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Abstract 

In a global world, English has become a lingua franca used for trading, research and general 

communications whereby millions of people from distinct language backgrounds are learning English 

as a second or foreign language. Second language acquisition is challenging, and it takes years – on 

average - before a person can gain English proficiency. The research about this field is plentiful but not 

conclusive because of the large number of factors affecting the second language acquisition process. 

Many tools have been developed to support this process within the field of Computer-Assisted 

Language Learning, but traditional proofreading techniques that are suitable to check native writings 

are not suitable to check learner writings, whereby recent research around the learner errors 

detection and correction tasks has emerged with some shared tasks such as Helping Our Own -2011 

and 2012 – and CoNLL 2013 and 2014 creating some baselines on which new research can be carried 

out.  

This study undertakes the task of detecting and correcting prepositional errors made by English 

learners through the use of Recurrent Neural Networks and more in particular Long Short Term 

Memory architecture. Among the Natural Language Processing techniques, this approach differs from 

previous works in which it uses non-linear classifiers rather than the traditional linear classifiers such 

as Naïve Bayes, Maximum Entropy, Average Perceptron, N-Grams and so on. The data used to train, 

validate and test the algorithm was the National University of Singapore Corpus of Learner English, 

which is one of the largest Learner Corpora available for research and which is fully error annotated 

whereby data-driving techniques can be brought about.  

Different elements and techniques were proposed, tested and analysed before determining their 

positive impact on the learner prepositional error correction task and before including them in the 

main algorithm. On the Recurrent Neural Network side such elements were the attention mechanism, 

regularization through dropout, the bidirectional model, and deep recurrent neural networks. On the 

features and examples side, lexical features, part of speech tags, dependency parse indexes, sequence 

length and number of classes (prepositions) were tested using different values. Moreover, embedding 

layers – following the skip-gram architecture - were created from the learner corpus to assess their 

influence on the task at hand by varying parameters such as the window size. The final algorithm, after 

applying some pre-processing and post-processing techniques, renders promising results when 

compared to the results of the CoNLL 2013 shared task.  
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1 Introduction 
As a second language, English is no doubt the first choice around the world (55 counties have English 

as their second language (MoveHub 2018)) due to its use as a lingua franca for trading, research and 

international communications in general. Millions of people are learning English either in native 

English speaking countries (Second language learners) or in their own country (Foreign language 

learners) (Izumi, Uchimoto & Isahara 2004; Ng et al. 2014)1. Just in China, reports suggest that over 30 

million people are learning English as a second language (Tetreault & Chodorow 2008); and in the 

United States, around 10% of the population of public schools have English deficiencies as they speak 

a first language other than English (Chodorow, Tetreault & Han 2007). In 2017, the Department of 

Education and Training of Australia reported that more than 155 thousand students were enrolled in 

English Language Intensive Courses for Overseas Students (ELICOS) (Training 2017), which accounts 

for about 21% of the total of international students. The total number of international students goes 

up to almost 800 thousand. More than 90% of them speak a first language other than English (Training 

2017).  

The process of acquiring a second language is complex and some reports suggest that, on average, it 

can take seven years before a person can gain English proficiency (Hakuta 2011).  The development of 

tools to support this process is then a natural consequence in a world in which technology plays an 

important role in education. In fact, recent research in error correction is derived from classic 

automatic proofreading techniques for native English speakers to tackle the task of correcting errors 

for non-native English speakers (Rozovskaya & Roth 2010b). These traditional techniques cannot be 

applied successfully to second language learners due to the difference in the language knowledge 

domain (De Felice & Pulman 2008).  Moreover, over the past years, many different learning computing 

tools have been developed (Lee & Seneff 2006). To what extent and how these tools should be utilized 

by learners are complex questions studied in the fields of Computer Aided Language Learning (CALL) 

and beyond the scope of this study. Nonetheless, it is important to highlight that these learning tools 

have emerged from the complexity of the second language acquisition process and from the clear 

need of mechanisms to support it.  

Any CALL system should be able to identify learning mistakes before tacking any other task, but it is 

challenging because English grammar is complex and many ambiguities can emerge from a single 

sentence. In linguistics, six different categories tackle English language ambiguities differently, namely 

phonology, morphology, syntax, semantics, pragmatics and discourse (Jurafsky & Martin 2009). Syntax 

and semantics provide different theories and methodologies to detect incorrect grammatical 

sentences, and they are used to tackle particular types of errors, e.g. wrong spelling, wrong word 

choice and so on. In the past twenty years, research in the task of detecting and correcting second 

language (especially English) errors has increased, and the creation of shared tasks tackling the 

grammatical errors of English learners have created some mileage and evaluation metrics. 

In 2011, (Dale & Kilgarriff 2011) proposed the pilot Helping Our Own shared task to detect and correct 

grammatical errors in order to support the scientific community to improve the English proficiency of 

researchers who speak languages other than English. Other shared tasks have followed suit, tackling 

differently the task of detecting and correcting incorrect grammar, i.e. tackling different groups of 

types of errors. Prepositions and articles are the most common types of errors among English learners 

(De Felice & Pulman 2008; Leacock et al. 2014). In particular prepositional mistakes tend to be one of 

                                                           
1 Although within second language acquisition (SLA) there is a difference between second language learners and 
foreign language learners, for the purpose of this study both terms will be treated as equivalent to each other. 
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the most challenging types of errors for English learners (Chodorow, Tetreault & Han 2007). In the 

Cambridge Learner Corpus, it is estimated that 13.5% of written errors made by English Learners are 

related to prepositions (Leacock et al. 2014). Also, in a study of 53 students between intermediate and 

advanced level, (Bitchener, Young & Cameron 2005) reported that 29% of the total errors are related 

to prepositions. In the Japanese learner corpus, (Izumi et al. 2003) reported that 10% of error were 

prepositional. More significantly, the rate of proportional errors in the available data for the HOO 

2011, which was collected from published papers in the Association for Computational Linguistics, was 

19% (Dale & Kilgarriff 2011). As a consequence, the goal of this study is primarily the detection and 

correction of prepositional errors made by non-native English speakers. 

The approaches to undertake the task of detecting and correcting prepositional errors vary in type of 

algorithms and features. Some of the classical approaches involve linear classifiers and language 

models, but more recently, Neural Networks have been widely used, achieving state-of-the-art 

Natural Language Processing tasks (Goldberg 2016). Therefore, the prime approach followed in this 

study to detect and correct prepositional errors is to use Neural Networks, and more precisely 

Recurrent Neural Networks following a Long Short Term Memory (LSTM) architecture. A wide number 

of experiments of different recurrent neural network components and features, with their respective 

analysis, is carried out in this study in order to determine the best parameters and features for the 

task of detecting and correcting prepositional errors made by English learners. The study makes use 

of the National University of Singapore Corpus of English Learner (NUCLE), which is one of the largest 

learner corpora available for research and fully error annotated. 
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2 Review 

2.1 English Learners Grammatical Errors 
In the context of identifying categories of grammatical errors made by English Learners, errors vary 

widely in type and category (Dale & Kilgarriff 2011; Leacock et al. 2014). For example, whereas some 

lexical errors occur at token level (e.g. character and word) such as spelling errors and word choice 

errors, other grammatical errors appear in the structure of grammatical forms (e.g. clauses, phrases 

and sentences) such as sentence structure errors and word order errors. The literature on Learners 

Error Analysis is wide and rich, and a thorough review can be found in (James 2013). For the context 

of automatic error correction, however, this study focuses more on empirical error categories that are 

used to annotate Learner Corpora. The task of fitting the different types of errors into a 

comprehensive error categorization is a difficult task, and different studies have adopted different 

sets and subsets of error categories. The errors codes and tagging systems used in Annotated Learner 

Corpora differ in structure and content; a difference which is deepened by the somewhat subjective 

interpretations made by examiners and coders about English learners’ errors. 

One of the first attempts to define a comprehensive error tagging system capable of providing the 

flexibility that coders need, and the generalization to create statistics of Learner errors was made by 

(Dagneaux, Denness & Granger 1998). The system was used to tag a subset of the International Corpus 

of Learner English. They used a descriptive system in which seven linguistic categories (“Formal”, 

“Grammatical”, “Lexico-grammatical”, “Lexical”, “Register”, “Word redundant/word missing/word 

order” and “Style”) are subcategorized in a hierarchical manner. Overall, their annotating system is a 

bit complex.  

In contrast, in the codification of the Cambridge Learner Corpus, (Nicholls 2003) adopted a more 

comprehensive system in which five types of errors (“wrong Form used” F, “something Missing” M, 

“word or phrase needs Replacing” R, “word or phrase is Unnecessary” U, and “word is wrongly Derived” 

D) are complemented by a specific word class so that the error can be specified. The system is 

complemented with punctuation, countability and false friends’ errors codes respectively. Finally, 13 

additional codes dealing with specific errors such as collocation are added, for a total of 68 possible 

errors. The system was borrowed and subtly modified by (Dale & Kilgarriff 2011) to define the HOO 

2011 shared task, in which the data set consisted of fragments of papers published in the Association 

for Computational Linguistics (ACL). A much reduced subset of errors was used in the HOO 2012 (Dale, 

Anisimoff & Narroway 2012), in which only prepositions and determiners were targeted. Concretely, 

the subset consisted of six types of errors: Wrong word choice (“Replacement”), missing word 

(“Missing”) and unwanted word (“Unwanted”) for both determiners and prepositions respectively. 

The corpus used was the publicly available Cambridge ESOL First Certificate in English (FCE). 

Another error tagging code was developed by the Centre for English Language Community (CELC) at 

the National University of Singapore (NUS) and described by (Dahlmeier, Ng & Wu 2013) in their 

description of the NUCLE corpus. The error tagging system consists of 13 categories (“Verbs”, “Subject-

Verb agreement”, “Articles/Determiners”, “Nouns”, “Pronouns”, “Word choice”, “Sentence structure”, 

“Word order”, “Transitions”, “Mechanics”, “Redundancy”, “Citations” and “Others”), which are in turn 

specified into 27 error categories (e.g. Verb error can be specified as Verb Tense, Verb Modal, Missing 

Verb and Verb Form errors respectively). A modified subset (“Article or determiner”, “Preposition”, 

“Noun number”, “Verb form” and “Subject-verb agreement”) of this tagging system was adopted by 

(Ng et al. 2013) in the definition of the CoNLL 2013 shared task. In the CoNLL 2014 shared task, the 

number of error categories was extended to 28, i.e. all error tags in the NUCLE corpus. 
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In general, prepositional mistakes made by English learners can be classified as wrong prepositional 

choice (e.g. Original: “we arrived to the station”, Corrected: “we arrived at the station”), missing 

preposition (e.g. Original: “we are fond Ø beer”, Corrected: “we are fond of beer”) and redundant or 

unwanted preposition (e.g. Original: “he went to outside”, Corrected: “he went outside”) (Tetreault & 

Chodorow 2008).  

2.2 Correcting Learner Errors 
Over recent years an increasing interest in error detection and error correction has emerged in the 

research community thanks to the creation of the shared tasks proposed by Helping Our Own (HOO) 

(Dale, Anisimoff & Narroway 2012; Dale & Kilgarriff 2011), Computational Natural Language Learning 

(CoNLL) (Ng et al. 2014; Ng et al. 2013) and Automated Evaluation of Scientific Writing (c) 

(Daudaravicius et al. 2016)2. These shared tasks have created an evaluation basis on which new studies 

can work so that comparisons between the performance of different approaches can be carried out. 

Nonetheless, many studies dealing with the task of detecting and correcting errors in learner writings 

(especially articles and prepositions) had been carried out before these shared tasks appeared (De 

Felice & Pulman 2008; Gamon et al. 2008; Tetreault & Chodorow 2008). 

Although some error correction methods and proofreading tools were basically heuristic and rule-

based at the beginning, they are these days data-driven approaches to a large extent (Leacock et al. 

2014). This does not mean that rule-based techniques are no longer used (actually some modern error 

correction systems are supported by rule-based modules), this means that the huge amount of data 

that is collected day by day allows the construction of simpler systems that are less dependent on 

linguistic knowledge, i.e. statistical models can encode the set of rules that good grammars follow by 

looking at good grammatical sentences (likewise, they can encode grammatical error patterns by 

looking at Learner corpora).  

Because errors vary in type, traditional error detection and error correction systems use specific 

modules to deal with specific errors. For example, in the HOO 2011 shared task, most teams chose to 

tackle specific errors among the 28 error types defined in the shared task (Dale & Kilgarriff 2011). This 

tendency was more remarkable in the HOO 2012 shared task in which a reduced number of errors was 

targeted (determiners and prepositions), so that most teams used two separate modules to deal with 

determiners and prepositions respectively (Dale, Anisimoff & Narroway 2012). Among the methods 

to detect and correct learner errors, two types stand out: classifiers and sequential models (e.g. n-

grams and language models). All these approaches share a common feature: they are all based on 

feature engineering. However, recent studies on Neural Network models suggest that error correction 

tasks can be achieved without feature engineering (Liu & Liu 2017). This study will test if the 

knowledge domain in grammar, especially on prepositions, can improve the evaluation metrics when 

applied to NNs or if NN architectures can by themselves discover these features. 

2.3 Classifiers 
A typical approach to detect and correct written errors is to create modules for each type of target 

error behaving as classifiers. A multiclass classifier seems a natural approach to deal with errors 

related to closed classes such as articles and prepositions. Early and recent works on detecting and 

correcting errors made by learners, have made use of different types of classifiers (Chodorow, 

Tetreault & Han 2007; De Felice & Pulman 2008; Han, Chodorow & Leacock 2006; Izumi, Uchimoto & 

Isahara 2004; Tetreault & Chodorow 2008). (Dahlmeier, Ng & Ng 2012), for instance, designed and 

                                                           
2 However, the AESW shared task is focus on a general estimation of the observation of papers with respect to 
some guidelines rather than on particular error corrections. 
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implemented two separate multiclass classifiers to detect and correct article and preposition errors 

respectively from a finite set of classes in the shared tasks HOO 2012. They defined a confusion set 

consisting of 36 classes from the 36 most frequently used English prepositions.  Among the different 

classifiers used to detect learners’ errors the most common are Maximum Entropy Classifiers, Naïve 

Bayer Classifiers and Averaged Perceptron Classifiers. Because these classifiers are linear, the 

hypothesis functions differ from one another in their weights (Rozovskaya & Roth 2011). 

2.3.1 Classes 
The number of classes (prepositions) to target in an error-detection and error-correction system 

should, ideally, be equal to the total number of prepositions. However, it is rarely the case. One simple 

reason could be that the exact number of preposition is not known (see the section on prepositions). 

However, the real reasons are practical: performance and convenience. On the one hand, the number 

of prepositions that English learners use is small (Leacock et al. 2014), and on the other hand, evidence 

suggests that by tackling the most common prepositions, systems can detect most of the prepositional 

errors. For example, (Rozovskaya, Sammons & Roth 2012) used only ten prepositions for all their 

system, and although (Dahlmeier, Ng & Ng 2012) use a total of 36 prepositions for their prepositional 

module, they used only seven prepositions (“about, at, for, in, of, on, and to”) in their system to deal 

with missing prepositions as these cope with most of the occurrences of these type of errors, and they 

detected that adding other prepositions did not improve their system performance. It may be that 

small examples for some prepositions are not sufficient to capture their behaviour. This study aims to 

prove this assumption. 

Moreover, because for each prepositional error in a sentence the set of words belonging to the 

prepositional class are potential correction candidates, Rozovskaya and Roth aimed to narrow the 

scope of candidate corrections by building a confusing set of prepositions per context. The context 

was dependent on the first language of the writers, that is, they grouped prepositions in smaller 

candidate prepositions sharing some grammatical characteristics given by the first language (L1) of 

the writers, which they called L1 dependent candidate set.  In addition, on the basis that given a 

prepositional error, different sets of prepositions may have a different likelihood of occurring, and 

that prepositions are dependent on the first language of the sentence’s author, Rozovskaya and Roth 

generated sets of confusion arrays for L1. They created two types of confusion sets: 1) a confusion set 

of all ten prepositions, and a confusion set for a particular misplaced preposition pi consisting of the 

prepositions that correct pi, that is to say, of all prepositions that are confusable for an English Learner 

with a particular L1 background. Although this approach is inviting, in this study no subsets will be 

created because of two main reason: time constrains and the lack of data. 

2.3.2 Features 
An important step in a classification task is the selection of features, from which classifiers should be 

able to capture enough domain information during training so that new instances can be successfully 

solved in production (Dahlmeier, Ng & Ng 2012). However, feature engineering is an art that has not 

been mastered yet. For example, (Dahlmeier, Ng & Ng 2012) chose a group of features for their 

prepositional error-detection and error-correction system based on empirical experiments. In general, 

lexical features together with Part-Of-Speech (POS) tags, N-grams and chunks are commonly used for 

the task of detecting and correcting grammatical errors (Dahlmeier, Ng & Ng 2012).  

Lexical features are important in context-sensitive tasks such as correcting spelling errors (Jurafsky & 

Martin 2009), and correcting prepositional errors (Rozovskaya, Sammons & Roth 2012). In these 

scenarios, it is common to use N-gram windows of words around the target without including it. 

(Rozovskaya, Sammons & Roth 2012) chose as features for their system to detect and correct 
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prepositions n-grams windows going from one to four on both sides of the target preposition, e.g. one 

word before, two words before, one word after, two words after and so on. They also include the head 

of the prepositional phrase. (Dahlmeier, Ng & Ng 2012) used lexical features (words) around the 

observed preposition and their respective POS tags. Their novelty in respect to previous works was 

the introduction of the observed preposition among the features. The values of the features were 

binary, i.e. the feature appears in the example (value 1), or it does not (value 0). (Tetreault & 

Chodorow 2008) also introduced in their prepositional system a set of lexical and grammatical features 

comprising a window of words around the preposition (two before and two after) and their respective 

Part-of-speech tags.  They also included the head of the preceding grammatical components, i.e. noun 

phrase, verb phrase as well as the head of the following components; for a total of 25 features.  

2.3.3 Naïve Bayes 
Naïve Bayer Classifiers are probabilistic and generative classifiers, i.e. they generate the likelihood of 

a class based on the prior probability of the data observations by applying the Bayes theorem 

(Manning, CD, Raghavan & Schütze 2008). The algorithm is a highly cost-efficient method that is 

suitable to use when there is a computational limitation (e.g. memory and CPU) or a limitation in the 

training data (Vasilis 2015). Although it is a very simple model in many cases, its performance can be 

as good as more complex approaches. In terms of detecting and correcting English Learners’ errors, 

(Rozovskaya & Roth 2011) proved that, although it is outperformed by other methods such as 

Maximum Entropy and Language Models, it suits models in which the first language of the English 

learners is taken into account very well. In fact, (Rozovskaya et al. 2013) used a Naïve Bayes Classifier 

to detect and correct prepositional errors in the CoNLL 2013 shared task. However, despite the fact 

that their system outperformed all other systems when the five types of errors defined by the shared 

task were computed, they were outperformed in the prepositional errors by the statistical machine 

translation (SMT) model of (Yoshimoto et al. 2013). 

2.3.4 Maximum Entropy 
Maximum Entropy ME (Jaynes 1957) Classifiers fall into the class of probabilistic models such as the 

well-known Naïve Bayer Classifiers and N-Grams. However, unlike them, the ME classifier is a 

discriminative classifier, i.e. the model is constructed over the conditional probability of the hidden 

classes (e.g. prepositions) given the observations (e.g. the extracted features) (Manning, C 2005). ME 

classifiers are a good choice for multiclass classification when the prior distributions of the data are 

not known well enough. In training, the feature weights that best maximize the conditional likelihood 

of the data are chosen by applying the Principle of Maximum Entropy (e.g. the feature weights that 

obtain the maximum entropy value among all feasible models) (Manning, C 2005). Maximum Entropy 

models start by setting a uniform probability for all classes, and then some feature constraints, fitting 

the data set more precisely, are progressively added. Finally, applying the principle of Maximum 

Entropy, the best model (feature weights) will satisfy the feature constraints of the training data, and 

it will “assume a distribution of maximum entropy” to new (unknown) data (Chodorow, Tetreault & 

Han 2007). 

In one of the first attempts to apply NLP methods to L2 error correction, (Izumi, Uchimoto & Isahara 

2004) used a ME classifier to detect and correct L2 writing errors (Although they used a Japanese 

Speech Corpus). They considered that the error correction tasks are similar to the tasks of text 

categorization, in which ME classifiers have been largely used. The features that they used were 

basically contextual (lexical), and for the tasks of detecting and correcting omission errors and 

replacement/insertion errors, they claimed a precision of 75.7% and 31.17% and a recall of 45.67% 

and 8% respectively. Their system targets a total of 13 types of errors (including prepositional errors) 

and they did not present results for individual types of error so it is difficult to judge their system 
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performance on prepositions. (Han, Chodorow & Leacock 2006) also implemented a ME classifier but 

it aimed to detect and correct determiner errors only.  

On the other hand, (Chodorow, Tetreault & Han 2007) used an ME classifier to tackle the detection 

and correction of prepositions that were wrongly selected, i.e. wrong choice of preposition. They 

chose ME because evidence suggests that it works well on heterogeneous features, and without the 

need of assuming independency between the features as in a Naïve Bayer. Their system was 

complemented with some rule-based filters, showing that prepositional classes have some similarities 

that make them confusable. This also shows that new approaches are required to capture the slight 

difference between some prepositions. They claimed a precision of 80% and a recall of 30%. (Tetreault 

& Chodorow 2008) took a step further with their model to achieve a precision of 84% and a recall of 

19%, using 25 different lexical and POS features around the target preposition. They added a number 

of filters to maximize precision (affecting recall), i.e. to minimize the chance of marking a proposition 

as wrong when the probability between different options is slight, and therefore, there exists a chance 

of wrong correction or of various prepositions fitting the context but with some semantic vitiation that 

is hard to verify. 

2.3.5 Average Perceptron 
The Averaged Perceptron AP (“Voted Perceptron”) is a discriminative algorithm developed by (Freund 

& Schapire 1999), which takes the Classical (“vanilla)” Perceptron algorithm of (Rosenblatt 1958) a 

step further by making use of online learning algorithms. The main novelty of the AP with respect to 

the vanilla perceptron is that it stores (or remembers) the weights of all features so that later training 

examples do not have greater counts than early training examples (Daumé III 2012). Additionally, AP 

is a mistake-driven algorithm, i.e. weights are updated only when the classifier with the current 

feature weights classifies wrongly on the training data (Rozovskaya & Roth 2011). The AP classifier 

works for linear classification tasks, and works more efficiently in training than other algorithms (e.g. 

Support Vector Machine SVM and Logistic Regression) on data that can be linearly separated (Freund 

& Schapire 1999).  

In an empirical study, (Rozovskaya & Roth 2011) show that when trained on the same data, the 

Averaged Perceptron outperforms the Naïve Bayer classifier and other statistical models such as 

Language Models and the “counting” model SumLM. In addition, they found that it could be up to 

twice as efficient as a Naïve Bayer Classifier. It is not surprising that for the HOO 2011 shared task, 

(Rozovskaya et al. 2011) used a regularized version of the Averaged Perceptron to detect and correct 

articles and prepositions. For prepositions, they achieved the best score with an F-score of 0.488, 

0.488 and 0.363 for tasks of detection, recognition and correction respectively. The university of 

Illinois (Rozovskaya, Sammons & Roth 2012) trained an AP classifier once more to tackle prepositional 

tasks in the HOO 2012 shared task, in which their system scored first in the tasks of detection and 

recognition, while they were second in the task of revision. However, as they trained the system on 

the learner corpus FCE dataset in which, even for learners, the density of prepositional errors is sparse, 

they found that the AP is “sensitive” to the density of errors. So, they introduced a method (“error 

inflation”) to artificially increase the number of errors in the dataset according to their respective 

proportion. 

