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Abstract 
Electromyogram (EMG) contamination has been shown to affect electroencephalogram 

(EEG) signals. Therefore, methods of isolating and removing EMG contamination are 

a focus of research. One of the most common ways to eliminate this contamination is 

through independent component analysis (ICA). Also, surface Laplacian (SL) has been 

proven to isolate the distant sources of EEG signals. The objective of this thesis is to 

demonstrate the effects of EMG contamination on EEG signals using the 

Neurophysiological Biomarker Toolbox (NBT) and the impact of applying ICA, and 

ICA + SL on raw data. In this thesis, the method for preparing the data is ICA with an 

auto-pruned method and SL using a flexible spherical spline. The thesis has two main 

sections designed to demonstrate the objective. The first describes the use of random 

sampling of subjects who were assigned three tasks during EEG recording (eyes closed, 

eyes open, and solving a maze) and comparing them, under three types of data pre-

processing, using Student’s paired t-test and normalised amplitude of delta (1–4 Hz), 

alpha (8–13 Hz), and gamma (30–45 Hz). Second, machine learning was used to 

classify three neuropsychiatric diseases (anxiety, depression, and epilepsy) against 

control subjects under the three types of data pre-processing and raw data + SL. The 

data has been split into one second segments and classified according to features 

extracted from the NBT, which are the amplitude and the normalised amplitude for all 

frequency bands. Principal component analysis (PCA) was used for reducing the 

features, and 10x10-fold cross-validation and artificial neural networking were the 

methods used for the classification.  

The results in the first section show that EMG contamination affected the EEG signal 

in the gamma bands, that ICA eliminated the EMG contamination, and that ICA + SL 

improved the reading of brain signals; and the delta and alpha bands were not affected 

by ICA or ICA + SL. The results in the second section show a high percentage of 

accuracy in ICA + SL in all frequency bands. However, ICA in general has a percentage 

quite similar to the raw data, while SL, as well as ICA with a small percentage improved 

more than ICA and raw data. Overall, the gamma band for both amplitude and 

normalised amplitude in ICA + SL showed the best results, with accuracy over 87%, 

when comparing it with all disease classifications. Both results indicate that ICA + SL 

eliminate and isolate EMG contamination. However, the classification of ICA shows 

no significant change in the percentage of accuracy.  
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Chapter 1  

Introduction 

Currently, the activities of the brain are non-invasively recorded with the help of an 

electroencephalogram, or EEG. An EEG offers exceptional temporal resolution and 

usability, which is why it is frequently used for brain-computer interface (BCI) 

research. BCI is a technology that offers differently abled people control over artificial 

communication and motor devices without the help of conventional mechanisms, such 

as nerves or peripheral muscles (Wolpaw et al. 2000; Bashashati et al. 2007).  

It is important for a user to yield different patterns of brain activity to be able to control 

the EEG-based BCI. These patterns are recorded by electrodes that are attached to a 

person’s scalp, and the outcomes are commands that are derived from algorithms and 

data that is mined from the EEG signals. As far as EEG signals are concerned, noise is 

ubiquitous because of functional variations and disparities present in the EEG, 

measurement inaccuracies, and elements like muscle movements and eye blinks. An 

unsuitable imaging of a motorised image-based BCI can also result in noise. The 

technologies for classification and extraction of features that are employed in BCIs are 

reviewed by Bashashati et al. (2007) and Garrett et al. (2003). Nonetheless, these 

elements can be eliminated, if ICA is used (Oja & Nordhausen 2001; Kachenoura et al. 

2008), or excluded by criteria or thresholds. 

On the other hand, ICA is a technique for processing signals that originated from blind 

source separation (Bell & Sejnowski 1995; Lee et al. 1999). Since then, ICA has 

frequently been applied in a number of fields, like speech processing, communication, 

and biomedical signal processing. ICA can decompose the observed multichannel 

signals into a number of autonomous constituents using an optimisation algorithm, 

which is driven by the principle of statistical independency. Neither of these techniques 

can identify the sound produced by incorrect selection of patterns of imaging because 

the information provided on the label is not considered (Sannelli et al. 2009). The ICA 

algorithm, on the other hand, needs visual inspection for the selection of artificial 

components that make its application impossible in an automatic BCI system.  

Continuous EEG signals in clinical applications can be separated into numerous 

rhythms depending on their frequency: delta rhythm (0.3–4 Hz), theta rhythm (4–8 Hz), 

alpha rhythm (8–13 Hz), beta rhythm (13–30 Hz), and gamma rhythm (30–45 Hz). 
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Cerebral diseases, such as cerebrovascular diseases, migraine and epilepsy, and EEG 

signals have a close correlation as the EEG of humans reflects the activity carried out 

by the nervous system. Hence, the method of processing and investigation of EEG 

signals in order to yield the hidden structures essential for curing and diagnosing 

diseases is frequently used. The EEG is therefore deemed a vital means for analysing 

brain function. 

When electrical activity is recorded from the scalp, that recording contains 

electromyogram, or EMG, and the EMG is considered a serious contaminant of EEGs 

recorded from the scalp (Goncharova et al. 2003; McMenamin et al. 2010; Shackman 

et al. 2009). Stereotypically, EMG contamination is known to have large amplitude, 

which is why it is easily recognisable both visually and algorithmically. Moreover, it is 

generally the contaminated periods of EEG that are excised and discarded. However, 

constant weak contractions yield low amplitude impurities that are very stubborn in 

nature and difficult to detect visually. This continual contamination has spatial and 

spectral properties that are low power and difficult to recognise through the scalp 

recordings, but comparable to the contaminates cused by movement (Pope et al. 2009; 

Whitham et al. 2008). Temporary cranial, neck muscle and facial contractions result in 

electrical signals of very high amplitude with spectral features that overlap similar EEG 

bands. In addition, it has been established that recordings through the scalp and the 

range of incidences in the EMG interconnect, and as a result contaminate with the 

movement from muscles or EMG of the cranium and neck (Goncharova et al. 2003; 

Kumar et al. 2003).  

The spatial resolution of the potential distributions is significantly reduced by the 

spatial smearing caused by the head volume conduction. For that reason, neck and face 

muscles have affected EEG signals recorded, and based on this, each electrode can be 

read for close and distant sources. Furthermore, surface Laplacian (SL) is sensitive to 

local sources as well as sources that are located close to the recording places and are 

impermeable to distant locations. Likewise, the SL diminishes enormously with the 

spatial smearing of the potential, which acts as a high-pass spatial filter (Nunez 1989). 

SL converts the existing scalp density with the help of data from all active scalp 

electrodes (Nunez & Srinivasan, 2006).  

This thesis will investigate the EMG contamination of the EEG signal. Raw data will 

be processed to clean it of EMG contamination by using ICA, and we will apply SL on 

the ICA data. Therefore, three kinds of data pre-processing will be used in each section 
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to clarify the effect of EMG contamination on the EEG signal. The study will be divided 

into two major sections, both working on pre-processing the data. The first section will 

use the Neurophysiological Biomarker Toolbox (NBT) to statistically analyse and 

clarify the EMG effect on random subjects (patients and controls) who were performing 

three tasks (eyes closed, eyes open, and solving a maze) during data recording. NBT 

will compare between eyes closed and open and maze-solving tasks with different pre-

processing of the data. The second section will use artificial neural network (ANN) to 

classify neuropsychiatric diseases (anxiety, depression, and epilepsy) and control 

subjects based on the NBT features and for each type of pre-processing separately. 
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Chapter 2  

Literature review 

2.1 EEG concepts 

The EEG, developed by Richard Caton over 140 years ago (Caton 1875), grew quickly 

into a tool for clinical diagnosis (Berger 1925), and since the 1950s has been used to 

study brain activity by employing it in the practice of meditation (Das & Gastaut 1955). 

