

Using Recurrent Neural Networks and Learner Corpus to Detect and

Correct Preposition Errors by English Learners

Juan Pablo Garcia Guerrero

Master of Information Technology

Flinders University

May 2018

Supervisor:

Professor David Powers

Submitted to the College of Science and Engineering in partial fulfilment of the requirements for the

degree of Master of Information Technology at Flinders University – Adelaide Australia

ii

I, Juan Pablo Garcia Guerrero, certify that this work does not incorporate without acknowledgment

any material previously submitted for a degree or diploma in any university; and that to the best of

my knowledge and belief it does not contain any material previously published or written by another

person except where due reference is made in the text.

Signed..

Date: 10/05/2018

iii

Abstract

In a global world, English has become a lingua franca used for trading, research and general

communications whereby millions of people from distinct language backgrounds are learning English

as a second or foreign language. Second language acquisition is challenging, and it takes years – on

average - before a person can gain English proficiency. The research about this field is plentiful but not

conclusive because of the large number of factors affecting the second language acquisition process.

Many tools have been developed to support this process within the field of Computer-Assisted

Language Learning, but traditional proofreading techniques that are suitable to check native writings

are not suitable to check learner writings, whereby recent research around the learner errors

detection and correction tasks has emerged with some shared tasks such as Helping Our Own -2011

and 2012 – and CoNLL 2013 and 2014 creating some baselines on which new research can be carried

out.

This study undertakes the task of detecting and correcting prepositional errors made by English

learners through the use of Recurrent Neural Networks and more in particular Long Short Term

Memory architecture. Among the Natural Language Processing techniques, this approach differs from

previous works in which it uses non-linear classifiers rather than the traditional linear classifiers such

as Naïve Bayes, Maximum Entropy, Average Perceptron, N-Grams and so on. The data used to train,

validate and test the algorithm was the National University of Singapore Corpus of Learner English,

which is one of the largest Learner Corpora available for research and which is fully error annotated

whereby data-driving techniques can be brought about.

Different elements and techniques were proposed, tested and analysed before determining their

positive impact on the learner prepositional error correction task and before including them in the

main algorithm. On the Recurrent Neural Network side such elements were the attention mechanism,

regularization through dropout, the bidirectional model, and deep recurrent neural networks. On the

features and examples side, lexical features, part of speech tags, dependency parse indexes, sequence

length and number of classes (prepositions) were tested using different values. Moreover, embedding

layers – following the skip-gram architecture - were created from the learner corpus to assess their

influence on the task at hand by varying parameters such as the window size. The final algorithm, after

applying some pre-processing and post-processing techniques, renders promising results when

compared to the results of the CoNLL 2013 shared task.

iv

Acknowledgement

I would like to thank my supervisor David Power for his guidance through this project and his wife Sue

for her support on the proofreading of this study.

v

Table of Content

1 Introduction .. 1

2 Review ... 3

2.1 English Learners Grammatical Errors .. 3

2.2 Correcting Learner Errors .. 4

2.3 Classifiers .. 4

2.3.1 Classes ... 5

2.3.2 Features .. 5

2.3.3 Naïve Bayes ... 6

2.3.4 Maximum Entropy .. 6

2.3.5 Average Perceptron .. 7

2.3.6 Multiclass classifier using the Confidence-Weighted Learning algorithm 7

2.3.7 Binary Classifier ... 8

2.4 Language Models .. 8

2.4.1 N-grams ... 8

2.4.2 Statistical Machine Translations ... 9

2.5 Prepositions .. 9

2.5.1 What are prepositions? ... 10

2.6 Training Data ... 11

2.7 Neural Networks Models .. 12

2.7.1 LSTM .. 13

2.7.2 Additional LSTM Neural Network Components .. 16

2.7.3 Feature Embedding Layer ... 17

3 Method ... 19

3.1 Evaluating the Algorithm .. 20

3.2 The Data .. 22

3.2.1 Defining Prepositional Errors in the NUCLE corpus. ... 23

3.2.2 Training, validating and testing datasets .. 24

3.2.3 Oversampling and Undersampling .. 24

3.3 The Model ... 25

3.3.1 LSTM Neural Network ... 25

3.3.2 Dropout ... 26

3.3.3 Attention ... 26

3.3.4 Classes ... 26

3.4 Size of Neural Network ... 27

vi

3.5 Feature Embedding Layer ... 28

3.6 Examples ... 29

3.7 Features .. 30

3.7.1 POS Tags .. 30

3.7.2 Index of the Parent in the Dependency Tree .. 30

3.8 Data Pre-processing .. 31

4 Results ... 32

4.1 Size of the Neural Network ... 33

4.1.1 Number of Hidden Cells .. 33

4.1.2 Number of Layers .. 41

4.2 Data ... 46

4.2.1 Undersampling .. 46

4.2.2 Oversampling .. 52

4.3 Examples ... 59

4.3.1 Length of the Input Sequence ... 59

4.4 Features .. 64

4.4.1 Tags ... 64

4.4.2 Parse Features ... 70

4.4.3 Limiting Minimum Number of Lexical Features .. 76

4.4.4 Original Preposition .. 82

4.5 Embedding .. 86

4.5.1 One-Hot vs. Embedding .. 86

4.5.2 Lexical Embedding Sizes .. 90

4.5.3 Window Embedding Size... 95

4.6 Models .. 100

4.6.1 Simple vs. Bidirectional ... 100

4.6.2 Attention ... 103

4.6.3 Dropout ... 107

4.6.4 Classes ... 114

4.7 Pre-processing ... 126

4.7.1 Spelling .. 126

4.8 Optimum Algorithm and Final Algorithm ... 129

4.8.1 Training Phase ... 130

4.8.2 Testing Phase .. 131

5 Analysis ... 138

5.1 Size of the Neural Network ... 138

vii

5.2 Data ... 138

5.3 Examples ... 139

5.4 Features .. 139

5.5 Embedding .. 140

5.6 Model .. 141

5.7 Pre-processing ... 141

5.8 Final Algorithm .. 142

6 Conclusions ... 144

7 Reference List .. 146

viii

Indices of Tables

Table 1 Contingency table... 20

Table 2 WAS evaluation Schema... 22

Table 3 NUCLE data Overview .. 22

Table 4 Top 30 of Prepositions in NUCLE .. 23

Table 5 Default Parameters of the algorithm ... 32

Table 6 Error correction for all classes using different numbers of hidden cells 40

Table 7 Error detection for all classes using different numbers of hidden cells 40

Table 8 Error correction for 10 top classes using different numbers of hidden cells 40

Table 9 Error detection for top 10 classes using different numbers of hidden cells 40

Table 10 Error correction for all classes using different numbers of layers ... 45

Table 11 Error detection for all classes using different numbers of layers .. 45

Table 12 Error correction for 10 top classes using different numbers of layers 45

Table 13 Error detection for 10 top classes using different numbers of layers 46

Table 14 Error correction for all classes by undersampling the training examples 51

Table 15 Error detection for all classes by undersampling the training examples 51

Table 16 Error correction for 10 top classes by undersampling the training examples 52

Table 17 Error detection for 10 top classes by undersampling the training examples 52

Table 18 Error correction for all classes by oversampling the training examples 58

Table 19 Error detection for all classes by oversampling the training examples 58

Table 20 Error correction for 10 top classes by oversampling the training examples 58

Table 21 Error correction for 10 top classes by oversampling the training examples 58

Table 22 Error correction for all classes varying the maximum length of the input sequence 63

Table 23 Error detection for all classes varying the maximum length of the input sequence 63

Table 24 Error correction for 10 top classes varying the maximum length of the input sequence 63

Table 25 Error correction for 10 top classes varying the maximum length of the input sequence 64

Table 26 Error correction for all classes adding POS tags at different embedding sizes 69

Table 27 Error detection for all classes adding POS tags at different embedding sizes 69

Table 28 Error correction for 10 top classes adding POS tags at different embedding sizes 69

Table 29 Error correction for 10 top classes adding POS tags at different embedding sizes 69

Table 30 Error correction for all classes adding parent index of dependency tree at different

embedding sizes .. 75

Table 31 Error detection for all classes adding parent index of dependency tree at different embedding

sizes ... 75

Table 32 Error correction for 10 top classes adding parent index of dependency tree at different

embedding sizes .. 75

Table 33 Error detection for 10 top classes adding parent index of dependency tree at different

embedding sizes .. 75

Table 34 Error correction for all classes limiting the minimum number of lexical occurrences 81

Table 35 Error detection for all classes limiting the minimum number of lexical occurrences 81

Table 36 Error correction for 10 top classes limiting the minimum number of lexical occurrences 82

Table 37 Error correction for 10 top classes limiting the minimum number of lexical occurrences 82

Table 38 Error correction for all classes varying the original preposition .. 86

Table 39 Error detection for all classes varying the original preposition ... 86

Table 40 Error correction for 10 top classes varying the original preposition 86

Table 41 Error detection for 10 top classes varying the original preposition 86

Table 42 Error correction for all classes for one-hot vs. embedding input vectors 89

ix

Table 43 Error detection for all classes for one-hot vs. embedding input vectors 90

Table 44 Error correction for 10 top classes for one-hot vs. embedding input vectors 90

Table 45 Error detection for 10 top classes for one-hot vs. embedding input vectors 90

Table 46 Error correction for all classes varying the lexical embedding size of the input feature 94

Table 47 Error detection for all classes varying the lexical embedding size of the input feature 94

Table 48 Error correction for 10 top classes varying the lexical embedding size of the input feature 94

Table 49 Error detection for 10 top classes varying the lexical embedding size of the input feature . 94

Table 50 Error correction for all classes by embedding lexical features at different window sizes 99

Table 51 Error detection for all classes by embedding lexical features at different window sizes 99

Table 52 Error correction for 10 top classes by embedding lexical features at different window sizes

 .. 100

Table 53 Error detection for 10 top classes by embedding lexical features at different window sizes

 .. 100

Table 54 Error correction for all classes varying the core LSTM model .. 103

Table 55 Error detection for all classes varying the core LSTM model ... 103

Table 56 Error correction for 10 top classes varying the core LSTM model 103

Table 57 Error detection for 10 top classes varying the core LSTM model .. 103

Table 59 Error correction for all classes comparing the use of attention mechanism 106

Table 60 Error detection for all classes comparing the use of attention mechanism 107

Table 61 Error correction for 10 top classes comparing the use of attention mechanism 107

Table 62 Error detection for 10 top classes comparing the use of attention mechanism 107

Table 63 Error correction for all classes varying the probability of keeping weights through dropout

 .. 114

Table 64 Error detection for all classes varying the probability of keeping weights through dropout

 .. 114

Table 65 Error correction for 10 top classes varying the probability of keeping weights through dropout

 .. 114

Table 66 Error detection for 10 top classes varying the probability of keeping weights through dropout

 .. 114

Table 67 Error correction for all classes varying the number of prepositional classes 125

Table 68 Error detection for all classes varying the number of prepositional classes 125

Table 69 Error correction for only the target classes varying the number of prepositional classes .. 126

Table 70 Error detection for only the target classes varying the number of prepositional classes ... 126

Table 71 Error correction for all classes comparing spelling correction ... 129

Table 72 Error detection for all classes comparing spelling correction .. 129

Table 73 Error correction for 10 top classes comparing spelling correction 129

Table 74 Error detection for 10 top classes comparing spelling correction 129

Table 75 Optimum parameters of the algorithm ... 130

Table 76 Error correction for all classes optimum vs. standard vs. final algorithm 136

Table 77 Error detection for all classes optimum vs. standard vs. final algorithm 136

Table 78 Error correction for top 20 classes optimum vs. standard vs. final algorithm 136

Table 79 Error correction for 20 top classes optimum vs. standard vs. final algorithm 136

Table 80 Final algorithm compared to shared task CoNLL 2013. *the final algorithm only deals with

prepositional wrong choice errors, whose isolated value is shown between parentheses 137

x

Indices of Figures

Figure 1 LSTM diagram (reproduced from (Olah 2015)) ... 14

Figure 2 Forgotten gate (reproduced from (Olah 2015)) ... 15

Figure 3 input and candidate gates (reproduced from (Olah 2015)) ... 15

Figure 4 output gate (reproduced from (Olah 2015)) ... 15

Figure 5 Cross validation using 50 Hidden Cells. ... 33

Figure 6 Cross validation using 100 Hidden Cells.. 33

Figure 7 Cross validation using 200 Hidden Cells.. 34

Figure 8 Cross validation using 400 Hidden Cells.. 34

Figure 9 Cross validation using 800 Hidden Cells.. 34

Figure 10 Cross validation using 1600 Hidden Cells.. 35

Figure 11 Precision vs. Recall for classes OF (upper left), IN (upper right), FOR (lower left) and TO (lower

right) varying the number of Hidden Cells .. 35

Figure 12 Precision vs. Recall for classes AS (upper left), THAT (upper right), ON (lower left) and FROM

(lower right) varying the number of Hidden Cells .. 36

Figure 13 Precision vs. Recall for classes WITH (left), BY (right) varying the number of Hidden Cells . 36

Figure 14 ROC for classes OF (upper left), IN (upper right), FOR (lower left) and TO (lower right) varying

the number of Hidden Cells .. 37

Figure 15 Precision vs. Recall for classes AS (upper left), THAT (upper right), ON (lower left) and FROM

(lower right) varying the number of Hidden Cells .. 37

Figure 16 ROC for classes WITH (left) and BY (right) varying the number of Hidden Cells 38

Figure 17 Correction Metrics against a Threshold using 50 Hidden Cells .. 38

Figure 18 Correction Metrics against a Threshold using 100 Hidden Cells .. 38

Figure 19 Correction Metrics against a Threshold using 200 Hidden Cells .. 39

Figure 20 Correction Metrics against a Threshold using 400 Hidden Cells .. 39

Figure 21 Correction Metrics against a Threshold using 800 Hidden Cells .. 39

Figure 22 Correction Metrics against a Threshold using 1600 Hidden Cells .. 40

Figure 23 Cross validation using 2 Layers ... 41

Figure 24 Cross validation using 4 Layers ... 41

Figure 25 Cross validation using 8 Layers ... 42

Figure 26 Precision vs. Recall for classes OF (upper left), IN (upper right), FOR (lower left) and TO (lower

right) varying the number of layers .. 42

Figure 27 Precision vs. Recall for classes AS (upper left), THAT (upper right), ON (lower left) and FROM

(lower right) varying the number of layers ... 43

Figure 28 Precision vs. Recall for classes WITH (left) and BY (right) varying the number of layers 43

Figure 29 Precision vs. Recall for classes OF (upper left), IN (upper right), FOR (lower left) and TO (lower

right) varying the number of Layers ... 43

Figure 30 Precision vs. Recall for classes AS (upper left), THAT (upper right), ON (lower left) and FROM

(lower right) varying the number of layers ... 44

Figure 31 ROC for classes WITH (left) and BY (right) varying the number of layers 44

Figure 32 Correction Metrics against a Threshold using 2 Layers .. 44

Figure 33 Correction Metrics against a Threshold using 4 Layers .. 45

Figure 34 Correction Metrics against a Threshold using 8 Layers .. 45

Figure 35 Cross validation by undersampling the maximum number of instances per class at the second

most frequent prepositions in the corpus, i.e. ‘IN’ ... 46

xi

Figure 36 Cross validation by undersampling the maximum number of instances per class at the third

most frequent prepositions in the corpus, i.e. ‘FOR’ .. 46

Figure 37 Cross validation by undersampling the maximum number of instances per class at the

seventh most frequent prepositions in the corpus, i.e. ‘ON’ ... 47

Figure 38 Cross validation by undersampling the maximum number of instances per class at the tenth

most frequent prepositions in the corpus, i.e. ‘BY’ .. 47

Figure 39 Precision vs. Recall for classes OF (upper left), IN (upper right), FOR (lower left) and TO (lower

right) by undersampling training examples .. 48

Figure 40 Precision vs. Recall for classes AS (upper left), THAT (upper right), ON (lower left) and FROM

(lower right) by undersampling the training examples .. 48

Figure 41 Precision vs. Recall for classes WITH (left) and BY (right) by undersampling the training

examples ... 48

Figure 42 ROC for classes OF (upper left), IN (upper right), FOR (lower left) and TO (lower right) by

undersampling the training examples .. 49

Figure 43 ROC for classes AS (upper left), THAT (upper right), ON (lower left) and FROM (lower right)

by undersampling the training examples ... 49

Figure 44 ROC for classes WITH (left) and BY (right) by undersampling the training examples 50

Figure 45 Correction Metrics against a Threshold by undersampling the maximum number of instances

per class at the second most frequent prepositions in the corpus, i.e. ‘IN’ ... 50

Figure 46 Correction Metrics against a Threshold by undersampling the maximum number of instances

per class at the third most frequent prepositions in the corpus, i.e. ‘FOR’ .. 50

Figure 47 Correction Metrics against a Threshold by undersampling the maximum number of instances

per class at the seventh most frequent prepositions in the corpus, i.e. ‘ON’ 51

Figure 48 Correction Metrics against a Threshold by undersampling the maximum number of instances

per class at the tenth most frequent prepositions in the corpus, i.e. ‘BY’ ... 51

Figure 49 Cross validation by oversampling the minimum number of instances per class at the most

frequent prepositions in the corpus, i.e. ‘OF’ ... 52

Figure 50 Cross validation by oversampling the minimum number of instances per class at the second

most frequent prepositions in the corpus, i.e. ‘IN’ ... 53

Figure 51 Cross validation by oversampling the minimum number of instances per class at the third

most frequent prepositions in the corpus, i.e. ‘FOR’ .. 53

Figure 52 Cross validation by oversampling the minimum number of instances per class at the seventh

most frequent prepositions in the corpus, i.e. ‘ON’ ... 54

Figure 53 Precision vs. Recall for classes OF (upper left), IN (upper right), FOR (lower left) and TO (lower

right) by oversampling the training examples .. 54

Figure 54 Precision vs. Recall for classes AS (upper left), THAT (upper right), ON (lower left) and FROM

(lower right) by oversampling the training examples ... 55

Figure 55 Precision vs. Recall for classes WITH (left) and BY (right) by oversampling the training

examples ... 55

Figure 56 ROC for classes OF (upper left), IN (upper right), FOR (lower left) and TO (lower right) by

oversampling the training examples ... 55

Figure 57 ROC for classes AS (upper left), THAT (upper right), ON (lower left) and FROM (lower right)

by oversampling the training examples .. 56

Figure 58 for classes WITH (left) and BY (right) by oversampling the training examples 56

Figure 59 Correction Metrics against a Threshold by oversampling the minimum number of instances

per class at the most frequent prepositions in the corpus, i.e. ‘OF’ ... 56

Figure 60 Correction Metrics against a Threshold by oversampling the minimum number of instances

per class at the second most frequent prepositions in the corpus, i.e. ‘IN’ ... 57

xii

Figure 61 Correction Metrics against a Threshold by oversampling the minimum number of instances

per class at the third most frequent prepositions in the corpus, i.e. ‘FOR’ .. 57

Figure 62 Correction Metrics against a Threshold by oversampling the minimum number of instances

per class at the most frequent prepositions in the corpus, i.e. ‘ON’ .. 58

Figure 63 Table 18 Cross validation at a maximum input sequence of 10 ... 59

Figure 64 Table 18 Cross validation at a maximum input sequence of 15 ... 59

Figure 65 Table 18 Cross validation at a maximum input sequence of 20 ... 60

Figure 66 Precision vs. Recall for classes OF (upper left), IN (upper right), FOR (lower left) and TO (lower

right) varying the maximum length of the input sequence .. 60

Figure 67 Precision vs. Recall for classes AS (upper left), THAT (upper right), ON (lower left) and FROM

(lower right) varying the maximum length of the input sequence ... 61

Figure 68 Precision vs. Recall for classes WITH (left) and BY (right) varying the maximum length of the

input sequence.. 61

Figure 69 ROC for classes OF (upper left), IN (upper right), FOR (lower left) and TO (lower right) varying

the maximum length of the input sequence .. 61

Figure 70 ROC for classes AS (upper left), THAT (upper right), ON (lower left) and FROM (lower right)

varying the maximum length of the input sequence .. 62

Figure 71 ROC for classes WITH (left) and BY (right) varying the maximum length of the input sequence

 .. 62

Figure 72 Correction Metrics against a Threshold at a maximum input sequence of 10 62

Figure 73 Correction Metrics against a Threshold at a maximum input sequence of 15 63

Figure 74 Correction Metrics against a Threshold at a maximum input sequence of 20 63

Figure 75 Cross validation adding embedded POS tags at a vector of size 10 64

Figure 76 Cross validation adding embedded POS tags at a vector of size 15 64

Figure 77 Cross validation adding embedded POS tags at a vector of size 20 65

Figure 78 Cross validation adding embedded POS tags at a vector of size 25 65

Figure 79 Precision vs. Recall for classes OF (upper left), IN (upper right), FOR (lower left) and TO (lower

right) adding POS tags at different embedding sizes .. 66

Figure 80 Precision vs. Recall for classes AS (upper left), THAT (upper right), ON (lower left) and FROM

(lower right) adding POS tags at different embedding sizes .. 66

Figure 81 Precision vs. Recall for classes WITH (left) and BY (right) adding POS tags at different

embedding sizes .. 66

Figure 82 ROC for classes OF (upper left), IN (upper right), FOR (lower left) and TO (lower right) adding

POS tags at different embedding sizes ... 67

Figure 83 ROC for classes AS (upper left), THAT (upper right), ON (lower left) and FROM (lower right)

adding POS tags at different embedding sizes ... 67

Figure 84 ROC for classes WITH (left) and BY (right) adding POS tags at different embedding sizes .. 67

Figure 85 Correction Metrics against a Threshold adding embedded POS tags at a vector of size 10 68

Figure 86 Correction Metrics against a Threshold adding embedded POS tags at a vector of size 15 68

Figure 87 Correction Metrics against a Threshold adding embedded POS tags at a vector of size 20 68

Figure 88 Correction Metrics against a Threshold adding embedded POS tags at a vector of size 25 69

Figure 89 Cross validation adding embedded parent index of dependency tree at a vector of size 10

 .. 70

Figure 90 Cross validation adding embedded parent index of dependency tree at a vector of size 15

 .. 70

Figure 91 Cross validation adding embedded parent index of dependency tree at a vector of size 20

 .. 71

xiii

Figure 92 Cross validation adding embedded parent index of dependency tree at a vector of size 25

 .. 71

Figure 93 Precision vs. Recall for classes OF (upper left), IN (upper right), FOR (lower left) and TO (lower

right) adding parent index of dependency tree at different embedding sizes 72

Figure 94 Precision vs. Recall for classes AS (upper left), THAT (upper right), ON (lower left) and FROM

(lower right) adding parent index of dependency tree at different embedding sizes 72

Figure 95 Precision vs. Recall for classes WITH (left) and BY (right) adding parent index of dependency

tree at different embedding sizes ... 72

Figure 96 ROC for classes OF (upper left), IN (upper right), FOR (lower left) and TO (lower right) adding

parent index of dependency tree at different embedding sizes .. 73

Figure 97 ROC for classes AS (upper left), THAT (upper right), ON (lower left) and FROM (lower right)

adding parent index of dependency tree at different embedding sizes .. 73

Figure 98 ROC for classes WITH (left) and BY (right) adding parent index of dependency tree at different

embedding sizes .. 73

Figure 99 Correction Metrics against a Threshold adding embedded parent index of dependency tree

at a vector of size 10 ... 74

Figure 100 Correction Metrics against a Threshold adding embedded parent index of dependency tree

at a vector of size 15 ... 74

Figure 101 Correction Metrics against a Threshold adding embedded parent index of dependency tree

at a vector of size 20 ... 74

Figure 102 Correction Metrics against a Threshold adding embedded parent index of dependency tree

at a vector of size 25 ... 75

Figure 103 Cross validation limiting the minimum number of lexical occurrences at more than 1 76

Figure 104 Cross validation limiting the minimum number of lexical occurrences at more than 2 76

Figure 105 Cross validation limiting the minimum number of lexical occurrences at more than 4 77

Figure 106 Cross validation limiting the minimum number of lexical occurrences at more than 8 77

Figure 107 Cross validation limiting the minimum number of lexical occurrences at more than 8 77

Figure 108 Precision vs. Recall for classes OF (upper left), IN (upper right), FOR (lower left) and TO

(lower right) varying the minimum number of lexical occurrences ... 78

Figure 109 Precision vs. Recall for classes AS (upper left), THAT (upper right), ON (lower left) and FROM

(lower right) varying the minimum number of lexical occurrences ... 78

Figure 110 Precision vs. Recall for classes WITH (left) and BY (right) varying the minimum number of

lexical occurrences .. 78

Figure 111 Error Correction Metrics against a Threshold limiting the minimum number of lexical

occurrences at more than 1 .. 80

Figure 112 Error Correction Metrics against a Threshold limiting the minimum number of lexical

occurrences at more than 2 .. 80

Figure 113 Error Correction Metrics against a Threshold limiting the minimum number of lexical

occurrences at more than 4 .. 80

Figure 114 Error Correction Metrics against a Threshold limiting the minimum number of lexical

occurrences at more than 8 .. 81

Figure 115 Error Correction Metrics against a Threshold limiting the minimum number of lexical

occurrences at more than 16 .. 81

Figure 116 Cross validation including original preposition ... 82

Figure 117 Cross validation replacing original preposition ... 83

Figure 118 Precision vs. Recall for classes OF (upper left), IN (upper right), FOR (lower left) and TO

(lower right) varying the original preposition ... 83

xiv

Figure 119 Precision vs. Recall for classes AS (upper left), THAT (upper right), ON (lower left) and FROM

(lower right) varying the original preposition ... 84

Figure 120 Precision vs. Recall for classes WITH (left) and BY (right) varying the original preposition 84

Figure 121 ROC for classes OF (upper left), IN (upper right), FOR (lower left) and TO (lower right)

varying the original preposition .. 84

Figure 122 ROC for classes AS (upper left), THAT (upper right), ON (lower left) and FROM (lower right)

varying the original preposition .. 85

Figure 123 ROC for classes WITH (left) and BY (right) varying the original preposition 85

Figure 124 Correction Metrics against a Threshold including original preposition 85

Figure 125 Correction Metrics against a Threshold replacing original preposition.............................. 86

Figure 126 Cross validation using one-hot vectors as inputs ... 87

Figure 127 Precision vs. Recall for classes OF (upper left), IN (upper right), FOR (lower left) and TO

(lower right) for one-hot vs. embedding input vectors .. 87

Figure 128 Precision vs. Recall for classes AS (upper left), THAT (upper right), ON (lower left) and FROM

(lower right) for one-hot vs. embedding input vectors .. 88

Figure 129 Precision vs. Recall for classes WITH (left) and BY (right) for one-hot vs. embedding input

vectors ... 88

Figure 130ROC for classes OF (upper left), IN (upper right), FOR (lower left) and TO (lower right) for

one-hot vs. embedding input vectors ... 88

Figure 131 ROC for classes AS (upper left), THAT (upper right), ON (lower left) and FROM (lower right)

for one-hot vs. embedding input vectors ... 89

Figure 132 ROC for classes WITH (left) and BY (right) for one-hot vs. embedding input vectors 89

Figure 133 Correction Metrics against a Threshold using one-hot vectors as inputs 89

Figure 134 Cross validation for a lexical embedding size of 50 .. 90

Figure 135 Cross validation for a lexical embedding size of 200 .. 91

Figure 136 Precision vs. Recall for classes OF (upper left), IN (upper right), FOR (lower left) and TO

(lower right) varying the lexical embedding size of the input feature ... 91

Figure 137 Precision vs. Recall for classes AS (upper left), THAT (upper right), ON (lower left) and FROM

(lower right) varying the lexical embedding size of the input feature ... 92

Figure 138 Precision vs. Recall for classes WITH (left) and BY (right) varying the lexical embedding size

of the input feature ... 92

Figure 139 ROC for classes OF (upper left), IN (upper right), FOR (lower left) and TO (lower right)

varying the lexical embedding size of the input feature .. 92

Figure 140 ROC for classes AS (upper left), THAT (upper right), ON (lower left) and FROM (lower right)

varying the lexical embedding size of the input feature .. 93

Figure 141 for classes WITH (left) and BY (right) varying the lexical embedding size of the input feature

 .. 93

Figure 142 Correction Metrics against a Threshold for a lexical embedding size of 50 93

Figure 143 Correction Metrics against a Threshold for a lexical embedding size of 200 94

Figure 144 Cross validation embedding lexical features at a window size of 1 95

Figure 145 Cross validation embedding lexical features at a window size of 3 95

Figure 146 Cross validation embedding lexical features at a window size of 4 96

Figure 147 Precision vs. Recall for classes OF (upper left), IN (upper right), FOR (lower left) and TO

(lower right) by embedding lexical features at different window sizes ... 96

Figure 148 Precision vs. Recall for classes AS (upper left), THAT (upper right), ON (lower left) and FROM

(lower right) by embedding lexical features at different window sizes ... 97

Figure 149 Precision vs. Recall for classes WITH (left) and BY (right) by embedding lexical features at

different window sizes .. 97

xv

Figure 150 ROC for classes OF (upper left), IN (upper right), FOR (lower left) and TO (lower right) by

embedding lexical features at different window sizes ... 97

Figure 151 ROC for classes AS (upper left), THAT (upper right), ON (lower left) and FROM (lower right)

by embedding lexical features at different window sizes .. 98

Figure 152 ROC for classes WITH (left) and BY (right) by embedding lexical features at different window

sizes ... 98

Figure 153 Correction Metrics against a Threshold embedding lexical features at a window size of 1

 .. 98

Figure 154 Correction Metrics against a Threshold embedding lexical features at a window size of 3

 .. 99

Figure 155 Correction Metrics against a Threshold embedding lexical features at a window size of 4

 .. 99

Figure 156 Cross validation using a bidirectional LSTM model .. 100

Figure 157 Precision vs. Recall for classes OF (upper left), IN (upper right), FOR (lower left) and TO

(lower right) varying the core LSTM model .. 101

Figure 158 Precision vs. Recall for classes AS (upper left), THAT (upper right), ON (lower left) and FROM

(lower right) varying the core LSTM model .. 101

Figure 159 Precision vs. Recall for classes WITH (left) and BY (right) varying the core LSTM model . 101

Figure 160 ROC for classes OF (upper left), IN (upper right), FOR (lower left) and TO (lower right)

varying the core LSTM model ... 102

Figure 161 ROC for classes AS (upper left), THAT (upper right), ON (lower left) and FROM (lower right)

varying the core LSTM model ... 102

Figure 162 ROC for classes WITH (left) and BY (right) varying the core LSTM model 102

