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Abstract 

It is well known that, for many engineering systems, such as aircrafts and vehicles, there is a 

high demand for maintaining a system’s safety during its operation. A fault in a system may 

lead to a complete break-down of the system operation. The detection and the handling of faults 

therefore play an important role in the design and operation of an engineering system. 

In this project, a fault detection and diagnosis system using the concept of the Beard-Jones (BJ) 

filter is designed and demonstrated for a Multi-Input Multi-Output (MIMO) mechanical plate 

structure. The structure includes a top plate, a base plate, a disturance transducer, and three 

pairs of co-located sensors and actuators that bond the top and base plates together. Structural 

vibrations introduced by the disturbance transducer at the base plate are controlled by the three 

sensor-actuator pairs, such that the top plate can remain stationary despite the constant 

vibration excitation induced from the base plate. The main goal of the fault detection and 

diagnosis system is to detect and identify each actuator fault that may occur during the 

operation of the MIMO control system.  

A transfer function representation of the plate structure is constructed through dedicated 

theoretical analysis and physical experiment. The theoretical analysis aims to derive the general 

mathematical expression of the transfer function model while the physical experiment, using 

the ModalVIEW software, aims to produce the parameters (such as mode shapes, damping 

ratios, and natural frequencies) of the transfer function model. For the purpose of fault 

detection, a state-space representation of the system with a defined dimension representing a 

pre-selected frequency range of concern is developed based on the identified transfer function 

representation of the system. 

A fault detection process is constructed using the BJ filter detection theory that offers a set of 

straightforward design and implementation properties with a wide range of applicability. 

Essentially, a BJ filter acts as a state observer and produces the estimated output of a system 

under no-fault operation conditions. When a fault vector 𝒇𝒇𝒊𝒊 is introduced into the system, the 

output difference between the fault system and the BJ filter will produce a specific directional 

residual associated with the fault such that the value of the output residual is stable and 

proportional to 𝐂𝐂𝒇𝒇𝒊𝒊 (where C is the output matrix of the system). The key in designing the BJ 

filter is therefore to construct the detection gain matrix L based on a set of design criteria and 
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restrictions. In particular, for a multiple-fault detection, two restrictions, namely the mutual 

detectability and the output separability, will need to be checked in priority.  

In order to validate the BJ filter design principle and procedure, a random system with pre-

defined fault vectors is first tested via simulation in MATLAB SIMULINK. A conceptual BJ 

filter structure for the underlying plate control system is then designed (assuming the 

satisfaction of the design restrictions) and tested in MATLAB SIMULINK via different 

configurations (namely, SISO configuration – considering one pair of the inputs and outputs 

of the real system only, 2I2O configuration – considering two pairs of the inputs and outputs 

of the real system only, and MIMO configuration – considering all three pairs of the inputs and 

outputs of the real system, respectively). Simulation results confirm that the designed 

conceptual BJ filters are able to detect the pre-defined faults in the both the random and the 

real plate systems successfully.  

Upon the validation of the conceptual BJ filter design principle and procedure, an operable BJ 

filter is designed specifically for actuator fault detection of the given plate control system in 

real-time operations. Considering that the initial state-space model of the given plant does not 

meet the output separability requirement of the BJ filter design, an extended model of the 

system is proposed where the derivative of each output is included in the system output vector, 

thus extending the existing system from 3I3O to 3I6O. Such an arrangement guarantees that 

the extended system, while keeping the features of the original plate control system, provides 

a revised form of the system output matrix that satisfies the output separability requirement. 

The corresponding extended version of the BJ filter, capable of performing real-time actuator 

fault detection and diagnosis of the given plate control system, is then designed and validated 

via simulation in MATLAB SIMULINK. 

The designed real-time BJ filter is finally tested via experiment. For effective actuator fault 

detection and diagnosis, a dual BJ filter configuration is implemented where one BJ filter acts 

as an online observer of the given plate system by producing the extended system output from 

the truncated model of the true plant, and another BJ filter acts as a fault detector and identifier 

by producing the required residual proportional to 𝐂𝐂𝒇𝒇𝒊𝒊 (where C is the output matrix of the 

extended system). This arrangement takes into account the inevitable modelling errors between 

the real plant and the modelled plant used for the BJ filter design purpose, and increases the 

accuracy of the fault detection and identification in practice. A set of experimental data is 
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obtained that verifies the design and implementation of the proposed BJ fault detection and 

diagnosis system for real-time operation of the given MIMO plate control structure. 
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Chapter 1 : Introduction 

In this chapter, the project background is introduced in the first section to briefly state the aims 

and motivation of this thesis and the second section outlines the structure of the thesis.  

1.1 Project Background 

Control systems have been integrated into multiple aspects of modern life. They appear in cars, 

washing machines, and elevators as well as modern engineering systems such as aircraft, mass 

transit vehicles, and ships, which have all become more complex and automated in order to 

meet increasing demands for better performance and cost efficiency. This has in turn increased 

demand for guarantees of operational safety and reliability in these systems. A fault in a control 

system is caused by an unallowable deviation from the normal operating condition of the 

system and will usually appear without any indication [1, 2 and 3]. Due to the unpredictability 

of such events, faults are often difficult to be detected in a timely manner and may not be 

amenable to protective measures. A fault may not only lead to declines in a control system’s 

performance, but also the possible collapse of the entire control system. A very small fault in 

a control system with strict requirements for system safety, such as in an airplane, can cause a 

catastrophe with significant casualties and economic losses. Several examples of such serious 

disasters are given below: 

Case 1: On 26 April 1986, reactor No.4 at the Chernobyl nuclear power plant exploded, and a 

large amount of radioactive material was leaked. Serious radiation resulted in 31 deaths within 

three months of the accident, and, in all, over 60000 people had died of side effects of nuclear 

radiation after 15 years. This disaster was the biggest accident since the beginning of the 

nuclear power Era, and the main reason for the disaster was a lack of fault detection and poor 

handling techniques [4]. 

Case 2: On July 4, 1996, the Ariane 5 rocket exploded 77 seconds after launch. The reason was 

an abnormal transmission of information in the Inertial Reference Unit, which provided 

incorrect altitude and tracking information to the control systems [5]. 

Case 3: On May 25, 1979, a McDonnell-Douglas DC-10 aircraft (AMERICAN AIRLINES 

flight 191) crashed at Chicago O’Hare International Airport. At that time, 271 passengers on 

the airplane and 2 persons on the ground died [6]. This was caused by a malfunction in the 

leading-edge slat assembly. 
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These massive disasters have caused people to think about what can be done to prevent such 

things from happening. Although the occurrence of a failure is rarely completely preventable, 

analysis of accident results indicates that the most serious consequences of such failures can 

be avoided, and that casualties and property losses can be minimized or mitigated. If fault 

information can be detected quickly enough, it is possible to ensure the safe operation of a 

control system, to gain enough time for the system to stop safely and for maintenance to be 

implemented. In Case 1, a safety shutdown should have been added to the system so that such 

reactions could be stopped immediately, before the risk of explosion. In Case 2, the incorrect 

information from the Inertial Reference Unit could have been detected if there had been 

sufficient redundancy in the system (another sensor) so that the tracking information could be 

compared with the expected data. In Case 3, a backup control system to control the aircraft in 

the case of jammed components was required. 

All these examples illustrate the increasing demand for fault detection, fault diagnosis, and 

fault-tolerant controls to maximize the safety and reliability of a control system’s real-time 

operation. This is thus the motivation of this thesis, which mainly focuses on the fault detection 

and fault diagnosis of a mechanical plate structure. 

1.2 Outline of This Thesis 

In this thesis, a fault detection and diagnosis system using the concept of the Beard-Jones (BJ) 

filter is designed and demonstrated for a Multi-Input Multi-Output (MIMO) mechanical plate 

structure with three pairs of sensors and actuators. The outline of this thesis is as follows: 

In Chapter 2, an overall literature review is presented. System identification and fault 

classification methods are introduced in detail. Different fault detection approaches, as well as 

their applications, are analyzed and compared. 

In Chapter 3, the feature and characteristics of the MIMO mechanical plate structure used in 

this study are described. Based on the theoretical analysis and physical experiment, the 

procedure of building the mathematical model of the plate is illustrated in detail.  

In Chapter 4, as the core of the fault detection approach adopted in this thesis, the Beard-Jones 

filter is discussed in detail. The structure of the Beard-Jones (BJ) filter which forms the basic 

concept in the fault detection approach is introduced firstly. The BJ filter fault detection theory 

which applied to one-fault and multiple-fault situations are, respectively, discussed, and the BJ 
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filter design principle and design procedure are validated using a random system with pre-

defined fault vectors in MATLAB SIMULINK. 

In Chapter 5, a conceptual BJ filter structure for the underlying plate control system is designed 

(assuming the satisfaction of the design restrictions) and validated in MATLAB SIMULINK 

via different configurations (namely, SISO configuration – considering one pair of the inputs 

and outputs of the real system only, 2I2O configuration – considering two pairs of the inputs 

and outputs of the real system only, and MIMO configuration – considering all three pairs of 

the inputs and outputs of the real system, respectively). 

In Chapter 6, an operable BJ filter is discussed specifically for actuator fault detections of the 

given plate control system, and is tested in real-time experiment.  

In Chapter 7, meaningful conclusions from the studies presented in this thesis are drawn based 

on which future works are suggested. 
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Chapter 2 : Literature Review 

In this chapter, an overall literature related to fault detection and diagnosis is reviewed. System 

identification is firstly discussed to explain the system modelling approaches, followed by fault 

classification. Different fault detection approaches, as well as their applications, are then 

analyzed and compared, which leads to the main approach, the Beard-Jones filter approach 

used in this thesis. 

2.1 System Identification 

In general, system identification acts as a link connecting the measured input and output data 

of a system with a simplified model of known or unknown parameters. The purpose of this is 

to construct a mathematical model of a dynamic system by using the observed input and output 

data. With the help of a mathematical model, a suitable control system for the actual system 

can be designed, and the performance of the overall system can be assessed and monitored. 

Dynamic systems are ubiquitous, so the application of system identification can be divided into 

many aspects, such as system modelling, prediction, fault detection, and diagnosis [7, 8, 9, and 

10]. 

There are three main properties of system identification, as listed below [11]: 

 The validity of the models (obtained by system identification) may be limited. For 

example, they may only fit to certain situations or certain types of outputs. 

 The models may not offer physical insights of the systems, if the model parameters have 

no distinct physical relationships with the real systems. Most of the parameters only act as 

mirrors to express the primary behaviors of the overall systems of concern. 

 The most significant advantage of system identification is that the models, if good enough, 

will be useful for system analysis and design. A compromise between precision of 

modelling results and simplicity of a model must be made, so that some physical 

properties, such as negligible interference sources and unnecessary nonlinear parameters, 

could be ignored.  

As representations of the physical systems by mathematical models using system identification 

vary to some extent, there are three key methods of constructing these mathematical models: 

numerical analysis, theoretical analysis, and physical experimentation [12]. 
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 Numerical analysis is the most efficient and useful method in mathematical modelling due 

to the rapid advances in computer technologies. The invention of specific software tools, 

such as ANSYS and MATLAB, have made numerical analysis much easier and more 

effective. The accuracy of the models depends on the accuracy established in those specific 

software programs. This thesis mainly focuses on modelling a laboratory model using this 

method [13]. 

 Theoretical analysis is implemented by considering the physical properties and 

characteristics of a real system. Taking the advantage of theoretical derivations, a 

mathematical model of a system can be obtained precisely. However, in most instances, it 

is difficult to carry out an effective theoretical analysis because of the complexity of the 

structure of a real system. 

 Physical experiment is the most dependable way to deduce a mathematical model. By 

conducting real-time experiments, obtained data can be used to reflect the dynamics of the 

system under examination to the maximum extent. However, it may be tricky to use the 

obtained data to construct a mathematical model that is appropriate for system analysis 

and design purposes. 

For an engineering system, a valid model of a system is vital for the system dynamic analysis 

and controller design purposes. The more accurate a mathematical model of the system, the 

more reliable the results of the final system solution. Mathematical models can be represented 

by different forms of mathematical equations, based on an intended use [11]. There are two 

major forms used to express these mathematical models, namely, transfer function 

representation, and state space representation. 

Transfer Function Representation 

Transfer function representation is commonly applied to characterize the I/O relationships of 

physical systems; the definition of this type of systems is that the system under examination 

can be expressed by a time-invariant, linear, differential equation. The process of obtaining the 

transfer function mainly relies on the Laplace transformations that transform the differential 

equation in the time domain into a ratio between the output and the input of the system in the 

s-domain. 

Assume a time-invariant, linear, differential equation of the form: 

𝑎𝑎0𝑦𝑦𝑛𝑛 + 𝑎𝑎1𝑦𝑦𝑛𝑛−1 +⋯ + 𝑎𝑎𝑛𝑛−1�̇�𝑦+ 𝑎𝑎𝑛𝑛𝑦𝑦= 𝑏𝑏0𝑥𝑥𝑚𝑚 + 𝑏𝑏1𝑥𝑥𝑚𝑚−1 + ⋯+ 𝑏𝑏𝑚𝑚−1�̇�𝑥+ 𝑏𝑏𝑚𝑚𝑥𝑥      (2.1) 
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where x and y indicate the input and output of the system. Based on the principle of the transfer 

function, (2.1) can be transferred into the s-domain as: 

Transfer function = 𝐺𝐺(𝑠𝑠) = 𝑌𝑌(𝑠𝑠)
𝑋𝑋(𝑠𝑠)

= 𝑏𝑏0𝑠𝑠𝑚𝑚+𝑏𝑏1𝑠𝑠𝑚𝑚−1+⋯+𝑏𝑏𝑚𝑚−1𝑠𝑠+𝑏𝑏𝑚𝑚
𝑎𝑎0𝑠𝑠𝑛𝑛+𝑎𝑎1𝑠𝑠𝑛𝑛−1+⋯+𝑎𝑎𝑛𝑛−1𝑠𝑠+𝑎𝑎𝑛𝑛

                       (2.2) 

where 𝐺𝐺(𝑠𝑠) is the transfer function between 𝑌𝑌(𝑠𝑠) and 𝑋𝑋(𝑠𝑠) in the s-domain. 

The main properties of a transfer function are listed below [14]: 

1) The nature of a transfer function is a mathematical model, that uses the operational 

derivation to express the differential equation in term of the input and output of a system. 

2) A transfer function shows the characteristics of the corresponding system itself, which are 

not related to the input properties or any disturbances in the outside world. 

3) The elements contained in a transfer function can only represent the relation between the 

input and output of the current corresponding system. In most cases, the elements do not 

have any physical meanings, which means that two physical structures may be represented 

by an identical transfer function form. 

4) Based on a known transfer function of a system, the output and response of the system can 

be studied using different forms of inputs. 

5) When a system transfer function is not known, introducing a known input in an experiment 

setting to study the output of the system can help establish the transfer function. 

State Space Representation 

With the development of the modern control theory, modern engineering systems have become 

even more complex, and the required system accuracy is also increasing. Such systems often 

involve multiple inputs and outputs (MIMO), and possess complicated design requirements.  

This type of system is better presented by a state space representation that was established for 

effective analysis and design of modern control systems [14]. For simplicity, the general state 

space representation concerning a linear, time-invariant system can be shown as: 

��̇�𝑿(𝒕𝒕) = 𝐀𝐀𝑿𝑿(𝒕𝒕) + 𝐁𝐁𝑼𝑼(𝒕𝒕)
𝒀𝒀(𝒕𝒕) = 𝐂𝐂𝑿𝑿(𝒕𝒕) +𝐃𝐃𝑼𝑼(𝒕𝒕)                                                    (2.3) 

where 𝑼𝑼(𝒕𝒕) and 𝒀𝒀(𝒕𝒕) are the input and output vectors, respectively, and 𝑿𝑿(𝒕𝒕) is the state 

vector. 
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Alongside convenient and simple data processing when dealing with complex systems, another 

advantage of state space is that the choice of state variables does not need to take the physical 

meaning of the system into consideration; this freedom allows designers to construct the state 

space representation in a much simpler way. 

2.2 Fault Classification 

Faults in a modern control system are events which may happen without any indication and 

may lead to any form of the unexpected deviation of the system parameters or characteristics. 

During the process of the system operation, faults can influence the performance of sensors, 

actuators, or other system components [15 and 16]: 

 Sensor faults: These faults are related to inaccurate sensor readings within the control 

system. Sensor faults can be classified into two types, partial faults, and total faults. The 

information provided by a total sensor fault is not related to the physical parameters being 

measured; such situations may occur because of broken wires. Partial sensor faults provide 

readings that may be in some way related to the measured parameters, but these readings 

may have a gain reduction or other bias in the measurement [17]. 

 Actuator faults: Actuator faults lead to situations in which correct control commands 

cannot be applied to the system [18]. As with sensor faults, actuator faults can also be 

divided into total and partial types. Total actuator fault may occur due to a stuck actuator, 

which cannot produce any actuation, while actuators with partial faults such as fuel leakage 

may provide a proportion of the normal operation. 

 Component faults: In general, these faults belong to the plant itself, and cover anything 

that cannot be classified as a sensor or actuator fault. Component faults refer to deviations 

in the parameters of physical systems; these parameters can be related to mass or shape or 

be related to the plate structure. In this thesis, component faults will not be taken into 

consideration, as the basic assumption is that the plate structure will not be changed and 

that any mathematical model constructed based on the system identification will thus 

always be valid. 

As with system identification of a plate structure, faults occurring in the system also need to be 

modelled. According to the mathematical treatment of faults, faults are classified as additive 

faults and multiplicative faults [19].  
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Multiplicative faults commonly refer to parameter changes in the system, as shown in Figure 

2.1a. When introducing the multiplicative faults into the state space model, the system 

mathematical model is modified as: 

��̇�𝑿(𝒕𝒕) = (𝐀𝐀+ ∆𝐀𝐀)𝑿𝑿(𝒕𝒕) + (𝐁𝐁 + ∆𝐁𝐁)𝑼𝑼(𝒕𝒕)
𝒀𝒀(𝒕𝒕) = (𝐂𝐂 + ∆𝐂𝐂)𝑿𝑿(𝒕𝒕) + (𝐃𝐃 + ∆𝐃𝐃)𝑼𝑼(𝒕𝒕)

                                 (2.4) 

where ∆𝐀𝐀 , ∆𝐁𝐁 , ∆𝐂𝐂 , and ∆𝐃𝐃  represent parameter changes. From the above equation, 

multiplicative faults multiply themselves with the state and input vectors, which makes this 

type of fault harder to handle than additive faults [20]. Another difficulty when dealing with 

multiplicative faults is that parameter changes may influence the stability and controllability of 

the entire plate structure. A further disadvantage of multiplicative faults is the limitation of 

representing only sensor and actuator faults. Therefore, as multiplicative faults can be 

expressed using additive faults, this thesis mainly focuses on studying additive faults. 

 

Figure 2.1a is for multiplicative fault, 2.1b is for additive fault 

Additive fault can be regarded as external inputs to the system, as shown in Figure 2.1b. When 

introducing additive faults into the state space model, the system mathematical model is 

modified as: 

��̇�𝑿(𝒕𝒕) = 𝐀𝐀𝑿𝑿(𝒕𝒕) + 𝐁𝐁𝑼𝑼(𝒕𝒕) + 𝒇𝒇𝟏𝟏(𝒕𝒕)
𝒀𝒀(𝒕𝒕) = 𝐂𝐂𝑿𝑿(𝒕𝒕) +𝐃𝐃𝑼𝑼(𝒕𝒕) + 𝒇𝒇𝟐𝟐(𝒕𝒕)                                          (2.5) 

where 𝒇𝒇𝟏𝟏(𝒕𝒕) and 𝒇𝒇𝟐𝟐(𝒕𝒕) represent the fault models caused by additive faults. This form can be 

applied to the modelling of all three types of faults previously defined. Due to this advantage, 

additive fault modelling is more suitable for designing fault detection algorithms, especially in 

terms of the application of state space representation [17]. 
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2.3 Fault Detection Approaches 

2.3.1 Hardware Redundancy and Analytical Redundancy 

With the increasing popularity of automatic controls in modern engineering systems, fault 

detection now plays a very important role in indicating abnormal or undesired process states, 

thus allowing the system to take proper actions to maintain degraded but acceptable operation 

to prevent accidents prior to maintenance [21]. Two main fault detection methods are utilized 

in control systems: hardware redundancy and analytical redundancy. The basic operational 

processes are shown in Figure 2.2 [22].  

 

Figure 2.2 Hardware redundancy vs analytical redundancy 

Hardware Redundancy 

In general, the traditional method for fault detection is based on hardware redundancy. 

Hardware redundancy adds spare components (such as multiple sensors, actuators, and 

components) to the system in order to measure possible output deviations. A continued 

operation can thus be accomplished by isolating a fault component and switching to the use of 

the spare component [23]. A voting technique is a typical approach in hardware redundancy, 

and this can identify the time and location of faults among all the redundant components. 

However, this technique has three limitations [24]: 

 The outputs of the sensors must be algebraically related to the nominal condition. 

 The detection law does not have the ability to distinguish a failure location between the 

system component and the sensors that indicate the outputs of the components. 
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 As the detection law has no memory, it is difficult for the voting technique to detect the 

“soft” failures.  

The appealing advantage of hardware redundancy is its simplicity in terms of design process 

and implementation. In addition, in most cases, there is no need to adjust parameters in other 

parts of the system in order to achieve compatibility with spare components. Thus, no 

additional logical operation is required for this type of fault detection. However, in the 

fundamental parts of the modern control systems, many faults cannot be simply detected and 

localized prior to the failure of the entire system. Some types of failures, such as pressure losses 

and stuck actuators, can be detected and localized immediately. However, in complex cases, 

the detection task must be done by grouping several components into one unit. This approach 

makes it easy to implement fault detection, but causes the use of hardware to become inefficient 

due to the loss of normal operating components. The performance of hardware redundancy can 

be improved by using all spare components simultaneously with the primary components, 

instead of retaining all of the spare components as idle before a fault occurs. This arises 

because, when considering sensor performance in the system, using several sensors (primary 

and redundant) to measure the same parameter can produce a much more precise result than 

using only one sensor. When considering actuator performance in the system, several actuators 

(primary and redundant) can also produce the same total output (sum of each actuator output) 

with less effort than one primary actuator, which results in a higher saturation level and longer 

average lifetime for each device [25]. 

However, there are other limitations to the hardware redundancy method. The most important 

limitation is that it cannot deal with performance degradation caused by changes in operating 

parameters such as environmental changes, as in most cases such environmental changes are 

unknown and cannot be predicted ahead. 

Although hardware redundancy is a reliable method to guarantee the normal operation of 

systems, its limitation and cost make it an imperfect method for many systems. Therefore, this 

thesis will mainly focus on analytical redundancy. 

Analytical Redundancy 

Due to the limitations of hardware redundancy as explained above, analytical redundancy was 

developed to provide systems with more effective methods for dealing with deviations in the 

systems and their environment, to make full use of redundancy. Analytical redundancy uses a 
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specific algorithm to construct a mathematical model, and it is thus usually regarded as a 

model-based method of fault detection.  

Figure 2.3 shows a general structure for analytical redundancy in detail for a Fault Detection 

and Identification (FDI) system. The process for an FDI system can be separated into three 

stages [22]. The first stage is to produce a set of variables, normally known as residuals, 

utilizing residual generation methods. The number of generations depends on the FDI system, 

as several residual generations may run in parallel for fault detection. The generated residuals 

must be ideally 0 under normal operating conditions. To ensure the residuals can be applied to 

practical applications, they must be insensitive to outside disturbance and model uncertainties 

as well as being sensitive to corresponding faults to the maximum extent. The second stage is 

to decide whether there are faults occurring in the control system; the location of faults is based 

on the information extracted from the residuals by the decision filter. This step can usually be 

implemented by mathematical calculation and statistical methods based on the fault model and 

will detect any deviation compared with the normal operating system (zero). Finally, the last 

stage is to reconfigure the controller to maintain the operation of the system. 

 

Figure 2.3 Fault detection, isolation, and reconfiguration system using analytical redundancy 

In the analytical redundancy method, the residuals are always obtained based on the system’s 

mathematical models. These mathematical models can be developed based on different 

principles, such as Newton’s law of motion in mechanical systems, or past experience and 

observations. This approach makes it difficult for mathematical models to represent the 

behaviors of real systems precisely because of modelling errors and uncertainties along with 
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noise and disturbances; the generated residuals can be nonzero under normal operating 

conditions in reality. This problem can be overcome by using two approaches [22] 

 Robust residual generation: This method designs a robust filter which can produce 

residuals that are not sensitive to outside noise and disturbance while remaining sensitive 

to corresponding faults. 

 Robust residual evaluation: This method develops the hypothesis detecting algorithm in 

order to estimate the residuals. The main idea behind this method is to test changes in the 

system parameters which are related to faults. 

The main properties and advantages of analytical redundancy are shown below [26]: 

 Faults can be detected and diagnosed much earlier in cases of both abrupt or slow 

behaviour. This means that the detection delay can be minimized, which allows the system 

enough time to react, such as by implementing reconfiguration, a fix, or other mitigating 

operations. The method used to achieve earlier detection can be based on input-output 

relationships derived from mathematical models. 

 It has the ability to distinguish between different types of failures, such as sensor, actuator, 

and component faults. This ability enables the system to act to deal with failures in order 

to maintain a normal system operation.  

 No spare hardware components are needed to implement fault detection, as computer 

software is used for fault detection [27]. 

 It can monitor system process in every transient state. 

 Advances in analytical redundancy lay the basis for fault-tolerant control. 

 It maintains good robustness while dealing with various noise impacts. 

 It displays a high level of sensitivity to faults. 

 It can achieve in-depth fault diagnosis with close-loop fault detection. 

2.3.2 Major Approaches in Analytical Redundancy 

As the analytical redundancy method has several advantages, as illustrated above, compared to 

hardware redundancy, this method is generally more cost efficient. However, analytical 

redundancy still has several problems that must be solved. There is, in particular, a need to 

focus on meeting the requirements of robustness when faced with modelling uncertainties and 

environmental disturbances. Thus, in recent decades, many scholars have been devoted to the 

research of algorithms in analytical redundancy, and several effective and practical algorithms 
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have been successfully implemented; these are state estimation, parity relation, parameter 

estimation, and Kalman filter [35]. 