The concept of the EEG signal and the ways that it is used to work follow. Kaur and 

Kaur (2015) mention that the human brain has fluctuations of the order of a few 

microvolts that are consequences of ionic currents that flow between the brain and 

neurons. Furthermore, EEG signals represent synchronously the activity of a large 

number of neurons in the brain (Kaur & Kaur 2015). Moreover, non-invasive and 

invasive methods can be used for recording EEG signals (Kunjan et al. 2016). These 

authors have explained that the difference between the non-invasive and invasive 

methods is that in non-invasive methods, electrodes are attached to the scalp surface, 

whereas in invasive methods they are implanted. Ball et al. (2009) and Whitham et al. 

(2007) indicate that the non-invasive method is contaminated by signals from other 

sources, such as eye movements, head movements, and muscle activities. The non-

invasive method is widely used because of its lower cost and high temporal resolution 

(Kunjan et al. 2016). EEG caps give accurate positioning of electrodes on the scalp 

(Kunjan et al. 2016). The brain has different regions that produce various kinds of 

waves based on brain activity (Schomer & Da Silva, 2012). Each electrode that is 

placed on the scalp records a number of waves, each with different characteristics, 

which is how the EEG signal is captured (Teplan, 2002). The EEG signal can be 

recorded for many tasks, such as eyes open/closed, photic stimulation, auditory 

stimulation, auditory oddball, visual rotation, visual discrimination, subtraction, 

reading, finger tapping, verbal working memory, meditation, and maze solving.  

Each task has different results in the EEG signal. For example, Barry et al. (2007) have 

done an experiment to find out the difference between eyes closed and eyes open tasks. 

These authors have found that delta band has a reduction from eyes closed to eyes open, 

especially in the frontal regions, and most of the brain has significantly different levels. 

The alpha band showed that power decreased from eyes closed to eyes open; however, 
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there were no significant changes in topography. Moreover, the difference between the 

tasks in the delta band showed most of the brain had significantly different levels, but 

the alpha band recorded non-significant activity between the tasks (Barry et al. 2007). 

EEG features have wide ranging content because the EEG signal contains a lot of 

features, of which we will mention some. Amplitude, frequency and time-domain 

parameters have been used to find the difference between subjects (16 subjects, 10 

sessions during 1 year) (Grosveld et al. 1976). They had a classification accuracy of 

81%. They found that inter-individual variation was large compared to intra-individual 

variation. Moreover, Greene et al. (2008) compared 21 features to find the features 

more suitable to be used in a neonatal seizure detection algorithm. The features were 

divided into three main categories: frequency domain, time domain, and entropy-based 

features. Each of these categories had a number of features in it. The comparison was 

made between the individual features. Some examples of the features that have been 

used in this study are bandwidth (BW), peak frequency, spectral edge frequency (SEF), 

root mean-squared EEG amplitude (RMS Amp), minima and maxima, and Shannon 

entropy (HSH). They found that RMS Amp was the best performing.  

Studying EEG signals led the researchers to implement toolboxes that were used to 

analyse signals. While here, we will mention some of these toolboxes.  

EEGLAB is an open source toolbox using the MATLAB environment that was 

developed in 2004 by Arnaud Delorme and Scott Makeig (Delorme & Makeig 2004). 

EEGLAB uses an interactive user interface that allow users to process signals through 

it without writing code (Delorme et al. 2011). It implements the common methods for 

analysis of an EEG signal, such as ICA and time/frequency analysis (Delorme et al. 

2011). EEGLAB is more reliable in the features that give users more options to choose 

what they want to do with data, and since it is open source, users can modify the code 

(Delorme & Makeig 2004).  

FieldTrip is a MATLAB toolbox used to analyse Magnetoencephalography (MEG), 

EEG and other electrophysiological data that began to be developed in 2003. FieldTrip 

is open source software under the GNU General Public License (Oostenveld et al. 

2011). It consists of approximately 108 high-level and 858 low-level functions 

(Oostenveld et al. 2011). In FieldTrip, there is no GUI for interaction between the user 
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and the toolbox, but the user can interact directly with the functions on the MATLAB 

command line (Oostenveld et al. 2011).  

NBT uses MATLAB software to implement its functions. NBT provides details based 

on brain activity. It was developed in 2008 and opened to the public in 2012. The aim 

of NBT is to provide a toolbox that can process EEG signals with easy-to-use features. 

NBT provides a GUI for user interaction. Multiple biomarkers are provided to analyse 

the EEG signal by NBT. The website (https://www.nbtwiki.net/) has information and 

tutorials for downloading and using the toolbox, with datasets that can be used to learn 

to use the toolbox. 

Current Source Density (CSD) is a toolbox that implements a spherical spline algorithm 

(Perrin et al. 1989) using MATLAB software (Kayser, 2009). CSD computes scalp SL 

or current source density estimates for surface potential (EEG/ERP) (Kayser 2009). 

This author has claimed that this toolbox is registered for the GNU General Public 

License.  

2.2 Artefact removal methods 

There are various computational methods for the reduction of EMG artefacts. For 

example, General Linear Model (Shackman et al. 2009) removes variances in a 

neurogenic band of interest. Shackman et al. (2009) have enumerated the technique 

features, such as automatic, performing separate correction at each site and not 

requiring dedicated EMG channels. Another example is linear or non-linear low-pass 

filtering (Goncharova et al. 2003), for which they found that ICA performs more 

effectively to remove EMG contamination than linear or non-linear low-pass filtering. 

ICA (Jung et al. 2000, Shackman et al. 2009, Makeig et al. 1996) and Adaptive Mixture 

of Independent Component Analysers (AMICA) (Delorme et al. 2012) use the same 

concept with each source being an independent source. Parallel factor analysis 

(PARAFAC) is another example for EMG filtering (De Vos et al. 2007a, De Vos et al. 

2007b). They describe it as having “reliably separated a seizure atom from the noise 

and background activity with a sensitivity of more than 90%”.  

2.2.1 Independent component analysis (ICA) 

EEG signals are affected by some artefacts, such as eye movements, blinks, muscle 

noise, heart signals and line noise, that make it difficult to read and reduce accuracy for 

data analysis (Sanei & Chambers 2007). ICA is a method that can deduct the artefacts 

https://www.nbtwiki.net/
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from the signal. Researchers are using the ICA method widely in their research to 

remove artefacts from EEG signals. Multichannel data mixtures with independent time 

courses are identified by ICA (Delorme et al. 2012). These authors also claim that ICA 

therefore directly models each source of the EEG signals in a scalp sensor. Each are 

independent sources that give clear signals without artefacts and without interference 

from other scalp sensors  

The class of algorithms that using higher-order statistical properties with effective 

separating signals from an arithmetic mixture of signals, known as independent 

component analysis (ICA) (Delorme & Thorpe 2001; Delorme et al. 2007; Fitzgibbon 

et al. 2007; Fitzgibbon et al. 2016). Akhtar and James (2009) have mentioned that the 

artefacts cannot be removed by cutting the signal that contains them, because it may 

contain important data that is masked by artefacts, so using ICA and wavelet denoising 

(WD) improves the EEG signal pre-processing. In this study, they proposed a new 

approach for removing artefacts by using the concept of spatially-constrained ICA 

(SCICA) to cut only the signal that contains artefacts from the EEG signal and use WD 

to extract the brain activity from the artefacts, then return the brain activity to the EEG 

signal, so they have clean EEG data. The main advantage of using this method is 

computational efficiency. Vorobyov and Cichocki (2002) explained that in their 

experiment they used a modified version of data that was obtained through ICA. 