Figure 163 Correction Metrics against a Threshold using a bidirectional LSTM model 103

Figure 164 Precision vs. Recall for classes OF (upper left), IN (upper right), FOR (lower left) and TO

(lower right) comparing the use of attention mechanism.. 104

Figure 165 Precision vs. Recall for classes AS (upper left), THAT (upper right), ON (lower left) and FROM

(lower right) comparing the use of attention mechanism.. 105

Figure 166 Precision vs. Recall for classes WITH (left) and BY (right) comparing the use of attention

mechanism .. 105

Figure 167 ROC for classes OF (upper left), IN (upper right), FOR (lower left) and TO (lower right)

comparing the use of attention mechanism ... 105

Figure 168 ROC for classes AS (upper left), THAT (upper right), ON (lower left) and FROM (lower right)

comparing the use of attention mechanism ... 106

Figure 169 ROC for classes WITH (left) and BY (right) comparing the use of attention mechanism .. 106

Figure 170 Correction Metrics against a Threshold using attention mechanism 106

Figure 171 Cross validation keeping weights with a probability of 0.5 .. 107

Figure 172 Cross validation keeping weights with a probability of 0.6 .. 108

Figure 173 Cross validation keeping weights with a probability of 0.7 .. 108

Figure 174 Cross validation keeping weights with a probability of 0.8 .. 108

Figure 175 Cross validation keeping weights with a probability of 0.9 .. 109

Figure 176 Cross validation keeping weights with a probability of 1.0 .. 109

Figure 177 Precision vs. Recall for classes OF (upper left), IN (upper right), FOR (lower left) and TO

(lower right) varying the probability of keeping weights through dropout 110

Figure 178 Precision vs. Recall for classes AS (upper left), THAT (upper right), ON (lower left) and FROM

(lower right) varying the probability of keeping weights through dropout 110

Figure 179 Precision vs. Recall for classes WITH (left) and BY (right) varying the probability of keeping

weights through dropout .. 110

xvi

Figure 180 ROC for classes OF (upper left), IN (upper right), FOR (lower left) and TO (lower right)

varying the probability of keeping weights through dropout .. 111

Figure 181 ROC for classes AS (upper left), THAT (upper right), ON (lower left) and FROM (lower right)

varying the probability of keeping weights through dropout .. 111

Figure 182 ROC for classes WITH (left) and BY (right) varying the probability of keeping weights through

dropout ... 111

Figure 183 Correction Metrics against a Threshold keeping weights with a probability of 0.5 112

Figure 184 Correction Metrics against a Threshold keeping weights with a probability of 0.6 112

Figure 185 Correction Metrics against a Threshold keeping weights with a probability of 0.7 112

Figure 186 Correction Metrics against a Threshold keeping weights with a probability of 0.8 113

Figure 187 Correction Metrics against a Threshold keeping weights with a probability of 0.9 113

Figure 188 Correction Metrics against a Threshold keeping weights with a probability of 1.0 113

Figure 189 Cross validation aiming 5 prepositional classes .. 115

Figure 190 Cross validation aiming 15 prepositional classes .. 115

Figure 191 Cross validation aiming 20 prepositional classes .. 115

Figure 192 Cross validation aiming 25 prepositional classes .. 116

Figure 193 Cross validation aiming 30 prepositional classes .. 116

Figure 194 Precision vs. Recall for classes OF (upper left), IN (upper right), FOR (lower left) and TO

(lower right) varying the number of prepositional classes ... 117

Figure 195 Precision vs. Recall for classes AS (upper left), THAT (upper right), ON (lower left) and FROM

(lower right) varying the number of prepositional classes ... 117

Figure 196 Precision vs. Recall for classes WITH (upper left) and BY (upper right), AT (lower left) and IF

(lower right) varying the number of prepositional classes ... 118

Figure 197 Precision vs. Recall for classes WITH (upper left) and BY (upper right), AT (lower left) and IF

(lower right) varying the number of prepositional classes ... 118

Figure 198 Precision vs. Recall for classes LIKE (upper left), SINCE (upper right), AFTER (lower left) and

THROUGH (lower right) varying the number of prepositional classes ... 119

Figure 199 Precision vs. Recall for classes OVER (upper left), DURING (upper right), WITHOUT (lower

left) and ALTHOUGH (lower right) varying the number of prepositional classes 119

Figure 200 Precision vs. Recall for classes WHILE (upper left), WHETHER (upper right), BEFORE (lower

left) and BESIDES (lower right) varying the number of prepositional classes 120

Figure 201 Precision vs. Recall for classes UNDER (upper left) and BETWEEN (upper right) varying the

number of prepositional classes ... 120

Figure 202 ROC for classes OF (upper left), IN (upper right), FOR (lower left) and TO (lower right)

varying the number of prepositional classes .. 120

Figure 203 ROC for classes AS (upper left), THAT (upper right), ON (lower left) and FROM (lower right)

varying the number of prepositional classes .. 121

Figure 204 for classes WITH (upper left), BY (upper right), AT (lower left) and IF (lower right) varying

the number of prepositional classes ... 121

Figure 205 ROC for classes THAN (upper left), INTO (upper right), ABOUT (lower left) and BECAUSE

(lower right) varying the number of prepositional classes ... 122

Figure 206 ROC for classes LIKE (upper left), SINCE (upper right), AFTER (lower left) and THROUGH

(lower right) varying the number of prepositional classes ... 122

Figure 207 ROC for classes OVER (upper left), DURING (upper right), WITHOUT (lower left) and

ALTHOUGH (lower right) varying the number of prepositional classes ... 123

Figure 208 ROC for classes WHILE (upper left), WHETHER (upper right), BEFORE (lower left) and

BESIDES (lower right) varying the number of prepositional classes .. 123

xvii

Figure 209 ROC for classes UNDER (left) and BETWEEN (right) varying the number of prepositional

classes ... 123

Figure 210 Correction Metrics against a Threshold aiming 5 prepositional classes 124

Figure 211 Correction Metrics against a Threshold aiming 15 prepositional classes 124

Figure 212 Correction Metrics against a Threshold aiming 20 prepositional classes 124

Figure 213 Correction Metrics against a Threshold aiming 25 prepositional classes 125

Figure 214 Correction Metrics against a Threshold aiming 30 prepositional classes 125

Figure 215 Cross validation correcting spelling .. 126

Figure 216 Precision vs. Recall for classes OF (upper left), IN (upper right), FOR (lower left) and TO

(lower right) comparing spelling correction ... 127

Figure 217 Precision vs. Recall for classes AS (upper left), THAT (upper right), ON (lower left) and FROM

(lower right) comparing spelling correction ... 127

Figure 218 Precision vs. Recall for classes WITH (left) and BY (right) comparing spelling correction 127

Figure 219 ROC for classes OF (upper left), IN (upper right), FOR (lower left) and TO (lower right)

comparing spelling correction .. 128

Figure 220 ROC for classes AS (upper left), THAT (upper right), ON (lower left) and FROM (lower right)

comparing spelling correction .. 128

Figure 221 ROC for classes WITH (left) and BY (right) comparing spelling correction 128

Figure 222 Correction Metrics against a Threshold correcting spelling ... 129

Figure 223 Cross validation using optimum parameters .. 130

Figure 224 Precision vs. Recall for classes OF (upper left), IN (upper right), FOR (lower left) and TO

(lower right) optimum vs. standard .. 131

Figure 225 Precision vs. Recall for classes AS (upper left), THAT (upper right), ON (lower left) and FROM

(lower right) optimum vs. standard .. 131

Figure 226 Precision vs. Recall for classes WITH (upper left), BY (upper right), AT (lower left) and IF

(lower right) optimum vs. standard .. 132

Figure 227 Precision vs. Recall for classes THAN (upper left), INTO (upper right), ABOUT (lower left)

and BECAUSE (lower right) optimum vs. standard ... 132

Figure 228 Precision vs. Recall for classes LIKE (upper left), SINCE (upper right), AFTER (lower left) and

THROUGH (lower right) optimum vs. standard .. 133

Figure 229 ROC for classes OF (upper left), IN (upper right), FOR (lower left) and TO (lower right)

optimum vs. standard ... 133

Figure 230 ROC for classes AS (upper left), THAT (upper right), ON (lower left) and FROM (lower right)

optimum vs. standard ... 134

Figure 231 ROC for classes WITH (upper left), BY (upper right), AT (lower left) and IF (lower right)

optimum vs. standard ... 134

Figure 232 ROC for classes THAN (upper left), INTO (upper right), ABOUT (lower left) and BECAUSE

(lower right) optimum vs. standard .. 135

Figure 233 ROC for classes LIKE (upper left), SINCE (upper right), AFTER (lower left) and THROUGH

(lower right) optimum vs. standard .. 135

Figure 234 Correction Metrics against a Threshold using optimum parameters 136

1

1 Introduction
As a second language, English is no doubt the first choice around the world (55 counties have English

as their second language (MoveHub 2018)) due to its use as a lingua franca for trading, research and

international communications in general. Millions of people are learning English either in native

English speaking countries (Second language learners) or in their own country (Foreign language

learners) (Izumi, Uchimoto & Isahara 2004; Ng et al. 2014)1. Just in China, reports suggest that over 30

million people are learning English as a second language (Tetreault & Chodorow 2008); and in the

United States, around 10% of the population of public schools have English deficiencies as they speak

a first language other than English (Chodorow, Tetreault & Han 2007). In 2017, the Department of

Education and Training of Australia reported that more than 155 thousand students were enrolled in

English Language Intensive Courses for Overseas Students (ELICOS) (Training 2017), which accounts

for about 21% of the total of international students. The total number of international students goes

up to almost 800 thousand. More than 90% of them speak a first language other than English (Training

2017).

The process of acquiring a second language is complex and some reports suggest that, on average, it

can take seven years before a person can gain English proficiency (Hakuta 2011). The development of

tools to support this process is then a natural consequence in a world in which technology plays an

important role in education. In fact, recent research in error correction is derived from classic

automatic proofreading techniques for native English speakers to tackle the task of correcting errors

for non-native English speakers (Rozovskaya & Roth 2010b). These traditional techniques cannot be

applied successfully to second language learners due to the difference in the language knowledge

domain (De Felice & Pulman 2008). Moreover, over the past years, many different learning computing

tools have been developed (Lee & Seneff 2006). To what extent and how these tools should be utilized

by learners are complex questions studied in the fields of Computer Aided Language Learning (CALL)

and beyond the scope of this study. Nonetheless, it is important to highlight that these learning tools

have emerged from the complexity of the second language acquisition process and from the clear

need of mechanisms to support it.

Any CALL system should be able to identify learning mistakes before tacking any other task, but it is

challenging because English grammar is complex and many ambiguities can emerge from a single

sentence. In linguistics, six different categories tackle English language ambiguities differently, namely

phonology, morphology, syntax, semantics, pragmatics and discourse (Jurafsky & Martin 2009). Syntax

and semantics provide different theories and methodologies to detect incorrect grammatical

sentences, and they are used to tackle particular types of errors, e.g. wrong spelling, wrong word

choice and so on. In the past twenty years, research in the task of detecting and correcting second

language (especially English) errors has increased, and the creation of shared tasks tackling the

grammatical errors of English learners have created some mileage and evaluation metrics.

In 2011, (Dale & Kilgarriff 2011) proposed the pilot Helping Our Own shared task to detect and correct

grammatical errors in order to support the scientific community to improve the English proficiency of

researchers who speak languages other than English. Other shared tasks have followed suit, tackling

differently the task of detecting and correcting incorrect grammar, i.e. tackling different groups of

types of errors. Prepositions and articles are the most common types of errors among English learners

(De Felice & Pulman 2008; Leacock et al. 2014). In particular prepositional mistakes tend to be one of

1 Although within second language acquisition (SLA) there is a difference between second language learners and
foreign language learners, for the purpose of this study both terms will be treated as equivalent to each other.

2

the most challenging types of errors for English learners (Chodorow, Tetreault & Han 2007). In the

Cambridge Learner Corpus, it is estimated that 13.5% of written errors made by English Learners are

related to prepositions (Leacock et al. 2014). Also, in a study of 53 students between intermediate and

advanced level, (Bitchener, Young & Cameron 2005) reported that 29% of the total errors are related

to prepositions. In the Japanese learner corpus, (Izumi et al. 2003) reported that 10% of error were

prepositional. More significantly, the rate of proportional errors in the available data for the HOO

2011, which was collected from published papers in the Association for Computational Linguistics, was

19% (Dale & Kilgarriff 2011). As a consequence, the goal of this study is primarily the detection and

correction of prepositional errors made by non-native English speakers.

The approaches to undertake the task of detecting and correcting prepositional errors vary in type of

algorithms and features. Some of the classical approaches involve linear classifiers and language

models, but more recently, Neural Networks have been widely used, achieving state-of-the-art

Natural Language Processing tasks (Goldberg 2016). Therefore, the prime approach followed in this

study to detect and correct prepositional errors is to use Neural Networks, and more precisely

Recurrent Neural Networks following a Long Short Term Memory (LSTM) architecture. A wide number

of experiments of different recurrent neural network components and features, with their respective

analysis, is carried out in this study in order to determine the best parameters and features for the

task of detecting and correcting prepositional errors made by English learners. The study makes use

of the National University of Singapore Corpus of English Learner (NUCLE), which is one of the largest

learner corpora available for research and fully error annotated.

3

2 Review

2.1 English Learners Grammatical Errors
In the context of identifying categories of grammatical errors made by English Learners, errors vary

widely in type and category (Dale & Kilgarriff 2011; Leacock et al. 2014). For example, whereas some

lexical errors occur at token level (e.g. character and word) such as spelling errors and word choice

errors, other grammatical errors appear in the structure of grammatical forms (e.g. clauses, phrases

and sentences) such as sentence structure errors and word order errors. The literature on Learners

Error Analysis is wide and rich, and a thorough review can be found in (James 2013). For the context

of automatic error correction, however, this study focuses more on empirical error categories that are

used to annotate Learner Corpora. The task of fitting the different types of errors into a

comprehensive error categorization is a difficult task, and different studies have adopted different

sets and subsets of error categories. The errors codes and tagging systems used in Annotated Learner

Corpora differ in structure and content; a difference which is deepened by the somewhat subjective

interpretations made by examiners and coders about English learners’ errors.

One of the first attempts to define a comprehensive error tagging system capable of providing the

flexibility that coders need, and the generalization to create statistics of Learner errors was made by

(Dagneaux, Denness & Granger 1998). The system was used to tag a subset of the International Corpus

of Learner English. They used a descriptive system in which seven linguistic categories (“Formal”,

“Grammatical”, “Lexico-grammatical”, “Lexical”, “Register”, “Word redundant/word missing/word

order” and “Style”) are subcategorized in a hierarchical manner. Overall, their annotating system is a

bit complex.

In contrast, in the codification of the Cambridge Learner Corpus, (Nicholls 2003) adopted a more

comprehensive system in which five types of errors (“wrong Form used” F, “something Missing” M,

“word or phrase needs Replacing” R, “word or phrase is Unnecessary” U, and “word is wrongly Derived”

D) are complemented by a specific word class so that the error can be specified. The system is

complemented with punctuation, countability and false friends’ errors codes respectively. Finally, 13

additional codes dealing with specific errors such as collocation are added, for a total of 68 possible

errors. The system was borrowed and subtly modified by (Dale & Kilgarriff 2011) to define the HOO

2011 shared task, in which the data set consisted of fragments of papers published in the Association

for Computational Linguistics (ACL). A much reduced subset of errors was used in the HOO 2012 (Dale,

Anisimoff & Narroway 2012), in which only prepositions and determiners were targeted. Concretely,

the subset consisted of six types of errors: Wrong word choice (“Replacement”), missing word

(“Missing”) and unwanted word (“Unwanted”) for both determiners and prepositions respectively.

The corpus used was the publicly available Cambridge ESOL First Certificate in English (FCE).

Another error tagging code was developed by the Centre for English Language Community (CELC) at

the National University of Singapore (NUS) and described by (Dahlmeier, Ng & Wu 2013) in their

description of the NUCLE corpus. The error tagging system consists of 13 categories (“Verbs”, “Subject-

Verb agreement”, “Articles/Determiners”, “Nouns”, “Pronouns”, “Word choice”, “Sentence structure”,

“Word order”, “Transitions”, “Mechanics”, “Redundancy”, “Citations” and “Others”), which are in turn

specified into 27 error categories (e.g. Verb error can be specified as Verb Tense, Verb Modal, Missing

Verb and Verb Form errors respectively). A modified subset (“Article or determiner”, “Preposition”,

“Noun number”, “Verb form” and “Subject-verb agreement”) of this tagging system was adopted by

(Ng et al. 2013) in the definition of the CoNLL 2013 shared task. In the CoNLL 2014 shared task, the

number of error categories was extended to 28, i.e. all error tags in the NUCLE corpus.

4

In general, prepositional mistakes made by English learners can be classified as wrong prepositional

choice (e.g. Original: “we arrived to the station”, Corrected: “we arrived at the station”), missing

preposition (e.g. Original: “we are fond Ø beer”, Corrected: “we are fond of beer”) and redundant or

unwanted preposition (e.g. Original: “he went to outside”, Corrected: “he went outside”) (Tetreault &

Chodorow 2008).

2.2 Correcting Learner Errors
Over recent years an increasing interest in error detection and error correction has emerged in the

research community thanks to the creation of the shared tasks proposed by Helping Our Own (HOO)

(Dale, Anisimoff & Narroway 2012; Dale & Kilgarriff 2011), Computational Natural Language Learning

(CoNLL) (Ng et al. 2014; Ng et al. 2013) and Automated Evaluation of Scientific Writing (c)

(Daudaravicius et al. 2016)2. These shared tasks have created an evaluation basis on which new studies

can work so that comparisons between the performance of different approaches can be carried out.

Nonetheless, many studies dealing with the task of detecting and correcting errors in learner writings

(especially articles and prepositions) had been carried out before these shared tasks appeared (De

Felice & Pulman 2008; Gamon et al. 2008; Tetreault & Chodorow 2008).

Although some error correction methods and proofreading tools were basically heuristic and rule-

based at the beginning, they are these days data-driven approaches to a large extent (Leacock et al.

2014). This does not mean that rule-based techniques are no longer used (actually some modern error

correction systems are supported by rule-based modules), this means that the huge amount of data

that is collected day by day allows the construction of simpler systems that are less dependent on

linguistic knowledge, i.e. statistical models can encode the set of rules that good grammars follow by

looking at good grammatical sentences (likewise, they can encode grammatical error patterns by

looking at Learner corpora).

Because errors vary in type, traditional error detection and error correction systems use specific

modules to deal with specific errors. For example, in the HOO 2011 shared task, most teams chose to

tackle specific errors among the 28 error types defined in the shared task (Dale & Kilgarriff 2011). This

tendency was more remarkable in the HOO 2012 shared task in which a reduced number of errors was

targeted (determiners and prepositions), so that most teams used two separate modules to deal with

determiners and prepositions respectively (Dale, Anisimoff & Narroway 2012). Among the methods

to detect and correct learner errors, two types stand out: classifiers and sequential models (e.g. n-

grams and language models). All these approaches share a common feature: they are all based on

feature engineering. However, recent studies on Neural Network models suggest that error correction

tasks can be achieved without feature engineering (Liu & Liu 2017). This study will test if the

knowledge domain in grammar, especially on prepositions, can improve the evaluation metrics when

applied to NNs or if NN architectures can by themselves discover these features.

2.3 Classifiers
A typical approach to detect and correct written errors is to create modules for each type of target

error behaving as classifiers. A multiclass classifier seems a natural approach to deal with errors

related to closed classes such as articles and prepositions. Early and recent works on detecting and

correcting errors made by learners, have made use of different types of classifiers (Chodorow,

Tetreault & Han 2007; De Felice & Pulman 2008; Han, Chodorow & Leacock 2006; Izumi, Uchimoto &

Isahara 2004; Tetreault & Chodorow 2008). (Dahlmeier, Ng & Ng 2012), for instance, designed and

2 However, the AESW shared task is focus on a general estimation of the observation of papers with respect to
some guidelines rather than on particular error corrections.

5

implemented two separate multiclass classifiers to detect and correct article and preposition errors

respectively from a finite set of classes in the shared tasks HOO 2012. They defined a confusion set

consisting of 36 classes from the 36 most frequently used English prepositions. Among the different

classifiers used to detect learners’ errors the most common are Maximum Entropy Classifiers, Naïve

Bayer Classifiers and Averaged Perceptron Classifiers. Because these classifiers are linear, the

hypothesis functions differ from one another in their weights (Rozovskaya & Roth 2011).

2.3.1 Classes
The number of classes (prepositions) to target in an error-detection and error-correction system

should, ideally, be equal to the total number of prepositions. However, it is rarely the case. One simple

reason could be that the exact number of preposition is not known (see the section on prepositions).

However, the real reasons are practical: performance and convenience. On the one hand, the number

of prepositions that English learners use is small (Leacock et al. 2014), and on the other hand, evidence

suggests that by tackling the most common prepositions, systems can detect most of the prepositional

errors. For example, (Rozovskaya, Sammons & Roth 2012) used only ten prepositions for all their

system, and although (Dahlmeier, Ng & Ng 2012) use a total of 36 prepositions for their prepositional

module, they used only seven prepositions (“about, at, for, in, of, on, and to”) in their system to deal

with missing prepositions as these cope with most of the occurrences of these type of errors, and they

detected that adding other prepositions did not improve their system performance. It may be that

small examples for some prepositions are not sufficient to capture their behaviour. This study aims to

prove this assumption.

Moreover, because for each prepositional error in a sentence the set of words belonging to the

prepositional class are potential correction candidates, Rozovskaya and Roth aimed to narrow the

scope of candidate corrections by building a confusing set of prepositions per context. The context

was dependent on the first language of the writers, that is, they grouped prepositions in smaller

candidate prepositions sharing some grammatical characteristics given by the first language (L1) of

the writers, which they called L1 dependent candidate set. In addition, on the basis that given a

prepositional error, different sets of prepositions may have a different likelihood of occurring, and

that prepositions are dependent on the first language of the sentence’s author, Rozovskaya and Roth

generated sets of confusion arrays for L1. They created two types of confusion sets: 1) a confusion set

of all ten prepositions, and a confusion set for a particular misplaced preposition pi consisting of the

prepositions that correct pi, that is to say, of all prepositions that are confusable for an English Learner

with a particular L1 background. Although this approach is inviting, in this study no subsets will be

created because of two main reason: time constrains and the lack of data.

2.3.2 Features
An important step in a classification task is the selection of features, from which classifiers should be

able to capture enough domain information during training so that new instances can be successfully

solved in production (Dahlmeier, Ng & Ng 2012). However, feature engineering is an art that has not

been mastered yet. For example, (Dahlmeier, Ng & Ng 2012) chose a group of features for their

prepositional error-detection and error-correction system based on empirical experiments. In general,

lexical features together with Part-Of-Speech (POS) tags, N-grams and chunks are commonly used for

the task of detecting and correcting grammatical errors (Dahlmeier, Ng & Ng 2012).

Lexical features are important in context-sensitive tasks such as correcting spelling errors (Jurafsky &

Martin 2009), and correcting prepositional errors (Rozovskaya, Sammons & Roth 2012). In these

scenarios, it is common to use N-gram windows of words around the target without including it.

(Rozovskaya, Sammons & Roth 2012) chose as features for their system to detect and correct

6

prepositions n-grams windows going from one to four on both sides of the target preposition, e.g. one

word before, two words before, one word after, two words after and so on. They also include the head

of the prepositional phrase. (Dahlmeier, Ng & Ng 2012) used lexical features (words) around the

observed preposition and their respective POS tags. Their novelty in respect to previous works was

the introduction of the observed preposition among the features. The values of the features were

binary, i.e. the feature appears in the example (value 1), or it does not (value 0). (Tetreault &

Chodorow 2008) also introduced in their prepositional system a set of lexical and grammatical features

comprising a window of words around the preposition (two before and two after) and their respective

Part-of-speech tags. They also included the head of the preceding grammatical components, i.e. noun

phrase, verb phrase as well as the head of the following components; for a total of 25 features.

2.3.3 Naïve Bayes
Naïve Bayer Classifiers are probabilistic and generative classifiers, i.e. they generate the likelihood of

a class based on the prior probability of the data observations by applying the Bayes theorem

(Manning, CD, Raghavan & Schütze 2008). The algorithm is a highly cost-efficient method that is

suitable to use when there is a computational limitation (e.g. memory and CPU) or a limitation in the

training data (Vasilis 2015). Although it is a very simple model in many cases, its performance can be

as good as more complex approaches. In terms of detecting and correcting English Learners’ errors,

(Rozovskaya & Roth 2011) proved that, although it is outperformed by other methods such as

Maximum Entropy and Language Models, it suits models in which the first language of the English

learners is taken into account very well. In fact, (Rozovskaya et al. 2013) used a Naïve Bayes Classifier

to detect and correct prepositional errors in the CoNLL 2013 shared task. However, despite the fact

that their system outperformed all other systems when the five types of errors defined by the shared

task were computed, they were outperformed in the prepositional errors by the statistical machine

translation (SMT) model of (Yoshimoto et al. 2013).

2.3.4 Maximum Entropy
Maximum Entropy ME (Jaynes 1957) Classifiers fall into the class of probabilistic models such as the

well-known Naïve Bayer Classifiers and N-Grams. However, unlike them, the ME classifier is a

discriminative classifier, i.e. the model is constructed over the conditional probability of the hidden

classes (e.g. prepositions) given the observations (e.g. the extracted features) (Manning, C 2005). ME

classifiers are a good choice for multiclass classification when the prior distributions of the data are

not known well enough. In training, the feature weights that best maximize the conditional likelihood

of the data are chosen by applying the Principle of Maximum Entropy (e.g. the feature weights that

obtain the maximum entropy value among all feasible models) (Manning, C 2005). Maximum Entropy

models start by setting a uniform probability for all classes, and then some feature constraints, fitting

the data set more precisely, are progressively added. Finally, applying the principle of Maximum

Entropy, the best model (feature weights) will satisfy the feature constraints of the training data, and

it will “assume a distribution of maximum entropy” to new (unknown) data (Chodorow, Tetreault &

Han 2007).

In one of the first attempts to apply NLP methods to L2 error correction, (Izumi, Uchimoto & Isahara

2004) used a ME classifier to detect and correct L2 writing errors (Although they used a Japanese

Speech Corpus). They considered that the error correction tasks are similar to the tasks of text

categorization, in which ME classifiers have been largely used. The features that they used were

basically contextual (lexical), and for the tasks of detecting and correcting omission errors and

replacement/insertion errors, they claimed a precision of 75.7% and 31.17% and a recall of 45.67%

and 8% respectively. Their system targets a total of 13 types of errors (including prepositional errors)

and they did not present results for individual types of error so it is difficult to judge their system

7

performance on prepositions. (Han, Chodorow & Leacock 2006) also implemented a ME classifier but

it aimed to detect and correct determiner errors only.

On the other hand, (Chodorow, Tetreault & Han 2007) used an ME classifier to tackle the detection

and correction of prepositions that were wrongly selected, i.e. wrong choice of preposition. They

chose ME because evidence suggests that it works well on heterogeneous features, and without the

need of assuming independency between the features as in a Naïve Bayer. Their system was

complemented with some rule-based filters, showing that prepositional classes have some similarities

that make them confusable. This also shows that new approaches are required to capture the slight

difference between some prepositions. They claimed a precision of 80% and a recall of 30%. (Tetreault

& Chodorow 2008) took a step further with their model to achieve a precision of 84% and a recall of

19%, using 25 different lexical and POS features around the target preposition. They added a number

of filters to maximize precision (affecting recall), i.e. to minimize the chance of marking a proposition

as wrong when the probability between different options is slight, and therefore, there exists a chance

of wrong correction or of various prepositions fitting the context but with some semantic vitiation that

is hard to verify.

2.3.5 Average Perceptron
The Averaged Perceptron AP (“Voted Perceptron”) is a discriminative algorithm developed by (Freund

& Schapire 1999), which takes the Classical (“vanilla)” Perceptron algorithm of (Rosenblatt 1958) a

step further by making use of online learning algorithms. The main novelty of the AP with respect to

the vanilla perceptron is that it stores (or remembers) the weights of all features so that later training

examples do not have greater counts than early training examples (Daumé III 2012). Additionally, AP

is a mistake-driven algorithm, i.e. weights are updated only when the classifier with the current

feature weights classifies wrongly on the training data (Rozovskaya & Roth 2011). The AP classifier

works for linear classification tasks, and works more efficiently in training than other algorithms (e.g.

Support Vector Machine SVM and Logistic Regression) on data that can be linearly separated (Freund

& Schapire 1999).

In an empirical study, (Rozovskaya & Roth 2011) show that when trained on the same data, the

Averaged Perceptron outperforms the Naïve Bayer classifier and other statistical models such as

Language Models and the “counting” model SumLM. In addition, they found that it could be up to

twice as efficient as a Naïve Bayer Classifier. It is not surprising that for the HOO 2011 shared task,

(Rozovskaya et al. 2011) used a regularized version of the Averaged Perceptron to detect and correct

articles and prepositions. For prepositions, they achieved the best score with an F-score of 0.488,

0.488 and 0.363 for tasks of detection, recognition and correction respectively. The university of

Illinois (Rozovskaya, Sammons & Roth 2012) trained an AP classifier once more to tackle prepositional

tasks in the HOO 2012 shared task, in which their system scored first in the tasks of detection and

recognition, while they were second in the task of revision. However, as they trained the system on

the learner corpus FCE dataset in which, even for learners, the density of prepositional errors is sparse,

they found that the AP is “sensitive” to the density of errors. So, they introduced a method (“error

inflation”) to artificially increase the number of errors in the dataset according to their respective

proportion.

2.3.6 Multiclass classifier using the Confidence-Weighted Learning algorithm
In the domain of NLP tasks, in which features are high-dimensional, online learning algorithms seem
a more natural option than typical batch learning algorithms because they are updated on the basis
of a single example at a time. However, the occurrence of some feature instances is rare but
potentially essential for discovering the best possible weights for the task of classification. As a
consequence, (Dredze, Crammer & Pereira 2008) introduced the confidence-weighted (CW)

8

algorithm, in which parameters are updated in an inverse proportion to confidence. The level of
confidence is measured using a probabilistic model for each feature, which is defined by a Gaussian
distribution, and updated after each new instance is processed during training. In other words, unlike
traditional learning algorithms that use a single vector of weights, the algorithm uses weights that
follow a multivariate Normal distribution defined by a mean µ and a covariance matrix €. The learning
algorithm iterates over a pair of labelled data (𝑥𝑖 , 𝑦𝑖) at a time, all throughout the data set (Y, X)
(Dahlmeier, Ng & Ng 2012). The algorithm was used by (Dahlmeier, Ng & Ng 2012) in the HOO 2012
to train the different classifiers they used in their system, because the algorithm proved suitable for
sparse and high dimensional features. They system achieved the highest F-score (28.7) for the task of
correcting prepositions.