Parameter Estimation 

The parameter estimation approach is suitable for the conditions where the system faults are 

associated with parameter deviation in the mathematical model, making it suitable for 

multiplicative faults. In general, the model parameters do not need to be measured, the 

parameter estimation approach estimates the model parameters recursively to minimize the 

computational requirements. An appropriate mathematical model must be constructed to meet 

the first principle, which relates the model parameters to system parameters with physical 

meanings. The setting of thresholds normally relies on the differences between the model 

parameters and the parameter estimation [28].  

There are five main steps for implementing the parameter estimation approach [29]. 

1) Constructing a mathematical model for the input variable u and output variable y using 

conservation equations and operational relationships. This model relates each physical 

parameter p and input variable u to the output variable y. 

2) Making assumption or gathering physical parameters together to construct a new 

observable parameter q that can be uniquely detected. By means of this process, the new 

re-defined parameter can linearly enter the mathematical model, which can simplify the 

parameter estimation approach. 

3) Estimating the new parameter q by measuring the current and past input and output 

variables, and obtaining q’ which is the estimated q used in the process [30]. 

4) Based on q’, calculating the corresponding p’, which is an estimation of the physical 

parameter p.  

5) Comparing the physical parameter p with the estimated p’ by computing their difference; 

if the result is non-zero and exceeds a pre-set threshold, then faults are detected. 

As the parameter estimation approach mainly focuses on the system which has time-varying 

parameters and multiplicative faults, this thesis will not cover this approach in detail [31]. 

Kalman Filter 

The basic principle of the Kalman filter is the use of a recursive algorithm for estimating states. 

The Kalman filter method can be treated as a special situation in stochastic optimization. This 

method was firstly developed by Mehra and Peschon to generate residuals for fault detection 
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and isolation [32]. Faults can be detected through statistical testing based on the covariance 

and mean of residuals. Basseville and Benveniste have proven that the fault isolation process 

can be implemented by applying a bank of Kalman filters associated with all possible 

deviations which may occur in the system [33].  

Although Kalman filter approach can achieve successful and effective fault detection as a 

simple residual based algorithm, its ability to identify faults is relatively limited [33]. In 

addition, when dealing with multiple models (especially where the number of faulty modes is 

very high), the Kalman filter is much more complex than observer estimation. Thus, this thesis 

will not utilize this approach. 

Parity Relation 

The parity relation approach generates residuals which represent the differences between the 

real system output and the mathematical model output. Then, a linear transformation is applied 

to the generated residuals, which makes them much easier to identify. These two steps form 

the basic function of the residual generation filter that produces the desired fault detection 

properties. Various schemes can be applied to construct a residual generator that satisfies the 

requirements of the response feature. Generally, the purpose of the residual generator is to 

enhance fault detection and isolation in order to improve its ability to identify fault occurrences 

and locations. In addition, several properties such as robustness to noise and disturbance can 

be improved [34].  

The main features of the parity relation approach are shown below [35]. 

 Model parameters and model structure are known precisely and adapt to the process well. 

 Suitable for additive faults. 

 When dealing with additive faults, input signal need not be changed. 

 The linear parity relation can be transformed to observer representation [36]. 

Several researchers have pointed out the relationship between the parity relation approach and 

the observer estimation approach [37, 38]. Chen and Patton investigated this issue in detail and 

their result showed that the parity relation approach was equivalent to the observer estimation 

method (dead-beat observer) [39]. However, compared with the observer estimation approach, 

the parity relation approach has few design flexibilities [39], and this thesis will thus mainly 

focus on the observer estimation approach.  
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Observer Estimation 

The basic idea of the observer estimation approach is the use of Luenberger observers or 

specific filters to estimate the output value of the system based on measurements. The error 

obtained from output estimation is regarded as residual. The general process of observer 

estimation is that if all the sensors in the system are good and the mathematical model of the 

system is precisely known, the estimated state vectors will match the real state vectors quickly. 

In contrast, if one sensor is faulty, the difference between the real and estimated state vector 

can be used to identify the faulty sensor [40].  

The observer estimation approach is especially suitable for detecting changes in sensors and 

actuators, which means that it is most suitable for additive faults. The required mathematical 

model is generally based on the First Principle; thus, the state vectors retain physical meanings, 

which improves fault isolation capacity [29]. 

The key features of the observer estimation approach are shown below [35]. 

 Model parameters and model structure must be known precisely and be well-adapted to 

the process. 

 Fast response to sudden faults. 

 The ability to detect small faults such as additive faults and gains. 

 The ability to achieve on-line real-time fault detection. 

The advantages of using observer estimation lie in its freedom and flexibility in terms of 

choosing the detection gain, which enables this approach to adapt to a variety of situations. 

This thesis will mainly focus on one of the most important observer estimation approaches, the 

Beard-Jones (BJ) filter, because of its excellent ability to deal with MIMO systems [41].  

2.3.3 Beard-Jones Filter 

The Beard-Jones (BJ) filter was firstly proposed by Beard, before being developed by Jones. 

The development of this filter not only contributed to the application of observer theory but 

also created the basis for an observer-based fault detection and isolation framework [42]. The 

BJ filter has attracted significant attention because of its properties, including an ability to 

identify faults in a system that does not depend on the mode of faults [43]. The main process 

used by the BJ filter is to divide the output error signal (residual) into several subspaces. In 

each subspace, the signal transmission from one fault is designed to be maximized, while the 

signal transmission from other faults is designed to be minimized. Based on this characteristic, 
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once a nonzero residual is detected, the fault can be detected and isolated by placing this 

residual into subspaces [18]. 

The mathematical model of the BJ filter can be expressed as: 

𝑿𝑿�̇(𝒕𝒕) = 𝐀𝐀𝑿𝑿�(𝒕𝒕) + 𝐁𝐁𝑼𝑼(𝒕𝒕) + 𝐋𝐋(𝒀𝒀(𝒕𝒕) −𝐂𝐂𝑿𝑿�(𝒕𝒕))                                  (2.6) 

where 𝑿𝑿�(𝒕𝒕) is the estimated state of the true state 𝑿𝑿(𝒕𝒕), L is the detection gain, and A, B, and 

C are system matrix, input matrix and output matrix, respectively. Based on (2.6), the state 

error Ɛ(𝒕𝒕) and the output error Ɛ�(𝒕𝒕) can be expressed as: 

� Ɛ(𝒕𝒕) = 𝑿𝑿(𝒕𝒕)− 𝑿𝑿�(𝒕𝒕)
Ɛ� (𝒕𝒕) = 𝒀𝒀(𝒕𝒕)− 𝐂𝐂𝑿𝑿�(𝒕𝒕)

                                                     (2.7) 

The key to designing a BJ filter is to select a proper value for L so that the output error has 

directional properties associated with the corresponding fault. The advantages of the BJ filter 

and the reasons why a designer might use a BJ filter as the fault detection approach, as in this 

thesis, are illustrated below [43]. 

1) By using subspace concepts, the output error of a BJ filter has directional properties 

associated with the corresponding fault. This special property enables a BJ filter to 

implement fault detection and fault isolation simultaneously. 

2) BJ filters can be tractable to detecting the system with high order models. When dealing 

with vibration cancelations, most continuous systems (including those for beams and 

plates) must be considered as high-order models rather than order-reduced models to 

maintain accuracy. 

3) A BJ filter can deal with a D-term (that is generated to account for the errors in the 

mathematical model of a system due to a necessary model-order reduction in the system 

identification process). 

Due to time constraints, this thesis mainly focuses on the first advantage of the BJ filter. The 

remaining two features (higher-order and D-term applications) are thus suggested as directions 

for future research work. More details about the BJ filter in light of the first factor will be 

discussed in Chapter 4. 
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Chapter 3 : System Identification of Plate Structure 

As a link between a dynamic system and a simplified mathematical model, system 

identification plays an important role in analysing and controlling a modern engineering 

system. In this chapter, the procedure of building such a mathematical model is illustrated in 

detail. Firstly, the feature and characteristics of a MIMO mechanical plate structure are 

described. A transfer function representation of the plate structure is then constructed through 

dedicated theoretical analysis and physical experiment. The theoretical analysis aims to derive 

the general mathematical expression of the transfer function model whereas the physical 

experiment, using the ModalVIEW software, aims to generate the Frequency Response 

Function (FRF) curves of the mechanical plate structure and to produce the useful parameters 

of the transfer function model, such as the mode shapes, damping ratios and natural 

frequencies. Finally, for the purpose of fault detection, a state-space representation of the 

mechanical plate structure with a defined dimension representing a pre-selected frequency 

range of concern is developed based on the identified transfer function representation of the 

system. 

3.1 Characteristics of Plate Structure 

The MIMO mechanical plate structure used in this project is shown in Figure 3.1, which is used 

to demonstrate the fault detection problem in a MIMO control system. This structure includes 

a top plate, a base plate, a disturance transducer, and three pairs of co-located sensors and 

actuators that bond the top and base plates together. The disturbance transducer is utilized to 

generate structural vibrations to the base plate, and transducer 1, 2 and 3 which are mounted 

with the top plate by screws are treated as sensors and actuators to control the structural 

vibrations such that the top plate can remain stationary despite the constant vibration excitation 

induced from the base plate. From Figure 3.1, it is seen that the disturbance signal generated 

from the disturbance transducer passes through the base board to the other three transducers 

and then through sensing and actuating, finally transfers onto the top plate. From a control point 

of view, since transducer 1, 2 and 3 are utilized as sensors as well as actuators, this control 

system can be regarded as a MIMO control system with three-inputs and three-outputs. Three 

input signals come from three actuators which are used to generate the vibration forces into 

three transducers, and three output signals come from three sensors which are used to sense the 

vibration amplitudes which are right above the corresponding transducers on the top plate. 
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Figure 3.1 The MIMO mechanical plate structure 

The general transfer function representation for the open-loop physical system can be 

expressed as: 

𝒀𝒀(𝑠𝑠) = 𝑮𝑮(𝑠𝑠) × 𝑼𝑼(𝑠𝑠)                                                  (3.1) 

where 𝒀𝒀(𝑠𝑠) represents the output signal of the system, 𝑼𝑼(𝑠𝑠)  represents the input signal of the 

system and 𝑮𝑮(𝑠𝑠)  represents the transfer matrix of the plate structure. As explained above, this 

physical system is regarded as a MIMO control system with three-inputs and three-outputs, so 

the system can be expressed as: 

�
𝑌𝑌1(𝑠𝑠)
𝑌𝑌2(𝑠𝑠)
𝑌𝑌3(𝑠𝑠)

� = �
𝐺𝐺11(𝑠𝑠) 𝐺𝐺12(𝑠𝑠) 𝐺𝐺13(𝑠𝑠)
𝐺𝐺21(𝑠𝑠) 𝐺𝐺22(𝑠𝑠) 𝐺𝐺23(𝑠𝑠)
𝐺𝐺31(𝑠𝑠) 𝐺𝐺32(𝑠𝑠) 𝐺𝐺33(𝑠𝑠)

�× �
𝑈𝑈1(𝑠𝑠)
𝑈𝑈2(𝑠𝑠)
𝑈𝑈3(𝑠𝑠)

�                        (3.2) 

where 𝑌𝑌𝑖𝑖(𝑠𝑠) (i = 1, 2, 3) are three output signals of the system, 𝑈𝑈𝑗𝑗(𝑠𝑠) (j = 1, 2, 3) are three input 

signals of the system, and 𝐺𝐺𝑖𝑖𝑗𝑗(𝑠𝑠) (i = 1, 2, 3 and j= 1, 2, 3) represents the element of 𝑮𝑮(𝑠𝑠) that 

is related to the ith output (output of transducer i) and the jth input (input of transducer j). The 

plate layout related to the open-loop system modelling is shown in Figure 3.2 [46]. 

 

Figure 3.2 Plate layout for open-loop system 

Base plate 

top plate 
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From (3.2), it can be concluded that the transfer matrix 𝑮𝑮(𝑠𝑠) of this MIMO control system can 

be represented by a 3×3 transfer function matrix, and every element 𝐺𝐺𝑖𝑖𝑗𝑗(𝑠𝑠) of this transfer 

matrix stands for the dynamics between transducers i and j. Based on (3.2), the block diagram 

which represents the current MIMO control system is shown in Figure 3.3. 

 

Figure 3.3 MIMO control system block diagram 

Based on the above study and analysis, a clear conclusion can be drawn that each input signal 

will impact on three output signals at the same time, and similarly each output signal will be 

influenced by three input signals at the same time. After clearly understanding the feature and 

characteristics of the given plate structure, the next section will briefly explain the theoretical 

analysis in order to derive the general mathematical expression of the transfer matrix 𝑮𝑮(𝑠𝑠). 

3.2 Theoretical Analysis of Transfer Function Model 

In general, fundamental physics theory is needed to generate the mathematical model of the 

flexible plate structure. In order to determine the mathematical model, partial different equation 

which is normally called PDE is introduced to better represent the flexible plate structure by 

cancelling the vibrations resonant in multiple modes [44]. In addition, the plate structure can 

be determined by a two-dimensional mathematical model using PDE in this project [45]. The 

two-dimensional PDE is shown as [12]: 

ℒ[𝜑𝜑(𝑥𝑥 ,𝑦𝑦, 𝑡𝑡)] + 𝒞𝒞 �𝑑𝑑𝑑𝑑(𝑥𝑥,𝑦𝑦,𝑡𝑡)
𝑑𝑑𝑡𝑡

�+ ℳ�𝑑𝑑
2𝑑𝑑(𝑥𝑥,𝑦𝑦,𝑡𝑡)
𝑑𝑑𝑡𝑡2

�= ℱ(𝑥𝑥, 𝑦𝑦, 𝑡𝑡)                  (3.3) 

where ℒ, 𝒞𝒞 and ℳ represent the linear homogeneous differential stiffness, mass and damping 

operator, respectively. (𝑥𝑥 , 𝑦𝑦)  represents the spatial coordinate, 𝜑𝜑(𝑥𝑥 ,𝑦𝑦, 𝑡𝑡)  represents the 

eigenvector (mode shape) at position (𝑥𝑥 , 𝑦𝑦) and ℱ(𝑥𝑥, 𝑦𝑦, 𝑡𝑡) represents the random input force at 

position (𝑥𝑥 ,𝑦𝑦).  
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The solution of PDE will create one set of orthogonal eigenfunctions which enable the flexible 

plate structure to be represented by the sum of infinite decoupled 2nd order ordinary differential 

equation, and each ordinary differential equation is related to a certain mode of vibration. 

Because this thesis focuses on the BJ filter fault detection, the derivation process of PDE can 

refer to [12] in detail. Finally, the transfer function model of the flexible plate structure is shown 

as: 

𝐺𝐺(𝑥𝑥 ,𝑦𝑦, 𝑠𝑠) = ∑ 𝑑𝑑𝑘𝑘(𝑥𝑥,𝑦𝑦)𝑑𝑑𝑘𝑘(𝑥𝑥1,𝑦𝑦1)
𝑠𝑠2+2Ϛ𝑘𝑘(𝑥𝑥,𝑦𝑦,𝑥𝑥1,𝑦𝑦1)𝑤𝑤𝑘𝑘(𝑥𝑥,𝑦𝑦,𝑥𝑥1,𝑦𝑦1)𝑠𝑠+𝑤𝑤𝑘𝑘2(𝑥𝑥,𝑦𝑦,𝑥𝑥1,𝑦𝑦1)

∞
𝑘𝑘=1                     (3.4) 

where 𝜑𝜑𝑘𝑘(𝑥𝑥, 𝑦𝑦) and 𝜑𝜑𝑘𝑘(𝑥𝑥1,𝑦𝑦1) represent mode shape related to point (𝑥𝑥, 𝑦𝑦) and (𝑥𝑥1, 𝑦𝑦1) at 

nth mode, respectively. Ϛ𝑘𝑘(𝑥𝑥,𝑦𝑦, 𝑥𝑥1,𝑦𝑦1)  represents damping ratio between point (𝑥𝑥 , 𝑦𝑦)  and 

(𝑥𝑥1,𝑦𝑦1) at k th mode. 𝑤𝑤𝑘𝑘(𝑥𝑥, 𝑦𝑦,𝑥𝑥1, 𝑦𝑦1) represents natural frequency between point (𝑥𝑥, 𝑦𝑦) and 

(𝑥𝑥1,𝑦𝑦1) at k th mode. Based on the general representation of the flexible plate structure, the 

modified transfer function equation which fits into this project is given as: 

𝐺𝐺𝑖𝑖𝑗𝑗(𝑠𝑠) = ∑ φ𝑖𝑖
𝑘𝑘φ𝑗𝑗

𝑘𝑘

𝑠𝑠2+2Ϛ𝑖𝑖𝑗𝑗
𝑘𝑘𝑤𝑤𝑖𝑖𝑗𝑗

𝑘𝑘 𝑠𝑠+𝑤𝑤𝑖𝑖𝑗𝑗
𝑘𝑘 2

∞
𝑘𝑘=1 = ∑ φ𝑖𝑖𝑗𝑗

𝑘𝑘

𝑠𝑠2+2Ϛ𝑖𝑖𝑗𝑗
𝑘𝑘𝑤𝑤𝑖𝑖𝑗𝑗

𝑘𝑘 𝑠𝑠+𝑤𝑤𝑖𝑖𝑗𝑗
𝑘𝑘 2

∞
𝑘𝑘=1                             (3.5) 

where i is the position of the ith actuator (output of transducer) and j is the position of the jth 

sensor (input of transducer). φ𝑖𝑖
𝑘𝑘 and φ𝑗𝑗

𝑘𝑘 represent mode shape related to the ith actuator and the 

jth sensor, respectively, at k th mode, and φ𝑖𝑖
𝑘𝑘 and φ𝑗𝑗

𝑘𝑘 can be integrated into φ𝑖𝑖𝑗𝑗
𝑘𝑘  . Ϛ𝑖𝑖𝑗𝑗𝑘𝑘  represents 

damping ratio between the ith actuator and the jth sensor at k th mode. 𝑤𝑤𝑖𝑖𝑗𝑗𝑘𝑘  represents natural 

frequency between the ith actuator and the jth sensor at k th mode. 

So far, (3.5) shows that the transfer function model can be determined by three parameters 

which are mode shape, damping ratio and natural frequency, and these three parameters can be 

obtained by the physical experiment using ModalVIEW software, which will be explained in 

the next section. 

3.3 Physical Experiment of Transfer Function Model 

In this section, the physical experiment is conducted to produce system parameters required in 

the transfer function model. There are mainly four steps described in the following sections to 

perform the analysis using ModalVIEW and MATLAB software: 

 Perform FRF measurement. 

 Perform curve fitting method to produce system parameters. 
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 Validate the transfer function model of the system. 

 Validate the truncated model of the system. 

3.3.1 Perform Frequency Response Function (FRF) Measurement. 

The arrangement of the physical system and the block diagram of the experimental setup are 

shown in Figure 3.4 and Figure 3.5, respectively. For the analysis of an open-loop system 

identification, points A and A’ should be open in Figure 3.5. A sinusoidal sweep signal whose 

frequency is from 20 Hz to 200 Hz is generated by a signal generator and then, is inserted into 

transducer 1, 2, and 3 (T1, T2, and T3), respectively, as the input signal 𝑢𝑢𝑗𝑗 (j = 1, 2, 3) after 

amplification [46]. When this sinusoidal sweep signal is inserted into each input signal alone, 

three accelerometers are used to measure three output signals 𝑦𝑦𝑖𝑖𝑗𝑗 (i = 1, 2, 3) simultaneously, 

and these four signals are recorded by the data acquisition system (NI DAQ) and sent to 

ModalVIEW software simultaneously in order to produce the corresponding measured FRF of 

the system: 

𝐺𝐺𝑖𝑖𝑗𝑗(𝑠𝑠) =
𝑦𝑦𝑖𝑖𝑗𝑗
𝑢𝑢𝑗𝑗

               (𝑖𝑖 = 1, 2, 3)                                               (3.6) 

 

Figure 3.4 The arrangement of the physical system 
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Figure 3.5 The block diagram of the experimental setup 

Finally, nine measured FRF curves, 𝐺𝐺𝑖𝑖𝑗𝑗(𝑠𝑠) (𝑖𝑖, 𝑗𝑗 = 1, 2, 3) , for the open-loop system are 

generated through ModalVIEW software and plotted in Figure 3.6. 

 

Figure 3.6 Measured FRF curves for the open-loop real system 

3.3.2 Perform Curve Fitting Method to Produce System Parameters. 

To model the physical system mathematically, the ModalVIEW software provides a Multiple 

Degree of Freedom (MDOF) polynomial curve fitting method which can be applied into each 
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measured FRF curve to produce the estimated parameters (such as mode shapes, damping 

ratios, and natural frequencies) of the transfer function model.  

The results of curve fitting method for each measured FRF curve are shown in Figure 3.7 where 

the precision of this method is demonstrated such that results of curve fitting (red curve) match 

the measured FRF curves (blue curve) precisely enough.  

 

Figure 3.7 Results of curve fitting (red) vs. measured FRF curves (blue) 

The corresponding transfer function, 𝐺𝐺𝑖𝑖𝑗𝑗(𝑠𝑠), is expressed as: 

𝐺𝐺𝑖𝑖𝑗𝑗(𝑠𝑠) = ∑ (
φ𝑖𝑖𝑗𝑗
𝑘𝑘

𝑠𝑠2+2Ϛ𝑖𝑖𝑗𝑗
𝑘𝑘𝑤𝑤𝑖𝑖𝑗𝑗

𝑘𝑘 𝑠𝑠+𝑤𝑤𝑖𝑖𝑗𝑗
𝑘𝑘 2)𝑁𝑁

𝑘𝑘=1 = ∑ (
𝑚𝑚𝑖𝑖𝑗𝑗
𝑘𝑘

𝑠𝑠−𝜇𝜇𝑖𝑖𝑗𝑗
𝑘𝑘 +

𝑚𝑚𝑖𝑖𝑗𝑗
𝑘𝑘 ∗

𝑠𝑠−𝜇𝜇𝑖𝑖𝑗𝑗
𝑘𝑘 ∗)

𝑁𝑁
𝑘𝑘=1                        (3.7) 

where 𝑚𝑚𝑖𝑖𝑗𝑗
𝑘𝑘  is the magnitude measured by curve fitting method, N is the number of estimated 

mode, 𝜇𝜇𝑖𝑖𝑗𝑗𝑘𝑘 = −Ϛ𝑖𝑖𝑗𝑗𝑘𝑘 𝑤𝑤𝑖𝑖𝑗𝑗𝑘𝑘 + 𝑗𝑗𝑤𝑤𝑖𝑖𝑗𝑗𝑘𝑘�1− Ϛ𝑖𝑖𝑗𝑗𝑘𝑘
2 and 𝜇𝜇𝑖𝑖𝑗𝑗𝑘𝑘

∗ = −Ϛ𝑖𝑖𝑗𝑗𝑘𝑘 𝑤𝑤𝑖𝑖𝑗𝑗𝑘𝑘 − 𝑗𝑗𝑤𝑤𝑖𝑖𝑗𝑗𝑘𝑘�1−Ϛ𝑖𝑖𝑗𝑗𝑘𝑘
2 . Natural frequencies, 

𝑤𝑤𝑖𝑖𝑗𝑗𝑘𝑘 , damping ratios, Ϛ𝑖𝑖𝑗𝑗𝑘𝑘 , and magnitudes, 𝑚𝑚𝑖𝑖𝑗𝑗
𝑘𝑘  can be acquired directly from the curve fitting 

method, while the mode shapes, φ𝑖𝑖𝑗𝑗
𝑘𝑘 , require to be calculated by [46]: 

φ𝑖𝑖𝑗𝑗
𝑘𝑘 = 𝑚𝑚𝑖𝑖𝑗𝑗

𝑘𝑘 × 2𝑤𝑤𝑖𝑖𝑗𝑗
𝑘𝑘�1− Ϛ𝑖𝑖𝑗𝑗

𝑘𝑘 2
                                                 (3.8) 
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Finally, all parameters of the transfer function model can be obtained and only first three modes 

are displayed in Table 3.1. 

Table 3.1 All parameters of the transfer function model (first three modes) 

𝐺𝐺11(𝑠𝑠) 

Mode Natural frequency (rad/s) Damping ratio Mode shape 

1 145.907272 0.01893171 0.15363842 

2 182.852866 0.01653821 0.41430841 

3 222.785222 0.01802016 0.19853058 

𝐺𝐺21(𝑠𝑠) 

Mode Natural frequency (rad/s) Damping ratio Mode shape 

1 146.334548 0.017293 0.11828148 

2 184.371104 0.0102591 0.18811558 

3 221.993378 0.01584925 0.34159332 

𝐺𝐺31(𝑠𝑠) 

Mode Natural frequency (rad/s) Damping ratio Mode shape 

1 146.302265 0.01737686 0.10027307 

2 183.906556 0.01125181 0.1920355 

3 221.994835 0.01641266 0.27221838 

𝐺𝐺12(𝑠𝑠) 

Mode Natural frequency (rad/s) Damping ratio Mode shape 

1 146.205623 0.01208586 0.07290046 

2 181.912795 0.0090579 0.17558329 

3 221.391273 0.02018604 0.34610302 

𝐺𝐺22(𝑠𝑠) 

Mode Natural frequency (rad/s) Damping ratio Mode shape 

1 145.738971 0.01225517 0.05076275 

2 183.839301 0.01036957 0.18305818 

3 221.280048 0.01988154 0.61395187 

𝐺𝐺32(𝑠𝑠) 

Mode Natural frequency (rad/s) Damping ratio Mode shape 

1 145.757852 0.01229378 0.04862492 
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2 183.606333 0.01063791 0.15373242 

3 221.295643 0.01994371 0.51509689 

𝐺𝐺13(𝑠𝑠) 

Mode Natural frequency (rad/s) Damping ratio Mode shape 

1 145.234739 0.0108145 0.04698852 

2 184.634413 0.00769278 0.07202531 

3 222.570149 0.01680347 0.18801199 

𝐺𝐺23(𝑠𝑠) 

Mode Natural frequency (rad/s) Damping ratio Mode shape 

1 145.234739 0.0108145 0.03451708 

2 184.634413 0.00769278 0.10226404 

3 222.570149 0.01680347 0.35679415 

𝐺𝐺33(𝑠𝑠) 

Mode Natural frequency (rad/s) Damping ratio Mode shape 

1 144.835311 0.00939594 0.02300727 

2 184.843744 0.00754164 0.07687854 

3 222.45161 0.01651211 0.25701579 

3.3.3 Validate Transfer Function Model of The System. 

Since all parameters of the transfer function model have be obtained, the transfer function 

model (red curve), 𝐺𝐺𝑖𝑖𝑗𝑗(𝑠𝑠), can be plotted in MATLAB and is compared with each of the 

measured FRF curves (blue curve) as shown in Figure 3.8. 
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Figure 3.8 Simulated transfer function models (red) vs. measured FRF curves (blue) 

It can be seen from Figure 3.8 that simulated transfer function models are able to match 

measured FRF curves especially when comparing magnitudes of each mode. Therefore, the 

obtained transfer function model is an acceptable mathematical model to represent the physical 

system. 

