australia's diverse river systems. A detailed comparison between traditional models like 

ARIMA and newer counterparts such as ELM is essential. Such comparisons will not only 

elucidate the effectiveness of each model but also guide water resource managers and 

policymakers in adopting suitable methodologies for forecasting. Furthermore, understanding 

the intricacies of each model can lead to potential hybrid approaches that combine the 

strengths of both traditional and modern models (Kisi et al., 2015). 

1.3 RESEARCH OBJECTIVES 

This research aims to further the understanding of river water level forecasting by examining 

two distinct models, the adaptive ARIMA and the ELM, especially within the Australian 

context. The objectives underpinning this aim are: 

1.3.1 Compare adaptive ARIMA and ELM models 

Despite both models being employed in various hydrological studies, there remains to be a 

lacuna in comprehensive comparisons between them. While ARIMA, with its roots in time 

series analysis, has been a staple in hydrological forecasting (Hyndman & Khandakar, 2008), 

the ELM, a neural network-based approach, has garnered attention for its ability to train large 
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datasets and capture non-linear trends swiftly (Huang et al., 2006). This research seeks to 

contrast these models, focusing on their predictive accuracy, computational efficiency, and 

ease of application. 

1.3.2 Evaluate river water forecasting model effectiveness in an Australian context 

Australia, with its unique river systems and diverse hydrological patterns, offers a distinct 

challenge to water level forecasting. The adaptability and precision forecasting model in such 

a variable context are paramount. Past studies have indicated that model effectiveness can 

vary based on regional specificities (Westra et al., 2014). Therefore, this research strongly 

emphasises testing the ARIMA and ELM models against Australian river data to ascertain 

their practical utility in the region. 
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Chapter 2: Literature Review 

This chapter presents a literature review that provides a comprehensive overview of 

existing research on this topic, synthesizing the main theories, findings and debates in the field. 

By analysing and evaluating different sources, it identifies gaps in the literature and establishes 

the rationale for the current study. This chapter serves as the foundation for the research, 

guiding the development of research questions and hypotheses while demonstrating the 

researcher's understanding of the current state of knowledge about the topic. 

2.1 AUTO-REGRESSIVE INTEGRATED MOVING AVERAGE (ARIMA) MODEL 

The ARMA (Autoregressive Moving Average) model is given by 

𝑋𝑡 = 𝐶 + 𝜀𝑡 + ∑ 𝜑𝑡𝑋{𝑡−1}

𝑝

𝑖=1

+ ∑ 𝜃𝑖𝜀{𝑡−𝑖}

𝑞

{𝑖=1}

 

Eq 1 

 

     Where in Equation 1 C is an additive constant (intercept term), 𝜀𝑖 is white noise term and 𝜔  

and 𝜃  are the coefficients respectively of the auto-regressive and moving average components 

time series which should be estimated. The mathematical form of autoregressive component ( 

𝜑𝑡) is shown in the following equations. 

𝑦𝑡 = 𝑐 + β1𝑦𝑡−1 + β2𝑦𝑡−2 + ⋯ + β𝑝𝑦𝑝−1 + ϵ𝑡 

Eq 2 

Where is in Equation 2 the lag value of 𝑦𝑡 is predictors of multiple regression the number 

of 𝑝 is known as order of the autoregressive component. 

The moving average MA(q) (𝜃𝑖) is denoted as 

yt = c + ϵt + α1ϵt−1 + α2ϵt−2 + ⋯ + α𝑝ϵt−p
 

Eq 3 

Where q is the number of moving average terms. 

 

 The ARIMA (Autoregressive Integrated Moving Average) model is an extension of the 

ARMA model, order d differencing is performed on 𝑋𝑡  prior to fitting the ARMA model. 
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∇𝑋𝑡 = 𝐶 + 𝜀𝑡 +  ∑ 𝜑𝑡∇𝑋{𝑡−1}

𝑝

𝑖=1

+ ∑ 𝜃𝑖𝜀{𝑡−𝑖}

𝑞

{𝑡=1}

 

Eq 4 

        An automated ARIMA tool is used to identify the appropriate number of orders of 

ARIMA. The selection of order is made through AIC criteria. The AIC is model goodness of 

fit which has the mathematical form given below. 

 

𝐴𝐼𝐶 = 2𝑘 − 2𝑙𝑛(�̂�) 

Eq 5 

Where is in Equation 5 k is the number of estimated parameters and �̂�  is the maximum 

value of the ARIMA model likelihood function. The optimum model is chosen whose order 

gives a lower AIC value based on the goodness of fit measure. The ARIMA model can also be 

extended to include a seasonal trend term. 

(Musarat et al., 2021) uses the ARIMA model to forecast the river flow level with data 

from the Kabul River in Swat and forecasts of the water level from 2011-2030. Model training 

utilised 53 years of data from 1961-2005 based on daily observations. The stationarity of the 

data was confirmed through the Augmented Dickey-Fuller (ADF) test and hence the ARIMA 

model deemed appropriate.            

The author takes 480 out of 600 observations as a training set and finds the optimal 

seasonal ARIMA model of order (2,4) (2,2) with (d = 0) based on AIC value. Hence an ARMA 

model was found to be appropriate. The R-square of the final ARMA model is computed as 

0.922 and MAPE as 20.11, indicating a good fit of the model to the data. According to the 

forecasts, the water level in the Kabul River is expected to remain fairly stable. From 2011 to 

2030, there was a slight increase, reaching just over 250 cumecs. This change is relatively small 

compared to the recorded value of 249 cumecs in 2000.  Furthermore, the water level will 

gradually rise between January and August, peaking at 250 cumecs in September. Once the 

monsoon season subsides, the water level will decrease to its lowest point of 10 cumecs from 

October to December, continuing until the year 2030. 

2.2 AUTO-REGRESSIVE FRACTIONALLY INTEGRATED MOVING AVERAGE 

(ARFIMA) MODEL & MODEL ENSEMBLES 

    The Autoregressive Fractionally Integrated Moving Average (ARFIMA) model is a time 

series model that modifies the autoregressive moving average (ARMA) model to account for 
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long-range dependence and non-stationarity. It is commonly used to analyse and forecast time 

series data with long memory. 

This model has three parameters donated as ARFIMA(p,d,q) where p represents the order of 

the autoregressive component, d represents the differencing parameter for fractional 

integration, and q represents the order of the moving average component. The ARFIMA 

model has a similar form to the ARIMA model, except that the difference parameter, d, can 

have fractional rather than just integer values. 

Papacharalampous, G., & Tyralis, H. (2020) estimate the ARFMA model through maximum 

likelihood estimation. They used a river flow dataset that compiles 90-year-long information 

from approximately 600 stations. These stations are mostly located in two continental-scale 

regions, specifically North America and Europe. The dataset represents various climate and 

catchment characteristics, making it ideal for benchmarking purposes. Comparisons shows 

that ARFIMA has lowest forecast Mean Square Error as compared to other models. 

 

 They also evaluate performance of Facebook’s Prophet model, an additive effects time series 

model combining non-liner trends with daily, weekly and yearly seasonality components in 

addition to a ‘holiday effect’ (Taylor, S. J., & Letham, B. 2018).  Papacharalampous, G., & 

Tyralis, H. (2020) also introduced a new family of hydrological time series forecasting 

methodologies that combine multiple individual forecasting methods. The proposed 

methodology is a simple and flexible approach that can be used to combine any number of 

individual forecasting methods. The methodology is based on a weighted average of the 

forecasts generated by the individual methods, where the weights are determined by a linear 

regression model. The regression model is trained on the historical data and is used to 

estimate the weights that optimize the forecast accuracy. The author aims to achieve 

performance improvements in the long run by comparing the proposed methodology to other 

commonly used forecasting methods and the results show that it has improved over the 

performance of the benchmark by 18.9% in terms of root mean square error (RMSE). 

Therefore, the forecast made by Papacharalampous, G., & Tyralis, H. (2020) allows accurate 

one-year ahead river flow forecasting, and that it can outperform other commonly used 

forecasting methods in terms of accuracy. 

2.3 EMPIRICAL MODE DECOMPOSITION ARIMA (EMD/EEMD-ARIMA) 

Empirical mode decomposition (EMD) and ensemble empirical mode decomposition 

(EEMD) is a non-stationary data processing technology. The author Wang argues that 
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hydrological time series exhibit various time-scale characteristics that can be extracted using 

Empirical Mode Decomposition (EMD) as Intrinsic Mode Functions (IMFs) with different 

time scales. Each IMF must meet two conditions. (Wang, Qiu, & Li, 2018) 

1. The number of local extreme values and zero-crossings should either be the same or 

differ by one across the entire dataset. 

2. The mean value of the upper envelope (formed by local maxima) and the lower 

envelope (formed by local minima) must be zero at any given time. 

The following steps areas followed to implement the EMD/EEMD for hydrological time 

series. 

Step 1: In the observed average N-day hydrological time series denoted by 

{𝑥(𝑡) 𝜖 𝑋: 𝑡 =  1, 2, . . . , 𝑁}, all of the local extreme points are identified. Which are then 

connected using the maxima and minima of a fitted cubic spline line to create the upper 

envelope 𝑥𝑚𝑎𝑥(𝑡) and lower envelope 𝑥𝑚𝑖𝑛(𝑡). 

Step 2: the average of upper and lower envelope m(t) is then calculated as 

𝑚(𝑡) =
1

2
(𝑥𝑚𝑎𝑥(𝑡) + 𝑥𝑚𝑖𝑛(𝑡)) 

Eq 6 

Step 3: A new time series, h(t) is obtained by subtracting the mean average envelope m(t) 

from the observed time series x(t) as shown in Equation 7. 

ℎ(𝑡) = 𝑥(𝑡) − 𝑚(𝑡) 

Eq 7 

Step 4: Repeat Steps 1-3 until h(t) doesn’t satisfy the above two requirements of the IMF. 

Step 5:  The residual  𝑟1(𝑡) is obtain by subtracting 𝑙1(𝑡)  from the observed series x(t) as 

shown below. 

𝑟1(𝑡) = 𝑥(𝑡) − 𝐿1(𝑡) 

Eq 8 

Step 6: Repeat Steps 1-5 using the residual component  𝑟1(𝑡) as the input time series (instead 

of x(t)). 

 

This process is iteratively applied to the set of residuals r2(t), r3(t), … rn-1(t) to generates a 

series of IMFs 𝑙1(𝑡), 𝑙2(𝑡), … . , 𝑙𝑛(𝑡) , and ultimately a residual series 𝑟𝑛(𝑡)  that is either a 

monotonic function or a function with only one extreme value. The original time series can 

then be expressed using the equation 9. 
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𝑥(𝑡) = ∑ 𝑐(𝑡)𝑖 + 𝑟𝑛(𝑡)

𝑛

𝑖=1

 

Eq 9 

Where is in Equation 9 𝑐(𝑡)𝑖 represented the sum of the IMF components and the final 

residual series 𝑟𝑛(𝑡). This decomposition allows for the identification of different scales and 

potential trends within the streamflow data. Unlike previous methods, EMD operates in the 

temporal space rather than the frequency domain, making it an empirical, direct, and 

adaptable approach for data analysis. 