Furthermore, the experiment projected data to the sensor level, that is each sensor 

measured the noisy mixture of original source signals. They worked with two methods 

to show the effectiveness and validity of the proposed approach: simulations and the 

real application results for EEG signal noise removal. This study has a hypothesis to 

determine whether ICA is truly beneficial and gives some reasons for finding 

independent components (ICs) that characterise noise or artefacts in comparison to 

direct analysis of the originally measured EEG signals. As a result of this study, they 

found that the “inner” structure of observed signals is the key point for making the ICA 

technique important and effective for the blind noise-reduction problem. Moreover, 

they applied a procedure taken from the Hurst exponent calculation to detect ICs that 

contain “interesting” signals and used the subspace filtering method to filter 

“interesting” ICs after separation of the mixture. Both simulation and real application 

of the proposed method have demonstrated the effectiveness of this approach. On the 

other hand, the special structure of measured signals cannot be taken by direct 



8 | P a g e  
 

application of filters as sequences that do “not allow us to obtain acceptable results of 

noise reduction”. FastICA is an ICA algorithm that, because of possible parallel 

implementation, is often used in real time applications (Sahonero-Alvarez et al. Taha 

2010).  

When we talk about methods of using ICA, there are several, but the most prominent is 

AMICA. Delorme et al. (2012) say AMICA is currently the one of the best the different 

ICA methods and generally preferred. Also, they have mentioned that using flexible 

modelling of source signal densities allows it to achieve better solutions for EEG data. 

Moreover, non-stationarities can be captured in a principled manner because multiple 

models can be learned. In this study, the criteria used were “the amount of mutual 

information reduction (MIR) between the recovered component time courses relative 

to the recorded data channels (in kbits/sec), the mean remaining pairwise mutual 

information (PMI) between pairs of component time courses (in kbits/sec), and the 

‘dipolarity’ of the decomposition defined as the number of returned components whose 

scalp maps can be fitted to the scalp projection of a single equivalent dipole with less 

than a specified error threshold (specified as percent residual variance)” (p.2, Delmore 

et al, 2012). They have applied their study to 14 subjects and 71 channels on the human 

scalp. They have compared 22 methods. The results were that AMICA produced the 

highest mutual information reduction. In addition, AMICA and 18 other methods 

returned many similarities in components in the two other criteria. Moreover, 

Leutheuser et al. (2013) compared two methods to reduce EMG contamination: 

AMICA and InfoMax. Both methods use mathematical transforms to find the 

statistically independent sources inside a mixture of sources. These authors found that 

the AMICA algorithm performed better for removing EMG contamination than the 

InfoMax algorithm.  

Whitham et al. (2007), Whitham et al. (2008), Pope et al. (2009) and Yilmaz et al. 

(2014) mentioned that frequencies above than 20 Hz have led EMG to have an impact 

on spectra. EMG exceeds EEG power 10-fold in the 20–80 Hz range (Aoki et al. 1999; 

Bertrand & Tallon-Baudry 2000) and it can exceed EEG power by more than 200-fold 

at 100 Hz. A software package has been developed by Moretti et al. (2003) for (i) 

electrooculographic (EOG) artefact detection and correction, (ii) EMG analysis, (iii) 

EEG artefact analysis, and (iv) optimisation of the ratio between artefact-free EEG 

channels and trials to be rejected. The results have shown to be approximately 95% 
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accurate for EOG artefact detection both vertical and horizontal, hand EMG response 

for a cognitive-motor paradigm, involuntary mirror movement detection, and EEG 

artefacts. Fitzgibbon et al. (2016) have worked to identify persistent EMG with a simple 

heuristic based on the gradient of the power spectrum of ICs. They have tested the 

heuristic and have seen that the spectra have gradients greater than a certain threshold. 

Moreover, the components where the spectra have power that decreases faster than the 

threshold are kept, and those where the power decreases slower than the threshold are 

rejected because they are EMG. As a result, for this simple technique (auto-pruned), it 

is valid to exclude EMG-containing components (Fitzgibbon et al. 2016). Combining 

two methods, the wavelet threshold denoising method with ICA decomposition, to 

separate the effects of EMG and Electrocardiography (ECG) from the signal was 

proposed by Zhou and Gotman (2004). The result showed the method is less difficult 

based on it not needing to calculate the higher-order statistics of the signal and it can 

efficiently remove the EMG and ECG artefacts from the EEG signal. 

2.2.2 Surface Laplacian 

The surface Laplacian technique is a popular technique used with EEG signals to 

determine a local relationship between the underlying flow of electric current caused 

by brain activity and SL of scalp potentials (Carvalhaes & de Barros 2015). Ohm’s law 

is the basis of SL. SL has been used by a number of researchers in several different 

studies, such as generators of event-related potentials (Kayser & Tenke 2006b,a), 

quantitative EEG (Tenke et al. 2011), and spectral coherence (Srinivasan et al. 2007; 

Winter et al. 2007); however, here we will examine deeply what appears in Fitzgibbon 

et al. (2013), as it relates directly to the use of the SL technique in sensitivity to muscle 

contamination.  

As is known, SL is more accurate for reading EEG signals as each electrode reads the 

signal from the nearest source in the scalp while ignoring the signals from distant 

sources. Fitzgibbon et al. (2013) tested the central channel because they knew that the 

middle of the scalp does not contain muscles, which means any muscle contamination 

would be caused by distant muscles. This study was conducted on 6 people, one of them 

a female. All were aged between 28 and 73 years. Recording was done twice: the first 

without neuromuscular paralysis and the second after full paralysis. They used 115 

channels, and the recording was made in several different tasks including closed eyes, 

left eye open, submaximal jaw clenching (bite) and frowning (frown).  
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The result of this study is that SL succeeded in removing the influence of muscles on 

the central channel, although at high frequencies of more than 20 Hz, which may not 

be useful in clinical trials. However, SL is expected to be useful for investigators to use 

in the development and testing of algorithms to separate signals from the brain and the 

muscles. In the other study done by Fitzgibbon et al. (2015), they investigated whether 

combining ICA with SL can eliminate EMG. The data and systematic methodology 

they used in this study to evaluate EMG decontamination is the same they used in the 

previous research (Fitzgibbon et al. 2013; Fitzgibbon et al. 2014). Moreover, these 

researchers performed ICA processing by using AMICA, then spherical spline SL after 

that to remove EMG. Fitzgibbon et al. (2015) concluded that the combination of the 

two methods contributed significantly to their results. ICA is very sensitive to local 

temporal and cranial muscles and works to remove the contamination, but other 

muscles, like the postural muscles of the neck, are considered beyond the range of ICA, 

so therefore cannot be assembled and cleaned. Thus, the task of SL is to compile signals 

from the nearest source so the signals from these distant muscles are excluded. 

2.3 Machine learning 

Machine learning makes a machine learn a specific task and do it automatically. 

Mistakes often occur during analysis or with establishing relationships between 

multiple features when done by humans (Kotsiantis et al. 2007). However, machine 

learning can often solve this issue and is successfully applied to these problems, 

improving the efficiency of systems (Kotsiantis et al. 2007).  

Choosing the learning algorithm is an important step in classification. Kotsiantis et al. 

(2007) reported that at least three techniques are used to calculate the accuracy of 

classification. The first technique is to split data into thirds and use two thirds for 

training and the other third for estimating performance (Kotsiantis et al. 2007). The 

second technique is cross-validation, which divides the training set into equally sized 

subsets, and each subset is the training classifier for the union of all the other subsets. 

Average error rate of each subset is estimated by the error rate of the classifier. The 

third technique is leave-one-out validation, which is a special case of cross-validation 

with all test subsets consisting of a single sample.  

Machine learning has provided many competing tools that enables us to analyse EEG 

signals in real time (Sebastiani 2002). Müller et al. (2008) have represented two 
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applications that use EEG signals in the real word, which are Hex-o-Spell and the online 

monitoring of arousal. Hex-o-Spell is a text entry system used for communication, and 

online monitoring of arousal reflects the concentration ability of subjects. They have 

used  Machine learning uses a number of classification techniques to classify EEG 

signals, such as artificial neural network (ANN), support vector machine (SVM) and k-

Nearest Neighbors (kNN). 