3.3.4 Validate Truncated Model of The System. 

As the first three modes have the dominant impact on the system performance due to the reason 

that the real influence on the plate is based on 𝑎𝑎𝑚𝑚𝑎𝑎𝑎𝑎𝑖𝑖𝑡𝑡𝑢𝑢𝑎𝑎𝑎𝑎/𝑓𝑓𝑓𝑓𝑎𝑎𝑓𝑓𝑢𝑢𝑎𝑎𝑓𝑓𝑓𝑓𝑦𝑦2, a truncated model is 

thus applied to represent the physical system [46]. The truncated model (red curve) is plotted 

in MATLAB and is compared with each of the measured FRF curves (blue curve) as shown in 

Figure 3.9. 

 

Figure 3.9 Simulated truncated model (red) vs. measured FRF curves (blue) 
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It is seen from Figure 3.9 that the truncated model relatively matches especially when 

comparing magnitudes of first three modes. Therefore, the truncated model can be regarded as 

a valid simplified mathematical model of the physical system. 

3.4 Construction of State Space Representation 

For the purpose of fault detection, a state space representation of the system is developed from 

the transfer function representation and the construction procedure is discussed in this section 

in detail. As the last section indicates that the truncated model can well represent the physical 

system, the transfer function model can be rewritten as: 

𝐺𝐺𝑖𝑖𝑗𝑗(𝑠𝑠) = ∑ φ𝑖𝑖
𝑘𝑘φ𝑗𝑗

𝑘𝑘

𝑠𝑠2+2Ϛ𝑖𝑖𝑗𝑗
𝑘𝑘𝑤𝑤𝑖𝑖𝑗𝑗

𝑘𝑘 𝑠𝑠+𝑤𝑤𝑖𝑖𝑗𝑗
𝑘𝑘 2

3
𝑘𝑘=1                                                      (3.9) 

Before building the state space representation, the transfer matrix of the mathematical model 

should be derived in detail. According to (3.2) and Figure 3.3, this MIMO control system has 

three inputs and three outputs, and the coupling effect leads to the interaction between them. 

Therefore, one output is determined by three inputs, and the transfer function representation 

for each output can be expressed as below in terms of three different modes.  

MODE 1: 

The transfer function representation for output 1, 2 and 3 at mode 1 is shown in (3.10), (3.11) 

and (3.12), respectively. 

𝑌𝑌11(𝑠𝑠) = 𝑌𝑌111 (𝑠𝑠) + 𝑌𝑌121 (𝑠𝑠) + 𝑌𝑌131 (𝑠𝑠) = 𝑑𝑑111

𝑠𝑠2+2Ϛ111 𝑤𝑤11
1 𝑠𝑠+𝑤𝑤11

1 2 𝑈𝑈1(𝑠𝑠) + 𝑑𝑑121

𝑠𝑠2+2Ϛ121 𝑤𝑤12
1 𝑠𝑠+𝑤𝑤12

1 2 𝑈𝑈2(𝑠𝑠) +

𝑑𝑑131

𝑠𝑠2+2Ϛ131 𝑤𝑤13
1 𝑠𝑠+𝑤𝑤13

1 2 𝑈𝑈3(𝑠𝑠)                                                                                                        (3.10) 

 

𝑌𝑌21(𝑠𝑠) = 𝑌𝑌211 (𝑠𝑠) + 𝑌𝑌221 (𝑠𝑠) + 𝑌𝑌231 (𝑠𝑠) = 𝑑𝑑211

𝑠𝑠2+2Ϛ211 𝑤𝑤21
1 𝑠𝑠+𝑤𝑤21

1 2 𝑈𝑈1(𝑠𝑠) + 𝑑𝑑221

𝑠𝑠2+2Ϛ221 𝑤𝑤22
1 𝑠𝑠+𝑤𝑤22

1 2 𝑈𝑈2(𝑠𝑠) +

𝑑𝑑231

𝑠𝑠2+2Ϛ231 𝑤𝑤23
1 𝑠𝑠+𝑤𝑤23

1 2 𝑈𝑈3(𝑠𝑠)                                                                                                        (3.11) 

 

𝑌𝑌31(𝑠𝑠) = 𝑌𝑌311 (𝑠𝑠) + 𝑌𝑌321 (𝑠𝑠) + 𝑌𝑌331 (𝑠𝑠) = 𝑑𝑑311

𝑠𝑠2+2Ϛ311 𝑤𝑤31
1 𝑠𝑠+𝑤𝑤31

1 2 𝑈𝑈1(𝑠𝑠) + 𝑑𝑑321

𝑠𝑠2+2Ϛ321 𝑤𝑤32
1 𝑠𝑠+𝑤𝑤32

1 2 𝑈𝑈2(𝑠𝑠) +

𝑑𝑑331

𝑠𝑠2+2Ϛ331 𝑤𝑤33
1 𝑠𝑠+𝑤𝑤33

1 2 𝑈𝑈3(𝑠𝑠)                                                                                                        (3.12) 
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where 𝑌𝑌𝑖𝑖1(𝑠𝑠) (i=1, 2 and 3) represents the ith output of mode 1. 𝑌𝑌𝑖𝑖𝑗𝑗1(𝑠𝑠) (i, j=1, 2 and 3) represents 

the ith output which caused by the jth input of mode 1. 𝜑𝜑𝑖𝑖𝑗𝑗1  represents the mode shape related to 

the ith output and the jth input of mode 1. Ϛ𝑖𝑖𝑗𝑗1  represents the damping ratio between the ith output 

and the jth input of mode 1. 𝑤𝑤𝑖𝑖𝑗𝑗1  represents the natural frequency between the ith output and the 

jth input of mode 1. 

MODE 2: 

The transfer function representation for output 1, 2 and 3 at mode 2 is shown in (3.13), (3.14) 

and (3.15), respectively. 

𝑌𝑌12(𝑠𝑠) = 𝑌𝑌112 (𝑠𝑠) + 𝑌𝑌122 (𝑠𝑠) + 𝑌𝑌132 (𝑠𝑠) = 𝑑𝑑112

𝑠𝑠2+2Ϛ112 𝑤𝑤11
2 𝑠𝑠+𝑤𝑤11

2 2 𝑈𝑈1(𝑠𝑠) + 𝑑𝑑122

𝑠𝑠2+2Ϛ122 𝑤𝑤12
2 𝑠𝑠+𝑤𝑤12

2  2 𝑈𝑈2(𝑠𝑠) +

𝑑𝑑132

𝑠𝑠2+2Ϛ132 𝑤𝑤13
2 𝑠𝑠+𝑤𝑤13

2 2 𝑈𝑈3(𝑠𝑠)                                                                                                        (3.13) 

 

𝑌𝑌22(𝑠𝑠) = 𝑌𝑌212 (𝑠𝑠) + 𝑌𝑌222 (𝑠𝑠) + 𝑌𝑌232 (𝑠𝑠) = 𝑑𝑑212

𝑠𝑠2+2Ϛ212 𝑤𝑤21
2 𝑠𝑠+𝑤𝑤21

2 2 𝑈𝑈1(𝑠𝑠) + 𝑑𝑑222

𝑠𝑠2+2Ϛ222 𝑤𝑤22
2 𝑠𝑠+𝑤𝑤22

2  2 𝑈𝑈2(𝑠𝑠) +

𝑑𝑑232

𝑠𝑠2+2Ϛ232 𝑤𝑤23
2 𝑠𝑠+𝑤𝑤23

2 2 𝑈𝑈3(𝑠𝑠)                                                                                                        (3.14) 

 

𝑌𝑌32(𝑠𝑠) = 𝑌𝑌312 (𝑠𝑠) + 𝑌𝑌322 (𝑠𝑠) + 𝑌𝑌332 (𝑠𝑠) = 𝑑𝑑312

𝑠𝑠2+2Ϛ312 𝑤𝑤31
2 𝑠𝑠+𝑤𝑤31

2 2 𝑈𝑈1(𝑠𝑠) + 𝑑𝑑322

𝑠𝑠2+2Ϛ322 𝑤𝑤32
2 𝑠𝑠+𝑤𝑤32

2  2 𝑈𝑈2(𝑠𝑠) +

𝑑𝑑332

𝑠𝑠2+2Ϛ332 𝑤𝑤33
2 𝑠𝑠+𝑤𝑤33

2 2 𝑈𝑈3(s)                                                                                                         (3.15) 

where 𝑌𝑌𝑖𝑖2(𝑠𝑠) (i=1, 2 and 3) represents the ith output of mode 2. 𝑌𝑌𝑖𝑖𝑗𝑗2 (𝑠𝑠) (i, j=1, 2 and 3) represents 

the ith output which caused by the jth input of mode 2. 𝜑𝜑𝑖𝑖𝑗𝑗2  represents the mode shape related to 

the ith output and the jth input of mode 2. Ϛ𝑖𝑖𝑗𝑗2  represents the damping ratio between the ith output 

and the jth input of mode 2. 𝑤𝑤𝑖𝑖𝑗𝑗2  represents the natural frequency between the ith output and the 

jth input of mode 2. 

MODE 3: 

The transfer function representation for output 1, 2 and 3 at mode 3 is shown in (3.16), (3.17) 

and (3.18), respectively. 
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𝑌𝑌13(𝑠𝑠) = 𝑌𝑌113 (𝑠𝑠) + 𝑌𝑌123 (𝑠𝑠) + 𝑌𝑌133 (𝑠𝑠) = 𝑑𝑑113

𝑠𝑠2+2Ϛ113 𝑤𝑤11
3 𝑠𝑠+𝑤𝑤11

3 2 𝑈𝑈1(𝑠𝑠) + 𝑑𝑑123

𝑠𝑠2+2Ϛ123 𝑤𝑤12
3 𝑠𝑠+𝑤𝑤12

3  2 𝑈𝑈2(𝑠𝑠) +

𝑑𝑑133

𝑠𝑠2+2Ϛ133 𝑤𝑤13
3 𝑠𝑠+𝑤𝑤13

3 2 𝑈𝑈3(𝑠𝑠)                                                                                                        (3.16) 

 

𝑌𝑌23(𝑠𝑠) = 𝑌𝑌213 (𝑠𝑠) + 𝑌𝑌223 (𝑠𝑠) + 𝑌𝑌233 (𝑠𝑠) = 𝑑𝑑213

𝑠𝑠2+2Ϛ213 𝑤𝑤21
3 𝑠𝑠+𝑤𝑤21

3 2 𝑈𝑈1(𝑠𝑠) + 𝑑𝑑223

𝑠𝑠2+2Ϛ223 𝑤𝑤22
3 𝑠𝑠+𝑤𝑤22

3  2 𝑈𝑈2(𝑠𝑠) +

𝑑𝑑233

𝑠𝑠2+2Ϛ233 𝑤𝑤23
3 𝑠𝑠+𝑤𝑤23

3 2 𝑈𝑈3(𝑠𝑠)                                                                                                        (3.17) 

 

𝑌𝑌33(𝑠𝑠) = 𝑌𝑌313 (𝑠𝑠) + 𝑌𝑌323 (𝑠𝑠) + 𝑌𝑌333 (𝑠𝑠) = 𝑑𝑑313

𝑠𝑠2+2Ϛ313 𝑤𝑤31
3 𝑠𝑠+𝑤𝑤31

3 2 𝑈𝑈1(𝑠𝑠) + 𝑑𝑑323

𝑠𝑠2+2Ϛ323 𝑤𝑤32
3 𝑠𝑠+𝑤𝑤32

3  2 𝑈𝑈2(𝑠𝑠) +

𝑑𝑑333

𝑠𝑠2+2Ϛ333 𝑤𝑤33
3 𝑠𝑠+𝑤𝑤33

3 2 𝑈𝑈3(𝑠𝑠)                                                                                                        (3.18) 

where 𝑌𝑌𝑖𝑖3(𝑠𝑠) (i=1, 2 and 3) represents the ith output of mode 3. 𝑌𝑌𝑖𝑖𝑗𝑗3 (𝑠𝑠) (i, j=1, 2 and 3) represents 

the ith output which caused by the jth input of mode 3. 𝜑𝜑𝑖𝑖𝑗𝑗3  represents the mode shape related to 

the ith output and the jth input of mode 3. Ϛ𝑖𝑖𝑗𝑗3  represents the damping ratio between the ith output 

and the jth input of mode 3. 𝑤𝑤𝑖𝑖𝑗𝑗3  represents the natural frequency between the ith output and the 

jth input of mode 3. 

As this state-space modelling method needs a common denominator for each mode, the 

common damping ratios and natural frequencies need to be selected. For damping ratios, select 

the largest value of 9 sets of data in one mode. For natural frequencies, calculate the average 

frequencies in one mode. Therefore, the 9 different sets of Ϛ𝑖𝑖𝑗𝑗1 、Ϛ𝑖𝑖𝑗𝑗2  and Ϛ𝑖𝑖𝑗𝑗3  can be merged into 

Ϛ1、Ϛ2  and Ϛ3 , and the 9 different sets of 𝑤𝑤𝑖𝑖𝑗𝑗1 、𝑤𝑤𝑖𝑖𝑗𝑗2  and 𝑤𝑤𝑖𝑖𝑗𝑗3  can be merged into 𝑤𝑤1、

𝑤𝑤2 and 𝑤𝑤3. 

After this modification, the transfer function representation can be simplified, and the results 

are shown below: 

MODE 1: 

𝑌𝑌11(𝑠𝑠) = 𝑌𝑌111 (𝑠𝑠) + 𝑌𝑌121 (𝑠𝑠) + 𝑌𝑌131 (𝑠𝑠) = 𝑑𝑑111 𝑈𝑈1(𝑠𝑠)+𝑑𝑑121 𝑈𝑈2(𝑠𝑠)+𝑑𝑑131 𝑈𝑈3(𝑠𝑠)
𝑠𝑠2+2Ϛ1𝑤𝑤1𝑠𝑠+𝑤𝑤12              (3.19) 

𝑌𝑌21(𝑠𝑠) = 𝑌𝑌211 (𝑠𝑠) + 𝑌𝑌221 (𝑠𝑠) + 𝑌𝑌231 (𝑠𝑠) = 𝑑𝑑211 𝑈𝑈1(𝑠𝑠)+𝑑𝑑221 𝑈𝑈2(𝑠𝑠)+𝑑𝑑231 𝑈𝑈3(𝑠𝑠)
𝑠𝑠2+2Ϛ1𝑤𝑤1𝑠𝑠+𝑤𝑤12              (3.20) 
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𝑌𝑌31(𝑠𝑠) = 𝑌𝑌311 (𝑠𝑠) + 𝑌𝑌321 (𝑠𝑠) + 𝑌𝑌331 (𝑠𝑠) = 𝑑𝑑311 𝑈𝑈1(𝑠𝑠)+𝑑𝑑321 𝑈𝑈2(𝑠𝑠)+𝑑𝑑331 𝑈𝑈3(𝑠𝑠)
𝑠𝑠2+2Ϛ1𝑤𝑤1𝑠𝑠+𝑤𝑤12              (3.21) 

MODE 2: 

𝑌𝑌12(𝑠𝑠) = 𝑌𝑌112 (𝑠𝑠) + 𝑌𝑌122 (𝑠𝑠) + 𝑌𝑌132 (𝑠𝑠) = 𝑑𝑑112 𝑈𝑈1(𝑠𝑠)+𝑑𝑑122 𝑈𝑈2(𝑠𝑠)+𝑑𝑑132 𝑈𝑈3(𝑠𝑠)
𝑠𝑠2+2Ϛ2𝑤𝑤2𝑠𝑠+𝑤𝑤22              (3.22) 

𝑌𝑌22(𝑠𝑠) = 𝑌𝑌212 (𝑠𝑠) + 𝑌𝑌222 (𝑠𝑠) + 𝑌𝑌232 (𝑠𝑠) = 𝑑𝑑212 𝑈𝑈1(𝑠𝑠)+𝑑𝑑222 𝑈𝑈2(𝑠𝑠)+𝑑𝑑232 𝑈𝑈3(𝑠𝑠)
𝑠𝑠2+2Ϛ2𝑤𝑤2𝑠𝑠+𝑤𝑤22              (3.23) 

𝑌𝑌32(𝑠𝑠) = 𝑌𝑌312 (𝑠𝑠) + 𝑌𝑌322 (𝑠𝑠) + 𝑌𝑌332 (𝑠𝑠) = 𝑑𝑑312 𝑈𝑈1(𝑠𝑠)+𝑑𝑑322 𝑈𝑈2(𝑠𝑠)+𝑑𝑑332 𝑈𝑈3(𝑠𝑠)
𝑠𝑠2+2Ϛ2𝑤𝑤2𝑠𝑠+𝑤𝑤22              (3.24) 

MODE 3: 

𝑌𝑌13(𝑠𝑠) = 𝑌𝑌113 (𝑠𝑠) + 𝑌𝑌123 (𝑠𝑠) + 𝑌𝑌133 (𝑠𝑠) = 𝑑𝑑113 𝑈𝑈1(𝑠𝑠)+𝑑𝑑123 𝑈𝑈2(𝑠𝑠)+𝑑𝑑133 𝑈𝑈3(𝑠𝑠)
𝑠𝑠2+2Ϛ3𝑤𝑤3𝑠𝑠+𝑤𝑤32              (3.25) 

𝑌𝑌23(𝑠𝑠) = 𝑌𝑌213 (𝑠𝑠) + 𝑌𝑌223 (𝑠𝑠) + 𝑌𝑌233 (𝑠𝑠) = 𝑑𝑑213 𝑈𝑈1(𝑠𝑠)+𝑑𝑑223 𝑈𝑈2(𝑠𝑠)+𝑑𝑑233 𝑈𝑈3(𝑠𝑠)
𝑠𝑠2+2Ϛ3𝑤𝑤3𝑠𝑠+𝑤𝑤32              (3.26) 

𝑌𝑌33(𝑠𝑠) = 𝑌𝑌313 (𝑠𝑠) + 𝑌𝑌323 (𝑠𝑠) + 𝑌𝑌333 (𝑠𝑠) = 𝑑𝑑313 𝑈𝑈1(𝑠𝑠)+𝑑𝑑323 𝑈𝑈2(𝑠𝑠)+𝑑𝑑333 𝑈𝑈3(𝑠𝑠)
𝑠𝑠2+2Ϛ3𝑤𝑤3𝑠𝑠+𝑤𝑤32              (3.27) 

Then, the transfer matrix of mathematical model can be built as: 

𝐘𝐘(𝐬𝐬) = �
𝑌𝑌1(𝑠𝑠)
𝑌𝑌2(𝑠𝑠)
𝑌𝑌3(𝑠𝑠)

� = �
𝑌𝑌11(𝑠𝑠) + 𝑌𝑌12(𝑠𝑠) + 𝑌𝑌13(𝑠𝑠)
𝑌𝑌21(𝑠𝑠) + 𝑌𝑌22(𝑠𝑠) + 𝑌𝑌23(𝑠𝑠)
𝑌𝑌31(𝑠𝑠) + 𝑌𝑌32(𝑠𝑠) + 𝑌𝑌33(𝑠𝑠)

� =

⎣
⎢
⎢
⎢
⎢
⎡
𝑑𝑑111 𝑈𝑈1(𝑠𝑠)+𝑑𝑑121 𝑈𝑈2(𝑠𝑠)+𝑑𝑑131 𝑈𝑈3(𝑠𝑠)

𝑠𝑠2+2Ϛ1𝑤𝑤1𝑠𝑠+𝑤𝑤12 + 𝑑𝑑112 𝑈𝑈1(𝑠𝑠)+𝑑𝑑122 𝑈𝑈2(𝑠𝑠)+𝑑𝑑132 𝑈𝑈3(𝑠𝑠)
𝑠𝑠2+2Ϛ2𝑤𝑤2𝑠𝑠+𝑤𝑤22 + 𝑑𝑑113 𝑈𝑈1(𝑠𝑠)+𝑑𝑑123 𝑈𝑈2(𝑠𝑠)+𝑑𝑑133 𝑈𝑈3(𝑠𝑠)

𝑠𝑠2+2Ϛ3𝑤𝑤3𝑠𝑠+𝑤𝑤32

𝑑𝑑211 𝑈𝑈1(𝑠𝑠)+𝑑𝑑221 𝑈𝑈2(𝑠𝑠)+𝑑𝑑231 𝑈𝑈3(𝑠𝑠)
𝑠𝑠2+2Ϛ1𝑤𝑤1𝑠𝑠+𝑤𝑤12 + 𝑑𝑑212 𝑈𝑈1(𝑠𝑠)+𝑑𝑑222 𝑈𝑈2(𝑠𝑠)+𝑑𝑑232 𝑈𝑈3(𝑠𝑠)

𝑠𝑠2+2Ϛ2𝑤𝑤2𝑠𝑠+𝑤𝑤22 + 𝑑𝑑213 𝑈𝑈1(𝑠𝑠)+𝑑𝑑223 𝑈𝑈2(𝑠𝑠)+𝑑𝑑233 𝑈𝑈3(𝑠𝑠)
𝑠𝑠2+2Ϛ3𝑤𝑤3𝑠𝑠+𝑤𝑤32

𝑑𝑑311 𝑈𝑈1(𝑠𝑠)+𝑑𝑑321 𝑈𝑈2(𝑠𝑠)+𝑑𝑑331 𝑈𝑈3(𝑠𝑠)
𝑠𝑠2+2Ϛ1𝑤𝑤1𝑠𝑠+𝑤𝑤12 + 𝑑𝑑312 𝑈𝑈1(𝑠𝑠)+𝑑𝑑322 𝑈𝑈2(𝑠𝑠)+𝑑𝑑332 𝑈𝑈3(𝑠𝑠)

𝑠𝑠2+2Ϛ2𝑤𝑤2𝑠𝑠+𝑤𝑤22 + 𝑑𝑑313 𝑈𝑈1(𝑠𝑠)+𝑑𝑑323 𝑈𝑈2(𝑠𝑠)+𝑑𝑑333 𝑈𝑈3(𝑠𝑠)
𝑠𝑠2+2Ϛ3𝑤𝑤3𝑠𝑠+𝑤𝑤32 ⎦

⎥
⎥
⎥
⎥
⎤

      (3.28) 

Since the mode shape 𝜑𝜑𝑖𝑖𝑗𝑗𝑘𝑘  is the product of 𝜑𝜑𝑖𝑖𝑘𝑘 and 𝜑𝜑𝑗𝑗𝑘𝑘 as explained in the theoretical analysis, 

the transfer matrix can be modified as: 
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𝐘𝐘(𝐬𝐬) = �
𝑌𝑌1(𝑠𝑠)
𝑌𝑌2(𝑠𝑠)
𝑌𝑌3(𝑠𝑠)

� = �
𝑌𝑌11(𝑠𝑠) + 𝑌𝑌12(𝑠𝑠) + 𝑌𝑌13(𝑠𝑠)
𝑌𝑌21(𝑠𝑠) + 𝑌𝑌22(𝑠𝑠) + 𝑌𝑌23(𝑠𝑠)
𝑌𝑌31(𝑠𝑠) + 𝑌𝑌32(𝑠𝑠) + 𝑌𝑌33(𝑠𝑠)

� =

⎣
⎢
⎢
⎢
⎢
⎡
𝑑𝑑11(𝑑𝑑11𝑈𝑈1(𝑠𝑠)+𝑑𝑑21𝑈𝑈2(𝑠𝑠)+𝑑𝑑31𝑈𝑈3(𝑠𝑠))

𝑠𝑠2+2Ϛ1𝑤𝑤1𝑠𝑠+𝑤𝑤12 + 𝑑𝑑12(𝑑𝑑12𝑈𝑈1(𝑠𝑠)+𝑑𝑑22𝑈𝑈2(𝑠𝑠)+𝑑𝑑32𝑈𝑈3(𝑠𝑠))
𝑠𝑠2+2Ϛ2𝑤𝑤2𝑠𝑠+𝑤𝑤22 + 𝑑𝑑13(𝑑𝑑13𝑈𝑈1(𝑠𝑠)+𝑑𝑑23𝑈𝑈2(𝑠𝑠)+𝑑𝑑33𝑈𝑈3(𝑠𝑠))

𝑠𝑠2+2Ϛ3𝑤𝑤3𝑠𝑠+𝑤𝑤32

𝑑𝑑21(𝑑𝑑11𝑈𝑈1(𝑠𝑠)+𝑑𝑑21𝑈𝑈2(𝑠𝑠)+𝑑𝑑31𝑈𝑈3(𝑠𝑠))
𝑠𝑠2+2Ϛ1𝑤𝑤1𝑠𝑠+𝑤𝑤12 + 𝑑𝑑22(𝑑𝑑12𝑈𝑈1(𝑠𝑠)+𝑑𝑑22𝑈𝑈2(𝑠𝑠)+𝑑𝑑32𝑈𝑈3(𝑠𝑠))

𝑠𝑠2+2Ϛ2𝑤𝑤2𝑠𝑠+𝑤𝑤22 + 𝑑𝑑23(𝑑𝑑13𝑈𝑈1(𝑠𝑠)+𝑑𝑑23𝑈𝑈2(𝑠𝑠)+𝑑𝑑33𝑈𝑈3(𝑠𝑠))
𝑠𝑠2+2Ϛ3𝑤𝑤3𝑠𝑠+𝑤𝑤32

𝑑𝑑31(𝑑𝑑11𝑈𝑈1(𝑠𝑠)+𝑑𝑑21𝑈𝑈2(𝑠𝑠)+𝑑𝑑31𝑈𝑈3(𝑠𝑠))
𝑠𝑠2+2Ϛ1𝑤𝑤1𝑠𝑠+𝑤𝑤12 + 𝑑𝑑32(𝑑𝑑12𝑈𝑈1(𝑠𝑠)+𝑑𝑑22𝑈𝑈2(𝑠𝑠)+𝑑𝑑32𝑈𝑈3(𝑠𝑠))

𝑠𝑠2+2Ϛ2𝑤𝑤2𝑠𝑠+𝑤𝑤22 + 𝑑𝑑33(𝑑𝑑13𝑈𝑈1(𝑠𝑠)+𝑑𝑑23𝑈𝑈2(𝑠𝑠)+𝑑𝑑33𝑈𝑈3(𝑠𝑠))
𝑠𝑠2+2Ϛ3𝑤𝑤3𝑠𝑠+𝑤𝑤32 ⎦

⎥
⎥
⎥
⎥
⎤

(3.29) 

From (3.29), it can be seen that there are common parts in the transfer matrix for each mode, 

so the following definition can be made: 

𝑃𝑃1(𝑠𝑠) = 𝑑𝑑11𝑈𝑈1(𝑠𝑠)+𝑑𝑑21𝑈𝑈2(𝑠𝑠)+𝑑𝑑31𝑈𝑈3(𝑠𝑠)
𝑠𝑠2+2Ϛ1𝑤𝑤1𝑠𝑠+𝑤𝑤12 =

�𝑑𝑑11 𝑑𝑑21 𝑑𝑑31��
𝑈𝑈1(𝑠𝑠)
𝑈𝑈2(𝑠𝑠)
𝑈𝑈3(𝑠𝑠)

�

𝑠𝑠2+2Ϛ1𝑤𝑤1𝑠𝑠+𝑤𝑤12                      (3.30) 

𝑃𝑃2(𝑠𝑠) = 𝑑𝑑12𝑈𝑈1(𝑠𝑠)+𝑑𝑑22𝑈𝑈2(𝑠𝑠)+𝑑𝑑32𝑈𝑈3(𝑠𝑠)
𝑠𝑠2+2Ϛ2𝑤𝑤2𝑠𝑠+𝑤𝑤22 =

�𝑑𝑑12 𝑑𝑑22 𝑑𝑑32��
𝑈𝑈1(𝑠𝑠)
𝑈𝑈2(𝑠𝑠)
𝑈𝑈3(𝑠𝑠)

�

𝑠𝑠2+2Ϛ2𝑤𝑤2𝑠𝑠+𝑤𝑤22                      (3.31) 

𝑃𝑃3(𝑠𝑠) = 𝑑𝑑13𝑈𝑈1(𝑠𝑠)+𝑑𝑑23𝑈𝑈2(𝑠𝑠)+𝑑𝑑33𝑈𝑈3(𝑠𝑠)
𝑠𝑠2+2Ϛ3𝑤𝑤3𝑠𝑠+𝑤𝑤32 =

�𝑑𝑑13 𝑑𝑑23 𝑑𝑑33��
𝑈𝑈1(𝑠𝑠)
𝑈𝑈2(𝑠𝑠)
𝑈𝑈3(𝑠𝑠)

�

𝑠𝑠2+2Ϛ3𝑤𝑤3𝑠𝑠+𝑤𝑤32                      (3.32) 

where 𝑃𝑃𝑖𝑖(𝑠𝑠) (i=1, 2 and 3) represents the intermediate output of this system for each mode. 