Wang (2018) utilised the ten-day streamflow data series with a EMD decomposition 

containing several components at different time scales followed by a one-step ahead ARIMA 

forecasting model. The developed model is used to forecast the flow level of yellow river 

located in China. This hybrid EMD-ARIMA model was model was trained on 10-day average 

stream flow data from 2007-2012 followed and then used to forecast the five-years of average 

water flow levels (2013-2018) for the Yellow River in China. The results shows that EMD-

ARIMA (MAPE 0.186) more perform accurately as compared to simple ARIMA (MAPE) 

(Wang 2018). 

2.4 ARTIFICIAL NEURAL NETWORKS (ANN) 

     The ANN is a neural machine learning model that consists of multiple neurons organized 

into layers, and these layers are interconnected with each other, forming a complete neural 

network. The key components of the ANN are: 

1. An input node layers consisting of l nodes. These nodes receive a vector of input attributes. 

(Such a river water level time series) denoted as 𝑥 = [𝑥1, 𝑥2, … , 𝑥𝐼]. 

2.  Hidden layers, each layer of weights is connected to the preceding and 

subsequent layers in the network. For instance, the first hidden layer can contain l 

nodes with each node connected to each of the input layer attributes and also 

connected to all nodes in the next layer. These weights can be represented as a set of 

vectors (𝑤 = [𝑤1, 𝑤2, … , 𝑤𝐼]) for each layer, with each set of weights determining 

the strength of the connections between ANN layers. In addition, an additive constant 

can be supplied to each weight to alter the overall mean value of the layer connection 

(𝑏 = [𝑏1, 𝑏2, … , 𝑏𝐼]). 
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3. Output Layer. Post the hidden layer(s), the network weights are further processed to 

obtain an output. In the case of a ANN regression model, this will usually a numerical 

attribute (such as water level) or alternatively a numerical input to the next hidden 

layer. Nonlinear processing is incorporated though the use of an activation function, 

which links the total synaptic input to the neuron's output activation. The total 

synaptic input (u) is computed by taking the inner product of the input and weight 

vectors, as described in the equation 10: 

𝑢 = ∑ 𝑤𝑖𝑥𝑖 + 𝑏𝑖

𝑙

𝑖=1

 

Eq 10 

The resulting synaptic input is then processed by a pre-determined output activation function 

(denoted Φ ). The resulting output, denoted as y, is calculated as 𝑦 = Φ(𝑢) , represents the 

activation function of the neuron. A range of activation functions such as the sigmoid 

activation function 10 can be selected to govern the level of non-linear response present in the 

network. The sum of these output activation function values then provides the final output 

response of the network (e.g., the predicted river weight level by the network). 

 

There are many hydrological features that can be used as an input attribute to the ANN node 

such as precipitation, soil moisture, temperature, lagged (previous) flow levels etc. to forecast 

the stream flow level. 

 

Yonaba, H., et al. (2010) used a forward selection method and cross validation to find the best 

input attributes and number of hidden layers in in ANN. The authors proposed a rigorous 

model development process for building a multilayer perceptron (MLP) neural network for 

streamflow forecasting. The process includes constructing calibration and validation datasets 

based on Korhonen network clustering, employing Levenberg-Marquardt with Bayesian 

regularization as the calibration procedure, and using the stacking multimodal approach. The 

MLP architecture, a feedforward-type neural network was, is selected in this comparison 

because it usually has good model performance and is the most frequently used configuration 

in hydrology. 
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2.5 HYBRID SARIMA-ANN MODEL 

     In SARIMA forecasting of complex non-linear trends can produce unreliable results whilst 

the e-ANN perform poorly when there are data outliers, multicollinearity of input attributes, 

limited model training data or noisy (erroneous) measurements. A hybrid model that 

combines the benefits of the SARIMA with the ANN has been proposed (Azad et al. 2022) 

for water resources monitoring. 

The hybrid SARIMA-ANN model consists of first modelling the linear component of the data 

via a SARIMA followed by an input of the lagged values of the SARIMA residuals into the 

ANN. 

The hybrid SARIMA-ANN model is steps are represented mathematically as in Equation 11. 

𝑦𝑡 = 𝐿𝑡 + 𝑁𝑡 

Eq 11 

 

Where is in Equation 11 𝑦𝑡 is the current time value which is additive of linear 𝐿𝑡 and non-

linear 𝑁𝑡 component at time t.  

The SARIMA model is then fit to 𝑦𝑡 , to estimate the linear trend component  �̂�𝑡 with the 

residual error component described as in Equation 12. 

 

𝑒𝑡 = 𝑦𝑡 + 𝐿�̂� 

Eq 12 

In the Equation 12 the relationship’s prediction value for time t is denoted as 𝐿�̂�. It may 

possible that the residual of errors has still non-linear component therefore the residuals of 

SARIMA is passed through ANN as shown below. 

𝑒𝑡 = 𝑓(𝑒𝑡−1, 𝑒𝑡−2, … , 𝑒𝑡−𝑛) + 𝜖𝑡 

Eq 13 

Where the non-linear function that is model by the ANN is denoted as f and ε𝑡 is the random 

error component at time t. The prediction from ANN is denoted as 𝑁�̂� while the combined 

forecast of the hybrid SARIMA, ANN is in Equation 14: 

𝑦�̂� = 𝐿�̂� + 𝑁�̂� 

Eq 14 

The optimum parameters of SARIMA are found through use of the Auto-correlation Function 

(ACF) and Partial-correlation Function (PCF) plots to specify a model with the lowest Root 
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Mean Square Error (RMSE) fit, penalised for degrees of model freedom. Whilst the optimal 

ANN layer is selected through cross-validation and prior knowledge of data patterns. 

 

Azad, et al. (2022) used hybrid SARIMA-ANN to forecast Reservoir water level (RWL) of 

Red Hills Reservoir (RHR) located at Tamil Nadu, India. The author develops SAMRIMA (0, 

0, 1) (0, 3, 2)12 and used their residual as an input to ANN. They converted the daily RWL 

data to average monthly from January 2004 to November 2020. This data set was further 

partitioned into 80% training and 20% testing. The data was first pre-processed removing 

outliers and detrending and standardization attributes magnitudes for input to the ANN.  The 

hybrid model has lower RMSE of 430.728 as compared to separate SARIMA and ANN and 

provide high R2 value of 0.84. Conclude that to capture the complex linear and non-linear 

trends present in the RWL data a hybrid model such as the SARIMA-ANN was more suitable 

than purely SARIMA or ANN models. 

2.6 RADIAL BASIS FUNCTION NEURAL NETWORKS (RBF-NN) 

RBF-NN are feedforward neural networks that can approximate different types of functions 

with high accuracy, given enough computational units and data. The RBF-NN has three layers 

the first of which is the input layer, which receives sensory input; the second is the hidden 

layer, which performs a non-linear transformation of the input data; and finally, is the output 

layer, which generates the network's output by combining its inputs linearly. The neurons in 

the hidden layer are provide nonlinear transformations of their vector inputs and are 

responsible for the network's ability to approximate complex functions utilising the radial 

basis function activation function. 

Φ𝑖(𝑥𝑖, 𝑐𝑖, 𝜎𝑖) = 𝑒
−‖𝑥−𝑥𝑖‖

2

2𝜎𝑖
2

, Φ0 = 1 

Eq 15 

Where is in Equation 15 𝑥𝑖 are the input attributes, 𝑐𝑖 and 𝜎𝑖 is the location (mean) and spread 

(standard deviation) of the radial basis function in input space.  The output of the RBF-NN is 

given by 

�̂�(𝑥, 𝛼, 𝐶, 𝜎) = ∑ 𝛼𝑖Φ𝑖(𝑥, 𝑐𝑖, 𝜎𝑖) = Φ(𝑥, 𝐶, 𝜎)𝛼,

𝑛

𝑖=1

 

Eq 16 

where is in Equation 16 αi are weights of the network output layer activation functions and n 

is the number of neurons. 
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This vector of mode parameters 𝑤 = (𝛼, 𝐶, 𝜎)  is found through a training data set and the 

error minimisation of a training criterion. 

Ω(X, w) =  
1  

2
||y −  �̂�(X, w)||

2
 

Eq 17 

. 

Lineros, et al. (2021) used a RBF-NN to model River Carrión flow data located in the 

northwest of the Iberian Peninsula. The dataset contains 602,928 measurements from 2 

February 1999 till 20 July 2010. The data is almost stationary however a seasonality is 

observed. 

2.7 EXTREME LEARNING MACHINE (ELM) MODEL 

The author Yaseen, et al. (2019) discussed ELM’s performance and concluded that ELM is 

increasingly popular. It has several advantages over traditional machine learning algorithms 

such as it is very fast to train, solving a variety of problems, and being easy to understand and 

use. Besides their application in other fields, the ELM is also used for hydrology, meteorology, 

and climatic studies. In hydrology, ELMs have been used to model river flow systems.  

Yaseen, et al. (2016) investigated the ELM to forecast stream flow discharge rates in the semi-

arid region of Tigris River.   

The authors first used a partial auto-correlation function (PACF)to choose the most suitable 

lagged steam-flow as a predictor. A 12-month stream flow was then forecast using an ELM and 

the results compared with other machine learning algorithms such as support vector regression, 

and generalized regression neural networks (GRNN).  The results reported by Yaseen et al. 

(2016) show that the ELMs outperform the other machine learning algorithms. The ELMs can 

accurately forecast stream-flow discharge rates, even in a semi-arid region where the stream-

flow patterns are highly variable. 

Yaseen et al. (2016) conclude that ELMs are a promising approach for streamflow forecasting 

in semi-arid regions. They suggest that ELMs could be used to improve the design of water 

management systems in these regions. 

2.8 OPTIMALLY PRUNED EXTREME LEARNING MACHINES (OP-ELMS) 

The OP-ELM model is a type of ELM that can improve the generalization performance of 

ELMs by pruning the hidden nodes that are not contributing to the prediction accuracy. Adnan, 

et al.  (2019) used OP-ELMs for daily streamflow prediction. the Fujiang River, China. partial 
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autocorrelation function (PACF) was used to identify the most important lagged streamflow 

values to use as predictors. OP-ELMs were then fit to the data and used to forecast streamflow 

for the next day. The OP-ELM using randomly initialized using a set of weights and biases. 

The hidden nodes are ranked according to their importance to the prediction accuracy. The least 

important hidden nodes are pruned (removed) from the ELM. The ELM is then retrained using 

the remaining hidden nodes. The importance of the nodes is computed through the following 

equation. 

𝐼𝑚𝑝 = ∑|𝑊𝑖|
2 

Eq 18 

where is in Equation 18 Wi is the weight of the ith hidden nodes. 

 

In equation 19 used to calculate the output of the OP-ELM: 

𝑦 =  𝑓(𝑤𝑇 𝑥 +  𝑏) 

Eq 19 

where is in Equation 19: 

y is the output of the OP-ELM 

w is the weight matrix 

b is the bias vector 

x is the input vector 

f is the activation function 

The performance of the OP-ELM was compared to other machine learning algorithms, such 

as support vector regression (SVR) and generalized regression neural networks (GRNN).  

concludes that the OP-ELMs outperform the other machine learning algorithms and can 

accurately forecast daily streamflow, even in a river with a highly nonlinear streamflow 

pattern.  