2.3.7 Binary Classifier
So far, all analysed classifiers have been used as multiclass classifiers, but another option is to use

binary classifiers. They are a good choice if the problem is analysed from the perspective of omission,

i.e. whether a specific preposition should or should not be placed at a certain position. (Dahlmeier, Ng

& Ng 2012) trained ten binary classifiers, one for each preposition, for their missing prepositions

module. For each classifier the confusion set was composed of the preposition and the absence of the

preposition (“empty preposition”). They took examples from every noun phrase where a preposition

preceding it was a positive example and the absence of a preposition was a negative example (or when

the wrong preposition was preceding the noun phrase). They followed a similar approach to tackle

unwanted prepositions with the only difference being that, in training, positive examples were

prepositions marked as unwanted, whereas prepositions correctly used were negative examples.

2.4 Language Models
It was said that the construction of a rule-based system to detect and correct prepositional errors

made by non-native English speakers requires linguistic expertise and high grammatical knowledge.

Data-driven classifiers, on the other hand, although more flexible, require the extraction of features

capable of rendering enough information to model and therefore generalize the behaviour of the

target goal. These features can be either shallow or deep (although a combination of them is more

common), and Language Models usually require surface-based features that depend solely on the

count of feature occurrences (Elghafari, Meurers & Wunsch 2010). This characteristic of Language

Models make them quite handy and in some cases, as will be seen bellow, they can outperform

classifiers with complex features.

2.4.1 N-grams
Although the early “simple Markov chains” (bi-grams) of (Markov 1913) and the N-Grams of (Shannon

1948) were popular in the 50’s to model sequences of words, the works of (Chomsky 1956), stating

that the Markov models were “incapable of being a complete cognitive model of human grammatical

knowledge” (Jurafsky & Martin 2009), drove away linguistic and computational research from

statistical models. Nonetheless, they are today a popular method to model languages thanks to the

works in speech recognition of (Bahl, Jelinek & Mercer 1990; Baker 1975; Jelinek, Bahl & Mercer 1975).

N-Grams are statistical models of sequences of symbols (characters, words or sentences), in which a

Markov assumption is applied, i.e. the probability of the N symbol (say word) is assumed to depend

only on the N-1 preceding words (Jurafsky & Martin 2009). In practice, the conditional probability of

each symbol given the N-1 preceding words is calculated by counting the actual number of

occurrences of the sequence in a given corpus. Because some sequences cannot be present in the

training corpus but can occur in production, many smoothing techniques are applied. (Jurafsky &

Martin 2009) gives a good account of these techniques.

9

(Elghafari, Meurers & Wunsch 2010) carried out an empirical study to find out how much predictive

information the lexical words (shallow features) surrounding a preposition can contain in order to

detect and correct prepositional errors. They used a 7-Gram including the preposition, and they

followed a web-as-corpus approach to maximize the size of the training set, i.e. they constructed a

cohort of nine prepositions (they used the top 9 prepositions according to the BNC corpus) in their

training set (BNC corpus) that was sent to the search engine Yahoo. Using the full back-off approach

of (Katz 1987), they reached an accuracy of 76.5%, proving that using only surface-features could be

as efficient as using more complex features. (Boyd & Meurers 2011) followed the same approach for

4 different types of errors (conjunctions, determiners, prepositions and quantifiers) in the HOO 2011

shared task, but instead of using a web-as-corpus approach for the task of counting, they used the ACL

anthology. Overall, their system performed the best when detecting substitution errors of

prepositions and determiners as they detected 67% of errors.

2.4.2 Statistical Machine Translations
Statistical Machine Translation (SMT) models take a string of symbols (e.g. words and phrases) as an

input, and translate them into an aligned target language using statistical language models. The

alignment process is not trivial because the resulting string can include “reorderings, omissions,

insertions, and word-to-phrase alignments” (Och & Ney 2003). In general, the SMT model can be

defined as the subset of the Cartesian product of the source strings and the target strings. However,

to make the general representation feasible, a number of restrictions are applied to the resulting

string so that the number of possible outcomes depends on the source string and its context (Och &

Ney 2003). The best translation is the model that, parameterized by a specific vector of weights,

achieves the highest probability given some set of features. The size or level of the string source could

go from word-based (Och & Ney 2003) to phrase-based (Koehn, Och & Marcu 2003) (it can even be

applied at a character level, e.g. spelling correction).

In the context of detecting and correcting English learners’ errors, (Brockett, Dolan & Gamon 2006)

carried out some experiments on correcting noun mass errors using a SMT as they detected that

learners’ errors were not isolated but were a sum of factors such as context and other errors that

could be treated as a language (bad English) that could be translated into another language (good

English). (Mizumoto et al. 2012) scoped “all” types of errors using the phrase-based model of (Koehn,

Och & Marcu 2003), and they found that, when correcting English leaners’ errors, local context

provides enough information to translate from grammatically incorrect sentences to grammatically

correct sentences. For prepositional errors, more precisely, (Mizumoto et al. 2012) showed that the

SMT could outperform a ME classifier. In fact, (Yoshimoto et al. 2013) ranked first in the task of

detecting and correcting prepositional errors in the CoNLL 2013 shared task with an F-score of 17.53

using a similar approach to (Mizumoto et al. 2012), but training the SMT model on a larger corpus.

More recently, (Felice et al. 2014), in the CoNLL 2014 shared task, used a SMT in their hybrid system

to generate the top ten candidate corrections for all (28) types of errors, which were later filtered by

some Language Models to choose the ultimate correction. Overall, their systems perform the best

when compared to the gold-standard edits with an F05 of 37.33, and it obtained the highest recall

(38.26) for prepositional errors.

2.5 Prepositions
Prepositions are hard to master by English learners because, unlike some grammatical rules about the

syntax of English, they do not have specific rules for their usage. That is to say, while it is clearly stated

that noun phrases cannot follow intransitive verbs, there is not a clear rule defining which preposition

10

is the best choice to use, given certain contexts (Leacock et al. 2014). Moreover, because this study

has a strong focus on prepositions, it is worthwhile to first understand what prepositions are, how

they behave and which features they are characterised by.

2.5.1 What are prepositions?
Prepositions are an open class of words which are estimated to contain more than a hundred tokens

(Cambdridge), but whose exact amount varies on different reports as they are interpreted differently

by distinct authors, and because they vary as time goes by (Huddleston & Pullum 2005; Jurafsky &

Martin 2009). In his book, Lindstromberg (Lindstromberg 2010), for instances, analyses only 90 English

prepositions that he considered were of common use today and he decided not to examine archaic

prepositions such as betwixt and outwith, or prepositions coming from the Latin and which are not

commonly use like cum and circa. On the other hand, Huddleston and Pullum (Huddleston & Pullum

2005) include in the class of prepositions some other words that commonly are grouped into either

adverbs or subordinating conjunctions.

Words belonging to the class of prepositions normally precede a noun phrase (Jurafsky & Martin

2009), and by grammatical rule, the noun phrase should be a complement of the preposition

(Huddleston & Pullum 2005). For example, in one of the examples given by Huddleston and Pullum,

the word since can be classified as preposition in the sentence “I haven’t seen her, since Easter”,

whereas it falls into the class of conjunctions in the sentence “I haven’t seen her since she left town”,

because the component that follows “since” is a clause and not a noun phrase. Other rules state that

prepositions do not inflect nor are gradable (as are adjectives and adverbs) and, frequently, they are

used to represent some kind of relation (e.g. a relation of time or space) (Huddleston & Pullum 2005;

Jurafsky & Martin 2009). Some examples taken from Jurafsky and Martin are: a literal relation on it

and a metaphorical relation on time (Jurafsky & Martin 2009). The semantic relation can appear in

arguments to point out either the indirect object of an action (“He gave a book to Mary”), the author

of an act in a passive form (“the book was written by Fred”), the instrument with which an action was

carried out on (“they ate the cake with a fork”) or the source from which something comes (“Jane took

the vase from the shelf”) (Leacock et al. 2014).

While describing the class of prepositions, Huddleston and Pullum (Huddleston & Pullum 2005)

compare prepositions with adjectives, adverbs and verbs from which the following properties and

examples were extracted: 1) Prepositions can be the head of a prepositional phrase that can be placed

at different positions in a sentence, and which usually depend on either a noun (“a house at the

beach”) or a verb (“He saw her at school.”). 2) When prepositions appear at the head of an adjunct,

they do not have to be associated with the predicand (“After the end of the semester, the dean threw

a party for the students”, “After the end of the semester, there was a party for the students.”). 3)

Prepositions, acting as predicative complement, can be complement of the verb be but they are less

frequently of other verbs such as feel, appear, seem and they are never complement of the verb

“become” (“We are in your debt.”, but not “We became in your debt.”). 4) Some verbs in their gerund-

participle or past participle form can take the functionality of prepositions, but they can be

distinguished from the preposition function because, as predicator, the verb has to be associated to a

subject, whereas as a prepositional phrase does not (As preposition: “Following the meeting, there

will be a reception.”, as verb: “Following the manual, we tried to figure out how to assemble the unit.”).

Among the class of prepositions, a smaller group composed basically of the words “as, at, by, for, from,

in, of, on, than, to, and with” (Huddleston & Pullum 2005), can have a grammatical function in which

they act as a mark within the structure of a sentence that is not dependent on the meaning of the

preposition, i.e. the preposition could not be substituted without having to alter the grammatical

11

structure of the sentence. Huddleston and Pullum called these prepositions “grammaticised

prepositions”, and some of their examples are depicted next. For example, in the sentence “I sat by

the door”, the preposition by has a spatial meaning that could be replaced by opposite (“I sat opposite

the door”), without altering the grammatical structure. On the other hand, the function of the

preposition by in the sentence “The article was written by a first-year student”, is to mark the subject

of the clause in the participle form and cannot be substituted by other prepositions without having to

modify the grammatical structure of the sentence. Some of these grammatical functions of the

prepositions are to mark the subject of a sentence in the passive form (“The article was written by a

first-year student”), to mark the subject within a noun phrase in a sentence (“The sudden death of the

president stunned the nation.”), to mark the complements of a verb (“I transferred several hundred

dollars to them.”), to mark the complement of a noun (“Their request for assistance was ignored.”)

and to mark the complement of an adjective (“They all seem quite keen on the idea.”) (Huddleston &

Pullum 2005).

2.5.1.1 Collocations

Collocations are pairs (or groups) of words that have a strong association with each other and whose

form (sequence of words) creates a particular meaning, i.e. if a word in the phrase were replaced with

another one with similar meaning and usage, the resulting phrase would be incorrect or odd.

Lindstromberg (Lindstromberg 2010), for instance, depicts how the preposition in in the collocation

in trouble could not be replaced by inside, despite the fact that in and inside share a similar usage.

Some collocations allow the insertion of a word (e.g. an adjective) to strengthen the expression such

as in big trouble, but it is not possible in all collocations. For example (again from Lindstromberg),

adding the adjective “extreme” between the collocation “at random” would render a weird phrase:

“at extreme random” (which is sintactically correct). This type of collocation belongs to the category

of fixed collocations, that is, collocations that do not permit alterations.

2.6 Training Data
In the domain of error correction, three different types of training data are commonly used for training

machine learning algorithms: 1) native English corpora, 2) artificial learner corpora (made from native

corpora) and 3) learner English corpora (Leacock et al. 2014). Since the Brown Corpus (Francis &

Kucera 1964), the first online English corpus (Jurafsky & Martin 2009), appeared, the number of the

first type of corpora has increased with a relatively good availability for research purposes. A relevant

corpus that is largely used for NLTK is the Penn Treebank (Marcus, Marcinkiewicz & Santorini 1993),

which can be used through the Natural Language Toolkit (Bird, Klein & Loper 2009). Some approaches

to tackle the error correction task were carried out using this type of corpus. (De Felice & Pulman

2008), for instance, trained a Maximum Entropy Classifier to correct prepositional errors using the

British National Corpus (BNC). However, the particular patterns of learners’ grammar is not present in

these type of corpora and the learning algorithms do not capture the English domain knowledge of

L2, limiting thus the potential to detect and correct grammatical mistakes. In fact, (De Felice & Pulman

2008) presented results for their classifier on L2 that were slightly less accurate than results on L1. As

a consequence, many researchers opt for populating native English corpora with learners’ errors

following some available distribution of learner errors. (Rozovskaya & Roth 2010c) introduced learner

errors into English Wikipedia following a learner error distribution so that the patterns seen during

training could be as close as possible to the patterns seen during testing, i.e. they generated an

annotated learner English corpus from a native English Corpus. (Rozovskaya, Sammons & Roth 2012)

followed this method to populate the Google Web 1T corpus (Brants & Franz 2006) with the

proportion of errors found in the FCE dataset for their prepositional system in the HOO 2012 shared

task. These type of methods were a consequence of the low availability of annotated learner corpora.

12

The number and size of annotated learner corpora has been to some extent limited. One interesting

project is the International Corpus of Learner English (ICLE) (Granger et al. 2009), which in its second

version provides English writings from 16 different L1s. Unfortunately, this rich diversity of first

languages cannot be exploited for error correction tasks as the corpus is not annotated, leaving this

corpus for the sole use of linguistics3. The same lack of annotated data applies for the Chinese Learner

English Corpus (Gui & Yang 2003). Some small annotations were carried out by (Rozovskaya & Roth

2010a), but unfortunately the size does not reach a desirable level. On the other hand, the Cambridge

Learner Corpus (CLC) (Nicholls 2003) may be the most desirable learner corpus for research with a

unique size of over 16 million words written by learners from 86 different first languages other than

English. It is estimated that more than 6 million words have been annotated. Unfortunately, the whole

corpus is not completely available for research purposes, with the relatively small FCE Dataset made

available by the Cambridge University Press (Yannakoudakis, Briscoe & Medlock 2011). Nonetheless,

it is an interesting corpus that was already used in the HOO 2012 shared task. An even larger and

available learner corpus is the NUS Corpus of Learner English (NUCLE) (Dahlmeier, Ng & Wu 2013),

with over one million words. The corpus was used in both CoNLL 2013 and CoNLL 2014 shared tasks.

Although this corpus lacks the diversity of the FCE Dataset, it is a learner corpus with the size and

features to work as a baseline for automated error correcting tasks, and it is the main corpus used in

this study.

2.7 Neural Networks Models
As we saw in the chapter of classifiers, most of the models described in the literature to correct learner

errors are linear classifiers, which use sparse vectors as inputs. This makes perfect sense as they are

the basis upon which many NLP techniques work. However, neural networks have been used recently

to tackle NLP tasks successfully, achieving state-of-the-art results (Goldberg 2016; Sutskever, Vinyals

& Le 2014; Vinyals et al. 2015), so it is worth exploring the possibilities that neural networks open for

error correction tasks and that seem not to have been exploited yet. (Liu & Liu 2017) used neural

networks (LSTM architecture) for detecting grammatical errors for the purpose of discriminating

correct scientific language from improper scientific language, which was the main purpose of the

shared task Automated Evaluation of Scientific Writing Shared Task 2016 (Daudaravicius et al. 2016).

They claimed that their model outperformed a support vector machine architecture as well as another

popular neural network architecture: convolutional NN. However, although this task is somehow

related to the task of error correction, the ultimate goal is completely different and it is worth

exploring the solution of the error correction task with neural networks. Another interesting novelty

of neural networks is the possibility of introducing dense vectors into non-linear classifiers (Mikolov,

Tomas, Chen, et al. 2013).

Historically, Artificial Neural Networks (NNs) were based on the human brain. The first model was the

“Threshold model” by (McCulloch & Pitts 1943) in which the authors made several assumptions about

neural networks that led them to treat their model as a binary device that uses a threshold of constant

value. Their model calculated the dot product between a vector input and the weights of a neural

network to carry out OR and AND logical operations. (Hodgkin & Huxley 1952) developed the more

complex “spiking model” which treated each component of a squid’s giant neuron as electrical

components. Other complex interpretations and models have been developed (Izhikevich 2003;

McGregor 1987) through the years. However, more simplistic representations such as the perceptron

(Rosenblatt 1958) provided more practical implementation of the brain representation with promising

results (Goldberg 2016). However, in 1969, (Minsky & Papert 1969) published a number of criticisms

3 In fact, the corpus was acquired to carry out this study, but the lack of annotated data prompted the use of
another corpus: NUCLE.

13

regarding the limitations of neural networks that created a sense of prejudice and frustration against

neural networks, negatively affecting the funding for neural networks research. Despite this limitation,

important discoveries were brought about by a small group of researchers such as the backward

propagation algorithm (Werbos, P 1974) and the Cognitron (Fukushima, Miyake & Ito 1983).

Moreover, some advances during the 70s and 80s attracted the attention of the scientific community

once again, prompting in this way a re-emerging of the neural network field (Siganos & Stergiou 1996).

These days, two general neural network architectures are popular, namely recurrent networks and

feed-forward networks (Goldberg 2016). Feed-forward networks are non-linear classifiers that can be

easily adapted from linear classifiers to tackle NLP tasks. (Chen & Manning 2014), for instance, trained

a feed-forward neural network to train a dependency parser classifier. Their model used a hidden layer

and an embedding layer (detailed in a next section) which was added to the input. They reported great

improvement in speed performance as well as an improvement in the accuracy of the parser. Similar

approaches were carried out by (Weiss et al. 2015) and (Pei, Ge & Chang 2015) with similar results.

(Vaswani et al. 2013), on the other hand, applied neural networks to machine translation, obtaining

an improvement in translation quality across different pairs of languages.

Moreover, convolutional neural networks – which fall into the category of feed-forward networks –

can be used for other tasks in which the main information can be found in “strong local clues” within

an example (Goldberg 2016). (dos Santos & Gatti 2014) used a convolutional neural network for

sentiment analysis in short texts such as tweets, achieving an accuracy of 86.4 % in the Stanford

Twitter Sentiment corpus (STS), thanks to the capability of convolutional networks to exploit text

analysis at character level and to generalize the results to the word level. It is thus not unreasonable

to think of using convolutional architectures for the error correction task, because the clue to identify,

for example, the right prepositional choice for its dependent component (e.g. say a noun phrase),

could be near or far from the prepositional phrase. However, there is another neural network

architecture that is even more tempting to use for the error correction task, namely recurrent neural

networks.

The main strength of recurrent neural networks (Elman 1990) is that unlike any other classifier – either

linear or non-linear - they can capture the structural information inherent in sentences (Goldberg

2016), i.e. while other classifiers inject the features into the neural network in a way in which the order

is not relevant, recurrent neural networks maintain the order of the features so that the grammatical

structure is injected into the neural network. Unlike typical neural network architectures in which all

features are injected at the same time along the input layer, recurrent networks input a single feature

(or a concatenation of features such as word, POS, dependency head, etc.) at a time in a sequential

way (𝑥1, 𝑥2, … , 𝑥𝑛), returning a sequence of outputs (𝑦1, 𝑦2, … , 𝑦𝑛), each output at a time. Recurrent

networks keep a state 𝑠𝑖 that together with the input 𝑥𝑖+1feeds the neural network, and that together

with the output 𝑦𝑖+1 represents the state of the neural network after processing all inputs from 𝑥1 to

𝑥𝑖in a sequential fashion. The representational power of recurrent networks is given then by the

prediction of an output 𝑦𝑖 given all the sequences of inputs 𝑥1, 𝑥2, … , 𝑥𝑖 and the states 𝑠0, 𝑠0, … 𝑠𝑖−1

in a similar way as n-grams but without the limitations of Markov assumptions (Goldberg 2016). The

recurrent network architecture implemented in this study will be discussed in more detail in the

method chapter.

2.7.1 LSTM
Recurrent networks work naturally with sequences of features and they provide state-of-the-art

results for sequence tasks such as Combinatory Categorial Grammar (CCG) super-tagging (Xu, Auli &

Clark 2015) and language models (Jozefowicz et al. 2016; Mikolov, Tomáš et al. 2010). That is because

14

given a sequence of features - say words - of arbitrary length, a recurrent network inputs each feature

at a time 𝑡 up to the last feature 𝑥𝑛 in order to make a prediction 𝑦𝑛. That is to say, any number of

features could be processed using the same recurrent network and, therefore, the same set of

parameters 𝜃. The setting of the parameters is critical and it can be achieved using the

Backpropagation Through Time (BPTT) algorithm (Werbos, PJ 1990), in which all input timesteps are

unrolled to accumulate the errors and then roll back to update the parameters. However, as proved

by (Pascanu, Mikolov & Bengio 2013), recurrent networks are hard to train because their gradient

becomes too small (almost zero) when the backpropagation algorithm reaches the first inputs of the

unrolled network. As a consequence, working with long sequences becomes impractical as distant

dependencies are not captured by the recurrent network.

Fortunately, (Hochreiter & Schmidhuber 1997) introduced a new variant of recurrent networks using

a memory state (“memory cells”) to avoid the vanishing of the gradient, namely the LSTM architecture

(figure 1) (although their model did not include the forget gates). The memory cells keep a state of

the network through time and they can be accessed through mathematical functions working as

logical functions (“gating components”) that decide how much information is going to be kept in the

memory state and how much is going to be discarded (forgotten). Mathematically, a LSTM is defined

as:

𝑦𝑗 = 𝑅𝐿𝑆𝑇𝑀(𝑠𝑗−1, 𝑥𝑗) = [𝑐𝑗; ℎ𝑗]

where 𝑐𝑗 represents the memory state and ℎ𝑗 represents the hidden state (output per each timestep).

Figure 1 LSTM diagram (reproduced from (Olah 2015))

Mathematically:

𝑐𝑗 = 𝑐𝑗−1 ⊙ f + 𝑐̌ ⊙ i

ℎ𝑗 = tanh(𝑐𝑗) ⊙ o

The symbol ⊙ is used to represent a pointwise product between vectors. The functions

𝑖, 𝑓 𝑎𝑛𝑑 𝑜 represent the gates that decide what values of the cell state are going to be updated

(figure 3), what information is going to be discarded or forgotten from the cell state (figure 2) and

what information from the cell state is going to be outputted (Figure 4). The gate 𝑐̌ defines what

values are candidate to be included in the cell state (figure 3) and, together with 𝑖, defines what

new information is going to be added in the cell state. Mathematically, they are defined as:

𝑖 = 𝜎(𝑥𝑗𝑊𝑥𝑖 + ℎ𝑗−1𝑊ℎ𝑖)

𝑓 = 𝜎(𝑥𝑗𝑊𝑥𝑓 + ℎ𝑗−1𝑊ℎ𝑓)

𝑜 = 𝜎(𝑥𝑗𝑊𝑥𝑜 + ℎ𝑗−1𝑊ℎ𝑜)

𝑐̌ = tanh(𝑥𝑗𝑊
𝑥𝑐̌ + ℎ𝑗−1𝑊ℎ𝑐̌)

15

Figure 2 Forget gate (reproduced from (Olah 2015))

One advantage of recurrent neural networks is that, because they can handle sequences in a natural

way, there is no need to use techniques to combine variable numbers of features (say the words of a

sentence) into a fixed number of features. That is to say, because traditional classifiers and typical

feed-forward neural networks require a fixed number of features as input, techniques such as

Continuous Bag of Words (CBOW) (Mikolov, Tomas, Chen, et al. 2013) are used to combine (or

average) a variable number of features into a fixed number of features:

𝐶𝐵𝑂𝑊 (𝑓1 … 𝑓𝑘) =
1

𝑘
∑ 𝑣(𝑓𝑖)

𝑘

𝑖=1

On the other hand, RNNs can handle variable numbers of features because they work over time, i.e.

one feature is injected at a time 𝑡 along an infinite – in theory – sequence of discrete features. In

addition, as mentioned previously, recurrent neural networks process features in a sequential manner

so that the structural information of the group of features is kept, unlike typical bag of words

approaches (Jurafsky & Martin 2009). As a consequence, it is not necessary either to engineer features

representing the distance and position of the core features (Goldberg 2016), or to embed them into a

dense space (Zeng et al. 2014).

Figure 3 input and candidate gates (reproduced from (Olah 2015))

2.7.1.1 Bidirectional Recurrent Network

A more complex elaboration of a recurrent network is the bidirectional model introduced by (Schuster

& Paliwal 1997). Recurrent neural network typically work with sequence of features belonging to the

past, i.e. previous words. The bidirectional model introduces an extra neural network that keep the

state of features belonging to the future, i.e. words that come after the target. That is to say, a

bidirectional model keeps two separate cell states (and two RR nodes) working in opposite directions:

while one node works in a forward way keeping a memory of the past features, a second node works

in a backwards way keeping the state of the future features. The final output is given by the

concatenation of both recurrent networks. This model has been applied successfully in NLP tasks such

as sequence tagging (Irsoy & Cardie 2014) in which the tag at timestep 𝑡 can be determined by both

the preceding tags as well as the following tags. This approach seems promising for the task of

correcting errors and therefore it is tested in this study.

Figure 4 output gate (reproduced from (Olah 2015))

2.7.1.2 Deep Recurrent Networks

One of the limitations of artificial intelligence (AI) in the past was the fact that some problems, that

were possible to formulate formally, could be solved in quite a straightforward way by applying

traditional computing and in a bit more complex way by applying artificial intelligence algorithms.

However, AI’s relevance was evident when tasks that were easy to solve for humans such as image

and spoken processing were hard to define formally, and become too complex to solve by applying

traditional computing (Goodfellow et al. 2016). Machine learning algorithms learn from experience -

16

the examples (data) that are used to feed them - to understand the knowledge domain of the task at

hand. Internally, they build a “hierarchy of concepts” about the knowledge domain that developers do

not have to formulate explicitly (Goodfellow et al. 2016). Theoretically, shallow neural networks (say

MLP1) have the representational power to approximate a large set of functions, i.e. they are a

“universal approximator” (Hornik, Stinchcombe & White 1989), but in practice it has been seen that

the capability of neural networks to learn the knowledge domain from experience depends on the

number of layers (the depth of the network) the network is built with (Goldberg 2016). That is to say,

the hierarchy of concepts created by each layer becomes more abstract and has a bigger

representational power as the number of layers increases, and that is why this concept is known as

Deep Learning (Goodfellow et al. 2016).

Nonetheless, because of their nature, the depth of recurrent networks is hard to define and deep

recurrent networks could be thought of as long neural network nodes unrolled over a long range of

time. However, the function of the internal layers of recurrent networks is to keep a memory state of

the sequence rather than to build a hierarchy of processing layers, which is the inherent purpose of

neural networks and, additionally, recurrent networks output a result for each input so that there is

no extra processing for each timestep (Hermans & Schrauwen 2013). To overcome this potential

deficiency, some researchers (Graves, Mohamed & Hinton 2013; Hermans & Schrauwen 2013) have

successfully developed recurrent neural networks with multiple layers that they call stack of recurrent

networks, and that is based on the early work by (El Hihi & Bengio 1996). The representational power

that can be gained using deep recurrent neural networks is desirable for the task of error correction

because many layers could embed the algorithm with a bigger representational power and, therefore,

deep recurrent networks will be tested in this study.

2.7.2 Additional LSTM Neural Network Components
In recent literature, many different components to improve the accuracy of neural networks and

machine learning techniques in general have emerged with promising results such as Dropout,

Attention and Embedding Layers. In theory, all these techniques would be a desirable component in

a neural network where there is a limited amount of training data, and for the task at hand it is

worthwhile testing if the integration of these components improves the performance of the error

correction system.

2.7.2.1 Dropout

Overfitting – overtraining the data and undergeneralizing the domain problem - is an issue that affects

deep neural networks and that can be addressed somehow through regularization methods such as

𝐿2 Regularization, in which a squared penalty is applied to each parameter, but which seems to work

better for logistic methods (Goldberg 2016). A more recent alternative for neural networks – especially

when applied to feed-forward neural networks – is the Dropout method, proposed by (Srivastava

2013). The idea behind this method is to drop some neurons during training so that the network does

not learn to rely on just specific weights. The way in which the dropout is applied to the network seems

to have an important impact on its effectiveness (Zaremba, Sutskever & Vinyals 2014). Nonetheless,

some promising reports suggest that dropout improves the performance of neural networks (Pham et

al. 2014; Zaremba, Sutskever & Vinyals 2014) and it is tested in this study.

2.7.2.2 Attention

Although internally a LSTM neural network is designed to keep a memory cell, for some NLP tasks such

as machine translation, it has been detected that the encoding and decoding process is affected by

the burden of keeping a memory state of all sequence of words in a fixed-size vector. As a

consequence, the implementation of an extra memory cell helps the recurrent neural network to learn

17

to distinguish the relevant sections of the sequence, i.e. the RNN learns to pay attention to the key

features within the whole sequence of features (Bahdanau, Cho & Bengio 2014). This technique is

known as an attention mechanism and has proved to be effective for image processing (Denil et al.

2012; Larochelle & Hinton 2010) and NLP tasks (Bahdanau, Cho & Bengio 2014; Liu & Liu 2017). The

introduction of an attention mechanism makes sense in the context of preposition correction because

not all words in a phrase help to determine the more suitable preposition. Therefore, this mechanism

is tested in this study.

2.7.3 Feature Embedding Layer
These days, a popular technique that, together with Neural Networks, is used to tackle NLP tasks is

the embedding of high dimensional inputs into fixed n-dimensional vectors that are called dense

vectors (Goldberg 2016). It was first proposed by the work of (Bengio et al. 2003) in which they tried

to generalize the idea of learning the joint probability of word sequences that are used in traditional

n-grams concatenations. Their model aimed to “learn a distributed representation of words” so that

both a statistical representation of words and a model to generate the probability of word sequence

were obtained. The concept was applied by (Collobert & Weston 2008) to deal with multiple NLP tasks

in which they transformed the word indices of a dictionary into a vector, and the vector representation

was accessed through a look-up table. Moreover, (Chen & Manning 2014) applied the embedding

concept to different type of features, e.g. words, tags etc.

Two prime advantages are expected to be obtained from the use of dense vectors: first of all, there

should be a significant computational gain as the large number of features used in NLP tasks, say

words, produce huge one-hot representation vectors. Traditional NLP techniques represent lexical

features as one hot vectors, i.e. each word is represented as a huge vector of zeros whose size is equal

to the size of the vocabulary, and in which the value of the index of the word feature is one. However,

the real gain is expected to be the sharing of semantic meaning between features in an n-dimensional

space. According to (Mikolov, Tomas, Chen, et al. 2013), when large amounts of data are available,

many simple techniques can outperform more complex systems that use smaller training data sets.