Based on the above definition, the transfer matrix can be modified as: 

𝐘𝐘(𝐬𝐬) = �
𝑌𝑌1(𝑠𝑠)
𝑌𝑌2(𝑠𝑠)
𝑌𝑌3(𝑠𝑠)

� = �
𝜑𝜑1

1𝑃𝑃1(𝑠𝑠) + 𝜑𝜑1
2𝑃𝑃2(𝑠𝑠) +𝜑𝜑1

3𝑃𝑃3(𝑠𝑠)
𝜑𝜑2

1𝑃𝑃1(𝑠𝑠) + 𝜑𝜑2
2𝑃𝑃2(𝑠𝑠) +𝜑𝜑2

3𝑃𝑃3(𝑠𝑠)
𝜑𝜑3

1𝑃𝑃1(𝑠𝑠) + 𝜑𝜑3
2𝑃𝑃2(𝑠𝑠) +𝜑𝜑3

3𝑃𝑃3(𝑠𝑠)
� = �

𝜑𝜑1
1 𝜑𝜑1

2 𝜑𝜑1
3

𝜑𝜑2
1 𝜑𝜑2

2 𝜑𝜑2
3

𝜑𝜑3
1 𝜑𝜑3

2 𝜑𝜑3
3
��
𝑃𝑃1(𝑠𝑠)
𝑃𝑃2(𝑠𝑠)
𝑃𝑃3(𝑠𝑠)

�     (3.33) 

In order to build the state space form, some transformation need to be done. Apply the inverse 

Laplace transform to (3.30), the time domain equation is shown as: 

𝑠𝑠2𝑃𝑃1(𝑠𝑠) + 2Ϛ1𝑤𝑤1𝑠𝑠𝑃𝑃1(𝑠𝑠) + 𝑤𝑤12𝑃𝑃1(𝑠𝑠) = [𝜑𝜑11 𝜑𝜑21 𝜑𝜑31]�
𝑈𝑈1(𝑠𝑠)
𝑈𝑈2(𝑠𝑠)
𝑈𝑈3(𝑠𝑠)

� 

𝑎𝑎1̈ + 2Ϛ1𝑤𝑤1𝑎𝑎1̇ + 𝑤𝑤12𝑎𝑎1 = [𝜑𝜑11 𝜑𝜑21 𝜑𝜑31]�
𝑢𝑢1
𝑢𝑢2
𝑢𝑢3
�                               (3.34) 
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Based on (3.34) and the state-space theory, this second order differential equation can be 

converted into two first order differential equations which are displayed in state-space form 

according to Figure 3.10. 

 

Figure 3.10 The block diagram of the state space representation for 𝑎𝑎1 

The state space representation for 𝑎𝑎1  is shown as: 

�

�̇�𝑥1 = 𝑥𝑥2

�̇�𝑥2 = [𝜑𝜑11 𝜑𝜑21 𝜑𝜑31]�
𝑢𝑢1
𝑢𝑢2
𝑢𝑢3
� − 2Ϛ1𝑤𝑤1𝑥𝑥2− 𝑤𝑤12𝑥𝑥1

 

��̇�𝑥1�̇�𝑥2
� = � 0 1

−𝑤𝑤12 −2Ϛ1𝑤𝑤1��
𝑥𝑥1
𝑥𝑥2�+ � 0 0 0

𝜑𝜑11 𝜑𝜑21 𝜑𝜑31
� �
𝑢𝑢1
𝑢𝑢2
𝑢𝑢3
�                   (3.35) 

where 𝑥𝑥1 is a variable which is defined as 𝑎𝑎1 and 𝑥𝑥2 is a variable which is defined as 𝑎𝑎1̇.  

Apply the inverse Laplace transform to (3.31), the time domain equation is shown as: 

𝑠𝑠2𝑃𝑃2(𝑠𝑠) + 2Ϛ2𝑤𝑤2𝑠𝑠𝑃𝑃2(𝑠𝑠) + 𝑤𝑤22𝑃𝑃2(𝑠𝑠) = [𝜑𝜑12 𝜑𝜑22 𝜑𝜑32]�
𝑈𝑈1(𝑠𝑠)
𝑈𝑈2(𝑠𝑠)
𝑈𝑈3(𝑠𝑠)

� 

𝑎𝑎2̈ + 2Ϛ2𝑤𝑤2𝑎𝑎2̇ + 𝑤𝑤22𝑎𝑎2 = [𝜑𝜑12 𝜑𝜑22 𝜑𝜑32]�
𝑢𝑢1
𝑢𝑢2
𝑢𝑢3
�                        (3.36) 

Based on (3.36) and the state-space theory, this second order differential equation can be 

converted into two first order differential equations which are displayed in the state-space form 

according to Figure 3.11. 
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Figure 3.11 The block diagram of the state space representation for 𝑎𝑎2  

The state space representation for 𝑎𝑎2 is shown as: 

�

�̇�𝑥3 = 𝑥𝑥4

�̇�𝑥4 = [𝜑𝜑12 𝜑𝜑22 𝜑𝜑32]�
𝑢𝑢1
𝑢𝑢2
𝑢𝑢3
�− 2Ϛ2𝑤𝑤2𝑥𝑥4−𝑤𝑤22𝑥𝑥3

 

��̇�𝑥3�̇�𝑥4
� = � 0 1

−𝑤𝑤22 −2Ϛ2𝑤𝑤2� �
𝑥𝑥3
𝑥𝑥4�+ � 0 0 0

𝜑𝜑12 𝜑𝜑22 𝜑𝜑32
� �
𝑢𝑢1
𝑢𝑢2
𝑢𝑢3
�                (3.37) 

where 𝑥𝑥3 is a variable which is defined as 𝑎𝑎2 and 𝑥𝑥4 is a variable which is defined as 𝑎𝑎2̇.  

Apply the inverse Laplace transform to (3.32), the time domain equation is shown as: 

𝑠𝑠2𝑃𝑃3(𝑠𝑠) + 2Ϛ3𝑤𝑤3𝑠𝑠𝑃𝑃3(𝑠𝑠) + 𝑤𝑤32𝑃𝑃3(𝑠𝑠) = [𝜑𝜑13 𝜑𝜑23 𝜑𝜑33]�
𝑈𝑈1(𝑠𝑠)
𝑈𝑈2(𝑠𝑠)
𝑈𝑈3(𝑠𝑠)

� 

𝑎𝑎3̈ + 2Ϛ3𝑤𝑤3𝑎𝑎3̇ + 𝑤𝑤32𝑎𝑎3 = [𝜑𝜑13 𝜑𝜑23 𝜑𝜑33]�
𝑢𝑢1
𝑢𝑢2
𝑢𝑢3
�                         (3.38) 

Based on (3.38) and the state-space theory, this second order differential equation can be 

converted into two first order differential equations which are displayed in the state-space form 

according to Figure 3.12. 
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Figure 3.12 The block diagram of the state space representation for 𝑎𝑎3  

The state space representation for 𝑎𝑎3 is shown as: 

�

�̇�𝑥5 = 𝑥𝑥6

�̇�𝑥6 = [𝜑𝜑13 𝜑𝜑23 𝜑𝜑33]�
𝑢𝑢1
𝑢𝑢2
𝑢𝑢3
�− 2Ϛ3𝑤𝑤3𝑥𝑥6−𝑤𝑤32𝑥𝑥5

 

��̇�𝑥5�̇�𝑥6
� = � 0 1

−𝑤𝑤32 −2Ϛ3𝑤𝑤3� �
𝑥𝑥5
𝑥𝑥6�+ � 0 0 0

𝜑𝜑13 𝜑𝜑23 𝜑𝜑33
� �
𝑢𝑢1
𝑢𝑢2
𝑢𝑢3
�                (3.39) 

where 𝑥𝑥5 is a variable which is defined as 𝑎𝑎3 and 𝑥𝑥6 is a variable which is defined as 𝑎𝑎3̇.  

Finally, based on the obtained (3.35), (3.37) and (3.39), the state representation of the physical 

system can be obtained in (3.40). In addition, the output equation can also be obtained based 

on (3.33) and the relation between 𝑎𝑎𝑖𝑖  and 𝑥𝑥𝑖𝑖. 

��̇�𝑿(𝒕𝒕) = 𝐀𝐀𝑿𝑿(𝒕𝒕) + 𝐁𝐁𝑼𝑼(𝒕𝒕)
𝒀𝒀(𝒕𝒕) = 𝐂𝐂𝑿𝑿(𝒕𝒕)                                             (3.40) 

where 𝑿𝑿(𝒕𝒕) =

⎣
⎢
⎢
⎢
⎢
⎡
𝑥𝑥1
𝑥𝑥2
𝑥𝑥3
𝑥𝑥4
𝑥𝑥5
𝑥𝑥6⎦
⎥
⎥
⎥
⎥
⎤

      𝒀𝒀(𝒕𝒕) = �
𝑦𝑦1
𝑦𝑦2
𝑦𝑦3
�   𝐀𝐀 =

⎣
⎢
⎢
⎢
⎢
⎢
⎡ 0 1
−𝑤𝑤12 −2Ϛ1𝑤𝑤1

0 1
−𝑤𝑤22 −2Ϛ2𝑤𝑤2

0 1
−𝑤𝑤32 −2Ϛ3𝑤𝑤3⎦

⎥
⎥
⎥
⎥
⎥
⎤

 

𝐁𝐁 =

⎣
⎢
⎢
⎢
⎢
⎡

0 0 0
𝜑𝜑11 𝜑𝜑21 𝜑𝜑31
0 0 0
𝜑𝜑12 𝜑𝜑22 𝜑𝜑32
0 0 0
𝜑𝜑13 𝜑𝜑23 𝜑𝜑33⎦

⎥
⎥
⎥
⎥
⎤

  𝐂𝐂 = �
𝜑𝜑11 0 𝜑𝜑12 0 𝜑𝜑13 0
𝜑𝜑21 0 𝜑𝜑22 0 𝜑𝜑23 0
𝜑𝜑31 0 𝜑𝜑32 0 𝜑𝜑33 0

� 
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All parameters of the state space representation are listed in Table 3.2, and they are all based 

on the selection method explained before. 

Table 3.2 All parameters of the state space representation 

Mode 1 Mode 2 Mode 3 

Ϛ1 0.02677 Ϛ2  0.02533 Ϛ3  0.02419 

𝑤𝑤1 142.3048 𝑤𝑤2 182.434 𝑤𝑤3 218.9208 

𝜑𝜑11 0.3639 𝜑𝜑12 0.7229 𝜑𝜑13 0.4552 

𝜑𝜑21 0.2821 𝜑𝜑22 0.4803 𝜑𝜑23 0.8414 

𝜑𝜑31 0.2384 𝜑𝜑32 0.4456 𝜑𝜑33 0.758 

The block diagram of the physical system in the state space form is shown in Figure 3.13. The 

physical meanings of the parameters of the system are important and useful when dealing with 

the real system, especially in the experimental process. In this project, three outputs (𝑦𝑦1, 𝑦𝑦2 

and 𝑦𝑦3) are measured by three sensors which produce the corresponding displacement of the 

plate. Three inputs (𝑢𝑢1, 𝑢𝑢2 and 𝑢𝑢3) are generated by three actuators, which are injected into the 

plate in the form of acceleration. The mode shape 𝜑𝜑𝑖𝑖𝑘𝑘 which connects with three outputs are 

regarded as the sensor gains and these gains represent the corresponding proportional relation 

between 𝑎𝑎𝑖𝑖  and y𝑖𝑖𝑘𝑘. The mode shape 𝜑𝜑𝑗𝑗𝑘𝑘 which connects with three inputs are regarded as the 

actuator gains and these gains represent the proportion of inputs that can be inject into the 

system.  
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Figure 3.13 The block diagram of the physical system in state space form 
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Chapter 4 : Beard-Jones Filter 

In this chapter, the Beard-Jones (BJ) filter will be discussed in detail as the core of the fault 

detection approach. Firstly, the structure of the BJ filter which forms the basic concept in the 

fault detection approach is introduced in section 4.1. Then in section 4.2, the BJ filter fault 

detection theory for one-fault situation and multiple-fault situation are introduced. In section 

4.3, a random system with pre-defined fault vectors is laid out to validate the BJ filter design 

principle and procedure. Finally, through simulation, the feature of the BJ filter as a fault 

detection tool is validated. 

4.1 The Structure of Beard-Jones (BJ) Filter 

The fault detection problem using BJ filter mainly depends on the reference mathematical 

model (structure of BJ filter) method which is related to the observer and state estimation 

theory. There are three mathematical models need to be taken into consideration, which are 

normal operation system mathematical model, failure system mathematical model and 

reference mathematical model [24]. The relation between these three mathematical models will 

be discussed in detail in this section, and the dynamic changes in this relation caused by faults 

will lead to the key point in designing the BJ filter, which is the selection of a proper detection 

gain.  

The normal operation system mathematical model is described firstly. The system considered 

in the project is restricted to linear and time invariant system, and this system can be perfectly 

characterized by the relation between the control signal 𝑼𝑼(𝒕𝒕)  and output signal 𝒀𝒀(𝒕𝒕). The state 

space representation of this system is shown as: 

��̇�𝑿(𝒕𝒕) = 𝐀𝐀𝑿𝑿(𝒕𝒕) + 𝐁𝐁𝑼𝑼(𝒕𝒕)
𝒀𝒀(𝒕𝒕) = 𝐂𝐂𝑿𝑿(𝒕𝒕)                                                   (4.1) 

where 𝑿𝑿(𝒕𝒕) is a n×1 state vector, 𝑼𝑼(𝒕𝒕) is a r×1 control input vector and 𝒀𝒀(𝒕𝒕) is a m×1 output 

vector. Matrices A, B and C are corresponding coefficient matrices which have the dimension 

of n×n, n×r and m×n, respectively. With the knowledge of the structure and parameters of the 

existing system, the state space representation of the BJ filter (reference mathematical model) 

can be constructed as [47]:  

��̇�𝑿
�(𝒕𝒕) = 𝐀𝐀𝑿𝑿�(𝒕𝒕) +𝐁𝐁𝑼𝑼(𝒕𝒕) + 𝐋𝐋(𝒀𝒀(𝒕𝒕)− 𝒀𝒀�(𝒕𝒕))

𝒀𝒀(𝒕𝒕) = 𝐂𝐂𝑿𝑿�(𝒕𝒕)
                                (4.2) 
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where 𝑿𝑿�(𝒕𝒕) is a n×1 estimated state vector, 𝒀𝒀�(𝒕𝒕) is a m×1 estimated output vector and L is a 

n×m detection gain matrix. This reference mathematical model is intended to estimate the 

normal operation of the system, which can be used to compare with the real system. The reason 

for using 𝐋𝐋(𝒀𝒀(𝒕𝒕) −𝒀𝒀�(𝒕𝒕)) is to deal with the initial condition (because the initial condition for 

the system is normally unknown). One design criterion for choosing matrix L is to enable the 

estimate state vector to trace the real state vector within a required period of time. This process 

should be stable and fast. Based on (4.1) and (4.2), the state error and the output error can be 

derived from the difference between the real system model and the reference model when there 

is no fault in the system.  

  Ɛ̇(𝒕𝒕) = �̇�𝑿(𝒕𝒕) − �̇�𝑿�(𝒕𝒕) 

           = 𝐀𝐀𝑿𝑿(𝒕𝒕) +𝐁𝐁𝑼𝑼(𝒕𝒕) − 𝐀𝐀𝑿𝑿�(𝒕𝒕) −𝐁𝐁𝑼𝑼(𝒕𝒕) − 𝐋𝐋(𝒀𝒀(𝒕𝒕) −𝒀𝒀�(𝒕𝒕)) 

           = 𝐀𝐀𝑿𝑿(𝒕𝒕) +𝐁𝐁𝑼𝑼(𝒕𝒕) − 𝐀𝐀𝑿𝑿�(𝒕𝒕) −𝐁𝐁𝑼𝑼(𝒕𝒕) − 𝐋𝐋(𝑪𝑪𝑿𝑿(𝒕𝒕)− 𝑪𝑪𝑿𝑿�(𝒕𝒕)) 

           = (𝐀𝐀 −𝐋𝐋𝐂𝐂)𝑿𝑿(𝒕𝒕)− (𝐀𝐀 −𝐋𝐋𝐂𝐂)𝑿𝑿�(𝒕𝒕) 

           = (𝐀𝐀 −𝐋𝐋𝐂𝐂)Ɛ(𝒕𝒕)                                                                                                          (4.3) 

  Ɛ�(𝒕𝒕) = 𝒀𝒀(𝒕𝒕) − 𝒀𝒀�(𝒕𝒕) 

            = 𝐂𝐂𝑿𝑿(𝒕𝒕) −𝐂𝐂𝑿𝑿�(𝒕𝒕) 

            = 𝐂𝐂Ɛ(𝒕𝒕)                                                                                                                      (4.4) 

where Ɛ(𝒕𝒕) is a n×1 state error vector and Ɛ�(𝒕𝒕) is a m×1 output error vector. These two 

equations lead to another design criterion for choosing matrix L such that the output error 

(residual) will have a fixed direction associated with certain failure. The block diagram of the 

fault detection system using the BJ filter is present in Figure 4.1. 
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Figure 4.1 The block diagram of fault detection system using the BJ filter 

In this project, only additive faults are taken into consideration, which mainly consist of sensor 

faults and actuator faults. In the present of faults in a control system, failure system 

mathematical model can be developed from the normal operation system mathematical model.  

The system of (4.1) with actuator faults can commonly be modelled by adding a single fault 

component to the state equation of (4.1) to form: 

��̇�𝑿(𝒕𝒕) = 𝐀𝐀𝑿𝑿(𝒕𝒕) + 𝐁𝐁𝑼𝑼(𝒕𝒕) + 𝒇𝒇𝒊𝒊𝝁𝝁𝒊𝒊
𝒀𝒀(𝒕𝒕) = 𝐂𝐂𝑿𝑿(𝒕𝒕)                                              (4.5) 

where 𝒇𝒇𝒊𝒊 is a n×1 failure vector which is associated with the ith actuator fault and 𝝁𝝁𝒊𝒊 represents 

a time-varying scalar which normally is a function of 𝑼𝑼(𝒕𝒕). It is not necessary to actually know 

the value of 𝝁𝝁𝒊𝒊, because the design of the BJ filter does not need the knowledge of this function, 

and the selection of 𝝁𝝁𝒊𝒊 can be arbitrary. However, in the case that the directions of faults are 

hard to be distinguished, the knowledge of the fault magnitude which can be set by applying 

different values of 𝝁𝝁𝒊𝒊 can be very useful [48]. Based on (4.2) and (4.5), the state error and the 

output error can be derived from the difference between the failure system model and the 

reference model when there exists the ith actuator fault in the system. 

  Ɛ̇(𝒕𝒕) = �̇�𝑿(𝒕𝒕) − �̇�𝑿�(𝒕𝒕) 

           = 𝐀𝐀𝑿𝑿(𝒕𝒕) +𝐁𝐁𝑼𝑼(𝒕𝒕) + 𝒇𝒇𝒊𝒊𝝁𝝁𝒊𝒊 − 𝐀𝐀𝑿𝑿�(𝒕𝒕) −𝐁𝐁𝑼𝑼(𝒕𝒕) − 𝐋𝐋(𝒀𝒀(𝒕𝒕) −𝒀𝒀�(𝒕𝒕)) 

           = (𝐀𝐀 −𝐋𝐋𝐂𝐂)𝑿𝑿(𝒕𝒕) − (𝐀𝐀 −𝐋𝐋𝐂𝐂)𝑿𝑿�(𝒕𝒕) + 𝒇𝒇𝒊𝒊𝝁𝝁𝒊𝒊 

           = (𝐀𝐀 −𝐋𝐋𝐂𝐂)Ɛ(𝒕𝒕) + 𝒇𝒇𝒊𝒊𝝁𝝁𝒊𝒊                                                                                              (4.6) 
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  Ɛ�(𝒕𝒕) = 𝒀𝒀(𝒕𝒕) − 𝒀𝒀�(𝒕𝒕) 

             = 𝐂𝐂Ɛ(𝒕𝒕)                                                                                                                     (4.7) 

When considering the actuator fault situation, the design of the detection gain L needs to meet 

the condition that the output residual Ɛ�(𝒕𝒕) be proportional to 𝐂𝐂𝒇𝒇𝒊𝒊. This means that the direction 

of Ɛ�(𝒕𝒕)  is unique and Ɛ�(𝒕𝒕)  is only associated with the designed fault 𝒇𝒇𝒊𝒊  during the system 

transient [49, 50 and 51]. The block diagram of the structure of the actuator failure system is 

presented in Figure 4.2. 

 

Figure 4.2 The structure of the actuator failure system 

The system of (4.1) with sensor faults can commonly be modelled by adding a single fault 

component to the output equation of (4.1) to form: 

��̇�𝑿(𝒕𝒕) = 𝐀𝐀𝑿𝑿(𝒕𝒕) + 𝐁𝐁𝑼𝑼(𝒕𝒕)
𝒀𝒀(𝒕𝒕) = 𝐂𝐂𝑿𝑿(𝒕𝒕) + 𝒆𝒆𝒊𝒊𝝁𝝁𝒊𝒊

                                                 (4.8) 

where 𝒆𝒆𝒊𝒊  is a m×1 failure unit vector which is associated with the ith sensor fault and 𝝁𝝁𝒊𝒊 

represents a time-varying scalar which normally is a function of 𝑿𝑿(𝒕𝒕). Similar to the actuator 

failure, the selection of 𝝁𝝁𝒊𝒊 is also arbitrary [48]. Based on (4.2) and (4.8), the state error and 

the output error can be derived from the difference between the failure system model and the 

reference model when there exists the ith sensor fault in the system. 