2.9 ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM (ANFIS) 

The Adaptive Neuro-Fuzzy Inference System (ANFIS) is a hybrid computational model that 

combines the strengths of both neural networks and fuzzy logic. It is used for learning of 

complex patterns in data from the past data and to forecast the future observations.  
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ANFIS is a combination of fuzzy logic and neural networks to create a fuzzy inference system. 

Fuzzy logic is a mathematical framework that deals with uncertainty and imprecision in data. 

It uses linguistic variables and rules to model human-like reasoning. Fuzzy logic allows for the 

representation of vague concepts and the handling of uncertain information. 

On the other hand, neural networks are powerful computational models inspired by human brain 

functioning. They can learn patterns and relationships from data through a process called 

training. Neural networks consist of interconnected artificial neurons that process and transmit 

information. 

Galavi, et al. (2013) used the ANFIS model to forecast the flow of water of the Klang River in 

Malaysia. The water flow level of the river is collected from Sulaiman station from January 

2002 to March 2010. The autoregressive parameter of the ANIF model was selected through 

ACF plot and showed that last three observations has strongly influence the current day water 

flow level. The general structure of the model can be expressed as 

𝑋𝑡 = 𝑓(𝑋𝑡−1, 𝑋𝑡−2, 𝑋𝑡−3) 

Eq 20 

Here in Equation 20 𝑋𝑡−1 … 𝑋𝑡−3 is the water flow level at time t-1, t-2, t-3. Galavi et al. (2013) 

divide data into four equal parts and select the optimal parameters of the model through the k-

fold cross-validation technique. The MAPE and RMSE are used as a selection criterion of the 

ANIF model parameters. A total of 40 Fuzzy Inference Systems (FISs) were constructed using 

different combinations of squash factor values (0.75, 1.0, 1.25, 1.5) and range-of-influence 

factors (0.25, 0.3, 0.35, 0.4, ... 0.7). The accept and reject ratios were set to 0.5 and 0.15, 

respectively. The models utilized first-order Takagi-Sugeno FIS with linear output. Secondly, 

the selected dataset from the previous step was applied to these 40 FISs. The input data was 

represented by a Gaussian Membership Function (MF), while a hybrid algorithm was employed 

for the parameter optimization. the fuzzy inference engine with a range of influence of 0.35 and 

a squash factor of 0.75 (FIS35075) produced the lowest RMSE on training data. 

 

A subtractive cluster method is used to estimate the initial parameters of the Fuzzy Inference 

system (FIS) which identify the four clusters in a data set. As a result, each cluster was assigned 

four Membership Functions (MFs) and four rules. The Gaussian is found to be the most suitable 

MF for data fuzzification. The data were then divided into four fuzzy sets which is very low, 

low, average, and high-water levels, which remained consistent across all MFs. Consequently, 

each input variable was categorized by four fuzzy sets. 
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The defined rules (Ri) for the water level at lag one (WL1) and the other two lags (WL2, WL3) 

wearer expressed as: 

 

𝑅𝑖: 𝑖𝑓(𝑊𝐿1
, 𝑊𝐿2

, 𝑊𝐿3
) belong to cluster 𝐶𝑖 then 𝑊𝐿𝑡𝑜𝑑𝑎𝑦 = 𝑝𝑖𝑊𝐿1 + 𝑞𝑖𝑊𝐿2 + 𝑟𝑖𝑊𝐿3 + 𝑠𝑖 

Eq 21 

In the Equation 26, 𝑝𝑖,𝑞𝑖, 𝑟𝑖, and 𝑠𝑖 represent the consequent FIS parameters. The hybrid 

algorithm was utilized to estimate the FIS parameters, including both premise and consequent 

parameters. The calibrated consequent parameters are used in the Equation 26. 

Galavi et al. (2013) demonstrates that the FIS performs better then ARIMA based on 

MAPE value. The FIS model produces MAPE value of 0.404, lower than ARIMA in term of 

MAPE. 

2.10 SUPPORT VECTOR MACHINE (SVM). 

The SVM is a machine learning algorithm that works on a structure risk minimization 

function (SRM) principal.  

The SRM principle choose the functions 𝑓x from a subset of functions based on a given set of 

observations (𝑥1, 𝑦1), … , (𝑥𝑛, 𝑦𝑛). The SRM principle aims to minimize the guaranteed risk 

bound, as shown in following Equation 27, where the actual risk is controlled by two terms. 

 

𝑅(α) ≥ 𝑅𝑒𝑚𝑝(α) + Ω(𝑛/ℎ) 

Eq 22 

The first term in the Equation 22 is an estimate of the risk, while the second term represents 

the confidence interval for this estimate. The parameter h corresponds to the VC (Vapnik-

Chervonenkis) dimension of a function set. The VC dimension measures the capacity of the 

learning machine's function set to best approximate the problem. 

The final approximating function used in SVM regression is shown below. 

𝑓(𝑥) = ∑(α𝑖 , α�̂�)(𝑥𝑖 , 𝑥𝑗) + 𝑏

𝑙

𝑖=1

 

Eq 23 

where is in Equation 23 𝑥𝑖 and 𝑥𝑗 are transformed using a kernel function, denoted as 

Φ(𝑥𝑖)Φ(𝑥𝑗) which performs an inner product in the feature space. 𝛼𝑖 and 𝛼𝑗 are Lagrange 

multipliers. 
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    Moharrampour, et al. (2013) used SVM regression to forecast the flow level of Ghara-soo 

river located in Golestan province of Iran. The author used 18 years of basin discharge data 

from 1989 to 2007 collected from Gharasoo station along with data from three different 

locations and (Ziarat, Shastkalateh, and Kordkooy). Four types of SVM kernels were evaluated 

with Gaussian kernel (RBF) providing the best performance with an the RMSE of 0.034.  

2.11 LARGE SHORT-TERM MEMORY (LSTM) NETWORK. 

The LSTM network is a type of neural network. That is designed to process sequential 

data (such as time series) by repeating the same operation for each element in the sequence, 

using information from the previous steps. Standard, NNs face challenges when dealing with 

long sequences and predicting time series data, due to gradient issues encountered when 

estimating network weights. 

To address these challenges, the LSTM was developed. It incorporates memory cells 

with input, self-recurrent connection, forget, and output gates. These gates help the LSTM 

network capture and retain relevant information over long periods of time. Specifically, the 

input gate (it) controls the flow of new information, the output gate (ot) determines the 

information to be output, and the forget gate (ft) manages the retention or forgetting of previous 

information at a given time (t). 

The functioning of the LSTM can be described as follows. Let xt and ht are the input and state 

respectively at time t where h and x at t-1, t+1, etc. The long-term and short-term memory in 

this cell is denoted by Ct and ht. The following equation shows the calculation Ct and ht at time-

step t step in this process. 

𝑓𝑡 = σ(𝑈𝑓𝑥𝑡 + 𝑊𝑓ℎ𝑡−1 + 𝑏𝑓) 

Eq 24 

𝑖𝑡 = σ(𝑈𝑖𝑥𝑡 + 𝑊𝑖ℎ𝑡−1 + 𝑏𝑖) 

Eq 25 

𝑜𝑡 = σ(𝑈𝑓𝑥𝑡 + 𝑊𝑓ℎ𝑡−1 + 𝑏𝑓) 

Eq 26 

𝐶�̂� = tanh(𝑈0𝑥𝑡 + 𝑊𝑜ℎ𝑡−1 + 𝑏𝑜) 

Eq 27 

𝐶𝑡 = 𝑓𝑡𝑐𝑡−1 + 𝑖𝑡𝐶𝑡 

Eq 28 

ℎ𝑡 = 𝑜𝑡 tanh(𝐶𝑡) 

Eq 29 
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. 

where, 𝑏𝑖 is the bias, 𝜎 is the sigmoid activation function and Wi and Ui is the weight matrix. 

The cell-state value candidate is denoted by Equation 28.  

In summary, LSTM networks are a specialized type of neural network that excel in handling 

non-linear time-series problems, such as hydrological time series. They overcome the 

limitations of ANNs by utilizing memory cells and gate mechanisms to effectively capture and 

retain information over extended sequences. 

Atashi, et al. (2022) forecast the stream flow level of Red River of the North (USA) using 

an LSTM model. Flow level data from three stations namely Pembina satiation, Drayton station, 

and Grand Fork station was collected from 1 January 2007 to 5 August 2007. Forecasts were 

produced for different time intervals such as 6 hours, 12 hours, 1 day, 3 days, and a week ahead. 

The LSTM model results were compared to SARIMA and Random Forest (RF) models.  The 

results shows that the LSTM forecasting for one week ahead forecasting provide more accurate 

results as compared to SARIMA and RF. The one-week ahead prediction of the LSTM model 

has an RMSE of 0.107, 0.151, and 0.190 for Grand Forks, Drayton, and Pembina station 

respectively. Compared to RSME of (2.027, 1.491, 2.268) for the SARIMA and (2.673, 1.819, 

2.287) for the RF model. 
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Chapter 3: Methodology 

This chapter introduces the methodology and the specific methods and procedures used 

to conduct the research, providing a clear roadmap for how to conduct the study. This chapter 

includes details about the research design, data collection methods, sample selection, and data 

analysis techniques used. It explains the rationale behind the chosen methodology and justifies 

why it is appropriate to address the research questions or objectives. 

 

3.1 DATA COLLECTION AND PRE-PROCESSING 

An accurate dataset is indispensable to analyse the river water levels and understand the 

underlying hydrological trends. Given the vast geography of Australia, the Murray River 

holds significance, acting as a significant river system. This study primarily utilizes the 

MDBA River Data website dataset(https://riverdata.mdba.gov.au/murray-river-albury-union-

bridge), focusing on the Murray River at Albury (Union Bridge) (MDBA, 2023). 

Sources of River Water Level Data in Australia 

The data is extracted from the MDBA River Data website. This platform offers a holistic view 

of the River Murray System's flow and storage details. 

 

3.2 ADAPTIVE ARIMA 

3.2.1 Introduction and Theoretical Background 

The ARIMA (Autoregressive Integrated Moving Average) model has long been a cornerstone 

in time series forecasting. Essentially, it amalgamates the Autoregressive (AR) and Moving 

Average (MA) models, with the addition of differencing the series to make it stationary 

(Integrated). As introduced in Section 2.1, the ARIMA model has form, 

∑ 𝜑𝑖

𝑝

𝑖=1

∇𝑋{𝑡−1} + ∑ 𝜃𝑖𝜀{𝑡−1}

𝑞

{𝑖=1}

 

Eq 30 
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The Adaptive ARIMA model is a variant proposed to extend the ARIMA through the use of 

incremental learning (van de Ven et al. 2022). As new river level water arrives the ARIMA 

model is updated via the fitting of new parameters, in this manner the ARIMA model adapts 

to the changing river water conditions. By adapting to the underlying dynamics of the data, 

the adaptive ARIMA thus making the model provides a more flexible model with potential 

and improvements in modelling forecasting accuracy. 

3.2.2 Implementation Details 

The adaptive ARIMA model generally involves two main steps: 

1. Parameter Estimation: The initial parameters (p, d, q) are estimated from previous 

observed data set (for instance a time series of 1000 previous water level observations) 

based on model selection criteria like AIC (Akaike Information Criterion). These 

criteria balance the model's goodness-of-fit and the complexity (the number of 

parameters). 