However, as it has been discussed, the availability of large learner corpora is scarce or not available

for research (e.g. the Cambridge Learner Corpus). Therefore, the use of dense vectors that share

statistical information is a desirable feature to be included in the model to correct learner errors.

The semantic sharing of features using embedding layers is given by the fact that while in a one-hot

representation the sequence of features “the car is good” is as different as both “the van is good” and

“the house is good”, in a dense representation, it is expected that the features “car” and “van” are

closer than the features “car” and “house” in the n-dimensional representational space. Therefore, in

a dense representation, features with similar semantic content are related to each other in an n-

dimensional space, giving thus, in theory, an extra statistical strength to the neural network input and

a bigger capability to generalize that should increase the accuracy of the algorithm during testing

(Chen & Manning 2014; Mikolov, Tomas, Chen, et al. 2013).

2.7.3.1 Word2vec

One of the most successful and widespread implementations of an embedding vector for features is

the word2vec approach proposed by (Mikolov, Tomas, Chen, et al. 2013). They proposed two

architectures using a log-linear classifier to achieve their embedding system, namely Continuous Bag

of Words (CBOW) and skip-gram. The first architecture consists of an input that is projected into a

shared layer so that all words (or features) are “averaged” over the same position. The name “Bag of

Words” comes traditionally from the fact that the sequence of words is not taken into account in this

architecture; but the prefix “continuous” indicates that, unlike traditional approaches, it uses

18

continuous representations of the context, i.e. it predicts the current feature depending on the

continuous history of the context. On the other hand, although similar to CBOW, the skip-gram model

aims to predict a feature depending on another feature of the same local context (e.g. sentence)

(Mikolov, Tomas, Chen, et al. 2013). That is to say, each current feature is injected into the classifier

as an input to predict features in a window of features after and before the current feature. Although

the computational complexity increases with the size of the window, it is expected to also increase

the quality of the final embedding. However, a weighting system should be included in the model

because if the distance between the current feature and the target increases, the effect or

dependency of the target over the current feature decreases (Mikolov, Tomas, Chen, et al. 2013).

According to the optimized skip-gram model presented by (Mikolov, Tomas, Sutskever, et al. 2013),

each pair of valid examples of the form (word, target) is classified in a binary way against a randomly

created pair of samples (noisy examples) of the form (word, random target) in order to teach the

algorithm to discriminate between real target words and noisy ones (i.e. negative sampling). Formally,

the goal of the model is, given a set of words (𝑤1, … , 𝑤𝑇 ,) surrounding the target word and a training

context of size 𝑐, “to maximize the average log probability”:

1

𝑇
∑ ∑ log p(𝑤𝑡+𝑗|𝑤𝑡)

−𝑐≤𝑗≤𝑐,𝑗≠0

𝑇

𝑡=1

The skip-gram applies a softmax function over the context words to obtain the probability distribution

of the word features:

𝑝(𝑤𝑂 |𝑤𝐼) =
𝑒(𝑣′

𝑤𝑂
𝑇

|𝑣𝑤𝐼)

∑ 𝑒(𝑣′
𝑤
𝑇

|𝑣𝑤𝐼)𝑊
𝑤=1

Where 𝑊 is the size of the vocabulary and 𝑣𝑤 and 𝑣′𝑤 are the input and output of the “vector

representation of 𝑤” (Mikolov, Tomas, Sutskever, et al. 2013). In practice, applying softmax over such

a large number of elements (W words) is too expensive and the authors proposed the hierarchical

softmax architecture introduced by (Morin & Bengio 2005) (in the domain of neural networks

language models) in order to reduce the computing cost of applying the softmax function to generate

the probability distribution of the embedding features. In the hierarchical softmax, each word is a leaf

in a tree representation in which each node represents the relative probability of all words that can

climb up to the node, i.e. all child nodes. However, (Mikolov, Tomas, Sutskever, et al. 2013) found a

better alternative using the Noise Contrastive Estimation (NCE) by (Gutmann & Hyvärinen 2012) in

which the differentiation of data (real values from noisy ones) is achieved using a logistic regression.

Mathematically, using the NCE, each target in the skip-gram model 𝑙𝑜𝑔𝑃(𝑤𝑂 |𝑤𝐼) is replaced by the

term:

log 𝜎(𝑣′𝑊𝑂
𝑇

𝑣𝑊1) + ∑ 𝐸𝑤𝑖~𝑃𝑛(𝑤)[log 𝜎(−𝑣′𝑊𝑂
𝑇

𝑣𝑊1)]

𝑘

𝑖=1

The feature embedding layers can render beneficial effects on the task at hand as the relatively small

size of the learner corpus could not provide enough lexical examples per type. As a consequence, the

semantic sharing could alleviate this weakness and embedding layers are tested in this study.

19

3 Method
From the promising results of neural networks on NLP tasks and the relative success of the use of

classifiers in previous works to correct learner errors, the main model tested in this study is a neural

network classifier that aims to predict 𝑛 different classes of prepositions given some features out of a

context. For the task of error correction, the algorithm picks up the class that best fits a given context

and proposes it as the right preposition to be used for that context. If the proposed preposition differs

from the original preposition, then the algorithm flags an error and proposes the predicted preposition

as the correct preposition. Nonetheless, because the context can be ambiguous and the confidence

of the proposed correction low, two further analyses have to be taken into account before making a

decision. First, it needs to be determined during the analysis of the results how well the algorithm can

predict a particular class. For this purpose two types of graphs are presented in the results chapter

per experiment and per class: the Receiver operating characteristic (ROC) graph and the Precision-

Recall graph (further detailed in the results section). Second, the appropriate threshold (or

confidence) at which the algorithm should achieve the best metrics has to be determined as well. A

new graph in which all metrics are drawn against a threshold is also presented in the results chapter.

All this information is used to perform a post-processing whereby the confidence of the algorithm

should increase in order to reduce false predictions.

The core of the model is a recurrent neural network that follows a Long Short Term Memory (LSTM)

architecture. The use of a LSTM architecture as the core of the algorithm was an expected choice

because it deals in a natural way with sequences (Sutskever, Vinyals & Le 2014; Vinyals et al. 2015)

and, in the task of correcting learner errors, the context of the task is given by a sequence of features,

i.e. words, POS tags, etc. Moreover, following related works, new promising features were

progressively added to test the feasibility of improving the performance of the algorithm over the task

at hand by adding these new features. The results were carefully analysed to isolate confusing

variables that could affect the judgement over the influence of the new feature or component on the

output of the algorithm. In the coming sections, each experiment affecting the general model will be

explained in more detail.

In order to progressively run and test all the different experiments (components and features), a

flexible solution was implemented4 using the programming language Python (Python 2018). The

system controls the behaviour of the algorithm through a number of defined arguments whereby the

system controls the deployment of the core algorithm according to the experiment under study. The

system provides default values so that only a few parameters should be included when running a

particular experiment. All arguments are clearly explained in each section. Moreover, in order to

implement, train and test the recurrent neural network, the library TensorFlow (Abadi et al. 2016) was

used. TensorFlow is an open source machine learning library that provides implementation for

different neural networks architectures such as LSTM. Other libraries such as numpy, lxml, nltk and

autocorrect were used to support the implementation of the system and its internal configurations.

The algorithm was trained using the Google ML-Engine platform.

A final experiment in which the “optimum” algorithm according to the results obtained from all other

experiments is run over the test data used in the shared task CoNLL 2013 (Ng et al. 2013) in order to

compare the prepositional error correction task obtained by the proposed algorithm against a public

reference. This “optimum” algorithm is complemented by a post-processing task that consists of

making decisions (predictions) based on a threshold that is defined for class and which is obtained

4 The source code can be obtained from https://github.com/garc0062/prepositional_error_correction.

https://github.com/garc0062/prepositional_error_correction

20

from the analysis of the precision-recall graphs as well as the ROC graphs. The final algorithm is called

in this study the final algorithm.

3.1 Evaluating the Algorithm
Metrics to evaluate the effectiveness of an algorithm to correct learner errors differ in the literature.

The two most common ways to measure the effectiveness of these algorithms are Recall and Precision

(Leacock et al. 2014). One could include Accuracy as well, but it tends to give a wrong impression (too

positive), of the real effectiveness of an error correction algorithm because, even for English learners,

the rate of grammatical errors is low and the number of true negatives is high (De Felice & Pulman

2008). To be able to calculate all these metrics, the results obtained from the algorithm must be

categorized into four categories, namely true positives (TPs), false positives (FPs), true negatives (TNs)

and false negatives (FNs) (Powers 2012).

A contingency table, in which the performance of the algorithm is validated against the true (correct)

values, is created for this purpose. The table works for a binary classification where, on the one hand,

two classes such as wrong prepositional choice and correct propositional choice are defined as positive

and negative examples respectively. In the task of error correction, one can define errors as positive

examples, i.e. the example contains an error (e.g. a wrong prepositional choice). On the other hand,

correct prepositional choice examples account as negative examples, i.e. the example does not

contain any error (at least not the error the classifier is dealing with). In the contingency table, the

number of positive and negative examples of the class are distributed between the results of the

predictor (table 1), thus generating the four categories (Powers 2012).

 Positive class Negative class

Positive prediction True positives False positives

Negative prediction False Negatives True negatives
Table 1 Contingency table

In error correction, a true positive occurs when the system flags a true error and the gold standard

correction matches the system correction. On the other hand, if the error does not exists it counts as

a false positive. Likewise, a true negative occurs when the system does not flag any error and in fact

no error exists (or it is not tagged in the gold standard). False negatives are, then, instances in which

the system does not flag any error but an error does exist in the gold standard correction.

From these values it is possible to calculate Precision (equation 1) and Recall (equation 2). From the

instances tagged as positives by the system, precision measures in which proportion a classifier

identifies true positive instances. On the other hand, recall measures what proportion of true

instances (errors) are actually flagged as errors. From precision and recall it is possible to calculate F-

scores such as F1 (equation 4) and F05 (equation 5), which calculate a harmonic mean of both

precision and recall. Moreover, it is also possible to calculate the accuracy of a classifier (equation 3),

but as was stated previously it gives a too positive impression of the actual effectiveness of a classifier

because the low rate of errors results in a large number of true negatives (Leacock et al. 2014).

Nonetheless, precision, recall and F-scores can be affected by the skewness of the data, meaning that

all these metrics are not portable from one corpus to another, which makes it difficult to compare the

performance of one algorithm against another (Powers 2012). Ultimately, all evaluation metrics have

their strengthens and weaknesses (Chodorow et al. 2012). Fortunately, the different shared tasks on

error correction described previously have given a baseline on which to compare error correction

algorithms, and that is another important reason to use the NUCLE corpus in this study. Additionally,

these metrics are the common measures that are used in the literature and if any comparison with

previous results is intended, it makes sense to keep the same metrics.

21

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =

𝑇𝑃𝑠

𝑇𝑃𝑠 + 𝐹𝑃𝑠

(1)

𝑅𝑒𝑐𝑎𝑙𝑙 =

𝑇𝑃𝑠

𝑇𝑃𝑠 + 𝐹𝑁𝑠

(2)

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =

𝑇𝑃𝑠 + 𝑇𝑁𝑠

𝑇𝑃𝑠 + 𝐹𝑁𝑠 + 𝐹𝑃𝑠 + 𝑇𝑁𝑠

(3)

𝐹1 = 2 ∗

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

(4)

𝐹0.5 =

(1 + 0.52) ∗ 𝑅𝑒𝑐𝑎𝑙𝑙 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑅𝑒𝑐𝑎𝑙𝑙 + 0.52 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

(5)

Automatic evaluation of error correction systems requires an annotated corpus in which the output

of the predictor (i.e. the classifier) can be compared against a gold standard set of corrections. In this

respect, the availability of an annotated corpus such as NUCLE makes the evaluation task easier and

more unbiased as one can rely on the annotated data as a gold standard that one can then validate

against the output of the error correction algorithm. Nonetheless, error correction is a hard and non-

standardized task because different evaluators can come up with different corrections for the same

error, even if they intend to annotate the same correction (Dahlmeier & Ng 2012).

(Dahlmeier, Ng & Wu 2013), for example, carried out a pilot experiment to validate the level of

agreement between correctors. They used three different criteria, namely Identification, Classification

and Exact. In the first criterion two correctors agree if they identify an error within the same span.

They also agree on classification if they identify the same type or class of error. The ultimate

agreement occurs when they both select the same correction too. Dahlmeier, Ng and Wu used the

Cohen’s Kappa coefficient (Cohen 1960) to assess the agreement between the annotators. The

Cohen’s Kappa coefficient is calculated by obtaining the probability of agreement (Pr(a)) and the

probability of chance agreement (Pr(e)). The coefficient values that the authors obtained on average

were 0.3877, 0.5484, and 0.4838 for identification, classification and exact correction respectively.

According to the range of metrics defined by (Landis & Koch 1977), their identification agreement was

“fair” (from 0.21 to 0.40) and their scores for classification and exact correction were “moderate”

(from 0.41 to 0.60). Nonetheless, an annotated learner corpus is an immensely beneficial asset for the

task of training and evaluating an error correction system.

Similarly, another issue that has to be dealt with when evaluating an error correction system is to

interpret true positives. As stated above, a true positive occurs when the system detects an error that

was also tagged in the gold standard annotations. However, one can differentiate two types of true

positives: 1) the system and the gold standard flag an error in the same span, i.e. error detection. And

2) the system suggests a correction that matches the correction annotated in the gold standard5, i.e.

error correction. Moreover, as seen above, valid corrections may disagree, generating false positives

that should be true positives. To smooth this discrepancy, several approaches have been proposed.

(Dale & Kilgarriff 2011), for instance, grouped evaluation metrics into three categories, namely

detection (an error is detected), recognition (the type and span of the error is identified) and

correction (the correction proposed matches the gold standard). Because only prepositional errors

are dealt with in this study, just the detection and correction metrics are adopted. For the detection

5 Bear in mind that a true correction that does not match the gold standard counts as a false positive.

22

evaluation, the identification of an error by the algorithm regardless of the correction is enough to

count as a true positive. On the other hand, for the evaluation of the correction task, true positives

count only if the correction suggested by the system matches with the gold standard. It can be

visualized in the WAS evaluation Schema defined by (Chodorow et al. 2012), in which an extra line (*)

is given to differentiate detection tasks from correction tasks (table 2). If the system, the gold

standard, and the predictor differ in the preposition then it is a true positive for the error detection

task whereas it is both a false positive and a false negative for the error correction task. The WAS

evaluation schema was used in this study to generate the contingency table.

 Written Annotated System

TN X X X

FP X X Y

FN X Y X

TP X Y Y

* X Y Z
Table 2 WAS evaluation Schema

Moreover, the evaluation metrics proposed in the shared task CoNLL 2013 (Ng et al. 2013) are also

taken into account to assess the algorithms proposed in this study. It consists of sets of edits that are

compared against each other. On the one hand, there is the set of gold standard edits and, on the

other hand, there is the set of edits suggested by the error correction system. The performance is then

measured according to the number of edits that intersect both sets over the number of edits proposed

in both sets, i.e. precision is calculated as the number of elements of the intersection subset of both

sets over the total of elements of the system edits set. On the other hand, recall is calculated as the

number of elements of the intersection subset of both sets over the total of elements of the gold

standard edits.

3.2 The Data
The NUCLE corpus used in this study was the pre-processed version 2.0 made by the shared task CoNLL

2013. They present the data as a sequence of lines per token in the NUCLE corpus with a lot of

information, namely the essay ID, the paragraph index, the sentence index, the token index, the token

itself, the POS tag, the index of the parent in the dependency tree, the dependency relation with the

parent node and the constituent parse tree in a bracket-like format. All this additional information

was obtained through the Stanford parser (Klein & Manning 2003) and the Python library NLTK (Bird,

Klein & Loper 2009). The data extracted from this version differs slightly from the NUCLE version 2.3

presented by (Ng et al. 2013) as shown in table 3.

 NUCLE 2.0 NUCLE 2.3

Essays 1397 1397

Sentences 57,146 57,151

Tokens 1,161,604 1,161,567

Word types 29352 -

Prepositions 133093 -

Prepositional Errors 1341 -

Prepositional Errors Rate 1.01% -
Table 3 NUCLE data Overview

Order Preposition Number of instances Prepositional Errors Rate

1 Of 32236 193 0.60%

23

2 In 20085 242 1.20%

3 For 10704 215 2.01%

4 To 9645 167 1.73%

5 As 7867 11 0.14%

6 That 7328 1 0.01%

7 On 7021 162 2.30%

8 From 5934 34 0.57%

9 With 5706 66 1.16%

10 By 4884 47 0.96%

11 At 2132 54 2.53%

12 If 1849 0 0%

13 Than 1394 0 0%

14 Into 1232 45 3.65%

15 About 1124 24 2.13%

16 Because 1008 0 0%

17 Like 924 0 0%

18 Since 849 0 0%

19 After 778 0 0%

20 Through 750 18 2.4%

21 Over 676 11 1.62%

22 During 654 12 1.83%

23 Without 630 0 0%

24 Although 610 0 0%

25 While 588 0 0%

26 Whether 468 0 0%

27 Before 436 0 0%

28 Besides 417 1 0.24%

29 Under 410 0 0%

30 Between 404 4 1.00%

The rest - 4350 34 0.78%
Table 4 Top 30 of Prepositions in NUCLE

3.2.1 Defining Prepositional Errors in the NUCLE corpus.
As discussed previously, the type of prepositional errors a learner may make can be classified into

three categories: extraneous insertion of preposition (unwanted preposition was included), missing

preposition (no necessary preposition was included) and wrong prepositional choice (preposition used

is not adequate or is incorrect). For the NUCLE corpus, these errors can be identified as follows:

 Insertion error: correction indexes include a preposition in original text and, correction tag

does not include any preposition – the correction may be empty as well.

 Missing error: correction indexes does not include a preposition in original text and, correction

tag does include a preposition.

 Wrong choice: correction indexes include a preposition in original text and, correction tag

includes a preposition as well. Usually, it is a one to one correction. Otherwise it could include

other type of errors, and thus only one to one examples are taken into account.

However, this study deals only with prepositional errors of the type wrong choice. The same algorithm

can be applied to the other two types of prepositional errors but the examples have to be generated

differently. It is important to note that because the prepositional class is not well defined (as discussed

in the prepositions section), some words that some people could argue are conjunctions or adverbs

24

such as ‘that’ and ‘as’ are treated as prepositions in this study (they are also tagged as prepositions in

the NUCLE corpus provided by the shared task CoNLL 2013).

3.2.2 Training, validating and testing datasets
Depending on the type of experiment, the number of examples per class varies, but as a general rule

one example is generated for each prepositional instance in the corpus. Furthermore, the examples

generated are randomly separated into two parts: 10% of the total data is employed for the testing

phase and the remaining 90% is employed for the training phase. The dataset for the training set is

randomized and separated into two blocks once again: 90% of the data is used to train the model

while the remaining data is used for validating the data through cross-validation. These distinct sets

of data are labelled according to their purpose (training, testing and validation) and then saved as

Python “pickle” objects so that the same datasets can be employed in different experiments. The

reason for taking this measure is to avoid that different datasets could bias the judgement over the

results, because the data is randomly separated each time the script runs and different datasets are

created each time. However, if the system detects that the datasets for that particular type of example

already exists, the datasets are loaded instead of being created.

3.2.3 Oversampling and Undersampling
According to the pre-processed data provided by CoNLL 2013, the total number of prepositions

contained in the NUCLE corpus is 1330936 and, as can be seen in table 4, the number of examples for

each type of class is quite imbalanced. Just comparing the top three prepositions, it is easily

identifiable that the number of instances of the class “in” is twice the size of the class “for”, which in

turn is three times smaller than the top class “of”. As a consequence, some methods are applied to

the training data to assess if either oversampling or undersampling are a better option for the task of

error correction. It is necessary to point out that neither the validation dataset nor the testing dataset

are pre-processed, i.e. they retain the imbalanced nature that would be expected in any learner corpus

– and probably in real life.

In order to test the undersampling of the training dataset, the parameter “--under” is set at True and

an extra parameter – “—under_pos” – is used to set the maximum number of examples each class can

have. The number goes from the top preposition (e.g. “of”) up to the bottom one, i.e. a value of 1

means the top preposition, a value of 2 the second one and so on. To set a value that goes below the

tenth preposition does not make sense as the number of examples becomes too low, affecting

negatively the performance of the neural network. As a consequence, the undersampling is tested by

setting the position parameter at 2 and 3 - which are the ones with the largest number of instances -

and then 7 and 10 - which are reference points of a significant decrement in the number of examples.

The system internally calls a function that takes the reference preposition and set its number of

appearances as the reference limit over which classes with more instances are truncated in a random

way. The effectiveness of the undersampling method is established by the analysis of the different

metrics.

The oversampling, on the other hand, is activated by setting the parameter “—over” at True and then

setting the minimum of examples each class should have in a similar way to the undersampling

parameter, i.e. the parameter “--over_pos” defines the position from top to bottom of the preposition

that serves as a reference for the minimum number of examples for each class. The oversampling is

carried out by applying a bootstrapping-like method, i.e. classes with low numbers of occurrences are

6 It is important to note that the preposition “to” is always tagged as the POS tag “TO”, regardless of its function
as either preposition or auxiliary for the infinite verb form, and an extra pre-processing was necessary for this
specific class of preposition.

25

randomly picked up during the training phase in order to compensate for the lack of examples. The

parameters are set at values of 2, 3 and 7 per experiment. The effectiveness of the oversampling is

tested in a similar way as the undersampling experiment. The default value for both oversampling and

undersampling is False thereby all experiments are run using the training data as it is.

3.3 The Model
The algorithm is a multi-class classifier consisting of a LSTM neural network that is fed by a sequence

of features (type of examples, e.g. sequence of words), and whose final state, in turn, feeds a logistic

regression algorithm. Each node of the output of the logistic represents how well a class of preposition

fits the current context or input, i.e. the preposition with the highest score is the one that best fits the

current context. In the next sections each component is described in more detail. The neural network

is trained by applying the Adam optimization algorithm (Kingma & Ba 2014) to the softmax cross

entropy loss function with logits. Both functions are implemented in TensorFlow, and the algorithm

calls the functions “tf.train.AdamOptimizer” and “tf.nn.softmax_cross_entropy_with_logits”

respectively.

3.3.1 LSTM Neural Network
A recurrent network that follows a LSTM architecture is the core of the algorithm used in this study to

detect and correct learner errors because, in theory, this model can render better results than those

presented by linear classifiers. For the task of error correction, LSTM networks can be employed as a

statistical machine translation in which, given a sequence of learner English words, it returns a

sequence of correct English words through a process of encoding and decoding (Sutskever, Vinyals &

Le 2014). Although promising results have been obtained in other fields following this approach, it has

the disadvantage – from the CALL point of view – that it does not highlight the specific place in which

the error is made, which one would think is a requirement by traditional CALL so that learners can

understand their mistakes. Language model is another approach that can be accomplished by using

LSTM networks. Given a sequence of words it predicts what the most likely word is that should follow

in the sequence or – in the prepositional context - which preposition should be the more appropriate

choice. This approach bears some similarity with a classifier approach, but classifiers have one

advantage over a language model: in a classifier previous words are not the only context but words

after the target preposition are also taken into account. This is especially relevant in the case of

prepositions because the right preposition could depend on the argument –usually a noun phrase - it

is the head of. Therefore, the approach that this study follows is a classifier that tries to predict the

right preposition given a surrounding context.

3.3.1.1 Simple LSTM

A LSTM network can be defined by two components: the size of its state cell and the number of layers

in a stack of LSTM nodes. These parameters represent the simplest LSTM model that can be built in

TensorFlow. The system that was developed in this study has two components: on the one hand, it

controls the type of model that can be trained and tested on the system and, on the other hand, the

type of examples that are used by the model to feed the core model during training and testing – the

goal of the testing is always the same though. The library TensorFlow provides a number of

implementations of neural network models and the package “tf.contrib.rnn” is especially useful for

the creation of recurrent cells. Simple LSTM networks were developed by calling the function

“LSTMCell” that provides an implementation for a LSTM network. Additionally, the systems makes use

of the function “nn.dynamic_rnn” – which is especially helpful for training, that is, a TensorFlow

implementation of an unrolled recurrent network. In order to facilitate the undertaking of different

experiments, the system includes a number of parameters that control the type of model and the type

of data that should be deployed. The parameter that defines what type of model to use in the system

26

is “—model_type”. For a simple LSTM model, the value is “simple”. The model is tested against the

bidirectional model that is detailed in the next section.

3.3.1.2 Bidirectional

In addition to the simple LSTM network model, that keeps a memory state of all previous features,

there exists the bidirectional model – the biLSTM for the scope of this study – which keeps the state

of both previous features and future features by means of two separate LSTM networks – a forward

LSTM network and a backward LSTM network - and their respective memory cells. For the task at

hand, which is similar to the task of tagging, the bidirectional model seems to be a more suitable

model as the preposition target is usually located somewhere in the middle of two related sequences

of words. Because the bidirectional model consists inherently of two LSTM networks, the model was

built on the same base as the simple LSTM model with the difference that the two LSTM networks -

the forward network and the backward network – were wrapped by a different unrolling

implementation, namely the “bidirectional_dynamic_rnn” that controls the state of the two different

networks. The value of the type parameter for this model is “bi” and this model is compared with the

simple LSTM were all other parameter keep their default values.

3.3.2 Dropout
It makes sense to think that building deep recurrent networks with a large number of layers and a

large number of hidden cells to correct prepositional errors can lead the RNN to overfit the relatively

small training data. Therefore, it makes sense to implement a mechanism to stop overfitting by using

a regularization method such as dropout. The implementation of dropout in TensorFlow is relatively

straightforward as it provides a wrapper to add dropout to each LSTM cell. Following the recipe by

(Zaremba, Sutskever & Vinyals 2014), the dropout is only applied to the “non-recurrent” nodes within

the network in order to best employ regularization through dropout, i.e. dropout is applied only to

the LSTM cells that are located between the cell that receives the input and the cell that outputs the

final state. Two parameters are added into the system to control the dropout behaviour: “--dropout”

which is a Boolean variable that determines if the system must or must not wrap each LSTM cell with

a dropout mechanism; and “--keep_prob”, which indicates the proportion at which neurons should be

kept, i.e. a value of 1 indicates that all neurons should be kept. In order to test the effectiveness of

adding dropout to the neural network, a relatively deep neural network was set at a number of layers

of 8 and a hidden size of 1600, which is the equivalent to the larger parameters defined in the neural

network size section. Additionally, the probability of keeping neurons was set initially at 0.5 and

progressively increased by 0.1 up to 1.0.

3.3.3 Attention
In theory, the attention mechanism should be appropriate to use when the sequence of features is

long, but as it cannot be clearly established from which value the length of the sequence starts to be

long, the attention mechanism was tested using the larger size of the input sequence, i.e. for a

maximum length of 20 features on each side of the target preposition. The implementation of the

attention mechanism in TensorFlow is not very different from the implementation of the dropout

wrapper, and a wrapper provided by TensorFlow is used to add the attention mechanism to each LSTM

node when the parameter “--attention” is set at True. The neural network using the attention

mechanism was compared to another neural network of equal size and type that does not used the

attention mechanism.

3.3.4 Classes
After deciding what type of algorithm will be used to predict prepositions given a context, it is now

time to decide which types of classes the algorithm will address. Ideally, all prepositions should be

27

addressed but two main problems arise: first, the number of preposition is not well defined (see

prepositions chapter) and as a consequence different English corpus correctors might annotate a word

as a preposition while other might annotate the same word as a conjunction or as any other class –

which would affect the supervised training of the model; second, the availability of the data is scarce

and the number of examples for non-popular prepositions is minimum and, therefore, the algorithm

could not learn properly to distinguish the context that triggers those propositions. Thus, the number

of prepositions is reduced to the most popular ones (at least while the model is trained solely on

learner data). However, it is necessary to determine what exact number of prepositions should be

appropriate to deal with the prepositions that are more difficult to master by learners, but that could

be generalized by the algorithm taking into account that the dataset is relatively small (in the Data

section it could be seen that for non-popular prepositions the number of instances is small).

To define this number, a parameter was introduced in the code that sets the number of prepositions

the algorithm addresses (“—class_limit”) so that a default algorithm could be trained using different

numbers of classes, i.e. different types of prepositions. The number of classes was set at a minimum

of 5 classes and then progressively increased by 5 up to a maximum of 30. The experiments were

tested using the testing dataset. In addition to the metrics defined in the section on evaluating the

algorithm, two types of graphs were created for each experiment: precision-recall graphs and ROC

graphs. The purpose of these graphs was to evaluate for each experiment, how the algorithm was

capable of distinguishing each class in a one-vs.-all approach in order to define what prepositions the

algorithm should address.

3.4 Size of Neural Network
It is not enough to define the core of the algorithm, it is also necessary to define the size of the neural

network. LSTM networks have a cell memory that keeps a state of the neural network through time,

and the LSTM network can be parameterized according to the size of this cell state that affects the

capability of the network to keep a robust state of the full sequence of features. Additionally, LSTM

neural networks can be parameterized by the depth of its architecture, i.e. the number of layers in the

stack of LSTM networks. It might be expected that a bigger cell state would render better results as

the neural network would be able to retain more information such as long-range dependencies

through time, but at the same time it is true that a bigger network would imply a larger use of memory

and more computational processing in both training and testing phrases – and production of course.

Similarly, a larger number of layers would, in theory, render a more powerful representational

capability according to deep learning theory and consequently deeper recurrent networks require

more machine resources than shallow ones. The representational power of deep neural networks

comes from the learning capability of deep hierarchical layers to capture the key information from the

input features by abstracting the domain knowledge in a hierarchical manner. As a consequence, the

predictor is better informed, i.e. more precise.

However, the ideal size of neither the cell state nor the number of layers can be determined

theoretically. It has to be decided through a series of experiments to make a trade-off between cost

and benefits. The way in which it was carried out in this study was by varying the size of each

parameter while all other parameters in the algorithm kept their default values. The parameters of

the size of the recurrent network were separately tested, that is, each parameter was modified and

tested while the other parameters kept a fixed value. The first parameter to be tested was the number

of hidden layers, i.e. the size of the cell state. For this experiment, the stack of LSTM cells was

composed of only one layer. The basic number of layers was set at 50, and then doubled each time,

that is to say, 100, 200, 400, 800 and 1600 per experiment. Next, the number of layers was set at a

fixed value (400) and the number of layers was doubled each time up to a value of 8: 1, 2, 4 and 8. The

28

system defines two input parameters to parameterize the number of layers and the number of hidden

cells, namely “—num_layer” and “—num_hidden” respectively.