  Ɛ̇(𝒕𝒕) = �̇�𝑿(𝒕𝒕) − �̇�𝑿�(𝒕𝒕) 

           = 𝐀𝐀𝑿𝑿(𝒕𝒕) +𝐁𝐁𝑼𝑼(𝒕𝒕) − 𝐀𝐀𝑿𝑿�(𝒕𝒕) −𝐁𝐁𝑼𝑼(𝒕𝒕) − 𝐋𝐋(𝒀𝒀(𝒕𝒕) −𝒀𝒀�(𝒕𝒕)) 

           = 𝐀𝐀 �𝑿𝑿(𝒕𝒕) −𝑿𝑿�(𝒕𝒕)� − 𝐋𝐋𝐂𝐂(𝑿𝑿(𝒕𝒕) −𝑿𝑿�(𝒕𝒕)) + 𝐋𝐋𝒆𝒆𝒊𝒊𝝁𝝁𝒊𝒊 

           = (𝐀𝐀 −𝐋𝐋𝐂𝐂)Ɛ(𝒕𝒕) + 𝒍𝒍𝒊𝒊𝝁𝝁𝒊𝒊                                                                                              (4.9) 

  Ɛ�(𝒕𝒕) = 𝒀𝒀(𝒕𝒕) − 𝒀𝒀�(𝒕𝒕) 
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            = 𝐂𝐂𝑿𝑿(𝒕𝒕) + 𝒆𝒆𝒊𝒊𝝁𝝁𝒊𝒊 − 𝐂𝐂𝑿𝑿�(𝒕𝒕)                                      

            = 𝐂𝐂Ɛ(𝒕𝒕) + 𝒆𝒆𝒊𝒊𝝁𝝁𝒊𝒊                                                                                                        (4.10) 

where 𝒍𝒍𝒊𝒊 represents the ith column of the detection gain L. When considering the sensor fault 

situation, the design of the detection gain L needs to meet the condition that the output residual 

Ɛ�(𝒕𝒕) lies in the plane which is formed by the 𝐂𝐂𝒍𝒍𝒊𝒊and 𝒆𝒆𝒊𝒊  [48]. The block diagram of the structure 

of the sensor failure system is presented in Figure 4.3. 

 

Figure 4.3 The structure of the sensor failure system 

In this project, the actuator failure system will be mainly studied and analysed in the remaining 

sections because the theory and steps which are used to generate the detection gain L for the 

sensor failure system follow the same principle illustrated here.  

4.2 BJ Filter Fault Detection Theory  

In this section, the BJ filter fault detection theory which aims to generate the detection gain L 

will be fully described, and this section will mainly follow the Beard’s thesis [25] to highlight 

the procedure of constructing the BJ filter. The BJ filter has the ability to utilize only one filter 

to detect multiple faults, so the methods for generating the detection gain for one-fault and 

multiple-fault situations are basically the same. Therefore, the first part will mainly focus on 

the detection theory for one-fault situation and the second part of this section explains the 

restrictions and conditions when extending the detection theory from one-fault situation to 

multiple-fault situation.  

4.2.1 Detection Theory for One-Fault Situation 

The development of the fault detection theory starts by a definition which states the basic goal 

of a detection filter. This definition is firstly proposed by Beard [25], and defines the fault 

detectability and requirement for the detection gain L.  
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Definition 1 (Definition 4.2 of [25]): A failure associated with a fault vector 𝒇𝒇𝒊𝒊 is detectable if 

the detection gain L exists and meets two conditions such that: 

1) The direction of the output residual Ɛ�(𝒕𝒕) is fixed in the output space  

2) All eigenvalues of (A-LC) can be chosen arbitrarily. 

The first condition indicates the property of the BJ filter, which states that the output residual 

should follow the direction of the designed fault vector 𝒇𝒇𝒊𝒊. The second condition provides the 

BJ filter with three advantages. The selection of proper eigenvalues enables the BJ filter to 

keep stable and allows the response time of the BJ filter to be adjusted. Based on these two 

advantages, the BJ filter can act as a state estimation observer. The last advantage enables 

detection gain L to be easily calculated mathematically due to the freedom in designing the BJ 

filter. 

To meet the two conditions which are defined by Definition 1, the following theorems and 

lemmas are developed such that the detection gain L can be constructed properly to enable BJ 

filter to possess the fault detection capability. 

Theorem 1 (Theorem 4.1 of [25]): If a vector in the state space is detectable, (A, C) must be 

an observable pair such that:  

𝐌𝐌 =

⎣
⎢
⎢
⎢
⎡ 𝐂𝐂
𝐂𝐂𝐀𝐀
⋮

𝐂𝐂𝐀𝐀𝑛𝑛−𝟐𝟐
𝐂𝐂𝐀𝐀𝑛𝑛−𝟏𝟏⎦

⎥
⎥
⎥
⎤

           rank(𝐌𝐌) = 𝑓𝑓                                    (4.11) 

where matrices A and C are the system matrix and output matrix which have been stated in 

(4.5). n is the dimension of the state vector and matrix M is the observability matrix for (A, C). 

This observability limitation comes from the normal state estimation requirement [48]. In 

addition, through the next lemma, the relation between the state space concept and the 

condition of detectability is established [25].  

Lemma 1 (Lemma 4.1 of [25]): The first condition of Definition 1 can be satisfied with the 

designed fault vector 𝒇𝒇𝒊𝒊 if and only if  

rank 𝐂𝐂𝐖𝐖𝐟𝐟 = 1                                                  (4.12) 

where 𝐖𝐖𝐟𝐟 defined by (4.13) represents the controllable space of 𝒇𝒇𝒊𝒊 related to (A-LC).  

𝐖𝐖𝐟𝐟 = [𝒇𝒇𝒊𝒊, (𝐀𝐀− 𝐋𝐋𝐂𝐂)𝒇𝒇𝒊𝒊,⋯ , (𝐀𝐀 −𝐋𝐋𝐂𝐂)n−1𝒇𝒇𝒊𝒊]                        (4.13) 
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The proof of this lemma can be briefly explained that the state error Ɛ(𝒕𝒕) is in the controllable 

space of 𝒇𝒇𝒊𝒊 due to (4.6), so the condition for output residual 𝐂𝐂Ɛ(𝒕𝒕) having a fixed direction 

must follow that the rank of 𝐂𝐂𝐖𝐖𝐟𝐟 is equal to 1. The detail proof is given in [25].  

Based on the concept of Theorem 1 and Lemma 1, the following lemma introduces a specific 

vector which plays an important role in the design of the detection gain. 

Lemma 2 (Lemma 4.2 of [25]): If the system meets the following three conditions: 

1) (A, C) is an observable pair,  

2) The rank of 𝐖𝐖𝐟𝐟 is equal to k , 

3) The rank of 𝐂𝐂𝐖𝐖𝐟𝐟 is equal to 1, 

where 𝐖𝐖𝐟𝐟 is defined in (4.13), there should exist a n×1 vector g that is in the controllable space 

of 𝒇𝒇𝒊𝒊 and meet the following equation: 

�
𝐂𝐂
𝐂𝐂𝐀𝐀
⋮

𝐂𝐂𝐀𝐀𝑘𝑘−2
�× 𝐠𝐠 = 0     and     𝐂𝐂𝐀𝐀𝑘𝑘−1 × 𝐠𝐠 ≠ 0                           (4.14) 

where k  is the order of vector g.  

The proof of this lemma can be found in [25] in detail.  

According to Lemma 2, it shows that this specific vector g is in the controllable space of vector 

g as well as the controllable space of fault vector 𝒇𝒇𝒊𝒊, so this result yields (4.15) shown as: 

[𝐠𝐠, (𝐀𝐀 −𝐋𝐋𝐂𝐂)𝐠𝐠, ⋯ , (𝐀𝐀 −𝐋𝐋𝐂𝐂)𝑘𝑘−1𝐠𝐠] = [𝐠𝐠, 𝐀𝐀𝐠𝐠,⋯ ,𝐀𝐀𝑘𝑘−1𝐠𝐠]             (4.15) 

Therefore, the set of vectors [𝐠𝐠    𝐀𝐀𝐠𝐠    ⋯    𝐀𝐀𝑘𝑘−2𝐠𝐠    𝐀𝐀𝑘𝑘−1𝐠𝐠] constructs the basis of controllable 

space for 𝒇𝒇𝒊𝒊 such that the fault vector 𝒇𝒇𝒊𝒊  can be expressed as: 

𝒇𝒇𝒊𝒊 = 𝑎𝑎1𝐠𝐠+ 𝑎𝑎2𝐀𝐀𝐠𝐠+ ⋯+ 𝑎𝑎𝑘𝑘𝐀𝐀𝑘𝑘−1𝐠𝐠                                  (4.16) 

where 𝑎𝑎𝑗𝑗 is an arbitrary scalar and j=1, 2, ⋯ , k. Equations (4.14) and (4.16) yield a solution 

which implies the relation between 𝐂𝐂𝒇𝒇𝒊𝒊 and the specific vector g.  

𝐂𝐂𝒇𝒇𝒊𝒊 = 𝑎𝑎1𝐂𝐂𝐠𝐠+ 𝑎𝑎2𝐂𝐂𝐀𝐀𝐠𝐠+ ⋯+ 𝑎𝑎𝑘𝑘𝐂𝐂𝐀𝐀𝑘𝑘−1𝐠𝐠 

∵ 𝐂𝐂𝐠𝐠 = 𝐂𝐂𝐀𝐀𝐠𝐠 = ⋯ = 𝐂𝐂𝐀𝐀𝑘𝑘−2𝐠𝐠 = 0     ∴ 𝐂𝐂𝒇𝒇𝒊𝒊 = 𝑎𝑎𝑘𝑘𝐂𝐂𝐀𝐀𝑘𝑘−1𝐠𝐠 

In addition, to simplify the problem, g is always chosen such that 𝑎𝑎𝑘𝑘 is equal to 1. 
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𝐂𝐂𝒇𝒇𝒊𝒊 = 𝐂𝐂𝐀𝐀𝑘𝑘−1𝐠𝐠                                                      (4.17) 

Due to the property of this specific vector g as explained in Lemma 2, a definition about g is 

shown below. 

Definition 2 (Definition 4.4 of [25]): The n×1 designed vector g is the k th order detection 

generator for fault vector 𝒇𝒇𝒊𝒊 if (4.14) and (4.16) are satisfied.  

The order k  represents the number of components in (4.16) which is used to represent the fault 

vector 𝒇𝒇𝒊𝒊, and the value of k  can be determined in the later explanations. The introduction of 

detection generator g is specialized for the development of the detection gain L. Although 

Lemma 2 shows that the construction of the detection generator is based on the information of 

the detection gain (due to the relation between 𝐖𝐖𝐟𝐟 and L), the design of the detection generator 

only relies on the knowledge of A, C and the fault vector 𝒇𝒇𝒊𝒊 according to (4.14) and (4.16). 

Therefore, the next theorem proposes an equation which can yield a solution for detection gain 

L based on the detection generator g. In addition, k  eigenvalues of (A-LC) can also be selected 

arbitrarily, where the value k  is exactly the order of the detection generator.  

Theorem 2 (Theorem 4.2 of [25]): Under the case that the condition in Lemma 2 is satisfied, 

and k  eigenvalues of (A-LC) can be obtained by the roots of (4.18).  

𝑠𝑠𝑘𝑘 +  𝑎𝑎𝑘𝑘𝑠𝑠𝑘𝑘−1 +⋯ + 𝑎𝑎2𝑠𝑠 + 𝑎𝑎1 = 0                                      (4.18) 

where 𝑎𝑎𝑗𝑗  is an arbitrary scalar (j=1, 2, ⋯ , k). s is the complex variable which can be used to 

represent the poles of system. The solution of the detection gain L can be obtained as: 

𝐋𝐋𝐂𝐂𝐀𝐀𝑘𝑘−1𝐠𝐠= 𝑎𝑎1𝐠𝐠 + 𝑎𝑎2𝐀𝐀𝐠𝐠+ ⋯+ 𝑎𝑎𝑘𝑘𝐀𝐀𝑘𝑘−1𝐠𝐠+ 𝐀𝐀𝑘𝑘𝐠𝐠                    (4.19)       

where g is the k th order detection generator for fault vector 𝒇𝒇𝒊𝒊.  

The proof of this theorem can be found in [25] in detail. 

Based on the relation described in (4.17), (4.19) can be rewritten as: 

𝐋𝐋𝐂𝐂𝒇𝒇𝒊𝒊 = 𝑎𝑎1𝐠𝐠 + 𝑎𝑎2𝐀𝐀𝐠𝐠+ ⋯+ 𝑎𝑎𝑘𝑘𝐀𝐀𝑘𝑘−1𝐠𝐠+ 𝐀𝐀𝑘𝑘𝐠𝐠                       (4.20) 

To calculate the detection gain L by solving (4.20), the following lemma provides a general 

solution directly. 

Lemma 3 (Lemma 4.3 of [25]): Assume that there exist three matrices L, P and Q, which have 

the dimension n×m, m×r and n×r, respectively. Then the solution of L in 
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𝐋𝐋 ∗ 𝐏𝐏 = 𝐐𝐐                                                            (4.21) 

can be calculated as: 

𝐋𝐋 = 𝐐𝐐(𝐏𝐏T𝐏𝐏)−1𝐏𝐏T + 𝐋𝐋′[𝐈𝐈 − 𝐏𝐏(𝐏𝐏T𝐏𝐏)−1𝐏𝐏T]                           (4.22) 

where matrix 𝐋𝐋′ can be chosen arbitrarily and its dimension is n×m, and it can be regarded as 

the freedom in matrix L. 𝐏𝐏T means the transpose of matrix P.  

The proof of this lemma can be found in [52] in detail. 

Based on (4.20) and (4.22), the solution of detection gain L can be calculated as: 

𝐋𝐋 = [𝑎𝑎1𝐠𝐠+ 𝑎𝑎2𝐀𝐀𝐠𝐠+ ⋯+ 𝑎𝑎𝑘𝑘𝐀𝐀𝑘𝑘−1𝐠𝐠+ 𝐀𝐀𝑘𝑘𝐠𝐠][(𝐂𝐂𝒇𝒇𝒊𝒊)𝑇𝑇(𝐂𝐂𝒇𝒇𝒊𝒊)]−1(𝐂𝐂𝒇𝒇𝒊𝒊)𝑇𝑇 

+𝐋𝐋′[𝐈𝐈 − (𝐂𝐂𝒇𝒇𝒊𝒊)[(𝐂𝐂𝒇𝒇𝒊𝒊)𝑇𝑇(𝐂𝐂𝒇𝒇𝒊𝒊)]−1(𝐂𝐂𝒇𝒇𝒊𝒊)𝑇𝑇]                               (4.23) 

However, the detection gain L cannot be solved directly from (4.23) due to an unknown 

detection generator g. A new system can be constructed with a filter detection gain 𝐋𝐋′ based on 

(4.23), and the form of this new system is the same as the original system. This new system 

can be used to determine the number of eigenvalues that can be chosen arbitrarily by the 

selection of 𝐋𝐋′ [48]. 

According to (4.23), the new system can be constructed as: 

𝐀𝐀 −𝐋𝐋𝐂𝐂 = 𝐀𝐀′ − 𝐋𝐋′𝐂𝐂′                                                 (4.24) 

𝐀𝐀′ = 𝐀𝐀− [𝑎𝑎1𝐠𝐠 + 𝑎𝑎2𝐀𝐀𝐠𝐠+ ⋯+ 𝑎𝑎𝑘𝑘𝐀𝐀𝑘𝑘−1𝐠𝐠+ 𝐀𝐀𝑘𝑘𝐠𝐠][(𝐂𝐂𝒇𝒇𝒊𝒊)𝑇𝑇(𝐂𝐂𝒇𝒇𝒊𝒊)]−1(𝐂𝐂𝒇𝒇𝒊𝒊)𝑇𝑇𝐂𝐂        (4.25) 

𝐂𝐂′ = [𝐈𝐈 − (𝐂𝐂𝒇𝒇𝒊𝒊)[(𝐂𝐂𝒇𝒇𝒊𝒊)𝑇𝑇(𝐂𝐂𝒇𝒇𝒊𝒊)]−1(𝐂𝐂𝒇𝒇𝒊𝒊)𝑇𝑇]𝐂𝐂                           (4.26) 

So far, the above part can achieve some goals. In order to detect the fault vector 𝒇𝒇𝒊𝒊, as explained 

in Definition 1, the condition that the output residual 𝐂𝐂Ɛ(𝒕𝒕) has fixed direction can be achieved 

by selecting proper parameter values in (4.23) so that the rank of 𝐂𝐂𝐖𝐖𝐟𝐟 is equal to 1. Besides, 

according to (4.18), k  eigenvalues of (A-LC) can be set based on [𝑎𝑎1 ,𝑎𝑎2,⋯  𝑎𝑎𝑘𝑘]. The second 

condition in Definition 1 can be met if the left n-k  eigenvalues of (A-LC) can be designed 

arbitrarily due to the remaining freedom in detection gain L (which lies in the selection of 𝐋𝐋′) 

and the number of these eigenvalues can be determined by the following lemma. 

Lemma 4 (Lemma 4.4 of [25]): If three matrices 𝐀𝐀′ ,𝐂𝐂′ and 𝐋𝐋′ have the dimensions n×n, m×n 

and n×m, respectively, there are 𝑓𝑓 eigenvalues of (𝐀𝐀′ − 𝐋𝐋′𝐂𝐂′) that can be arbitrarily selected 
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based on the freedom in 𝐋𝐋′ , and according to the Theorem 1, 𝑓𝑓  can be determined by the 

observable pair of (𝐀𝐀′ , 𝐂𝐂′) such that: 

𝑓𝑓 = rank �
𝐂𝐂′

 𝐂𝐂′𝐀𝐀′
⋮

𝐂𝐂′𝐀𝐀′ 𝑛𝑛−1
�                                                 (4.27) 

where 𝐀𝐀′ and 𝐂𝐂′ have been defined by (4.25) and (4.26).  

The proof of Lemma 4 is given in [48]. 

 Because the eigenvalues of (A-LC) are equal to the eigenvalues of (𝐀𝐀′ − 𝐋𝐋′𝐂𝐂′), the total 

number of eigenvalues can be obtained as 𝑘𝑘 + 𝑓𝑓 based on the above result. In order to satisfy 

the second condition in Definition 1, the equation 𝑘𝑘 + 𝑓𝑓 = 𝑓𝑓 needs to be met.  

Now the problem has been transferred to identify the numbers of k  and 𝑓𝑓. Although Lemma 4 

implies that the number of 𝑓𝑓 depends on g and k  (due to the definition of 𝐀𝐀′), the following 

theorem proves the irrelevance between them. 

Theorem 3 (Theorem 4.3 of [25]): Under the condition that detection gain L can be constructed 

by (4.20), the number of eigenvalues 𝑓𝑓 that is specified randomly can be obtained by: 

𝑓𝑓 = rank �
𝐂𝐂′

 𝐂𝐂′𝐀𝐀′
⋮

𝐂𝐂′𝐀𝐀′ 𝑛𝑛−1
� = rank[𝐌𝐌′] = 𝑓𝑓𝑎𝑎𝑓𝑓𝑘𝑘 �

𝐂𝐂′
 𝐂𝐂′𝐊𝐊
⋮

𝐂𝐂′𝐊𝐊 𝑛𝑛−1

�                      (4.28) 

where 𝐌𝐌′ is the observability matrix for (𝐀𝐀′, 𝐂𝐂′) and K is defined as: 

𝐊𝐊 = 𝐀𝐀− 𝐀𝐀𝒇𝒇𝒊𝒊[(𝐂𝐂𝒇𝒇𝒊𝒊)T(𝐂𝐂𝒇𝒇𝒊𝒊)]−1(𝐂𝐂𝒇𝒇𝒊𝒊)T𝐂𝐂                                 (4.29) 

The proof of this theorem is given in [25] in detail.  

Because K and 𝐂𝐂′ are not related to g and k , it is clearly shows that the number of eigenvalue 

𝑓𝑓 of (A-LC), which represents the left freedom in L, only depends on A, f and C. In addition, 

this result also implies that the degree of freedom in L which determines the eigenvalue 𝑓𝑓 is 

always the same once the system is fixed. Therefore, the focus now is to find the desired 

detection generator g which order is definitely equal to 𝑓𝑓 − 𝑓𝑓, and this purpose leads to the 

following definitions. 

Definition 3 (Definition 4.5 of [25]): The detection space of fault vector 𝒇𝒇𝒊𝒊 can be defined by 

the null space of 𝐌𝐌′. 
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Definition 4 (Definition 4.6 of [25]): The detection order (normally represented by v) of fault 

vector 𝒇𝒇𝒊𝒊 can be defined by the dimension of the detection space of fault vector 𝒇𝒇𝒊𝒊. 

Definition 5 (Definition 4.7 of [25]): When the order of detection generator g is equal to the 

detection order of fault vector 𝒇𝒇𝒊𝒊, this detection generator is regard as the maximal detection 

generator. 

According to a series of definitions as shown above, the number of detection order meets the 

following condition: 

𝑣𝑣 = 𝑓𝑓 − rank [𝐌𝐌′] = 𝑓𝑓 − 𝑓𝑓                                           (4.30) 

Therefore, based on (4.30) and the condition for desired detection generator, the key to achieve 

detectability of fault vector 𝒇𝒇𝒊𝒊 lies in the searching of maximal detection generator.  

Finally, due to the knowledge of the order of the maximal detection generator (𝑘𝑘 = 𝑣𝑣 = 𝑓𝑓 −

𝑓𝑓), the detection generator can be obtained based on (4.14) in Lemma 2. The detection gain 

can then be designed through (4.20) based on Theorem 2 or (4.23) based on Lemma 3. 

Throughout the whole theory in designing BJ filter for one-fault situation, there are two points 

needed to be reemphasized and highlighted [25]. 

1) The property of the detection space, detection order and maximal generator.  

 Under the condition that (A, C) is observable, the detection space, detection order and 

maximal generator for every fault is unique. In addition, the transformation for matrix A, 

such as 𝐀𝐀′′ = 𝐀𝐀 −𝐋𝐋′′𝐂𝐂 (where 𝐋𝐋′′ can be chosen randomly with proper dimension) and the 

coordinate transformation for the system’s state space representation will not influence the 

uniqueness of those three items. By taking advantage of this property, some complex 

calculations can be simplified. 

 One fault vector 𝒇𝒇𝒊𝒊 can produce many detection gain g, but all of them must lie in the 

detection space of fault vector 𝒇𝒇𝒊𝒊. 

 Any n×1 vectors which lie in the detection space of fault vector 𝒇𝒇𝒊𝒊 will have the identical 

detection order and space when compared with fault vector 𝒇𝒇𝒊𝒊.  

2) The construction of eigenvalues  

Based on Theorem 2 and Lemma 3, the solution of detection gain L guarantees that v (or k  by 

selecting the maximal detection generator) eigenvalues of (A-LC) are absolutely fixed and 

each eigenvalue is equal to the corresponding pole in the set of [𝑎𝑎1, 𝑎𝑎2,⋯ , 𝑎𝑎𝑘𝑘]. The left q 

eigenvalues can be selected arbitrarily according to 𝐋𝐋′ (the freedom in detection gain L). 
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4.2.2 Detection Theory for Multiple-Fault Situation 

As mentioned in the beginning, the methods and theory to generate detection gain for one-fault 

situation and multiple-fault situation are basically the same. Therefore, this section mainly 

illustrates the restrictions and conditions when dealing with multiple-fault detection.  

In order to explain the restrictions for multiple-fault detection, the following definitions are 

developed. 

Definition 6 (Definition 4.9 of [25]): Multiple-fault vectors {𝒇𝒇𝟏𝟏 , 𝒇𝒇𝟐𝟐 , ⋯ , 𝒇𝒇𝒓𝒓} are output 

separable if 

rank (𝐂𝐂𝐂𝐂)  =  𝑓𝑓                                                  (4.31) 

where r is the number of fault vectors. F represents a n×r fault matrix and is defined by:  

𝐂𝐂 =  [𝒇𝒇𝟏𝟏 𝒇𝒇𝟐𝟐 ⋯ 𝒇𝒇𝒓𝒓]                                            (4.32) 

This definition is intended to check the direction of different fault vectors. If the output error 

for two fault vectors have the same direction, the deigned BJ filter will fail to distinguish these 

two faults.  

Definition 7 (Definition 4.10 of [25]): The dimension of state vector n can be defined to be the 

group detection order for the multiple-fault vectors {𝒇𝒇𝟏𝟏, 𝒇𝒇𝟐𝟐, ⋯, 𝒇𝒇𝒓𝒓}.  

Based on Definition 6 and Definition 7, the most important criterion for multiple-fault 

detectability is explained in Theorem 4. 

Theorem 4 (Theorem 4.5 of [25]): Under the condition that multiple-fault vectors {𝒇𝒇𝟏𝟏, 𝒇𝒇𝟐𝟐, ⋯, 

𝒇𝒇𝒓𝒓} are output separable, these fault vectors are mutually detectable if and only if the sum of 

detection order for each 𝒇𝒇𝒊𝒊 (i = 1, 2, ⋯, r) is equal to the group detection order such that: 

∑ 𝑣𝑣𝑖𝑖𝑟𝑟
1 = 𝑓𝑓                                                            (4.33) 

where 𝑣𝑣𝑖𝑖  represents the detection order for each 𝒇𝒇𝒊𝒊, and it can be obtained according to (4.30). 

The proof of this theorem is given in [48] in detail.  

So far, if the multiple-fault vectors meet the criteria in Theorem 4, the rest work only needs to 

follow the method and theory as explained in one-fault situation in order to obtain each 

detection generator 𝐠𝐠𝒊𝒊 for each fault vector 𝒇𝒇𝒊𝒊. Finally, through (4.20) based on Theorem 2 or 
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(4.23) based on Lemma 3, the detection gain L can be designed based on the information 

provided by each detection generator 𝐠𝐠𝒊𝒊. 

4.3 Design Procedures and Example 

In order to apply the theory previously discussed to practical problems, a random system with 

pre-defined fault vectors is used to better explain the construction process of the BJ filter. 

Assume that there exists a system with 1 input and 2 outputs: 

��̇�𝑿(𝒕𝒕)3×1 = 𝐀𝐀3×3𝑿𝑿(𝒕𝒕)3×1 + 𝐁𝐁3×1𝑼𝑼(𝒕𝒕)1×1
𝒀𝒀(𝒕𝒕)2×1 = 𝐂𝐂2×3𝑿𝑿(𝒕𝒕)3×1

                               (4.34) 

where 𝐀𝐀 = �
0 3 4
1 2 3
0 2 5

�     𝐁𝐁 = �
1
1
1
�     𝐂𝐂 = �0 1 0

0 0 1
�   𝒇𝒇𝟏𝟏 = �

3
1
0
�    

Step 1: Check the observability of (A, C). 