2. Adaptive Learning: As new observations become available over time, the model 

parameters are re-estimated. This could be done after a fixed number of new 

observations or when the prediction error exceeds a certain threshold. In this thesis, a 

‘running window’ approach was utilised, for each new instance that arrived the ARIMA 

model was updated using this new instance and the previous 7 days river water level 

observations. 

 

3.3 SHORT-TERM MEMORY PROCESSES AND ADAPTIVE LEARNING 

One of the fundamental strengths of the ARIMA model lies in its ability to model short-term 

memory processes using the AR and MA components. The AR component captures the 

momentum and drift of the series, while the MA component captures the shocks or abrupt 

changes. 

However, these short-term memory processes might change in a rapidly changing 

environment. The adaptive component of the Adaptive ARIMA allows the model to adjust its 

short-term memory to these changes, improving its accuracy in such volatile scenarios (De 

Livera et al., 2011). 
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3.4 EXTREME LEARNING MACHINE (ELM) MODEL 

3.4.1 Introduction to ELM 

   The Extreme Learning Machine (ELM) is a single layer feed-forward neural network for 

classification and regression tasks. Introduced by Huang et al. (2006), ELM stands out due to 

its rapid learning speed and generalization performance. Rather than the traditional 

backpropagation training method that is typically used for feed-forward neural networks, the 

ELM randomly initializes the weights of the hidden layer, eliminating the need for iterative 

tuning. The output weights are then determined analytically, via a Moore-Penrose Inverse 

resulting in a single step learning process. 

Mathematically, for N arbitrary distinct samples (xi, ti), the ELM aims to approximate the 

target function as: 

∑ 𝛽𝑖ℎ(𝑤𝑖, 𝑥𝑖)
𝑁

𝑖=1
= 𝑡𝑖 

Eq 31 

where is in Equation 31: 

xi is the input sample (e.g. river water observation number). 

ti is the corresponding target (e.g. river water height). 

h represents the neural network activation function. 

wi and βi denote the input weight and output weights, respectively. 

3.4.2  Network Architecture and Training 

The ELM network comprises three layers: an input layer, a hidden layer, and an output layer. 

1. Input Layer to Hidden Layer: The weights and biases between the input and hidden 

layers are initialized with random values. For a given input vector x, the output hj of the 

j-th hidden neuron can be expressed as: 

ℎ𝑗(𝑥) = 𝑔(𝑤𝑗 ∙ 𝑥 + 𝑏𝑗) 

Eq 32 

where is in Equation 32: 

wj is the weight vector for the j-th hidden neuron. 

bj is the bias for the j-th hidden neuron. 

g is the activation function, which could be a sigmoid function, a sine function, or 

others. 
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2. Hidden Layer to Output Layer: 

The output weights between the hidden and output layers are determined using a matrix 

representation and Moore-Penrose generalised inverse: 

𝛽 = 𝐻†𝑇 

Eq 33 

where is in Equation 33: 

β is the output weight matrix. 

H is the hidden layer output matrix. 

T is the target matrix. 

H† denotes the Moore-Penrose generalized inverse of H (Huang et al., 2006). 

3.4.3 Long-term Data Considerations 

Long-term data provides essential insights into understanding and predicting seasonal and 

yearly fluctuations for river water level forecasting. When employing ELM, there are unique 

considerations for such long-term datasets: 

1. Data Volume: Long-term datasets typically have a large volume of data, making the 

hidden layer output matrix H extremely large. Efficient computational methods or 

parallel processing might be needed. 

2. Sequential Learning: ELM has been extended for sequential prediction to handle the 

continually incoming river water level data without retraining the entire model. 

3. Temporal Dependencies: River water levels exhibit temporal dependencies. 

Incorporating memory mechanisms, such as sliding windows or recurrent structures, 

can assist the ELM in capturing such dependencies. 

3.5 7-DAY SLIDING WINDOW APPROACH 

3.5.1 Theory and Rationale 

The sliding window approach, commonly utilized in time series forecasting, involves taking a 

subset or "window" of consecutive data points and using this window to predict the 

subsequent point. As the forecast progresses, the window "slides" forward by one-time unit, 

dropping the oldest observation and including the most recent one. This ensures that the 

model makes predictions based on the most recent data. 



 

 31

A 7-day sliding window refers to using the past seven days of data to predict the next day. 

The choice of 7 days is particularly apt for river water forecasting, given that hydrological 

processes may exhibit weekly patterns due to factors such as rainfall, industrial discharges, 

and human activities (Montanari et al., 2009). 

Mathematically, for a time series 𝑥(𝑡), the windowed data at time 𝑡 can be represented as: 

w(t) = [ x(t−6), x(t−5), ..., x(t−1), x(t)] 

This window w(t) is then used to predict x(t+1). via input to the Adaptive ARIMA or ELM 

models. 

3.6 APPLICATION TO BOTH ARIMA AND ELM 

For ARIMA: ARIMA models, inherently consider past values and errors to predict future 

values. Combined with the 7-day sliding window, the ARIMA model parameters (p, d, q) are 

specifically fine-tuned based on the recent week's data. 

For ELM: In the context of ELM, the 7-day sliding window serves as the input features to the 

network. Given the feed-forward nature of ELM, it does not maintain a state or memory from 

the previous inputs. The ELM was trained on a large dataset of 3 years of previous river water 

levels at the Albury location. This ELM then utilised the past 7 days of observations to 

forecast the observation h days ahead. Multiple ELMS were trained, each providing a separate 

forecast window, e.g. h = 1, h = 3, h = 5 and h = 7 days ahead. By feeding the past 7 days of 

data as features, the network inherently considers this temporal information for its prediction. 

This sliding window ELM model does not implement an incremental learning, as the ELM is 

not updated as the current data arrives. Nonetheless due to access of the ELM to a much 

larger dataset, it is possible for the sliding window ELM to observe similar previous 7-day 

patterns and utilise this knowledge when forecasting based on the current 7-day window. Note 

that this sliding-window ELM model is unlike the ARIMA model, which utilised short-term 

memory of only the past p and q observations. Both the Adaptive ARIMA and Sliding-

Window ELM have advantages and disadvantages. The Adaptive ARIMA has far less data 

and computational requirements, however it has a 'short-term’ memory of the past 7-days. In 

contrast, the Sliding-Window ELM requires more training data and greater computational 

requirements, along with H separate models (one for each forecast). The Sliding-Window 

ELM does however allow for the development of models with ‘long-term memory’ utilising 

data observed over several years or more. Mathematically, for the input matrix X, each row 
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representing a day's data would have seven columns representing the past week's values, 

helping in training the ELM network to recognize patterns over the week. 

3.7 EXPERIMENTAL ANALYSIS 

3.7.1 Model Performance Metrics 

When the forecasting is applied to time series, the model’s performance must be evaluated 

through serval metrics. The most commonly used model performance metrices are as follows: 

• Root Mean Square Error (RMSE)

(Hodson, T. O. (2022). 

      The RMSE take the difference between the forecast value and observed value, then 

square it, sum up all the squared differences, then divide the sum by the number of 

data point which is n, and the last step is take the square root of the result to obtain 

the RMSE value.  

• Mean Absolute Error (MAE)

Eq 35 
 (Chai & Draxler 2014) 

      MAE is defined as measure of the difference between forecast and actual values. It 

is calculated as the mean of the absolute differences between the predicted and 

actual values. 

Figure removed due to copyright restriction

Figure removed due to copyright restriction
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• Mean Square Error (MSE)

Eq 36 
 (Hodson, T.(2021)) 

    The mean squared error (MSE) is the average squared difference between 

the estimated values and the actual value. 

3.7.2 Methods: 

Model 

Data 
Forecast 

Horizon 

(Days) 

Model Performance 

Metrics 

Adaptive 

ARIMA Water level (m) 

h = 1, 3, 5, 7 
MSE 

RMSE 

MAD 

Sliding 

Window 

ELM 

Table 1 Methods. Data and Model Performance Metrics. 

Models Functions Packages Resources 

Adaptive 

ARIMA 

auto.arima Forecast (Hyndman & Khandakar 2008) 

Sliding 

Window ELM 

elm nnfor (Kourentzes 2022) 

Figure removed due to copyright restriction
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Table 2 The Implementation of the Functions and Package used in R 

programming. 

Table 1 describes the model forecasting evaluations performed in this thesis. The 

Adaptive ARIMA and Sliding-Window ELM are both evaluated at the h =1, 3, 5, and 7-day 

forecasting windows. These forecasts are performed incrementally, as each new observation 

arrives the Adaptive ARIMA and Sliding ELM models provide h =1, 3, 5, and 7-day forecasts 

and the forecast errors (difference between forecast river water level and actual water level is 

recorded). From these datasets of forecast errors, the MSE, RSME and MAD are calculated. 

The entire project was implemented using the R statistical software package in Table 2. Table 

2 describes the software packages utilised when developing and implementing the forecasting 

models described in this thesis. 
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Chapter 4: Results 

This chapter presents the results in a logical and systematic way, using tables, charts or 

graphs to enhance clarity and facilitate understanding. The separation of results is crucial in 

conveying the empirical evidence and insights gained from the study, contributing to the overall 

knowledge in the field and potentially informing future research or practical applications. 

4.1 ADAPTIVE ARIMA FORECASTING ERROR  

 

Days ahead  Min. 1st Qu. Median      Mean   3rd Qu. Max.  

h = 1  -0.36714 -0.06075 -0.0005 0.00113 0.053 0.492 

h = 3 -1.227 -0.07704 0.01329 0.01653 0.11375 0.769 

h = 5 -2.56 -0.08064 0.01186 0.03024 0.16211 1.447 

h = 7 -4.463 -0.08682 0.01429 0.04236 0.17939 2.125 

                Table 3 Summary for Adaptive ARIMA Forecasting Error (units in metres) 

 

• The forecast errors tend to widen as the forecast horizon increases. 

• Minimum Error:  

The minimum error grows more negative, starting from -0.36714 (m) at h=1 and 

dropping to -4.463 (m) at h=7. This suggests that the model can sometimes 

underestimate the actual river level values by a more significant margin as we 

forecast further into the future. 

• Maximum Error:  

Similarly, the maximum error, indicating an overestimation, rises from 0.492 

(m) at h=1 to 2.125 (m) at h=7. 

• Mean Error: 
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 The mean error, on the other hand, shows a slight positive bias, suggesting that, 

on average, the model may slightly overestimate across all horizons. The 

tendency grows somewhat as the forecast horizon increases. 

• Median Error:  

The median forecast error remains close to zero across all horizons, indicating 

that at least 50% of the forecasts have errors clustered around zero. This is a 

positive sign, suggesting that at least half the time, the model is very close to the 

actual values. 

 

 

• Quartiles: 

 The range between the first and third quartiles also widens as the forecast 

horizon increases, which is consistent with the idea that forecast uncertainty 

grows with longer horizons. 

In summary, the Adaptive ARIMA model's performance degrades as the forecast horizon 

increases, a common characteristic of time series forecasting models. The model performs 

quite well for short-term forecasts (e.g., h=1), but as we attempt to predict further into the 

future, the errors increase, and the model's accuracy decreases. This trend is evident from the 

metrics and the statistical summary of forecast errors. 