Researchers have widely suggested ANN to diagnose epileptic diseases (Srinivasan et 

al. 2005). The ANN method was proposed by Weng and Khorasani (1996) using 

methods that were proposed by Gotman and Wang (1991). Inputs to an adaptive 

structured neural network will be: average EEG duration, average EEG amplitude, 

dominant frequency, coefficient of variation, and average power spectrum (Srinivasan 

et al. 2005). The LAMSTAR network is a neural network model proposed by Nigam 

and Graupe (2004), and it is used to detect epilepsy. Srinivasan et al. (2005) have used 

ANN for detection of epilepsy. The test pattern contains a pre-processing EEG segment 

of one second. Three features of frequency domain and two features of time-domain 

have been used in evaluating the performance of ANN. Five types of training schemes 

have been used in training the ANN. The result shows a 99.6% accuracy rate even with 

a single input feature. Moreover, Srinivasan et al. (2005) have researched the use of 

ANN to detect epilepsy by using frequency-domain and time-domain features. Their 

study was conducted on normal and epileptic subjects, with 100 single channel EEG 

segments for each set. The experiment used 10 subjects, 5 were controls and recorded 

the EEG signal while relaxed and with eyes open, and the other 5 were epilepsy patients, 

and the EEG signal was recorded during occurrences of epileptic seizures. The study 

used 5 different features, 3 frequency-domain and 2 time-domain, to evaluate the 

performance of the neural networks. The result has shown an accuracy rate of 99.6% of 

epilepsy detection, even with a single feature (Srinivasan et al. 2005).  

SVM is a classifier formally defined by a separating hyperplane. It is widely used due 

to its good performance and computational efficiency. The task for SVM is to take a 

training set of data and estimate the input-output functional relationship (Zhang 2001). 

As an example of using SVM, Trambaiolli et al. (2011) have used it in their study. Their 

study was to use machine learning to diagnose Alzheimer’s disease (AD) using SVM. 

The study was applied to search for differences in EEG signals between AD patients 

and controls. The study recorded EEGs from 19 normal subjects (14 females and 5 
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males, mean age 71.6 years) and 16 AD patients (14 females and 2 males, mean age 

73.4 years). The accuracy of the result was 79.9%, and sensitivity was 83.2%. For each 

individual patient, the diagnosis reached an accuracy of 87.0% and sensitivity of 91.7%. 

Kunjan et al. (2016) used SVM for predicting cognitive work load using EEG data. 

They applied classification for pre-processing data to prove the improvement in EEG 

features by removing EMG contamination. They conducted the study on 9 subjects 

performing an oddball task during the recording. As discussed above in the ICA section, 

the auto-pruned method used to eliminate EMG contamination (Fitzgibbon et al., 2016). 

A 10-fold cross-validation technique was used, then SVM on training and testing data. 

The result achieved was pre-processing the data improved the cognitive work load 

predictive power with an accuracy of nearly 100%.  

2.4 Diseases  

Neurological disorder diseases (NDDs) are widespread around the word. The global 

burden of disease (GBD) shows that neurological disorder diseases have increased over 

the past 25 years (Feigin et al. 2017). These diseases lead to death and disability, with 

16.8% of global deaths being caused by NDDs and represented 10.2% of the global 

leading cause group of disability adjusted life years (DALYs) in 2015. Tension-type 

headaches (about 1,500 million cases) are the most prevalent NDDs, the next is 

migraine (about 1,000 million), then Alzheimer’s and other dementias (about 46 million 

cases) (Feigin et al. 2017). They also report that 36.7% is the increase in death and 7.4% 

in DALYs due to NDDs between 1990 and 2015. The main two reasons for this increase 

are the life expectancy has increased from 1990 to 2015, so people live longer suffering 

from dementia, and the growing population. However, comparing cases per 100,000 

people between 1990 and 2015, 26% and 29.7%, respectively, are the decreases in age-

standardised rates of deaths and DALYs caused by NDDs (Feigin et al. 2017).  

Depression is a neurological disorder disease where the patient feels sad, moody, or 

low all the time. Jorm et al. (2013) have said “depression affects how people feel about 

themselves”. People with depression lose interest in hobbies, work, or anything they 

may enjoy (Jorm et al. 2013). These authors also report some depression behaviours, 

such as no longer going out, stopping doing things at work/school, not being close to 

family or friends, and not doing usual enjoyable activities.  
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Anxiety is a neurological disorder disease where the patient feels more than stress or 

worry. An anxiety patient maybe be under stress or worried without any reason (Bartik 

et al. 2001). These authors also have mentioned some anxiety behaviours, for instance 

feeling frightened, overwhelmed, panicked, heart racing, muscle tension, butterflies in 

the stomach, or shaky hands. The common feature of anxiety is thinking about things a 

lot more than usual, and this may be about unnecessary things, but the patient is unable 

to stop thinking about them, therefore, it leads to being anxious all the time (Bartik et 

al. 2001). 

Epilepsy is a central nervous system (neurological) disorder that causes brain activity 

to become abnormal, seizures, or unusual behaviour for periods of time. Seizure 

symptoms are common, even in people without epilepsy. The signs for people with 

epilepsy are simply staring blankly for a few seconds or repeatedly twitching their arms 

or legs during a seizure (Mayo_Clinic_Staff 2018). This clinic has listed some of the 

causes of epilepsy, such as genetic influence, head trauma, brain conditions, prenatal 

injury and developmental disorders (Mayo_Clinic_Staff 2018). Moreover, epilepsy 

usually happens because of abnormal brain activity that may affect any process that the 

brain is responsible for. The Mayo Clinic report mentioned some symptoms for 

epilepsy; for example, “temporary confusion, a staring spell, uncontrollable jerking 

movements of the arms and legs, loss of consciousness or awareness or psychic 

symptoms such as fear, anxiety or deja vu”. 

EEG signals have been used widely in research although they have been used to 

determine a number of diseases that have relationships with the brain. Lyapunov 

indicated the use of EEG signals for identification of epileptic seizures (Swiderski et 

al. 2005). By feeding discrete wavelet transform (DWT) number of EEG signals into a 

modular neural network structure, it detected epileptic EEG signals (Subasi 2007). 

Moreover, the Kiymik et al. (2004) study compared the performances of a continuous 

wavelet transform (CWT) and of a short time Fourier transform (STFT) by using the 

Labview program to analyse epileptic seizures. They found that STFT is useful for real-

time diagnosis; however, CWT has a high resolution, which is effective for clinical 

interpretation. When we talk about other diseases, such as dementia, Ktonas et al. 

(2007) have reported the differences between dementia patients and normal subjects in 

sleep spindle instantaneous frequency dynamics by using the time-frequency technique 

of complex demodulation. Another study shows that patients who have dementia have 
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a lower spectral index than normal “awake” subjects (Renna et al. 2003). Studies have 

shown the decrease in fast wave and the increase in slow wave activity of the EEG for 

patients with Alzheimer’s disease or vascular dementia (Subha et al. 2010). Brunovsky 

et al. (2003) proposed a method that can estimate the degree of cognitive impairment 

caused by Alzheimer’s disease from the EEG quantitative indicators. They have shown 

that increase in delta coherence and decrease in alpha coherence were connected to the 

degree of dementia. Subjects with autism diseases and normal subjects have been 

classified in the study by Sheikhani et al. (2007). That was done with calculated, short 

time Fourier transform (STFT), Bispectrum transform and STFT at bandwidth of total 

spectrum (STFT-BW) for 21 channels of EEG. This study achieved an 82.4% accuracy 

between normal and autism subjects by using STFT-BW. 