According to Theorem 1, check whether the system (A, C) is an observable pair. 

rank(𝐌𝐌) = rank �
𝐂𝐂
𝐂𝐂𝐀𝐀
𝐂𝐂𝐀𝐀2

� = 3 = 𝑓𝑓                                       (4.35) 

Therefore, the fault vector 𝒇𝒇𝟏𝟏 in the state space is detectable. 

Step 2: Simplify the matrix A (this step is only for the convenience of the calculations and thus 

can be omitted). 

According to the theory explained above, without changing the maximal generator, detection 

order and detection space of fault vector 𝒇𝒇𝟏𝟏, the system matrix A can be simplified by 𝐀𝐀′′ =

𝐀𝐀 −𝐋𝐋′′𝐂𝐂. For this example,  

𝐋𝐋′′ = �
3 4
2 3
2 5

� 

Then A can be simplified to  

𝐀𝐀′′ = �
0 0 0
1 0 0
0 0 0

� 

Step 3: Compute the detection order v. 

According to Theorem 3, the number of eigenvalues 𝑓𝑓 can be obtained. Firstly, 𝐂𝐂′ and K need 

to be calculated based on (4.26) and (4.29), respectively. 
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𝐂𝐂′ = [𝐈𝐈 − (𝐂𝐂𝒇𝒇𝟏𝟏)[(𝐂𝐂𝒇𝒇𝟏𝟏)𝑇𝑇(𝐂𝐂𝒇𝒇𝟏𝟏)]−1(𝐂𝐂𝒇𝒇𝟏𝟏)𝑇𝑇]𝐂𝐂 = �0 0 0
0 0 1

�                (4.36) 

𝐊𝐊 = 𝐀𝐀′′ − 𝐀𝐀′′𝒇𝒇𝟏𝟏[(𝐂𝐂𝒇𝒇𝟏𝟏)T(𝐂𝐂𝒇𝒇𝟏𝟏)]−1(𝐂𝐂𝒇𝒇𝟏𝟏)𝐓𝐓𝐂𝐂 = �
0 0 0
1 −3 0
0 0 0

�               (4.37) 

Then according to (4.28). 

𝑓𝑓 = rank(𝐌𝐌′) = rank �
𝐂𝐂′
𝐂𝐂′𝐊𝐊
𝐂𝐂′𝐊𝐊2

� = 1                                    (4.38) 

Finally, based on (4.30), the detection order can be obtained, and this order is equal to the order 

of desired maximal detection generator g. 

𝑘𝑘 = 𝑣𝑣 = 𝑓𝑓 − 𝑓𝑓 = 3 − 1 = 2                                       (4.39) 

Step 4: Find the maximal detection generator g. 

Based on Lemma 2, the detection generator g can be calculated according to its definition in 

(4.14).  

𝐂𝐂 × 𝐠𝐠 = 0      and   𝐂𝐂𝐀𝐀′′ × 𝐠𝐠 = 𝐂𝐂𝒇𝒇𝟏𝟏                                     (4.40) 

�
�0 1 0
0 0 1� × 𝐠𝐠 = 0

�1 0 0
0 0 0� × 𝐠𝐠 = �10�

                                                (4.41) 

From (4.41), the detection generator g can be calculated. 

𝐠𝐠 = �
1
0
0
� 

Step 5: Determine detection gain L 

Assume detection gain L is a 3*2 matrix as shown below. 

𝐋𝐋 = �
𝑎𝑎11 𝑎𝑎12
𝑎𝑎21 𝑎𝑎22
𝑎𝑎31 𝑎𝑎32

� 

According to Theorem 2, the detection gain L can be solved through (4.20). 

𝐋𝐋𝐂𝐂𝒇𝒇𝟏𝟏 = 𝑎𝑎1𝐠𝐠+ 𝑎𝑎2𝐀𝐀𝐠𝐠+𝐴𝐴2𝐠𝐠                                          (4.41) 
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     → 𝐋𝐋 �1
0
� = �

𝑎𝑎11
𝑎𝑎21
𝑎𝑎31

�= 𝑎𝑎1𝐠𝐠+ 𝑎𝑎2𝐀𝐀𝐠𝐠+ 𝐴𝐴2𝐠𝐠                             (4.42) 

At this stage, because of the freedom in designing the BJ filter, the eigenvalues (or the system 

poles) can be designed randomly. To maintain the stability of the system, the eigenvalues can 

be places at s = -2 and s = -3, respectively. From the (4.18), the values of 𝑎𝑎1 and 𝑎𝑎2 can be 

determined. 

(𝑠𝑠 + 2) × (𝑠𝑠 + 3) = 𝑠𝑠2 +   5𝑠𝑠+ 6 = 𝑠𝑠2 +  𝑎𝑎2𝑠𝑠+ 𝑎𝑎1                    (4.43) 

→ �𝑎𝑎1 = 6
𝑎𝑎2 = 5 

Therefore,  

�
𝑎𝑎11
𝑎𝑎21
𝑎𝑎31

�= 6 �
1
0
0
� + 5 �

0
1
0
� + �

3
2
2
� = �

9
7
2
�                                  (4.44) 

Finally, the detection gain L can be determined and still has freedom in L. 

𝐋𝐋 = �
9 𝑎𝑎12
7 𝑎𝑎22
2 𝑎𝑎32

� 

These five steps form the basic design process for BJ filter for one-fault detection as well as 

multiple-fault detection. Due to the freedom left in L, it is possible to allow this BJ filter to be 

able to detect another fault vector 𝒇𝒇𝟐𝟐  for this system. However, the restriction of the BJ 

detection filter in detecting multiple faults will be examined first.  

Assumed that there exists another fault  

𝒇𝒇𝟐𝟐 = �
1

−0.5
0.5

� 

Firstly, check if these two fault vectors are output separable using (4.31). 

rank (𝐂𝐂𝐂𝐂)  =  rank ���0 1 0
0 0 1� × �

−3 1
1 −0.5
0 0.5

��� = 2                     (4.45) 

Therefore, these two fault vectors are output separable. Then, follow Step 3 as explained 

before, the detection order for 𝒇𝒇𝟐𝟐 can be calculated. 
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𝐂𝐂′𝟐𝟐 = [𝐈𝐈 − (𝐂𝐂𝒇𝒇𝟐𝟐)[(𝐂𝐂𝒇𝒇𝟐𝟐)T(𝐂𝐂𝒇𝒇𝟐𝟐)]−1(𝐂𝐂𝒇𝒇𝟐𝟐)T]𝐂𝐂 = �0 0.5 0.5
0 0.5 0.5

�               (4.46) 

𝐊𝐊𝟐𝟐 = 𝐀𝐀′′ − 𝐀𝐀′′𝒇𝒇𝟐𝟐[(𝐂𝐂𝒇𝒇𝟐𝟐)T(𝐂𝐂𝒇𝒇𝟐𝟐)]−1(𝐂𝐂𝒇𝒇𝟐𝟐)T𝐂𝐂 = �
0 3.5 3.5
1 3.5 1.5
0 3.5 3.5

�               (4.47) 

Then according to (4.28). 

𝑓𝑓2 = rank(𝐌𝐌′
𝟐𝟐) = rank �

𝐂𝐂′𝟐𝟐
𝐂𝐂′𝟐𝟐𝐊𝐊𝟐𝟐
𝐂𝐂′𝟐𝟐𝐊𝐊𝟐𝟐

2
� = 2                                (4.48) 

Finally, based on (4.30), the detection order can be calculated, and this order is equal to the 

order of desired detection generator 𝐠𝐠𝟐𝟐. 

𝑘𝑘2 = 𝑣𝑣2 = 𝑓𝑓 − 𝑓𝑓2 = 3− 2 = 1                                   (4.49) 

Now, the mutually detectability can be checked based on Theorem 4. 

∑ 𝑣𝑣𝑖𝑖2
1 = 2 + 1 = 3 = 𝑓𝑓                                           (4.50) 

Therefore, these two fault vectors are mutual detectable. Because the detection order for 𝒇𝒇𝟐𝟐 is 

1, the maximal detection generator 𝐠𝐠𝟐𝟐 is equal to 𝒇𝒇𝟐𝟐. Following Step 5, the detection gain L 

will meet: 

𝐋𝐋𝐂𝐂𝒇𝒇𝟐𝟐 = �
9 𝑎𝑎12
7 𝑎𝑎22
2 𝑎𝑎32

�× �−0.5
0.5 � = 𝑎𝑎3𝒇𝒇𝟐𝟐 + 𝐀𝐀𝒇𝒇𝟐𝟐                          (4.51) 

Similar to the former design method, the eigenvalue can be placed at s = -4, and 𝑎𝑎3 is directly 

equal to -4 due to only one pole.  

�
9 𝑎𝑎12
7 𝑎𝑎22
2 𝑎𝑎32

�× �−0.5
0.5 � = −4 �

1
−0.5
0.5

�+ �
0 3 4
1 2 3
0 2 5

� × �
1

−0.5
0.5

�             (4.52) 

Finally, all the parameters in the detection gain L can be obtained, and based on the design of 

the detection gain, the BJ filter is able to detect these two fault vectors. 

𝐋𝐋 = �
9 18
7 6
2 9

� 

Figure 4.4 shows the whole block diagram for the design of the detection gain L. 
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Figure 4.4 Design procedure for the detection gain of BJ filter 
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4.4 Simulation Construction and Explanation  

In this section, the random system and its corresponding BJ filter are constructed using 

MATLAB SIMULINK in order to validate the feature of the BJ filter in fault detection 

problem. 

The SIMULINK model of the whole structure is shown below. Figure 4.5 shows the whole 

fault detection system, Figure 4.6 shows the subsystem of the plate structure and Figure 4.7 

shows the subsystem of the BJ filter structure.  

 

Figure 4.5 Fault detection system for example system 

 

Figure 4.6 Subsystem of plate structure for example system 
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Figure 4.7 Subsystem of BJ filter structure for example system 

In the fault detection system (Figure 4.5), two fault vectors are activated by the step input signal 

and then inserted into the plant. The original system output signal and the BJ filter output signal 

are compared to produce the output residual which can be displayed in the scope. In the plate 

structure (Figure 4.6), the square wave is used as the external disturbance which can keep this 

control system in operation, and the pole placement control gain is used for keeping the system 

stable (i.e., placing the system poles at negative values). In the BJ filter structure (Figure 4.7), 

the input and output signals of the original system are introduced to the BJ filter in order to 

produce an estimated fault-free output signal.  

According to the theory explained before, the output residual Ɛ�(𝒕𝒕) should be proportional to 

𝐂𝐂𝒇𝒇𝒊𝒊 with respect to the corresponding fault vector 𝒇𝒇𝒊𝒊. Firstly, the value of 𝐂𝐂𝒇𝒇𝒊𝒊 for two fault 

vectors are presented as: 

𝐂𝐂𝒇𝒇𝟏𝟏 = �10�       𝐂𝐂𝒇𝒇𝟐𝟐 = �−0.5
0.5 �                                          (4.53) 

Then the value of the output residual for fault vector 𝒇𝒇𝟏𝟏 is examined by simulation result shown 

in Figure 4.8. 



Chapter 4: Beard-Jones Filter 

56 
 

 

Figure 4.8 Simulation result for 𝒇𝒇𝟏𝟏 of the example system 
(a) 1st row of the residual vector; (b) 2nd row of the residual vector 

From Figure 4.8, it shows that the output residual for 𝒇𝒇𝟏𝟏 is stable at value of [5; 0], which is 

proportional to 𝐂𝐂𝒇𝒇𝟏𝟏, so the BJ filter can be used to detect the fault vector 𝒇𝒇𝟏𝟏 successfully. 

Finally, the value of the output residual for fault vector 𝒇𝒇𝟐𝟐 is examined by simulation result 

shown in Figure 4.9. 

(a) 

(b) 
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Figure 4.9 Simulation result for 𝒇𝒇𝟐𝟐 of the example system 
(a) 1st row of the residual vector; (b) 2nd row of the residual vector 

From Figure 4.9, it shows that the output residual for 𝒇𝒇𝟐𝟐 is stable at value of [-1.4; 1.4], which 

is proportional to 𝐂𝐂𝒇𝒇𝟐𝟐, so the BJ filter can be used to detect the fault vector 𝒇𝒇𝟐𝟐 successfully as 

well. 

In conclusion, the designed BJ filter is a useful and practical fault detection method for one-

fault as well as multiple-fault situations.  

 

(a) 

(b) 
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Chapter 5 : Conceptual BJ Filter Validation 

Based on the knowledge of the BJ filter theory and the developed state space representation of 

the plate control system, a conceptual BJ filter structure for implementing fault detection with 

pre-defined faults is designed and tested in MATLAB SIMULINK from simple case to 

complex case following the design procedure and restriction of the BJ filter. In this chapter, 

three configurations (namely, SISO configuration – considering one pair of the inputs and 

outputs of the real system only, 2I2O configuration – considering two pairs of the inputs and 

outputs of the real system only, and MIMO configuration – considering all three pairs of the 

inputs and outputs of the real system, respectively) are constructed for validation.  

5.1 BJ Filter Design for SISO Configuration 

In this section, only one pair of the inputs and outputs of the real system is taken into 

consideration for fault detection and this system only considers the first mode of the real 

system. A pre-defined fault vector is introduced to this system for validation. The block 

diagram of this new simplified system is shown in Figure 5.1. 

 

Figure 5.1 The block diagram of new simplified SISO system for BJ filter design 

According to Figure 5.1, the state space representation of this SISO system is shown in (5.1) 

and the setting of the pre-defined fault vector f is shown below. 

��̇�𝑿(𝒕𝒕)2×1 = 𝐀𝐀2×2𝑿𝑿(𝒕𝒕)2×1 + 𝐁𝐁2×1𝑼𝑼(𝒕𝒕)1×1
𝒀𝒀(𝒕𝒕)1×1 = 𝐂𝐂1×2𝑿𝑿(𝒕𝒕)2×1

                                   (5.1) 

where 𝐀𝐀 = � 0 1
−𝑤𝑤12 −2Ϛ1𝑤𝑤1�     𝐁𝐁 = � 0

𝜑𝜑11
�     𝐂𝐂 = [𝜑𝜑11 0]  𝒇𝒇 = �10�    
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The parameters in this SISO system can be obtained from the real system data that has been 

developed in Chapter 3. Based on the BJ filter design procedure developed in Chapter 4, the 

detection gain L can be calculated using the algorithm designed in MATLAB and the result is 

shown in (5.2). The MATLAB script can refer to Appendix A.  

𝐋𝐋 = �−7.1304
−55642

�                                                             (5.2) 

The SIMULINK model of this SISO fault detection system is shown as follows. Figure 5.2 

shows the whole fault detection system, Figure 5.3 shows the subsystem of the plate structure 

and Figure 5.4 shows the subsystem of the BJ filter structure.  

 
Figure 5.2 Fault detection system for the SISO system 

 

Figure 5.3 Subsystem of the plate structure for the SISO system 
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Figure 5.4 Subsystem of the BJ filter structure for the SISO system 

In the fault detection system (Figure 5.2), the fault vector f is activated by the step input signal 

and then inserted into the plant. The output signals of the SISO system and the BJ filter are 

compared to produce the output residual which can be displayed in the scope. In the plate 

structure (Figure 5.3), the square wave (where frequency is set to be the same as the first mode 

of the system) is used as the external disturbance which keeps this control system in operation, 

and the negative control gain is used for suppressing the system vibration. In the BJ filter 

structure (Figure 5.4), the input and output signals of the SISO system are introduced to the BJ 

filter in order to produce an estimated fault-free output signal.  

According to the fault detection theory explained in Chapter 4, the output residual Ɛ�(𝒕𝒕) should 

be proportional to 𝐂𝐂𝒇𝒇 with respect to the corresponding pre-defined fault vector f. Firstly, the 

value of 𝐂𝐂𝒇𝒇 for the pre-defined fault vector f is presented as: 

𝐂𝐂𝒇𝒇 = 0.3639                                                           (5.3) 

After running the simulation, the output residual shown in Figure 5.5 for the pre-defined fault 

vector f can be examined. 
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Figure 5.5 Simulation result for f of the SISO system 

From Figure 5.5, it shows that after the fault detection system becomes stable, the output 

residual for f is stable at the value of 4.7, which is obviously proportional to 𝐂𝐂𝒇𝒇. Therefore, the 

designed conceptual BJ filter is able to detect the pre-defined fault vector f in this SISO system 

successfully. 

5.2 BJ Filter Design for 2I2O Configuration 

In this section, two pairs of the inputs and outputs of the real system are taken into consideration 

for fault detection and this 2I2O system considers the first and second modes of the real system. 

Two pre-defined fault vectors are introduced to this system for validation. The block diagram 

of this 2I2O system is shown in Figure 5.6. 
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Figure 5.6 The block diagram of the new simplified 2I2O system for BJ filter design 

According to Figure 5.6, the state space representation for this 2I2O system is shown in (5.4) 

and the settings of the pre-defined fault vectors 𝒇𝒇𝟏𝟏 and 𝒇𝒇𝟐𝟐 are shown below. 

��̇�𝑿(𝒕𝒕)4×1 = 𝐀𝐀4×4𝑿𝑿(𝒕𝒕)4×1 + 𝐁𝐁4×2𝑼𝑼(𝒕𝒕)2×1
𝒀𝒀(𝒕𝒕)2×1 = 𝐂𝐂𝟐𝟐×4𝑿𝑿(𝒕𝒕)4×1

                                (5.4) 

where                 𝐀𝐀 =

⎣
⎢
⎢
⎡ 0 1 0 0
−𝑤𝑤12 −2Ϛ1𝑤𝑤1 0 0

0 0 0 1
0 0 −𝑤𝑤22 −2Ϛ2𝑤𝑤2⎦

⎥
⎥
⎤

    𝐁𝐁 = �

0 0
𝜑𝜑11 𝜑𝜑21
0 0
𝜑𝜑12 𝜑𝜑22

�  

   𝐂𝐂 = �𝜑𝜑1
1 0 𝜑𝜑12 0

𝜑𝜑21 0 𝜑𝜑22 0
�   𝒇𝒇𝟏𝟏 = �

10
0
0
0

�  𝒇𝒇𝟐𝟐 = �
0
0
1
0

�    

The parameters of this 2I2O system can be obtained from the real system data that has been 

developed in Chapter 3. Based on the BJ filter design procedure developed in Chapter 4, the 

detection gain L can be calculated using the algorithm designed in MATLAB and the result is 

shown in (5.5). The MATLAB script can refer to Appendix A.  

𝐋𝐋 = �
42.6399 −64.1898
332740 −500910
−2.3826 3.0730
−321430 414550

�                                           (5.5) 

The SIMULINK model of this 2I2O fault detection system is shown as follows. Figure 5.7 

shows the whole fault detection system, Figure 5.8 shows the subsystem of the plate structure 

and Figure 5.9 shows the subsystem of the BJ filter structure.  
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Figure 5.7 Fault detection system for the 2I2O system 

 
Figure 5.8 Subsystem of the plate structure for the 2I2O system 

 

Figure 5.9 Subsystem of the BJ filter structure for the 2I2O system 

Similar to the SISO system, in the fault detection system (Figure 5.7), the fault vectors 𝒇𝒇𝟏𝟏 and 

𝒇𝒇𝟐𝟐 are activated by the step input signal and then inserted into the plant. The output signals of 

this 2I2O system and the BJ filter are compared to produce the output residual (2-dimensiona l) 

which can be displayed in the scope. In the plate structure (Figure 5.8), two square waves 
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(where frequencies are set to be the same as those of the first and second modes of the system, 

respectively) are used as the external disturbances which keep this control system in operation, 

and the negative control gain is used for suppressing the system vibration. In the BJ filter 

structure (Figure 5.9), the input and output signals of the 2I2O system are introduced to the BJ 

filter in order to produce an estimated fault-free output signal.  

According to the fault detection theory explained in Chapter 4, the output residual Ɛ�(𝒕𝒕) should 

be proportional to 𝐂𝐂𝒇𝒇𝒊𝒊 with respect to corresponding fault vector 𝒇𝒇𝒊𝒊. Firstly, the value of 𝐂𝐂𝒇𝒇𝒊𝒊 

for two pre-defined fault vectors are presented as: 

𝐂𝐂𝒇𝒇𝟏𝟏 = �3.6385
2.8212

�       𝐂𝐂𝒇𝒇𝟐𝟐 = � 0.723
0.4803

�                                (5.6) 

When the fault vector 𝒇𝒇𝟏𝟏 is introduced to the system, the value of the output residual shown in 

Figure 5.10 for fault vector 𝒇𝒇𝟏𝟏 can be examined. 

 

Figure 5.10 Simulation result for 𝒇𝒇𝟏𝟏 of the 2I2O system 
(a) 1st row of the residual vector; (b) 2nd row of the residual vector 

(a) 

(b) 
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From Figure 5.10, it shows that after the fault detection system becomes stable, the output 

residual for 𝒇𝒇𝟏𝟏 is stable at value of [46.05; 35.71], which is proportional to 𝐂𝐂𝒇𝒇𝟏𝟏 as calculated 

in (5.7). Therefore, the designed conceptual BJ filter is able to detect the pre-defined fault 

vector 𝒇𝒇𝟏𝟏 in this 2I2O system successfully. 

Output residual for  𝒇𝒇𝟏𝟏 = �46.05
35.71

� = 12.66 × 𝐂𝐂𝒇𝒇𝟏𝟏 = 12.66 ∗ �3.6385
2.8212

�           (5.7) 

When the fault vector 𝒇𝒇𝟐𝟐 is introduced to the system, the value of the output residual shown in 

Figure 5.11 for fault vector 𝒇𝒇𝟐𝟐 can be examined. 

 

Figure 5.11 Simulation result for 𝒇𝒇𝟐𝟐 of the new 2I2O system 
(a) 1st row of the residual vector; (b) 2nd row of the residual vector 

From Figure 5.11, it shows that after the fault detection system becomes stable, the output 

residual for 𝒇𝒇𝟐𝟐 is stable at value of [3.343; 2.22], which is proportional to 𝐂𝐂𝒇𝒇𝟐𝟐 as calculated in 

(5.8). Therefore, the designed conceptual BJ filter is able to detect the pre-defined fault vector 

𝒇𝒇𝟐𝟐 in this 2I2O system successfully. 

(b) 

(a) 
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Output residual for  𝒇𝒇𝟐𝟐 = �3.343
2.22

� = 4.62 × 𝐂𝐂𝒇𝒇𝟐𝟐 = 4.62 × � 0.723
0.4803

�            (5.8) 

5.3 BJ Filter Design for MIMO Configuration 

In this section, the entire real system (three pairs of inputs and outputs) is taken into 

consideration for fault detection and the first three modes of the real system are all considered 

in the design. Three pre-defined fault vectors are introduced to this system for validation. In 

addition, the verification of three fault detection capabilities can provide a guarantee for the 

implementation of experiments to detect three actuator faults in the real system. The block 

diagram of the MIMO system has been established in Figure 3.7. 

The state space representation for the MIMO system is shown in (5.9) and the settings of the 

pre-defined fault vectors 𝒇𝒇𝟏𝟏, 𝒇𝒇𝟐𝟐 and 𝒇𝒇𝟑𝟑 are shown below. 

��̇�𝑿(𝒕𝒕)6×1 = 𝐀𝐀6×6𝑿𝑿(𝒕𝒕)6×1 + 𝐁𝐁6×3𝑼𝑼(𝒕𝒕)3×1
𝒀𝒀(𝒕𝒕)3×1 = 𝐂𝐂3×6𝑿𝑿(𝒕𝒕)6×1

                                (5.9) 

where 𝐀𝐀 =

⎣
⎢
⎢
⎢
⎢
⎡

0 1
−𝑤𝑤1 2 −2Ϛ1𝑤𝑤1

0 1
−𝑤𝑤2 2 −2Ϛ2𝑤𝑤2

0 1
−𝑤𝑤3 2 −2Ϛ3𝑤𝑤3⎦

⎥
⎥
⎥
⎥
⎤

 𝐁𝐁 =

⎣
⎢
⎢
⎢
⎢
⎡

0 0 0
𝜑𝜑1

1 𝜑𝜑2
1 𝜑𝜑3

1

0 0 0
𝜑𝜑1

2 𝜑𝜑2
2 𝜑𝜑3

2

0 0 0
𝜑𝜑1

3 𝜑𝜑2
3 𝜑𝜑3

3⎦
⎥
⎥
⎥
⎥
⎤

  

   𝐂𝐂 = �
𝜑𝜑11 0 𝜑𝜑12 0 𝜑𝜑13 0
𝜑𝜑21 0 𝜑𝜑22 0 𝜑𝜑23 0
𝜑𝜑31 0 𝜑𝜑32 0 𝜑𝜑33 0

� 𝒇𝒇𝟏𝟏 =

⎣
⎢
⎢
⎢
⎢
⎡50

0
0
0
0
0 ⎦
⎥
⎥
⎥
⎥
⎤

  𝒇𝒇𝟐𝟐 =

⎣
⎢
⎢
⎢
⎢
⎡ 0

0
10
0
0
0 ⎦
⎥
⎥
⎥
⎥
⎤

    𝒇𝒇𝟑𝟑 =

⎣
⎢
⎢
⎢
⎢
⎡00
0
0
1
0⎦
⎥
⎥
⎥
⎥
⎤

   

The parameters of the MIMO system can be obtained from the real system data that has been 

developed in Chapter 3. Based on the BJ filter design procedure developed in Chapter 4, the 

detection gain L can be calculated using the algorithm designed in MATLAB and the result is 

shown in (5.10). The MATLAB script can refer to Appendix A.  

𝐋𝐋 =

⎣
⎢
⎢
⎢
⎢
⎡  −3.3348 −106.6227  120.3395
 −26023.5 −832040 939080
 −3.5341  44.7344  −47.527
  −52353  662680  −704050
 2.1219 1.9584 −5.5541
 63704  58796   −166750 ⎦

⎥
⎥
⎥
⎥
⎤

                         (5.10) 



Chapter 5: Conceptual BJ Filter Validation 
 

67 
 

The SIMULINK model of the MIMO fault detection system is shown as follows. Figure 5.12 

shows the whole fault detection system, Figure 5.13 shows the subsystem of the plate structure 

and Figure 5.14 shows the subsystem of the BJ filter structure.  