It's also worth noting that while there's an increase in underestimation and overestimation as 

the forecast horizon grows, the median error remains close to zero, suggesting that the model 

is often close to the mark. 

 

4.1.1 Adaptive ARIMA Model Performance Metrics  

Days ahead RMSE MAD MSE 

h = 1 0.113867 0.0872616 0.012966 

h = 3 0.201862 0.1418001 0.040748 

h = 5 0.342922 0.1628742 0.117595 

h = 7 0.506595 0.1721934 0.256638 

Table 4  Model Performance Metrics for water level of Adaptive ARIMA 
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• As the forecast horizon increases (from h=1 to h=7), all metrics (RMSE, MAD, MSE) 

also increase. This suggests that the model's accuracy decreases as we try to forecast 

further into the future. 

The key points to note are that: 

•   RMSE: It starts at 0.1138665 for h=1 and goes up to 0.5065946 for h=7. 

•   MAD: The increase is more gradual, from 0.0872616 at h=1 to 0.1721934 at h=7. 

•    MSE: It starts at 0.01296557 for h=1 and increases to 0.2566381 for h=7. 

 

4.1.2 Adaptive ARIMA 1st Day: 

 

Figure 1 Kernel Density Estimate of Adaptive ARIMA Forecast Error 1st Day. 

 

Density plots are used to visualize the distribution of a continuous variable. The y-axis often 

represents the probability density function (from which probability can be calculated), and the 

x-axis represents the data's values. In this case, the x-axis is the magnitude of the forecast 

error and the y-axis is the corresponding kernel density estimate. Peaks in a density plot show 

where values are concentrated over the interval. 

Observations: 
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1. The plot potentially depicts two overlapping distributions. One is narrower with a peak 

around the centre, and the other is broader. This intepretation can change however 

depending on the bandwidth used in the kernel density estimate, which is an automated 

process in this case. 

2. The narrower distribution indicates a higher concentration of data around its peak. The 

broader distribution suggests that some of the errors are more extreme and spread over 

a more extensive range. 

3. Time series plots of the forecasted water levels are also another very useful to visualise 

these errors. 

 

 

Figure 2 "Actual vs. Forecasted Water Level" for the 1st day 

 

Observations: 

1. Time Series Plot: The Figure 3 presents a time series with two lines. One line is the 

represents the actual water level, while the other represents the h =1 forecasted values 

using the Adaptive ARIMA model. 

2. Close Match: The actual and forecasted lines follow a similar trajectory, suggesting 

that the Adaptive  ARIMA model's forecasts are relatively close to the actual values for 

the 1st day. 
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3. Deviations: At some points in time, the forecasted line deviates from the actual bar. 

These deviations represent forecast errors. These errors tend to occur during phases of 

rapid variation of daily water levels. 

4. Consistent Scale: Both actual and forecasted values follow a similar scale, indicating 

the model's reasonable accuracy for the 1st day. 

 

 

                          Figure 4 "Forecast Errors over Time" for the 1st day 

Examining the forecast errors as a detrended (mean value removed) time series is also very 

informative, as per Figure 3 

Observations: 

1. Nature of Errors: The Figure 3 displays the Adaptive ARIMA h = 1 forecast errors as 

a detrended time series. Positive values indicate overestimations by the model, while 

negative values suggest underestimations. 

2. Zero Line: The horizontal line at zero represents a perfect forecast. Deviations from 

this line (either above or below) reflect the magnitude of the error at that specific point 

in time. 

3. Variability: While there are periods where the errors are clustered around zero, 

suggesting good forecast accuracy, there are also instances of spikes, both positive and 

negative. These spikes indicate moments when the model's forecasts deviated 
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significantly from the actual values.  There are  several large magnitude errors (‘spikes’) 

which contribute substantially to the wide error range observed 

4. No Systematic Bias: There isn't a consistent positive or negative bias in the errors, as 

they oscillate around the zero line. This suggests that the model isn't consistently 

overestimating or underestimating the values, once the mean trend has been accounted 

for in the forecast erors. 

 

Figure 5 Histogram depicting the distribution of Adaptive ARIMA forecast errors for the 1st 

day. 

Figure 4 displays a histogram of the Adaptive ARIMA forecast errors for the 1-day ahead 

forecast (h = 1). This histogram provides an alternative approach to kernel density estimates 

in the exploration of forecast error.  

1. Histogram Structure: Histograms are used to show the distribution of a dataset. Each 

bar represents an interval  range of forecast error values, and the height of the bar 

indicates the counts (or frequency) of errors within that range. 

2. Centred Around Zero: The distribution is roughly symmetrical and centred around 

zero. This is a good sign as it indicates that there's no systematic bias in the forecast 

errors. In other words, the Adaptive ARIMA model tends not to consistently 

overestimate or underestimate the values. 
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3. Spread of Errors: While a significant portion of errors is close to zero (as indicated by 

the tall bars around the centre), there are errors spread across a broader range, suggesting 

that there were instances of both significant overestimations and underestimations. 

4. Tail Behavior: The tails of the histogram show that extreme errors (both positive and 

negative) are less frequent, which is expected in a well-performing model. 

Overall Discussion: 

1. The density plot suggests two overlapping distributions, likely representing actual and 

forecasted data, indicating that predicted values are generally close to the actual ones. 

2. The time series plot of actual vs. forecasted water levels showed a close match, with 

some noticeable deviations. 

3. The forecast errors over time plot provide insights into the moments when the model's 

predictions deviated from the actual values, with errors oscillating around zero, 

indicating no systematic bias. 

4. The histogram of forecast errors confirms the lack of bias and shows that while many 

predictions were close to the mark, there were instances of both overestimation and 

underestimation. 

Given these visualizations and the previously discussed metrics, the Adaptive  ARIMA model 

performs reasonably well for the 1st-day forecast, though it's essential to be aware of 

moments of significant deviations. 
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4.1.3 Adaptive ARIMA 3rd Day: 

 

Figure 6 Adaptive ARIMA density plot for the 3rd-day results 

 

Observations: 

1. Two Distributions: Similar to the 1st-day results, we observe two overlapping 

distributions. These likely represent the presence of several very large errors in the 

forecast error. 

2. Spread & Peaks: Both distributions have a noticeable peak, suggesting areas where 

data points are concentrated. The broader spread of one of the distributions indicates 

more variability in those forecast error values. 

3. Similarity to 1st Day: The distributions appear somewhat similar to the 1st-day results. 
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Figure 7 "Actual vs. Forecasted Water Level Adaptive ARIMA 3rd day forecast 

Observations: 

1. Time Series Plot: The Figure 6 represents a time series with two lines, one representing 

the actual water level and the other the forecasted values. 

2. Trajectory & Deviations: While the actual and forecasted lines seem to follow a 

similar path, there are evident deviations between the two, especially in some plot areas 

(days 50 and 300).  

3. Scale Consistency: Both the actual and forecasted water levels appear to operate within 

a similar scale, there are however significant over-estimates of forecast water level. 
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Figure 8 "Forecast Errors over Time" for the 3rd day 

Figure 7 displays the ‘detrended’ (mean removed) forecast errors  in the form of a time series. 

Observations: 

1. Error Trend: The Figure 7 displays the time series of forecast errors. As before, 

positive values represent overestimations by the model, while negative values indicate 

underestimations. The errors indicates that the forecast tends to be within the [-0.5, 0.5] 

metre range but there are occassional significant over-estimations by more than 1 metre. 

2. Zero Line: The zero line signifies an ideal forecast. Deviations from this line reflect the 

magnitude of the error. 

3. Fluctuations: There are evident fluctuations in forecast errors, with positive and 

negative deviations from the zero line. Some spikes indicate instances where the model's 

predictions significantly differed from the actual values. 

4. No Systematic Bias: Similar to the 1st-day results, the errors oscillate around the zero 

line, indicating no consistent bias in either direction. 
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Figure 9 Histogram of Adaptive ARIMA forecast errors for the 3rd day 

Observations: 

1. Histogram Distribution: Each bar represents a range of forecast error values, with the 

height reflecting the counts of errors within that range. 

2. Centred Distribution: Similar to the Adaptive ARIMA 1st-day results, the error 

distribution is roughly symmetrical around zero, indicating in general no systematic 

overestimation or underestimation by the ARIMA model. 

3. Error Spread: Most forecast errors are clustered near zero, suggesting that many of the 

model's forecat were accurate and within the [-0.5, 0.5] metre range. However, errors 

are spread across a broader range with a few forecasts out by more than ±1.0 metres, 

signifying both overestimation and underestimation. 

4. Tail Behavior: The tails of the histogram show that extreme errors are less common, 

reinforcing that significant deviations are infrequent. 

Summary of Adaptive ARIMA 3rd-day Forecast results: 

1. Density Plot: The density plot of the 3rd day forecast errors indicates a central cluster 

around zero describing most of the errors along with a more dispersed distribution 

describing errors of more extreme magnitude. 
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2. Actual vs. Forecasted: While there's a general alignment between the real and 

forecasted water levels, there are noticeable deviations at specific points in time. 

3. Forecast Errors over Time: Errors fluctuate around zero, with both overestimations 

and underestimations, but overall there is no evidence of systematic bias. 

4. Histogram: Similar to the density plot, the histogram of Adaptive ARIMA 3-day ahead 

forecast errors is centred around zero, with most predictions being accurate with a 

tolerance band, but a small number of significant deviations occur. 

The Adaptive ARIMA 3rd-day forecast results show a similar trend to the Adaptive ARIMA 

1st-day forecasts but differ in the magnitude and frequency of deviations. The Adaptive 

ARIMA model still performs reasonably well, but given the nature of time series forecasting, 

it's not uncommon to see increasing errors as the forecast horizon extends. 

4.1.4 Adaptive ARIMA  5th Day: 

 

Figure 10 Adaptive ARIMA density plot for the 5th-day results 

Figure 9 displays the density plot for the Adaptive ARIMA 5-day ahead forecast errors. 

Observations: 

1. Distributions: There is one main distribution describing the errors, again most errors 

are within a tolerance band but there are some very large forecast errors up to the order 

of 2 metres. 
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2. Comparison with Previous Days: While the distributions share similarities with the 

1st and 3rd-day results, the forecast errors are more extreme indicating greater 

uncertainity in the forecasts. 

3.  

 

Figure 11 "Actual vs. Forecasted Water Level" for the Adaptive ARIMA 5th day forecast 

Figure 10 displays the time series of the actual water levels and the 5-day Adaptive ARIMA 

forecasts. 

Observations: 

1. Time Series Trend: The Figure 10 displays a time series with two distinct lines, one 

representing the actual water level and the other the forecasted values. 

2. Similarity & Deviations: The actual and forecasted lines follow a similar path, but 

there are evident deviations between them with the rapid-short term water level 

variations missed. These deviations represent the forecast errors for those particular 

times. 

3. Scale Consistency: Both actual and forecasted values continue operating within a 

similar range, suggesting the model maintains its scale consistency. 

 



 

48  

 

Figure 12 " Forecast Errors over Time" for the Adaptive ARIMA 5th day forecasts 

Figure 11 displays the detrended (‘mean’ removed) Adaptive ARIMA 5-day ahead forecast 

errors. 