3.5 Feature Embedding Layer
According to the literature on embedding vectors, two advantages can be gained from its use: a

computational gain and an improvement on the representational power of the neural network.

Moreover, among the models that are proposed, the context-predicting ones – concretely the skip-

gram model - seem to render better results than the count-based embedding vectors (Baroni, Dinu &

Kruszewski 2014). As a consequence the word2vec model proposed by (Mikolov, Tomas, Sutskever, et

al. 2013) and implemented by (Steiner 2015) – and which is available on the TensorFlow web-page

tutorials - is the embedding model followed by this study. Two parameters are important in this

implementation – in addition to the examples: the length of the windows at each size of the target

word and the number of times each word is used to generate a label – the method by (Mikolov, Tomas,

Sutskever, et al. 2013) requires undersampling to get a more powerful representation. Therefore,

those two parameters can be tuned during deployment thanks to the introduction of two parameters

in the system, to know, “—size_window” and “—skip_num”. However, the “—skip_num” is set at 1 so

as to get the biggest representational power of the embedding layer. Another parameter that is

relevant in the embedding layer is the size (dimension) of the embedding vector, and in the system

this parameter is controlled through the argument “--word_emb_size” (at least for lexical features).

In order to evaluate the effectiveness of the embedding layer, a pilot experiment was carried out in

which a simple LSTM neural network was trained using each type of input (embedding vectors and

one hot vectors) in order to compare both the training time and the evaluation metrics and graphs.

The parameter used to control the type of input is “—type_input”, which can take the values

“one_hot” or “embedding”. Nonetheless, as the parameters of the embedding layer could affect the

performance of the neural network, the embedding layer was further tested by varying the two

parameters that control the embedding process, i.e. the size of the window and the size of the

embedding vector. To avoid confusing results, each parameter was tested by varying one parameter

while the other parameter kept a constant value per experiment. The window size parameter was

increased by 1 from 1 to 4, whereas the embedding size parameter was tested at values of 50, 100

and 200. The data used to create the embedding table is equivalent to the whole NUCLE corpus for

each type of feature.

Although the name “word2vec” suggests that this technique is designed to embed lexical features,

other types of features such as POS are tested using both types of inputs. It is important to point out

that different embedding vectors can be created from each core feature depending on their function,

e.g. an embedding vector for previous word and another one for next words (Goldberg 2016).

However, because of the nature of RNNs in which all features are treated the same, in this study all

features of the same type will share the same vector. That is to say, because RNNs take care of the

position of each feature, and all features have the same equivalence at its respective injection

timestep 𝑡, it makes sense to use the same embedding vector for all features sharing the same

characteristics, e.g. an embedding vector for words and another one for POS and so forth.

Nonetheless, because different types of features have different embedding vectors, but they are

injected into the neural network at the same time, e.g. lexical features and POS features, all resulting

embedding vectors per feature are concatenated through a concatenation function 𝑐(.) before

entering the neural network. It is mathematically represented as:

𝑥 = 𝑐(𝑓1, … , 𝑓𝑛) = [𝑣(𝑓1,), … 𝑣(𝑓𝑛)]

29

where 𝑓1, … , 𝑓𝑛 represent the core features and 𝑣(𝑓1,), … 𝑣(𝑓𝑛) their respective embedding function.

The system performs this concatenation internally so that, depending on the types of features that

are parameterised in the input, the concatenation is transparently brought about by the system. The

relevance of each feature is treated in the features section.

3.6 Examples
Looking at the big picture, one could say that the ultimate goal of the algorithm is to choose the most

appropriate preposition among 𝑛 numbers of prepositions given a learner context, e.g. learner text

such as phrases, clauses, sentences, etc. Thus, each prepositional instance within the NUCLE corpus is

a potential example for testing and training the algorithm. The easiest way to create an example is to

find a preposition – given its POS tag – and make the surrounding words its context. However, many

factors have to be thought through: how many words around the target preposition are adequate?

Should the examples go beyond the limits of the sentence, i.e. including words from neighbour

sentences? Should the target preposition be included within the example?

As discussed in the chapter on prepositions, a preposition is normally followed by a noun or noun

phrase that is its complement, so that the dependency between the preposition and its complement

may be short, e.g. the preposition “of” and its complement “humanity” in the example “the long-

standing history of humanity”, or the preposition “in” and its complement “changing the civilization”

in the example “… a crucial role in changing the civilization…” It would make sense then to choose a

short window around the word as the example context, but the long-distance dependency problem

cannot be forgotten. Therefore, the examples are generated with different lengths so that the

dependency of prepositions on learner texts can be tested. This is in particular ideal for recurrent

neural network which, in theory, can deal with arbitrary lengths of sequences. The parameter “--

seq_limit” is used to control the limit of the window-size on each side of the target preposition. In

previous approaches, the target preposition is located in the middle of the context, and the length of

the window at each side is equivalent to each other. In this study, the window sizes on each side of

the target preposition are allowed to be different from each other because RNN can deal with flexible

sizes of sequences. The length on each side is different if the length at any side is shorter than the

length of the remaining sentence, i.e. no information from neighbour sentences is added into any

example even when previous or posterior sentences may have an influence on the target preposition.

In the context of learner writing, it makes sense because complex structures are not commonly used

according to the avoidance behaviour theory (Leacock et al. 2014).

The examples for the experiments were generated by iterating through the sentences of the NUCLE

corpus in search of prepositions. Once a preposition was identified, words surrounding the preposition

were taken on each side – up to the maximum length- and an example created. However, it was

necessary to establish a method to determine the location of the target preposition among examples

of variable length. Three different scenarios were set: including the original preposition in the example

with the subsequent danger of biasing the neural network; not including the original preposition –

which would create an ambiguous scenario for the simple LSTM network because the prediction is

based on the full input sequence; and including a general tag: “<tag_target_prep>” in place of the

original preposition. The parameter “--original” – used for this purpose - can take three values

(“include”, "exclude" and "replace”) whereby the system controls the type of examples the system

should deploy.

In order to test the influence of the original preposition and the maximum length of the input

sequence, two experiments were carried out. The length of the input sequence was progressively

increased at values of 5, 10, 15 and 20 – sentences with a length larger than 40 are not the rule when

30

working with learner writings. As for the original preposition, the system was deployed for each of the

three distinct scenarios discussed above. When generating the examples, all punctuation marks were

treated as single tokens. Finally, the evaluation metrics were used to assess the influence of each type

of example in the training phase of the algorithm.

3.7 Features
It can be expected that the most relevant feature for the task of error correction is a lexical feature,

and lexical features are always present in the neural network input. The main reason is that

prepositions as well as other lexical classes depend on the meaning of their context to make sense,

e.g. the phrases “on the table” and “in the city” share the same structural information if they are

parsed to either a constituent tree or a dependency tree; they also share the same POS tags. Thus, the

use of the prepositions “on” and “in” depends on the meaning of the noun phrases that follow them.

It might be thought that using an infinite training set, lexical features would be enough to solve the

prepositional correction problem. However, the practical limitation of the training examples force the

use of additional features to provide the input features with sufficient information to deal with the

prediction of prepositions. The use of more features is justified by the sparsity that some lexical

tokens, and especially open classes such as nouns, can generate. For example, table 4 shows that the

number of instances per lexical type is low for a large number of lexical types in the NUCLE corpus. As

a consequence, probably, the algorithm would not be able to capture the influence of these low rate

lexical features in the task of predicting a preposition. One could think that the embedding vector

could alleviate this weakness, but it has to be remembered that the embedding table is generated by

training data from the corpus so that these low rate lexical features probably cannot be located

properly in the embedding vectorial space.

In order to test this hypothesis, the system includes a parameter to set a lower boundary for the

number of instances a lexical type appears in the corpus, namely “—lower_limit”. The default value of

this parameter is zero, but if the value increases, the size of the vocabulary decreases as the lexical

types that do not cross the lower boundary are replaced by a generic tag: “<unknown_tag>”. To test

the effect of the lower boundary, the algorithm is deployed using the default values and setting the

lower limit at values of 1, 2, 4, 8 and 16 per experiment. The experiments are compared thrugh the

analysis of the different metrics.

3.7.1 POS Tags
The second feature one would think of is the Part of Speech tag. POS tags provide general information

about the example under analysis and it could be an important complement to alleviate the sparsity

of some lexical features. This feature is parameterized by the argument “--tags”, which is a Boolean

that defines if the POS feature is used or not. Additionally, if this feature is set at True, the size of the

embedding should be defined through the argument “--tag_emb_size” (unless the type of input is

“one_hot”). To test the influence of this feature, the algorithm was deployed using the default values

and the tag parameters switched to True. Then, the embedding size of the feature was tested at values

of 10, 15, 20 and 25 per experiment. How the POS feature was obtained was described in The Data

section.

3.7.2 Index of the Parent in the Dependency Tree
Moreover, the index of the parent in the dependency tree was also tested. Although this is a numerical

value, it was treated as all other features, namely as a dense vector. The parameter that defines the

presence of this feature in the model is “--parent_index” (True/False) and the one that defines the

embedding size is “—index_emb_size”. This feature was tested similarly to the POS tag feature.

Although in the literature many other features such as dependency parse, constituency parse, lemma,

31

semantic, etc. are used, they are outside the scope of this study, in part because recurrent neural

networks keeps the structure of the sentence internally and in part because of the time constrains of

this project.

3.8 Data Pre-processing
Although, these days, various neural networks models argue that no data pre-processing tasks are

needed before introducing the data into the network (Liu & Liu 2017), it is usual to run several pre-

processing tasks over the data before accessing the core algorithm. Most of the systems in the shared

tasks performed some pre-processing before introducing the data into the systems. One of the most

popular tasks among these pre-processing tasks is to correct spelling, which is a healthy measure as

spelling errors and other grammatical errors generate noise that affects the performance of the error

correction tasks (Dahlmeier, Ng & Ng 2012; Rozovskaya, Sammons & Roth 2012). Some methods to

correct spelling errors involve the use of external tools such as Jazzy (Rozovskaya, Sammons & Roth

2012) which, given an English word, returns a list of possible words sorted by likelihood. The drawback

of this approach is that there is no context analysis to help choose the right word, so this ends up by

introducing erroneous words for the given context. In this study spelling correction was carried out

using the Python library “autocorrect”. In the context of learner data, this pre-processing task makes

sense as learners are prone to misspell words and the lexical representation of some words could

become sparse. Nonetheless, the impact of correcting the spelling of words without performing

context analysis has to be tested carefully because a wrong correction of words could end up

introducing wrong features. Thus, an experiment to compare the effectiveness of correcting spelling

of isolated words was carried out by comparing the different metrics of the algorithm using the default

algorithm while switching the parameter “--spelling” (which controls the use of the library to correct

the spelling of the input words) on and off.

32

4 Results
All experiments were carried out varying only one specific element or parameter of the algorithm

while all other parameters kept a constant value. The default values are shown in table 5.

Parameter Default

Hidden Cells 400

Number of layers 1

Model simple

Input Type embedding

Word Embedding Size 100

Embedding Window 2

Number of Classes 10

Spelling False

POS Tags False

Tags Embedding Size 20

Index of Parent in Dependency Tree False

Index Embedding Size 10

Lower Limit for Vocabulary 0

Oversampling False

Oversampling Position 0

Undersampling False

Undersampling Position 0

Length of Sequence Input (at each side) 5

Original Preposition exclude
Table 5 Default Parameters of the algorithm

The validation dataset was used to cross validate the training phase in order to define the optimum

number of epochs whereby the algorithm learns to best distinguish the different classes without losing

its capacity to generalize. In practice, it is given by the point where the validation dataset gets the

lowest loss value. It is helpful to verify that the algorithm is neither underfitting nor overfitting, and

for each experiment, the loss rate is drawn against the number of steps (epochs), together with the

accuracy of the classifier for both datasets: training and validation. The training accuracy refers to the

number of examples correctly classified over the total number of examples, and must not be mistaken

for the accuracy of the correction task, i.e. the training accuracy refers to the capacity of the classifier

to distinguish among the classes rather than the capacity to detect and correct prepositional errors.

The testing dataset is used to verify the capability of the classifier to both distinguish among the

different classes and to detect and correct prepositional errors. Two types of charts are presented to

validate the algorithm’s capability to separate the different classes, namely a precision-recall chart

and a Receiver operating characteristic (ROC) chart. Because the algorithm is a multiclass classifier,

each graph is generated using a one-vs.-all approach per class. As for the detection and correction

task, for each parameter under experimentation a comparative table is presented in which all metrics

(without using any threshold) are presented. The results for the task of detection are presented

separately from the result for the task of correction. Moreover, because the number of prepositions

is large and not all are tackled by the classifier but included in the testing dataset, an additional couple

of tables in which the algorithm only addresses the classes it was designed for are presented in order

to verify the behaviour of the algorithm when dealing with the right classes. The correction task for all

prepositions is complemented by a chart in which all metrics are drawn against a threshold for each

experiment.

33

Once all parameters are tested and the “optimum” algorithm is defined, a new dataset is used, namely

a production dataset that was not used to test any experiment and whose data was not used to train

the embedding layer hence it is the real test of the algorithm.

4.1 Size of the Neural Network

4.1.1 Number of Hidden Cells
For the number of hidden cells, the algorithm was tested using the default parameters and setting the

number of hidden cells at 50, 100, 200, 400, 800 and 1600 for each experiment.

4.1.1.1 Training Phase

Following are the charts representing the training phase for each parameter:

Figure 5 Cross validation using 50 Hidden Cells.

Figure 6 Cross validation using 100 Hidden Cells

34

Figure 7 Cross validation using 200 Hidden Cells

Figure 8 Cross validation using 400 Hidden Cells

Figure 9 Cross validation using 800 Hidden Cells

35

Figure 10 Cross validation using 1600 Hidden Cells

4.1.1.2 Testing Phase

4.1.1.2.1 Precision – Recall Charts

Figure 11 Precision vs. Recall for classes OF (upper left), IN (upper right), FOR (lower left) and TO (lower right) varying the
number of Hidden Cells

36

Figure 12 Precision vs. Recall for classes AS (upper left), THAT (upper right), ON (lower left) and FROM (lower right) varying
the number of Hidden Cells

Figure 13 Precision vs. Recall for classes WITH (left), BY (right) varying the number of Hidden Cells

37

4.1.1.2.2 ROC Charts

Figure 14 ROC for classes OF (upper left), IN (upper right), FOR (lower left) and TO (lower right) varying the number of
Hidden Cells

Figure 15 ROC for classes AS (upper left), THAT (upper right), ON (lower left) and FROM (lower right) varying the number of
Hidden Cells

38

Figure 16 ROC for classes WITH (left) and BY (right) varying the number of Hidden Cells

4.1.1.2.3 Metrics for Error Correction against Threshold

Figure 17 Correction Metrics against a Threshold using 50 Hidden Cells

Figure 18 Correction Metrics against a Threshold using 100 Hidden Cells

39

Figure 19 Correction Metrics against a Threshold using 200 Hidden Cells

Figure 20 Correction Metrics against a Threshold using 400 Hidden Cells

Figure 21 Correction Metrics against a Threshold using 800 Hidden Cells

40

Figure 22 Correction Metrics against a Threshold using 1600 Hidden Cells

4.1.1.2.4 Metrics for Error Detection and Correction Tasks

Hidden Cells Precision Recall F1 F05 Accuracy

50 1.00% 34.15% 1.96% 1.25% 57.00%

100 1.11% 37.19% 2.16% 1.38% 57.65%

200 1.06% 35.97% 2.07% 1.32% 57.23%

400 1.10% 37.8% 2.14% 1.37% 56.64%

800 1.03% 35.36% 2.01% 1.29% 56.83%

1600 1.21% 40.85% 2.35% 1.50% 57.47%
Table 6 Error correction for all classes using different numbers of hidden cells

Hidden Cells Precision Recall F1 F05 Accuracy

50 2.12% 75.0% 4.30% 2.74% 57.85%

100 2.37% 79.27% 4.60% 2.94% 58.49%

200 2.34% 79.27% 4.56% 2.91% 58.09%

400 2.4% 82.32% 4.66% 2.98% 57.53%

800 2.34% 79.88% 4.55% 2.91% 57.71%

1600 2.37% 79.87% 4.61% 2.94% 58.24%
Table 7 Error detection for all classes using different numbers of hidden cells

Hidden Cells Precision Recall F1 F05 Accuracy

50 1.60% 40.87% 3.06% 1.97% 67.74%

100 1.73% 44.52% 3.39% 2.18% 68.46%

200 1.68% 43.06% 3.24% 2.08% 67.96%

400 1.73% 45.25% 3.33% 2.14% 67.27%

800 1.63% 42.33% 3.14% 2.02% 67.49%

1600 1.92% 48.90% 3.70% 2.37% 68.26%
Table 8 Error correction for 10 top classes using different numbers of hidden cells

Hidden Cells Precision Recall F1 F05 Accuracy

50 3.6% 78.83% 5.90% 3.79% 68.54%

100 3.36% 84.67% 6.46% 4.15% 69.30%

200 3.22% 82.48% 6.21% 3.99% 68.80%

400 3.34% 87.59% 6.44% 4.13% 68.15%

800 3.23% 83.94% 6.23% 4.00% 68.36%

1600 3.30% 83.94% 6.34% 4.08% 68.70%
Table 9 Error detection for top 10 classes using different numbers of hidden cells

41

4.1.2 Number of Layers
For the number of layers (depth of the neural network), the algorithm was tested using the default

parameters and setting the number of layers at 2, 4, 8. The experiment using 1 layer was already

carried out in the number of hidden cells section.

4.1.2.1 Training Phase

Figure 23 Cross validation using 2 Layers

Figure 24 Cross validation using 4 Layers

42

Figure 25 Cross validation using 8 Layers

4.1.2.2 Testing Phase

4.1.2.2.1 Precision – Recall Graphs

Figure 26 Precision vs. Recall for classes OF (upper left), IN (upper right), FOR (lower left) and TO (lower right) varying the
number of layers

43

Figure 27 Precision vs. Recall for classes AS (upper left), THAT (upper right), ON (lower left) and FROM (lower right) varying
the number of layers

Figure 28 Precision vs. Recall for classes WITH (left) and BY (right) varying the number of layers

4.1.2.2.2 ROC Graphs

Figure 29 Precision vs. Recall for classes OF (upper left), IN (upper right), FOR (lower left) and TO (lower right) varying the
number of Layers

44

Figure 30 ROC for classes AS (upper left), THAT (upper right), ON (lower left) and FROM (lower right) varying the number of
layers

Figure 31 ROC for classes WITH (left) and BY (right) varying the number of layers

4.1.2.2.3 Metrics for Error Correction against a Threshold

Figure 32 Correction Metrics against a Threshold using 2 Layers

45

Figure 33 Correction Metrics against a Threshold using 4 Layers

Figure 34 Correction Metrics against a Threshold using 8 Layers

4.1.2.2.4 Metrics for Error Detection and Correction Tasks

Number of Layers Precision Recall F1 F05 Accuracy

1 1.10% 37.8% 2.14% 1.37% 56.64%

2 1.13% 38.4% 2.20% 1.40% 57.17%

4 1.07% 35.4% 2.07% 1.32% 58.05%

8 1.09% 37.20% 2.14% 1.36% 57.20%
Table 10 Error correction for all classes using different numbers of layers

Number of Layers Precision Recall F1 F05 Accuracy

1 2.4% 82.32% 4.66% 2.98% 57.53%

2 2.30% 78.05% 4.47% 2.86% 57.96%

4 2.32% 76.83% 4.50% 2.88% 58.88%

8 2.27% 76.82% 4.41% 2.82% 57.99%
Table 11 Error detection for all classes using different numbers of layers

Number of Layers Precision Recall F1 F05 Accuracy

1 1.73% 45.25% 3.33% 2.14% 67.27%

2 1.79% 45.98% 3.44% 2.16% 67.89%

4 1.71% 42.33% 3.28% 2.11% 68.94%

8 1.74% 44.52% 3.35% 2.15% 67.95%
Table 12 Error correction for 10 top classes using different numbers of layers

46

Number of Layers Precision Recall F1 F05 Accuracy

1 3.34% 87.59% 6.44% 4.13% 68.15%

2 3.24% 83.21% 6.24% 4.01% 68.67%

4 3.24% 80.29% 6.22% 4.01% 69.74%

8 3.10% 79.56% 5.98% 3.84% 68.68%
Table 13 Error detection for 10 top classes using different numbers of layers

4.2 Data

4.2.1 Undersampling
For undersampling the examples of the training data (validation and testing were not modified), the

“under” parameter was set at True and the under position was set at values of 2, 3, 7 and 10.

4.2.1.1 Training Phrase

Figure 35 Cross validation by undersampling the maximum number of instances per class from the second most frequent
preposition in the corpus, i.e. ‘IN’

Figure 36 Cross validation by undersampling the maximum number of instances per class from the third most frequent
preposition in the corpus, i.e. ‘FOR’

47

Figure 37 Cross validation by undersampling the maximum number of instances per class from the seventh most frequent
preposition in the corpus, i.e. ‘ON’

Figure 38 Cross validation by undersampling the maximum number of instances per class from the tenth most frequent
preposition in the corpus, i.e. ‘BY’

48

4.2.1.2 Testing Phase

4.2.1.2.1 Precision-Recall Graphs

Figure 39 Precision vs. Recall for classes OF (upper left), IN (upper right), FOR (lower left) and TO (lower right) by
undersampling training examples

Figure 40 Precision vs. Recall for classes AS (upper left), THAT (upper right), ON (lower left) and FROM (lower right) by
undersampling the training examples

Figure 41 Precision vs. Recall for classes WITH (left) and BY (right) by undersampling the training examples

49

4.2.1.2.2 ROC Graphs

Figure 42 ROC for classes OF (upper left), IN (upper right), FOR (lower left) and TO (lower right) by undersampling the
training examples

Figure 43 ROC for classes AS (upper left), THAT (upper right), ON (lower left) and FROM (lower right) by undersampling the
training examples

50

Figure 44 ROC for classes WITH (left) and BY (right) by undersampling the training examples

4.2.1.2.3 Metrics for Error Correction against a Threshold

Figure 45 Correction Metrics against a Threshold by undersampling the maximum number of instances per class from the
second most frequent preposition in the corpus, i.e. ‘IN’

Figure 46 Correction Metrics against a Threshold by undersampling the maximum number of instances per class from the
third most frequent preposition in the corpus, i.e. ‘FOR’

51

Figure 47 Correction Metrics against a Threshold by undersampling the maximum number of instances per class from the
seventh most frequent preposition in the corpus, i.e. ‘ON’

Figure 48 Correction Metrics against a Threshold by undersampling the maximum number of instances per class from the
tenth most frequent preposition in the corpus, i.e. ‘BY’

4.2.1.2.4 Metrics for Error Detection and Correction Tasks

Under Precision Recall F1 F05 Accuracy

without 1.10% 37.8% 2.14% 1.37% 56.64%

2 1.10% 37.80% 2.15% 1.37% 56.72%

3 0.92% 32.31% 1.79% 1.14% 55.43%

7 0.98% 37.19% 1.92% 1.22% 52.22%

10 0.82% 33.54% 1.60% 1.02% 48.29%
Table 14 Error correction for all classes by undersampling the training examples

Under Precision Recall F1 F05 Accuracy

without 2.4% 82.32% 4.66% 2.98% 57.53%

2 2.32% 79.27% 4.50% 2.87% 57.54%

3 2.25% 79.27% 4.38% 2.80% 56.35%

7 2.14% 81.10% 4.18% 2.66% 53.07%

10 2.08% 85.36% 4.07% 2.59% 49.26%
Table 15 Error detection for all classes by undersampling the training examples

Under Precision Recall F1 F05 Accuracy

without 1.73% 45.25% 3.33% 2.14% 67.27%

2 1.73% 45.25% 3.34% 2.15% 67.38%

52

3 1.42% 38.69% 2.74% 1.76% 65.82%

7 1.46% 44.52% 2.84% 1.82% 62.02%

10 1.18% 40.15% 2.29% 1.46% 57.36%
Table 16 Error correction for 10 top classes by undersampling the training examples

Under Precision Recall F1 F05 Accuracy

without 3.34% 87.59% 6.44% 4.13% 68.15%

2 3.11% 81.02% 5.98% 3.85% 68.14%

3 3.08% 83.94% 5.94% 3.82% 66.76%

7 2.79% 84.67% 5.39% 3.45% 62.84%

10 2.55% 86.86% 4.95% 3.16% 58.28%
Table 17 Error detection for 10 top classes by undersampling the training examples

4.2.2 Oversampling
For oversampling the examples of the training data (validation and testing were not modified), the

“over” parameter was set at True and the over position was set at values of 1, 2, 3 and 7.

4.2.2.1 Training Phase

Figure 49 Cross validation by oversampling the minimum number of instances per class from the most frequent preposition
in the corpus, i.e. ‘OF’

53

Figure 50 Cross validation by oversampling the minimum number of instances per class from the second most frequent
preposition in the corpus, i.e. ‘IN’

Figure 51 Cross validation by oversampling the minimum number of instances per class from the third most frequent
preposition in the corpus, i.e. ‘FOR’

54

Figure 52 Cross validation by oversampling the minimum number of instances per class from the seventh most frequent
preposition in the corpus, i.e. ‘ON’

4.2.2.2 Testing Phase

4.2.2.2.1 Precision-Recall Graphs

Figure 53 Precision vs. Recall for classes OF (upper left), IN (upper right), FOR (lower left) and TO (lower right) by
oversampling the training examples

55

Figure 54 Precision vs. Recall for classes AS (upper left), THAT (upper right), ON (lower left) and FROM (lower right) by
oversampling the training examples

Figure 55 Precision vs. Recall for classes WITH (left) and BY (right) by oversampling the training examples

4.2.2.2.2 ROC Graphs

Figure 56 ROC for classes OF (upper left), IN (upper right), FOR (lower left) and TO (lower right) by oversampling the training
examples

56

Figure 57 ROC for classes AS (upper left), THAT (upper right), ON (lower left) and FROM (lower right) by oversampling the
training examples

Figure 58 for classes WITH (left) and BY (right) by oversampling the training examples

4.2.2.2.3 Metrics for Error Correction against a Threshold

Figure 59 Correction Metrics against a Threshold by oversampling the minimum number of instances per class from the
most frequent preposition in the corpus, i.e. ‘OF’

57

Figure 60 Correction Metrics against a Threshold by oversampling the minimum number of instances per class from the
second most frequent preposition in the corpus, i.e. ‘IN’

Figure 61 Correction Metrics against a Threshold by oversampling the minimum number of instances per class from the
third most frequent preposition in the corpus, i.e. ‘FOR’

58

Figure 62 Correction Metrics against a Threshold by oversampling the minimum number of instances per class from the
most frequent preposition in the corpus, i.e. ‘ON’

4.2.2.2.4 Metrics for Error Detection and Correction Tasks

Over Precision Recall F1 F05 Accuracy

without 1.10% 37.8% 2.14% 1.37% 56.64%

1 1.00% 36.58% 1.96% 1.25% 54.06%

2 0.99% 35.36% 1.92% 1.23% 54.80%

3 1.07% 37.19% 2.09% 1.33% 56.27%

7 1.00% 34.76% 1.95% 1.25% 56.26%
Table 18 Error correction for all classes by oversampling the training examples

Over Precision Recall F1 F05 Accuracy

without 2.4% 82.32% 4.66% 2.98% 57.53%

1 2.31% 84.14% 4.50% 2.87% 54.98%

2 2.27% 81.10% 4.42% 2.82% 55.70%

3 2.34% 81.10% 4.56% 2.91% 57.14%

7 2.38% 82.32% 4.63% 2.95% 57.20%
Table 19 Error detection for all classes by oversampling the training examples

Over Precision Recall F1 F05 Accuracy

without 1.73% 45.25% 3.33% 2.14% 67.27%

1 1.53% 43.78% 2.95% 1.90% 64.21%

2 1.52% 42.33% 2.93% 1.88% 65.09%

3 1.68% 44.52% 3.23% 2.08% 66.83%

7 1.57% 41.60% 3.02% 1.95% 66.83%
Table 20 Error correction for 10 top classes by oversampling the training examples

Over Precision Recall F1 F05 Accuracy

without 3.34% 87.59% 6.44% 4.13% 68.15%

1 3.01% 86.13% 5.81% 3.73% 65.08%

2 3.01% 83.94% 5.81% 3.73% 65.95%

3 3.19% 84.67% 6.15% 3.95% 67.67%

7 3.17% 83.94% 6.11% 3.93% 67.72%
Table 21 Error correction for 10 top classes by oversampling the training examples

59

4.3 Examples

4.3.1 Length of the Input Sequence
For the length of the input sequence, the algorithm was tested using the default parameters and

setting the sequence limit at values of 10, 15 and 20 per experiment. The experiment using a sequence

limit of 5 was tested in the number of hidden cells section.

4.3.1.1 Training Phase

Figure 63 Table 18 Cross validation at a maximum input sequence of 10

Figure 64 Table 18 Cross validation at a maximum input sequence of 15

60

Figure 65 Table 18 Cross validation at a maximum input sequence of 20

4.3.1.2 Testing Phase

4.3.1.2.1 Precision-Recall Graphs

Figure 66 Precision vs. Recall for classes OF (upper left), IN (upper right), FOR (lower left) and TO (lower right) varying the
maximum length of the input sequence

61

Figure 67 Precision vs. Recall for classes AS (upper left), THAT (upper right), ON (lower left) and FROM (lower right) varying
the maximum length of the input sequence

Figure 68 Precision vs. Recall for classes WITH (left) and BY (right) varying the maximum length of the input sequence

4.3.1.2.2 ROC Graphs

Figure 69 ROC for classes OF (upper left), IN (upper right), FOR (lower left) and TO (lower right) varying the maximum length
of the input sequence

62

Figure 70 ROC for classes AS (upper left), THAT (upper right), ON (lower left) and FROM (lower right) varying the maximum
length of the input sequence

Figure 71 ROC for classes WITH (left) and BY (right) varying the maximum length of the input sequence

4.3.1.2.3 Metrics for Error Correction against a Threshold

Figure 72 Correction Metrics against a Threshold at a maximum input sequence of 10

63

Figure 73 Correction Metrics against a Threshold at a maximum input sequence of 15

Figure 74 Correction Metrics against a Threshold at a maximum input sequence of 20

4.3.1.2.4 Metrics for Detection and Correction Tasks

Sequence Precision Recall F1 F05 Accuracy

5 1.10% 37.8% 2.14% 1.37% 56.64%

10 0.77% 29.88% 1.50% 0.96% 50.94%

15 0.75% 29.88% 1.48% 0.94% 50.00%

20 0.70% 28.05% 1.37% 0.87% 49.24%
Table 22 Error correction for all classes varying the maximum length of the input sequence

Sequence Precision Recall F1 F05 Accuracy

5 2.4% 82.32% 4.66% 2.98% 57.53%

10 2.06% 79.88% 4.022% 2.56% 51.89%

15 2.00% 79.27% 3.92% 2.49% 50.93%

20 1.94% 79.27% 3.86% 2.46% 50.20%
Table 23 Error detection for all classes varying the maximum length of the input sequence

Sequence Precision Recall F1 F05 Accuracy

5 1.73% 45.25% 3.33% 2.14% 67.27%

10 1.14% 35.77% 2.20% 1.41% 60.50%

15 1.10% 35.77% 2.14% 1.37% 59.39%

20 1.02% 33.58% 1.97% 1.26% 58.48%
Table 24 Error correction for 10 top classes varying the maximum length of the input sequence

64

Sequence Precision Recall F1 F05 Accuracy

5 3.34% 87.59% 6.44% 4.13% 68.15%

10 2.64% 83.21% 5.12% 3.28% 61.45%

15 2.50% 81.02% 4.96% 3.11% 60.29%

20 2.45% 81.02% 4.76% 3.04% 59.42%
Table 25 Error correction for 10 top classes varying the maximum length of the input sequence

4.4 Features

4.4.1 Tags
To test the effectiveness of adding POS tags to the input sequence (keeping the lexical features), the

tag flag was set at True and the length of the embedding size was set at values of 10, 15, 20 and 25

while keeping all other parameters at their default value.