 

2.5 Summary 
The literature review has reviewed the concept of EEG signal and the ways of recording 

data. Tasks that used during recording data has been reviewed and put up an example 

of the difference between tasks. Moreover, EMG contamination and the effect on EEG 

signal has been widely researched and investigated a number of ways. EMG 

contamination removal has been reviewed and the main effective ways that it is widely 

performed such as ICA and SL, both have proved their effectiveness to eliminate and 

isolate the EMG contamination. Furthermore, machine learning and classification 

methods have been reviewed and explain the different methods that can used to classify 

data. We have also mentioned the studies that have used the different classification 

methods. Neuropsychiatric diseases also have reviewed and both the definitions of 

those diseases and the effects on the person as well as the difference between them with 

some studies that have done the classification on them. 

The above review has given the knowledge that will used in this thesis to investigate 

the effect of EMG contamination on EEG signal and using different data pre-processing 

will eliminate EMG contamination. The next chapter looks at the hypothesis of the 

study and the expected result. Chapter 4 investigates the main hypothesis by comparing 

between different tasks. As well as Chapter 5 will use machine learning to investigate 

the main hypothesis by classifying neuropsychiatric diseases Chapter 6 has summarises 

the finding, highlights limitations that were faced, and future work. 
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Chapter 3  

Hypothesis 

The study uses two methods to find the effects of EMG contamination on the EEG 

signal. The first section will compare maze solving and eyes closed or open for random 

subjects and the second section will use classification to distinguish neuropsychiatric 

diseases (anxiety, depression and epilepsy) and control subjects. Each section has 

different pre-processing data, which are raw data, ICA (auto-pruned) data and ICA + 

SL. The study hypothesis is divided into three expected results, as shown in Table 1. 

The expected result (1) shows whether a difference in the data is caused by the muscles, 

so the brain activity has no differentiation between these tasks or diseases when 

applying muscle cleaning. For the second expected result (2), the brain has the same 

activity and muscles have no effect on brain activity, so all the results will be the same 

in each of the different data stages. In the expected result (3), the difference between 

these pre-processing types will increase with contaminated EMG. In this case, brain 

activity has been hidden by muscle contamination. Therefore, reading the EEG signal 

will be affected by the muscles.  For example, we might expect that in the maze task 

there is more muscle contamination, so we would expect to see some like result 3 where 

the pre-processing methods reduce EMG contamination. 
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Table 1 Expected result at three different data pre-processing stages.  

Pre-processing data  Expected result (1) Expected result (2) Expected result (3) 

Raw data Difference between 

tasks is higher than 

difference between 

them in ICA or ICA + 

SL.  

Difference between 

tasks has not 

affected by muscles 

and has no different 

overall the data pre-

processing. 

Tasks has no different 

in this stage. 

ICA data Difference between 

tasks is higher than 

difference between 

them in ICA + SL. 

Difference between 

tasks is higher than 

difference between 

them in Raw data. 

ICA + SL  Tasks has no different 

in this stage.  

Difference between 

tasks is higher than 

difference between 

them in raw data or ICA 

data. 
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Chapter 4  

Using NBT toolbox to compare between different EEG signal 

recording tasks 

4.1 Methods 

In this section of the study, we will examine the effect of EMG contamination on EEG 

signals by comparing different tasks for a random sampling who have recorded EEG 

signals under several tasks. We have chosen eyes closed and eyes open tasks to compare 

with a maze solving task. The comparison will be under three different stages of data 

filtering: raw data, data with applying ICA, and data with a combination of ICA and 

SL. Moreover, we expect this comparison will give a result.  

4.1.1 Experimental subjects 

The subjects that we used were collected by The Brain Signals Lab (Whitham et al. 

2007; Whitham et al. 2008). The experiment selects subjects randomly (subjects with 

different diseases, as well as control subjects). During EEG recording, participants 

performed a number of tasks (DeLosAngeles 2010; Whitham et al. 2007; Whitham et 

al. 2008) including eyes open/closed, photic stimulation, auditory stimulation, auditory 

oddball, visual rotation, visual discrimination, subtraction, reading, finger tapping, 

verbal working memory, meditation, and maze solving. In this study, tasks selected 

were eyes closed, eyes open and maze solving. The numbers of subjects are 50 recorded 

with the eyes closed task, 40 recorded with the eyes open task, and 50 recorded with 

the maze solving task. During the study, to compare between the eyes open and the 

maze, we randomly chose 40 subjects’ maze signals to compare with the 40 subjects’ 

eyes open signals. All the subjects were recorded with 124 channels and with 1000 Hz 

sample frequency. The Brain Signals Lab provided raw EEG signals. The Clinical 

Research Ethics Committee of the Flinders University and Flinders Medical Centre 

have given the approval for all experiments, and all subjects gave written informed 

consent.  

4.1.2 Preparation of the data 

In this stage, this study has used two different stages of filtering to remove EMG 

contamination. The first filter is the ICA auto-pruned algorithm, used to remove EMG 

contamination. The auto-prune algorithm uses AMICA for calculating the independent 
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components (ICs) that are used to prune the data. The second filter is SL. We will use 

spherical spline SL to determine the local source of the electrode.  

4.1.2.1 Independent components analysis (ICA) 

This study uses ICA filtering to remove EMG contamination. We will use an auto-

pruned algorithm by using the Adaptive Mixture Independent Component Analysis 

(AMICA) method. This study has used the same processing that has been used by 

Fitzgibbon et al. (2015) with AMICA. For each subject, AMICA (Delorme et al. 2012) 

was performed on tasks separately. While the EEGs were being recorded, participants 

performed a number of tasks (DeLosAngeles 2010; Whitham et al. 2007 2008). Only 

three tasks are mentioned here (maze solving, eyes closed, and eyes open). Due to 

electrode drift, a 1 Hz high-pass filter was applied to each task prior to merging to 

eliminate large offsets (Fitzgibbon et al. 2015). Also, for each of the individual tasks, 

ICA weights from the merged data were used. Moreover, auto-pruned works with 

components are calculated, spectra is calculated for each component.  The linear slope 

of each spectral component is calculated. Those components that have a spectral slope 

exceeding a predefined threshold (which was set to -0.3) are excluded and the 

remaining components are projected back to EEG sensor space. 

4.1.2.2 Surface Laplacian 

In this work, spherical spline SL (Kayser & Tenke 2006) has been used. It was provided 

by CSD Toolbox (Kayser 2009). SL has been applied to the EEG signal prior to the 

ICA auto-pruning. SL permits manipulation of the flexibility of the spherical spline in 

the CSD Toolbox. Legendre polynomial used a constant ‘m’, with a lower value giving 

more flexibility and a higher value giving more rigid splines (Perrin et al. 1989). Perrin 

et al. (1989) recommended m = 4 when they evaluated the value of m = 2–6. However, 

m = 3–5 under different circumstances is recommended by Tenke and Kayser (2012). 

In this study, we evaluate splines using flexibility of m = 2–6 for their capability to 

remove EMG contamination (Fitzgibbon et al. 2015).  

4.1.3 Statistical analysis 

This study uses the Neurophysiological Biomarker Toolbox (NBT) 

(https://www.nbtwiki.net/). This is an EEG toolbox that uses the MATLAB program 

for computation and integration of neurophysiological biomarkers. Moreover, the 

Student paired t-test is used in this study to compare two population means, which are 

https://www.nbtwiki.net/
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in two samples: observations in one sample can be paired with observations in the other 

sample (Shie 2004). Statistical significance was assumed for p < 0.05. 

NBT has several of computing biomarker that we have been tried to calculate the 

difference between tasks such as Coherence, Phase Locking Value, phase looking value 

and Detrended fluctuation analysis (DFA)  , however, the most of them have non-

different between tasks in that computed biomarker. Therefore, in this study, 

normalised amplitude has been used.  

EEG signals will be categorised in classical frequency bands: delta (1–4 Hz), theta (4–

8 Hz), alpha (8–13 Hz), beta (13–30 Hz) and gamma (30–45 Hz). Normalised amplitude 

computes the integrated amplitude for each of these frequency bands. However, the 

result will focus on three frequency bands, delta (1–4 Hz), alpha (8–13 Hz), and gamma 

(30–45 Hz). These bands were chosen because muscle activity will appear in the 

gamma frequency band and the delta and alpha bands will determine whether the ICA 

and SL have an effect on any brain activities (Fitzgibbon et al. 2015).  