Observations: 

1. Error Oscillation: The Figure 11 displays the time series of forecast errors. As with 

previous days, positive values suggest overestimations by the model, while negative 

values indicate underestimations. 

2. Zero Line: The line at zero represents an ideal forecast. Any deviations from this line, 

either above or below, describe the magnitude and direction of the error. 

3. Error Fluctuations: The forecast errors show fluctuations around the zero line. Some 

pronounced spikes, both positive and negative, indicate moments when the model's 

predictions significantly deviated from the actual values. The Adaptive ARIMA 5-day 

ahead forecast tends to have under-estimate water levels for the largest magnitude 

errors. 

4. Bias Indication: The errors oscillate around the zero line, suggesting no consistent bias 

in the Adaptive ARIMA models forecast. 
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Figure 13 Histogram of the Adaptive ARIMA forecast errors for the 5th day 

Figure 12 displays the histogram of 5-day ahead forecast errors for the Adaptive ARIMA 

model. 

Observations: 

1. Histogram Distribution: The bars in Figure 12 depict ranges of forecast error values, 

with the height of each bar representing the counts of errors within that range. 

2. Symmetry: The error distribution is roughly symmetrical around zero, indicating that 

there's no consistent overestimation or underestimation by the Adaptive ARIMA model. 

3. Error Clustering: A significant portion of the forecast errors is clustered close to zero, 

suggesting many accurate predictions by the model within a [-0.5, 0.5] metre band. 

4. Spread of Errors: While many errors are close to zero, errors are spread across a 

broader range up to 2 metres, indicating moments of both signficant overestimation and 

underestimation. 

5. Tail Behavior: The tails of the histogram, similar to previous days, show that extreme 

errors are rarer. 

Summary of Adaptive ARIMA 5th-day forecast results: 

1. Density Plot: There is one main distribution that is centered around zero, describing the 

majority of forecasting errors but there is evidence of a small number of large magnitude 

errors. 
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2. Actual vs Forecasted: There's an alignment between the natural and forecasted water 

levels but with evident deviations at specific points, especially when there are rapid and 

short-term flucatuations in water levels. 

3. Forecast Errors over Time: The detrended errors fluctuate around zero, with several 

spikes indicating significant deviations at specific times. 

4. Histogram: The forecast error distribution is centred around zero, with most predictions 

being accurate within a [-0.5, 0.5] metre tolerance band, but there are moments of both 

overestimation and underestimation. 

Similar to the 1st and 3rd-day results, the 5th-day results indicate that the Adaptive ARIMA 

model performs reasonably well but with some noticeable deviations. The model's 

performance is consistent across the days, but as always with time series forecasting, there's 

an inherent challenge in predicting further into the future, leading to increased errors. 

 

4.1.5 Adaptive ARIMA  7th Day: 

 

Figure 14 Density plot for the Adaptive ARIMA 7th forecast errors 

Figure 13 displays the density plot of the 7-day forecast errors for the Adpative ARIMA 

model. 

Observations: 
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1. Distributions: As with previous days, there is a main distribution that describes the 

majority of errors (within a 1 metre tolerance band around zero) super-imposed with a 

broader scale distribution containing larger magnitude errors (up to 4 metres). 

2. Spread & Peaks: The density has distinct peaks, indicating where the data points are 

most concentrated. There density has a greater spread, with ‘long-tails’ indicating the 

presence of larger-magnitude errors, particularly compared to shorter-term (1, 3, 5-day) 

Adaptive ARIMA forecasts. 

3. Comparison with Previous Days: As anticipated the Adaptive ARIMA 7th-day 

forecast has greater magnitude errors than previous shorter-term forecasts, the majority 

of forecasts errors are however within a [-0.5, 0.5] metre tolerance band around zero. 

 

Figure 15 "Actual vs. Forecasted Water Level" for the Adaptive ARIMA 7th day forecasts 

Figure 14 displays the time series plots of the actual and forecast water levels for 7 days ahead 

using the Adpataive ARIMA model. 

Observations: 

1. Time Series Trajectory: The Figure 14 showcases a time series with two distinct lines 

representing the actual water level and the forecasted values. 
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2. Alignment & Deviations: The actual and forecasted lines generally follow a similar 

path, but there are apparent substantial deviations at specific intervals, indicating 

forecast errors at those moments. 

3. Scale Consistency: Both the actual and forecasted water levels appear to be within a 

similar range, suggesting the model's consistency in scale even on the 7th day. 

 

Figure 16 " Forecast Errors over Time" for the Adaptive ARIMA 7th day forecasts. 

Figure 15 displays the detrended (‘mean removed’) forecast erorrs for the Adaptive ARIMA 

7-day ahead forecasts. 

Observations: 

1. Error Fluctuations: The graaph in Figure 15 showcases the detrended time series of 

forecast errors. As in previous days, positive values suggest overestimations by the 

model, while negative values denote underestimations. 

2. Zero Line: The horizontal line at zero signifies a perfect forecast. Deviations from this 

line (above or below) show the magnitude and direction of the error. 

3. Variability in Errors: There are pronounced fluctuations in the forecast errors, with 

positive and negative deviations from the zero line. Some spikes highlight moments 

when the model's predictions significantly deviated from the actual values. There are 
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two major forecasting errors on the order of 2 metres magnitude and another close to 

1.5 metres. 

4. Bias Indication: The errors oscillate around the zero line, indicating no consistent bias 

in the predictions. 

 

Figure 17 Histogram of forecast errors for the Adaptive ARIMA 7th day forecasts. 

Figure 16 displays the historgram of 7 day forecast erorrs for the Adpative ARIMA model. 

Observations: 

1. Histogram Distribution: As with previous days, each bar in the histogram represents 

a range of forecast error values, with the height of the bar indicating the counts of errors 

within that range. 

2. Centred Distribution: The error distribution is centred around zero, suggesting no 

consistent overestimation or underestimation for the majority of forecasts provided by 

the Adaptive ARIMA model. 

3. Majority of Errors Near Zero: A substantial portion of the forecast errors is clustered 

close to zero, signifying that many of the model's predictions were relatively accurate 

on the 7th day. 
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4. Spread of Errors: While many forecast errors are near zero, errors are distributed 

across a broader range, indicating moment of significant overestimation and 

underestimation. 

5. Tail Behavior: The tails of the histogram, as observed in previous days, suggest that 

extreme errors are more frequent. 

Summary of Adaptive ARIMA 7-day forecast results: 

1. Density Plot: The density plot indicates a central distribution containing most of the 

errors within a band close to zero, however there larger magnitude outliers are present. 

2. Actual vs Forecasted: There's an overall alignment between the actual and forecasted 

water levels but with evident deviations at specific points. 

3. Forecast Errors over Time: Errors fluctuate around zero, with spikes indicating 

significant deviations at specific times but otherwise no specific trends that indicate 

model bias. 

4. Histogram: The histogram of forecast errors is centred around zero, suggesting that the 

model's predictions, for the most part, were accurate, but there are moments of both 

overestimation and underestimation. The number of larger magnitude errors has 

increased compared to shorter term (1, 3, 5) day Adaptive ARIMA model forecasts, this 

is to be expected as the forecast is relatively far ahead and the Adaptive ARIMA model 

only utilises a 7-day window of data. 

The 7th-day results, as expected, show some similarities with the 1st, 3rd, and 5th-day results. 

However, as we move further into the forecast horizon, the challenges of time series 

forecasting can lead to increased error variability. While demonstrating reasonable accuracy, 

the Adaptive ARIMA model shows moments of significant deviations, primarily as the 

forecast horizon extends. 

 

4.2 SLIDING WINDOW ELM ERROR 

4.2.1 Summary of Sliding Window ELM Error 

 Table 5 displays the  summary of Sliding Window ELM across all forecast windows (h 

= 1, 3, 4 and 7 days ahead). 
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Days 

ahead 

 Min. 1st Qu. Median      Mean   3rd Qu. Max.  

h = 1  -0.33010 -0.04800 -0.01414 -0.01123 0.02165 0.25454 

h = 3 -0.70618 -0.14291 -0.02917 -0.01830 0.08306 0.98408 

h = 5 -0.71007 -0.22366 -0.03535 -0.0260 0.13242 1.06827 

h = 7 -0.68889 -0.23043 -0.02849 -0.01840 0.17052   1.04258 

Table 5 Summary of Sliding Window ELM Error  (units in metres) 

 

• Minimum and Maximum: The range between the minimum and maximum forecast 

errors tend to broadens with an increasing forecasting horizon. The more extensive 

spread indicates that error variability augments as the forecast extends. 

• 1st Quartile, Median, and 3rd Quartile: These metrics shed light on the distribution 

of forecast errors. The median error is relatively stable, although slightly negative, 

suggesting a minor tendency for the model to underestimate. As the forecast horizon 

widens, the interquartile range (difference between 3rd and 1st quartiles) expands, 

implying heightened error variability. 

• Mean: The mean error is also relatively stable and leans slightly negative across forecast 

horizons, affirming the model's slight underestimation propensity. 

Overall Analysis: 

While displaying reasonable accuracy for short-term forecasts, the Sliding Window ELM 

model encounters mounting challenges as the forecast horizon stretches. All error metrics 

(Min, 1st Qu, Mean, Median, 3rd Qu, Max) show a clear trend of increased error with 

lengthier forecasts, indicating the intrinsic complexities of long-term predictions. 

The descriptive statistics underline this observation, with the spread of forecast errors 

becoming more pronounced for extended horizons. This implies that the model's predictions 

become more dispersed and less consistent over longer durations. 

For better forecasting performance, especially in longer horizons, refinements in model 

parameters, feature engineering, or incorporating external influencing factors could be 

considered. The results significantly emphasize the necessity of cautious interpretation when 

leveraging the model for long-term predictions. 
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4.2.2 ELM Model Performance Metrics 

Days ahead RMSE MAD MSE 

h = 1 0.06846 0.048906 0.004687 

h = 3 0.206522 0.155525 0.042651 

h = 5 0.277334 0.213925 0.076914 

h = 7 0.31984 0.246136 0.102297 

Table 6 Model Performance Metrics for Sliding Window ELM water level forecasts 

 

• Root Mean Square Error (RMSE): RMSE measures the model's prediction error. The 

results show that as the forecast horizon (h) increases, the RMSE also rises. This 

suggests that the Sliding Window model's accuracy diminishes with a longer forecasting 

horizon. The rise from h=1 to h=7 is notable, indicating increased uncertainty in longer-

term forecasts. 

• Mean Absolute Deviation (MAD): Similar to RMSE, MAD also depicts the forecast 

error, but without the squaring effect. The consistent growth of MAD from h=1 to h=7 

mirrors the RMSE trend, reinforcing the notion that the model's precision lessens with 

a broader forecasting horizon. 

• Mean Squared Error (MSE): MSE amplifies more significant errors by squaring 

them. The upward trajectory of MSE values from h=1 to h=7 corroborates the findings 

from RMSE and MAD. The model needs to work on extended forecast horizons. 

The provided visualizations give an insightful look into the performance of the Sliding 

Window ELM (Extreme Learning Machine) model for water level forecasting on the 1st day. 