4.4.1.1 Training Phase

Figure 75 Cross validation adding embedded POS tags at a vector of size 10

Figure 76 Cross validation adding embedded POS tags at a vector of size 15

65

Figure 77 Cross validation adding embedded POS tags at a vector of size 20

Figure 78 Cross validation adding embedded POS tags at a vector of size 25

66

4.4.1.2 Testing Phase

4.4.1.2.1 Precision-Recall Graphs

Figure 79 Precision vs. Recall for classes OF (upper left), IN (upper right), FOR (lower left) and TO (lower right) adding POS
tags at different embedding sizes

Figure 80 Precision vs. Recall for classes AS (upper left), THAT (upper right), ON (lower left) and FROM (lower right) adding
POS tags at different embedding sizes

Figure 81 Precision vs. Recall for classes WITH (left) and BY (right) adding POS tags at different embedding sizes

67

4.4.1.2.2 ROC Graphs

Figure 82 ROC for classes OF (upper left), IN (upper right), FOR (lower left) and TO (lower right) adding POS tags at different
embedding sizes

Figure 83 ROC for classes AS (upper left), THAT (upper right), ON (lower left) and FROM (lower right) adding POS tags at
different embedding sizes

Figure 84 ROC for classes WITH (left) and BY (right) adding POS tags at different embedding sizes

68

4.4.1.2.3 Metrics for Error Correction with Threshold

Figure 85 Correction Metrics against a Threshold adding embedded POS tags at a vector of size 10

Figure 86 Correction Metrics against a Threshold adding embedded POS tags at a vector of size 15

Figure 87 Correction Metrics against a Threshold adding embedded POS tags at a vector of size 20

69

Figure 88 Correction Metrics against a Threshold adding embedded POS tags at a vector of size 25

4.4.1.2.4 Metrics for Correction and Detection Tasks

Embedding Tag Precision Recall F1 F05 Accuracy

Without tags 1.10% 37.8% 2.14% 1.37% 56.64%

10 1.11% 35.36% 2.17% 1.38% 59.90%

15 1.18% 37.19% 2.30% 1.47% 60.34%

20 1.15% 37.19% 2.23% 1.42% 59.00%

25 1.11% 35.36% 2.15% 1.38% 59.67%
Table 26 Error correction for all classes adding POS tags at different embedding sizes

Embedding Tag Precision Recall F1 F05 Accuracy

Without tags 2.4% 82.32% 4.66% 2.98% 57.53%

10 2.45% 77.44% 4.74% 3.03% 60.75%

15 2.43% 76.21% 4.72% 3.02% 61.13%

20 2.48% 80.49% 4.82% 3.08% 59.87%

25 2.43% 77.43% 4.71% 3.02% 60.52%
Table 27 Error detection for all classes adding POS tags at different embedding sizes

Embedding Tag Precision Recall F1 F05 Accuracy

Without tags 1.73% 45.25% 3.33% 2.14% 67.27%

10 1.84% 42.33% 3.52% 2.27% 71.13%

15 1.97% 44.52% 3.77% 2.43% 71.66%

20 1.86% 44.52% 3.57% 2.30% 70.08%

25 1.82% 42.33% 3.49% 2.25% 70.87%
Table 28 Error correction for 10 top classes adding POS tags at different embedding sizes

Embedding Tag Precision Recall F1 F05 Accuracy

Without Tags 3.34% 87.59% 6.44% 4.13% 68.15%

10 3.55% 81.75% 6.81% 4.39% 71.98%

15 3.55% 80.29% 6.79% 4.38% 72.43%

20 3.48% 83.21% 6.68% 4.30% 70.90%

25 3.52% 81.75% 6.74% 4.35% 71.71%
Table 29 Error correction for 10 top classes adding POS tags at different embedding sizes

70

4.4.2 Parse Features
To test the effectiveness of adding the parent index of the dependency tree to the input sequence

(keeping the lexical features), the index flag was set at True and the length of the embedding size was

set at values of 10, 15, 20 and 25 while keeping all other parameters at their default value.

4.4.2.1 Training Phase

Figure 89 Cross validation adding embedded parent index of dependency tree at a vector of size 10

Figure 90 Cross validation adding embedded parent index of dependency tree at a vector of size 15

71

Figure 91 Cross validation adding embedded parent index of dependency tree at a vector of size 20

Figure 92 Cross validation adding embedded parent index of dependency tree at a vector of size 25

72

4.4.2.2 Testing Phase

4.4.2.2.1 Precision-Recall Graphs

Figure 93 Precision vs. Recall for classes OF (upper left), IN (upper right), FOR (lower left) and TO (lower right) adding parent
index of dependency tree at different embedding sizes

Figure 94 Precision vs. Recall for classes AS (upper left), THAT (upper right), ON (lower left) and FROM (lower right) adding
parent index of dependency tree at different embedding sizes

Figure 95 Precision vs. Recall for classes WITH (left) and BY (right) adding parent index of dependency tree at different
embedding sizes

73

4.4.2.2.2 ROC Graphs

Figure 96 ROC for classes OF (upper left), IN (upper right), FOR (lower left) and TO (lower right) adding parent index of
dependency tree at different embedding sizes

Figure 97 ROC for classes AS (upper left), THAT (upper right), ON (lower left) and FROM (lower right) adding parent index of
dependency tree at different embedding sizes

Figure 98 ROC for classes WITH (left) and BY (right) adding parent index of dependency tree at different embedding sizes

74

4.4.2.2.3 Metrics for Error Correction against Threshold

Figure 99 Correction Metrics against a Threshold adding embedded parent index of dependency tree at a vector of size 10

Figure 100 Correction Metrics against a Threshold adding embedded parent index of dependency tree at a vector of size 15

Figure 101 Correction Metrics against a Threshold adding embedded parent index of dependency tree at a vector of size 20

75

Figure 102 Correction Metrics against a Threshold adding embedded parent index of dependency tree at a vector of size 25

4.4.2.2.4 Metrics for Error Correction and Detection Tasks

Embedding Index Precision Recall F1 F05 Accuracy

Without Index 1.10% 37.8% 2.14% 1.37% 56.64%

10 1.21% 39.63% 2.35% 1.50% 58.64%

15 1.04% 34.14% 2.02% 1.29% 58.45%

20 1.10% 36.58% 2.15% 1.37% 58.23%

25 0.96% 31.70% 1.88% 1.20% 58.37%
Table 30 Error correction for all classes adding parent index of dependency tree at different embedding sizes

Embedding Index Precision Recall F1 F05 Accuracy

Without Index 2.4% 82.32% 4.66% 2.98% 57.53%

10 2.34% 76.82% 4.55% 2.91% 59.38%

15 2.34% 76.82% 4.54% 2.90% 59.30%

20 2.34% 77.44% 4.55% 2.91% 59.04%

25 2.27% 74.39% 4.40% 2.81% 59.22%
Table 31 Error detection for all classes adding parent index of dependency tree at different embedding sizes

Embedding Index Precision Recall F1 F05 Accuracy

Without Index 1.73% 45.25% 3.33% 2.14% 67.27%

10 1.95% 47.44% 3.74% 2.41% 69.63%

15 1.67% 40.87% 3.22% 2.07% 69.41%

20 1.77% 43.79% 3.41% 2.20% 69.14%

25 1.55% 37.96% 2.98% 1.92% 69.32%
Table 32 Error correction for 10 top classes adding parent index of dependency tree at different embedding sizes

Embedding Index Precision Recall F1 F05 Accuracy

Without Index 3.34% 87.59% 6.44% 4.13% 68.15%

10 3.39% 82.48% 6.51% 4.20% 70.37%

15 3.26% 79.56% 6.27% 4.03% 70.24%

20 3.37% 83.21% 6.49% 4.18% 69.97%

25 3.17% 77.37% 6.09% 3.92% 70.15%
Table 33 Error detection for 10 top classes adding parent index of dependency tree at different embedding sizes

76

4.4.3 Limiting Minimum Number of Lexical Features
To test the effectiveness of setting a lower limit to the number of lexical features according to their

number of occurrences, the parameter lower limit was set at values of 1, 2, 4, 8 and 16 for each

experiment, while keeping all other parameters at their default value.

4.4.3.1 Training Phase

Figure 103 Cross validation limiting the minimum number of lexical occurrences at more than 1

Figure 104 Cross validation limiting the minimum number of lexical occurrences at more than 2

77

Figure 105 Cross validation limiting the minimum number of lexical occurrences at more than 4

Figure 106 Cross validation limiting the minimum number of lexical occurrences at more than 8

Figure 107 Cross validation limiting the minimum number of lexical occurrences at more than 16

78

4.4.3.2 Testing Phase

4.4.3.2.1 Precision-Recall Graphs

Figure 108 Precision vs. Recall for classes OF (upper left), IN (upper right), FOR (lower left) and TO (lower right) varying the
minimum number of lexical occurrences

Figure 109 Precision vs. Recall for classes AS (upper left), THAT (upper right), ON (lower left) and FROM (lower right) varying
the minimum number of lexical occurrences

Figure 110 Precision vs. Recall for classes WITH (left) and BY (right) varying the minimum number of lexical occurrences

79

4.4.3.2.2 ROC Graphs

Figure 111 ROC for classes OF (upper left), IN (upper right), FOR (lower left) and TO (lower right) varying the minimum
number of lexical occurrences

Figure 112 ROC for classes AS (upper left), THAT (upper right), ON (lower left) and FROM (lower right) varying the minimum
number of lexical occurrences

Figure 113 ROC for classes WITH (left) and BY (right) varying the minimum number of lexical occurrences

80

4.4.3.2.3 Metrics for Error Correction against a Threshold

Figure 114 Error Correction Metrics against a Threshold limiting the minimum number of lexical occurrences at more than 1

Figure 115 Error Correction Metrics against a Threshold limiting the minimum number of lexical occurrences at more than 2

Figure 116 Error Correction Metrics against a Threshold limiting the minimum number of lexical occurrences at more than 4

81

Figure 117 Error Correction Metrics against a Threshold limiting the minimum number of lexical occurrences at more than 8

Figure 118 Error Correction Metrics against a Threshold limiting the minimum number of lexical occurrences at more than
16

4.4.3.2.4 Metrics for Error Correction and Detection Tasks

Lower Limit Precision Recall F1 F05 Accuracy

0 1.10% 37.8% 2.14% 1.37% 56.64%

1 1.15% 39.63% 2.23% 1.43% 56.48%

2 1.16% 39.02% 2.26% 1.44% 57.61%

4 1.08% 37.80% 2.11% 1.35% 55.98%

8 1.11% 37.80% 2.16% 1.38% 57.00%

16 1.09% 37.19% 2.11% 1.35% 56.76%
Table 34 Error correction for all classes limiting the minimum number of lexical occurrences

Lower Limit Precision Recall F1 F05 Accuracy

0 2.4% 82.32% 4.66% 2.98% 57.53%

1 2.48% 85.36% 4.81% 3.07% 57.38%

2 2.43% 81.70% 4.73% 3.02% 58.46%

4 2.45% 85.36% 4.76% 3.04% 56.91%

8 2.44% 82.93% 4.74% 3.02% 57.90%

16 2.51% 85.97% 4.88% 3.11% 57.73%
Table 35 Error detection for all classes limiting the minimum number of lexical occurrences

82

Lower Limit Precision Recall F1 F05 Accuracy

0 1.73% 45.25% 3.33% 2.14% 67.27%

1 1.80% 47.44% 3.47% 2.23% 67.11%

2 1.84% 46.71% 3.55% 2.29% 68.43%

4 1.69% 45.25% 3.25% 2.09% 66.50%

8 1.75% 45.25% 3.37% 2.17% 67.71%

16 1.70% 44.52% 3.29% 2.11% 67.42%
Table 36 Error correction for 10 top classes limiting the minimum number of lexical occurrences

Lower Limit Precision Recall F1 F05 Accuracy

0 3.34% 87.59% 6.44% 4.13% 68.15%

1 3.27% 86.13% 6.30% 4.05% 67.92%

2 3.35% 84.67% 6.44% 4.15% 69.23%

4 3.24% 86.86% 6.24% 4.01% 67.37%

8 3.30% 85.40% 6.36% 4.09% 68.55%

16 3.41% 89.05% 6.58% 4.23% 68.36%
Table 37 Error correction for 10 top classes limiting the minimum number of lexical occurrences

4.4.4 Original Preposition
The use of the original preposition was tested by setting the original parameter at values of “include”

and “replace” for each experiment, while all other parameters kept their default values. The

experiment with the original parameter at a value of “exclude” was already tested in the hidden cells

section.

4.4.4.1 Training Phase

Figure 119 Cross validation including original preposition

83

Figure 120 Cross validation replacing original preposition

4.4.4.2 Testing Phase

4.4.4.2.1 Precision-Recall Graphs

Figure 121 Precision vs. Recall for classes OF (upper left), IN (upper right), FOR (lower left) and TO (lower right) varying the
original preposition

84

Figure 122 Precision vs. Recall for classes AS (upper left), THAT (upper right), ON (lower left) and FROM (lower right) varying
the original preposition

Figure 123 Precision vs. Recall for classes WITH (left) and BY (right) varying the original preposition

4.4.4.2.2 ROC Graphs

Figure 124 ROC for classes OF (upper left), IN (upper right), FOR (lower left) and TO (lower right) varying the original
preposition

85

Figure 125 ROC for classes AS (upper left), THAT (upper right), ON (lower left) and FROM (lower right) varying the original
preposition

Figure 126 ROC for classes WITH (left) and BY (right) varying the original preposition

4.4.4.2.3 Metrics for Error Correction against a Threshold

Figure 127 Correction Metrics against a Threshold including original preposition

86

Figure 128 Correction Metrics against a Threshold replacing original preposition

4.4.4.2.4 Metrics for Error Detection and Correction Tasks

Original Precision Recall F1 F05 Accuracy

Include 0.23% 3.05% 0.43% 0.28% 82.05%

Replace 1.37% 42.68% 2.67% 1.70% 60.89%

Exclude 1.10% 37.8% 2.14% 1.37% 56.64%
Table 38 Error correction for all classes varying the original preposition

Original Precision Recall F1 F05 Accuracy

Include 1.14% 15.24% 2.13% 1.40% 82.33%

Replace 2.53% 78.65% 4.92% 3.15% 61.62%

Exclude 2.4% 82.32% 4.66% 2.98% 57.53%
Table 39 Error detection for all classes varying the original preposition

Original Precision Recall F1 F05 Accuracy

Include 3.20% 3.65% 3.41% 3.28% 97.41%

Replace 2.30% 51.09% 4.40% 2.84% 72.33%

Exclude 1.73% 45.25% 3.33% 2.14% 67.27%
Table 40 Error correction for 10 top classes varying the original preposition

Original Precision Recall F1 F05 Accuracy

Include 12.82% 14.60% 13.65% 13.14% 97.68%

Replace 3.71% 82.48% 7.10% 4.59% 73.00%

Exclude 3.34% 87.59% 6.44% 4.13% 68.15%
Table 41 Error detection for 10 top classes varying the original preposition

4.5 Embedding

4.5.1 One-Hot vs. Embedding
The comparison between the one-hot input vector and the embedding vector was carried out by

setting the input type parameter at one-hot, while all other parameters kept their default values. The

embedding experiment was already carried out in the hidden cells section.

87

4.5.1.1 Training Phase

Figure 129 Cross validation using one-hot vectors as inputs

4.5.1.2 Testing Phase

4.5.1.2.1 Precision-Recall Graphs

Figure 130 Precision vs. Recall for classes OF (upper left), IN (upper right), FOR (lower left) and TO (lower right) for one-hot
vs. embedding input vectors

88

Figure 131 Precision vs. Recall for classes AS (upper left), THAT (upper right), ON (lower left) and FROM (lower right) for
one-hot vs. embedding input vectors

Figure 132 Precision vs. Recall for classes WITH (left) and BY (right) for one-hot vs. embedding input vectors

4.5.1.2.2 ROC Graphs

Figure 133 ROC for classes OF (upper left), IN (upper right), FOR (lower left) and TO (lower right) for one-hot vs. embedding
input vectors

89

Figure 134 ROC for classes AS (upper left), THAT (upper right), ON (lower left) and FROM (lower right) for one-hot vs.
embedding input vectors

Figure 135 ROC for classes WITH (left) and BY (right) for one-hot vs. embedding input vectors

4.5.1.2.3 Metrics for Error Correction against a Threshold

Figure 136 Correction Metrics against a Threshold using one-hot vectors as inputs

4.5.1.2.4 Metrics for Error Detection and Correction

Input Precision Recall F1 F05 Accuracy

One-Hot 1.08% 4.68% 2.11% 1.34% 50.34%

Embedding 1.10% 37.8% 2.14% 1.37% 56.64%
Table 42 Error correction for all classes for one-hot vs. embedding input vectors

90

Input Precision Recall F1 F05 Accuracy

One-Hot 2.21% 87.19% 4.31% 2.75% 51.18%

Embedding 2.4% 82.32% 4.66% 2.98% 57.53%
Table 43 Error detection for all classes for one-hot vs. embedding input vectors

Input Precision Recall F1 F05 Accuracy

One-Hot 1.58% 51.09% 3.07% 1.96% 59.80%

Embedding 1.73% 45.25% 3.33% 2.14% 67.27%
Table 44 Error correction for 10 top classes for one-hot vs. embedding input vectors

Input Precision Recall F1 F05 Accuracy

One-Hot 2.76% 89.05% 5.35% 3.42% 60.56%

Embedding 3.34% 87.59% 6.44% 4.13% 68.15%
Table 45 Error detection for 10 top classes for one-hot vs. embedding input vectors

4.5.2 Lexical Embedding Sizes
The size of the embedding input was varied at values of 50 and 200 per experiment, while all other

parameters kept their default values. The experiment for a lexical embedding size of 100 was already

carried out in the hidden cells section.

4.5.2.1 Training Phase

Figure 137 Cross validation for a lexical embedding size of 50

91

Figure 138 Cross validation for a lexical embedding size of 200

4.5.2.2 Testing Phase

4.5.2.2.1 Precision-Recall Graphs

Figure 139 Precision vs. Recall for classes OF (upper left), IN (upper right), FOR (lower left) and TO (lower right) varying the
lexical embedding size of the input feature

92

Figure 140 Precision vs. Recall for classes AS (upper left), THAT (upper right), ON (lower left) and FROM (lower right) varying
the lexical embedding size of the input feature

Figure 141 Precision vs. Recall for classes WITH (left) and BY (right) varying the lexical embedding size of the input feature

4.5.2.2.2 ROC Graphs

Figure 142 ROC for classes OF (upper left), IN (upper right), FOR (lower left) and TO (lower right) varying the lexical
embedding size of the input feature

93

Figure 143 ROC for classes AS (upper left), THAT (upper right), ON (lower left) and FROM (lower right) varying the lexical
embedding size of the input feature

Figure 144 for classes WITH (left) and BY (right) varying the lexical embedding size of the input feature

4.5.2.2.3 Metrics for Error Correction against a Threshold

Figure 145 Correction Metrics against a Threshold for a lexical embedding size of 50

94

Figure 146 Correction Metrics against a Threshold for a lexical embedding size of 200

4.5.2.2.4 Metrics for Error Detection and Correction Tasks

Lexical Embedding
Size

Precision Recall F1 F05 Accuracy

50 1.06% 37.80% 2.07% 1.32% 55.23%

100 1.10% 37.8% 2.14% 1.37% 56.64%

200 1.07% 36.58% 2.09% 1.33% 56.94%
Table 46 Error correction for all classes varying the lexical embedding size of the input feature

Lexical Embedding
Size

Precision Recall F1 F05 Accuracy

50 2.29% 81.09% 4.45% 2.84% 56.08%

100 2.4% 82.32% 4.66% 2.98% 57.53%

200 2.43% 82.93% 4.73% 3.02% 57.82%
Table 47 Error detection for all classes varying the lexical embedding size of the input feature

Lexical Embedding
Size

Precision Recall F1 F05 Accuracy

50 1.64% 45.25% 3.17% 2.04% 65.62%

100 1.73% 45.25% 3.33% 2.14% 67.27%

200 1.69% 43.79% 3.26% 2.09% 67.63%
Table 48 Error correction for 10 top classes varying the lexical embedding size of the input feature

Lexical Embedding
Size

Precision Recall F1 F05 Accuracy

50 3.00% 82.48% 5.79% 3.71% 66.39%

100 3.34% 87.59% 6.44% 4.13% 68.15%

200 3.35% 86.86% 6.46% 4.15% 68.53%
Table 49 Error detection for 10 top classes varying the lexical embedding size of the input feature

95

4.5.3 Window Embedding Size
The window size for training the embedding size was varied at values of 1, 3 and 4 for each experiment,

while all other parameters kept their default values. The embedding training for a window size of 2

was already carried out in the hidden cells section.

4.5.3.1 Training Phase

Figure 147 Cross validation embedding lexical features at a window size of 1

Figure 148 Cross validation embedding lexical features at a window size of 3

96

Figure 149 Cross validation embedding lexical features at a window size of 4

4.5.3.2 Testing Phase

4.5.3.2.1 Precision-Recall Graphs

Figure 150 Precision vs. Recall for classes OF (upper left), IN (upper right), FOR (lower left) and TO (lower right) by
embedding lexical features at different window sizes

97

Figure 151 Precision vs. Recall for classes AS (upper left), THAT (upper right), ON (lower left) and FROM (lower right) by
embedding lexical features at different window sizes

Figure 152 Precision vs. Recall for classes WITH (left) and BY (right) by embedding lexical features at different window sizes

4.5.3.2.2 ROC Graphs

Figure 153 ROC for classes OF (upper left), IN (upper right), FOR (lower left) and TO (lower right) by embedding lexical
features at different window sizes

98

Figure 154 ROC for classes AS (upper left), THAT (upper right), ON (lower left) and FROM (lower right) by embedding lexical
features at different window sizes

Figure 155 ROC for classes WITH (left) and BY (right) by embedding lexical features at different window sizes

4.5.3.2.3 Metrics for Error Correction against a Threshold

Figure 156 Correction Metrics against a Threshold embedding lexical features at a window size of 1

99

Figure 157 Correction Metrics against a Threshold embedding lexical features at a window size of 3

Figure 158 Correction Metrics against a Threshold embedding lexical features at a window size of 4

4.5.3.2.4 Metrics for Error Detection and Correction Tasks

Window Precision Recall F1 F05 Accuracy

1 1.15% 39.63% 2.24% 1.43% 56.51%

2 1.10% 37.8% 2.14% 1.37% 56.64%

3 1.08% 38.41% 2.10% 1.34% 55.09%

4 1.12% 40.24% 2.18% 1.39% 54.67%
Table 50 Error correction for all classes by embedding lexical features at different window sizes

Sequence Precision Recall F1 F05 Accuracy

1 2.35% 81.10% 4.58% 2.92% 57.33%

2 2.4% 82.32% 4.66% 2.98% 57.53%

3 2.33% 82.93% 5.54% 2.89% 55.96%

4 2.34% 84.14% 4.56% 2.91% 55.53%
Table 51 Error detection for all classes by embedding lexical features at different window sizes

Sequence Precision Recall F1 F05 Accuracy

1 1.80% 47.44% 3.47% 2.23% 67.13%

2 1.73% 45.25% 3.33% 2.14% 67.27%

100

3 1.66% 45.98% 3.21% 2.06% 65.44%

4 1.71% 48.17% 3.31% 2.12% 64.96%
Table 52 Error correction for 10 top classes by embedding lexical features at different window sizes

Sequence Precision Recall F1 F05 Accuracy

1 3.16% 83.21% 6.09% 3.91% 67.88%

2 3.34% 87.59% 6.44% 4.13% 68.15%

3 3.08% 85.40% 5.96% 3.82% 66.25%

4 3.01% 84.67% 5.82% 3.73% 65.72%
Table 53 Error detection for 10 top classes by embedding lexical features at different window sizes

4.6 Models

4.6.1 Simple vs. Bidirectional
The comparison between the two different LSTM models was carried out by switching the model type

to bidirectional, while all other parameters kept their default values. The simple model experiment

was already carried out in the hidden cells section.

4.6.1.1 Training Phase

Figure 159 Cross validation using a bidirectional LSTM model

101

4.6.1.2 Testing Phase

4.6.1.2.1 Precision-Recall Graphs

Figure 160 Precision vs. Recall for classes OF (upper left), IN (upper right), FOR (lower left) and TO (lower right) varying the
core LSTM model

Figure 161 Precision vs. Recall for classes AS (upper left), THAT (upper right), ON (lower left) and FROM (lower right) varying
the core LSTM model

Figure 162 Precision vs. Recall for classes WITH (left) and BY (right) varying the core LSTM model

102

4.6.1.2.2 ROC Graphs

Figure 163 ROC for classes OF (upper left), IN (upper right), FOR (lower left) and TO (lower right) varying the core LSTM
model

Figure 164 ROC for classes AS (upper left), THAT (upper right), ON (lower left) and FROM (lower right) varying the core LSTM
model

Figure 165 ROC for classes WITH (left) and BY (right) varying the core LSTM model

103

4.6.1.2.3 Metrics for Error Correction against a Threshold

Figure 166 Correction Metrics against a Threshold using a bidirectional LSTM model

4.6.1.2.4 Metrics for Error Detection and Correction Tasks

Model Precision Recall F1 F05 Accuracy

simple 1.10% 37.8% 2.14% 1.37% 56.64%

Bidirectional 1.11% 37.19% 2.15% 1.37% 57.50%
Table 54 Error correction for all classes varying the core LSTM model

Model Precision Recall F1 F05 Accuracy

Simple 2.4% 82.32% 4.66% 2.98% 57.53%

Bidirectional 2.38% 79.88% 4.62% 2.95% 58.35%
Table 55 Error detection for all classes varying the core LSTM model

Model Precision Recall F1 F05 Accuracy

Simple 1.73% 45.25% 3.33% 2.14% 67.27%

Bidirectional 1.76% 44.52% 3.38% 1.17% 68.31%
Table 56 Error correction for 10 top classes varying the core LSTM model

Model Precision Recall F1 F05 Accuracy

Simple 3.34% 87.59% 6.44% 4.13% 68.15%

Bidirectional 3.22% 81.75% 6.21% 3.99% 69.09%
Table 57 Error detection for 10 top classes varying the core LSTM model

4.6.2 Attention
The attention mechanism was tested by switching the attention parameter to True and setting the

maximum sequence length at 20, while all other parameters kept their default values. The experiment

without using the attention mechanism and with a maximum sequence length of 20 was already

carried out in the length of the input sequence section.

104

4.6.2.1 Training Phase

Figure 167 Cross validation using attention mechanism

4.6.2.2 Testing Phase

4.6.2.2.1 Precision-Recall Graphs

Figure 168 Precision vs. Recall for classes OF (upper left), IN (upper right), FOR (lower left) and TO (lower right) comparing
the use of attention mechanism

105

Figure 169 Precision vs. Recall for classes AS (upper left), THAT (upper right), ON (lower left) and FROM (lower right)
comparing the use of attention mechanism

Figure 170 Precision vs. Recall for classes WITH (left) and BY (right) comparing the use of attention mechanism

4.6.2.2.2 ROC Graphs

Figure 171 ROC for classes OF (upper left), IN (upper right), FOR (lower left) and TO (lower right) comparing the use of
attention mechanism

106

Figure 172 ROC for classes AS (upper left), THAT (upper right), ON (lower left) and FROM (lower right) comparing the use of
attention mechanism

Figure 173 ROC for classes WITH (left) and BY (right) comparing the use of attention mechanism

4.6.2.2.3 Metrics for Error Correction against a Threshold

Figure 174 Correction Metrics against a Threshold using attention mechanism

4.6.2.2.4 Metrics for Error Detection and Correction Tasks

Attention Precision Recall F1 F05 Accuracy

True 0.79% 30.49% 1.55% 0.99% 51.41%

False 0.70% 28.05% 1.37% 0.87% 49.24%
Table 58 Error correction for all classes comparing the use of attention mechanism

107

Spelling Precision Recall F1 F05 Accuracy

True 1.99% 76.22% 3.87% 2.47% 52.28%

False 1.94% 79.27% 3.86% 2.46% 50.20%
Table 59 Error detection for all classes comparing the use of attention mechanism

Spelling Precision Recall F1 F05 Accuracy

True 1.17% 36.49% 2.28% 1.46% 61.07%

False 1.02% 33.58% 1.97% 1.26% 58.48%
Table 60 Error correction for 10 top classes comparing the use of attention mechanism

Spelling Precision Recall F1 F05 Accuracy

True 2.47% 76.64% 4.79% 3.07% 61.88%

False 2.45% 81.02% 4.76% 3.04% 59.42%
Table 61 Error detection for 10 top classes comparing the use of attention mechanism

4.6.3 Dropout
Regularization through dropout was tested by switching the dropout parameter to True while varying

the value of the keep probability parameter at values of 0.5, 0.6, 0.7, 0.8, 0.9 and 1.0 for each

experiment. The number of hidden layers was also set at 1600 and the number of layers at 8, while all

other parameters kept their default values.