NBT has different scale ranges each time the t-test is applied between two tasks. The 

different scales will affect the comparison; therefore, we have changed the scale to be 

fixed in the three stages of testing. The selection of the scale was based on calculating 

the average between the three different scales resulting from applying the t-test between 

two tasks in each stage. For example, applying normalised amplitude on the gamma 

frequency band between maze solving and eyes closed tasks gives a scale range as the 

following for the three stages: 

Table 2  Calculating the average between the three different scales to use in comparisons 

of the pre-processing data. 

Stage Raw data ICA data SL Calculate 

average 

Scale range -5.56–5.56 -2.55–2.55  -3.63–3.63 -3.91–3.91 

 

4.1.4 Study processing 

The raw data that was provided by The Brain Signals Lab (Whitham et al. 2007; 

Whitham et al. 2008; DeLosAngeles 2010) will be processed to clean it by using the 

ICA filtering that we mentioned earlier. EMG contamination is removed by using 

AMICA first then using auto-pruned data. This data will be processed again using SL. 
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In this step, the data will be in three different stages of EMG contamination that is 

marked data (raw data), auto-pruned data, and data with AMICA, auto-pruned and SL. 

Each stage will be computed with amplitude normalisation biomarker under frequency 

bands delta (1–4 Hz), alpha (8–13 Hz), and gamma (30–45 Hz). The final process is to 

compare eyes closed subjects and maze solving in each stage, such as by applying the 

Student paired t-test on raw data for eyes closed subjects with raw data for maze solving 

subjects under each frequency band, at all stages. Also, we apply all the processes to 

compare eyes open and maze solving as well. Therefore, eyes open with raw data is 

compared to raw data with maze solving, ICA data for both eyes open and maze solving 

will be compared, and ICA with SL for those tasks will be compared as well. The results 

will be analysed to see whether muscles affect brain EEG recording.  
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4.2 Results 

In this section, we will explain our findings by applying the NBT statistical computing 

program (https://www.nbtwiki.net/), by using the Student paired t-test on the data and 

finding the differences between eyes closed and maze solving with the three main 

frequency bands, delta (1–4 Hz), alpha (8–13 Hz), and gamma (30–45 Hz), as well as 

the differences between eyes open and maze solving, with the same frequency bands. 

 

Figure 1 Grand average for maze solving minus eyes closed for gamma frequency band 

(30–45 Hz), in raw data, after applying ICA, and after applying ICA and SL. The scale 

has represented the red colour with non-significant different and when it comes down to 

the blue it means that it has a significant different. 

4.2.1 Eyes closed versus maze solving 

With SL in combination with ICA, significant differences were observed in the brain. 

As shown in Figure 1, the gamma frequency band (30–45 Hz), the grand average for 

maze solving minus eyes closed marked data shows that the raw data has most of the 

brain not significantly different, with the percentage in the range 0.78%–3.91%, except 

the FP1 and FP2 electrodes have a small part that is significantly different. However, 

we have applied ICA to it with auto-pruned and the result for the grand average for 

maze solving minus eyes closed showed a reduction in the non-significant difference 

in the majority of the brain to be 0%–0.78% and the small area 0.78%–1.56%, as shown 

in Figure 1. In this stage, the significantly different area in the FP1 and FP2 electrodes 

increased to include a bigger area in the FP1 and FP2 electrodes. Comparison between 

ICA and SL has given a result as shown in Figure 1. SL, as known, cancels out distant 

sources and keeps the local sources only (Nunez & Srinivasan 2006); therefore, the 

grand average for maze solving minus closed eye tasks has a different result for the F4, 

https://www.nbtwiki.net/
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F8, T4 and T6 electrodes, which are the electrodes of the highly significant difference 

in the range -0.78%–3.91%, and the F3 and P3 electrodes have the most non-significant 

different, however, F7, Pz, O1 and C3 electrodes have less non-significant different 

than F3 and P3 electrodes. 

 

Figure 2 Grand average for maze solving minus eyes open for the gamma frequency band 

(30–45 Hz), in raw data, after applying ICA, and after applying ICA and SL. The scale 

has represented the red colour with non-significant different and when it comes down to 

the blue it means that it has a significant different. 

4.2.2 Eyes open versus maze solving 

Applying the Student paired t-test to the raw data of eyes open and maze solving under 

the gamma frequency band (30–45 Hz) has shown the grand average for maze solving 

minus eyes open has most of the brain with non-significant differences Figure 2. The 

percentage of non-significant difference is different between scalp areas. However, the 

big area is in the range 0.53%–2.66%. EMG contamination has hidden the differences 

between maze solving and eyes open. This appeared after applying ICA to the data and 

finding the grand average for those tasks, as shown in Figure 2. This shows most of the 

brain has a small range of difference (-1.06%–0%) between those tasks, except the O1 

and O2 electrodes have more significant differences. SL and ICA together have 

changed the result to give us the local areas of the brain that have significant differences 

and those without. Figure 2 represents the Pz and F3 electrodes with non-significant 

differences in the range 0%–10.6%, and the F4 and T3 electrodes with significant 

differences, more than the rest of the brain with differences in the range -2.13%–0%. 

4.2.3 EMG contamination 

The variance between raw data and ICA with SL is obvious in the grand average for 

maze solving and eyes closed. In Figure 1, the variation between them is clear, and we 
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can see how the non-significant difference has been limited by using both ICA and SL. 

Moreover, EMG contamination played a role in hiding the differentiation between 

tasks. By looking at the ICA + SL, the most significant difference and the non-

significant difference areas will be apparent. 

The difference between the maze solving and eyes open tasks is observable in Figure 

2. When looking at raw data, there appears to be no difference between those tasks in 

the brain activity; however, ICA + SL gives us the positions of the differences in brain 

activity between those two tasks. These results explain that EMG contamination can 

affect EEG signals.  

Both Figures 1 and 2 represent the same concept of results. Raw data in both figures 

shows most of the brain has non-significant differences. There are two major points of 

the scalp that have the most non-significant differences in these figures. By applying 

ICA, both results have the same reaction with EMG contamination, which is reducing 

non-significant differences, as shown in these figures. Moreover, ICA + SL has shown 

that the areas of the brain that have non-significant differences are quite similar between 

them.  

4.2.4 Brain activities 

Brain activity has not been affected by applying ICA and SL, as shown in Figures 3 and 

4. The delta and alpha frequency bands for all stages in this study have the same result. 

In other words, in the delta frequency band, the grand average for maze solving minus 

eyes closed in the raw data has shown non-significant differences between them as well 

as by using ICA and ICA + SL. Furthermore, the same grand average for maze solving 

and eyes open tasks has similar results to maze solving and eyes closed, with no effect 

after applying ICA and SL. This result shows the brain activity isn't affected by 

applying ICA and SL. Furthermore, the alpha frequency band is also not affected in any 

stages, as shown in Figures 3 and 4, where the grand average for maze solving with 

eyes closed and maze solving with eyes open are the same for all stages, with the 

outcome of only brain activities, which means in the gamma frequency band, the 

differentiation that we have mentioned earlier has been applied to the EMG 

contamination without losing any brain activities.  
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Figure 3 Grand average for maze solving minus eyes closed and eyes open for the delta 

frequency band (1–4 Hz) in raw data, after applying ICA, and after applying ICA + SL. 

The scale has represented the red colour with non-significant different and when it comes 

down to the blue it means that it has a significant different. 

 

Figure 4 Grand average for maze solving minus eyes closed and eyes open for the alpha 

frequency band (8–13 Hz) in raw data, after applying ICA, and after applying ICA + SL. 