2.3.6 Multiclass classifier using the Confidence-Weighted Learning algorithm 
In the domain of NLP tasks, in which features are high-dimensional, online learning algorithms seem 
a more natural option than typical batch learning algorithms because they are updated on the basis 
of a single example at a time. However, the occurrence of some feature instances is rare but 
potentially essential for discovering the best possible weights for the task of classification. As a 
consequence, (Dredze, Crammer & Pereira 2008) introduced the confidence-weighted (CW) 



8 
 

algorithm, in which parameters are updated in an inverse proportion to confidence. The level of 
confidence is measured using a probabilistic model for each feature, which is defined by a Gaussian 
distribution, and updated after each new instance is processed during training. In other words, unlike 
traditional learning algorithms that use a single vector of weights, the algorithm uses weights that 
follow a multivariate Normal distribution defined by a mean µ and a covariance matrix €. The learning 
algorithm iterates over a pair of labelled data (𝑥𝑖 , 𝑦𝑖) at a time, all throughout the data set (Y, X) 
(Dahlmeier, Ng & Ng 2012). The algorithm was used by (Dahlmeier, Ng & Ng 2012) in the HOO 2012 
to train the different classifiers they used in their system, because the algorithm proved suitable for 
sparse and high dimensional features. They system achieved the highest F-score (28.7) for the task of 
correcting prepositions. 

2.3.7 Binary Classifier 
So far, all analysed classifiers have been used as multiclass classifiers, but another option is to use 

binary classifiers. They are a good choice if the problem is analysed from the perspective of omission, 

i.e. whether a specific preposition should or should not be placed at a certain position. (Dahlmeier, Ng 

& Ng 2012) trained ten binary classifiers, one for each preposition, for their missing prepositions 

module. For each classifier the confusion set was composed of the preposition and the absence of the 

preposition (“empty preposition”). They took examples from every noun phrase where a preposition 

preceding it was a positive example and the absence of a preposition was a negative example (or when 

the wrong preposition was preceding the noun phrase). They followed a similar approach to tackle 

unwanted prepositions with the only difference being that, in training, positive examples were 

prepositions marked as unwanted, whereas prepositions correctly used were negative examples.  

2.4 Language Models 
It was said that the construction of a rule-based system to detect and correct prepositional errors 

made by non-native English speakers requires linguistic expertise and high grammatical knowledge. 

Data-driven classifiers, on the other hand, although more flexible, require the extraction of features 

capable of rendering enough information to model and therefore generalize the behaviour of the 

target goal. These features can be either shallow or deep (although a combination of them is more 

common), and Language Models usually require surface-based features that depend solely on the 

count of feature occurrences (Elghafari, Meurers & Wunsch 2010). This characteristic of Language 

Models make them quite handy and in some cases, as will be seen bellow, they can outperform 

classifiers with complex features.  

2.4.1 N-grams 
Although the early “simple Markov chains” (bi-grams) of (Markov 1913) and the N-Grams of (Shannon 

1948) were popular in the 50’s to model sequences of words, the works of (Chomsky 1956), stating 

that the Markov models were “incapable of being a complete cognitive model of human grammatical 

knowledge” (Jurafsky & Martin 2009), drove away linguistic and computational research from 

statistical models. Nonetheless, they are today a popular method to model languages thanks to the 

works in speech recognition of (Bahl, Jelinek & Mercer 1990; Baker 1975; Jelinek, Bahl & Mercer 1975). 

N-Grams are statistical models of sequences of symbols (characters, words or sentences), in which a 

Markov assumption is applied, i.e. the probability of the N symbol (say word) is assumed to depend 

only on the N-1 preceding words (Jurafsky & Martin 2009). In practice, the conditional probability of 

each symbol given the N-1 preceding words is calculated by counting the actual number of 

occurrences of the sequence in a given corpus. Because some sequences cannot be present in the 

training corpus but can occur in production, many smoothing techniques are applied. (Jurafsky & 

Martin 2009) gives a good account of these techniques. 
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(Elghafari, Meurers & Wunsch 2010) carried out an empirical study to find out how much predictive 

information the lexical words (shallow features) surrounding a preposition can contain in order to 

detect and correct prepositional errors. They used a 7-Gram including the preposition, and they 

followed a web-as-corpus approach to maximize the size of the training set, i.e. they constructed a 

cohort of nine prepositions (they used the top 9 prepositions according to the BNC corpus) in their 

training set (BNC corpus) that was sent to the search engine Yahoo. Using the full back-off approach 

of (Katz 1987), they reached an accuracy of 76.5%, proving that using only surface-features could be 

as efficient as using more complex features.  (Boyd & Meurers 2011) followed the same approach for 

4 different types of errors (conjunctions, determiners, prepositions and quantifiers) in the HOO 2011 

shared task, but instead of using a web-as-corpus approach for the task of counting, they used the ACL 

anthology. Overall, their system performed the best when detecting substitution errors of 

prepositions and determiners as they detected 67% of errors. 

2.4.2 Statistical Machine Translations 
Statistical Machine Translation (SMT) models take a string of symbols (e.g. words and phrases) as an 

input, and translate them into an aligned target language using statistical language models. The 

alignment process is not trivial because the resulting string can include “reorderings, omissions, 

insertions, and word-to-phrase alignments” (Och & Ney 2003). In general, the SMT model can be 

defined as the subset of the Cartesian product of the source strings and the target strings. However, 

to make the general representation feasible, a number of restrictions are applied to the resulting 

string so that the number of possible outcomes depends on the source string and its context (Och & 

Ney 2003). The best translation is the model that, parameterized by a specific vector of weights, 

achieves the highest probability given some set of features. The size or level of the string source could 

go from word-based (Och & Ney 2003) to phrase-based (Koehn, Och & Marcu 2003) (it can even be 

applied at a character level, e.g. spelling correction). 

In the context of detecting and correcting English learners’ errors, (Brockett, Dolan & Gamon 2006) 

carried out some experiments on correcting noun mass errors using a SMT as they detected that 

learners’ errors were not isolated but were a sum of factors such as context and other errors that 

could be treated as a language (bad English) that could be translated into another language (good 

English). (Mizumoto et al. 2012) scoped “all” types of errors using the phrase-based model of (Koehn, 

Och & Marcu 2003), and they found that, when correcting English leaners’ errors, local context 

provides enough information to translate from grammatically incorrect sentences to grammatically 

correct sentences. For prepositional errors, more precisely, (Mizumoto et al. 2012) showed that the 

SMT could outperform a ME classifier. In fact, (Yoshimoto et al. 2013) ranked first in the task of 

detecting and correcting prepositional errors in the CoNLL 2013 shared task with an F-score of 17.53 

using a similar approach to (Mizumoto et al. 2012), but training the SMT model on a larger corpus. 

More recently, (Felice et al. 2014), in the CoNLL 2014 shared task, used a SMT in their hybrid system 

to generate the top ten candidate corrections for all (28) types of errors, which were later filtered by 

some Language Models to choose the ultimate correction. Overall, their systems perform the best 

when compared to the gold-standard edits with an F05 of 37.33, and it obtained the highest recall 

(38.26) for prepositional errors.  

 

2.5 Prepositions 
Prepositions are hard to master by English learners because, unlike some grammatical rules about the 

syntax of English, they do not have specific rules for their usage. That is to say, while it is clearly stated 

that noun phrases cannot follow intransitive verbs, there is not a clear rule defining which preposition 
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is the best choice to use, given certain contexts (Leacock et al. 2014). Moreover, because this study 

has a strong focus on prepositions, it is worthwhile to first understand what prepositions are, how 

they behave and which features they are characterised by.  

2.5.1 What are prepositions? 
Prepositions are an open class of words which are estimated to contain more than a hundred tokens 

(Cambdridge), but whose exact amount varies on different reports as they are interpreted differently 

by distinct authors, and because they vary as time goes by (Huddleston & Pullum 2005; Jurafsky & 

Martin 2009). In his book, Lindstromberg (Lindstromberg 2010), for instances, analyses only 90 English 

prepositions that he considered were of common use today and he decided not to examine archaic 

prepositions such as betwixt and outwith, or prepositions coming from the Latin and which are not 

commonly use like cum and circa.  On the other hand, Huddleston and Pullum (Huddleston & Pullum 

2005) include in the class of prepositions some other words that commonly are grouped into either 

adverbs or subordinating conjunctions.  

Words belonging to the class of prepositions normally precede a noun phrase (Jurafsky & Martin 

2009), and by grammatical rule, the noun phrase should be a complement of the preposition 

(Huddleston & Pullum 2005). For example, in one of the examples given by Huddleston and Pullum, 

the word since can be classified as preposition in the sentence “I haven’t seen her, since Easter”, 

whereas it falls into the class of conjunctions in the sentence “I haven’t seen her since she left town”, 

because the component that follows “since” is a clause and not a noun phrase. Other rules state that 

prepositions do not inflect nor are gradable (as are adjectives and adverbs) and, frequently, they are 

used to represent some kind of relation (e.g. a relation of time or space) (Huddleston & Pullum 2005; 

Jurafsky & Martin 2009). Some examples taken from Jurafsky and Martin are: a literal relation on it 

and a metaphorical relation on time (Jurafsky & Martin 2009). The semantic relation can appear in 

arguments to point out either the indirect object of an action (“He gave a book to Mary”), the author 

of an act in a passive form (“the book was written by Fred”), the instrument with which an action was 

carried out on (“they ate the cake with a fork”) or the source from which something comes (“Jane took 

the vase from the shelf”) (Leacock et al. 2014). 

While describing the class of prepositions, Huddleston and Pullum (Huddleston & Pullum 2005) 

compare prepositions with adjectives, adverbs and verbs from which the following properties and 

examples were extracted: 1) Prepositions can be the head of a prepositional phrase that can be placed 

at different positions in a sentence, and which usually depend on either a noun (“a house at the 

beach”) or a verb (“He saw her at school.”). 2) When prepositions appear at the head of an adjunct, 

they do not have to be associated with the predicand (“After the end of the semester, the dean threw 

a party for the students”, “After the end of the semester, there was a party for the students.”). 3) 

Prepositions, acting as predicative complement, can be complement of the verb be but they are less 

frequently of other verbs such as feel, appear, seem and they are never complement of the verb 

“become” (“We are in your debt.”, but not “We became in your debt.”). 4) Some verbs in their gerund-

participle or past participle form can take the functionality of prepositions, but they can be 

distinguished from the preposition function because, as predicator, the verb has to be associated to a 

subject, whereas as a prepositional phrase does not (As preposition: “Following the meeting, there 

will be a reception.”, as verb: “Following the manual, we tried to figure out how to assemble the unit.”).  

Among the class of prepositions, a smaller group composed basically of the words “as, at, by, for, from, 

in, of, on, than, to, and with” (Huddleston & Pullum 2005), can have a grammatical function in which 

they act as a mark within the structure of a sentence that is not dependent on the meaning of the 

preposition, i.e. the preposition could not be substituted without having to alter the grammatical 
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structure of the sentence. Huddleston and Pullum called these prepositions “grammaticised 

prepositions”, and some of their examples are depicted next. For example, in the sentence “I sat by 

the door”, the preposition by has a spatial meaning that could be replaced by opposite (“I sat opposite 

the door”), without altering the grammatical structure. On the other hand, the function of the 

preposition by in the sentence “The article was written by a first-year student”, is to mark the subject 

of the clause in the participle form and cannot be substituted by other prepositions without having to 

modify the grammatical structure of the sentence. Some of these grammatical functions of the 

prepositions are to mark the subject of a sentence in the passive form (“The article was written by a 

first-year student”), to mark the subject within a noun phrase in a sentence (“The sudden death of the 

president stunned the nation.”), to mark the complements of a verb (“I transferred several hundred 

dollars to them.”), to mark the complement of a noun (“Their request for assistance was ignored.”) 

and to mark the complement of an adjective (“They all seem quite keen on the idea.”) (Huddleston & 

Pullum 2005). 

2.5.1.1 Collocations 

Collocations are pairs (or groups) of words that have a strong association with each other and whose 

form (sequence of words) creates a particular meaning, i.e. if a word in the phrase were replaced with 

another one with similar meaning and usage, the resulting phrase would be incorrect or odd. 

Lindstromberg (Lindstromberg 2010), for instance, depicts how the preposition in in the collocation  

in trouble could not be replaced by inside, despite the fact that in and inside share a similar usage. 

Some collocations allow the insertion of a word (e.g. an adjective) to strengthen the expression such 

as in big trouble,  but it is not possible in all collocations. For example (again from Lindstromberg), 

adding the adjective “extreme” between the collocation “at random” would render a weird phrase: 

“at extreme random” (which is sintactically correct). This type of collocation belongs to the category 

of fixed collocations, that is, collocations that do not permit alterations.  

2.6 Training Data 
In the domain of error correction, three different types of training data are commonly used for training 

machine learning algorithms: 1) native English corpora, 2) artificial learner corpora (made from native 

corpora) and 3) learner English corpora (Leacock et al. 2014). Since the Brown Corpus (Francis & 

Kucera 1964), the first online English corpus (Jurafsky & Martin 2009), appeared, the number of the 

first type of corpora has increased with a relatively good availability for research purposes. A relevant 

corpus that is largely used for NLTK is the Penn Treebank (Marcus, Marcinkiewicz & Santorini 1993), 

which can be used through the Natural Language Toolkit (Bird, Klein & Loper 2009). Some approaches 

to tackle the error correction task were carried out using this type of corpus. (De Felice & Pulman 

2008), for instance, trained a Maximum Entropy Classifier to correct prepositional errors using the 

British National Corpus (BNC). However, the particular patterns of learners’ grammar is not present in 

these type of corpora and the learning algorithms do not capture the English domain knowledge of 

L2, limiting thus the potential to detect and correct grammatical mistakes. In fact, (De Felice & Pulman 

2008) presented results for their classifier on L2 that were slightly less accurate than results on L1. As 

a consequence, many researchers opt for populating native English corpora with learners’ errors 

following some available distribution of learner errors.  (Rozovskaya & Roth 2010c) introduced learner 

errors into English Wikipedia following a learner error distribution so that the patterns seen during 

training could be as close as possible to the patterns seen during testing, i.e. they generated an 

annotated learner English corpus from a native English Corpus. (Rozovskaya, Sammons & Roth 2012) 

followed this method to populate the Google Web 1T corpus (Brants & Franz 2006) with the 

proportion of errors found in the FCE dataset for their prepositional system in the HOO 2012 shared 

task. These type of methods were a consequence of the low availability of annotated learner corpora.  
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The number and size of annotated learner corpora has been to some extent limited. One interesting 

project is the International Corpus of Learner English (ICLE) (Granger et al. 2009), which in its second 

version provides English writings from 16 different L1s. Unfortunately, this rich diversity of first 

languages cannot be exploited for error correction tasks as the corpus is not annotated, leaving this 

corpus for the sole use of linguistics3. The same lack of annotated data applies for the Chinese Learner 

English Corpus (Gui & Yang 2003). Some small annotations were carried out by (Rozovskaya & Roth 

2010a), but unfortunately the size does not reach a desirable level. On the other hand, the Cambridge 

Learner Corpus (CLC) (Nicholls 2003) may be the most desirable learner corpus for research with a 

unique size of over 16 million words written by learners from 86 different first languages other than 

English. It is estimated that more than 6 million words have been annotated. Unfortunately, the whole 

corpus is not completely available for research purposes, with the relatively small FCE Dataset made 

available by the Cambridge University Press (Yannakoudakis, Briscoe & Medlock 2011). Nonetheless, 

it is an interesting corpus that was already used in the HOO 2012 shared task. An even larger and 

available learner corpus is the NUS Corpus of Learner English (NUCLE) (Dahlmeier, Ng & Wu 2013), 

with over one million words. The corpus was used in both CoNLL 2013 and CoNLL 2014 shared tasks. 

Although this corpus lacks the diversity of the FCE Dataset, it is a learner corpus with the size and 

features to work as a baseline for automated error correcting tasks, and it is the main corpus used in 

this study. 

2.7 Neural Networks Models 
As we saw in the chapter of classifiers, most of the models described in the literature to correct learner 

errors are linear classifiers, which use sparse vectors as inputs. This makes perfect sense as they are 

the basis upon which many NLP techniques work. However, neural networks have been used recently 

to tackle NLP tasks successfully, achieving state-of-the-art results (Goldberg 2016; Sutskever, Vinyals 

& Le 2014; Vinyals et al. 2015), so it is worth exploring the possibilities that neural networks open for 

error correction tasks and that seem not to have been exploited yet. (Liu & Liu 2017) used neural 

networks (LSTM architecture) for detecting grammatical errors for the purpose of discriminating 

correct scientific language from improper scientific language, which was the main purpose of the 

shared task Automated Evaluation of Scientific Writing Shared Task 2016 (Daudaravicius et al. 2016). 

They claimed that their model outperformed a support vector machine architecture as well as another 

popular neural network architecture: convolutional NN. However, although this task is somehow 

related to the task of error correction, the ultimate goal is completely different and it is worth 

exploring the solution of the error correction task with neural networks. Another interesting novelty 

of neural networks is the possibility of introducing dense vectors into non-linear classifiers (Mikolov, 

Tomas, Chen, et al. 2013).  

Historically, Artificial Neural Networks (NNs) were based on the human brain. The first model was the 

“Threshold model” by (McCulloch & Pitts 1943) in which the authors made several assumptions about 

neural networks that led them to treat their model as a binary device that uses a threshold of constant 

value. Their model calculated the dot product between a vector input and the weights of a neural 

network to carry out OR and AND logical operations. (Hodgkin & Huxley 1952) developed the more 

complex “spiking model” which treated each component of a squid’s giant neuron as electrical 

components. Other complex interpretations and models have been developed (Izhikevich 2003; 

McGregor 1987) through the years. However, more simplistic representations such as the perceptron 

(Rosenblatt 1958) provided more practical implementation of the brain representation with promising 

results (Goldberg 2016). However, in 1969, (Minsky & Papert 1969) published a number of criticisms 

                                                           
3 In fact, the corpus was acquired to carry out this study, but the lack of annotated data prompted the use of 
another corpus: NUCLE. 
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regarding the limitations of neural networks that created a sense of prejudice and frustration against 

neural networks, negatively affecting the funding for neural networks research. Despite this limitation, 

important discoveries were brought about by a small group of researchers such as the backward 

propagation algorithm (Werbos, P 1974) and the Cognitron (Fukushima, Miyake & Ito 1983). 

Moreover, some advances during the 70s and 80s attracted the attention of the scientific community 

once again, prompting in this way a re-emerging of the neural network field (Siganos & Stergiou 1996).  

These days, two general neural network architectures are popular, namely recurrent networks and 

feed-forward networks (Goldberg 2016). Feed-forward networks are non-linear classifiers that can be 

easily adapted from linear classifiers to tackle NLP tasks. (Chen & Manning 2014), for instance, trained 

a feed-forward neural network to train a dependency parser classifier. Their model used a hidden layer 

and an embedding layer (detailed in a next section) which was added to the input. They reported great 

improvement in speed performance as well as an improvement in the accuracy of the parser. Similar 

approaches were carried out by (Weiss et al. 2015) and (Pei, Ge & Chang 2015) with similar results. 

(Vaswani et al. 2013), on the other hand, applied neural networks to machine translation, obtaining 

an improvement in translation quality across different pairs of languages. 

Moreover, convolutional neural networks – which fall into the category of feed-forward networks – 

can be used for other tasks in which the main information can be found in “strong local clues”  within 

an example (Goldberg 2016). (dos Santos & Gatti 2014) used a convolutional neural network for 

sentiment analysis in short texts such as tweets, achieving an accuracy of 86.4 % in the Stanford 

Twitter Sentiment corpus (STS), thanks to the capability of convolutional networks to exploit text 

analysis at character level and to generalize the results to the word level. It is thus not unreasonable 

to think of using convolutional architectures for the error correction task, because the clue to identify, 

for example, the right prepositional choice for its dependent component (e.g. say a noun phrase), 

could be near or far from the prepositional phrase.  However, there is another neural network 

architecture that is even more tempting to use for the error correction task, namely recurrent neural 

networks. 

The main strength of recurrent neural networks (Elman 1990) is that unlike any other classifier – either 

linear or non-linear - they can capture the structural information inherent in sentences (Goldberg 

2016), i.e. while other classifiers inject the features into the neural network in a way in which the order 

is not relevant, recurrent neural networks maintain the order of the features so that the grammatical 

structure is injected into the neural network.  Unlike typical neural network architectures in which all 

features are injected at the same time along the input layer, recurrent networks input a single feature 

(or a concatenation of features such as word, POS, dependency head, etc.) at a time in a sequential 

way (𝑥1, 𝑥2, … , 𝑥𝑛), returning a sequence of outputs (𝑦1, 𝑦2, … , 𝑦𝑛), each output at a time. Recurrent 

networks keep a state 𝑠𝑖 that together with the input 𝑥𝑖+1feeds the neural network, and that together 

with the output 𝑦𝑖+1 represents the state of the neural network after processing all inputs from 𝑥1 to 

𝑥𝑖in a sequential fashion. The representational power of recurrent networks is given then by the 

prediction of an output 𝑦𝑖  given all the sequences of inputs 𝑥1, 𝑥2, … , 𝑥𝑖  and the states 𝑠0, 𝑠0, … 𝑠𝑖−1 

in a similar way as n-grams but without the limitations of Markov assumptions (Goldberg 2016). The 

recurrent network architecture implemented in this study will be discussed in more detail in the 

method chapter.  

2.7.1 LSTM 
Recurrent networks work naturally with sequences of features and they provide state-of-the-art 

results for sequence tasks such as Combinatory Categorial Grammar (CCG) super-tagging (Xu, Auli & 

Clark 2015) and language models (Jozefowicz et al. 2016; Mikolov, Tomáš et al. 2010). That is because 
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given a sequence of features - say words - of arbitrary length, a recurrent network inputs each feature 

at a time 𝑡 up to the last feature 𝑥𝑛 in order to make a prediction 𝑦𝑛. That is to say, any number of 

features could be processed using the same recurrent network and, therefore, the same set of 

parameters 𝜃. The setting of the parameters is critical and it can be achieved using the 

Backpropagation Through Time (BPTT) algorithm (Werbos, PJ 1990), in which all input timesteps are 

unrolled to accumulate the errors and then roll back to update the parameters. However, as proved 

by (Pascanu, Mikolov & Bengio 2013), recurrent networks are hard to train because their gradient 

becomes too small (almost zero) when the backpropagation algorithm reaches the first inputs of the 

unrolled network. As a consequence, working with long sequences becomes impractical as distant 

dependencies are not captured by the recurrent network.  

Fortunately, (Hochreiter & Schmidhuber 1997) introduced a new variant of recurrent networks using 

a memory state (“memory cells”) to avoid the vanishing of the gradient, namely the LSTM architecture 

(figure 1) (although their model did not include the forget gates). The memory cells keep a state of 

the network through time and they can be accessed through mathematical functions working as 

logical functions (“gating components”) that decide how much information is going to be kept in the 

memory state and how much is going to be discarded (forgotten). Mathematically, a LSTM is defined 

as: 

𝑦𝑗 = 𝑅𝐿𝑆𝑇𝑀(𝑠𝑗−1, 𝑥𝑗) = [𝑐𝑗;  ℎ𝑗] 

where 𝑐𝑗 represents the memory state and ℎ𝑗 represents the hidden state (output per each timestep).   