4.6.3.1 Training Phase

Figure 175 Cross validation keeping weights with a probability of 0.5

108

Figure 176 Cross validation keeping weights with a probability of 0.6

Figure 177 Cross validation keeping weights with a probability of 0.7

Figure 178 Cross validation keeping weights with a probability of 0.8

109

Figure 179 Cross validation keeping weights with a probability of 0.9

Figure 180 Cross validation keeping weights with a probability of 1.0

110

4.6.3.1.1 Precision-Recall Graphs

Figure 181 Precision vs. Recall for classes OF (upper left), IN (upper right), FOR (lower left) and TO (lower right) varying the
probability of keeping weights through dropout

Figure 182 Precision vs. Recall for classes AS (upper left), THAT (upper right), ON (lower left) and FROM (lower right) varying
the probability of keeping weights through dropout

Figure 183 Precision vs. Recall for classes WITH (left) and BY (right) varying the probability of keeping weights through
dropout

111

4.6.3.1.2 ROC Graphs

Figure 184 ROC for classes OF (upper left), IN (upper right), FOR (lower left) and TO (lower right) varying the probability of
keeping weights through dropout

Figure 185 ROC for classes AS (upper left), THAT (upper right), ON (lower left) and FROM (lower right) varying the
probability of keeping weights through dropout

Figure 186 ROC for classes WITH (left) and BY (right) varying the probability of keeping weights through dropout

112

4.6.3.1.3 Metrics for Error Correction against a Threshold

Figure 187 Correction Metrics against a Threshold keeping weights with a probability of 0.5

Figure 188 Correction Metrics against a Threshold keeping weights with a probability of 0.6

Figure 189 Correction Metrics against a Threshold keeping weights with a probability of 0.7

113

Figure 190 Correction Metrics against a Threshold keeping weights with a probability of 0.8

Figure 191 Correction Metrics against a Threshold keeping weights with a probability of 0.9

Figure 192 Correction Metrics against a Threshold keeping weights with a probability of 1.0

4.6.3.1.4 Metrics for Error Detection and Correction Tasks

Keep
Probabilities

Precision Recall F1 F05 Accuracy

0.5 1.19% 39.63% 2.32% 1.48% 58.14%

0.6 1.12% 38.41% 2.17% 1.39% 56.59%

0.7 1.16% 39.02% 2.25% 1.44% 57.47%

0.8 1.22% 40.85% 2.38% 1.52% 57.90%

114

0.9 1.11% 36.58% 2.15% 1.38% 58.28%

1.0 1.11% 38.41% 2.16% 1.38% 56.38%
Table 62 Error correction for all classes varying the probability of keeping weights through dropout

Keep
Probabilities

Precision Recall F1 F05 Accuracy

0.5 2.44% 81.10% 4.75% 3.04% 58.98%

0.6 2.38% 81.70% 4.62% 2.95% 57.44%

0.7 2.26% 76.22% 4.40% 2.81% 58.20%

0.8 2.34% 78.04% 4.54% 2.90% 58.64%

0.9 2.36% 78.05% 4.60% 2.94% 59.11%

1.0 2.30% 79.26% 4.46% 2.85% 57.19%
Table 63 Error detection for all classes varying the probability of keeping weights through dropout

Keep
Probabilities

Precision Recall F1 F05 Accuracy

0.5 1.91% 47.44% 3.68% 2.27% 69.07%

0.6 1.75% 45.98% 3.38% 2.17% 67.22%

0.7 1.84% 46.71% 3.53% 2.27% 68.24%

0.8 1.95% 48.90% 3.76% 2.41% 68.77%

0.9 1.78% 43.79% 3.42% 2.20% 69.24%

1.0 1.74% 45.98% 3.35% 2.15% 66.97%
Table 64 Error correction for 10 top classes varying the probability of keeping weights through dropout

Keep
Probabilities

Precision Recall F1 F05 Accuracy

0.5 3.38% 83.94% 6.51% 4.19% 65.84%

0.6 3.20% 83.94% 6.16% 3.96% 68.02%

0.7 3.21% 81.75% 6.18% 3.98% 68.98%

0.8 3.29% 82.48% 6.33% 4.08% 69.48%

0.9 3.27% 80.29% 6.28% 4.04% 70.01%

1.0 3.12% 82.48% 6.01% 3.86% 67.73%
Table 65 Error detection for 10 top classes varying the probability of keeping weights through dropout

4.6.4 Classes
The number of classes was tested by varying the parameter controlling the number of classes at values

of 5, 15 and 20 per experiment, while keeping all other parameters at their default value. The

experiment with a number of classes of 10 was already tested in the number of hidden cells section.

115

4.6.4.1 Training Phase

Figure 193 Cross validation aiming at 5 prepositional classes

Figure 194 Cross validation aiming at 15 prepositional classes

Figure 195 Cross validation aiming at 20 prepositional classes

116

Figure 196 Cross validation aiming at 25 prepositional classes

Figure 197 Cross validation aiming at 30 prepositional classes

117

4.6.4.2 Testing Phase

4.6.4.2.1 Precision-Recall Graphs

Figure 198 Precision vs. Recall for classes OF (upper left), IN (upper right), FOR (lower left) and TO (lower right) varying the
number of prepositional classes

Figure 199 Precision vs. Recall for classes AS (upper left), THAT (upper right), ON (lower left) and FROM (lower right) varying
the number of prepositional classes

118

Figure 200 Precision vs. Recall for classes WITH (upper left) and BY (upper right), AT (lower left) and IF (lower right) varying
the number of prepositional classes

Figure 201 Precision vs. Recall for classes THAN (upper left) and INTO (upper right), ABOUT (lower left) and BECAUSE (lower
right) varying the number of prepositional classes

119

Figure 202 Precision vs. Recall for classes LIKE (upper left), SINCE (upper right), AFTER (lower left) and THROUGH (lower
right) varying the number of prepositional classes

Figure 203 Precision vs. Recall for classes OVER (upper left), DURING (upper right), WITHOUT (lower left) and ALTHOUGH
(lower right) varying the number of prepositional classes

120

Figure 204 Precision vs. Recall for classes WHILE (upper left), WHETHER (upper right), BEFORE (lower left) and BESIDES
(lower right) varying the number of prepositional classes

Figure 205 Precision vs. Recall for classes UNDER (upper left) and BETWEEN (upper right) varying the number of
prepositional classes

4.6.4.2.2 ROC Graphs

Figure 206 ROC for classes OF (upper left), IN (upper right), FOR (lower left) and TO (lower right) varying the number of
prepositional classes

121

Figure 207 ROC for classes AS (upper left), THAT (upper right), ON (lower left) and FROM (lower right) varying the number of
prepositional classes

Figure 208 for classes WITH (upper left), BY (upper right), AT (lower left) and IF (lower right) varying the number of
prepositional classes

122

Figure 209 ROC for classes THAN (upper left), INTO (upper right), ABOUT (lower left) and BECAUSE (lower right) varying the
number of prepositional classes

Figure 210 ROC for classes LIKE (upper left), SINCE (upper right), AFTER (lower left) and THROUGH (lower right) varying the
number of prepositional classes

123

Figure 211 ROC for classes OVER (upper left), DURING (upper right), WITHOUT (lower left) and ALTHOUGH (lower right)
varying the number of prepositional classes

Figure 212 ROC for classes WHILE (upper left), WHETHER (upper right), BEFORE (lower left) and BESIDES (lower right)
varying the number of prepositional classes

Figure 213 ROC for classes UNDER (left) and BETWEEN (right) varying the number of prepositional classes

124

4.6.4.2.3 Metric for Error Correction against a Threshold

Figure 214 Correction Metrics against a Threshold aiming at 5 prepositional classes

Figure 215 Correction Metrics against a Threshold aiming at 15 prepositional classes

Figure 216 Correction Metrics against a Threshold aiming at 20 prepositional classes

125

Figure 217 Correction Metrics against a Threshold aiming at 25 prepositional classes

Figure 218 Correction Metrics against a Threshold aiming at 30 prepositional classes

4.6.4.2.4 Metrics for Error Detection and Correction Tasks

Classes Precision Recall F1 F05 Accuracy

5 0.68% 29.26% 1.33% 0.85% 45.58%

10 1.10% 37.8% 2.14% 1.37% 56.64%

15 1.07% 34.76% 2.07% 1.32% 58.75%

20 1.16% 37.80% 2.25% 1.44% 58.79%

25 1.07% 34.76% 2.08% 1.33% 58.90%

30 1.03% 33.54% 2.01% 1.28% 58.90%
Table 66 Error correction for all classes varying the number of prepositional classes

Classes Precision Recall F1 F05 Accuracy

5 1.69% 72.56% 3.30% 2.10% 46.37%

10 2.4% 82.32% 4.66% 2.98% 57.53%

15 2.27% 73.78% 4.40% 2.81% 59.54%

20 2.45% 79.88% 4.75% 3.04% 59.64%

25 2.42% 78.66% 4.70% 3.01% 59.78%

30 2.48% 80.49% 4.81% 3.08% 59.84%
Table 67 Error detection for all classes varying the number of prepositional classes

126

Classes Precision Recall F1 F05 Accuracy

5 2.50% 47.52% 4.76% 3.09% 75.62%

10 1.73% 45.25% 3.33% 2.14% 67.27%

15 1.42% 37.01% 2.74% 1.76% 65.49%

20 1.41% 40.00% 2.73% 1.75% 63.46%

25 1.21% 36.07% 2.35% 1.50% 61.87%

30 1.12% 34.81% 2.17% 1.39% 60.85%
Table 68 Error correction for only the target classes varying the number of prepositional classes

Classes Precision Recall F1 F05 Accuracy

5 4.33% 82.18% 8.23% 5.35% 76.40%

10 3.34% 87.59% 6.44% 4.13% 68.15%

15 2.80% 72.72% 5.39% 3.46% 66.27%

20 2.85% 80.64% 5.50% 3.53% 64.32%

25 2.61% 77.84% 5.06% 3.24% 62.74%

30 2.56% 79.75% 4.98% 3.19% 61.76%
Table 69 Error detection for only the target classes varying the number of prepositional classes

4.7 Pre-processing

4.7.1 Spelling

4.7.1.1 Training Phase

Figure 219 Cross validation correcting spelling

127

4.7.1.2 Testing Phase

4.7.1.2.1 Precision-Recall Graphs

Figure 220 Precision vs. Recall for classes OF (upper left), IN (upper right), FOR (lower left) and TO (lower right) comparing
spelling correction

Figure 221 Precision vs. Recall for classes AS (upper left), THAT (upper right), ON (lower left) and FROM (lower right)
comparing spelling correction

Figure 222 Precision vs. Recall for classes WITH (left) and BY (right) comparing spelling correction

128

4.7.1.2.2 ROC Graphs

Figure 223 ROC for classes OF (upper left), IN (upper right), FOR (lower left) and TO (lower right) comparing spelling
correction

Figure 224 ROC for classes AS (upper left), THAT (upper right), ON (lower left) and FROM (lower right) comparing spelling
correction

Figure 225 ROC for classes WITH (left) and BY (right) comparing spelling correction

129

4.7.1.2.3 Metrics for Error Correction against a Threshold

Figure 226 Correction Metrics against a Threshold correcting spelling

4.7.1.2.4 Metrics for Error Detection and Correction Tasks

Spelling Precision Recall F1 F05 Accuracy

True 1.19% 40.85% 2.32% 1.48% 56.83%

False 1.10% 37.8% 2.14% 1.37% 56.64%
Table 70 Error correction for all classes comparing spelling correction

Spelling Precision Recall F1 F05 Accuracy

True 2.39% 81.70% 4.64% 2.96% 57.64%

False 2.4% 82.32% 4.66% 2.98% 57.53%
Table 71 Error detection for all classes comparing spelling correction

Spelling Precision Recall F1 F05 Accuracy

True 1.88% 48.90% 3.61% 2.32% 67.50%

False 1.73% 45.25% 3.33% 2.14% 67.27%
Table 72 Error correction for 10 top classes comparing spelling correction

Spelling Precision Recall F1 F05 Accuracy

True 3.25% 84.67% 6.26% 4.02% 68.26%

False 3.34% 87.59% 6.44% 4.13% 68.15%
Table 73 Error detection for 10 top classes comparing spelling correction

4.8 Optimum Algorithm and Final Algorithm
The optimum algorithm uses the optimum values achieved through all other experiments and which

are summarized in table 75. The final algorithm is the optimum algorithm using tuned thresholds.

Parameter Default

Hidden Cells 1600

Number of layers 2

Model simple

Input Type embedding

Word Embedding Size 100

Embedding Window 1

Number of Classes 20

Spelling True

130

POS Tags True

Tags Embedding Size 15

Index of Parent in Dependency Tree True

Index Embedding Size 10

Lower Limit for Vocabulary 2

Oversampling False

Oversampling Position 0

Undersampling False

Undersampling Position 0

Length of Sequence Input (at each side) 5

Original Preposition replace

Dropout False

Attention True
Table 74 Optimum parameters of the algorithm

4.8.1 Training Phase

Figure 227 Cross validation using optimum parameters

131

4.8.2 Testing Phase

4.8.2.1 Precision-Recall Graphs

Figure 228 Precision vs. Recall for classes OF (upper left), IN (upper right), FOR (lower left) and TO (lower right) optimum vs.
standard

Figure 229 Precision vs. Recall for classes AS (upper left), THAT (upper right), ON (lower left) and FROM (lower right)
optimum vs. standard

132

Figure 230 Precision vs. Recall for classes WITH (upper left), BY (upper right), AT (lower left) and IF (lower right) optimum vs.
standard

Figure 231 Precision vs. Recall for classes THAN (upper left), INTO (upper right), ABOUT (lower left) and BECAUSE (lower
right) optimum vs. standard

133

Figure 232 Precision vs. Recall for classes LIKE (upper left), SINCE (upper right), AFTER (lower left) and THROUGH (lower
right) optimum vs. standard

4.8.2.2 ROC Graphs

Figure 233 ROC for classes OF (upper left), IN (upper right), FOR (lower left) and TO (lower right) optimum vs. standard

134

Figure 234 ROC for classes AS (upper left), THAT (upper right), ON (lower left) and FROM (lower right) optimum vs. standard

Figure 235 ROC for classes WITH (upper left), BY (upper right), AT (lower left) and IF (lower right) optimum vs. standard

135

Figure 236 ROC for classes THAN (upper left), INTO (upper right), ABOUT (lower left) and BECAUSE (lower right) optimum vs.
standard

Figure 237 ROC for classes LIKE (upper left), SINCE (upper right), AFTER (lower left) and THROUGH (lower right) optimum vs.
standard

136

4.8.2.3 Metrics for Error Correction against a Threshold

Figure 238 Correction Metrics against a Threshold using optimum parameters

4.8.2.4 Metrics for Error Detection and Correction Tasks

Once the optimum algorithm predicts a preposition, the final algorithm applies a tuned threshold per

class (which was deduced from all previous experiments). For the classes “of”, “that”, “on”, “from”

and “than”, which are the ones that the algorithm best recognizes, the threshold is 80%; for classes

“in”, “for”, “to”, “as”, “with”, “by” and “because”, which are somehow separated, the threshold is

90%; and for all other classes, which are not well recognized, the threshold is 100.0% (the final

algorithm does not rely on these prepositions).

Algorithm Precision Recall F1 F05 Accuracy

Optimum 1.45% 43.29% 2.81% 1.80% 62.41%

Standard 1.16% 37.80% 2.25% 1.44% 58.79%

Final Algorithm 4.40% 10.36% 6.18% 4.97% 96.03%
Table 75 Error correction for all classes optimum vs. standard vs. final algorithm

Algorithm Precision Recall F1 F05 Accuracy

Optimum 2.66% 79.26% 5.15% 3.30% 63.15%

Standard 2.45% 79.88% 4.75% 3.04% 59.64%

Final Algorithm 5.44% 12.80% 7.63% 6.15% 96.09%
Table 76 Error detection for all classes optimum vs. standard vs. final algorithm

Algorithm Precision Recall F1 F05 Accuracy

Optimum 1.80% 45.80% 3.45% 2.23% 67.38%

Standard 1.41% 40.00% 2.73% 1.75% 63.46%

Final Algorithm 5.12% 10.97% 6.98% 5.73% 96.24%
Table 77 Error correction for top 20 classes optimum vs. standard vs. final algorithm

Algorithm Precision Recall F1 F05 Accuracy

Optimum 3.12% 79.35% 6.02% 3.87% 68.10%

Standard 2.85% 80.64% 5.50% 3.53% 64.32%

Final Algorithm 6.32% 13.55% 8.62% 7.08% 96.30%
Table 78 Error correction for 20 top classes optimum vs. standard vs. final algorithm

137

4.8.2.5 Comparison of the Final Algorithm against Teams of the Shared Task CoNLL 2013

Team Precision Recall F1 External Resources

NARA 29.10 12.54 17.53 Lang-8

STEL 25.66 9.32 13.68 Wikipedia, WordNet

NTHU 12.01 12.86 12.42 Google Web-1T

UIUC 26.53 4.18 7.22 Google Web-1T, Gigaword

TILB 5.07 10.61 6.86 Google Web-1T, Gigaword

CAMB 40.74 3.54 6.51 Cambridge Learner Corpus

Final Algorithm* 11.29 (11.29) 4.30 (10.85) 6.24 (11.07) None

HIT 28.12 2.89 5.25 WordNet, Longman
dictionary

UMC 35.29 1.93 3.66 News corpus, JMySpell
dictionary, Google Web-1T,
Penn Treebank

TOR 5.38 2.25 3.17 Wikipedia

SJT1 12.50 1.29 2.33 Europarl

STAN 20.00 0.32 0.63 English Resource Grammar

KOR 4.76 0.32 0.60 None

UAB 0.00 0.00 0.00 Top 250 uncountable nouns,
FreeLing morphological
dictionary

SJT2 0.00 0.00 0.00 -
Table 79 Final algorithm compared to shared task CoNLL 2013. *the final algorithm only deals with prepositional wrong

choice errors, whose isolated value is shown between parentheses

138

5 Analysis
From the results, three patterns can be highlighted: first, the low number of errors affects the

precision metric significantly, reducing significantly its value; second, the relatively large number of

true negatives increases the accuracy as the threshold increases, which is quite natural if one takes

into account the low rate of prepositional errors in the corpus, i.e. if the algorithm flags all original

prepositions as correctly used, the accuracy would achieve a value of 98.99% while the metrics for the

error correction task would be zero. Finally, as the threshold of decision increases, the metrics for the

task of prepositional error detection and correction improves on performances (metrics for error

detection and correction against a threshold). In the next section, the analysis of each experiment is

described in more detail.

5.1 Size of the Neural Network
For the number of hidden cells, the training graphs (figures 5 - 10) shows that as the number of hidden

cells increases the training process requires fewer epochs to train the algorithm, but at the same time

the loss rate becomes less stable and the training dataset starts to overfit more quickly. Moreover,

while the number of hidden cells increases the loss function tends to decrease slightly, meaning that

a bigger number of hidden cells can improve the performance of the algorithm in a moderate way.

This is somewhat confirmed by the values of the metrics for the error detection and correction

presented in tables 6, 7, 8 and 9 where all metrics increase slightly while the number of cells increases

with some drops at values of hidden cells of 200 and 800. Therefore, the evidence suggests that the

algorithm performs the best for the task of prepositional error detection and correction when using

1600 hidden cells, which makes sense as a larger number of hidden cells can keep the recurrent neural

network more informed in order to make predictions.

Moreover, analysing the Precision-Recall graphs as well as the ROC graphs (figures 11 - 16), one can

see that for the classes ‘of’ and ‘that’, the algorithm performs well for all values, in which a high recall

can be obtained without losing much precision. For the class “of”, this can be expected as this class

contains the larger number of examples so that the algorithm can learn to distinguish this class better

than all others. However, the class “that” is distinguished in a more precise way than the classes “in”,

“for”, and “to”, which present a larger number of instances in the corpus, indicating that some

prepositions (or conjunctions and adverbs) can be more easily identified by the algorithm given some

lexical features than other classes. The difficulty of mastering some types of prepositions applies as

well for English learners as it is somewhat confirmed by the difference in the rate of errors per class

given in table 4, in which the error rate for classes such as “for” and “to” is much larger than the error

rate for classes such as “that” and “from”. The prepositions “from”, “as” and “to” are separated

reasonably, while for the prepositions “by” and “with”, the precision decreases rapidly as the recall

increases, meaning that on the one hand, the confidence of the algorithm to predict these classes

should be set at a high value and, on the other hand, the number of errors for these classes is more

difficult to identify. The classes “on”, “in” and “for” are slightly separated, meaning that the threshold

for these classes should be high. Finally, the capacity of the algorithm to separate all target classes is

similar for all the different numbers of cells.

On the other hand, the increment in the number of layers does not show any improvement on the

performance of the algorithm. Contrarily, the metrics for the task of detecting and correcting errors

(tables 10, 11, 12 and 13) show a decrement on performance as the number of layers increases, with

a rise for a number of layers of 2. This behaviour can be noticed as well on the experiments related to

dropout in which the deepest neural networks tested in this study did not perform better than any

other model. Moreover, the training graphs (figures 23 - 25) show that the loss function does not fall

139

using a larger number of layers but the algorithm needs more epochs to be trained. Furthermore,

precision-recall graphs and ROC graphs (figures 26 - 31) do not show a different behaviour than that

already seen for the hidden cells experiments, showing that no particular class is affected by the rise

in the size of the neural network, but that the separation may rather respond to the size of the training

data or another hidden parameter not detected yet. The poor results using deep neural networks for

correcting prepositional errors goes against the results of deep recurrent networks in other areas

(Graves, Mohamed & Hinton 2013; Hermans & Schrauwen 2013), but at the same time proves that

the use of deep recurrent networks needs further investigation to bring about the full benefits of its

use. Finally, for the scope of this study, the final neural network was built using two layers, which

rendered the best results.

5.2 Data
Unlike the result obtained in the experiments to define the size of the neural network, the experiments

to compensate for the imbalanced nature of the training data using oversampling produced conclusive

results. On the one hand, figures 35, 36, 37 and 38 show that the classifier loses performance as the

training data is undersampled further. It is also confirmed by the metrics given in tables 14, 15, 16 and

17 in which the performance of the algorithm falls while the number of examples is truncated. As

expected, the classes that are more deeply affected are the ones with the larger number of examples.

For instance, in figures 39 and 42, the classes “of”, “in”, “for” and “to” start to be less identifiable as

the parameter “—under_pos” increases, i.e. as the number of examples is reduced for these classes.

Moreover, oversampling also has a negative effect on classes with smaller numbers of examples but

in a less severe manner. This could be caused by the fact that if the classifier cannot properly

distinguish some classes (e.g. top classes), then it also becomes harder to distinguish classes with

fewer occurrences.

On the other hand, although the experiments on oversampling were less conclusive, one could say

that oversampling is not a good way to compensate for the imbalanced number of occurrences for

each class. Either the behaviour of the algorithm to separate the classes did not show any difference

or improvement on the classes with fewer occurrences (figures 54, 55, 57 and 58), but, on the

contrary, when compared against the algorithm trained without using oversampling (tables 18, 19, 20

and 21), the algorithms trained on oversampled examples perform worse. Therefore, neither

undersampling nor oversampling are appropriate methods to compensate for the imbalanced number

of examples in a corpus when training an algorithm to detect and correct prepositional errors, but

rather the usage of the data as it is (imbalanced) is a more effective method.

5.3 Examples
The LSTM architecture was designed to solve the long dependency problem, but the experiments

performed in this study varying the maximum length of each example showed that a larger length of

the input sequence causes the algorithm to perform worse. This tendency is easily identifiable in the

training graphs (figure 63, 64, 65 and 66), in which the minimum values reached by the loss function

during optimization grow, instead of decreasing, for a larger value of the parameter controlling the

length of the input sequence. Moreover, the metrics for the task of error detection and correction

(tables 22, 23, 24 and 25) show a clear drop in performance as the maximum length of the input

sequence grows. One of the explanations for this behaviour could be that most of the prepositions

used by English learners as a second language are more dependent on an immediate context than on

a distant one, which in turn could be explained by the avoidance behaviour of learners. As a

consequence, the long sequences not only do not contribute to improving the detection and

correction of prepositional errors but start to lose information at some point while processing large

sequences.

140

The classes that seem to be more affected by this parameter are “of” and “that” (figures 67 and 68),

meaning that they depend more in particular on short dependencies than the other classes, and if one

takes into account that “of” is the class with the larger number of occurrences in the corpus, a fall in

performance of the algorithm is expected for large sequences. All other classes keep a similar

behaviour for the different values of the sequence length. Thus, the ideal value for the length

parameter for the task of detection and correcting prepositional errors is 5.

5.4 Features
Adding features other than lexical ones improve the performance of the algorithm to some extent. On

the POS tags side, the use of concatenating an embedding tag vector to the embedding word vector

produce better result for the task of detecting and correcting errors (tables 26 - 29) than using only

lexical features. However, the performance using POS tags varied depending on the size of the

embedding vector, and according to tables 26, 27, 28 and 29, an embedding size of 15 renders the

best results for the task at hand – although neither the training graphs (figures 75 - 78) nor the ROC

graphs (figures 82 – 84) elucidate any clear difference in the size of the embedding vector. Only the

precision-recall graph for the class “on” (figure 80) seems to illustrate a loss in performance for an

embedding size of 20, which could mean that large embedding vectors increase the sparsity of the

instances of the feature, making them to lose representational power. Furthermore, the use of a

threshold to improve the confidence of the algorithm (figures 85 - 88) is a reliable mechanism as it

reduces the number of false positives, and a threshold of 95% renders the best results (as has been

the case for all experiments so far).

Similarly, the introduction of the index of the parent in the dependency tree showed an improvement

over the use of only lexical features. It is illustrated in tables 30, 31, 32 and 33 in which the metrics

used in this study show better results for all experiments using the index than the one that did not

include this feature. Figures 99 to 102 confirm that the use of a threshold increases the performance

of the algorithm, while figures 93 – 98 do not show a different behaviour for the top ten classes other

than those seen so far from other experiments. Finally, the optimum size of the embedding vector

cannot be identified on the training figures (89 - 92), however, because the metrics reached larger

values using small embedding vectors, the final algorithm used an embedding size of 10 is used.

On the other hand, limiting the number of lexical features to the ones occurring more than a given

limit in the corpus proved to be a positive limitation to some extent. That is to say, if the number of

lexical tokens, occurring say once, are replaced by a generic tag, then the algorithm gained a more

powerful representation, which makes sense because sparse features would not provide enough clues

whereby the algorithm could learn to distinguish the different classes. However, at the same time, the

metrics (tables 34 - 37) show that if the limit starts to be large then the algorithm starts to lose

performance because a large number of occurrences would be replaced by a generic tag causing the

algorithm to underfit the examples. The use of a threshold proved once again to be an effective way

to improve the performance of the algorithm (figures 111 - 115). Finally, although the training figures

(103 - 107) do not show a particular difference on varying the lower limit, figures 108 and 109 show

that classes such as “in”, “for”, “to” and “from” are better separated for a lower limit of 2, which is

confirmed in the metrics for error detection and correction. Therefore, the lower limit chosen in this

study is 2.

Moreover, the usage of the original preposition illustrates the most interesting contrasts among the

experiments. On the one hand, the introduction of the original preposition produced, during training

(figure 119), the lowest value for the loss function during optimization, with the highest accuracy,

namely 98% and 99% for validation and training respectively, and the best separating for all classes

141

(figures 121 - 126). However, it produced the worst metrics for the task at hand (although it produced

great results for the task of detection when dealing only with the classes that the algorithm targets),

and the use of a threshold reduces the algorithm’s effectiveness to detect and correct prepositional

errors. The high accuracy is caused by the low rate of prepositional errors, i.e. the algorithm learns to

identify that for most cases, the use of the original preposition can determine the target class, which

is not the case if the goal is to detect prepositional errors as is reflected in the metric tables. Overall,

one could say that introducing the original preposition has great potential by combining this with other

methods such as populating the corpus with errors depending on statistics and learners’ tendencies,

but it is outside the scope of this project. On the other hand, replacing the original preposition by a

generic tag produced better metrics for the task than the inclusion and exclusion methods (tables 38

- 41), and therefore it was the method used in the final algorithm.

5.5 Embedding
The use of an embedding layer produces better results than introducing the input sequence as a one-

hot vector. It is illustrated by figures 130 – 135 in which all classes, with the exceptions being “from”

and “to”, were better separated when using an embedding input. The training phase (figure 129)

shows that the algorithm did not learn to distinguish classes as well as the one using an embedding

layer, and additionally it presents a quicker overfitting. Additionally, using the Google ML Engine to

train the algorithm, it took about 8 hours when using a one-hot vector, while it takes about 2 hours to

train the algorithm using an embedding input (this includes the time taken to create the embedding

table). Therefore, the final algorithm uses an embedding layer.

The size of embedding vector for lexical features seems not to have a great impact on the task at hand

according to figures 137 and 138, however the metrics in tables 46 – 49 show that for a vector size of

100, the algorithm performs the best. This can be validated looking at figures 140 and 141 in which

classes such as “by”, “with” and “that” are not well separated when using an embedding size of 50,

but in which the algorithm, when using an embedding size of 200, performs worse than an algorithm

using an embedding size of 100 for classes such as “in” and “for”, which are some of the most popular

prepositions and which can potentially contain more errors. Moreover, figures 145 and 146 confirm

the positive use of a threshold. Thus, the final algorithm uses an embedding size for lexical features of

100.

Moreover, although the skip-gram model for embedding layers suggests that taking a larger window

can provide a more powerful representational vector, the results achieved varying this parameter for

the task of error detection and correction show that a smaller window can produce better results than

using a larger one (tables 50 - 53). Figures 150 and 151 suggest to some extent that classes such as

“to”, “of” and “by” are separated in a better way when the window size is 1. Again, this behaviour can

be explained by avoidance behaviour showing that for learner data, shorter contexts are more

relevant than larger ones, and therefore the final algorithm uses a window size of 1.

5.6 Model
In theory, a bidirectional model is a more powerful representational algorithm than a simple model

because the bidirectional model retains a state of two neural networks, one managing a forward

sequence and a second one managing a backward sequence. That is to say, in the worst scenario, it

should perform as well as a single RNN. However, the results achieved in this study suggest that there

is no gain for the task of correcting prepositional errors using a bidirectional model instead of a single

RNN (tables 54 - 57). It is also confirmed by analysing the precision-recall graphs as well as the ROC

graphs (figures 160 - 165), in which for some classes (“for” and “on”) the single model performs better

than the bidirectional one, while for other classes (“as”, “with”, “that” and “from”), it works the other

142

way around. Therefore, because there is no clear advantage in using either a simple model or a

bidirectional model, the final algorithm uses a simple model.