Here is a brief discussion and commentary on the results: 

4.2.3 Sliding Window ELM model 1st day 
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Figure 18 Sliding Window ELM plots for 1 day ahead forecasts. 

 

Actual vs Forecasted Water Level - 1 day: 

• The forecasted values (in blue) generally follow the actual values (in red) trend. This 

indicates that the Sliding Window ELM model has managed to capture the main trends 

in the water level data. 

• There are instances where the forecasted values deviate from the actual ones, especially 

in regions with sharp peaks. It is essential to consider these areas for further 

improvement. 

Density Plot of ELM Forecast Errors - 1 day ahead: 

• The density plot showcases the distribution of the Sliding Window ELM forecast errors. The 

peak of the curve suggests that most of the forecast errors are centered around zero, indicating 

that the model's predictions are generally accurate. 
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• However, the presence of a wide spread in the tails of the density plot implies that there are 

instances where the model has made significant errors. It is essential to diagnose these 

instances further to understand their cause and refine the model. 

Forecast Errors over Time - 1 day: 

• This plot in Figure 17displays how the difference between thedetrended actual and 

forecasted values (errors) evolves. 

• While most errors hover around zero (which is desirable), there are clear spikes 

representing significant overestimations or underestimations by the model. These could 

be attributed to sudden changes in the water level that the model failed to anticipate. 

Histogram of Forecast Errors - 1 day: 

• The histogram provides a count of occurrences for specific error ranges. The tall bar 

around the zero-error range further confirms that a significant portion of the forecasts 

was entirely accurate. 

• The symmetric shape of the histogram suggests that the model's errors are evenly 

distributed, with both overestimations and underestimations. This is a good sign as the 

model has no consistent bias in one direction. 

Overall Analysis of the 1st Day: As visualized, the Slding Window ELM model's predictions 

on the 1st day indicate a commendable level of accuracy in forecasting the water levels. 

While the model captures the primary trends and patterns, there are noticeable discrepancies. 

For the model's improvement, it would be worthwhile to investigate these discrepancies 

further, by looking at external factors that might influence water levels or by exploring 

refinements in the model's architecture and training process. 

These visualizations serve as a foundational step in evaluating the model's performance and 

pave the way for a deeper dive into model diagnostics, hyperparameter tuning, and potential 

ensemble methods to enhance prediction accuracy further. 
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4.2.4 Slding Window ELM model 3rd day 

 

Figure 19 Sliding Window ELM plots 3 day ahead forecasts. 

 

Actual vs Forecasted Water Level - 3 day: 

• The forecasted values (in blue) generally follow the actual water level trend (in red), 

suggesting that the Sliding Window ELM plots 3 day ahead forecasts ELM model has 

a decent grip on the data's underlying patterns. 

• There are notable deviations between the forecasted and actual values in areas of sudden 

water level changes, indicating potential challenges in capturing abrupt fluctuations for 

3-day forecasts. 

Density Plot of Forecast Errors - 3 day: 

• Most forecast errors are centered around zero, evident from the density plot's peak. This 

is a positive sign, indicating that the model's predictions are often close to the actual 

values. 
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• The wider tails of the density plot highlight instances of more significant errors. This 

suggests that while the model performs well in general, there are instances of noticeable 

deviations that need to be addressed. 

 

Forecast Errors over Time - 3 day: 

• The error over time plot displays varying magnitudes of discrepancies between the 

forecasted and actual values throughout the dataset. 

• Spikes in this plot suggest moments of significant overestimations or underestimations. 

These pronounced errors may be tied to unforeseen factors or indicate the model's 

limitations in predicting more distant future values. 

Histogram of Forecast Errors - 3 day: 

• The central peak in the histogram reinforces that most of the forecasts had minimal 

error. 

• The gradual spread of errors towards the sides, especially on the positive side, indicates 

that the model sometimes overestimates the water levels. Examining what leads to these 

overestimations is crucial and considering refining the model accordingly. 

Overall Analysis of the 3rd Day: The  Sliding Window ELM model demonstrates a 

respectable forecasting ability for the 3rd day, capturing the central trends of water levels. 

However, compared to the 1-day forecast, there are more significant discrepancies in the 3-

day predictions. This is expected as forecasting further into the future inherently comes with 

more uncertainties. 

While the model performs adequately for many data points, it is essential to address the 

pronounced errors. Investigating the causes behind these discrepancies, whether from the 

model's architecture, training process, or external influential factors, will be vital for 

improving its predictive capabilities. 

For a more refined model, additional input features that influence water levels should be 

considered or ensemble methods could be considered that combine the strengths of various 

models to enhance prediction accuracy. 
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4.2.5 Sliding Window ELM model 5th day 

 

Figure 20 Sliding Window ELM plots 5 day ahead forecasts 

Actual vs Forecasted Water Level - 5 day: 

• The forecasted curve (in blue) roughly follows the trajectory of the actual water levels 

(in red), indicating a basic grasp of the underlying trends. However, deviations are more 

pronounced compared to shorter-term forecasts, which is to be expected as predicting 

further into the future is inherently more challenging. 

• The areas of notable discrepancy, especially in zones with sharp changes, emphasize 

the model's difficulty in accurately predicting sudden fluctuations five days in advance. 

Density Plot of Forecast Errors - 5 day: 

• Most forecast errors cluster around zero, suggesting that many of the model's predictions 

are close to the actual values. 

• However, the density plot's tails are spread out, highlighting instances of more 

significant forecasting errors. The broader spread compared to the 3-day forecast 

indicates increased uncertainty for 5-day predictions. 
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Forecast Errors over Time - 5 day: 

• The temporal view of detrended errors showcases the variability in the model's 

performance over time. There are evident instances of overestimation and 

underestimation, with some errors being considerably significant. 

• Compared to shorter-term forecasts, the 5-day forecast has more pronounced spikes in 

errors, suggesting increased challenges in long-term predictions. 

Histogram of Forecast Errors - 5 day: 

• The histogram presents a central concentration of errors near zero, which is 

encouraging. However, there is also a visible spread towards both positive and negative 

error values, indicating that the model has moments of both underestimating and 

overestimating the water levels. 

• The histogram of errors appears slightly right-skewed, hinting that the model may be 

more prone to overestimation in this 5-day forecast. 

Overall Analysis of the 5th Day: The Sliding Window ELM model exhibits a commendable 

capacity to grasp the general trends of water levels in the 5-day forecast, but with evident 

challenges in accuracy as the forecast horizon increases. As we move further from the 

observation date, uncertainties become more prominent, leading to more significant prediction 

errors. 

For future iterations, additional features or external factors that can influence water levels in 

the long term couid be considered. Alternatively, exploring hybrid models or ensemble 

methods could also help improve the 5-day forecasting performance. Addressing the 

discrepancies will be crucial for a more reliable and robust predictive model. 
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4.2.6 Sliding Window ELM model 7th day 

 

Figure 21 Sliding Window ELM plots of 7 day ahead forecasts 

Actual vs Forecasted Water Level - 7 day: 

• The forecasted trajectory (in blue) predominantly trails the actual water levels (in red). 

While the general pattern is captured, the model struggles to capture sharp turns and 

abrupt changes. This indicates the inherent challenges in predicting water levels a week 

in advance. 

• The deviation zones, particularly around points with significant spikes or drops, 

accentuate the model's challenges in anticipating sudden changes. 

Density Plot of Forecast Errors - 7 day: 

• Most forecast errors center around zero, suggesting that most predictions are closely 

aligned with the actual values. However, the density plot's tail, especially on the right, 

suggests that overestimations can occasionally be quite pronounced. 

Forecast Errors over Time - 7 day: 

• This temporal depiction of the detrnded errors provides insight into the model's 

performance consistency. Overestimations and underestimations are present throughout 
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the forecasted period, with some pronounced spikes suggesting significant 

discrepancies at certain times. 

The error variability appears higher than shorter-term forecasts, showcasing the intricacies of 

7-day predictions. 

Histogram of Forecast Errors - 7 day: 

• A considerable concentration of errors close to zero reiterates the model's general 

accuracy. Nevertheless, there is a spread in both directions, indicating occasions where 

the model underestimates and overestimates. 

• The histogram of errors is slightly right-skewed, hinting at a slight tendency of the 

model to overestimate water levels in this forecast horizon. 

Overall Analysis of the 7th Day:  

While capturing the broad trends of water levels in the 7-day forecast, the Sliding Window 

ELM model exhibits increased difficulty in maintaining high accuracy as the forecast horizon 

extends. This aligns with the challenges associated with long-term predictions, where factors 

influencing water levels can become increasingly unpredictable. 

Incorporating additional external factors, seasonal trends, or leveraging ensemble forecasting 

techniques could be beneficial for enhancement. The discrepancies noted emphasize the 

importance of continuous refinement to bolster the model's long-term forecasting capabilities. 

 

 

4.3 COMPARING THE ADAPTIVE ARIMA AND SLIDING WINDOW  ELM 

 

 1 Day Ahead 

Model  Min. Max.  RMSE MAD MSE 

Adaptive 
ARIMA 

 

-0.36714 

 

0.492 0.113867 0.0872616 0.012966 

Sliding 
Window 
ELM 

-0.3301 0.25454 0.06846 0.048906 0.004687 

Table 7 Adaptive ARIMA and Sliding Window ELM For 1 Day Ahead Forecasts 

Comparisons 
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   Table 7 compares the Adaptive ARIMA and Sliding Window ELM model metrics for the 1-

day ahead forecasts. The Sliding Window ELM demonstrates a smaller range of error 

magnitudes, and correspondingly lower model performance metrics. The MAD, for instance, 

of the Sliding Window ELM is almost half that of the Adaptive ARIMA. 

 

 

3 Day Ahead 

Model  Min. Max.  RMSE MAD MSE 

Adaptive 
ARIMA 

-1.227 0.769 0.201862 0.1418001 0.040748 

Sliding 
Window ELM 

-0.70618 0.98408 0.206522 0.155525 0.042651 

Table 8 Adaptive ARIMA and Sliding Window ELM For 3 Day Ahead Forecasts 

Comparisons 

 

    Table 8 compares the Adaptive ARIMA and Sliding Window ELM 3-day forecast error 

metrics. Similar to the 1-day ahead forecasts, the Sliding-Window ELM has a substantially 

lower range of errors. The RSME, MSE and MAD are however of similar magnitudes 

indicating that for the majority of 3-day ahead forecasts both models perform similarly. 

 

5 Day Ahead 

Model  Min. Max.  RMSE MAD MSE 

Adaptive 
ARIMA 

 

-2.56 

 

1.447 0.342922 0.1628742 0.117595 

Sliding 
Window ELM 

-0.71 1.06827 0.277334 0.213925 0.076914 

Table 9 Adaptive ARIMA and Sliding Window ELM For 5 Day Ahead Forecasts 

Comparisons 

 

    Table 9 compares the Adaptive ARIMA and Sliding Window ELM 5-day forecast error 

metrics. The Adaptive ARIMA model has a substantially greater range of error magnitudes.  