 

Figure 1 LSTM diagram (reproduced from (Olah 2015)) 

Mathematically:  

𝑐𝑗 = 𝑐𝑗−1 ⊙ f + �̌�  ⊙ i 

ℎ𝑗 = tanh(𝑐𝑗)  ⊙ o 

The symbol ⊙ is used to represent a pointwise product between vectors. The functions 

𝑖, 𝑓 𝑎𝑛𝑑 𝑜 represent the gates that decide what values of the cell state are going to be updated 

(figure 3), what information is going to be discarded or forgotten from the cell state (figure 2) and 

what information from the cell state is going to be outputted (Figure 4). The gate �̌�  defines what 

values are candidate to be included in the cell state (figure 3) and, together with 𝑖, defines what 

new information is going to be added in the cell state. Mathematically, they are defined as: 

𝑖 = 𝜎(𝑥𝑗𝑊𝑥𝑖 + ℎ𝑗−1𝑊ℎ𝑖) 

𝑓 = 𝜎(𝑥𝑗𝑊𝑥𝑓 + ℎ𝑗−1𝑊ℎ𝑓) 

𝑜 = 𝜎(𝑥𝑗𝑊𝑥𝑜 + ℎ𝑗−1𝑊ℎ𝑜) 

�̌� = tanh(𝑥𝑗𝑊
𝑥𝑐̌ + ℎ𝑗−1𝑊ℎ𝑐̌)  
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Figure 2 Forget gate (reproduced  from (Olah 2015)) 

One advantage of recurrent neural networks is that, because they can handle sequences in a natural 

way, there is no need to use techniques to combine variable numbers of features (say the words of a 

sentence) into a fixed number of features. That is to say, because traditional classifiers and typical 

feed-forward neural networks require a fixed number of features as input, techniques such as 

Continuous Bag of Words (CBOW) (Mikolov, Tomas, Chen, et al. 2013) are used to combine (or 

average) a variable number of features into a fixed number of features: 

𝐶𝐵𝑂𝑊 (𝑓1 … 𝑓𝑘) =  
1

𝑘
∑ 𝑣(𝑓𝑖)

𝑘

𝑖=1

 

On the other hand, RNNs can handle variable numbers of features because they work over time, i.e. 

one feature is injected at a time 𝑡 along an infinite – in theory – sequence of discrete features. In 

addition, as mentioned previously, recurrent neural networks process features in a sequential manner 

so that the structural information of the group of features is kept, unlike typical bag of words 

approaches (Jurafsky & Martin 2009). As a consequence, it is not necessary either to engineer features 

representing the distance and position of the core features (Goldberg 2016), or to embed them into a 

dense space (Zeng et al. 2014).  

 

Figure 3 input and candidate gates (reproduced  from (Olah 2015)) 

2.7.1.1 Bidirectional Recurrent Network 

A more complex elaboration of a recurrent network is the bidirectional model introduced by (Schuster 

& Paliwal 1997). Recurrent neural network typically work with sequence of features belonging to the 

past, i.e. previous words. The bidirectional model introduces an extra neural network that keep the 

state of features belonging to the future, i.e. words that come after the target. That is to say, a 

bidirectional model keeps two separate cell states (and two RR nodes) working in opposite directions: 

while one node works in a forward way keeping a memory of the past features, a second node works 

in a backwards way keeping the state of the future features. The final output is given by the 

concatenation of both recurrent networks. This model has been applied successfully in NLP tasks such 

as sequence tagging (Irsoy & Cardie 2014) in which the tag at timestep 𝑡 can be determined by both 

the preceding tags as well as the following tags. This approach seems promising for the task of 

correcting errors and therefore it is tested in this study.  

 

Figure 4 output gate (reproduced from (Olah 2015)) 

 

2.7.1.2 Deep Recurrent Networks 

One of the limitations of artificial intelligence (AI) in the past was the fact that some problems, that 

were possible to formulate formally, could be solved in quite a straightforward way by applying 

traditional computing and in a bit more complex way by applying artificial intelligence algorithms. 

However, AI’s relevance was evident when tasks that were easy to solve for humans such as image 

and spoken processing were hard to define formally, and become too complex to solve by applying 

traditional computing (Goodfellow et al. 2016). Machine learning algorithms learn from experience - 



16 
 

the examples (data) that are used to feed them - to understand the knowledge domain of the task at 

hand. Internally, they build a “hierarchy of concepts” about the knowledge domain that developers do 

not have to formulate explicitly (Goodfellow et al. 2016). Theoretically, shallow neural networks (say 

MLP1) have the representational power to approximate a large set of functions, i.e. they are a 

“universal approximator” (Hornik, Stinchcombe & White 1989), but in practice it has been seen that 

the capability of neural networks to learn the knowledge domain from experience depends on the 

number of layers (the depth of the network) the network is built with (Goldberg 2016). That is to say, 

the hierarchy of concepts created by each layer becomes more abstract and has a bigger 

representational power as the number of layers increases, and that is why this concept is known as 

Deep Learning (Goodfellow et al. 2016). 

Nonetheless, because of their nature, the depth of recurrent networks is hard to define and deep 

recurrent networks could be thought of as long neural network nodes unrolled over a long range of 

time. However, the function of the internal layers of recurrent networks is to keep a memory state of 

the sequence rather than to build a hierarchy of processing layers, which is the inherent purpose of 

neural networks and, additionally, recurrent networks output a result for each input so that there is 

no extra processing for each timestep (Hermans & Schrauwen 2013).  To overcome this potential 

deficiency, some researchers (Graves, Mohamed & Hinton 2013; Hermans & Schrauwen 2013) have 

successfully developed recurrent neural networks with multiple layers that they call stack of recurrent 

networks, and that is based on the early work by (El Hihi & Bengio 1996). The representational power 

that can be gained using deep recurrent neural networks is desirable for the task of error correction 

because many layers could embed the algorithm with a bigger representational power and, therefore, 

deep recurrent networks will be tested in this study. 

2.7.2 Additional LSTM Neural Network Components 
In recent literature, many different components to improve the accuracy of neural networks and 

machine learning techniques in general have emerged with promising results such as Dropout, 

Attention and Embedding Layers. In theory, all these techniques would be a desirable component in 

a neural network where there is a limited amount of training data, and for the task at hand it is 

worthwhile testing if the integration of these components improves the performance of the error 

correction system. 

2.7.2.1 Dropout 

Overfitting – overtraining the data and undergeneralizing the domain problem - is an issue that affects 

deep neural networks and that can be addressed somehow through regularization methods such as 

𝐿2 Regularization, in which a squared penalty is applied to each parameter, but which seems to work 

better for logistic methods (Goldberg 2016). A more recent alternative for neural networks – especially 

when applied to feed-forward neural networks – is the Dropout method, proposed by (Srivastava 

2013). The idea behind this method is to drop some neurons during training so that the network does 

not learn to rely on just specific weights. The way in which the dropout is applied to the network seems 

to have an important impact on its effectiveness (Zaremba, Sutskever & Vinyals 2014). Nonetheless, 

some promising reports suggest that dropout improves the performance of neural networks (Pham et 

al. 2014; Zaremba, Sutskever & Vinyals 2014) and it is tested in this study. 

2.7.2.2 Attention 

Although internally a LSTM neural network is designed to keep a memory cell, for some NLP tasks such 

as machine translation, it has been detected that the encoding and decoding process is affected by 

the burden of keeping a memory state of all sequence of words in a fixed-size vector. As a 

consequence, the implementation of an extra memory cell helps the recurrent neural network to learn 
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to distinguish the relevant sections of the sequence, i.e. the RNN learns to pay attention to the key 

features within the whole sequence of features (Bahdanau, Cho & Bengio 2014). This technique is 

known as an attention mechanism and has proved to be effective for image processing (Denil et al. 

2012; Larochelle & Hinton 2010) and NLP tasks (Bahdanau, Cho & Bengio 2014; Liu & Liu 2017). The 

introduction of an attention mechanism makes sense in the context of preposition correction because 

not all words in a phrase help to determine the more suitable preposition. Therefore, this mechanism 

is tested in this study.  

2.7.3 Feature Embedding Layer 
These days, a popular technique that, together with Neural Networks, is used to tackle NLP tasks is 

the embedding of high dimensional inputs into fixed n-dimensional vectors that are called dense 

vectors (Goldberg 2016). It was first proposed by the work of (Bengio et al. 2003) in which they tried 

to generalize the idea of learning the joint probability of word sequences that are used in traditional 

n-grams concatenations. Their model aimed to “learn a distributed representation of words” so that 

both a statistical representation of words and a model to generate the probability of word sequence 

were obtained. The concept was applied by (Collobert & Weston 2008) to deal with multiple NLP tasks 

in which they transformed the word indices of a dictionary into a vector, and the vector representation 

was accessed through a look-up table. Moreover, (Chen & Manning 2014) applied the embedding 

concept to different type of features, e.g. words, tags etc.  

Two prime advantages are expected to be obtained from the use of dense vectors: first of all, there 

should be a significant computational gain as the large number of features used in NLP tasks, say 

words, produce huge one-hot representation vectors. Traditional NLP techniques represent lexical 

features as one hot vectors, i.e. each word is represented as a huge vector of zeros whose size is equal 

to the size of the vocabulary, and in which the value of the index of the word feature is one. However, 

the real gain is expected to be the sharing of semantic meaning between features in an n-dimensional 

space. According to (Mikolov, Tomas, Chen, et al. 2013), when large amounts of data are available, 

many simple techniques can outperform more complex systems that use smaller training data sets. 

However, as it has been discussed, the availability of large learner corpora is scarce or not available 

for research (e.g. the Cambridge Learner Corpus). Therefore, the use of dense vectors that share 

statistical information is a desirable feature to be included in the model to correct learner errors.  

The semantic sharing of features using embedding layers is given by the fact that while in a one-hot 

representation the sequence of features “the car is good” is as different as both “the van is good” and 

“the house is good”, in a dense representation, it is expected that the features “car” and “van” are 

closer than the features “car” and “house” in the n-dimensional representational space. Therefore, in 

a dense representation, features with similar semantic content are related to each other in an n-

dimensional space, giving thus, in theory, an extra statistical strength to the neural network input and 

a bigger capability to generalize that should increase the accuracy of the algorithm during testing 

(Chen & Manning 2014; Mikolov, Tomas, Chen, et al. 2013). 

2.7.3.1 Word2vec 

One of the most successful and widespread implementations of an embedding vector for features is 

the word2vec approach proposed by (Mikolov, Tomas, Chen, et al. 2013). They proposed two 

architectures using a log-linear classifier to achieve their embedding system, namely Continuous Bag 

of Words (CBOW) and skip-gram. The first architecture consists of an input that is projected into a 

shared layer so that all words (or features) are “averaged” over the same position. The name “Bag of 

Words” comes traditionally from the fact that the sequence of words is not taken into account in this 

architecture; but the prefix “continuous” indicates that, unlike traditional approaches, it uses 
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continuous representations of the context, i.e. it predicts the current feature depending on the 

continuous history of the context. On the other hand, although similar to CBOW, the skip-gram model 

aims to predict a feature depending on another feature of the same local context (e.g. sentence) 

(Mikolov, Tomas, Chen, et al. 2013).  That is to say, each current feature is injected into the classifier 

as an input to predict features in a window of features after and before the current feature. Although 

the computational complexity increases with the size of the window, it is expected to also increase 

the quality of the final embedding. However, a weighting system should be included in the model 

because if the distance between the current feature and the target increases, the effect or 

dependency of the target over the current feature decreases (Mikolov, Tomas, Chen, et al. 2013). 

According to the optimized skip-gram model presented by (Mikolov, Tomas, Sutskever, et al. 2013), 

each pair of valid examples of the form (word, target) is classified in a binary way against a randomly 

created pair of samples (noisy examples) of the form (word, random target) in order to teach the 

algorithm to discriminate between real target words and noisy ones (i.e. negative sampling). Formally, 

the goal of the model is, given a set of words (𝑤1, … , 𝑤𝑇 ,) surrounding the target word and a training 

context of size 𝑐, “to maximize the average log probability”: 

1

𝑇
∑  ∑ log p(𝑤𝑡+𝑗|𝑤𝑡)

−𝑐≤𝑗≤𝑐,𝑗≠0

𝑇

𝑡=1

 

The skip-gram applies a softmax function over the context words to obtain the probability distribution 

of the word features: 

𝑝(𝑤𝑂 |𝑤𝐼) =  
𝑒(𝑣′

𝑤𝑂
𝑇

|𝑣𝑤𝐼)

∑ 𝑒(𝑣′
𝑤
𝑇

|𝑣𝑤𝐼)𝑊
𝑤=1

 

Where 𝑊 is the size of the vocabulary and 𝑣𝑤 and 𝑣′𝑤 are the input and output of the “vector 

representation of 𝑤” (Mikolov, Tomas, Sutskever, et al. 2013). In practice, applying softmax over such 

a large number of elements (W words) is too expensive and the authors proposed the hierarchical 

softmax architecture introduced by (Morin & Bengio 2005) (in the domain of neural networks 

language models) in order to reduce the computing cost of applying the softmax function to generate 

the probability distribution of the embedding features. In the hierarchical softmax, each word is a leaf 

in a tree representation in which each node represents the relative probability of all words that can 

climb up to the node, i.e. all child nodes. However, (Mikolov, Tomas, Sutskever, et al. 2013) found a 

better alternative using the Noise Contrastive Estimation (NCE) by (Gutmann & Hyvärinen 2012) in 

which the differentiation of data (real values from noisy ones) is achieved using a logistic regression. 

Mathematically, using the NCE, each target in the skip-gram model 𝑙𝑜𝑔𝑃(𝑤𝑂 |𝑤𝐼) is replaced by the 

term: 

log 𝜎(𝑣′𝑊𝑂
𝑇

𝑣𝑊1) +  ∑ 𝐸𝑤𝑖~𝑃𝑛(𝑤)[log 𝜎(−𝑣′𝑊𝑂
𝑇

𝑣𝑊1)]

𝑘

𝑖=1

 

 

The feature embedding layers can render beneficial effects on the task at hand as the relatively small 

size of the learner corpus could not provide enough lexical examples per type. As a consequence, the 

semantic sharing could alleviate this weakness and embedding layers are tested in this study.  
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3 Method 
From the promising results of neural networks on NLP tasks and the relative success of the use of 

classifiers in previous works to correct learner errors, the main model tested in this study is a neural 

network classifier that aims to predict 𝑛 different classes of prepositions given some features out of a 

context. For the task of error correction, the algorithm picks up the class that best fits a given context 

and proposes it as the right preposition to be used for that context. If the proposed preposition differs 

from the original preposition, then the algorithm flags an error and proposes the predicted preposition 

as the correct preposition. Nonetheless, because the context can be ambiguous and the confidence 

of the proposed correction low, two further analyses have to be taken into account before making a 

decision. First, it needs to be determined during the analysis of the results how well the algorithm can 

predict a particular class. For this purpose two types of graphs are presented in the results chapter 

per experiment and per class: the Receiver operating characteristic (ROC) graph and the Precision-

Recall graph (further detailed in the results section). Second, the appropriate threshold (or 

confidence) at which the algorithm should achieve the best metrics has to be determined as well. A 

new graph in which all metrics are drawn against a threshold is also presented in the results chapter. 

All this information is used to perform a post-processing whereby the confidence of the algorithm 

should increase in order to reduce false predictions. 

The core of the model is a recurrent neural network that follows a Long Short Term Memory (LSTM) 

architecture. The use of a LSTM architecture as the core of the algorithm was an expected choice 

because it deals in a natural way with sequences (Sutskever, Vinyals & Le 2014; Vinyals et al. 2015) 

and, in the task of correcting learner errors, the context of the task is given by a sequence of features, 

i.e. words, POS tags, etc. Moreover, following related works, new promising features were 

progressively added to test the feasibility of improving the performance of the algorithm over the task 

at hand by adding these new features. The results were carefully analysed to isolate confusing 

variables that could affect the judgement over the influence of the new feature or component on the 

output of the algorithm. In the coming sections, each experiment affecting the general model will be 

explained in more detail.  

In order to progressively run and test all the different experiments (components and features), a 

flexible solution was implemented4 using the programming language Python (Python 2018). The 

system controls the behaviour of the algorithm through a number of defined arguments whereby the 

system controls the deployment of the core algorithm according to the experiment under study. The 

system provides default values so that only a few parameters should be included when running a 

particular experiment. All arguments are clearly explained in each section. Moreover, in order to 

implement, train and test the recurrent neural network, the library TensorFlow (Abadi et al. 2016) was 

used. TensorFlow is an open source machine learning library that provides implementation for 

different neural networks architectures such as LSTM.  Other libraries such as numpy, lxml, nltk and 

autocorrect were used to support the implementation of the system and its internal configurations. 

The algorithm was trained using the Google ML-Engine platform.  

A final experiment in which the “optimum” algorithm according to the results obtained from all other 

experiments is run over the test data used in the shared task CoNLL 2013 (Ng et al. 2013) in order to 

compare the prepositional error correction task obtained by the proposed algorithm against a public 

reference. This “optimum” algorithm is complemented by a post-processing task that consists of 

making decisions (predictions) based on a threshold that is defined for class and which is obtained 

                                                           
4 The source code can be obtained from https://github.com/garc0062/prepositional_error_correction. 

https://github.com/garc0062/prepositional_error_correction
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from the analysis of the precision-recall graphs as well as the ROC graphs. The final algorithm is called 

in this study the final algorithm.  

3.1 Evaluating the Algorithm 
Metrics to evaluate the effectiveness of an algorithm to correct learner errors differ in the literature. 

The two most common ways to measure the effectiveness of these algorithms are Recall and Precision 

(Leacock et al. 2014). One could include Accuracy as well, but it tends to give a wrong impression (too 

positive), of the real effectiveness of an error correction algorithm because, even for English learners, 

the rate of grammatical errors is low and the number of true negatives is high (De Felice & Pulman 

2008).  To be able to calculate all these metrics, the results obtained from the algorithm must be 

categorized into four categories, namely true positives (TPs), false positives (FPs), true negatives (TNs) 

and false negatives (FNs) (Powers 2012).  

A contingency table, in which the performance of the algorithm is validated against the true (correct) 

values, is created for this purpose. The table works for a binary classification where, on the one hand, 

two classes such as wrong prepositional choice and correct propositional choice are defined as positive 

and negative examples respectively. In the task of error correction, one can define errors as positive 

examples, i.e. the example contains an error (e.g. a wrong prepositional choice). On the other hand, 

correct prepositional choice examples account as negative examples, i.e. the example does not 

contain any error (at least not the error the classifier is dealing with). In the contingency table, the 

number of positive and negative examples of the class are distributed between the results of the 

predictor (table 1), thus generating the four categories (Powers 2012). 

 Positive class Negative class 

Positive prediction True positives False positives 

Negative prediction False Negatives True negatives 
Table 1 Contingency table 

In error correction, a true positive occurs when the system flags a true error and the gold standard 

correction matches the system correction. On the other hand, if the error does not exists it counts as 

a false positive. Likewise, a true negative occurs when the system does not flag any error and in fact 

no error exists (or it is not tagged in the gold standard). False negatives are, then, instances in which 

the system does not flag any error but an error does exist in the gold standard correction. 

From these values it is possible to calculate Precision (equation 1) and Recall (equation 2). From the 

instances tagged as positives by the system, precision measures in which proportion a classifier 

identifies true positive instances. On the other hand, recall measures what proportion of true 

instances (errors) are actually flagged as errors. From precision and recall it is possible to calculate F-

scores such as F1 (equation 4) and F05 (equation 5), which calculate a harmonic mean of both 

precision and recall. Moreover, it is also possible to calculate the accuracy of a classifier (equation 3), 

but as was stated previously it gives a too positive impression of the actual effectiveness of a classifier 

because the low rate of errors results in a large number of true negatives (Leacock et al. 2014). 

Nonetheless, precision, recall and F-scores can be affected by the skewness of the data, meaning that 

all these metrics are not portable from one corpus to another, which makes it difficult to compare the 

performance of one algorithm against another (Powers 2012). Ultimately, all evaluation metrics have 

their strengthens and weaknesses (Chodorow et al. 2012). Fortunately, the different shared tasks on 

error correction described previously have given a baseline on which to compare error correction 

algorithms, and that is another important reason to use the NUCLE corpus in this study. Additionally, 

these metrics are the common measures that are used in the literature and if any comparison with 

previous results is intended, it makes sense to keep the same metrics.  
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𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  

𝑇𝑃𝑠

𝑇𝑃𝑠 +  𝐹𝑃𝑠
 

 

(1) 

 
𝑅𝑒𝑐𝑎𝑙𝑙 =  

𝑇𝑃𝑠

𝑇𝑃𝑠 + 𝐹𝑁𝑠
 

 

(2) 

 
𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  

𝑇𝑃𝑠 + 𝑇𝑁𝑠

𝑇𝑃𝑠 + 𝐹𝑁𝑠 +  𝐹𝑃𝑠 + 𝑇𝑁𝑠
 

 

(3) 

 
𝐹1 =  2 ∗

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

 

(4) 

 
𝐹0.5 =  

(1 +  0.52) ∗ 𝑅𝑒𝑐𝑎𝑙𝑙 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑅𝑒𝑐𝑎𝑙𝑙 + 0.52 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
 

 

(5) 

Automatic evaluation of error correction systems requires an annotated corpus in which the output 

of the predictor (i.e. the classifier) can be compared against a gold standard set of corrections. In this 

respect, the availability of an annotated corpus such as NUCLE makes the evaluation task easier and 

more unbiased as one can rely on the annotated data as a gold standard that one can then validate 

against the output of the error correction algorithm. Nonetheless, error correction is a hard and non-

standardized task because different evaluators can come up with different corrections for the same 

error, even if they intend to annotate the same correction (Dahlmeier & Ng 2012).  

(Dahlmeier, Ng & Wu 2013), for example, carried out a pilot experiment to validate the level of 

agreement between correctors. They used three different criteria, namely Identification, Classification 

and Exact. In the first criterion two correctors agree if they identify an error within the same span. 

They also agree on classification if they identify the same type or class of error. The ultimate 

agreement occurs when they both select the same correction too.  Dahlmeier, Ng and Wu used the 

Cohen’s Kappa coefficient (Cohen 1960) to assess the agreement between the annotators. The 

Cohen’s Kappa coefficient is calculated by obtaining the probability of agreement (Pr(a)) and the 

probability of chance agreement (Pr(e)). The coefficient values that the authors obtained  on average 

were 0.3877, 0.5484, and 0.4838 for identification, classification and exact correction respectively. 

According to the range of metrics defined by (Landis & Koch 1977), their identification agreement was 

“fair” (from 0.21 to 0.40) and their scores for classification and exact correction were “moderate” 

(from 0.41 to 0.60). Nonetheless, an annotated learner corpus is an immensely beneficial asset for the 

task of training and evaluating an error correction system.  

Similarly, another issue that has to be dealt with when evaluating an error correction system is to 

interpret true positives. As stated above, a true positive occurs when the system detects an error that 

was also tagged in the gold standard annotations. However, one can differentiate two types of true 

positives: 1) the system and the gold standard flag an error in the same span, i.e. error detection. And 

2) the system suggests a correction that matches the correction annotated in the gold standard5, i.e. 

error correction. Moreover, as seen above, valid corrections may disagree, generating false positives 

that should be true positives. To smooth this discrepancy, several approaches have been proposed. 

(Dale & Kilgarriff 2011), for instance, grouped evaluation metrics into three categories, namely 

detection (an error is detected), recognition (the type and span of the error is identified) and 

correction (the correction proposed matches the gold standard). Because only prepositional errors 

are dealt with in this study, just the detection and correction metrics are adopted. For the detection 

                                                           
5 Bear in mind that a true correction that does not match the gold standard counts as a false positive. 
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evaluation, the identification of an error by the algorithm regardless of the correction is enough to 

count as a true positive. On the other hand, for the evaluation of the correction task, true positives 

count only if the correction suggested by the system matches with the gold standard. It can be 

visualized in the WAS evaluation Schema defined by (Chodorow et al. 2012), in which an extra line (*) 

is given to differentiate detection tasks from correction tasks (table 2). If the system, the gold 

standard, and the predictor differ in the preposition then it is a true positive for the error detection 

task whereas it is both a false positive and a false negative for the error correction task. The WAS 

evaluation schema was used in this study to generate the contingency table. 

 Written Annotated System 

TN X X X 

FP X X Y 

FN X Y X 

TP X Y Y 

* X Y Z 
Table 2 WAS evaluation Schema 

Moreover, the evaluation metrics proposed in the shared task CoNLL 2013 (Ng et al. 2013) are also 

taken into account to assess the algorithms proposed in this study. It consists of sets of edits that are 

compared against each other. On the one hand, there is the set of gold standard edits and, on the 

other hand, there is the set of edits suggested by the error correction system. The performance is then 

measured according to the number of edits that intersect both sets over the number of edits proposed 

in both sets, i.e. precision is calculated as the number of elements of the intersection subset of both 

sets over the total of elements of the system edits set. On the other hand, recall is calculated as the 

number of elements of the intersection subset of both sets over the total of elements of the gold 

standard edits. 