One of the components that could be relevant for keeping an informed state of the neural network

when dealing with long dependencies was the attention mechanism, but this study has shown that

long sequences are not the best alternative when dealing with learner writings. This is illustrated in

tables 59 – 62 in which the size of the input sequence was large and the metrics achieved were low in

comparison with shorter input lengths. Nonetheless, the metrics show that the algorithm can gain on

performance using the attention mechanism, which is illustrated by figures 168 – 173 in which classes

such as “of”, “in”, “on“, “with” and “that” are separated in a better way by making use of the attention

mechanism. Figure 174 shows that the performance of the attention algorithm is improved by

applying a threshold to the decision. Therefore, although the use of the attention mechanism is not

relevant for short sequences, the small improvement that it produces was used in the final algorithm.

The algorithms to test the effectiveness of a dropout mechanism were deep recurrent neural

networks, i.e. RNN with a relatively large number of layers, namely 8. However, as was seen in the

number of layers section, deep neural networks are not a good model for detecting and correcting

prepositional errors, with an optimum number of layers of 2. Therefore, the dropout mechanism was

not used in the final algorithm. Nonetheless, it is important to highlight that the use of dropout for

deep neural networks seems to provide some gain on performances as is illustrated in tables 63 – 66,

in which the performance of the algorithms drop as the “keep probability” parameter grows. However,

the precision-recall graphs as well as the ROC ones (figures 181 - 186) do not elucidate any clear

pattern for the separation of the classes.

Furthermore, the experiments varying the number of classes produced interesting and conclusive

results. First, the training figures 193 – 197 show that as the number of classes decreases, the loss

function reaches a lower minimum point, i.e. the optimization process works better for a lower

number of classes. This behaviour can be expected for the NUCLE corpus, because the number of

instances per class in the corpus is quite imbalanced and it decreases sharply for less popular classes

(table 4), that is to say, the algorithm can better distinguish the top classes as they have the largest

number of instances. Moreover, the precision-recall figures as well as the ROC ones (figures 198 - 213)

show that the separation of the classes is not affected to a large extent by the number of classes. For

instances, for the top 4 classes the curves are similar for all algorithms. All these findings indicate that

if the algorithm is trained using a larger corpus, the performance of the algorithm should be better.

The figures also show that for classes with low numbers of occurrences the algorithm does not

perform better than just guessing, and that it is not worth targeting classes with very small number of

instances. Hence, the final algorithm targets 20 classes.

5.7 Pre-processing
The last experiment before deciding on the final architecture of the algorithm was to test if a context-

independent spelling correction was a method worth applying to the data before training and testing

the algorithm. The evidence suggests that the use of a spelling corrector improves the performance

of the algorithm for the task of prepositional error detection and correction as is illustrated by tables

71 – 74, in which the algorithm performs better when spelling is corrected before introducing the

input sequence than when it is not. It can be validated through figures 220 – 225 that show that some

classes such as “of”, “from” and “that” are better separated by the algorithm that corrects the spelling

of the lexical features. Therefore, the final algorithm uses a spelling correction pre-processing task. It

is also important to note that a threshold is also added to the final output as most of the experiments

have shown an improvement on performance when the threshold is applied.

143

5.8 Final Algorithm
The algorithm using the optimum parameters taken from previous experiments, and the final

algorithm, which takes the “optimum” algorithm a step further by applying a threshold on decisions

for class, were compared with the standard algorithm targeting 20 classes for the tasks of detecting

and correcting prepositional errors (tables 76 - 79). The results show that, on the one hand, the

optimum algorithm performs better than the standard one, and, on the other hand, the use of

thresholds for class makes a considerable improvement in the precision of the algorithm (although

reducing the recall) and improves the F1 and F05 score. Moreover, all metrics (tables 76 - 79) present

an improvement on the performance of the algorithm by using optimum values, hence one could say

that complex models can compensate for the lack of large training data to some extent for the task of

detecting and correcting prepositional errors, which also implies that complex algorithms can achieve

high quality results if they are trained on large data. These statements can be confirmed by looking at

the precision-recall graphs as well as the ROC graphs (figures 228 - 237) in which the optimum

algorithm separated all top classes in a better way than the standard one, with a few exceptions for

classes such as “at” and “if”. However, the optimum algorithm did not show a better performance for

the classes presenting few instances in the corpus, meaning that even complex algorithms need a

minimum of data to learn to distinguish all classes. Figure 238 confirms the tendency seen so far in

which the use of a threshold improves the performance of the algorithm.

Moreover, the comparison with the results achieved by the teams that participated in the CoNLL 2013

shared task show promising results achieved by the final algorithm given that most of the other

approaches made use of large external resources to train their algorithm (table 80). It is important to

highlight that the number of prepositional errors contained in the testing data provided by CoNLL

2013 is higher in proportion than the number of prepositional errors in the NUCLE corpus. As a

consequence, the precision obtained by the algorithm (values in parentheses) is much higher than the

values obtained in the testing data generated from NUCLE. The final algorithm seems to perform well

even when it only targets prepositional wrong choice errors, meaning that there is room for huge

improvement.

144

6 Conclusions
This research explored the use of recurrent neural networks following a LSTM architecture on the task

of detecting and correcting prepositional errors of the wrong choice type. The algorithm is a classifier

that aims to predict the correct preposition in the place of the original preposition given a context.

The algorithm uses lexical features, POS tags and indexes of the parent in the dependency tree as well

as other components that were separately tested to isolate their influence on the final algorithm. It

also filters the decisions made by the core algorithm through a threshold-based component which

applies a specific threshold for class. The optimum thresholds were obtained from the analysis of the

different types of metrics and graphs.

The final results achieved in this study proved that the task of detecting and correcting prepositional

errors is a complex one that requires the analysis of several factors to reach appropriate results. Before

dealing with prepositional errors, an algorithm must be able to properly identify classes because

otherwise the number of false positives that are obtained means the algorithm is not helpful for

learners of English as a second language, i.e. if the algorithm marks an error where there is none, the

system would confuse a learner rather than help him/her. The low values for the metrics F1 and F05

are due to the low values for the metrics precision, which indicates that the high rate of false positives

is an issue for the task of prepositional error detection and correction. Additionally, the use of long

sequences of inputs was not an efficient approach for the task at hand as was expected. This was the

main reason for using a recurrent neural network that follows an LSTM architecture. The plausible

causes are, first, the avoidance behaviour of learners for writing tasks and, second, that most of the

prepositions depend on the more immediate context rather than on distant ones (at least for

learners).

However, the results achieved in this study are promising if they are compared to the results given by

the CoNLL 2013 shared task, meaning that the high rate of false positives is a problem inherent to this

task, and not a drawback of the approach followed in this research. Moreover, the possible room for

improvement that this study has is huge because all other approaches made use of large corpora,

feeding their algorithm with a large number of instances so that their algorithm could learn to identify

in a more precise way all prepositional classes, but not obtaining better results than the ones obtained

in this study (except for the top three teams which achieved really good results). This hypothesis can

be confirmed by the precision-recall figures as well as the ROC graphs which show a better separation

for classes containing a larger number of instances, meaning that if the algorithm is trained on a larger

corpus the general performance should improve. Furthermore, the relatively good performance of the

final algorithm shows both the potential of using neural networks for undertaking NLP tasks and the

effectiveness of complex algorithms. However, the different experiments also showed that deep

recurrent neural networks are either not suitable for the task of detecting and correcting prepositional

errors or need a deeper analysis before building the network, which would require a whole separate

study. This also shows that, on the one hand, the literature on techniques to improve recurrent neural

networks is huge and a complete study would be required to analyse and test in a deeper way each of

the components that were analysed in this study. On the other hand, it proves that machine learning

techniques depend too much on data, and that the use of the NUCLE corpus by itself is insufficient to

resolve the task at hand, and new approaches using much larger corpora are needed to achieve better

results.

The promising results achieved in this study and the room for improvement this approach has, are

motives for future work. On the one hand, it would be important to increase the types of errors the

algorithm deals with to all errors targeted in the shared tasks CoNLL 2013 and 2014. For most of them

the same approach could be used by varying the generation of examples. It is also important to

145

increase the training data as well as the embedding table (it might be by using existing embedding

tables trained on huge corpora), and one option might be to use large available native corpora and

populate them with learner patterns in order to generate huge learner-like training data. Another

experiment that is worth investigating is to find a way to include in an efficient way the original

preposition in the training examples, e.g. populating prepositional errors based on the first language

of the learner as was carried out by Rozovskaya and Roth. It is also worth testing other approaches on

recurrent neural networks such as language models and translators.

In conclusion, the study demonstrates the usability of recurrent neural networks for detecting and

correcting prepositional errors made by learners of English as a second language, but at the same time

shows that there is still a long way to go before we achieve satisfactory results.

146

7 Reference List
Abadi, M, Barham, P, Chen, J, Chen, Z, Davis, A, Dean, J, Devin, M, Ghemawat, S, Irving, G & Isard, M
2016, 'TensorFlow: A System for Large-Scale Machine Learning', in OSDI, vol. 16, pp. 265-83.

Bahdanau, D, Cho, K & Bengio, Y 2014, 'Neural machine translation by jointly learning to align and
translate', arXiv preprint arXiv:1409.0473.

Bahl, LR, Jelinek, F & Mercer, RL 1990, 'A maximum likelihood approach to continuous speech
recognition', in Readings in speech recognition, Elsevier, pp. 308-19.

Baker, J 1975, 'The DRAGON system--An overview', IEEE Transactions on Acoustics, Speech, and Signal
Processing, vol. 23, no. 1, pp. 24-9.

Baroni, M, Dinu, G & Kruszewski, G 2014, 'Don't count, predict! A systematic comparison of context-
counting vs. context-predicting semantic vectors', in Proceedings of the 52nd Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), vol. 1, pp. 238-47.

Bengio, Y, Ducharme, R, Vincent, P & Jauvin, C 2003, 'A neural probabilistic language model', Journal
of machine learning research, vol. 3, no. Feb, pp. 1137-55.

Bird, S, Klein, E & Loper, E 2009, Natural language processing with Python: analyzing text with the
natural language toolkit, " O'Reilly Media, Inc.".

Bitchener, J, Young, S & Cameron, D 2005, 'The effect of different types of corrective feedback on ESL
student writing', Journal of second language writing, vol. 14, no. 3, pp. 191-205.

Boyd, A & Meurers, D 2011, 'Data-driven correction of function words in non-native English', in
Proceedings of the 13th European Workshop on Natural Language Generation, pp. 267-9.

Brants, T & Franz, A 2006, 'Web 1T 5-gram corpus version 1.1', Google Inc.

Brockett, C, Dolan, WB & Gamon, M 2006, 'Correcting ESL errors using phrasal SMT techniques', in
Proceedings of the 21st International Conference on Computational Linguistics and the 44th annual
meeting of the Association for Computational Linguistics, pp. 249-56.

Cambdridge Prepositions, viewed 23 of November 2017,
<https://dictionary.cambridge.org/grammar/british-grammar/prepositions>.

Chen, D & Manning, C 2014, 'A fast and accurate dependency parser using neural networks', in
Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP),
pp. 740-50.

https://dictionary.cambridge.org/grammar/british-grammar/prepositions

147

Chodorow, M, Dickinson, M, Israel, R & Tetreault, J 2012, 'Problems in evaluating grammatical error
detection systems', Proceedings of COLING 2012, pp. 611-28.

Chodorow, M, Tetreault, JR & Han, N-R 2007, 'Detection of grammatical errors involving prepositions',
in Proceedings of the fourth ACL-SIGSEM workshop on prepositions, pp. 25-30.

Chomsky, N 1956, 'Three models for the description of language', IRE Transactions on information
theory, vol. 2, no. 3, pp. 113-24.

Cohen, J 1960, 'A coefficient of agreement for nominal scales', Educational and psychological
measurement, vol. 20, no. 1, pp. 37-46.

Collobert, R & Weston, J 2008, 'A unified architecture for natural language processing: Deep neural
networks with multitask learning', in Proceedings of the 25th international conference on Machine
learning, pp. 160-7.

Dagneaux, E, Denness, S & Granger, S 1998, 'Computer-aided error analysis', System, vol. 26, no. 2,
pp. 163-74.

Dahlmeier, D & Ng, HT 2012, 'Better evaluation for grammatical error correction', in Proceedings of
the 2012 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, pp. 568-72.

Dahlmeier, D, Ng, HT & Ng, EJF 2012, 'NUS at the HOO 2012 Shared Task', in Proceedings of the Seventh
Workshop on Building Educational Applications Using NLP, pp. 216-24.

Dahlmeier, D, Ng, HT & Wu, SM 2013, 'Building a Large Annotated Corpus of Learner English: The NUS
Corpus of Learner English', in BEA@ NAACL-HLT, pp. 22-31.

Dale, R, Anisimoff, I & Narroway, G 2012, 'HOO 2012: A report on the preposition and determiner
error correction shared task', in Proceedings of the Seventh Workshop on Building Educational
Applications Using NLP, pp. 54-62.

Dale, R & Kilgarriff, A 2011, 'Helping our own: The HOO 2011 pilot shared task', in Proceedings of the
13th European Workshop on Natural Language Generation, pp. 242-9.

Daudaravicius, V, Banchs, RE, Volodina, E & Napoles, C 2016, 'A Report on the Automatic Evaluation
of Scientific Writing Shared Task', in BEA@ NAACL-HLT, pp. 53-62.

Daumé III, H 2012, 'A course in machine learning', chapter, vol. 5, p. 69.

De Felice, R & Pulman, SG 2008, 'A classifier-based approach to preposition and determiner error
correction in L2 English', in Proceedings of the 22nd International Conference on Computational
Linguistics-Volume 1, pp. 169-76.

148

Denil, M, Bazzani, L, Larochelle, H & de Freitas, N 2012, 'Learning where to attend with deep
architectures for image tracking', Neural computation, vol. 24, no. 8, pp. 2151-84.

dos Santos, C & Gatti, M 2014, 'Deep convolutional neural networks for sentiment analysis of short
texts', in Proceedings of COLING 2014, the 25th International Conference on Computational Linguistics:
Technical Papers, pp. 69-78.

Dredze, M, Crammer, K & Pereira, F 2008, 'Confidence-weighted linear classification', in Proceedings
of the 25th international conference on Machine learning, pp. 264-71.

El Hihi, S & Bengio, Y 1996, 'Hierarchical recurrent neural networks for long-term dependencies', in
Advances in neural information processing systems, pp. 493-9.

Elghafari, A, Meurers, D & Wunsch, H 2010, 'Exploring the data-driven prediction of prepositions in
English', in Proceedings of the 23rd International Conference on Computational Linguistics: Posters,
pp. 267-75.

Elman, JL 1990, 'Finding structure in time', Cognitive science, vol. 14, no. 2, pp. 179-211.

Felice, M, Yuan, Z, Andersen, ØE, Yannakoudakis, H & Kochmar, E 2014, 'Grammatical error correction
using hybrid systems and type filtering', in CoNLL Shared Task, pp. 15-24.

Francis, WN & Kucera, H 1964, 'Brown corpus', Department of Linguistics, Brown University,
Providence, Rhode Island, vol. 1.

Freund, Y & Schapire, RE 1999, 'Large margin classification using the perceptron algorithm', Machine
learning, vol. 37, no. 3, pp. 277-96.

Fukushima, K, Miyake, S & Ito, T 1983, 'Neocognitron: A neural network model for a mechanism of
visual pattern recognition', IEEE transactions on systems, man, and cybernetics, no. 5, pp. 826-34.

Gamon, M, Gao, J, Brockett, C, Klementiev, A, Dolan, WB, Belenko, D & Vanderwende, L 2008, 'Using
Contextual Speller Techniques and Language Modeling for ESL Error Correction', in IJCNLP, vol. 8, pp.
449-56.

Goldberg, Y 2016, 'A Primer on Neural Network Models for Natural Language Processing', J. Artif. Intell.
Res.(JAIR), vol. 57, pp. 345-420.

Goodfellow, I, Bengio, Y, Courville, A & Bengio, Y 2016, Deep learning, vol. 1, MIT press Cambridge.

Granger, S, Dagneaux, E, Meunier, F & Paquot, M 2009, International corpus of learner English, UCL,
Presses Univ. de Louvain.

149

Graves, A, Mohamed, A-r & Hinton, G 2013, 'Speech recognition with deep recurrent neural networks',
in Acoustics, speech and signal processing (icassp), 2013 ieee international conference on, pp. 6645-9.

Gui, S & Yang, H 2003, Zhongguo Xuexizhe Yingyu Yuliaohu.(Chinese Learner English Corpus). Shanghai
Waiyu Jiaoyu Chubanshe, Chinese.

Gutmann, MU & Hyvärinen, A 2012, 'Noise-contrastive estimation of unnormalized statistical models,
with applications to natural image statistics', Journal of machine learning research, vol. 13, no. Feb,
pp. 307-61.

Hakuta, K 2011, 'Educating language minority students and affirming their equal rights: Research and
practical perspectives', Educational Researcher, vol. 40, no. 4, pp. 163-74.

Han, N-R, Chodorow, M & Leacock, C 2006, 'Detecting errors in English article usage by non-native
speakers', Natural Language Engineering, vol. 12, no. 2, pp. 115-29.

Hermans, M & Schrauwen, B 2013, 'Training and analysing deep recurrent neural networks', in
Advances in neural information processing systems, pp. 190-8.

Hochreiter, S & Schmidhuber, J 1997, 'Long short-term memory', Neural computation, vol. 9, no. 8,
pp. 1735-80.

Hodgkin, AL & Huxley, AF 1952, 'The dual effect of membrane potential on sodium conductance in the
giant axon of Loligo', The Journal of physiology, vol. 116, no. 4, pp. 497-506.

Hornik, K, Stinchcombe, M & White, H 1989, 'Multilayer feedforward networks are universal
approximators', Neural networks, vol. 2, no. 5, pp. 359-66.

Huddleston, R & Pullum, GK 2005, A student's introduction to English grammar, Cambridge University
Press.

Irsoy, O & Cardie, C 2014, 'Opinion mining with deep recurrent neural networks', in Proceedings of the
2014 conference on empirical methods in natural language processing (EMNLP), pp. 720-8.

Izhikevich, EM 2003, 'Simple model of spiking neurons', IEEE Transactions on neural networks, vol. 14,
no. 6, pp. 1569-72.

Izumi, E, Uchimoto, K & Isahara, H 2004, 'SST speech corpus of Japanese learners’ English and
automatic detection of learners’ errors', ICAME Journal, vol. 28, pp. 31-48.

Izumi, E, Uchimoto, K, Saiga, T, Supnithi, T & Isahara, H 2003, 'Automatic error detection in the
Japanese learners' English spoken data', in Proceedings of the 41st Annual Meeting on Association for
Computational Linguistics-Volume 2, pp. 145-8.

150

James, C 2013, Errors in language learning and use: Exploring error analysis, Routledge.

Jaynes, ET 1957, 'Information theory and statistical mechanics', Physical review, vol. 106, no. 4, p. 620.

Jelinek, F, Bahl, L & Mercer, R 1975, 'Design of a linguistic statistical decoder for the recognition of
continuous speech', IEEE Transactions on Information Theory, vol. 21, no. 3, pp. 250-6.

Jozefowicz, R, Vinyals, O, Schuster, M, Shazeer, N & Wu, Y 2016, 'Exploring the limits of language
modeling', arXiv preprint arXiv:1602.02410.

Jurafsky, D & Martin, JH 2009, Speech and Language Processing: An Introduction to Natural Language
Processing, Computational Linguistics, and Speech Recognition, MIT Press.

Katz, S 1987, 'Estimation of probabilities from sparse data for the language model component of a
speech recognizer', IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 35, no. 3, pp.
400-1.

Kingma, DP & Ba, J 2014, 'Adam: A method for stochastic optimization', arXiv preprint
arXiv:1412.6980.

Klein, D & Manning, CD 2003, 'Accurate unlexicalized parsing', in Proceedings of the 41st annual
meeting of the association for computational linguistics.

Koehn, P, Och, FJ & Marcu, D 2003, 'Statistical phrase-based translation', in Proceedings of the 2003
Conference of the North American Chapter of the Association for Computational Linguistics on Human
Language Technology-Volume 1, pp. 48-54.

Landis, JR & Koch, GG 1977, 'The measurement of observer agreement for categorical data',
biometrics, pp. 159-74.

Larochelle, H & Hinton, GE 2010, 'Learning to combine foveal glimpses with a third-order Boltzmann
machine', in Advances in neural information processing systems, pp. 1243-51.

Leacock, C, Chodorow, M, Gamon, M & Tetreault, J 2014, 'Automated grammatical error detection for
language learners', Synthesis lectures on human language technologies, vol. 7, no. 1, pp. 1-170.

Lee, J & Seneff, S 2006, 'Automatic grammar correction for second-language learners', in Ninth
International Conference on Spoken Language Processing.

Lindstromberg, S 2010, English prepositions explained, John Benjamins Publishing.

151

Liu, Z-R & Liu, Y 2017, 'Exploiting Unlabeled Data for Neural Grammatical Error Detection', Journal of
Computer Science and Technology, vol. 32, no. 4, pp. 758-67.

Manning, C 2005, 'Maxent models and discriminative estimation', CS 224N lecture notes, Spring.

Manning, CD, Raghavan, P & Schütze, H 2008, 'Text classification and naive bayes', Introduction to
information retrieval, vol. 1, p. 6.

Marcus, MP, Marcinkiewicz, MA & Santorini, B 1993, 'Building a large annotated corpus of English: The
Penn Treebank', Computational linguistics, vol. 19, no. 2, pp. 313-30.

Markov, AA 1913, 'Calculation of probabilities', St Petersburg.

McCulloch, WS & Pitts, W 1943, 'A logical calculus of the ideas immanent in nervous activity', The
bulletin of mathematical biophysics, vol. 5, no. 4, pp. 115-33.

McGregor, RJ 1987, 'Neural and brain modelling', Academic Press, San Diego, vol. 112, pp. 245-58.

Mikolov, T, Chen, K, Corrado, G & Dean, J 2013, 'Efficient estimation of word representations in vector
space', arXiv preprint arXiv:1301.3781.

Mikolov, T, Karafiát, M, Burget, L, Černocký, J & Khudanpur, S 2010, 'Recurrent neural network based
language model', in Eleventh Annual Conference of the International Speech Communication
Association.

Mikolov, T, Sutskever, I, Chen, K, Corrado, GS & Dean, J 2013, 'Distributed representations of words
and phrases and their compositionality', in Advances in neural information processing systems, pp.
3111-9.

Minsky, M & Papert, SA 1969, Perceptrons: An introduction to computational geometry, MIT press.

Mizumoto, T, Hayashibe, Y, Komachi, M, Nagata, M & Matsumoto, Y 2012, 'The effect of learner corpus
size in grammatical error correction of ESL writings', Proceedings of COLING 2012: Posters, pp. 863-72.

Morin, F & Bengio, Y 2005, 'Hierarchical Probabilistic Neural Network Language Model', in Aistats, vol.
5, pp. 246-52.

MoveHub 2018, Second Languages Around the World, viewed January 2nd 2018,
<https://www.movehub.com/blog/global-second-languages/>.

Ng, HT, Wu, SM, Briscoe, T, Hadiwinoto, C, Susanto, RH & Bryant, C 2014, 'The CoNLL-2014 Shared
Task on Grammatical Error Correction', in CoNLL Shared Task, pp. 1-14.

https://www.movehub.com/blog/global-second-languages/

152

Ng, HT, Wu, SM, Wu, Y, Hadiwinoto, C & Tetreault, J 2013, 'The CoNLL-2013 Shared Task on
Grammatical Error Correction', in CoNLL Shared Task.

Nicholls, D 2003, 'The Cambridge Learner Corpus: Error coding and analysis for lexicography and ELT',
in Proceedings of the Corpus Linguistics 2003 conference, vol. 16, pp. 572-81.

Och, FJ & Ney, H 2003, 'A systematic comparison of various statistical alignment models',
Computational linguistics, vol. 29, no. 1, pp. 19-51.

Olah, C 2015, 'Understanding lstm networks, 2015', URL https://colah. github. io/posts/2015-08-
Understanding-LSTMs.

Pascanu, R, Mikolov, T & Bengio, Y 2013, 'On the difficulty of training recurrent neural networks', in
International Conference on Machine Learning, pp. 1310-8.

Pei, W, Ge, T & Chang, B 2015, 'An effective neural network model for graph-based dependency
parsing', in Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics
and the 7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers),
vol. 1, pp. 313-22.

Pham, V, Bluche, T, Kermorvant, C & Louradour, J 2014, 'Dropout improves recurrent neural networks
for handwriting recognition', in Frontiers in Handwriting Recognition (ICFHR), 2014 14th International
Conference on, pp. 285-90.

Powers, DM 2012, 'The problem with kappa', in Proceedings of the 13th Conference of the European
Chapter of the Association for Computational Linguistics, pp. 345-55.

Python 2018, Python, viewed January 2 2018, <https://www.python.org/>.

Rosenblatt, F 1958, 'The perceptron: a probabilistic model for information storage and organization in
the brain', Psychological review, vol. 65, no. 6, p. 386.

Rozovskaya, A, Chang, K-W, Sammons, M & Roth, D 2013, 'The University of Illinois system in the
CoNLL-2013 shared task', in Proceedings of the Seventeenth Conference on Computational Natural
Language Learning: Shared Task, pp. 13-9.

Rozovskaya, A & Roth, D 2010a, 'Annotating ESL errors: Challenges and rewards', in Proceedings of the
NAACL HLT 2010 fifth workshop on innovative use of NLP for building educational applications, pp. 28-
36.

—— 2010b, 'Generating confusion sets for context-sensitive error correction', in Proceedings of the
2010 conference on empirical methods in natural language processing, pp. 961-70.

https://colah/
https://www.python.org/

153

—— 2010c, 'Training paradigms for correcting errors in grammar and usage', in Human language
technologies: The 2010 annual conference of the north american chapter of the association for
computational linguistics, pp. 154-62.

—— 2011, 'Algorithm selection and model adaptation for ESL correction tasks', in Proceedings of the
49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies-
Volume 1, pp. 924-33.

Rozovskaya, A, Sammons, M, Gioja, J & Roth, D 2011, 'University of Illinois system in HOO text
correction shared task', in Proceedings of the 13th European Workshop on Natural Language
Generation, pp. 263-6.

Rozovskaya, A, Sammons, M & Roth, D 2012, 'The UI system in the HOO 2012 shared task on error
correction', in Proceedings of the Seventh Workshop on Building Educational Applications Using NLP,
pp. 272-80.

Schuster, M & Paliwal, KK 1997, 'Bidirectional recurrent neural networks', IEEE Transactions on Signal
Processing, vol. 45, no. 11, pp. 2673-81.

Shannon, CE 1948, 'A mathematical theory of communication, Part I, Part II', Bell Syst. Tech. J., vol. 27,
pp. 623-56.

Siganos, D & Stergiou, C 1996, 'Neural networks, the human brain, and learning', Imperial College
London: Surveys and Presentations in Information Systems Engineering.

Srivastava, N 2013, 'Improving neural networks with dropout', University of Toronto, vol. 182.

Steiner, B 2015, Tensorflow word2vec tutorial, viewed 09 October 2017,
<https://github.com/tensorflow/tensorflow/blob/r1.5/tensorflow/examples/tutorials/word2vec/wo
rd2vec_basic.py>.

Sutskever, I, Vinyals, O & Le, QV 2014, 'Sequence to sequence learning with neural networks', in
Advances in neural information processing systems, pp. 3104-12.

Tetreault, JR & Chodorow, M 2008, 'The ups and downs of preposition error detection in ESL writing',
in Proceedings of the 22nd International Conference on Computational Linguistics-Volume 1, pp. 865-
72.

Training, DoEa 2017, International Student Data 2017, viewed January 2sd 2018,
<https://internationaleducation.gov.au/research/International-Student-
Data/Pages/InternationalStudentData2017.aspx>.

Vasilis, V 2015, Machine Learning Tutorial: The Naive Bayes Text Classifier,
<http://blog.datumbox.com/machine-learning-tutorial-the-naive-bayes-text-classifier/>.

https://github.com/tensorflow/tensorflow/blob/r1.5/tensorflow/examples/tutorials/word2vec/word2vec_basic.py
https://github.com/tensorflow/tensorflow/blob/r1.5/tensorflow/examples/tutorials/word2vec/word2vec_basic.py
https://internationaleducation.gov.au/research/International-Student-Data/Pages/InternationalStudentData2017.aspx
https://internationaleducation.gov.au/research/International-Student-Data/Pages/InternationalStudentData2017.aspx
http://blog.datumbox.com/machine-learning-tutorial-the-naive-bayes-text-classifier/

154

Vaswani, A, Zhao, Y, Fossum, V & Chiang, D 2013, 'Decoding with large-scale neural language models
improves translation', in Proceedings of the 2013 Conference on Empirical Methods in Natural
Language Processing, pp. 1387-92.

Vinyals, O, Kaiser, Ł, Koo, T, Petrov, S, Sutskever, I & Hinton, G 2015, 'Grammar as a foreign language',
in Advances in Neural Information Processing Systems, pp. 2773-81.

Weiss, D, Alberti, C, Collins, M & Petrov, S 2015, 'Structured training for neural network transition-
based parsing', arXiv preprint arXiv:1506.06158.

Werbos, P 1974, 'Beyond regression: new fools for prediction and analysis in the behavioral sciences',
PhD thesis, Harvard University.

Werbos, PJ 1990, 'Backpropagation through time: what it does and how to do it', Proceedings of the
IEEE, vol. 78, no. 10, pp. 1550-60.

Xu, W, Auli, M & Clark, S 2015, 'CCG supertagging with a recurrent neural network', in Proceedings of
the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International
Joint Conference on Natural Language Processing (Volume 2: Short Papers), vol. 2, pp. 250-5.

Yannakoudakis, H, Briscoe, T & Medlock, B 2011, 'A new dataset and method for automatically grading
ESOL texts', in Proceedings of the 49th Annual Meeting of the Association for Computational
Linguistics: Human Language Technologies-Volume 1, pp. 180-9.

Yoshimoto, I, Kose, T, Mitsuzawa, K, Sakaguchi, K, Mizumoto, T, Hayashibe, Y, Komachi, M &
Matsumoto, Y 2013, 'NAIST at 2013 CoNLL Grammatical Error Correction Shared Task', in CoNLL Shared
Task, pp. 26-33.

Zaremba, W, Sutskever, I & Vinyals, O 2014, 'Recurrent neural network regularization', arXiv preprint
arXiv:1409.2329.

Zeng, D, Liu, K, Lai, S, Zhou, G & Zhao, J 2014, 'Relation classification via convolutional deep neural
network', in Proceedings of COLING 2014, the 25th International Conference on Computational
Linguistics: Technical Papers, pp. 2335-44.