Both the MSE and RSME of the Sliding Window ELM are substantially lower than that of the 

Adaptive ARIMA model. Oddly however, the MAD of the Sliding Window is larger than that 

of the Adaptive ARIMA ELM. This could indicate a tendency of the Sliding Window ELM to 

over-predict at longer forecast horizons. 
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7 Day Ahead 

Model  Min. Max.  RMSE MAD MSE 

Adaptive 
ARIMA 

 

-4.463 

 

2.125 0.506595 0.1721934 0.256638 

Sliding 
Window 
ELM 

-0.68889 1.04258 0.31984 0.246136 0.102297 

Table 10 Adaptive ARIMA and Sliding Window ELM For 7 Day Ahead Forecasts 

Comparisons 

 

    Table 10 compares the Adaptive ARIMA and Sliding Window ELM 3-day forecast 

error metrics. There is quite a substantial difference in the range of the forecast error 

magnitudes. The Adaptive ARIMA has substantially larger errors than the Sliding 

Window ELM. This pattern is also evident in the RSME, MAD and MSE metrics, the 

Sliding Window ELM tends to perform better for 7-day ahead water level forecasts, some 

prediction errors whilst large are not as extreme as the errors that can occur when using 

the Adaptive ARIMA model. 
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Chapter 5: Discussion  

The discussion chapter provides an opportunity to interpret and analyse the results of the 

study in light of the research questions or objectives. It goes beyond simply presenting the 

findings and delves into their significance, implications and wider context. This chapter 

presents the limitations or weaknesses of the study and they suggest avenues for further 

research. The discussion chapter aims to provide a comprehensive understanding of the study 

results, contribute new insights into the field, and provide recommendations for future research 

or practical applications based on the results and analysis. 

5.1  ADVANTAGES AND LIMITATIONS OF ADAPTIVE ARIMA 

The ARIMA (Autoregressive Integrated Moving Average) model, a mainstay in time series 

forecasting, possesses certain inherent advantages and limitations. These advantages and 

limitations can be magnified when specifically applied to Australian river systems, providing 

insights and context crucial for effective river water level forecasting. 

 

5.1.1 Contextualizing within Australian river systems 

Advantages: 

1. Seasonality Handling: ARIMA models are adept at managing seasonal data, and 

Australian river systems often exhibit seasonal variability. In regions like the Murray-

Darling Basin, marked wet and dry seasons can be effectively forecasted using 

ARIMA's seasonal differentiation. The Adaptive ARIMA model utilised did not include 

a seasonal component, instead consisting of a ‘short-term’ 7-prior day history with a 

updatable model. A future model improvement might be to include a seasonal 

component to the Adaptive ARIMA model. 

2. Flexibility: Adaptive ARIMA's parameters (p, d, q) can be fine-tuned for specific rivers, 

catering to their unique hydrological characteristics. For instance, certain rivers might 

require a higher autoregressive component due to consistent patterns from the past. In 

contrast, recent shocks might influence others, warranting a more extensive moving 

average term. A major benefit of the Adaptive ARIMA is that the model parameters are 
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incrementally updated, thereby allowing dynamic response to changing water 

conditions. 

3. Interpretable Results: The coefficients of the Adaptive ARIMA model provide 

insights into the nature and lag of dependencies, making it easier for hydrologists and 

policymakers to interpret and strategize accordingly. 

Limitations: 

1. Non-linearity: While Adaptive ARIMA is effective for linear data, Australian river 

systems can sometimes display non-linear patterns due to complex ecological 

interactions, severe weather events, or anthropogenic interventions. In such scenarios, 

Adaptive ARIMA's performance can be compromised. This issue might have been 

present in the Albury water level data set that was evaluated, there were occasional 

abrupt changes in the water levels and associated inaccuracies in water level forecasts. 

2. Stationarity Requirement: Adaptive ARIMA models require data to be stationary. 

While the model can handle seasonality (and related trends) through differentiation, 

sudden and prolonged changes in river water levels, as seen during droughts or 

significant infrastructure projects, can disrupt this stationarity, necessitating additional 

data transformations. 

3. Short-Term Forecasts: The ARIMA is traditionally more accurate with short-term 

than long-term forecasts. This effect is even more pronounced in the Adaptive ARIMA 

model, it only utilised 7-days of previous observations, resulting a model that only 

utilises short-term patterns in the water level data. This limitation can be a significant 

drawback in the context of river systems, where long-term forecasts are vital for water 

resource management and planning. The Adaptive ARIMA is designed and best utilised 

for short-term forecasting and water level management. 

In sum, while the Adaptive ARIMA offers a robust method for forecasting time series data, its 

application to Australian river systems necessitates consideration of the unique characteristics 

and challenges these rivers present. With adequate data pre-processing and parameter tuning, 

Adaptive ARIMA can be a valuable tool for river water forecasting in the Australian context. 

5.2 ADVANTAGES AND LIMITATIONS OF THE SLIDING WINDOW ELM 

The Extreme Learning Machine (ELM) is a rapid learning algorithm primarily designed for 

single-hidden-layer feedforward neural networks. Over the past years, its usage has expanded 
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beyond its initial scope due to its fast-training speed and generalization capability. In this 

research a Modified version of the ELM was utilised called the Sliding Window ELM. The 

Sliding Window ELM, trained on a larger set of prior data but only utilised the previous 7-

days of river level data when forecasting the future water level. However, like any machine 

learning model, the ELM (and Sliding Window ELM) has its own advantages and drawbacks, 

mainly when applied to intricate hydrological datasets. 

Advantages: 

1. Fast Learning Speed: One of the most significant benefits of ELM is its rapid learning 

capability. Traditional back-propagation neural networks require iterative weight 

adjustments, whereas ELM randomly assigns weights and biases to the hidden layer, 

leading to a considerably faster learning process. 

2. Generalization: in many cases, ELM exhibits better generalization than standard neural 

networks. This is particularly valuable for hydrological datasets, which often have 

varied and complex underlying structures that need a model that can generalize well to 

unseen data. 

3. Scalability: ELM can manage large-scale datasets effectively. The vast amount of data 

often associated with river systems makes ELM a suitable choice, particularly for 

initially training the ELM model on a large amount of prior data. 

Limitations: 

1. Overfitting: Though ELM possesses robust generalization capability, there is still a risk 

of overfitting, especially when dealing with datasets with a high dimensionality or noise. 

Careful tuning and regularization techniques are necessary to mitigate this risk. 

2. Interpretability: Neural networks, including ELM, are called 'black boxes.' This lack 

of transparency can be a drawback, mainly when model decisions must be explained or 

justified to stakeholders in hydrological management. 

3. Random Initialization: The random assignment of weights and biases to the hidden 

layer can lead to variability in model results. While this random initialization allows 

ELM its rapid learning speed, it can mean that different runs of the model may yield 

slightly different outcomes. 

Therefore, the ELM (and Sliding Window ELM) provides a compelling alternative to 

traditional neural networks, especially in scenarios where rapid training is paramount. This 
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property of rapid training is a potential improvement that could permit the development and 

implementation of an Adaptive ELM in future work. The potential advantages of the ELM in 

handling vast hydrological datasets make it appealing for river water forecasting. However, 

careful implementation and understanding its limitations are crucial to harness its full 

potential effectively. 

5.3 IMPLICATIONS FOR WATER RESOURCE MANAGEMENT 

River water forecasting is crucial in ensuring that water resource management strategies are 

practical and sustainable. Incorporating predictive tools like Adaptive ARIMA and Sliding 

Window ELM can provide precise insights that influence water policy, infrastructure 

decisions, and community preparedness. 

5.3.1 Practical applications and potential impact. 

1. Flood Preparedness: Predictive models enable better forecasting of extreme river 

water levels. With precise predictions, communities can prepare better for potential 

flood events, minimizing loss and damage. 

2. Optimizing Water Usage: Accurate forecasting allows for better management of water 

reserves, ensuring sufficient supply during dry spells and avoiding wastage during 

periods of abundance. 

3. Infrastructure Planning: Predictive data can guide decisions on building dams, 

reservoirs, and other infrastructure. An accurate understanding of future water levels 

can lead to more cost-effective and sustainable designs. 

4. Environmental Conservation: Predictive models can also help anticipate adverse 

environmental conditions like droughts. This can guide interventions to protect aquatic 

life and maintain the ecological balance of river systems. 

5.4 RECOMMENDATIONS FOR FURTHER STUDIES AND 

IMPLEMENTATIONS. 

1. Integration with IoT Devices: Future studies could explore the integration of Adaptive 

ARIMA, Sliding Window ELM, and other predictive models with Internet of Things 

(IoT) devices for real-time data collection and processing. This would enhance the 

precision and timeliness of forecasts. Both the Adaptive ARIMA and Sliding Window 
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ELM have relatively small computational requirements and this could be a major 

advantage of such systems compared to more complicated deep learning (and similar) 

models which are more suited to cloud deployment. 

2. Hybrid Models: There is potential in combining the strengths of different predictive 

models to enhance accuracy. Future research could delve into hybrid models, blending 

ARIMA's time series analysis with ELM's rapid processing capabilities. 

3. Stakeholder Collaboration: Implementation of predictive models should be done in 

close collaboration with local communities, policymakers, and other stakeholders. This 

ensures that forecasts are aligned with ground realities and can be translated into 

actionable strategies. 

4. Addressing Model Limitations: As technology advances, there is an opportunity to 

address the limitations of existing models, be it in terms of overfitting, computational 

demands, or data requirements. Continuous refinement will further solidify the role of 

these models in water resource management. 
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Chapter 6: Conclusions 

SUMMARY OF RESEARCH FINDINGS 

The research embarked on an explorative journey to understand the potential and limitations 

of Adaptive ARIMA and Sliding Window ELM predictive models in river water forecasting, 

specifically within an Australian river system. Below, we summarize the key findings: 

1. ARIMA's Applicability in Time Series Analysis: The ARIMA model showcased its 

well-established capability in handling time series data. Its prowess in determining 

patterns from historical datasets allowed for nuanced and often accurate predictions 

about future river water levels. 

2. ELM's Rapid Computational Benefits: Extreme Learning Machine stood out for its 

computational efficiency, learning a large amount of prior data followed by a large 

number of incremental forecasts. Its single-layer feedforward network allowed for rapid 

learning, making it suitable for scenarios where real-time predictions are crucial. 

3. Data Pre-processing Importance: Data collection from sources such as the MDBA 

River Data highlighted the essentiality of data cleaning and normalization. This ensures 

that the predictive models function optimally and deliver accurate forecasts. 

4. Adaptive Learning in Adaptive ARIMA: The study illuminated the short-term 

memory processes inherent in the Adaptive ARIMA model, making it adapt continually 

to changes in the dataset and refining its predictive capabilities. 

5. Long-term Data Considerations in ELM: While Sliding Window ELM displayed 

rapid learning abilities, its dependence on ample training data was evident. In general, 

the richer the dataset, the better its predictions, emphasizing the importance of long-

term data collection. 

6. Implications for Water Resource Management: Both Adaptive ARIMA and Sliding 

Window ELM models can significantly affect water resource management in Australia. 

Their forecasting abilities can guide decisions ranging from flood preparedness and 

infrastructure planning to environmental conservation. 
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The confluence of both models, especially with methodologies like the 7-Day Sliding 

Window Approach, can provide a holistic view of water forecasting. Therefore, this research 

has laid the groundwork for the broader implementation of these models in river water 

forecasting across Australia, ensuring that the continent is better prepared for both the 

challenges and opportunities its river systems present. 
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