3.2 The Data 
The NUCLE corpus used in this study was the pre-processed version 2.0 made by the shared task CoNLL 

2013. They present the data as a sequence of lines per token in the NUCLE corpus with a lot of 

information, namely the essay ID, the paragraph index, the sentence index, the token index, the token 

itself, the POS tag, the index of the parent in the dependency tree, the dependency relation with the 

parent node and the constituent parse tree in a bracket-like format. All this additional information 

was obtained through the Stanford parser (Klein & Manning 2003) and the Python library NLTK (Bird, 

Klein & Loper 2009). The data extracted from this version differs slightly from the NUCLE version 2.3 

presented by (Ng et al. 2013) as shown in table 3. 

 NUCLE 2.0 NUCLE 2.3 

Essays 1397 1397 

Sentences 57,146 57,151 

Tokens 1,161,604 1,161,567 

Word types 29352 - 

Prepositions 133093 - 

Prepositional Errors 1341 - 

Prepositional Errors Rate 1.01% - 
Table 3 NUCLE data Overview 

 

Order Preposition Number of instances Prepositional Errors Rate 

1 Of 32236 193 0.60% 
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2 In 20085 242 1.20% 

3 For 10704 215 2.01% 

4 To 9645 167 1.73% 

5 As 7867 11 0.14% 

6 That 7328 1 0.01% 

7 On 7021 162 2.30% 

8 From 5934 34 0.57% 

9 With 5706 66 1.16% 

10 By 4884 47 0.96% 

11 At 2132 54 2.53% 

12 If 1849 0 0% 

13 Than 1394 0 0% 

14 Into 1232 45 3.65% 

15 About 1124 24 2.13% 

16 Because 1008 0 0% 

17 Like 924 0 0% 

18 Since 849 0 0% 

19 After 778 0 0% 

20 Through 750 18 2.4% 

21 Over 676 11 1.62% 

22 During 654 12 1.83% 

23 Without 630 0 0% 

24 Although 610 0 0% 

25 While 588 0 0% 

26 Whether 468 0 0% 

27 Before 436 0 0% 

28 Besides 417 1 0.24% 

29 Under 410 0 0% 

30 Between 404 4 1.00% 

The rest - 4350 34 0.78% 
Table 4 Top 30 of Prepositions in NUCLE 

3.2.1 Defining Prepositional Errors in the NUCLE corpus. 
As discussed previously, the type of prepositional errors a learner may make can be classified into 

three categories: extraneous insertion of preposition (unwanted preposition was included), missing 

preposition (no necessary preposition was included) and wrong prepositional choice (preposition used 

is not adequate or is incorrect). For the NUCLE corpus, these errors can be identified as follows:  

 Insertion error: correction indexes include a preposition in original text and, correction tag 

does not include any preposition – the correction may be empty as well.  

 Missing error: correction indexes does not include a preposition in original text and, correction 

tag does include a preposition. 

 Wrong choice: correction indexes include a preposition in original text and, correction tag 

includes a preposition as well. Usually, it is a one to one correction. Otherwise it could include 

other type of errors, and thus only one to one examples are taken into account. 

However, this study deals only with prepositional errors of the type wrong choice. The same algorithm 

can be applied to the other two types of prepositional errors but the examples have to be generated 

differently. It is important to note that because the prepositional class is not well defined (as discussed 

in the prepositions section), some words that some people could argue are conjunctions or adverbs 
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such as ‘that’ and ‘as’ are treated as prepositions in this study (they are also tagged as prepositions in 

the NUCLE corpus provided by the shared task CoNLL 2013). 

3.2.2 Training, validating and testing datasets 
Depending on the type of experiment, the number of examples per class varies, but as a general rule 

one example is generated for each prepositional instance in the corpus. Furthermore, the examples 

generated are randomly separated into two parts: 10% of the total data is employed for the testing 

phase and the remaining 90% is employed for the training phase. The dataset for the training set is 

randomized and separated into two blocks once again: 90% of the data is used to train the model 

while the remaining data is used for validating the data through cross-validation. These distinct sets 

of data are labelled according to their purpose (training, testing and validation) and then saved as 

Python “pickle” objects so that the same datasets can be employed in different experiments. The 

reason for taking this measure is to avoid that different datasets could bias the judgement over the 

results, because the data is randomly separated each time the script runs and different datasets are 

created each time. However, if the system detects that the datasets for that particular type of example 

already exists, the datasets are loaded instead of being created. 

3.2.3 Oversampling and Undersampling 
According to the pre-processed data provided by CoNLL 2013, the total number of prepositions 

contained in the NUCLE corpus is 1330936 and, as can be seen in table 4, the number of examples for 

each type of class is quite imbalanced. Just comparing the top three prepositions, it is easily 

identifiable that the number of instances of the class “in” is twice the size of the class “for”, which in 

turn is three times smaller than the top class “of”. As a consequence, some methods are applied to 

the training data to assess if either oversampling or undersampling are a better option for the task of 

error correction. It is necessary to point out that neither the validation dataset nor the testing dataset 

are pre-processed, i.e. they retain the imbalanced nature that would be expected in any learner corpus 

– and probably in real life.  

In order to test the undersampling of the training dataset, the parameter “--under” is set at True and 

an extra parameter – “—under_pos” – is used to set the maximum number of examples each class can 

have. The number goes from the top preposition (e.g. “of”) up to the bottom one, i.e. a value of 1 

means the top preposition, a value of 2 the second one and so on. To set a value that goes below the 

tenth preposition does not make sense as the number of examples becomes too low, affecting 

negatively the performance of the neural network. As a consequence, the undersampling is tested by 

setting the position parameter at 2 and 3 - which are the ones with the largest number of instances - 

and then 7 and 10 - which are reference points of a significant decrement in the number of examples. 

The system internally calls a function that takes the reference preposition and set its number of 

appearances as the reference limit over which classes with more instances are truncated in a random 

way. The effectiveness of the undersampling method is established by the analysis of the different 

metrics. 

The oversampling, on the other hand, is activated by setting the parameter “—over” at True and then 

setting the minimum of examples each class should have in a similar way to the undersampling 

parameter, i.e. the parameter “--over_pos” defines the position from top to bottom of the preposition 

that serves as a reference for the minimum number of examples for each class. The oversampling is 

carried out by applying a bootstrapping-like method, i.e. classes with low numbers of occurrences are 

                                                           
6 It is important to note that the preposition “to” is always tagged as the POS tag “TO”, regardless of its function 
as either preposition or auxiliary for the infinite verb form, and an extra pre-processing was necessary for this 
specific class of preposition. 
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randomly picked up during the training phase in order to compensate for the lack of examples. The 

parameters are set at values of 2, 3 and 7 per experiment. The effectiveness of the oversampling is 

tested in a similar way as the undersampling experiment. The default value for both oversampling and 

undersampling is False thereby all experiments are run using the training data as it is. 

3.3 The Model 
The algorithm is a multi-class classifier consisting of a LSTM neural network that is fed by a sequence 

of features (type of examples, e.g. sequence of words), and whose final state, in turn, feeds a logistic 

regression algorithm. Each node of the output of the logistic represents how well a class of preposition 

fits the current context or input, i.e. the preposition with the highest score is the one that best fits the 

current context. In the next sections each component is described in more detail. The neural network 

is trained by applying the Adam optimization algorithm (Kingma & Ba 2014) to the softmax cross 

entropy loss function with logits. Both functions are implemented in TensorFlow, and the algorithm 

calls the functions “tf.train.AdamOptimizer” and “tf.nn.softmax_cross_entropy_with_logits” 

respectively.  

3.3.1 LSTM Neural Network 
A recurrent network that follows a LSTM architecture is the core of the algorithm used in this study to 

detect and correct learner errors because, in theory, this model can render better results than those 

presented by linear classifiers. For the task of error correction, LSTM networks can be employed as a 

statistical machine translation in which, given a sequence of learner English words, it returns a 

sequence of correct English words through a process of encoding and decoding (Sutskever, Vinyals & 

Le 2014). Although promising results have been obtained in other fields following this approach, it has 

the disadvantage – from the CALL point of view – that it does not highlight the specific place in which 

the error is made, which one would think is a requirement by traditional CALL so that learners can 

understand their mistakes. Language model is another approach that can be accomplished by using 

LSTM networks. Given a sequence of words it predicts what the most likely word is that should follow 

in the sequence or – in the prepositional context - which preposition should be the more appropriate 

choice. This approach bears some similarity with a classifier approach, but classifiers have one 

advantage over a language model: in a classifier previous words are not the only context but words 

after the target preposition are also taken into account. This is especially relevant in the case of 

prepositions because the right preposition could depend on the argument –usually a noun phrase - it 

is the head of. Therefore, the approach that this study follows is a classifier that tries to predict the 

right preposition given a surrounding context. 

3.3.1.1 Simple LSTM 

A LSTM network can be defined by two components: the size of its state cell and the number of layers 

in a stack of LSTM nodes. These parameters represent the simplest LSTM model that can be built in 

TensorFlow. The system that was developed in this study has two components: on the one hand, it 

controls the type of model that can be trained and tested on the system and, on the other hand, the 

type of examples that are used by the model to feed the core model during training and testing – the 

goal of the testing is always the same though. The library TensorFlow provides a number of 

implementations of neural network models and the package “tf.contrib.rnn” is especially useful for 

the creation of recurrent cells. Simple LSTM networks were developed by calling the function 

“LSTMCell” that provides an implementation for a LSTM network. Additionally, the systems makes use 

of the function “nn.dynamic_rnn” – which is especially helpful for training, that is, a TensorFlow 

implementation of an unrolled recurrent network. In order to facilitate the undertaking of different 

experiments, the system includes a number of parameters that control the type of model and the type 

of data that should be deployed. The parameter that defines what type of model to use in the system 
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is “—model_type”. For a simple LSTM model, the value is “simple”. The model is tested against the 

bidirectional model that is detailed in the next section.  

3.3.1.2 Bidirectional 

In addition to the simple LSTM network model, that keeps a memory state of all previous features, 

there exists the bidirectional model – the biLSTM for the scope of this study – which keeps the state 

of both previous features and future features by means of two separate LSTM networks – a forward 

LSTM network and a backward LSTM network - and their respective memory cells. For the task at 

hand, which is similar to the task of tagging, the bidirectional model seems to be a more suitable 

model as the preposition target is usually located somewhere in the middle of two related sequences 

of words. Because the bidirectional model consists inherently of two LSTM networks, the model was 

built on the same base as the simple LSTM model with the difference that the two LSTM networks - 

the forward network and the backward network – were wrapped by a different unrolling 

implementation, namely the “bidirectional_dynamic_rnn” that controls the state of the two different 

networks. The value of the type parameter for this model is “bi” and this model is compared with the 

simple LSTM were all other parameter keep their default values. 

3.3.2 Dropout 
It makes sense to think that building deep recurrent networks with a large number of layers and a 

large number of hidden cells to correct prepositional errors can lead the RNN to overfit the relatively 

small training data. Therefore, it makes sense to implement a mechanism to stop overfitting by using 

a regularization method such as dropout. The implementation of dropout in TensorFlow is relatively 

straightforward as it provides a wrapper to add dropout to each LSTM cell. Following the recipe by 

(Zaremba, Sutskever & Vinyals 2014), the dropout is only applied to the “non-recurrent” nodes within 

the network in order to best employ regularization through dropout, i.e. dropout is applied only to 

the LSTM cells that are located between the cell that receives the input and the cell that outputs the 

final state. Two parameters are added into the system to control the dropout behaviour: “--dropout” 

which is a Boolean variable that determines if the system must or must not wrap each LSTM cell with 

a dropout mechanism; and “--keep_prob”, which indicates the proportion at which neurons should be 

kept, i.e. a value of 1 indicates that all neurons should be kept. In order to test the effectiveness of 

adding dropout to the neural network, a relatively deep neural network was set at a number of layers 

of 8 and a hidden size of 1600, which is the equivalent to the larger parameters defined in the neural 

network size section. Additionally, the probability of keeping neurons was set initially at 0.5 and 

progressively increased by 0.1 up to 1.0.  

3.3.3 Attention 
In theory, the attention mechanism should be appropriate to use when the sequence of features is 

long, but as it cannot be clearly established from which value the length of the sequence starts to be 

long, the attention mechanism was tested using the larger size of the input sequence, i.e. for a 

maximum length of 20 features on each side of the target preposition. The implementation of the 

attention mechanism in TensorFlow is not very different from the implementation of the dropout 

wrapper, and a wrapper provided by TensorFlow is used to add the attention mechanism to each LSTM 

node when the parameter “--attention” is set at True. The neural network using the attention 

mechanism was compared to another neural network of equal size and type that does not used the 

attention mechanism. 

3.3.4 Classes 
After deciding what type of algorithm will be used to predict prepositions given a context, it is now 

time to decide which types of classes the algorithm will address. Ideally, all prepositions should be 
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addressed but two main problems arise: first, the number of preposition is not well defined (see 

prepositions chapter) and as a consequence different English corpus correctors might annotate a word 

as a preposition while other might annotate the same word as a conjunction or as any other class – 

which would affect the supervised training of the model; second, the availability of the data is scarce 

and the number of examples for non-popular prepositions is minimum and, therefore, the algorithm 

could not  learn properly to distinguish the context that triggers those propositions. Thus, the number 

of prepositions is reduced to the most popular ones (at least while the model is trained solely on 

learner data). However, it is necessary to determine what exact number of prepositions should be 

appropriate to deal with the prepositions that are more difficult to master by learners, but that could 

be generalized by the algorithm taking into account that the dataset is relatively small (in the Data 

section it could be seen that for non-popular prepositions the number of instances is small). 

To define this number, a parameter was introduced in the code that sets the number of prepositions 

the algorithm addresses (“—class_limit”) so that a default algorithm could be trained using different 

numbers of classes, i.e. different types of prepositions. The number of classes was set at a minimum 

of 5 classes and then progressively increased by 5 up to a maximum of 30. The experiments were 

tested using the testing dataset. In addition to the metrics defined in the section on evaluating the 

algorithm, two types of graphs were created for each experiment: precision-recall graphs and ROC 

graphs. The purpose of these graphs was to evaluate for each experiment, how the algorithm was 

capable of distinguishing each class in a one-vs.-all approach in order to define what prepositions the 

algorithm should address. 

3.4 Size of Neural Network 
It is not enough to define the core of the algorithm, it is also necessary to define the size of the neural 

network. LSTM networks have a cell memory that keeps a state of the neural network through time, 

and the LSTM network can be parameterized according to the size of this cell state that affects the 

capability of the network to keep a robust state of the full sequence of features. Additionally, LSTM 

neural networks can be parameterized by the depth of its architecture, i.e. the number of layers in the 

stack of LSTM networks. It might be expected that a bigger cell state would render better results as 

the neural network would be able to retain more information such as long-range dependencies 

through time, but at the same time it is true that a bigger network would imply a larger use of memory 

and more computational processing in both training and testing phrases – and production of course. 

Similarly, a larger number of layers would, in theory, render a more powerful representational 

capability according to deep learning theory and consequently deeper recurrent networks require 

more machine resources than shallow ones. The representational power of deep neural networks 

comes from the learning capability of deep hierarchical layers to capture the key information from the 

input features by abstracting the domain knowledge in a hierarchical manner. As a consequence, the 

predictor is better informed, i.e. more precise.  

However, the ideal size of neither the cell state nor the number of layers can be determined 

theoretically. It has to be decided through a series of experiments to make a trade-off between cost 

and benefits. The way in which it was carried out in this study was by varying the size of each 

parameter while all other parameters in the algorithm kept their default values. The parameters of 

the size of the recurrent network were separately tested, that is, each parameter was modified and 

tested while the other parameters kept a fixed value. The first parameter to be tested was the number 

of hidden layers, i.e. the size of the cell state. For this experiment, the stack of LSTM cells was 

composed of only one layer. The basic number of layers was set at 50, and then doubled each time, 

that is to say, 100, 200, 400, 800 and 1600 per experiment. Next, the number of layers was set at a 

fixed value (400) and the number of layers was doubled each time up to a value of 8: 1, 2, 4 and 8. The 
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system defines two input parameters to parameterize the number of layers and the number of hidden 

cells, namely “—num_layer” and “—num_hidden” respectively.  

3.5 Feature Embedding Layer 
According to the literature on embedding vectors, two advantages can be gained from its use: a 

computational gain and an improvement on the representational power of the neural network. 

Moreover, among the models that are proposed, the context-predicting ones – concretely the skip-

gram model - seem to render better results than the count-based embedding vectors (Baroni, Dinu & 

Kruszewski 2014). As a consequence the word2vec model proposed by (Mikolov, Tomas, Sutskever, et 

al. 2013) and implemented by (Steiner 2015) – and which is available on the TensorFlow web-page 

tutorials - is the embedding model followed by this study.  Two parameters are important in this 

implementation – in addition to the examples: the length of the windows at each size of the target 

word and the number of times each word is used to generate a label – the method by (Mikolov, Tomas, 

Sutskever, et al. 2013) requires undersampling to get a more powerful representation. Therefore, 

those two parameters can be tuned during deployment thanks to the introduction of two parameters 

in the system, to know, “—size_window” and “—skip_num”. However, the “—skip_num” is set at 1 so 

as to get the biggest representational power of the embedding layer. Another parameter that is 

relevant in the embedding layer is the size (dimension) of the embedding vector, and in the system 

this parameter is controlled through the argument “--word_emb_size” (at least for lexical features). 

In order to evaluate the effectiveness of the embedding layer, a pilot experiment was carried out in 

which a simple LSTM neural network was trained using each type of input (embedding vectors and 

one hot vectors) in order to compare both the training time and the evaluation metrics and graphs. 

The parameter used to control the type of input is “—type_input”, which can take the values 

“one_hot” or “embedding”. Nonetheless, as the parameters of the embedding layer could affect the 

performance of the neural network, the embedding layer was further tested by varying the two 

parameters that control the embedding process, i.e. the size of the window and the size of the 

embedding vector. To avoid confusing results, each parameter was tested by varying one parameter 

while the other parameter kept a constant value per experiment. The window size parameter was 

increased by 1 from 1 to 4, whereas the embedding size parameter was tested at values of 50, 100 

and 200. The data used to create the embedding table is equivalent to the whole NUCLE corpus for 

each type of feature. 

Although the name “word2vec” suggests that this technique is designed to embed lexical features, 

other types of features such as POS are tested using both types of inputs. It is important to point out 

that different embedding vectors can be created from each core feature depending on their function, 

e.g. an embedding vector for previous word and another one for next words (Goldberg 2016). 

However, because of the nature of RNNs in which all features are treated the same, in this study all 

features of the same type will share the same vector. That is to say, because RNNs take care of the 

position of each feature, and all features have the same equivalence at its respective injection 

timestep 𝑡, it makes sense to use the same embedding vector for all features sharing the same 

characteristics, e.g. an embedding vector for words and another one for POS and so forth. 

Nonetheless, because different types of features have different embedding vectors, but they are 

injected into the neural network at the same time, e.g. lexical features and POS features, all resulting 

embedding vectors per feature are concatenated through a concatenation function 𝑐(. ) before 

entering the neural network. It is mathematically represented as: 

𝑥 = 𝑐(𝑓1, … , 𝑓𝑛) = [𝑣(𝑓1,), … 𝑣(𝑓𝑛)]  
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where 𝑓1, … , 𝑓𝑛 represent the core features and 𝑣(𝑓1,), … 𝑣(𝑓𝑛) their respective embedding function. 

The system performs this concatenation internally so that, depending on the types of features that 

are parameterised in the input, the concatenation is transparently brought about by the system. The 

relevance of each feature is treated in the features section. 

3.6 Examples 
Looking at the big picture, one could say that the ultimate goal of the algorithm is to choose the most 

appropriate preposition among 𝑛 numbers of prepositions given a learner context, e.g. learner text 

such as phrases, clauses, sentences, etc. Thus, each prepositional instance within the NUCLE corpus is 

a potential example for testing and training the algorithm. The easiest way to create an example is to 

find a preposition – given its POS tag – and make the surrounding words its context. However, many 

factors have to be thought through: how many words around the target preposition are adequate? 

Should the examples go beyond the limits of the sentence, i.e. including words from neighbour 

sentences? Should the target preposition be included within the example?  

As discussed in the chapter on prepositions, a preposition is normally followed by a noun or noun 

phrase that is its complement, so that the dependency between the preposition and its complement 

may be short, e.g. the preposition “of” and its complement “humanity” in the example “the long-

standing history of humanity”, or the preposition “in” and its complement “changing the civilization” 

in the example “… a crucial role in changing the civilization…” It would make sense then to choose a 

short window around the word as the example context, but the long-distance dependency problem 

cannot be forgotten. Therefore, the examples are generated with different lengths so that the 

dependency of prepositions on learner texts can be tested. This is in particular ideal for recurrent 

neural network which, in theory, can deal with arbitrary lengths of sequences. The parameter “--

seq_limit” is used to control the limit of the window-size on each side of the target preposition. In 

previous approaches, the target preposition is located in the middle of the context, and the length of 

the window at each side is equivalent to each other. In this study, the window sizes on each side of 

the target preposition are allowed to be different from each other because RNN can deal with flexible 

sizes of sequences. The length on each side is different if the length at any side is shorter than the 

length of the remaining sentence, i.e. no information from neighbour sentences is added into any 

example even when previous or posterior sentences may have an influence on the target preposition. 

In the context of learner writing, it makes sense because complex structures are not commonly used 

according to the avoidance behaviour theory (Leacock et al. 2014).  

The examples for the experiments were generated by iterating through the sentences of the NUCLE 

corpus in search of prepositions. Once a preposition was identified, words surrounding the preposition 

were taken on each side – up to the maximum length- and an example created. However, it was 

necessary to establish a method to determine the location of the target preposition among examples 

of variable length. Three different scenarios were set: including the original preposition in the example 

with the subsequent danger of biasing the neural network; not including the original preposition – 

which would create an ambiguous scenario for the simple LSTM network because the prediction is 

based on the full input sequence; and including a general tag: “<tag_target_prep>” in place of the 

original preposition. The parameter “--original” – used for this purpose - can take three values 

(“include”, "exclude" and "replace”) whereby the system controls the type of examples the system 

should deploy.  

In order to test the influence of the original preposition and the maximum length of the input 

sequence, two experiments were carried out. The length of the input sequence was progressively 

increased at values of 5, 10, 15 and 20 – sentences with a length larger than 40 are not the rule when 
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working with learner writings. As for the original preposition, the system was deployed for each of the 

three distinct scenarios discussed above. When generating the examples, all punctuation marks were 

treated as single tokens. Finally, the evaluation metrics were used to assess the influence of each type 

of example in the training phase of the algorithm.  

3.7 Features 
It can be expected that the most relevant feature for the task of error correction is a lexical feature, 

and lexical features are always present in the neural network input. The main reason is that 

prepositions as well as other lexical classes depend on the meaning of their context to make sense, 

e.g. the phrases “on the table” and “in the city” share the same structural information if they are 

parsed to either a constituent tree or a dependency tree; they also share the same POS tags. Thus, the 

use of the prepositions “on” and “in” depends on the meaning of the noun phrases that follow them. 

It might be thought that using an infinite training set, lexical features would be enough to solve the 

prepositional correction problem. However, the practical limitation of the training examples force the 

use of additional features to provide the input features with sufficient information to deal with the 

prediction of prepositions. The use of more features is justified by the sparsity that some lexical 

tokens, and especially open classes such as nouns, can generate. For example, table 4 shows that the 

number of instances per lexical type is low for a large number of lexical types in the NUCLE corpus. As 

a consequence, probably, the algorithm would not be able to capture the influence of these low rate 

lexical features in the task of predicting a preposition. One could think that the embedding vector 

could alleviate this weakness, but it has to be remembered that the embedding table is generated by 

training data from the corpus so that these low rate lexical features probably cannot be located 

properly in the embedding vectorial space.  

In order to test this hypothesis, the system includes a parameter to set a lower boundary for the 

number of instances a lexical type appears in the corpus, namely “—lower_limit”. The default value of 

this parameter is zero, but if the value increases, the size of the vocabulary decreases as the lexical 

types that do not cross the lower boundary are replaced by a generic tag: “<unknown_tag>”. To test 

the effect of the lower boundary, the algorithm is deployed using the default values and setting the 

lower limit at values of 1, 2, 4, 8 and 16 per experiment. The experiments are compared thrugh the 

analysis of the different metrics.  