 
Figure 5.12 Fault detection system for the MIMO system 

 
Figure 5.13 Subsystem of the plate structure for the MIMO system 

 

Figure 5.14 Subsystem of the BJ filter structure for the MIMO system 
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In the fault detection system (Figure 5.12), the fault vectors 𝒇𝒇𝟏𝟏, 𝒇𝒇𝟐𝟐 and 𝒇𝒇𝟑𝟑 are activated by the 

step input signal and then inserted into the plant. The output signals of the MIMO system and 

the BJ filter are compared to produce the output residual (3-dimensional) which can be 

displayed in the scope. In the plate structure (Figure 5.13), three square waves (where 

frequencies are set to be the same as those of the first, second and third modes of the system, 

respectively) are used as the external disturbances which can keep this control system in 

operation and the negative control gain is used for suppressing the system vibration. In the BJ 

filter structure (Figure 5.14), the input and output signals of the original system are introduced 

to the BJ filter in order to produce an estimated fault-free output signal.  

According to the fault detection theory explained in Chapter 4, the output residual Ɛ�(𝒕𝒕) should 

be proportional to 𝐂𝐂𝒇𝒇𝒊𝒊 with respect to corresponding fault vector 𝒇𝒇𝒊𝒊. Firstly, the value of 𝐂𝐂𝒇𝒇𝒊𝒊 

for three pre-defined fault vectors are presented as: 

𝐂𝐂𝒇𝒇𝟏𝟏 = �
18.1925
14.1058
11.9241

�       𝐂𝐂𝒇𝒇𝟐𝟐 = �
7.2299
4.8027
4.4556

�     𝐂𝐂𝒇𝒇𝟑𝟑 = �
0.4552
0.8414
0.7581

�                      (5.11) 

When the fault vector 𝒇𝒇𝟏𝟏 is introduced to the system, the value of output residual shown in 

Figure 5.15 for fault vector 𝒇𝒇𝟏𝟏 can be examined. 
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Figure 5.15 Simulation result for 𝒇𝒇𝟏𝟏 of the MIMO system 
(a) 1st row of the residual vector; (b) 2nd row of the residual vector; (c) 3rd row of the residual vector 

From Figure 5.15, it shows that after the fault detection system becomes stable, the output 

residual for 𝒇𝒇𝟏𝟏  is stable at value of [230.3; 178.5; 150.9], which is proportional to 𝐂𝐂𝒇𝒇𝟏𝟏  as 

calculated in (5.12). Therefore, the designed conceptual BJ filter is able to detect the pre-

defined fault vector 𝒇𝒇𝟏𝟏 in the MIMO system successfully. 

Output residual for 𝒇𝒇𝟏𝟏 = �
230.3
178.5
150.9

� = 12.6 × 𝐂𝐂𝒇𝒇𝟏𝟏 = 12.6 × �
18.1925
14.1058
11.9241

�            (5.12) 

When the fault vector 𝒇𝒇𝟐𝟐 is introduced to the system, the value of the output residual shown in 

Figure 5.16 for fault vector 𝒇𝒇𝟐𝟐 can be examined. 

(a) 

(b) 

(c) 
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Figure 5.16 Simulation result for 𝒇𝒇𝟐𝟐 of the MIMO system 
(a) 1st row of the residual vector; (b) 2nd row of the residual vector; (c) 3rd row of the residual vector 

From Figure 5.16, it shows that after the fault detection system becomes stable, the output 

residual for 𝒇𝒇𝟐𝟐  is stable at value of [55.71; 37.01; 34.33], which is proportional to 𝐂𝐂𝒇𝒇𝟐𝟐  as 

calculated in (5.13). Therefore, the designed conceptual BJ filter is able to detect the pre-

defined fault vector 𝒇𝒇𝟐𝟐 in the MIMO system successfully. 

Output residual for 𝒇𝒇𝟐𝟐 = �
55.71
37.01
34.33

� = 7.7 × 𝐂𝐂𝒇𝒇𝟐𝟐 = 7.7 × �
7.2299
4.8027
4.4556

�                (5.13) 

When the fault vector 𝒇𝒇𝟑𝟑 is introduced to the system, the value of the output residual shown in 

Figure 5.17 for fault vector 𝒇𝒇𝟑𝟑 can be examined. 

(c) 

(b) 

(a) 
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Figure 5.17 Simulation result for 𝒇𝒇𝟑𝟑 of the MIMO system 
(a) 1st row of the residual vector; (b) 2nd row of the residual vector; (c) 3rd row of the residual vector 

From Figure 5.17, it shows that after the fault detection system becomes stable, the output 

residual for 𝒇𝒇𝟑𝟑  is stable at value of [2.412; 4.458; 4.017], which is proportional to 𝐂𝐂𝒇𝒇𝟑𝟑  as 

calculated in (5.13). Therefore, the designed conceptual BJ filter is able to detect the pre-

defined fault vector 𝒇𝒇𝟑𝟑 in the MIMO system successfully. 

Output residual for 𝒇𝒇𝟑𝟑 = �
2.412
4.458
4.017

� = 5.23 × 𝐂𝐂𝒇𝒇𝟑𝟑 = 5.23 × �
0.4552
0.8414
0.7581

�             (5.13) 

In conclusion, simulation results via three different configurations confirm that the designed 

conceptual BJ filters are able to detect the pre-defined faults in the real plate system 

successfully.  

(c) 

(b) 

(a) 
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Chapter 6 : Operable BJ Filter Validation and Experiment  

Upon the validation of the conceptual BJ filter design principle and procedure, an operable BJ 

filter is discussed in this chapter specifically for actuator fault detection of the given plate 

control system in real-time operations via simulation and experiment. 

6.1 Construction of Fault Vectors 

To design the operable BJ filter for detecting three actuator faults in real-time operations, the 

specific fault vectors 𝒇𝒇𝒊𝒊 associated with corresponding actuator faults need to be constructed. 

The key in building the proper fault vectors is to analyse the state space representation of the 

given plate control system with actuator faults.  

��̇�𝑿(𝒕𝒕) = 𝐀𝐀𝑿𝑿(𝒕𝒕) + 𝐁𝐁𝑼𝑼(𝒕𝒕) + 𝒇𝒇𝒊𝒊𝝁𝝁𝒊𝒊
𝒀𝒀(𝒕𝒕) = 𝐂𝐂𝑿𝑿(𝒕𝒕)

                                       (6.1) 

According to (6.1), it shows that one completely failed actuator (for example 𝒖𝒖𝟏𝟏 completely 

fault) can be simulated by making the first column of matrix B to zero, and this result can be 

achieved by setting 𝒇𝒇𝟏𝟏 equal to the first column of matrix B and setting 𝝁𝝁𝟏𝟏 equal to −𝑼𝑼(𝒕𝒕). In 

this way, the first actuator in the system is completely invalid. Similarly, the second and third 

actuator faults can be modelled by setting the fault vector equal to the second and third columns 

of matrix B, respectively. Therefore, this fault-vector construction method leads to the 

condition that the whole fault matrix F ([𝒇𝒇𝟏𝟏 𝒇𝒇𝟐𝟐 𝒇𝒇𝟑𝟑]) is equal to matrix B.  

The reason why using this type of fault-vector construction method is that during the 

experimental verification, the actuator fault can be made artificially by disconnecting the 

corresponding actuator and the effect of this action is just corresponded with the effect of 

introduced fault vectors. 

6.2 Construction of Operable BJ Filter in Extended MIMO (3I6O) 

System 

Unfortunately, the fault-vector construction method explained above cannot be applied directly 

to the current mathematical model of the given plate control system. According to the detection 

theory for a multiple-fault situation, the first and critical restriction is the output separability. 

Based on (6.2) and the given system’s matrices B and C, the output separability can be tested. 

Since: 
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rank (𝐂𝐂𝐂𝐂) =  rank (𝐂𝐂𝐁𝐁)  =  0                                        (6.2) 

This system cannot meet the restriction of output separability. Therefore, a modification of the 

original system needs to be made to fit this system into the BJ filter theory. From the 

configurations of the given matrices B and C: 

𝐁𝐁 =

⎣
⎢
⎢
⎢
⎢
⎡

0 0 0
𝜑𝜑1

1 𝜑𝜑2
1 𝜑𝜑3

1

0 0 0
𝜑𝜑1

2 𝜑𝜑2
2 𝜑𝜑3

2

0 0 0
𝜑𝜑1

3 𝜑𝜑2
3 𝜑𝜑3

3⎦
⎥
⎥
⎥
⎥
⎤

       𝐂𝐂 = �
𝜑𝜑11 0 𝜑𝜑12 0 𝜑𝜑13 0
𝜑𝜑21 0 𝜑𝜑22 0 𝜑𝜑23 0
𝜑𝜑31 0 𝜑𝜑32 0 𝜑𝜑33 0

�                      (6.3) 

it can be seen that the only way to address this issue is to modify the configuration of B or C. 

The system input (relating to matrix B) cannot be altered due to the physical system setup, 

while the system output (relating to matrix C) can be extended artificially. Based on the 

knowledge of the given physical system, this problem can be solved by extending the 

dimension of the output vector 𝒀𝒀(𝒕𝒕) to 6, which can be achieved by adding �̇�𝒀(𝒕𝒕) (the velocity 

of the system) to the system output vector.  

The relation between �̇�𝒀(𝒕𝒕) and 𝑿𝑿(𝒕𝒕) can be developed from (3.41). 

�
𝑦𝑦1 = 𝜑𝜑11𝑥𝑥1 +𝜑𝜑12𝑥𝑥3 +𝜑𝜑13𝑥𝑥5
𝑦𝑦2 = 𝜑𝜑21𝑥𝑥1 +𝜑𝜑22𝑥𝑥3 +𝜑𝜑23𝑥𝑥5
𝑦𝑦3 = 𝜑𝜑31𝑥𝑥1 +𝜑𝜑32𝑥𝑥3 +𝜑𝜑33𝑥𝑥5

    and  �
�̇�𝑥1 = 𝑥𝑥2
�̇�𝑥3 = 𝑥𝑥4
�̇�𝑥5 = 𝑥𝑥6

 

→   �
�̇�𝑦1 = 𝜑𝜑11�̇�𝑥1 + 𝜑𝜑12�̇�𝑥3 +𝜑𝜑13�̇�𝑥5
�̇�𝑦2 = 𝜑𝜑21�̇�𝑥1 + 𝜑𝜑22�̇�𝑥3 + 𝜑𝜑23�̇�𝑥5
�̇�𝑦3 = 𝜑𝜑31�̇�𝑥1 + 𝜑𝜑32�̇�𝑥3 + 𝜑𝜑33�̇�𝑥5

      →   �
�̇�𝑦1 = 𝜑𝜑11𝑥𝑥2 + 𝜑𝜑12𝑥𝑥4 +𝜑𝜑13𝑥𝑥6
�̇�𝑦2 = 𝜑𝜑21𝑥𝑥2 + 𝜑𝜑22𝑥𝑥4 + 𝜑𝜑23𝑥𝑥6
�̇�𝑦3 = 𝜑𝜑31𝑥𝑥2 + 𝜑𝜑32𝑥𝑥4 + 𝜑𝜑33𝑥𝑥6

          (6.4) 

Therefore, based on (6.4) and the block diagram of the original MIMO system (Figure 3.13), 

the block diagram of the 3I6O system can be developed in Figure 6.1. 
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Figure 6.1 The block diagram of 3I6O system for the BJ filter design 

According to Figure 6.1, the state space representation for this 3I6O system can be derived as 

shown in (6.5), together with the fault vectors associated with actuator faults. 

��̇�𝑿(𝒕𝒕)6×1 = 𝐀𝐀6×6𝑿𝑿(𝒕𝒕)6×1 + 𝐁𝐁6×3𝑼𝑼(𝒕𝒕)3×1
𝒀𝒀(𝒕𝒕)6×1 = 𝐂𝐂6×6𝑿𝑿(𝒕𝒕)6×1

                               (6.5) 

where 𝐀𝐀 =

⎣
⎢
⎢
⎢
⎢
⎡

0 1
−𝑤𝑤1 2 −2Ϛ1𝑤𝑤1

0 1
−𝑤𝑤2 2 −2Ϛ2𝑤𝑤2

0 1
−𝑤𝑤3 2 −2Ϛ3𝑤𝑤3⎦

⎥
⎥
⎥
⎥
⎤

 𝐁𝐁 =

⎣
⎢
⎢
⎢
⎢
⎡

0 0 0
𝜑𝜑1

1 𝜑𝜑2
1 𝜑𝜑3

1

0 0 0
𝜑𝜑1

2 𝜑𝜑2
2 𝜑𝜑3

2

0 0 0
𝜑𝜑1

3 𝜑𝜑2
3 𝜑𝜑3

3⎦
⎥
⎥
⎥
⎥
⎤

  

   𝐂𝐂 =

⎣
⎢
⎢
⎢
⎢
⎢
⎡𝜑𝜑1

1 0 𝜑𝜑12 0 𝜑𝜑13 0
0 𝜑𝜑11 0 𝜑𝜑12 0 𝜑𝜑13

𝜑𝜑21 0 𝜑𝜑22 0 𝜑𝜑23 0
0 𝜑𝜑21 0 𝜑𝜑22 0 𝜑𝜑23

𝜑𝜑31 0 𝜑𝜑32 0 𝜑𝜑33 0
0 𝜑𝜑31 0 𝜑𝜑32 0 𝜑𝜑33⎦

⎥
⎥
⎥
⎥
⎥
⎤

        𝐂𝐂 = [𝒇𝒇𝟏𝟏 𝒇𝒇𝟐𝟐  𝒇𝒇𝟑𝟑] = 𝐁𝐁       
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Such an arrangement guarantees that this extended system, while keeping the features of the 

original plate control system, provides a revised form of the system output matrix C that 

satisfies the output separability requirement as: 

rank (𝐂𝐂𝐂𝐂) =  rank (𝐂𝐂𝐁𝐁)  =  3                                        (6.6) 

The parameters of this 3I6O system can be obtained from the real system data that has been 

developed in Chapter 3. Based on the BJ filter design procedure developed in Chapter 4, the 

detection gain L can be calculated using the algorithm designed in MATLAB and the result is 

shown in (6.7). The MATLAB script can refer to Appendix A.  

𝐋𝐋 =

⎣
⎢
⎢
⎢
⎢
⎡1 1.29 1.1  41.09 1.2 −46.38
2 −15.44 2.1 −753.31 2.2 847.08
3 1.57 3.1  −19.91  3.2  21.15
4 −27.89 4.1   −931.28  4.2  1053.6
5 −1.33 5.1 −1.23 5.2 3.48
6 −16.07 6.1 −1768 .8  6.2   1967.1⎦

⎥
⎥
⎥
⎥
⎤

                        (6.7) 

6.3 Construction of Positive Position Feedback (PPF) Controller  

To implement the fault detection using the operable BJ filter in real-time operations, PPF 

controller needs to be constructed to keep the given plate control system stable. PPF controller 

is extremely suitable for resonance system due to its advantages. PPF controller is insensitive 

to spill-over effects because it acts as a second-order compensator which rolls off quickly at 

high frequencies [46]. In addition, PPF controller is not only capable of controlling multiple 

modes by one pair of co-located sensor and actuator, but also able to introduce a high level of 

damping [53].  

The overall MIMO-PPF controller system can be written as [46]: 

            Structure:  �̈�𝝃 +𝐃𝐃�̇�𝝃 + 𝛀𝛀𝝃𝝃 = 𝚿𝚿𝐓𝐓𝐆𝐆𝜼𝜼                                          (6.8) 

 PPF controller: �̈�𝜼+ 𝐃𝐃𝐜𝐜�̇�𝜼+𝛀𝛀𝐜𝐜𝜼𝜼 = 𝛀𝛀𝐜𝐜𝛙𝛙𝝃𝝃                                         (6.9) 

where 𝝃𝝃 represents the plate structure coordinate, 𝜼𝜼 represents the PPF controller coordinate, 

matrices 𝐃𝐃, 𝛀𝛀, and 𝛙𝛙 include the system parameters which have been developed in Chapter 3. 

𝐃𝐃 = �
2Ϛ1𝑤𝑤1 0 0

0 2Ϛ2𝑤𝑤2 0
0 0 2Ϛ3𝑤𝑤3

�    𝛀𝛀 =  �
𝑤𝑤12 0 0

0 𝑤𝑤22 0
0 0 𝑤𝑤32

�   𝛙𝛙 = �
𝜑𝜑11 𝜑𝜑12 𝜑𝜑13

𝜑𝜑21 𝜑𝜑22 𝜑𝜑23

𝜑𝜑31 𝜑𝜑32 𝜑𝜑33
� 
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Matrices 𝐃𝐃𝐜𝐜, 𝛀𝛀𝐜𝐜, and 𝐆𝐆 include the gains 𝑔𝑔𝑘𝑘 , natural frequencies 𝑤𝑤𝑐𝑐𝑘𝑘, and damping ratios Ϛ𝑐𝑐𝑘𝑘 

(k= 1, 2, 3) of the PPF controller, which all need to be designed. 

𝐃𝐃𝐜𝐜 = �
2Ϛ𝑐𝑐1𝑤𝑤𝑐𝑐1 0 0

0 2Ϛ𝑐𝑐2𝑤𝑤𝑐𝑐2 0
0 0 2Ϛ𝑐𝑐3𝑤𝑤𝑐𝑐3

�   𝛀𝛀𝐜𝐜 =  �
𝑤𝑤𝑐𝑐1

2 0 0
0 𝑤𝑤𝑐𝑐2

2 0
0 0 𝑤𝑤𝑐𝑐3

2
�    𝐆𝐆 =  �

𝑔𝑔1 0 0
0 𝑔𝑔2 0
0 0 𝑔𝑔3

� 

In order to effectively control the resonant behaviour of the given plate control system at the 

first three modes, 𝑤𝑤𝑐𝑐𝑘𝑘 is designed to be equal to 𝑤𝑤𝑘𝑘 (k= 1, 2, 3) of the plate structure. The 

selection of 𝑔𝑔𝑘𝑘  and Ϛ𝑐𝑐𝑘𝑘 relies on 𝐻𝐻∞ optimization technique. 𝐻𝐻𝑖𝑖𝑗𝑗−𝑐𝑐𝑐𝑐(𝑠𝑠) (i, j=1,2, 3) is defined 

as the close-loop FRFs of the control system, and the 𝐻𝐻∞ norm of 𝐻𝐻𝑖𝑖𝑗𝑗−𝑐𝑐𝑐𝑐(𝑠𝑠) can be regarded as 

the maximum magnitude in the bode plot of 𝐻𝐻𝑖𝑖𝑗𝑗−𝑐𝑐𝑐𝑐(𝑠𝑠). Therefore, through genetic algorithm, 

the minimum value of the 𝐻𝐻∞ norm of 𝐻𝐻𝑖𝑖𝑗𝑗−𝑐𝑐𝑐𝑐(𝑠𝑠) can be achieved by optimizing 𝑔𝑔𝑘𝑘  and Ϛ𝑐𝑐𝑘𝑘 for 

three modes simultaneously [53].  

The parameters of PPF controller for three modes are listed in Table 6.1. 

Table 6.1 The parameters of PPF controller for three modes 

𝐺𝐺𝑖𝑖𝑗𝑗(𝑠𝑠) 

(i, j=1,2, 3) 

Mode 1 

𝑤𝑤𝑐𝑐1 = 142.3𝑓𝑓𝑎𝑎𝑎𝑎/𝑠𝑠 

Mode 2 

𝑤𝑤𝑐𝑐1 = 182.4𝑓𝑓𝑎𝑎𝑎𝑎/𝑠𝑠 

Mode 3 

𝑤𝑤𝑐𝑐1 = 218.9𝑓𝑓𝑎𝑎𝑎𝑎/𝑠𝑠 

Control gains 𝑔𝑔𝑘𝑘  𝑔𝑔1 = 0.7 𝑔𝑔2 = 0.4267 𝑔𝑔3 = 0.3008 

damping ratios Ϛ𝑐𝑐𝑘𝑘 Ϛ𝑐𝑐1 = 0.572 Ϛ𝑐𝑐2 = 0.5656  Ϛ𝑐𝑐3 = 0.6999  

Based on the designed PPF controller parameters, the MIMO-PPF controller can be established 

as shown in Figure 6.2. 
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Figure 6.2 The structure of the MIMO-PPF controller 

For each 𝐺𝐺𝑖𝑖𝑗𝑗(𝑠𝑠) (i, j=1,2, 3) in the MIMO-PPF controller, they all have the same structure as 

shown in Figure 6.3. 

 

Figure 6.3 The structure of each 𝐺𝐺𝑖𝑖𝑗𝑗(𝑠𝑠) in the MIMO-PPF controller 



Chapter 6: Operable BJ Filter Validation and Experiment 

78 
 

Finally, this MIMO-PPF controller can be integrated into the whole fault detection system 

using the operable BJ filter, and the validation of the operable BJ filter is discussed in the next 

section. 

6.4 Operable BJ Filter Validation via Simulation 

Based on the extended system (3I6O system), the designed operable BJ filter, capable of 

performing real-time actuator fault detection of the given plate control system, can be validated 

via two simulations in MATLAB SIMULINK.  

6.4.1 Introduce Fault Vectors into System 

The first simulation is to introduce fault vectors into the system, which aims to validate the 

fault detectability of the designed operable BJ filter. The SIMULINK model of the 3I6O fault 

detection system (introduced faults) is shown as follows. Figure 6.4 shows the whole fault 

detection system, Figure 6.5 shows the subsystem of the plate structure and Figure 6.6 shows 

the subsystem of the BJ filter structure. 

 

Figure 6.4 Fault detection system for the 3I6O system (introduced faults) 
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Figure 6.5 Subsystem of the plate structure for the 3I6O system (introduced faults) 

 

Figure 6.6 Subsystem of the BJ filter structure for the 3I6O system (introduced faults) 

In the fault detection system (Figure 6.4), the fault vectors 𝒇𝒇𝟏𝟏, 𝒇𝒇𝟐𝟐 and 𝒇𝒇𝟑𝟑 which are associated 

with each of the actuator faults are activated by the negative square input signal and then 

inserted into the plant in order to simulate each completely failed actuator. The output signals 

of the MIMO system and the BJ filter are compared to produce the output residual (6-

dimensional) which can be displayed in the scope. In the plate structure (Figure 6.5), three 

square waves (where frequencies are set to be the same as those of the first, second and third 

modes of the system, respectively) are used as the external disturbance which can keep this 
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control system in operation, and the pre-designed PPF controller is used for suppressing the 

system vibration. In the BJ filter structure (Figure 6.6), the input and output signals of the 

original system is introduced to the BJ filter in order to produce an estimated fault-free output 

signal. 

According to the fault detection theory explained in Chapter 4, the output residual Ɛ�(𝒕𝒕) should 

be proportional to 𝐂𝐂𝒇𝒇𝒊𝒊 with respect to corresponding fault vector 𝒇𝒇𝒊𝒊. Firstly, the value of 𝐂𝐂𝒇𝒇𝒊𝒊 

for three fault vectors (associate with each actuator fault) are presented as: 

𝐂𝐂𝒇𝒇𝟏𝟏 =

⎣
⎢
⎢
⎢
⎢
⎡ 0
0.8623

0
0.8329

0
0.754 ⎦

⎥
⎥
⎥
⎥
⎤

      𝐂𝐂𝒇𝒇𝟐𝟐 =

⎣
⎢
⎢
⎢
⎢
⎡ 0
0.8329

0
1.0181

0
0.9191⎦

⎥
⎥
⎥
⎥
⎤

    𝐂𝐂𝒇𝒇𝟑𝟑 =

⎣
⎢
⎢
⎢
⎢
⎡ 0

0.754
0

0.9191
0

0.8301⎦
⎥
⎥
⎥
⎥
⎤

                      (6.10) 

When the fault vector 𝒇𝒇𝟏𝟏 is introduced to the system, the value of the output residual shown in 

Figure 6.7 for fault vector 𝒇𝒇𝟏𝟏 can be examined. 
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Figure 6.7 Simulation result for 𝒇𝒇𝟏𝟏 of the 3I6O system (introduced faults) 
(a) Yellow - 1st row of the residual vector; Blue - 2nd row of the residual vector; (b) Yellow – 3rd row 

of the residual vector; Blue – 4th row of the residual vector; (c) Yellow – 5th row of the residual 
vector; Blue – 6th row of the residual vector 

From Figure 6.7, it shows that there exists slight fluctuation in the output residual, so the value 

of the output residual can be selected at a random time after the system becomes stable. The 

value of the output residual is therefore selected when system operates to 8th second, and the 

value is [0; 0.6488; 0; 0.6267; 0; 0.5673] (ignoring the negative sign), which is proportional to 

𝐂𝐂𝒇𝒇𝟏𝟏 as calculated in (6.11). Therefore, the designed operable BJ filter is able to detect the fault 

vector 𝒇𝒇𝟏𝟏 associated with Actuator 1 fault successfully. 

output residual for 𝒇𝒇𝟏𝟏 =

⎣
⎢
⎢
⎢
⎢
⎡ 0
0.6488

0
0.6267

0
0.5673⎦

⎥
⎥
⎥
⎥
⎤

= 0.7524 × 𝐂𝐂𝒇𝒇𝟏𝟏 = 0.7524 ×

⎣
⎢
⎢
⎢
⎢
⎡ 0
0.8623

0
0.8329

0
0.754 ⎦

⎥
⎥
⎥
⎥
⎤

             (6.11) 

(a) 

(b) 

(c) 
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When the fault vector 𝒇𝒇𝟐𝟐 is introduced to the system, the value of output residual shown in 

Figure 6.8 for fault vector 𝒇𝒇𝟐𝟐 can be examined. 