The scale has represented the red colour with non-significant different and when it comes 

down to the blue it means that it has a significant different. 
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4.3 Discussion 

In this section, we will discuss the findings in this study from many different angles. 

The subjects that we have used have been recorded performing different tasks. Some 

have different diseases and some are normal people. All the data has the same 

processing, using the same methods to remove the EMG contamination. The ICA has 

been used previously in Fitzgibbon et al. (2016), Delorme et al. (2012), and Fitzgibbon 

et al. (2015), using the AMICA method; therefore, it has shown good performance with 

different datasets. We applied auto-pruned by using the AMICA method for calculating 

the independent component, as shown in Fitzgibbon et al. (2016). Referring to the 

results that we have in Figure 1 for applying ICA, it appears the ICA has contaminated 

EMG without affecting the brain activity, as shown in Figures 3 and 4. It has been 

mentioned that EMG contaminates the data above 20 Hz (Whitham et al. 2007); 

therefore, delta and alpha have seen no activity change after applying ICA, which 

means ICA contaminates EMG by keeping brain activities.  

The combination of ICA and SL gives a result different from applying ICA only. With 

ICA only, the region of non-significant difference is less than with ICA + SL. This 

phenomenon may be due to SL giving the local electrode records and by applying 

differentiation between those tasks, SL distinguishes between the electrodes that have 

significant differences in activity and those that do not. This phenomenon has appeared 

after applying SL on ICA with two different comparisons (eyes closed versus maze 

solving and eyes open versus maze solving). As shown in Figures 1 and 2, the difference 

between applying ICA and applying ICA + SL is that SL eliminates the distant effects 

of EMG and the distant electrode effects.  

Eyes closed and eyes open are different tasks for recording an EEG signal. According 

to Barry et al. (2007), eyes closed and eyes open have differences in brain activity. 

Also, differences between the tasks are seen in the delta frequency band for most of the 

brain, while no differences are seen in the alpha frequency band. This study shows this 

by comparing eyes closed with maze solving and eyes open with maze solving to 

confirm the reduction when reducing EMG contamination. Using two different tasks 

with different categories, as proved in Barry et al. (2007), and getting results by using 

ICA has reduced EMG, and ICA + SL gives the actual position of the brain difference 

for those tasks, which is evidence that EMG contamination affects the EEG signal.  
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The result has shown that the delta frequency band has non-significant differences 

between raw data and the auto-pruned method in both kinds of comparison Figure 3. 

This was proved by Fitzgibbon et al. (2016), where they have proved there was no 

significant difference between data contaminated by EMG and data after applying auto-

pruned methods. As well, the alpha band frequency Figure 4 has non-significant 

differences between raw data and data after applying the auto-pruned method. That was 

proved also in Fitzgibbon et al. (2016), which found similar results with data 

contaminated by EMG and data after applying the auto-pruned method. This has proved 

the ICA used in this study has no effect on the EEG signal. 

ICA enables us to isolate and remove EMG sources and leave EEG free from EMG 

contamination. Moreover, SL deals with current source density (CSD) space that 

transforms EEG voltage. CSD is not sensitive to distant EMG contamination. 

Therefore, the combination of ICA and SL limits the impact of EMG contamination on 

EEG signals, with ICA isolating and removing the EMG contamination, and SL dealing 

with CSD to locate sources of EEG signals, therefore, stopping the data effect from 

distant muscles. 
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Chapter 5  

Using classification method to classify neuropsychiatric diseases 

5.1 Methods 

EEG signals are usually used with neuropsychiatric diseases; therefore, this section 

examines the difference between those with neuropsychiatric diseases and control 

subjects. These diseases are anxiety, depression, and epilepsy. The study will compare 

each disease with controls under the three stages: raw data, data after applying ICA and 

data with combination of ICA and SL. In this section, the comparison will use machine 

learning to analyse data under NBT features. This section covers one of the main three 

expected results (Table 1).  

5.1.1 Experimental subjects 

This study uses data from subjects collected by The Brain Signals Lab (Whitham et al. 

2007; Whitham et al. 2008). The subjects were chosen based on their diseases. Data 

was recorded with many tasks (Whitham et al. 2007; Whitham et al. 2008; 

DeLosAngeles 2010); however, eyes closed is the task that we chose for this study. The 

number of subjects in this study is 34, 10 were controls, 10 had depression, 10 had 

epilepsy and 4 had anxiety. Raw EEG signals were provided by The Brain Signals Lab. 

The Clinical Research Ethics Committee of the Flinders University and Flinders 

Medical Centre have given the approval for all experiments, and all subjects gave 

written informed consent (Fitzgibbon et al. 2016). All the data was recorded with 124 

channels and 1000 Hz sample frequency. Data was prepared by applying ICA (auto-

pruned method) on raw data and applying SL on data with ICA, which will be explained 

further later in this chapter. 

5.1.2 Preparing the data 

In this stage, this section has used the two stages of filtering to remove EMG 

contamination as used in the first section. The first filter is the ICA auto-pruned 

algorithm used to remove EMG contamination. The auto-pruned method uses AMICA 

for calculating the ICs that are used to prune the data. Then, the second filter is SL. We 

will use spherical spline SL to determine the local source of the electrode. As we have 

mentioned earlier, ICA isolates and removes EMG contamination; however, it may be 

affected by distant muscle sources, so SL collects the local sources of electrodes and 
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rejects the distant sources. The combination of them isolates and removes the local and 

distant EMG contamination. In this section of the study, SL is applied to raw data as 

well to ensure the good results will only be affected by the SL or by the combination of 

ICA + SL.  

The data was divided into one second segments because the samples were limited due 

the numbers of subjects with the studied diseases. Recording was done using 124 

channels. Dividing data into one second segments will extend the data to be a large data 

set; therefore, machine learning will have a large data set for training and testing as 

shown in Table 3.  

Features that will be used to examine the data are prepared by using NBT 

(https://www.nbtwiki.net/). NBT provides different kinds of computing biomarkers. 

The computing biomarkers that are used in this study are amplitude for some frequency 

bands (delta (1–4 Hz), theta (4–8 Hz), alpha (8–13 Hz), beta (13–30 Hz), and gamma 

(30–45 Hz)) and normalised amplitude for some frequency bands (delta (1–4 Hz), theta 

(4–8 Hz), alpha (8–13 Hz), beta (13–30 Hz), and gamma (30–45 Hz)). Each feature of 

these has used with 124 features that have given by the electrodes, therefore, each time 

of the classification has 124 features.  

Table 3. The number of actual subjects and the number of one second segments subjects 

for each disease and the control 

 Anxiety Depression Epilepsy  Control 

Actual number of 

subjects 

4 subjects 10 subjects 10 subjects 10 subjects 

Number of one 

second instances 

142 instances  360 instances 285 instances 348 instances 

 

5.1.3 Statistical analysis 

Principal component analysis (PCA) is a method used for dimensionality reduction and 

feature extraction (Subasi & Gursoy 2010). PCA is used to represent the d-dimensional 

data in a lower-dimensional space that will minimise the degree of freedom and time 

complexities (Subasi & Gursoy 2010). Therefore, we have used PCA to reduce features, 

in some cases, to 9 features from 124 to get better and quicker results.  

https://www.nbtwiki.net/
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The evaluate the generalisation error of the classifier a 10x10 cross-validation method 

is used. The division of the folds uses a stratified randomly sampling to produced ten 

mutually exclusive subsets for each fold. Artificial neural network (ANN) is a 

MATLAB toolbox that performs a particular function of training a neural network by 

adjusting the values of the connection between elements (Demuth & Beale 1992). The 

subsets were entered into ANN to train the network using the Feed-Forward Neural 

Networks (FFNN) method (Levenberg 1944; Marquardt 1963). This method works in 

one direction, which means there are no cycles or loops in the network (Zell 1994). 