3.7.1 POS Tags 
The second feature one would think of is the Part of Speech tag. POS tags provide general information 

about the example under analysis and it could be an important complement to alleviate the sparsity 

of some lexical features.  This feature is parameterized by the argument “--tags”, which is a Boolean 

that defines if the POS feature is used or not. Additionally, if this feature is set at True, the size of the 

embedding should be defined through the argument “--tag_emb_size” (unless the type of input is 

“one_hot”). To test the influence of this feature,  the algorithm was deployed using the default values 

and the tag parameters switched to True. Then, the embedding size of the feature was tested at values 

of 10, 15, 20 and 25 per experiment. How the POS feature was obtained was described in The Data 

section. 

3.7.2 Index of the Parent in the Dependency Tree 
Moreover, the index of the parent in the dependency tree was also tested. Although this is a numerical 

value, it was treated as all other features, namely as a dense vector. The parameter that defines the 

presence of this feature in the model is “--parent_index” (True/False) and the one that defines the 

embedding size is “—index_emb_size”. This feature was tested similarly to the POS tag feature. 

Although in the literature many other features such as dependency parse, constituency parse, lemma, 
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semantic, etc. are used, they are outside the scope of this study, in part because recurrent neural 

networks keeps the structure of the sentence internally and in part because of the time constrains of 

this project.  

3.8 Data Pre-processing 
Although, these days, various neural networks models argue that no data pre-processing tasks are 

needed before introducing the data into the network (Liu & Liu 2017), it is usual to run several pre-

processing tasks over the data before accessing the core algorithm. Most of the systems in the shared 

tasks performed some pre-processing before introducing the data into the systems. One of the most 

popular tasks among these pre-processing tasks is to correct spelling, which is a healthy measure as 

spelling errors and other grammatical errors generate noise that affects the performance of the error 

correction tasks (Dahlmeier, Ng & Ng 2012; Rozovskaya, Sammons & Roth 2012). Some methods to 

correct spelling errors involve the use of external tools such as Jazzy (Rozovskaya, Sammons & Roth 

2012) which, given an English word, returns a list of possible words sorted by likelihood. The drawback 

of this approach is that there is no context analysis to help choose the right word, so this ends up by 

introducing erroneous words for the given context. In this study spelling correction was carried out 

using the Python library “autocorrect”. In the context of learner data, this pre-processing task makes 

sense as learners are prone to misspell words and the lexical representation of some words could 

become sparse. Nonetheless, the impact of correcting the spelling of words without performing 

context analysis has to be tested carefully because a wrong correction of words could end up 

introducing wrong features. Thus, an experiment to compare the effectiveness of correcting spelling 

of isolated words was carried out by comparing the different metrics of the algorithm using the default 

algorithm while switching the parameter “--spelling” (which controls the use of the library to correct 

the spelling of the input words) on and off. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



32 
 

4 Results 
All experiments were carried out varying only one specific element or parameter of the algorithm 

while all other parameters kept a constant value. The default values are shown in table 5. 

Parameter Default 

Hidden Cells 400 

Number of layers 1 

Model simple 

Input Type embedding 

Word Embedding Size 100 

Embedding Window 2 

Number of Classes 10 

Spelling False 

POS Tags False 

Tags Embedding Size 20 

Index of Parent in Dependency Tree False 

Index Embedding Size 10 

Lower Limit for Vocabulary 0 

Oversampling False 

Oversampling Position 0 

Undersampling False 

Undersampling Position 0 

Length of Sequence Input (at each side) 5 

Original Preposition exclude 
Table 5 Default Parameters of the algorithm 

The validation dataset was used to cross validate the training phase in order to define the optimum 

number of epochs whereby the algorithm learns to best distinguish the different classes without losing 

its capacity to generalize.  In practice, it is given by the point where the validation dataset gets the 

lowest loss value. It is helpful to verify that the algorithm is neither underfitting nor overfitting, and 

for each experiment, the loss rate is drawn against the number of steps (epochs), together with the 

accuracy of the classifier for both datasets: training and validation. The training accuracy refers to the 

number of examples correctly classified over the total number of examples, and must not be mistaken 

for the accuracy of the correction task, i.e. the training accuracy refers to the capacity of the classifier 

to distinguish among the classes rather than the capacity to detect and correct prepositional errors.   

The testing dataset is used to verify the capability of the classifier to both distinguish among the 

different classes and to detect and correct prepositional errors. Two types of charts are presented to 

validate the algorithm’s capability to separate the different classes, namely a precision-recall chart 

and a Receiver operating characteristic (ROC) chart. Because the algorithm is a multiclass classifier, 

each graph is generated using a one-vs.-all approach per class. As for the detection and correction 

task, for each parameter under experimentation a comparative table is presented in which all metrics 

(without using any threshold) are presented. The results for the task of detection are presented 

separately from the result for the task of correction. Moreover, because the number of prepositions 

is large and not all are tackled by the classifier but included in the testing dataset, an additional couple 

of tables in which the algorithm only addresses the classes it was designed for are presented in order 

to verify the behaviour of the algorithm when dealing with the right classes. The correction task for all 

prepositions is complemented by a chart in which all metrics are drawn against a threshold for each 

experiment. 
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Once all parameters are tested and the “optimum” algorithm is defined, a new dataset is used, namely 

a production dataset that was not used to test any experiment and whose data was not used to train 

the embedding layer hence it is the real test of the algorithm.  

4.1 Size of the Neural Network 

4.1.1 Number of Hidden Cells 
For the number of hidden cells, the algorithm was tested using the default parameters and setting the 

number of hidden cells at 50, 100, 200, 400, 800 and 1600 for each experiment.  

4.1.1.1 Training Phase 

Following are the charts representing the training phase for each parameter: 

 

Figure 5 Cross validation using 50 Hidden Cells. 

 

Figure 6 Cross validation using 100 Hidden Cells 
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Figure 7 Cross validation using 200 Hidden Cells 

 

Figure 8 Cross validation using 400 Hidden Cells 

 

Figure 9 Cross validation using 800 Hidden Cells 
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Figure 10 Cross validation using 1600 Hidden Cells 

4.1.1.2 Testing Phase 

4.1.1.2.1 Precision – Recall Charts 

 

Figure 11 Precision vs. Recall for classes OF (upper left), IN (upper right), FOR (lower left) and TO (lower right) varying the 
number of Hidden Cells 
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Figure 12 Precision vs. Recall for classes AS (upper left), THAT (upper right), ON (lower left) and FROM (lower right) varying 
the number of Hidden Cells 

 

Figure 13 Precision vs. Recall for classes WITH (left), BY (right) varying the number of Hidden Cells 
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4.1.1.2.2 ROC Charts 

 

Figure 14 ROC for classes OF (upper left), IN (upper right), FOR (lower left) and TO (lower right) varying the number of 
Hidden Cells 

 

Figure 15 ROC for classes AS (upper left), THAT (upper right), ON (lower left) and FROM (lower right) varying the number of 
Hidden Cells 
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Figure 16 ROC for classes WITH (left) and BY (right) varying the number of Hidden Cells 

4.1.1.2.3 Metrics for Error Correction against Threshold 

 

Figure 17 Correction Metrics against a Threshold using 50 Hidden Cells 

 

Figure 18 Correction Metrics against a Threshold using 100 Hidden Cells 
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Figure 19 Correction Metrics against a Threshold using 200 Hidden Cells 

 

Figure 20 Correction Metrics against a Threshold using 400 Hidden Cells 

 

Figure 21 Correction Metrics against a Threshold using 800 Hidden Cells 
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Figure 22 Correction Metrics against a Threshold using 1600 Hidden Cells 

4.1.1.2.4 Metrics for Error Detection and Correction Tasks 

Hidden Cells Precision Recall F1 F05 Accuracy 

50 1.00% 34.15% 1.96% 1.25% 57.00% 

100 1.11% 37.19% 2.16% 1.38% 57.65% 

200 1.06% 35.97% 2.07% 1.32% 57.23% 

400 1.10% 37.8% 2.14% 1.37% 56.64% 

800 1.03% 35.36% 2.01% 1.29% 56.83% 

1600 1.21% 40.85% 2.35% 1.50% 57.47% 
Table 6 Error correction for all classes using different numbers of hidden cells 

Hidden Cells Precision Recall F1 F05 Accuracy 

50 2.12% 75.0% 4.30% 2.74% 57.85% 

100 2.37% 79.27% 4.60% 2.94% 58.49% 

200 2.34% 79.27% 4.56% 2.91% 58.09% 

400 2.4% 82.32% 4.66% 2.98% 57.53% 

800 2.34% 79.88% 4.55% 2.91% 57.71% 

1600 2.37% 79.87% 4.61% 2.94% 58.24% 
Table 7 Error detection for all classes using different numbers of hidden cells 

Hidden Cells Precision Recall F1 F05 Accuracy 

50 1.60% 40.87% 3.06% 1.97% 67.74% 

100 1.73% 44.52% 3.39% 2.18% 68.46% 

200 1.68% 43.06% 3.24% 2.08% 67.96% 

400 1.73% 45.25% 3.33% 2.14% 67.27% 

800 1.63% 42.33% 3.14% 2.02% 67.49% 

1600 1.92% 48.90% 3.70% 2.37% 68.26% 
Table 8 Error correction for 10 top classes using different numbers of hidden cells 

Hidden Cells Precision Recall F1 F05 Accuracy 

50 3.6% 78.83% 5.90% 3.79% 68.54% 

100 3.36% 84.67% 6.46% 4.15% 69.30% 

200 3.22% 82.48% 6.21% 3.99% 68.80% 

400 3.34% 87.59% 6.44% 4.13% 68.15% 

800 3.23% 83.94% 6.23% 4.00% 68.36% 

1600 3.30% 83.94% 6.34% 4.08% 68.70% 
Table 9 Error detection for top 10 classes using different numbers of hidden cells 
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4.1.2 Number of Layers 
For the number of layers (depth of the neural network), the algorithm was tested using the default 

parameters and setting the number of layers at 2, 4, 8. The experiment using 1 layer was already 

carried out in the number of hidden cells section. 

4.1.2.1 Training Phase 

 

Figure 23 Cross validation using 2 Layers 

 

Figure 24 Cross validation using 4 Layers 
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Figure 25 Cross validation using 8 Layers 

4.1.2.2 Testing Phase 

4.1.2.2.1 Precision – Recall Graphs 

 

Figure 26 Precision vs. Recall for classes OF (upper left), IN (upper right), FOR (lower left) and TO (lower right) varying the 
number of layers 
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Figure 27 Precision vs. Recall for classes AS (upper left), THAT (upper right), ON (lower left) and FROM (lower right) varying 
the number of layers 

 

Figure 28 Precision vs. Recall for classes WITH (left) and BY (right) varying the number of layers 

4.1.2.2.2 ROC Graphs 

 

Figure 29 Precision vs. Recall for classes OF (upper left), IN (upper right), FOR (lower left) and TO (lower right) varying the 
number of Layers 
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Figure 30 ROC for classes AS (upper left), THAT (upper right), ON (lower left) and FROM (lower right) varying the number of 
layers 

 

Figure 31 ROC for classes WITH (left) and BY (right) varying the number of layers 

4.1.2.2.3 Metrics for Error Correction against a Threshold 

 

 

Figure 32 Correction Metrics against a Threshold using 2 Layers 

 



45 
 

 

Figure 33 Correction Metrics against a Threshold using 4 Layers 

 

Figure 34 Correction Metrics against a Threshold using 8 Layers 

4.1.2.2.4 Metrics for Error Detection and Correction Tasks 

Number of Layers Precision Recall F1 F05 Accuracy 

1 1.10% 37.8% 2.14% 1.37% 56.64% 

2 1.13% 38.4% 2.20% 1.40% 57.17% 

4 1.07% 35.4% 2.07% 1.32% 58.05% 

8 1.09% 37.20% 2.14% 1.36% 57.20% 
Table 10 Error correction for all classes using different numbers of layers 

Number of Layers Precision Recall F1 F05 Accuracy 

1 2.4% 82.32% 4.66% 2.98% 57.53% 

2 2.30% 78.05% 4.47% 2.86% 57.96% 

4 2.32% 76.83% 4.50% 2.88% 58.88% 

8 2.27% 76.82% 4.41% 2.82% 57.99% 
Table 11 Error detection for all classes using different numbers of layers 

Number of Layers Precision Recall F1 F05 Accuracy 

1 1.73% 45.25% 3.33% 2.14% 67.27% 

2 1.79% 45.98% 3.44% 2.16% 67.89% 

4 1.71% 42.33% 3.28% 2.11% 68.94% 

8 1.74% 44.52% 3.35% 2.15% 67.95% 
Table 12 Error correction for 10 top classes using different numbers of layers 
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Number of Layers Precision Recall F1 F05 Accuracy 

1 3.34% 87.59% 6.44% 4.13% 68.15% 

2 3.24% 83.21% 6.24% 4.01% 68.67% 

4 3.24% 80.29% 6.22% 4.01% 69.74% 

8 3.10% 79.56% 5.98% 3.84% 68.68% 
Table 13 Error detection for 10 top classes using different numbers of layers 

4.2 Data 

4.2.1 Undersampling 
For undersampling the examples of the training data (validation and testing were not modified), the 

“under” parameter was set at True and the under position was set at values of 2, 3, 7 and 10.  

4.2.1.1 Training Phrase 

 

Figure 35 Cross validation by undersampling the maximum number of instances per class from the second most frequent 
preposition in the corpus, i.e. ‘IN’ 

 

Figure 36 Cross validation by undersampling the maximum number of instances per class from the third most frequent 
preposition in the corpus, i.e. ‘FOR’ 
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Figure 37 Cross validation by undersampling the maximum number of instances per class from the seventh most frequent 
preposition in the corpus, i.e. ‘ON’ 

 

 

Figure 38 Cross validation by undersampling the maximum number of instances per class from the tenth most frequent 
preposition in the corpus, i.e. ‘BY’ 



48 
 

4.2.1.2 Testing Phase 

4.2.1.2.1 Precision-Recall Graphs 

 

Figure 39 Precision vs. Recall for classes OF (upper left), IN (upper right), FOR (lower left) and TO (lower right) by 
undersampling training examples 

 

 

Figure 40 Precision vs. Recall for classes AS (upper left), THAT (upper right), ON (lower left) and FROM (lower right) by 
undersampling the training examples 

 

Figure 41 Precision vs. Recall for classes WITH (left) and BY (right) by undersampling the training examples 
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4.2.1.2.2 ROC Graphs 

 

Figure 42 ROC for classes OF (upper left), IN (upper right), FOR (lower left) and TO (lower right) by undersampling the 
training examples 

 

 

Figure 43 ROC for classes AS (upper left), THAT (upper right), ON (lower left) and FROM (lower right) by undersampling the 
training examples 
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Figure 44 ROC for classes WITH (left) and BY (right) by undersampling the training examples 

4.2.1.2.3 Metrics for Error Correction against a Threshold 

 

Figure 45 Correction Metrics against a Threshold by undersampling the maximum number of instances per class from the 
second most frequent preposition in the corpus, i.e. ‘IN’ 

 

 

Figure 46 Correction Metrics against a Threshold by undersampling the maximum number of instances per class from the 
third most frequent preposition in the corpus, i.e. ‘FOR’ 
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Figure 47 Correction Metrics against a Threshold by undersampling the maximum number of instances per class from the 
seventh most frequent preposition in the corpus, i.e. ‘ON’ 

 

Figure 48 Correction Metrics against a Threshold by undersampling the maximum number of instances per class from the 
tenth most frequent preposition in the corpus, i.e. ‘BY’ 

4.2.1.2.4 Metrics for Error Detection and Correction Tasks 

Under Precision Recall F1 F05 Accuracy 

without 1.10% 37.8% 2.14% 1.37% 56.64% 

2 1.10% 37.80% 2.15% 1.37% 56.72% 

3 0.92% 32.31% 1.79% 1.14% 55.43% 

7 0.98% 37.19% 1.92% 1.22% 52.22% 

10 0.82% 33.54% 1.60% 1.02% 48.29% 
Table 14 Error correction for all classes by undersampling the training examples 

Under Precision Recall F1 F05 Accuracy 

without 2.4% 82.32% 4.66% 2.98% 57.53% 

2 2.32% 79.27% 4.50% 2.87% 57.54% 

3 2.25% 79.27% 4.38% 2.80% 56.35% 

7 2.14% 81.10% 4.18% 2.66% 53.07% 

10 2.08% 85.36% 4.07% 2.59% 49.26% 
Table 15 Error detection for all classes by undersampling the training examples 

Under Precision Recall F1 F05 Accuracy 

without 1.73% 45.25% 3.33% 2.14% 67.27% 

2 1.73% 45.25% 3.34% 2.15% 67.38% 
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3 1.42% 38.69% 2.74% 1.76% 65.82% 

7 1.46% 44.52% 2.84% 1.82% 62.02% 

10 1.18% 40.15% 2.29% 1.46% 57.36% 
Table 16 Error correction for 10 top classes by undersampling the training examples 

Under Precision Recall F1 F05 Accuracy 

without 3.34% 87.59% 6.44% 4.13% 68.15% 

2 3.11% 81.02% 5.98% 3.85% 68.14% 

3 3.08% 83.94% 5.94% 3.82% 66.76% 

7 2.79% 84.67% 5.39% 3.45% 62.84% 

10 2.55% 86.86% 4.95% 3.16% 58.28% 
Table 17 Error detection for 10 top classes by undersampling the training examples 

4.2.2 Oversampling 
For oversampling the examples of the training data (validation and testing were not modified), the 

“over” parameter was set at True and the over position was set at values of 1, 2, 3 and 7. 

4.2.2.1 Training Phase 

 

Figure 49 Cross validation by oversampling the minimum number of instances per class from the most frequent preposition 
in the corpus, i.e. ‘OF’ 
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Figure 50 Cross validation by oversampling the minimum number of instances per class from the second most frequent 
preposition in the corpus, i.e. ‘IN’ 

 

Figure 51 Cross validation by oversampling the minimum number of instances per class from the third most frequent 
preposition in the corpus, i.e. ‘FOR’ 
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Figure 52 Cross validation by oversampling the minimum number of instances per class from the seventh most frequent 
preposition in the corpus, i.e. ‘ON’ 

4.2.2.2 Testing Phase 

4.2.2.2.1 Precision-Recall Graphs 

 

Figure 53 Precision vs. Recall for classes OF (upper left), IN (upper right), FOR (lower left) and TO (lower right) by 
oversampling the training examples 
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Figure 54 Precision vs. Recall for classes AS (upper left), THAT (upper right), ON (lower left) and FROM (lower right) by 
oversampling the training examples 

 

 

Figure 55 Precision vs. Recall for classes WITH (left) and BY (right) by oversampling the training examples 

4.2.2.2.2 ROC Graphs 

 

Figure 56 ROC for classes OF (upper left), IN (upper right), FOR (lower left) and TO (lower right) by oversampling the training 
examples 
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Figure 57 ROC for classes AS (upper left), THAT (upper right), ON (lower left) and FROM (lower right) by oversampling the 
training examples 

 

Figure 58 for classes WITH (left) and BY (right) by oversampling the training examples 

4.2.2.2.3 Metrics for Error Correction against a Threshold 

 

Figure 59 Correction Metrics against a Threshold by oversampling the minimum number of instances per class from the 
most frequent preposition in the corpus, i.e. ‘OF’ 
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Figure 60 Correction Metrics against a Threshold by oversampling the minimum number of instances per class from the 
second most frequent preposition in the corpus, i.e. ‘IN’ 

 

Figure 61 Correction Metrics against a Threshold by oversampling the minimum number of instances per class from the 
third most frequent preposition in the corpus, i.e. ‘FOR’ 
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Figure 62 Correction Metrics against a Threshold by oversampling the minimum number of instances per class from the 
most frequent preposition in the corpus, i.e. ‘ON’ 

4.2.2.2.4 Metrics for Error Detection and Correction Tasks 

Over Precision Recall F1 F05 Accuracy 

without 1.10% 37.8% 2.14% 1.37% 56.64% 

1 1.00% 36.58% 1.96% 1.25% 54.06% 

2 0.99% 35.36% 1.92% 1.23% 54.80% 

3 1.07% 37.19% 2.09% 1.33% 56.27% 

7 1.00% 34.76% 1.95% 1.25% 56.26% 
Table 18 Error correction for all classes by oversampling the training examples 

Over Precision Recall F1 F05 Accuracy 

without 2.4% 82.32% 4.66% 2.98% 57.53% 

1 2.31% 84.14% 4.50% 2.87% 54.98% 

2 2.27% 81.10% 4.42% 2.82% 55.70% 

3 2.34% 81.10% 4.56% 2.91% 57.14% 

7 2.38% 82.32% 4.63% 2.95% 57.20% 
Table 19 Error detection for all classes by oversampling the training examples 

Over Precision Recall F1 F05 Accuracy 

without 1.73% 45.25% 3.33% 2.14% 67.27% 

1 1.53% 43.78% 2.95% 1.90% 64.21% 

2 1.52% 42.33% 2.93% 1.88% 65.09% 

3 1.68% 44.52% 3.23% 2.08% 66.83% 

7 1.57% 41.60% 3.02% 1.95% 66.83% 
Table 20 Error correction for 10 top classes by oversampling the training examples 

Over Precision Recall F1 F05 Accuracy 

without 3.34% 87.59% 6.44% 4.13% 68.15% 

1 3.01% 86.13% 5.81% 3.73% 65.08% 

2 3.01% 83.94% 5.81% 3.73% 65.95% 

3 3.19% 84.67% 6.15% 3.95% 67.67% 

7 3.17% 83.94% 6.11% 3.93% 67.72% 
Table 21 Error correction for 10 top classes by oversampling the training examples 
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4.3 Examples 

4.3.1 Length of the Input Sequence 
For the length of the input sequence, the algorithm was tested using the default parameters and 

setting the sequence limit at values of 10, 15 and 20 per experiment. The experiment using a sequence 

limit of 5 was tested in the number of hidden cells section. 

4.3.1.1 Training Phase 

 

Figure 63 Table 18 Cross validation at a maximum input sequence of 10 

 

Figure 64 Table 18 Cross validation at a maximum input sequence of 15 
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Figure 65 Table 18 Cross validation at a maximum input sequence of 20 

4.3.1.2 Testing Phase 

4.3.1.2.1 Precision-Recall Graphs 

 

Figure 66 Precision vs. Recall for classes OF (upper left), IN (upper right), FOR (lower left) and TO (lower right) varying the 
maximum length of the input sequence 
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Figure 67 Precision vs. Recall for classes AS (upper left), THAT (upper right), ON (lower left) and FROM (lower right) varying 
the maximum length of the input sequence 

 

Figure 68 Precision vs. Recall for classes WITH (left) and BY (right) varying the maximum length of the input sequence 

4.3.1.2.2 ROC Graphs 

 

Figure 69 ROC for classes OF (upper left), IN (upper right), FOR (lower left) and TO (lower right) varying the maximum length 
of the input sequence 
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Figure 70 ROC for classes AS (upper left), THAT (upper right), ON (lower left) and FROM (lower right) varying the maximum 
length of the input sequence 

 

Figure 71 ROC for classes WITH (left) and BY (right) varying the maximum length of the input sequence 

4.3.1.2.3 Metrics for Error Correction against a Threshold 

 

Figure 72 Correction Metrics against a Threshold at a maximum input sequence of 10 
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Figure 73 Correction Metrics against a Threshold at a maximum input sequence of 15 

 

Figure 74 Correction Metrics against a Threshold at a maximum input sequence of 20 

4.3.1.2.4 Metrics for Detection and Correction Tasks 

Sequence Precision Recall F1 F05 Accuracy 

5 1.10% 37.8% 2.14% 1.37% 56.64% 

10 0.77% 29.88% 1.50% 0.96% 50.94% 

15 0.75% 29.88% 1.48% 0.94% 50.00% 

20 0.70% 28.05% 1.37% 0.87% 49.24% 
Table 22 Error correction for all classes varying the maximum length of the input sequence 

Sequence Precision Recall F1 F05 Accuracy 

5 2.4% 82.32% 4.66% 2.98% 57.53% 

10 2.06% 79.88% 4.022% 2.56% 51.89% 

15 2.00% 79.27% 3.92% 2.49% 50.93% 

20 1.94% 79.27% 3.86% 2.46% 50.20% 
Table 23 Error detection for all classes varying the maximum length of the input sequence 

Sequence Precision Recall F1 F05 Accuracy 

5 1.73% 45.25% 3.33% 2.14% 67.27% 

10 1.14% 35.77% 2.20% 1.41% 60.50% 

15 1.10% 35.77% 2.14% 1.37% 59.39% 

20 1.02% 33.58% 1.97% 1.26% 58.48% 
Table 24 Error correction for 10 top classes varying the maximum length of the input sequence 
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Sequence Precision Recall F1 F05 Accuracy 

5 3.34% 87.59% 6.44% 4.13% 68.15% 

10 2.64% 83.21% 5.12% 3.28% 61.45% 

15 2.50% 81.02% 4.96% 3.11% 60.29% 

20 2.45% 81.02% 4.76% 3.04% 59.42% 
Table 25 Error correction for 10 top classes varying the maximum length of the input sequence 

4.4 Features 

4.4.1 Tags 
To test the effectiveness of adding POS tags to the input sequence (keeping the lexical features), the 

tag flag was set at True and the length of the embedding size was set at values of 10, 15, 20 and 25 

while keeping all other parameters at their default value.  