 

Figure 6.8 Simulation result for 𝒇𝒇𝟐𝟐 of the 3I6O system (introduced faults) 
(a) Yellow - 1st row of the residual vector; Blue - 2nd row of the residual vector; (b) Yellow – 3rd row 

of the residual vector; Blue – 4th row of the residual vector; (c) Yellow – 5th row of the residual 
vector; Blue – 6th row of the residual vector 

From Figure 6.8, it shows that there exists slight fluctuation in the output residual, so the value 

of the output residual can be selected at a random time after the system becomes stable. The 

value of the output residual is therefore selected when system operates to 8th second, and the 

value is [0; 0.4185; 0; 0.5115; 0; 0.4618] (ignoring the negative sign), which is proportional to 

𝐂𝐂𝒇𝒇𝟐𝟐 as calculated in (6.12). Therefore, the designed operable BJ filter is able to detect the fault 

vector f2 associated with Actuator 2 fault successfully. 

(c) 

(b) 

(a) 
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output residual for 𝒇𝒇𝟐𝟐 =

⎣
⎢
⎢
⎢
⎢
⎡ 0
0.4185

0
0.5115

0
0.4618⎦

⎥
⎥
⎥
⎥
⎤

= 0.5025 × 𝐂𝐂𝒇𝒇𝟐𝟐 = 0.5025 ×

⎣
⎢
⎢
⎢
⎢
⎡ 0
0.8329

0
1.0181

0
0.9191⎦

⎥
⎥
⎥
⎥
⎤

           (6.12) 

When the fault vector 𝒇𝒇𝟑𝟑 is introduced to the system, the value of output residual shown in 

Figure 6.9 for fault vector 𝒇𝒇𝟑𝟑 can be examined. 

 

Figure 6.9 Simulation result for 𝒇𝒇𝟑𝟑 of the 3I6O system (introduced faults) 
(a) Yellow - 1st row of the residual vector; Blue - 2nd row of the residual vector; (b) Yellow – 3rd row 

of the residual vector; Blue – 4th row of the residual vector; (c) Yellow – 5th row of the residual 
vector; Blue – 6th row of the residual vector 

From Figure 6.9, it shows that there exists slight fluctuation in the output residual, so the value 

of the output residual can be selected at a random time after the system becomes stable. The 

value of the output residual is therefore selected when system operates to 8th second, and the 

value is [0; 0.2846; 0; 0.3469; 0; 0.3133] (ignoring the negative sign), which is proportional to 

(c) 

(b) 

(a) 
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𝐂𝐂𝒇𝒇𝟑𝟑 as calculated in (6.13). Therefore, the designed operable BJ filter is able to detect the fault 

vector f3 associated with Actuator 3 fault successfully. 

output residual for 𝒇𝒇𝟑𝟑 =

⎣
⎢
⎢
⎢
⎢
⎡ 0
 0.2846

0
0.3469

0
0.3133 ⎦

⎥
⎥
⎥
⎥
⎤

= 0.3774 × 𝐂𝐂𝒇𝒇𝟑𝟑 = 0.3774 ×

⎣
⎢
⎢
⎢
⎢
⎡ 0

0.754
0

0.9191
0

0.8301 ⎦
⎥
⎥
⎥
⎥
⎤

           (6.13) 

So far, the above simulation results validate the fault detectability of the designed operable BJ 

filter when introducing fault vectors into the plate control system. 

6.4.2 Disconnect Each Actuator to Simulate Real Actuator Faults 

The second simulation is to artificially disconnect each actuator to simulate the real actuator 

faults, which aims to verify that the constructed fault vectors are indeed associated with the 

actuator faults, and to validate the fault detectability of the designed operable BJ filter. The 

SIMULINK model of the 3I6O fault detection system (disconnect actuators) is shown as 

follows. Figure 6.10 shows the whole fault detection system, Figure 6.11 shows the subsystem 

of the plate structure and Figure 6.12 shows the subsystem of the BJ filter structure. 

 

Figure 6.10 Fault detection system for the 3I6O system (disconnect actuators) 
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Figure 6.11 Subsystem of the plate structure for the 3I6O system (disconnect actuators) 

 

Figure 6.12 Subsystem of the BJ filter structure for the 3I6O system (disconnect actuators) 

In the fault detection system (Figure 6.10), there is no need to introduce faults because each 

actuator will be directly disconnected in the plate structure to simulate each actuator fault. The 

output signals of the MIMO system and the BJ filter are compared to produce the output 

residual (6-dimension) which can be displayed in the scope. In the plate structure (Figure 6.11), 

three square waves (where frequencies are set to be the same as those of the first, second and 

third modes of the system, respectively) are used as the external disturbances which can keep 

this control system in operation, and the designed PPF controller is used for suppressing the 

system vibration. There are three actuator gains that can be set to 0 in order to artificially 
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disconnect each actuator. In the BJ filter structure (Figure 6.12), the input and output signals 

of the original system is introduced to the BJ filter in order to produce an estimated fault-free 

output signal. 

As explained in the first section, the effect of disconnecting each actuator is corresponded with 

the effect of introduced fault vector 𝒇𝒇𝒊𝒊 as before. Therefore, the output residual Ɛ� (𝒕𝒕) should 

still be proportional to 𝐂𝐂𝒇𝒇𝒊𝒊 (shown in (6.8)) with respect to each actuator fault. 

When disconnecting Actuator 1 (setting Actuator 1 gain to zero) of the system, the value of 

output residual shown in Figure 6.13 can be examined. 

 

Figure 6.13 Simulation result for Actuator 1 fault of the 3I6O system (disconnect actuators) 
(a) Yellow - 1st row of the residual vector; Blue - 2nd row of the residual vector; (b) Yellow – 3rd row 

of the residual vector; Blue – 4th row of the residual vector; (c) Yellow – 5th row of the residual 
vector; Blue – 6th row of the residual vector 

From Figure 6.13, it shows that there exists slight fluctuation in the output residual, so the value 

of the output residual can be selected at a random time after the system becomes stable. The 

(a) 

(b) 

(c) 
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value of the output residual is therefore selected when system operates to 8th second, and the 

value is [0; 1.955; 0; 1.888; 0; 1.71] (ignoring the scalar 10−4), which is proportional to 𝐂𝐂𝒇𝒇𝟏𝟏 

as calculated in (6.14). Therefore, the designed operable BJ filter is able to detect Actuator 1 

fault successfully. 

output residual for Actuator 1 fault =

⎣
⎢
⎢
⎢
⎢
⎡

0
1.955

0
1.888

0
1.71 ⎦

⎥
⎥
⎥
⎥
⎤

= 2.267× 𝐂𝐂𝒇𝒇𝟏𝟏 = 2.267 ×

⎣
⎢
⎢
⎢
⎢
⎡

0
0.8623

0
0.8329

0
0.754 ⎦

⎥
⎥
⎥
⎥
⎤

             (6.14) 

When disconnecting Actuator 2 (setting Actuator 2 gain to zero) of the system, the value of the 

output residual shown in Figure 6.14 can be examined. 

 

Figure 6.14 Simulation result for Actuator 2 fault of the 3I6O system (disconnect actuators) 
(a) Yellow - 1st row of the residual vector; Blue - 2nd row of the residual vector; (b) Yellow – 3rd row 

of the residual vector; Blue – 4th row of the residual vector; (c) Yellow – 5th row of the residual 
vector; Blue – 6th row of the residual vector 

(c) 

(b) 

(a) 
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From Figure 6.14, it shows that there exists slight fluctuation in the output residual, so the value 

of the output residual can be selected at a random time after the system becomes stable. The 

value of the output residual is therefore selected when system operates to 8th second, and the 

value is [0; 1.268; 0; 1.55; 0; 1.399] (ignoring the scalar 10−4), which is proportional to 𝐂𝐂𝒇𝒇𝟐𝟐 

as calculated in (6.15). Therefore, the designed operable BJ filter is able to detect Actuator 2 

fault successfully. 

output residual for Actuator 2 fault =

⎣
⎢
⎢
⎢
⎢
⎡

0
1.268

0
1.55

0
1.399⎦

⎥
⎥
⎥
⎥
⎤

= 1.522 × 𝐂𝐂𝒇𝒇𝟐𝟐 = 1.522 ×

⎣
⎢
⎢
⎢
⎢
⎡

0
0.8329

0
1.0181

0
0.9191⎦

⎥
⎥
⎥
⎥
⎤

               (6.15) 

When disconnecting Actuator 3 (setting Actuator 3 gain to zero) of the system, the value of 

output residual shown in Figure 6.15 can be examined. 

 

Figure 6.15 Simulation result for Actuator 3 fault of the 3I6O system (disconnect actuators) 

(c) 

(b) 

(a) 
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(a) Yellow - 1st row of the residual vector; Blue - 2nd row of the residual vector; (b) Yellow – 3rd row 
of the residual vector; Blue – 4th row of the residual vector; (c) Yellow – 5th row of the residual 

vector; Blue – 6th row of the residual vector 

From Figure 6.15, it shows that there exists slight fluctuation in the output residual, so the value 

of the output residual can be selected at a random time after the system becomes stable. The 

value of the output residual is therefore selected when system operates to 8th second, and the 

value is [0; 0.2846; 0; 0.3469; 0; 0.3133] (ignoring the scalar 10−4), which is proportional to 

𝐂𝐂𝒇𝒇𝟑𝟑 as calculated in (6.16). Therefore, the designed operable BJ filter is able to detect Actuator 

3 fault successfully. 

output residual for Actuator 3 fault =

⎣
⎢
⎢
⎢
⎢
⎡

0
0.8702

0
1.061

0
0.9581⎦

⎥
⎥
⎥
⎥
⎤

= 1.154× 𝐂𝐂𝒇𝒇𝟑𝟑 = 1.154 × 

⎣
⎢
⎢
⎢
⎢
⎡

0
0.754

0
0.9191

0
0.8301⎦

⎥
⎥
⎥
⎥
⎤

                (6.16) 

In conclusion, through these two simulations, it is seen that the operable BJ filter is capable of 

performing real-time actuator fault detection and diagnosis of the given plate control system. 

6.5 The Improvement in Identifying Each Actuator Fault 

Rather than comparing the proportional relationship between the output residual and 𝐂𝐂𝒇𝒇𝒊𝒊 with 

respect to the corresponding actuator fault, this section illustrates an improvement in 

identifying each actuator fault.  

Based on the understanding of the relationship between the output residual and 𝐂𝐂𝒇𝒇𝒊𝒊  from 

several simulation results, it is seen that the actual values of these proportional relationships 

are varying depended on different configurations and different magnitudes of the disturbance 

signals. However, the inner relationships of the output residuals (the ratio between the second, 

fourth and sixth rows) remain unchanged and are equal to the inner relationships of the 

corresponding 𝐂𝐂𝒇𝒇𝒊𝒊  (the ratio between the second, fourth and sixth rows). Instead of 

mathematically calculating the ever-changing proportional relationships, this property provides 

an effective approach to identify and indicate each actuator fault online. The procedure of this 

approach to identify each actuator fault is shown in Figure 6.16. 
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Figure 6.16 The block diagram of identifying each actuator fault 
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After the output residual ( [𝑓𝑓1 𝑓𝑓2 𝑓𝑓3 𝑓𝑓4 𝑓𝑓5 𝑓𝑓6]𝑇𝑇 ) is generated from the output 

difference between the fault system and the BJ filter, r2, r4 and r6 will be used for further 

analysis, as r1, r3 and r5 are constant zero. The inner relationships of output residuals 

( 𝑟𝑟2
𝑟𝑟4

 and 𝑟𝑟2
𝑟𝑟6

) are then calculated and compared with the library of pre-calculated inner 

relationships of 𝐂𝐂𝒇𝒇𝒊𝒊. If the following condition (6.17) is met, the corresponding actuator fault 

will be identified successfully. 

�
𝑓𝑓2
𝑓𝑓4 −

𝐂𝐂𝒇𝒇𝒊𝒊[2]
𝐂𝐂𝒇𝒇𝒊𝒊[4]

�+ �
𝑓𝑓2
𝑓𝑓6−

𝐂𝐂𝒇𝒇𝒊𝒊[2]
𝐂𝐂𝒇𝒇𝒊𝒊[6]

� ≤ 𝑡𝑡ℎ𝑓𝑓𝑎𝑎𝑠𝑠ℎ𝑜𝑜𝑎𝑎𝑎𝑎    →      𝐴𝐴𝑓𝑓𝑡𝑡𝑢𝑢𝑎𝑎𝑡𝑡𝑜𝑜𝑓𝑓 𝑖𝑖 𝑓𝑓𝑎𝑎𝑢𝑢𝑎𝑎𝑡𝑡             (6.17) 

where 𝐂𝐂𝒇𝒇𝒊𝒊[2], 𝐂𝐂𝒇𝒇𝒊𝒊[4] and 𝐂𝐂𝒇𝒇𝒊𝒊[6] are the second, fourth and sixth rows of 𝐂𝐂𝒇𝒇𝒊𝒊, respectively, 

and the threshold can be set to 0.0001. Ideally, the threshold should be set to zero, but in 

practice, 0.0001 is small enough for this fault detection system to identify actuator fault 

successfully. 

The library which contains the inner relationships of 𝐂𝐂𝒇𝒇𝒊𝒊 with respect to each corresponding 

actuator fault is given in Table 6.2.  

Table 6.2 The library of inner relationship of 𝐂𝐂𝒇𝒇𝒊𝒊 

𝐂𝐂𝒇𝒇𝒊𝒊 with respect to each 

corresponding actuator fault 

𝐂𝐂𝒇𝒇𝒊𝒊[2]
𝐂𝐂𝒇𝒇𝒊𝒊[4] 

𝐂𝐂𝒇𝒇𝒊𝒊[2]
𝐂𝐂𝒇𝒇𝒊𝒊[6] 

𝐂𝐂𝒇𝒇𝟏𝟏 1.035298 1.143634 

𝐂𝐂𝒇𝒇𝟐𝟐 0.818092 0.906212 

𝐂𝐂𝒇𝒇𝟑𝟑 0.820368 0.908324 

The SIMULINK model of this improved 3I6O fault detection system is shown as follows. 

Figure 6.17 shows the improved fault detection system. The subsystem of the plate structure 

and the subsystem of the BJ filter structure remain unchanged, as shown in Figure 6.11 and 

Figure 6.12, respectively. 
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Figure 6.17 Improved Fault detection system for the 3I6O system 

In the improved fault detection system (Figure 6.17), instead of displaying the output residual 

in the scope, using a series of mathematical processing based on the block diagram in Figure 

6.16, the faulty actuators can be displayed directly on the screen (“1” representing fault and 

“0” representing no-fault). 

When disconnecting Actuators 1, 2 and 3 of the system, respectively (by setting the 

corresponding actuator’s gain to zero), the simulation results shown in Figure 6.18 validate the 

capability of faults identification in this improved fault detection system. 

                  

a. Disconnect Actuator 1             b. Disconnect Actuator 2          c. Disconnect Actuator 3 

Figure 6.18 Simulation result of the improved 3I6O fault detection system 
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This improved 3I6O fault detection system thus can be applied into the experiment in the next 

section in order to achieve the online fault detection and diagnosis. 

6.6 Operable BJ Filter Experiment 

For effective actuator fault detection and diagnosis, a dual BJ filter configuration is 

implemented where one BJ filter acts as an online observer of the given plate system by 

producing the extended system output from the truncated model of the true plant, and another 

BJ filter acts as a fault detector and identifier to produce the required residual. This arrangement 

has three advantages: 

 The online observer can produce three extra outputs for the extended system. 

 This arrangement can eliminate inevitable modelling errors between the real plant and the 

modelled plant used for the BJ filter design purpose. 

 This arrangement can increase the accuracy of the fault detection and diagnosis in practice. 

The block diagram of the operable BJ filter experiment using the dual BJ filter configuration 

is shown in Figure 6.19. The physical system is controlled by the designed PPF controller such 

that the system can remain stationary despite the external disturbance excitation. Actuators can 

be disconnected from either the physical system or the online observer to simulate each actuator 

fault in the experiment. Using the input and output of the physical system as the inputs of the 

online observer and the operable BJ filter, the outputs of the online observer and the operable 

BJ filter are compared to generate the output residual which can be interpreted to indicate the 

failed actuator by the procedure explained in the last section. 
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Figure 6.19 The block diagram of the operable BJ filter experiment 
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The arrangement of the physical system and the experiment setup have been explained in 

Chapter 3. The PPF controller, online observer and operable BJ filter are realized using 

dsPACE DS1103 in order to achieve the online fault detection and diagnosis. The SIMULINK 

model of the fault detection system (dual BJ filter configuration) used in the dsPACE 

environment is designed as shown in Figure 6.20, and the subsystem of each operable BJ filter 

structures is shown in Figure 6.21. 
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Figure 6.20 The fault detection system (dual BJ filter configuration) used in the dsPACE environment 
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Figure 6.21 The subsystem of each operable BJ filter structures 

In the fault detection system using the dual BJ filter configuration (Figure 6.20), three inputs 

and three outputs are introduced to the dsPACE in order to control and monitor the operation 

of the physical system. The designed PPF controller is used for suppressing the system 

vibration. There are three actuator gains that can be set to 0 in order to artificially disconnect 

each actuator to simulate each actuator fault. Using a series of mathematical processing, the 

output residual can be interpreted to indicate failed actuators, and the results can be displayed 

directly on the screen (“1” representing fault and “0” representing no-fault). In each operable 

BJ filter structures (Figure 6.21), one operable BJ filter, regarded as an online observer, is used 

to produce the output of the faulty actuator system and another operable BJ filter, regarded as 

a fault detector and identifier, is used to produce an estimated fault-free output signal.  

When disconnecting Actuator 1 (setting Actuator 1 gain to zero) of the system, the experiment 

result shown in Figure 6.22 validates that the designed operable BJ filter is able to detect 

Actuator 1 fault successfully. 
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Figure 6.22 The experiment result for Actuator 1 fault of the physical system 

In addition, the experiment data of the output residual for Actuator 1 fault can also be extracted 

to verify the result, which is shown in Figure 6.23. 

 

Figure 6.23 The experiment data of the output residual for Actuator 1 fault 

From Figure 6.23, it shows that there exists fluctuation in the output residual, so the value of 

the output residual can be selected at a random time after the system becomes stable. The value 
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of the output residual is therefore selected when system operates to 8th second, and the value is 

[0; 0.004811; 0; 0.004647; 0; 0.004207], which is proportional to 𝐂𝐂𝒇𝒇𝟏𝟏 as calculated in (6.18). 

This result also validates that the designed operable BJ filter is able to detect Actuator 1 fault 

successfully. 

output residual for Actuator 1 fault =

⎣
⎢
⎢
⎢
⎢
⎡

0
0.004811

0
0.004647

0
0.004207⎦

⎥
⎥
⎥
⎥
⎤

= 0.0056× 𝐂𝐂𝒇𝒇𝟏𝟏 = 0.00558 ×

⎣
⎢
⎢
⎢
⎢
⎡

0
0.8623

0
0.8329

0
0.754 ⎦

⎥
⎥
⎥
⎥
⎤

 (6.18) 

When disconnecting Actuator 2 (setting Actuator 2 gain to zero) of the system, the experiment 

result shown in Figure 6.24 validates that the designed operable BJ filter is able to detect 

Actuator 2 fault successfully. 

 

Figure 6.24 The experiment result for Actuator 2 fault of the physical system 

In addition, the experiment data of the output residual for Actuator 2 fault can also be extracted 

to verify the result, which is shown in Figure 6.25. 
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Figure 6.25 The experiment data of the output residual for Actuator 2 fault 

From Figure 6.25, it shows that there exists fluctuation in the output residual, so the value of 

the output residual can be selected at a random time after the system becomes stable. The value 

of the output residual is therefore selected when system operates to 8th second, and the value is 

[0; 0.002385; 0; 0.002918; 0; 0.002606], which is proportional to 𝐂𝐂𝒇𝒇𝟐𝟐 as calculated in (6.19). 

This result also validates that the designed operable BJ filter is able to detect Actuator 2 fault 

successfully. 

output residual for Actuator 2 fault =

⎣
⎢
⎢
⎢
⎢
⎡

0
0.002385

0
0.002918

0
0.002606⎦

⎥
⎥
⎥
⎥
⎤

= 0.00286× 𝐂𝐂𝒇𝒇𝟐𝟐 = 0.00286 ×

⎣
⎢
⎢
⎢
⎢
⎡

0
0.8329

0
1.0181

0
0.9191⎦

⎥
⎥
⎥
⎥
⎤

  (6.19) 

When disconnecting Actuator 3 (setting Actuator 3 gain to zero) of the system, the experiment 

result shown in Figure 6.26 validates that the designed operable BJ filter is able to detect 

Actuator 3 fault successfully. 
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Figure 6.26 The experiment result for Actuator 3 fault of the physical system 

In addition, the experiment data of the output residual for Actuator 3 fault can also be extracted 

to verify the result, which is shown in Figure 6.27. 

 

Figure 6.27 The experiment data of the output residual for Actuator 3 fault 

From Figure 6.27, it shows that there exists fluctuation in the output residual, so the value of 

the output residual can be selected at a random time after the system becomes stable. The value 

of the output residual is therefore selected when system operates to 8th second, and the value is 
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[0; 0.001963; 0; 0.002385; 0; 0.002158], which is proportional to 𝐂𝐂𝒇𝒇𝟑𝟑 as calculated in (6.20). 

This result also validates that the designed operable BJ filter is able to detect Actuator 3 fault 

successfully. 

output residual for Actuator 3 fault =

⎣
⎢
⎢
⎢
⎢
⎡

0
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0
0.002385

0
0.002158⎦

⎥
⎥
⎥
⎥
⎤

= 0.0026× 𝐂𝐂𝒇𝒇𝟑𝟑 = 0.0026×

⎣
⎢
⎢
⎢
⎢
⎡

0
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0
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0
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⎥
⎥
⎥
⎥
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    (6.20) 

In conclusion, the experiment results validate the design and implementation of the proposed 

BJ fault detection and diagnosis system for real-time operation of the given MIMO plate 

control structure. 
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Chapter 7 : Conclusion  

7.1 Project Conclusion 

In this project, theoretical analysis and physical experiment are used to generate an acceptable 

transfer function model of a MIMO mechanical plate structure. Considering the real impact on 

the plate, a truncated transfer function model which only includes the first three modes is 

developed and this model can be regarded as a valid simplified mathematical model of the 

physical system. For the purpose of fault detection, a state-space representation of the system 

is developed based on the truncated transfer function model. Based on the BJ filter theory, a 

fault detection system is constructed by designing the detection gain L in one-fault case and 

multiple-fault case, and the BJ filter design principle and procedure are validated through 

simulating a random system with pre-defined fault vectors in MATLAB SIMULINK.  

A conceptual BJ filter for the underlying plate control system is then designed and tested in 

MATLAB SIMULINK via different configurations (namely, SISO configuration – considering 

one pair of the inputs and outputs of the real system only, 2I2O configuration – considering 

two pairs of the inputs and outputs of the real system only, and MIMO configuration – 

considering all three pairs of the inputs and outputs of the real system, respectively). Simulation 

results show that the output residual associated with each fault vector 𝒇𝒇𝒊𝒊 is indeed proportional 

to 𝐂𝐂𝒇𝒇𝒊𝒊, thus, the designed conceptual BJ filters are able to detect the pre-defined faults in the 

real plate system successfully.  

Upon the validation of the conceptual BJ filter design principle and procedure, an operable BJ 

filter is designed specifically for actuator fault detection of the given plate control system in 

real-time operations. In order to simulate each actuator fault, a specific fault matrix F 

([𝒇𝒇𝟏𝟏 𝒇𝒇𝟐𝟐 𝒇𝒇𝟑𝟑]), where 𝒇𝒇𝒊𝒊 (i=1, 2 and 3) equals to the corresponding column of matrix B and 

represents the ith actuator fault of the ith sensor/actuator pair, is developed for the real plate 

system. However, by simply setting matrix F equals to matrix B, the rank of CF will become 

zero which makes the faults non-separable. An extended 3I6O model is therefore proposed to 

replace the initial model of the real plate system for the BJ filter design purpose. The derivative 

of each output 𝑌𝑌𝑖𝑖(𝑡𝑡) (i=1, 2 and 3) is introduced and extends the original 3I3O model into a 

3I6O model. Benefiting from this alternation, the output matrix C is extended which makes the 

rank of CF non-zero. It is proven that the output residual (especially for the residual associated 

with �̇�𝑌𝑖𝑖(𝑡𝑡) because the residual associated with 𝑌𝑌𝑖𝑖(𝑡𝑡) are all zero) is proportional to 𝐂𝐂𝒇𝒇𝒊𝒊 through 
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two simulation processes in MATLAB SIMULINK (introducing each fault vector to the system 

and artificially disconnecting each actuator). This result validates the design of the operable BJ 

filter as well as the construction of fault vectors. In addition, an improved fault detection system 

using operable BJ filter is successfully developed to achieve the online fault detection and 

identification.  

After the designed operable BJ filter is successfully validated in the simulation, it is finally 

tested via experiment. For effective actuator fault detection and diagnosis, a dual BJ filter 

configuration is implemented where one BJ filter acts as an online observer of the given plate 

system by producing the extended system output �̇�𝒀 from the truncated model of the true plant, 

and another BJ filter acts as a fault detector and identifier by producing the required residual 

proportional to 𝐂𝐂𝒇𝒇𝒊𝒊 . This arrangement takes into account the inevitable modelling errors 

between the real plant and the modelled plant used for the BJ filter design purpose, and 

increases the accuracy of the fault detection and identification in practice. During the 

experiment, each actuator fault can be detected and identified online successfully, and three 

sets of experimental data also verify the design and implementation of the proposed BJ fault 

detection and diagnosis system for real-time operation of the given MIMO plate control 

structure. 
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7.2 Recommendations 

The current experiment can be improved by designing a PCB board which enables the 

connecting wire between each actuator and dsPACE to be disconnected artificially. Rather than 

adding actuator gain into the SIMULINK model, this practice provides a more practical 

approach to simulate each actuator fault in real-time operation. 

Due to time constraints, this thesis mainly focuses on the design of the fault detection system 

using BJ filter techniques for the actuator faults. However, there is a possibility for the future 

researchers to improve the fault detection system for sensor-fault detection.  
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Appendix A: MATLAB Code 

The MATLAB codes for each section are kept within the Advanced Control Research Group, 

Flinders University. The MATLAB codes can be provided upon request. 
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