4.4.1.1 Training Phase 

 

Figure 75 Cross validation adding embedded POS tags at a vector of size 10 

 

Figure 76 Cross validation adding embedded POS tags at a vector of size 15 
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Figure 77 Cross validation adding embedded POS tags at a vector of size 20 

 

Figure 78 Cross validation adding embedded POS tags at a vector of size 25 
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4.4.1.2 Testing Phase 

4.4.1.2.1 Precision-Recall Graphs 

 

Figure 79 Precision vs. Recall for classes OF (upper left), IN (upper right), FOR (lower left) and TO (lower right) adding POS 
tags at different embedding sizes 

 

Figure 80 Precision vs. Recall for classes AS (upper left), THAT (upper right), ON (lower left) and FROM (lower right) adding 
POS tags at different embedding sizes 

 

Figure 81 Precision vs. Recall for classes WITH (left) and BY (right) adding POS tags at different embedding sizes 
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4.4.1.2.2 ROC Graphs 

 

Figure 82 ROC for classes OF (upper left), IN (upper right), FOR (lower left) and TO (lower right) adding POS tags at different 
embedding sizes 

 

Figure 83 ROC for classes AS (upper left), THAT (upper right), ON (lower left) and FROM (lower right) adding POS tags at 
different embedding sizes 

 

Figure 84 ROC for classes WITH (left) and BY (right) adding POS tags at different embedding sizes 
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4.4.1.2.3 Metrics for Error Correction with Threshold 

 

Figure 85 Correction Metrics against a Threshold adding embedded POS tags at a vector of size 10 

 

Figure 86 Correction Metrics against a Threshold adding embedded POS tags at a vector of size 15 

 

Figure 87 Correction Metrics against a Threshold adding embedded POS tags at a vector of size 20 
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Figure 88 Correction Metrics against a Threshold adding embedded POS tags at a vector of size 25 

4.4.1.2.4 Metrics for Correction and Detection Tasks 

Embedding Tag Precision Recall F1 F05 Accuracy 

Without tags 1.10% 37.8% 2.14% 1.37% 56.64% 

10 1.11% 35.36% 2.17% 1.38% 59.90% 

15 1.18% 37.19% 2.30% 1.47% 60.34% 

20 1.15% 37.19% 2.23% 1.42% 59.00% 

25 1.11% 35.36% 2.15% 1.38% 59.67% 
Table 26 Error correction for all classes adding POS tags at different embedding sizes 

Embedding Tag Precision Recall F1 F05 Accuracy 

Without tags 2.4% 82.32% 4.66% 2.98% 57.53% 

10 2.45% 77.44% 4.74% 3.03% 60.75% 

15 2.43% 76.21% 4.72% 3.02% 61.13% 

20 2.48% 80.49% 4.82% 3.08% 59.87% 

25 2.43% 77.43% 4.71% 3.02% 60.52% 
Table 27 Error detection for all classes adding POS tags at different embedding sizes 

Embedding Tag Precision Recall F1 F05 Accuracy 

Without tags 1.73% 45.25% 3.33% 2.14% 67.27% 

10 1.84% 42.33% 3.52% 2.27% 71.13% 

15 1.97% 44.52% 3.77% 2.43% 71.66% 

20 1.86% 44.52% 3.57% 2.30% 70.08% 

25 1.82% 42.33% 3.49% 2.25% 70.87% 
Table 28 Error correction for 10 top classes adding POS tags at different embedding sizes 

Embedding Tag Precision Recall F1 F05 Accuracy 

Without Tags 3.34% 87.59% 6.44% 4.13% 68.15% 

10 3.55% 81.75% 6.81% 4.39% 71.98% 

15 3.55% 80.29% 6.79% 4.38% 72.43% 

20 3.48% 83.21% 6.68% 4.30% 70.90% 

25 3.52% 81.75% 6.74% 4.35% 71.71% 
Table 29 Error correction for 10 top classes adding POS tags at different embedding sizes 
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4.4.2 Parse Features 
To test the effectiveness of adding the parent index of the dependency tree to the input sequence 

(keeping the lexical features), the index flag was set at True and the length of the embedding size was 

set at values of 10, 15, 20 and 25 while keeping all other parameters at their default value.  

4.4.2.1 Training Phase 

 

Figure 89 Cross validation adding embedded parent index of dependency tree at a vector of size 10 

 

Figure 90 Cross validation adding embedded parent index of dependency tree at a vector of size 15 
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Figure 91 Cross validation adding embedded parent index of dependency tree at a vector of size 20 

 

Figure 92 Cross validation adding embedded parent index of dependency tree at a vector of size 25 
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4.4.2.2 Testing Phase 

4.4.2.2.1 Precision-Recall Graphs 

 

Figure 93 Precision vs. Recall for classes OF (upper left), IN (upper right), FOR (lower left) and TO (lower right) adding parent 
index of dependency tree at different embedding sizes 

 

Figure 94 Precision vs. Recall for classes AS (upper left), THAT (upper right), ON (lower left) and FROM (lower right) adding 
parent index of dependency tree at different embedding sizes 

 

Figure 95 Precision vs. Recall for classes WITH (left) and BY (right) adding parent index of dependency tree at different 
embedding sizes 
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4.4.2.2.2 ROC Graphs 

 

Figure 96 ROC for classes OF (upper left), IN (upper right), FOR (lower left) and TO (lower right) adding parent index of 
dependency tree at different embedding sizes 

 

Figure 97 ROC for classes AS (upper left), THAT (upper right), ON (lower left) and FROM (lower right) adding parent index of 
dependency tree at different embedding sizes 

 

Figure 98 ROC for classes WITH (left) and BY (right) adding parent index of dependency tree at different embedding sizes 
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4.4.2.2.3 Metrics for Error Correction against Threshold 

 

Figure 99 Correction Metrics against a Threshold adding embedded parent index of dependency tree at a vector of size 10 

 

Figure 100 Correction Metrics against a Threshold adding embedded parent index of dependency tree at a vector of size 15 

 

Figure 101 Correction Metrics against a Threshold adding embedded parent index of dependency tree at a vector of size 20 
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Figure 102 Correction Metrics against a Threshold adding embedded parent index of dependency tree at a vector of size 25 

4.4.2.2.4 Metrics for Error Correction and Detection Tasks 

Embedding Index Precision Recall F1 F05 Accuracy 

Without Index 1.10% 37.8% 2.14% 1.37% 56.64% 

10 1.21% 39.63% 2.35% 1.50% 58.64% 

15 1.04% 34.14% 2.02% 1.29% 58.45% 

20 1.10% 36.58% 2.15% 1.37% 58.23% 

25 0.96% 31.70% 1.88% 1.20% 58.37% 
Table 30 Error correction for all classes adding parent index of dependency tree at different embedding sizes 

Embedding Index Precision Recall F1 F05 Accuracy 

Without Index 2.4% 82.32% 4.66% 2.98% 57.53% 

10 2.34% 76.82% 4.55% 2.91% 59.38% 

15 2.34% 76.82% 4.54% 2.90% 59.30% 

20 2.34% 77.44% 4.55% 2.91% 59.04% 

25 2.27% 74.39% 4.40% 2.81% 59.22% 
Table 31 Error detection for all classes adding parent index of dependency tree at different embedding sizes 

Embedding Index Precision Recall F1 F05 Accuracy 

Without Index 1.73% 45.25% 3.33% 2.14% 67.27% 

10 1.95% 47.44% 3.74% 2.41% 69.63% 

15 1.67% 40.87% 3.22% 2.07% 69.41% 

20 1.77% 43.79% 3.41% 2.20% 69.14% 

25 1.55% 37.96% 2.98% 1.92% 69.32% 
Table 32 Error correction for 10 top classes adding parent index of dependency tree at different embedding sizes 

Embedding Index Precision Recall F1 F05 Accuracy 

Without Index 3.34% 87.59% 6.44% 4.13% 68.15% 

10 3.39% 82.48% 6.51% 4.20% 70.37% 

15 3.26% 79.56% 6.27% 4.03% 70.24% 

20 3.37% 83.21% 6.49% 4.18% 69.97% 

25 3.17% 77.37% 6.09% 3.92% 70.15% 
Table 33 Error detection for 10 top classes adding parent index of dependency tree at different embedding sizes 
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4.4.3 Limiting Minimum Number of Lexical Features 
To test the effectiveness of setting a lower limit to the number of lexical features according to their 

number of occurrences, the parameter lower limit was set at values of 1, 2, 4, 8 and 16 for each 

experiment, while keeping all other parameters at their default value.  

4.4.3.1 Training Phase 

 

Figure 103 Cross validation limiting the minimum number of lexical occurrences at more than 1 

 

Figure 104 Cross validation limiting the minimum number of lexical occurrences at more than 2 
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Figure 105 Cross validation limiting the minimum number of lexical occurrences at more than 4 

 

Figure 106 Cross validation limiting the minimum number of lexical occurrences at more than 8 

 

Figure 107 Cross validation limiting the minimum number of lexical occurrences at more than 16 
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4.4.3.2 Testing Phase 

4.4.3.2.1 Precision-Recall Graphs 

 

Figure 108 Precision vs. Recall for classes OF (upper left), IN (upper right), FOR (lower left) and TO (lower right) varying the 
minimum number of lexical occurrences 

 

Figure 109 Precision vs. Recall for classes AS (upper left), THAT (upper right), ON (lower left) and FROM (lower right) varying 
the minimum number of lexical occurrences 

 

Figure 110 Precision vs. Recall for classes WITH (left) and BY (right) varying the minimum number of lexical occurrences 
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4.4.3.2.2 ROC Graphs 

 

Figure 111 ROC for classes OF (upper left), IN (upper right), FOR (lower left) and TO (lower right) varying the minimum 
number of lexical occurrences 

 

Figure 112 ROC for classes AS (upper left), THAT (upper right), ON (lower left) and FROM (lower right) varying the minimum 
number of lexical occurrences 

 

Figure 113 ROC for classes WITH (left) and BY (right) varying the minimum number of lexical occurrences 
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4.4.3.2.3 Metrics for Error Correction against a Threshold 

 

Figure 114 Error Correction Metrics against a Threshold limiting the minimum number of lexical occurrences at more than 1 

 

Figure 115 Error Correction Metrics against a Threshold limiting the minimum number of lexical occurrences at more than 2 

 

Figure 116 Error Correction Metrics against a Threshold limiting the minimum number of lexical occurrences at more than 4 
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Figure 117 Error Correction Metrics against a Threshold limiting the minimum number of lexical occurrences at more than 8 

 

Figure 118 Error Correction Metrics against a Threshold limiting the minimum number of lexical occurrences at more than 
16 

4.4.3.2.4 Metrics for Error Correction and Detection Tasks 

Lower Limit Precision Recall F1 F05 Accuracy 

0 1.10% 37.8% 2.14% 1.37% 56.64% 

1 1.15% 39.63% 2.23% 1.43% 56.48% 

2 1.16% 39.02% 2.26% 1.44% 57.61% 

4 1.08% 37.80% 2.11% 1.35% 55.98% 

8 1.11% 37.80% 2.16% 1.38% 57.00% 

16 1.09% 37.19% 2.11% 1.35% 56.76% 
Table 34 Error correction for all classes limiting the minimum number of lexical occurrences 

Lower Limit Precision Recall F1 F05 Accuracy 

0 2.4% 82.32% 4.66% 2.98% 57.53% 

1 2.48% 85.36% 4.81% 3.07% 57.38% 

2 2.43% 81.70% 4.73% 3.02% 58.46% 

4 2.45% 85.36% 4.76% 3.04% 56.91% 

8 2.44% 82.93% 4.74% 3.02% 57.90% 

16 2.51% 85.97% 4.88% 3.11% 57.73% 
Table 35 Error detection for all classes limiting the minimum number of lexical occurrences 
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Lower Limit Precision Recall F1 F05 Accuracy 

0 1.73% 45.25% 3.33% 2.14% 67.27% 

1 1.80% 47.44% 3.47% 2.23% 67.11% 

2 1.84% 46.71% 3.55% 2.29% 68.43% 

4 1.69% 45.25% 3.25% 2.09% 66.50% 

8 1.75% 45.25% 3.37% 2.17% 67.71% 

16 1.70% 44.52% 3.29% 2.11% 67.42% 
Table 36 Error correction for 10 top classes limiting the minimum number of lexical occurrences 

Lower Limit Precision Recall F1 F05 Accuracy 

0 3.34% 87.59% 6.44% 4.13% 68.15% 

1 3.27% 86.13% 6.30% 4.05% 67.92% 

2 3.35% 84.67% 6.44% 4.15% 69.23% 

4 3.24% 86.86% 6.24% 4.01% 67.37% 

8 3.30% 85.40% 6.36% 4.09% 68.55% 

16 3.41% 89.05% 6.58% 4.23% 68.36% 
Table 37 Error correction for 10 top classes limiting the minimum number of lexical occurrences 

4.4.4 Original Preposition 
The use of the original preposition was tested by setting the original parameter at values of “include” 

and “replace” for each experiment, while all other parameters kept their default values. The 

experiment with the original parameter at a value of “exclude” was already tested in the hidden cells 

section. 

4.4.4.1 Training Phase 

 

Figure 119 Cross validation including original preposition 
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Figure 120 Cross validation replacing original preposition 

4.4.4.2 Testing Phase 

4.4.4.2.1 Precision-Recall Graphs 

 

Figure 121 Precision vs. Recall for classes OF (upper left), IN (upper right), FOR (lower left) and TO (lower right) varying the 
original preposition 
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Figure 122 Precision vs. Recall for classes AS (upper left), THAT (upper right), ON (lower left) and FROM (lower right) varying 
the original preposition 

 

Figure 123 Precision vs. Recall for classes WITH (left) and BY (right) varying the original preposition 

4.4.4.2.2 ROC Graphs 

 

Figure 124 ROC for classes OF (upper left), IN (upper right), FOR (lower left) and TO (lower right) varying the original 
preposition 
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Figure 125 ROC for classes AS (upper left), THAT (upper right), ON (lower left) and FROM (lower right) varying the original 
preposition 

 

Figure 126 ROC for classes WITH (left) and BY (right) varying the original preposition 

4.4.4.2.3 Metrics for Error Correction against a Threshold 

 

Figure 127 Correction Metrics against a Threshold including original preposition 
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Figure 128 Correction Metrics against a Threshold replacing original preposition 

4.4.4.2.4 Metrics for Error Detection and Correction Tasks 

Original Precision Recall F1 F05 Accuracy 

Include 0.23% 3.05% 0.43% 0.28% 82.05% 

Replace 1.37% 42.68% 2.67% 1.70% 60.89% 

Exclude 1.10% 37.8% 2.14% 1.37% 56.64% 
Table 38 Error correction for all classes varying the original preposition 

Original Precision Recall F1 F05 Accuracy 

Include 1.14% 15.24% 2.13% 1.40% 82.33% 

Replace 2.53% 78.65% 4.92% 3.15% 61.62% 

Exclude 2.4% 82.32% 4.66% 2.98% 57.53% 
Table 39 Error detection for all classes varying the original preposition 

Original Precision Recall F1 F05 Accuracy 

Include 3.20% 3.65% 3.41% 3.28% 97.41% 

Replace 2.30% 51.09% 4.40% 2.84% 72.33% 

Exclude 1.73% 45.25% 3.33% 2.14% 67.27% 
Table 40 Error correction for 10 top classes varying the original preposition 

Original Precision Recall F1 F05 Accuracy 

Include 12.82% 14.60% 13.65% 13.14% 97.68% 

Replace 3.71% 82.48% 7.10% 4.59% 73.00% 

Exclude 3.34% 87.59% 6.44% 4.13% 68.15% 
Table 41 Error detection for 10 top classes varying the original preposition 

4.5 Embedding 

4.5.1 One-Hot vs. Embedding 
The comparison between the one-hot input vector and the embedding vector was carried out by 

setting the input type parameter at one-hot, while all other parameters kept their default values. The 

embedding experiment was already carried out in the hidden cells section. 
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4.5.1.1 Training Phase 

 

Figure 129 Cross validation using one-hot vectors as inputs 

4.5.1.2 Testing Phase 

4.5.1.2.1 Precision-Recall Graphs 

 

Figure 130 Precision vs. Recall for classes OF (upper left), IN (upper right), FOR (lower left) and TO (lower right) for one-hot 
vs. embedding input vectors 
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Figure 131 Precision vs. Recall for classes AS (upper left), THAT (upper right), ON (lower left) and FROM (lower right) for 
one-hot vs. embedding input vectors 

 

Figure 132 Precision vs. Recall for classes WITH (left) and BY (right) for one-hot vs. embedding input vectors 

4.5.1.2.2 ROC Graphs 

 

Figure 133 ROC for classes OF (upper left), IN (upper right), FOR (lower left) and TO (lower right) for one-hot vs. embedding 
input vectors 
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Figure 134 ROC for classes AS (upper left), THAT (upper right), ON (lower left) and FROM (lower right) for one-hot vs. 
embedding input vectors 

 

Figure 135 ROC for classes WITH (left) and BY (right) for one-hot vs. embedding input vectors 

4.5.1.2.3 Metrics for Error Correction against a Threshold 

 

Figure 136 Correction Metrics against a Threshold using one-hot vectors as inputs 

4.5.1.2.4 Metrics for Error Detection and Correction 

Input Precision Recall F1 F05 Accuracy 

One-Hot 1.08% 4.68% 2.11% 1.34% 50.34% 

Embedding 1.10% 37.8% 2.14% 1.37% 56.64% 
Table 42 Error correction for all classes for one-hot vs. embedding input vectors 
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Input Precision Recall F1 F05 Accuracy 

One-Hot 2.21% 87.19% 4.31% 2.75% 51.18% 

Embedding 2.4% 82.32% 4.66% 2.98% 57.53% 
Table 43 Error detection for all classes for one-hot vs. embedding input vectors 

Input Precision Recall F1 F05 Accuracy 

One-Hot 1.58% 51.09% 3.07% 1.96% 59.80% 

Embedding 1.73% 45.25% 3.33% 2.14% 67.27% 
Table 44 Error correction for 10 top classes for one-hot vs. embedding input vectors 

Input Precision Recall F1 F05 Accuracy 

One-Hot 2.76% 89.05% 5.35% 3.42% 60.56% 

Embedding 3.34% 87.59% 6.44% 4.13% 68.15% 
Table 45 Error detection for 10 top classes for one-hot vs. embedding input vectors 

4.5.2 Lexical Embedding Sizes 
The size of the embedding input was varied at values of 50 and 200 per experiment, while all other 

parameters kept their default values. The experiment for a lexical embedding size of 100 was already 

carried out in the hidden cells section. 

4.5.2.1 Training Phase 

 

Figure 137 Cross validation for a lexical embedding size of 50 
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Figure 138 Cross validation for a lexical embedding size of 200 

4.5.2.2 Testing Phase 

4.5.2.2.1 Precision-Recall Graphs 

 

Figure 139 Precision vs. Recall for classes OF (upper left), IN (upper right), FOR (lower left) and TO (lower right) varying the 
lexical embedding size of the input feature 
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Figure 140 Precision vs. Recall for classes AS (upper left), THAT (upper right), ON (lower left) and FROM (lower right) varying 
the lexical embedding size of the input feature 

 

Figure 141 Precision vs. Recall for classes WITH (left) and BY (right) varying the lexical embedding size of the input feature 

4.5.2.2.2 ROC Graphs 

 

Figure 142 ROC for classes OF (upper left), IN (upper right), FOR (lower left) and TO (lower right) varying the lexical 
embedding size of the input feature 
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Figure 143 ROC for classes AS (upper left), THAT (upper right), ON (lower left) and FROM (lower right) varying the lexical 
embedding size of the input feature 

 

Figure 144 for classes WITH (left) and BY (right) varying the lexical embedding size of the input feature 

4.5.2.2.3 Metrics for Error Correction against a Threshold 

 

Figure 145 Correction Metrics against a Threshold for a lexical embedding size of 50 
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Figure 146 Correction Metrics against a Threshold for a lexical embedding size of 200 

4.5.2.2.4 Metrics for Error Detection and Correction Tasks 

Lexical Embedding 
Size 

Precision Recall F1 F05 Accuracy 

50 1.06% 37.80% 2.07% 1.32% 55.23% 

100 1.10% 37.8% 2.14% 1.37% 56.64% 

200 1.07% 36.58% 2.09% 1.33% 56.94% 
Table 46 Error correction for all classes varying the lexical embedding size of the input feature 

Lexical Embedding 
Size 

Precision Recall F1 F05 Accuracy 

50 2.29% 81.09% 4.45% 2.84% 56.08% 

100 2.4% 82.32% 4.66% 2.98% 57.53% 

200 2.43% 82.93% 4.73% 3.02% 57.82% 
Table 47 Error detection for all classes varying the lexical embedding size of the input feature 

Lexical Embedding 
Size 

Precision Recall F1 F05 Accuracy 

50 1.64% 45.25% 3.17% 2.04% 65.62% 

100 1.73% 45.25% 3.33% 2.14% 67.27% 

200 1.69% 43.79% 3.26% 2.09% 67.63% 
Table 48 Error correction for 10 top classes varying the lexical embedding size of the input feature 

Lexical Embedding 
Size 

Precision Recall F1 F05 Accuracy 

50 3.00% 82.48% 5.79% 3.71% 66.39% 

100 3.34% 87.59% 6.44% 4.13% 68.15% 

200 3.35% 86.86% 6.46% 4.15% 68.53% 
Table 49 Error detection for 10 top classes varying the lexical embedding size of the input feature 
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4.5.3 Window Embedding Size 
The window size for training the embedding size was varied at values of 1, 3 and 4 for each experiment, 

while all other parameters kept their default values. The embedding training for a window size of 2 

was already carried out in the hidden cells section. 

4.5.3.1 Training Phase 

 

Figure 147 Cross validation embedding lexical features at a window size of 1 

 

Figure 148 Cross validation embedding lexical features at a window size of 3 
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Figure 149 Cross validation embedding lexical features at a window size of 4 

4.5.3.2 Testing Phase 

4.5.3.2.1 Precision-Recall Graphs 

 

Figure 150 Precision vs. Recall for classes OF (upper left), IN (upper right), FOR (lower left) and TO (lower right) by 
embedding lexical features at different window sizes 
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Figure 151 Precision vs. Recall for classes AS (upper left), THAT (upper right), ON (lower left) and FROM (lower right) by 
embedding lexical features at different window sizes 

 

Figure 152 Precision vs. Recall for classes WITH (left) and BY (right) by embedding lexical features at different window sizes 

4.5.3.2.2 ROC Graphs 

 

Figure 153 ROC for classes OF (upper left), IN (upper right), FOR (lower left) and TO (lower right) by embedding lexical 
features at different window sizes 
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Figure 154 ROC for classes AS (upper left), THAT (upper right), ON (lower left) and FROM (lower right) by embedding lexical 
features at different window sizes 

 

Figure 155 ROC for classes WITH (left) and BY (right) by embedding lexical features at different window sizes 

4.5.3.2.3 Metrics for Error Correction against a Threshold 

 

Figure 156 Correction Metrics against a Threshold embedding lexical features at a window size of 1 
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Figure 157 Correction Metrics against a Threshold embedding lexical features at a window size of 3 

 

Figure 158 Correction Metrics against a Threshold embedding lexical features at a window size of 4 

4.5.3.2.4 Metrics for Error Detection and Correction Tasks 

Window Precision Recall F1 F05 Accuracy 

1 1.15% 39.63% 2.24% 1.43% 56.51% 

2 1.10% 37.8% 2.14% 1.37% 56.64% 

3 1.08% 38.41% 2.10% 1.34% 55.09% 

4 1.12% 40.24% 2.18% 1.39% 54.67% 
Table 50 Error correction for all classes by embedding lexical features at different window sizes 

Sequence Precision Recall F1 F05 Accuracy 

1 2.35% 81.10% 4.58% 2.92% 57.33% 

2 2.4% 82.32% 4.66% 2.98% 57.53% 

3 2.33% 82.93% 5.54% 2.89% 55.96% 

4 2.34% 84.14% 4.56% 2.91% 55.53% 
Table 51 Error detection for all classes by embedding lexical features at different window sizes 

Sequence Precision Recall F1 F05 Accuracy 

1 1.80% 47.44% 3.47% 2.23% 67.13% 

2 1.73% 45.25% 3.33% 2.14% 67.27% 
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3 1.66% 45.98% 3.21% 2.06% 65.44% 

4 1.71% 48.17% 3.31% 2.12% 64.96% 
Table 52 Error correction for 10 top classes by embedding lexical features at different window sizes 

Sequence Precision Recall F1 F05 Accuracy 

1 3.16% 83.21% 6.09% 3.91% 67.88% 

2 3.34% 87.59% 6.44% 4.13% 68.15% 

3 3.08% 85.40% 5.96% 3.82% 66.25% 

4 3.01% 84.67% 5.82% 3.73% 65.72% 
Table 53 Error detection for 10 top classes by embedding lexical features at different window sizes 

4.6 Models 

4.6.1 Simple vs. Bidirectional 
The comparison between the two different LSTM models was carried out by switching the model type 

to bidirectional, while all other parameters kept their default values. The simple model experiment 

was already carried out in the hidden cells section. 

4.6.1.1 Training Phase 

 

Figure 159 Cross validation using a bidirectional LSTM model 
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4.6.1.2 Testing Phase 

4.6.1.2.1 Precision-Recall Graphs 

 

Figure 160 Precision vs. Recall for classes OF (upper left), IN (upper right), FOR (lower left) and TO (lower right) varying the 
core LSTM model 

 

Figure 161 Precision vs. Recall for classes AS (upper left), THAT (upper right), ON (lower left) and FROM (lower right) varying 
the core LSTM model 

 

Figure 162 Precision vs. Recall for classes WITH (left) and BY (right) varying the core LSTM model 
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4.6.1.2.2 ROC Graphs 

 

Figure 163 ROC for classes OF (upper left), IN (upper right), FOR (lower left) and TO (lower right) varying the core LSTM 
model 

 

Figure 164 ROC for classes AS (upper left), THAT (upper right), ON (lower left) and FROM (lower right) varying the core LSTM 
model 

 

Figure 165 ROC for classes WITH (left) and BY (right) varying the core LSTM model 
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4.6.1.2.3 Metrics for Error Correction against a Threshold 

 

Figure 166 Correction Metrics against a Threshold using a bidirectional LSTM model 

4.6.1.2.4 Metrics for Error Detection and Correction Tasks 

Model Precision Recall F1 F05 Accuracy 

simple 1.10% 37.8% 2.14% 1.37% 56.64% 

Bidirectional 1.11% 37.19% 2.15% 1.37% 57.50% 
Table 54 Error correction for all classes varying the core LSTM model 

Model Precision Recall F1 F05 Accuracy 

Simple 2.4% 82.32% 4.66% 2.98% 57.53% 

Bidirectional 2.38% 79.88% 4.62% 2.95% 58.35% 
Table 55 Error detection for all classes varying the core LSTM model 

Model Precision Recall F1 F05 Accuracy 

Simple 1.73% 45.25% 3.33% 2.14% 67.27% 

Bidirectional 1.76% 44.52% 3.38% 1.17% 68.31% 
Table 56 Error correction for 10 top classes varying the core LSTM model 

Model Precision Recall F1 F05 Accuracy 

Simple 3.34% 87.59% 6.44% 4.13% 68.15% 

Bidirectional 3.22% 81.75% 6.21% 3.99% 69.09% 
Table 57 Error detection for 10 top classes varying the core LSTM model 

4.6.2 Attention 
The attention mechanism was tested by switching the attention parameter to True and setting the 

maximum sequence length at 20, while all other parameters kept their default values. The experiment 

without using the attention mechanism and with a maximum sequence length of 20 was already 

carried out in the length of the input sequence section. 
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4.6.2.1 Training Phase 

 

Figure 167 Cross validation using attention mechanism 

4.6.2.2 Testing Phase 

4.6.2.2.1 Precision-Recall Graphs 

 

Figure 168 Precision vs. Recall for classes OF (upper left), IN (upper right), FOR (lower left) and TO (lower right) comparing 
the use of attention mechanism 
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Figure 169 Precision vs. Recall for classes AS (upper left), THAT (upper right), ON (lower left) and FROM (lower right) 
comparing the use of attention mechanism 

 

Figure 170 Precision vs. Recall for classes WITH (left) and BY (right) comparing the use of attention mechanism 

4.6.2.2.2 ROC Graphs 

 

Figure 171 ROC for classes OF (upper left), IN (upper right), FOR (lower left) and TO (lower right) comparing the use of 
attention mechanism 
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Figure 172 ROC for classes AS (upper left), THAT (upper right), ON (lower left) and FROM (lower right) comparing the use of 
attention mechanism 

 

Figure 173 ROC for classes WITH (left) and BY (right) comparing the use of attention mechanism 

4.6.2.2.3 Metrics for Error Correction against a Threshold 

 

Figure 174 Correction Metrics against a Threshold using attention mechanism 

4.6.2.2.4 Metrics for Error Detection and Correction Tasks 

Attention Precision Recall F1 F05 Accuracy 

True 0.79% 30.49% 1.55% 0.99% 51.41% 

False 0.70% 28.05% 1.37% 0.87% 49.24% 
Table 58 Error correction for all classes comparing the use of attention mechanism 
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Spelling Precision Recall F1 F05 Accuracy 

True 1.99% 76.22% 3.87% 2.47% 52.28% 

False 1.94% 79.27% 3.86% 2.46% 50.20% 
Table 59 Error detection for all classes comparing the use of attention mechanism 

Spelling Precision Recall F1 F05 Accuracy 

True 1.17% 36.49% 2.28% 1.46% 61.07% 

False 1.02% 33.58% 1.97% 1.26% 58.48% 
Table 60 Error correction for 10 top classes comparing the use of attention mechanism 

Spelling Precision Recall F1 F05 Accuracy 

True 2.47% 76.64% 4.79% 3.07% 61.88% 

False 2.45% 81.02% 4.76% 3.04% 59.42% 
Table 61 Error detection for 10 top classes comparing the use of attention mechanism 

4.6.3 Dropout 
Regularization through dropout was tested by switching the dropout parameter to True while varying 

the value of the keep probability parameter at values of 0.5, 0.6, 0.7, 0.8, 0.9 and 1.0 for each 

experiment. The number of hidden layers was also set at 1600 and the number of layers at 8, while all 

other parameters kept their default values.  

4.6.3.1 Training Phase 

 

Figure 175 Cross validation keeping weights with a probability of 0.5 
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Figure 176 Cross validation keeping weights with a probability of 0.6 

 

Figure 177 Cross validation keeping weights with a probability of 0.7 

 

Figure 178 Cross validation keeping weights with a probability of 0.8 
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Figure 179 Cross validation keeping weights with a probability of 0.9 

 

Figure 180 Cross validation keeping weights with a probability of 1.0 
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4.6.3.1.1 Precision-Recall Graphs 

 

Figure 181 Precision vs. Recall for classes OF (upper left), IN (upper right), FOR (lower left) and TO (lower right) varying the 
probability of keeping weights through dropout 

 

Figure 182 Precision vs. Recall for classes AS (upper left), THAT (upper right), ON (lower left) and FROM (lower right) varying 
the probability of keeping weights through dropout 

 

Figure 183 Precision vs. Recall for classes WITH (left) and BY (right) varying the probability of keeping weights through 
dropout 
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4.6.3.1.2 ROC Graphs 

 

Figure 184 ROC for classes OF (upper left), IN (upper right), FOR (lower left) and TO (lower right) varying the probability of 
keeping weights through dropout 

 

Figure 185 ROC for classes AS (upper left), THAT (upper right), ON (lower left) and FROM (lower right) varying the 
probability of keeping weights through dropout 

 

Figure 186 ROC for classes WITH (left) and BY (right) varying the probability of keeping weights through dropout 
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4.6.3.1.3 Metrics for Error Correction against a Threshold 

 

Figure 187 Correction Metrics against a Threshold keeping weights with a probability of 0.5 

 

Figure 188 Correction Metrics against a Threshold keeping weights with a probability of 0.6 

 

 

Figure 189 Correction Metrics against a Threshold keeping weights with a probability of 0.7 
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Figure 190 Correction Metrics against a Threshold keeping weights with a probability of 0.8 

 

Figure 191 Correction Metrics against a Threshold keeping weights with a probability of 0.9 

 

Figure 192 Correction Metrics against a Threshold keeping weights with a probability of 1.0 

4.6.3.1.4 Metrics for Error Detection and Correction Tasks 

Keep 
Probabilities 

Precision Recall F1 F05 Accuracy 

0.5 1.19% 39.63% 2.32% 1.48% 58.14% 

0.6 1.12% 38.41% 2.17% 1.39% 56.59% 

0.7 1.16% 39.02% 2.25% 1.44% 57.47% 

0.8 1.22% 40.85% 2.38% 1.52% 57.90% 
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0.9 1.11% 36.58% 2.15% 1.38% 58.28% 

1.0 1.11% 38.41% 2.16% 1.38% 56.38% 
Table 62 Error correction for all classes varying the probability of keeping weights through dropout 

Keep 
Probabilities 

Precision Recall F1 F05 Accuracy 

0.5 2.44% 81.10% 4.75% 3.04% 58.98% 

0.6 2.38% 81.70% 4.62% 2.95% 57.44% 

0.7 2.26% 76.22% 4.40% 2.81% 58.20% 

0.8 2.34% 78.04% 4.54% 2.90% 58.64% 

0.9 2.36% 78.05% 4.60% 2.94% 59.11% 

1.0 2.30% 79.26% 4.46% 2.85% 57.19% 
Table 63 Error detection for all classes varying the probability of keeping weights through dropout 

Keep 
Probabilities 

Precision Recall F1 F05 Accuracy 

0.5 1.91% 47.44% 3.68% 2.27% 69.07% 

0.6 1.75% 45.98% 3.38% 2.17% 67.22% 

0.7 1.84% 46.71% 3.53% 2.27% 68.24% 

0.8 1.95% 48.90% 3.76% 2.41% 68.77% 

0.9 1.78% 43.79% 3.42% 2.20% 69.24% 

1.0 1.74% 45.98% 3.35% 2.15% 66.97% 
Table 64 Error correction for 10 top classes varying the probability of keeping weights through dropout 

Keep 
Probabilities 

Precision Recall F1 F05 Accuracy 

0.5 3.38% 83.94% 6.51% 4.19% 65.84% 

0.6 3.20% 83.94% 6.16% 3.96% 68.02% 

0.7 3.21% 81.75% 6.18% 3.98% 68.98% 

0.8 3.29% 82.48% 6.33% 4.08% 69.48% 

0.9 3.27% 80.29% 6.28% 4.04% 70.01% 

1.0 3.12% 82.48% 6.01% 3.86% 67.73% 
Table 65 Error detection for 10 top classes varying the probability of keeping weights through dropout 

4.6.4 Classes 
The number of classes was tested by varying the parameter controlling the number of classes at values 

of 5, 15 and 20 per experiment, while keeping all other parameters at their default value. The 

experiment with a number of classes of 10 was already tested in the number of hidden cells section. 
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4.6.4.1 Training Phase 

 

Figure 193 Cross validation aiming at 5 prepositional classes 

 

Figure 194 Cross validation aiming at 15 prepositional classes 

 

Figure 195 Cross validation aiming at 20 prepositional classes 
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Figure 196 Cross validation aiming at 25 prepositional classes 

 

Figure 197 Cross validation aiming at 30 prepositional classes 
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4.6.4.2 Testing Phase 

4.6.4.2.1 Precision-Recall Graphs 

 

Figure 198 Precision vs. Recall for classes OF (upper left), IN (upper right), FOR (lower left) and TO (lower right) varying the 
number of prepositional classes 

 

Figure 199 Precision vs. Recall for classes AS (upper left), THAT (upper right), ON (lower left) and FROM (lower right) varying 
the number of prepositional classes 



118 
 

 

Figure 200 Precision vs. Recall for classes WITH (upper left) and BY (upper right), AT (lower left) and IF (lower right) varying 
the number of prepositional classes 

 

Figure 201 Precision vs. Recall for classes THAN (upper left) and INTO (upper right), ABOUT (lower left) and BECAUSE (lower 
right) varying the number of prepositional classes 
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Figure 202 Precision vs. Recall for classes LIKE (upper left), SINCE (upper right), AFTER (lower left) and THROUGH (lower 
right) varying the number of prepositional classes 

 

Figure 203 Precision vs. Recall for classes OVER (upper left), DURING (upper right), WITHOUT (lower left) and ALTHOUGH 
(lower right) varying the number of prepositional classes 
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Figure 204 Precision vs. Recall for classes WHILE (upper left), WHETHER (upper right), BEFORE (lower left) and BESIDES 
(lower right) varying the number of prepositional classes 

 

Figure 205 Precision vs. Recall for classes UNDER (upper left) and BETWEEN (upper right) varying the number of 
prepositional classes 

4.6.4.2.2 ROC Graphs 

 

Figure 206 ROC for classes OF (upper left), IN (upper right), FOR (lower left) and TO (lower right) varying the number of 
prepositional classes 



121 
 

 

Figure 207 ROC for classes AS (upper left), THAT (upper right), ON (lower left) and FROM (lower right) varying the number of 
prepositional classes 

 

Figure 208 for classes WITH (upper left), BY (upper right), AT (lower left) and IF (lower right) varying the number of 
prepositional classes 
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Figure 209 ROC for classes THAN (upper left), INTO (upper right), ABOUT (lower left) and BECAUSE (lower right) varying the 
number of prepositional classes 

 

Figure 210  ROC for classes LIKE (upper left), SINCE (upper right), AFTER (lower left) and THROUGH (lower right) varying the 
number of prepositional classes 
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Figure 211 ROC for classes OVER (upper left), DURING (upper right), WITHOUT (lower left) and ALTHOUGH (lower right) 
varying the number of prepositional classes 

 

Figure 212 ROC for classes WHILE (upper left), WHETHER (upper right), BEFORE (lower left) and BESIDES  (lower right) 
varying the number of prepositional classes 

 

Figure 213 ROC for classes UNDER (left) and BETWEEN (right) varying the number of prepositional classes 
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4.6.4.2.3 Metric for Error Correction against a Threshold 

 

Figure 214 Correction Metrics against a Threshold aiming at 5 prepositional classes 

 

Figure 215 Correction Metrics against a Threshold aiming at 15 prepositional classes 

 

Figure 216 Correction Metrics against a Threshold aiming at 20 prepositional classes 
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Figure 217 Correction Metrics against a Threshold aiming at 25 prepositional classes 

 

Figure 218 Correction Metrics against a Threshold aiming at 30 prepositional classes 

4.6.4.2.4 Metrics for Error Detection and Correction Tasks 

Classes Precision Recall F1 F05 Accuracy 

5 0.68% 29.26% 1.33% 0.85% 45.58% 

10 1.10% 37.8% 2.14% 1.37% 56.64% 

15 1.07% 34.76% 2.07% 1.32% 58.75% 

20 1.16% 37.80% 2.25% 1.44% 58.79% 

25 1.07% 34.76% 2.08% 1.33% 58.90% 

30 1.03% 33.54% 2.01% 1.28% 58.90% 
Table 66 Error correction for all classes varying the number of prepositional classes 

Classes Precision Recall F1 F05 Accuracy 

5 1.69% 72.56% 3.30% 2.10% 46.37% 

10 2.4% 82.32% 4.66% 2.98% 57.53% 

15 2.27% 73.78% 4.40% 2.81% 59.54% 

20 2.45% 79.88% 4.75% 3.04% 59.64% 

25 2.42% 78.66% 4.70% 3.01% 59.78% 

30 2.48% 80.49% 4.81% 3.08% 59.84% 
Table 67 Error detection for all classes varying the number of prepositional classes 
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Classes Precision Recall F1 F05 Accuracy 

5 2.50% 47.52% 4.76% 3.09% 75.62% 

10 1.73% 45.25% 3.33% 2.14% 67.27% 

15 1.42% 37.01% 2.74% 1.76% 65.49% 

20 1.41% 40.00% 2.73% 1.75% 63.46% 

25 1.21% 36.07% 2.35% 1.50% 61.87% 

30 1.12% 34.81% 2.17% 1.39% 60.85% 
Table 68 Error correction for only the target classes varying the number of prepositional classes 

Classes Precision Recall F1 F05 Accuracy 

5 4.33% 82.18% 8.23% 5.35% 76.40% 

10 3.34% 87.59% 6.44% 4.13% 68.15% 

15 2.80% 72.72% 5.39% 3.46% 66.27% 

20 2.85% 80.64% 5.50% 3.53% 64.32% 

25 2.61% 77.84% 5.06% 3.24% 62.74% 

30 2.56% 79.75% 4.98% 3.19% 61.76% 
Table 69 Error detection for only the target classes varying the number of prepositional classes 

4.7 Pre-processing 

4.7.1 Spelling 

4.7.1.1 Training Phase 

 

Figure 219 Cross validation correcting spelling 
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4.7.1.2 Testing Phase 

4.7.1.2.1 Precision-Recall Graphs 

 

Figure 220 Precision vs. Recall for classes OF (upper left), IN (upper right), FOR (lower left) and TO (lower right) comparing 
spelling correction 

 

Figure 221 Precision vs. Recall for classes AS (upper left), THAT (upper right), ON (lower left) and FROM (lower right) 
comparing spelling correction 

 

Figure 222 Precision vs. Recall for classes WITH (left) and BY (right) comparing spelling correction 
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4.7.1.2.2 ROC Graphs 

 

Figure 223 ROC for classes OF (upper left), IN (upper right), FOR (lower left) and TO (lower right) comparing spelling 
correction 

 

Figure 224 ROC for classes AS (upper left), THAT (upper right), ON (lower left) and FROM (lower right) comparing spelling 
correction 

 

Figure 225 ROC for classes WITH (left) and BY (right) comparing spelling correction 
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4.7.1.2.3 Metrics for Error Correction against a Threshold 

 

Figure 226 Correction Metrics against a Threshold correcting spelling 

4.7.1.2.4 Metrics for Error Detection and Correction Tasks 

Spelling Precision Recall F1 F05 Accuracy 

True 1.19% 40.85% 2.32% 1.48% 56.83% 

False 1.10% 37.8% 2.14% 1.37% 56.64% 
Table 70 Error correction for all classes comparing spelling correction 

Spelling Precision Recall F1 F05 Accuracy 

True 2.39% 81.70% 4.64% 2.96% 57.64% 

False 2.4% 82.32% 4.66% 2.98% 57.53% 
Table 71 Error detection for all classes comparing spelling correction 

Spelling Precision Recall F1 F05 Accuracy 

True 1.88% 48.90% 3.61% 2.32% 67.50% 

False 1.73% 45.25% 3.33% 2.14% 67.27% 
Table 72 Error correction for 10 top classes comparing spelling correction 

Spelling Precision Recall F1 F05 Accuracy 

True 3.25% 84.67% 6.26% 4.02% 68.26% 

False 3.34% 87.59% 6.44% 4.13% 68.15% 
Table 73 Error detection for 10 top classes comparing spelling correction 

4.8 Optimum Algorithm and Final Algorithm 
The optimum algorithm uses the optimum values achieved through all other experiments and which 

are summarized in table 75. The final algorithm is the optimum algorithm using tuned thresholds.  

Parameter Default 

Hidden Cells 1600 

Number of layers 2 

Model simple 

Input Type embedding 

Word Embedding Size 100 

Embedding Window 1 

Number of Classes 20 

Spelling True 
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POS Tags True 

Tags Embedding Size 15 

Index of Parent in Dependency Tree True 

Index Embedding Size 10 

Lower Limit for Vocabulary 2 

Oversampling False 

Oversampling Position 0 

Undersampling False 

Undersampling Position 0 

Length of Sequence Input (at each side) 5 

Original Preposition replace 

Dropout False 

Attention True 
Table 74 Optimum parameters of the algorithm 

4.8.1 Training Phase 

 

Figure 227 Cross validation using optimum parameters 
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4.8.2 Testing Phase 

4.8.2.1 Precision-Recall Graphs 

 

Figure 228 Precision vs. Recall for classes OF (upper left), IN (upper right), FOR (lower left) and TO (lower right) optimum vs. 
standard 

 

 

Figure 229 Precision vs. Recall for classes AS (upper left), THAT (upper right), ON (lower left) and FROM (lower right) 
optimum vs. standard 
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Figure 230 Precision vs. Recall for classes WITH (upper left), BY (upper right), AT (lower left) and IF (lower right) optimum vs. 
standard 

 

Figure 231 Precision vs. Recall for classes THAN (upper left), INTO (upper right), ABOUT (lower left) and BECAUSE (lower 
right) optimum vs. standard 
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Figure 232 Precision vs. Recall for classes LIKE (upper left), SINCE (upper right), AFTER (lower left) and THROUGH (lower 
right) optimum vs. standard 

4.8.2.2 ROC Graphs 

 

Figure 233 ROC for classes OF (upper left), IN (upper right), FOR (lower left) and TO (lower right) optimum vs. standard 
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Figure 234 ROC for classes AS (upper left), THAT (upper right), ON (lower left) and FROM (lower right) optimum vs. standard 

 

Figure 235 ROC for classes WITH (upper left), BY (upper right), AT (lower left) and IF (lower right) optimum vs. standard 
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Figure 236 ROC for classes THAN (upper left), INTO (upper right), ABOUT (lower left) and BECAUSE (lower right) optimum vs. 
standard 

 

Figure 237 ROC for classes LIKE (upper left), SINCE (upper right), AFTER (lower left) and THROUGH (lower right) optimum vs. 
standard 



136 
 

4.8.2.3 Metrics for Error Correction against a Threshold 

 

Figure 238 Correction Metrics against a Threshold using optimum parameters 

4.8.2.4 Metrics for Error Detection and Correction Tasks 

Once the optimum algorithm predicts a preposition, the final algorithm applies a tuned threshold per 

class (which was deduced from all previous experiments). For the classes “of”, “that”, “on”, “from” 

and “than”, which are the ones that the algorithm best recognizes, the threshold is 80%; for classes 

“in”, “for”, “to”, “as”, “with”, “by” and “because”, which are somehow separated, the threshold is 

90%; and for all other classes, which are not well recognized, the threshold is 100.0% (the final 

algorithm does not rely on these prepositions). 

Algorithm Precision Recall F1 F05 Accuracy 

Optimum 1.45% 43.29% 2.81% 1.80% 62.41% 

Standard 1.16% 37.80% 2.25% 1.44% 58.79% 

Final Algorithm 4.40% 10.36% 6.18% 4.97% 96.03% 
Table 75 Error correction for all classes optimum vs. standard vs. final algorithm 

Algorithm Precision Recall F1 F05 Accuracy 

Optimum 2.66% 79.26% 5.15% 3.30% 63.15% 

Standard 2.45% 79.88% 4.75% 3.04% 59.64% 

Final Algorithm 5.44% 12.80% 7.63% 6.15% 96.09% 
Table 76 Error detection for all classes optimum vs. standard vs. final algorithm 

Algorithm Precision Recall F1 F05 Accuracy 

Optimum 1.80% 45.80% 3.45% 2.23% 67.38% 

Standard 1.41% 40.00% 2.73% 1.75% 63.46% 

Final Algorithm 5.12% 10.97% 6.98% 5.73% 96.24% 
Table 77 Error correction for top 20 classes optimum vs. standard vs. final algorithm 

Algorithm Precision Recall F1 F05 Accuracy 

Optimum 3.12% 79.35% 6.02% 3.87% 68.10% 

Standard 2.85% 80.64% 5.50% 3.53% 64.32% 

Final Algorithm 6.32% 13.55% 8.62% 7.08% 96.30% 
Table 78 Error correction for 20 top classes optimum vs. standard vs. final algorithm 
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4.8.2.5 Comparison of the Final Algorithm against Teams of the Shared Task CoNLL 2013 

Team Precision Recall F1 External Resources 

NARA 29.10 12.54 17.53 Lang-8 

STEL 25.66  9.32 13.68 Wikipedia, WordNet 

NTHU 12.01 12.86 12.42 Google Web-1T 

UIUC 26.53 4.18 7.22 Google Web-1T, Gigaword 

TILB 5.07  10.61 6.86 Google Web-1T, Gigaword 

CAMB 40.74 3.54 6.51 Cambridge Learner Corpus 

Final Algorithm* 11.29 (11.29) 4.30 (10.85) 6.24 (11.07) None 

HIT 28.12 2.89 5.25 WordNet, Longman 
dictionary 

UMC 35.29 1.93 3.66 News corpus, JMySpell 
dictionary, Google Web-1T, 
Penn Treebank 

TOR 5.38  2.25 3.17 Wikipedia 

SJT1 12.50 1.29 2.33 Europarl 

STAN 20.00 0.32 0.63 English Resource Grammar 

KOR 4.76 0.32 0.60 None 

UAB 0.00 0.00 0.00 Top 250 uncountable nouns, 
FreeLing morphological 
dictionary 

SJT2 0.00 0.00 0.00 - 
Table 79 Final algorithm compared to shared task CoNLL 2013. *the final algorithm only deals with prepositional wrong 

choice errors, whose isolated value is shown between parentheses 
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5 Analysis 
From the results, three patterns can be highlighted: first, the low number of errors affects the 

precision metric significantly, reducing significantly its value; second, the relatively large number of 

true negatives increases the accuracy as the threshold increases, which is quite natural if one takes 

into account the low rate of prepositional errors in the corpus, i.e. if the algorithm flags all original 

prepositions as correctly used, the accuracy would achieve a value of 98.99% while the metrics for the 

error correction task would be zero. Finally, as the threshold of decision increases, the metrics for the 

task of prepositional error detection and correction improves on performances (metrics for error 

detection and correction against a threshold). In the next section, the analysis of each experiment is 

described in more detail.  

5.1 Size of the Neural Network 
For the number of hidden cells, the training graphs (figures 5 - 10) shows that as the number of hidden 

cells increases the training process requires fewer epochs to train the algorithm, but at the same time 

the loss rate becomes less stable and the training dataset starts to overfit more quickly. Moreover, 

while the number of hidden cells increases the loss function tends to decrease slightly, meaning that 

a bigger number of hidden cells can improve the performance of the algorithm in a moderate way. 

This is somewhat confirmed by the values of the metrics for the error detection and correction 

presented in tables 6, 7, 8 and 9 where all metrics increase slightly while the number of cells increases 

with some drops at values of hidden cells of 200 and 800. Therefore, the evidence suggests that the 

algorithm performs the best for the task of prepositional error detection and correction when using 

1600 hidden cells, which makes sense as a larger number of hidden cells can keep the recurrent neural 

network more informed in order to make predictions. 

Moreover, analysing the Precision-Recall graphs as well as the ROC graphs (figures 11 - 16), one can 

see that for the classes ‘of’ and ‘that’, the algorithm performs well for all values, in which a high recall 

can be obtained without losing much precision. For the class “of”, this can be expected as this class 

contains the larger number of examples so that the algorithm can learn to distinguish this class better 

than all others. However, the class “that” is distinguished in a more precise way than the classes “in”, 

“for”, and “to”, which present a larger number of instances in the corpus, indicating that some 

prepositions (or conjunctions and adverbs) can be more easily identified by the algorithm given some 

lexical features than other classes. The difficulty of mastering some types of prepositions applies as 

well for English learners as it is somewhat confirmed by the difference in the rate of errors per class 

given in table 4, in which the error rate for classes such as “for” and “to” is much larger than the error 

rate for classes such as “that” and “from”. The prepositions “from”, “as” and “to” are separated 

reasonably, while for the prepositions “by” and “with”, the precision decreases rapidly as the recall 

increases, meaning that on the one hand, the confidence of the algorithm to predict these classes 

should be set at a high value and, on the other hand, the number of errors for these classes is more 

difficult to identify. The classes “on”, “in” and “for” are slightly separated, meaning that the threshold 

for these classes should be high. Finally, the capacity of the algorithm to separate all target classes is 

similar for all the different numbers of cells. 

On the other hand, the increment in the number of layers does not show any improvement on the 

performance of the algorithm. Contrarily, the metrics for the task of detecting and correcting errors 

(tables 10, 11, 12 and 13) show a decrement on performance as the number of layers increases, with 

a rise for a number of layers of 2. This behaviour can be noticed as well on the experiments related to 

dropout in which the deepest neural networks tested in this study did not perform better than any 

other model. Moreover, the training graphs (figures 23 - 25) show that the loss function does not fall 
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using a larger number of layers but the algorithm needs more epochs to be trained. Furthermore, 

precision-recall graphs and ROC graphs (figures 26 - 31) do not show a different behaviour than that 

already seen for the hidden cells experiments, showing that no particular class is affected by the rise 

in the size of the neural network, but that the separation may rather respond to the size of the training 

data or another hidden parameter not detected yet. The poor results using deep neural networks for 

correcting prepositional errors goes against the results of deep recurrent networks in other areas 

(Graves, Mohamed & Hinton 2013; Hermans & Schrauwen 2013), but at the same time proves that 

the use of deep recurrent networks needs further investigation to bring about the full benefits of its 

use. Finally, for the scope of this study, the final neural network was built using two layers, which 

rendered the best results.  

5.2 Data 
Unlike the result obtained in the experiments to define the size of the neural network, the experiments 

to compensate for the imbalanced nature of the training data using oversampling produced conclusive 

results. On the one hand, figures 35, 36, 37 and 38 show that the classifier loses performance as the 

training data is undersampled further. It is also confirmed by the metrics given in tables 14, 15, 16 and 

17 in which the performance of the algorithm falls while the number of examples is truncated. As 

expected, the classes that are more deeply affected are the ones with the larger number of examples. 

For instance, in figures 39 and 42, the classes “of”, “in”, “for” and “to” start to be less identifiable as 

the parameter “—under_pos” increases, i.e. as the number of examples is reduced for these classes. 

Moreover, oversampling also has a negative effect on classes with smaller numbers of examples but 

in a less severe manner. This could be caused by the fact that if the classifier cannot properly 

distinguish some classes (e.g. top classes), then it also becomes harder to distinguish classes with 

fewer occurrences.  

On the other hand, although the experiments on oversampling were less conclusive, one could say 

that oversampling is not a good way to compensate for the imbalanced number of occurrences for 

each class. Either the behaviour of the algorithm to separate the classes did not show any difference 

or improvement on the classes with fewer occurrences (figures 54, 55, 57 and 58), but, on the 

contrary, when compared against the algorithm trained without using oversampling (tables 18, 19, 20 

and 21), the algorithms trained on oversampled examples perform worse. Therefore, neither 

undersampling nor oversampling are appropriate methods to compensate for the imbalanced number 

of examples in a corpus when training an algorithm to detect and correct prepositional errors, but 

rather the usage of the data as it is (imbalanced) is a more effective method.  

5.3 Examples 
The LSTM architecture was designed to solve the long dependency problem, but the experiments 

performed in this study varying the maximum length of each example showed that a larger length of 

the input sequence causes the algorithm to perform worse. This tendency is easily identifiable in the 

training graphs (figure 63, 64, 65 and 66), in which the minimum values reached by the loss function 

during optimization grow, instead of decreasing, for a larger value of the parameter controlling the 

length of the input sequence. Moreover, the metrics for the task of error detection and correction 

(tables 22, 23, 24 and 25) show a clear drop in performance as the maximum length of the input 

sequence grows. One of the explanations for this behaviour could be that most of the prepositions 

used by English learners as a second language are more dependent on an immediate context than on 

a distant one, which in turn could be explained by the avoidance behaviour of learners. As a 

consequence, the long sequences not only do not contribute to improving the detection and 

correction of prepositional errors but start to lose information at some point while processing large 

sequences. 
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The classes that seem to be more affected by this parameter are “of” and “that” (figures 67 and 68), 

meaning that they depend more in particular on short dependencies than the other classes, and if one 

takes into account that “of” is the class with the larger number of occurrences in the corpus, a fall in 

performance of the algorithm is expected for large sequences. All other classes keep a similar 

behaviour for the different values of the sequence length. Thus, the ideal value for the length 

parameter for the task of detection and correcting prepositional errors is 5. 

5.4 Features 
Adding features other than lexical ones improve the performance of the algorithm to some extent. On 

the POS tags side, the use of concatenating an embedding tag vector to the embedding word vector 

produce better result for the task of detecting and correcting errors (tables 26 - 29) than using only 

lexical features. However, the performance using POS tags varied depending on the size of the 

embedding vector, and according to tables 26, 27, 28 and 29, an embedding size of 15 renders the 

best results for the task at hand – although neither the training graphs (figures 75 - 78) nor the ROC 

graphs (figures 82 – 84) elucidate any clear difference in the size of the embedding vector. Only the 

precision-recall graph for the class “on” (figure 80) seems to illustrate a loss in performance for an 

embedding size of 20, which could mean that large embedding vectors increase the sparsity of the 

instances of the feature, making them to lose representational power. Furthermore, the use of a 

threshold to improve the confidence of the algorithm (figures 85 - 88) is a reliable mechanism as it 

reduces the number of false positives, and a threshold of 95% renders the best results (as has been 

the case for all experiments so far). 

Similarly, the introduction of the index of the parent in the dependency tree showed an improvement 

over the use of only lexical features. It is illustrated in tables 30, 31, 32 and 33 in which the metrics 

used in this study show better results for all experiments using the index than the one that did not 

include this feature. Figures 99 to 102 confirm that the use of a threshold increases the performance 

of the algorithm, while figures 93 – 98 do not show a different behaviour for the top ten classes other 

than those seen so far from other experiments. Finally, the optimum size of the embedding vector 

cannot be identified on the training figures (89 - 92), however, because the metrics reached larger 

values using small embedding vectors, the final algorithm used an embedding size of 10 is used.  

On the other hand, limiting the number of lexical features to the ones occurring more than a given 

limit in the corpus proved to be a positive limitation to some extent. That is to say, if the number of 

lexical tokens, occurring say once, are replaced by a generic tag, then the algorithm gained a more 

powerful representation, which makes sense because sparse features would not provide enough clues 

whereby the algorithm could learn to distinguish the different classes. However, at the same time, the 

metrics (tables 34 - 37) show that if the limit starts to be large then the algorithm starts to lose 

performance because a large number of occurrences would be replaced by a generic tag causing the 

algorithm to underfit the examples. The use of a threshold proved once again to be an effective way 

to improve the performance of the algorithm (figures 111 - 115). Finally, although the training figures 

(103 - 107) do not show a particular difference on varying the lower limit, figures 108 and 109 show 

that classes such as “in”, “for”, “to” and “from” are better separated for a lower limit of 2, which is 

confirmed in the metrics for error detection and correction. Therefore, the lower limit chosen in this 

study is 2. 

Moreover, the usage of the original preposition illustrates the most interesting contrasts among the 

experiments. On the one hand, the introduction of the original preposition produced, during training 

(figure 119), the lowest value for the loss function during optimization, with the highest accuracy, 

namely 98% and 99% for validation and training respectively, and the best separating for all classes 
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(figures 121 - 126). However, it produced the worst metrics for the task at hand (although it produced 

great results for the task of detection when dealing only with the classes that the algorithm targets), 

and the use of a threshold reduces the algorithm’s effectiveness to detect and correct prepositional 

errors. The high accuracy is caused by the low rate of prepositional errors, i.e. the algorithm learns to 

identify that for most cases, the use of the original preposition can determine the target class, which 

is not the case if the goal is to detect prepositional errors as is reflected in the metric tables. Overall, 

one could say that introducing the original preposition has great potential by combining this with other 

methods such as populating the corpus with errors depending on statistics and learners’ tendencies, 

but it is outside the scope of this project. On the other hand, replacing the original preposition by a 

generic tag produced better metrics for the task than the inclusion and exclusion methods (tables 38 

- 41), and therefore it was the method used in the final algorithm. 

5.5 Embedding 
The use of an embedding layer produces better results than introducing the input sequence as a one-

hot vector. It is illustrated by figures 130 – 135 in which all classes, with the exceptions being “from” 

and “to”, were better separated when using an embedding input. The training phase (figure 129) 

shows that the algorithm did not learn to distinguish classes as well as the one using an embedding 

layer, and additionally it presents a quicker overfitting. Additionally, using the Google ML Engine to 

train the algorithm, it took about 8 hours when using a one-hot vector, while it takes about 2 hours to 

train the algorithm using an embedding input (this includes the time taken to create the embedding 

table). Therefore, the final algorithm uses an embedding layer. 

The size of embedding vector for lexical features seems not to have a great impact on the task at hand 

according to figures 137 and 138, however the metrics in tables 46 – 49 show that for a vector size of 

100, the algorithm performs the best. This can be validated looking at figures 140 and 141 in which 

classes such as “by”, “with” and “that” are not well separated when using an embedding size of 50, 

but in which the algorithm, when using an embedding size of 200, performs worse than an algorithm 

using an embedding size of 100 for classes such as “in” and “for”, which are some of the most popular 

prepositions and which can potentially contain more errors. Moreover, figures 145 and 146 confirm 

the positive use of a threshold. Thus, the final algorithm uses an embedding size for lexical features of 

100. 

Moreover, although the skip-gram model for embedding layers suggests that taking a larger window 

can provide a more powerful representational vector, the results achieved varying this parameter for 

the task of error detection and correction show that a smaller window can produce better results than 

using a larger one (tables 50 - 53).  Figures 150 and 151 suggest to some extent that classes such as 

“to”, “of” and “by” are separated in a better way when the window size is 1. Again, this behaviour can 

be explained by avoidance behaviour showing that for learner data, shorter contexts are more 

relevant than larger ones, and therefore the final algorithm uses a window size of 1. 

5.6 Model 
In theory, a bidirectional model is a more powerful representational algorithm than a simple model 

because the bidirectional model retains a state of two neural networks, one managing a forward 

sequence and a second one managing a backward sequence. That is to say, in the worst scenario, it 

should perform as well as a single RNN. However, the results achieved in this study suggest that there 

is no gain for the task of correcting prepositional errors using a bidirectional model instead of a single 

RNN (tables 54 - 57). It is also confirmed by analysing the precision-recall graphs as well as the ROC 

graphs (figures 160 - 165), in which for some classes (“for” and “on”) the single model performs better 

than the bidirectional one, while for other classes (“as”, “with”, “that” and “from”), it works the other 
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way around. Therefore, because there is no clear advantage in using either a simple model or a 

bidirectional model, the final algorithm uses a simple model. 

One of the components that could be relevant for keeping an informed state of the neural network 

when dealing with long dependencies was the attention mechanism, but this study has shown that 

long sequences are not the best alternative when dealing with learner writings. This is illustrated in 

tables 59 – 62 in which the size of the input sequence was large and the metrics achieved were low in 

comparison with shorter input lengths. Nonetheless, the metrics show that the algorithm can gain on 

performance using the attention mechanism, which is illustrated by figures 168 – 173 in which classes 

such as “of”, “in”, “on“, “with” and “that” are separated in a better way by making use of the attention 

mechanism. Figure 174 shows that the performance of the attention algorithm is improved by 

applying a threshold to the decision. Therefore, although the use of the attention mechanism is not 

relevant for short sequences, the small improvement that it produces was used in the final algorithm. 

The algorithms to test the effectiveness of a dropout mechanism were deep recurrent neural 

networks, i.e. RNN with a relatively large number of layers, namely 8. However, as was seen in the 

number of layers section, deep neural networks are not a good model for detecting and correcting 

prepositional errors, with an optimum number of layers of 2. Therefore, the dropout mechanism was 

not used in the final algorithm. Nonetheless, it is important to highlight that the use of dropout for 

deep neural networks seems to provide some gain on performances as is illustrated in tables 63 – 66, 

in which the performance of the algorithms drop as the “keep probability” parameter grows. However, 

the precision-recall graphs as well as the ROC ones (figures 181 - 186) do not elucidate any clear 

pattern for the separation of the classes. 

Furthermore, the experiments varying the number of classes produced interesting and conclusive 

results. First, the training figures 193 – 197 show that as the number of classes decreases, the loss 

function reaches a lower minimum point, i.e. the optimization process works better for a lower 

number of classes. This behaviour can be expected for the NUCLE corpus, because the number of 

instances per class in the corpus is quite imbalanced and it decreases sharply for less popular classes 

(table 4), that is to say, the algorithm can better distinguish the top classes as they have the largest 

number of instances. Moreover, the precision-recall figures as well as the ROC ones (figures 198 - 213) 

show that the separation of the classes is not affected to a large extent by the number of classes. For 

instances, for the top 4 classes the curves are similar for all algorithms. All these findings indicate that 

if the algorithm is trained using a larger corpus, the performance of the algorithm should be better. 

The figures also show that for classes with low numbers of occurrences the algorithm does not 

perform better than just guessing, and that it is not worth targeting classes with very small number of 

instances. Hence, the final algorithm targets 20 classes. 

5.7 Pre-processing 
The last experiment before deciding on the final architecture of the algorithm was to test if a context-

independent spelling correction was a method worth applying to the data before training and testing 

the algorithm. The evidence suggests that the use of a spelling corrector improves the performance 

of the algorithm for the task of prepositional error detection and correction as is illustrated by tables 

71 – 74, in which the algorithm performs better when spelling is corrected before introducing the 

input sequence than when it is not. It can be validated through figures 220 – 225 that show that some 

classes such as “of”, “from” and “that” are better separated by the algorithm that corrects the spelling 

of the lexical features. Therefore, the final algorithm uses a spelling correction pre-processing task. It 

is also important to note that a threshold is also added to the final output as most of the experiments 

have shown an improvement on performance when the threshold is applied.  
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5.8 Final Algorithm 
The algorithm using the optimum parameters taken from previous experiments, and the final 

algorithm, which takes the “optimum” algorithm a step further by applying a threshold on decisions 

for class, were compared with the standard algorithm targeting 20 classes for the tasks of detecting 

and correcting prepositional errors (tables 76 - 79). The results show that, on the one hand, the 

optimum algorithm performs better than the standard one, and, on the other hand, the use of 

thresholds for class makes a considerable improvement in the precision of the algorithm (although 

reducing the recall) and improves the F1 and F05 score. Moreover, all metrics (tables 76 - 79) present 

an improvement on the performance of the algorithm by using optimum values, hence one could say 

that complex models can compensate for the lack of large training data to some extent for the task of 

detecting and correcting prepositional errors, which also implies that complex algorithms can achieve 

high quality results if they are trained on large data. These statements can be confirmed by looking at 

the precision-recall graphs as well as the ROC graphs (figures 228 - 237) in which the optimum 

algorithm separated all top classes in a better way than the standard one, with a few exceptions for 

classes such as “at” and “if”. However, the optimum algorithm did not show a better performance for 

the classes presenting few instances in the corpus, meaning that even complex algorithms need a 

minimum of data to learn to distinguish all classes. Figure 238 confirms the tendency seen so far in 

which the use of a threshold improves the performance of the algorithm. 

Moreover, the comparison with the results achieved by the teams that participated in the CoNLL 2013 

shared task show promising results achieved by the final algorithm given that most of the other 

approaches made use of large external resources to train their algorithm (table 80). It is important to 

highlight that the number of prepositional errors contained in the testing data provided by CoNLL 

2013 is higher in proportion than the number of prepositional errors in the NUCLE corpus. As a 

consequence, the precision obtained by the algorithm (values in parentheses) is much higher than the 

values obtained in the testing data generated from NUCLE. The final algorithm seems to perform well 

even when it only targets prepositional wrong choice errors, meaning that there is room for huge 

improvement. 
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6 Conclusions 
This research explored the use of recurrent neural networks following a LSTM architecture on the task 

of detecting and correcting prepositional errors of the wrong choice type. The algorithm is a classifier 

that aims to predict the correct preposition in the place of the original preposition given a context. 

The algorithm uses lexical features, POS tags and indexes of the parent in the dependency tree as well 

as other components that were separately tested to isolate their influence on the final algorithm. It 

also filters the decisions made by the core algorithm through a threshold-based component which 

applies a specific threshold for class. The optimum thresholds were obtained from the analysis of the 

different types of metrics and graphs.  

The final results achieved in this study proved that the task of detecting and correcting prepositional 

errors is a complex one that requires the analysis of several factors to reach appropriate results. Before 

dealing with prepositional errors, an algorithm must be able to properly identify classes because 

otherwise the number of false positives that are obtained means the algorithm is not helpful for 

learners of English as a second language, i.e. if the algorithm marks an error where there is none, the 

system would confuse a learner rather than help him/her. The low values for the metrics F1 and F05 

are due to the low values for the metrics precision, which indicates that the high rate of false positives 

is an issue for the task of prepositional error detection and correction. Additionally, the use of long 

sequences of inputs was not an efficient approach for the task at hand as was expected. This was the 

main reason for using a recurrent neural network that follows an LSTM architecture. The plausible 

causes are, first, the avoidance behaviour of learners for writing tasks and, second, that most of the 

prepositions depend on the more immediate context rather than on distant ones (at least for 

learners).   

However, the results achieved in this study are promising if they are compared to the results given by 

the CoNLL 2013 shared task, meaning that the high rate of false positives is a problem inherent to this 

task, and not a drawback of the approach followed in this research. Moreover, the possible room for 

improvement that this study has is huge because all other approaches made use of large corpora, 

feeding their algorithm with a large number of instances so that their algorithm could learn to identify 

in a more precise way all prepositional classes, but not obtaining better results than the ones obtained 

in this study (except for the top three teams which achieved really good results). This hypothesis can 

be confirmed by the precision-recall figures as well as the ROC graphs which show a better separation 

for classes containing a larger number of instances, meaning that if the algorithm is trained on a larger 

corpus the general performance should improve. Furthermore, the relatively good performance of the 

final algorithm shows both the potential of using neural networks for undertaking NLP tasks and the 

effectiveness of complex algorithms. However, the different experiments also showed that deep 

recurrent neural networks are either not suitable for the task of detecting and correcting prepositional 

errors or need a deeper analysis before building the network, which would require a whole separate 

study. This also shows that, on the one hand, the literature on techniques to improve recurrent neural 

networks is huge and a complete study would be required to analyse and test in a deeper way each of 

the components that were analysed in this study. On the other hand, it proves that machine learning 

techniques depend too much on data, and that the use of the NUCLE corpus by itself is insufficient to 

resolve the task at hand, and new approaches using much larger corpora are needed to achieve better 

results. 

The promising results achieved in this study and the room for improvement this approach has, are 

motives for future work. On the one hand, it would be important to increase the types of errors the 

algorithm deals with to all errors targeted in the shared tasks CoNLL 2013 and 2014. For most of them 

the same approach could be used by varying the generation of examples. It is also important to 



145 
 

increase the training data as well as the embedding table (it might be by using existing embedding 

tables trained on huge corpora), and one option might be to use large available native corpora and 

populate them with learner patterns in order to generate huge learner-like training data. Another 

experiment that is worth investigating is to find a way to include in an efficient way the original 

preposition in the training examples, e.g. populating prepositional errors based on the first language 

of the learner as was carried out by Rozovskaya and Roth. It is also worth testing other approaches on 

recurrent neural networks such as language models and translators.  

In conclusion, the study demonstrates the usability of recurrent neural networks for detecting and 

correcting prepositional errors made by learners of English as a second language, but at the same time 

shows that there is still a long way to go before we achieve satisfactory results. 
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