FFNN has 1 hidden layer with 10 nodes. The algorithms used in this study are random 

data division, Levenberg-Marquardt to train the network, and Mean Squared Error in 

performance. Levenberg-Marquardt is an algorithm to solve the problem of minimising 

a non-linear function and is suitable for small and medium sized problems 

(Wilamowski & Yu 2010).  

5.1.4 Study processing  

The data used in this study was collected by The Brain Signal Lab (Whitham et al. 

2007; Whitham et al. 2008; DeLosAngeles 2010) for the eyes closed task. Data is 

isolated and EMG contamination is removed by applying ICA, then by applying SL to 

remove distant muscle effects. Therefore, each kind of disease (anxiety, depression, and 

epilepsy) and the control data have four different kinds of data pre-processing: raw data, 

data with ICA, data with both ICA and SL, and raw data with SL. This data has been 

computed with the biomarkers (amplitude and normalised amplitude for different 

frequency bands (delta (1–4 Hz), theta (4–8 Hz), alpha (8–13 Hz), beta (13–30 Hz), and 

gamma (30–45 Hz)). The data has fewer subjects; therefore, we divide it into one 

second, non-overlapping segments to extend the data. PCA was applied to reduce the 

number of features, in some cases from 124 features to 9. The was training method was 

applied ten times (10x10 CV) to gain enough data to perform a statistical analysis.   
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5.2 Results and discussion  

ANN was applied to classify the three neuropsychiatric diseases (anxiety, depression, 

and epilepsy) with control subjects under the four different types of data pre-processing 

(raw data, ICA data, ICA + SL, and raw data + SL) and with different features given 

by the NBT (https://www.nbtwiki.net/).  

Table 4. Accuracy percentages and biomarkers informedness of classification of anxiety 

v control for each band with amplitude and normalised amplitude. The following symbols 

indicate significant differences: * from Raw, + from ICA, # from SL, ^ from ICA+SL 

 

 

Raw data ICA data ICA + SL SL 

Frequency bands Accuracy 

% 

BM Accuracy 

% 

BM Accuracy 

% 

BM Accuracy 

% 

BM 

 Amplitude  

Delta  

(1–4 Hz) 

72+#^ 0.07 71*#^ 0.01 96*+# 0.87 79*+^ 0.32 

Theta  

(4–8 Hz) 

77#^ 0.28 77#^ 0.30 98*+# 0.96 89*+^ 0.66 

Alpha  

(8–13 Hz) 

80+#^ 0.39 82*#^ 0.48 98*+# 0.93 95*+^ 0.87 

Beta  

(13–30 Hz) 

89+#^ 0.69 91*#^ 0.37 99*+# 0.97 96*+^ 0.90 

Gamma  

(30–45 Hz) 

92#^ 0.79 93#^ 0.80 98*+ 0.97 98*+ 0.94 

Normalised Amplitude 

Delta  

(1–4 Hz) 

71+#^ 0.06 71*#^ 0.67 92*+# 0.81 85*+^ 0.63 

Theta  

(4–8 Hz) 

71#^ 0.01 71#^ 0.03 90*+# 0.75 81*+^ 0.50 

Alpha  

(8–13 Hz) 

76+#^ 0.28 75*#^ 0.21 93*+# 0.79 87*+^ 0.60 

Beta  

(13–30 Hz) 

75+#^ 0.24 71*#^ 0.06 94*+ 0.88 95*+ 0.87 

Gamma  

(30–45 Hz) 

96+#^ 0.88 86*#^ 0.61 100*+ 0.99 100*+ 1.00 

 

5.2.1 Anxiety versus control 

Table 4 shows the accuracy of classifying anxiety patients versus control subjects under 

the four different types of data pre-processing. The result shows no huge difference 

between raw and ICA data. The difference is usually 1%–2%. For example, the delta 

band in marked data gives higher accuracy (72%) than ICA data (71%) by 1%. 

Accuracy in the alpha band differed from ICA, which had higher accuracy (82%) than 

marked data (80%) by 2%. Also, for the gamma band, marked data had 92% accuracy 

in marked data and 93% in ICA data. On the other hand, the difference between SL and 

https://www.nbtwiki.net/
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ICA + SL was obvious, especially in the delta and theta bands. However, the accuracy 

percentages were closer for the alpha and beta bands and similar in the gamma bands, 

which both had 98% accuracy. Table 4 shows the obvious differences between the ICA 

+ SL and both raw data and ICA in all frequency bands. Therefore, the good accuracy 

percentage for ICA + SL is based on both ICA + SL, even if ICA has not given a good 

result by itself.  

Normalised amplitude gave a result quite similar to amplitude for the raw and ICA data, 

where there were no differences for the delta and theta bands and small differences 

between the alpha and beta bands. However, the gamma band has a huge difference in 

accuracy between them, where raw data has 96% accuracy and ICA has 86%.  For 

amplitude, ICA + SL has no differences in accuracy apart from in the beta band, where 

SL is 1% higher than ICA + SL.   

In general, ICA + SL has given the best results in all bands, where the accuracy was 

greater than 95% for amplitude and greater than 90% for normalised amplitude. 

However, the best result was given by the gamma band for normalised amplitude for 

both ICA + SL and SL, which was 100% accuracy. 
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Table 5. Accuracy percentages and biomarkers informedness for classification of 

depression v control for each band for amplitude and normalised amplitude. The 

following symbols indicate significant differences: * from Raw, + from ICA, # from SL, ^ 

from ICA+SL 

 Raw data ICA data ICA + SL SL 

Frequency bands Accuracy 

% 

BM Accuracy 

% 

BM Accuracy 

% 

BM Accuracy 

% 

BM 

Amplitude 

Delta  

(1–4 Hz) 

59+#^ 0.18 62*#^ 0.24 100*+ 0.99 70*+ 0.40 

Theta  

(4–8 Hz) 

66#^ 0.33 65#^ 0.30 98*+# 0.97 73*+^ 0.47 

Alpha  

(8–13 Hz) 

55+#^ 0.10 57*#^ 0.15 100*+# 1.00 75*+^ 0.50 

Beta  

(13–30 Hz) 

84#^ 0.67 84#^ 0.68 100*+# 1.00 90*+^ 0.81 

Gamma  

(30–45 Hz) 

88#^ 0.76 90#^ 0.79 99*+# 0.99 94*+^ 0.89 

Normalised Amplitude 

Delta  

(1–4 Hz) 

61#^ 0.21 61#^ 0.21 93*+# 0.85 65*+^ 0.30 

Theta  

(4–8 Hz) 

55+^ 0.11 57*^ 0.14 92*+# 0.85 57^ 0.14 

Alpha  

(8–13 Hz) 

56+#^ 0.12 57*#^ 0.13 92*+# 0.84 68*+^ 0.36 

Beta  

(13–30 Hz) 

62#^ 0.23 61#^ 0.22 94*+# 0.87 72*+^ 0.44 

Gamma  

(30–45 Hz) 

73#^ 0.45 74#^ 0.48 99*+# 0.97 88*+^ 0.75 

 

5.2.2 Depression versus control 

 The result of classification of the depression patients and control subjects is shown in 

Table 5. Amplitude features have shown small differences between marked and ICA 

data. For example, the delta band had 59% accuracy in the marked data and ICA 62%; 

for the theta band, marked data had 66% accuracy and ICA 65%; and marked data had 

55% and ICA 57% in the alpha band, while there was improvement in accuracy in the 

gamma band between marked data and ICA data, from 88% to 90%. Moreover, SL data 

had better results than raw and ICA data, as shown in Table 5; however, the ICA + SL 

gave the best result in all bands for amplitude. The delta, alpha and beta bands for 

amplitude gave 100% accuracy, and the gamma gave 99% accuracy.  
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The normalised amplitude results showed that the percentages are quite similar between 

the raw, ICA and SL data. For instance, the theta band in raw data gave 55%, whereas 

ICA and SL gave the same accuracy, 57%. The gamma band is the one where raw and 

ICA data gave large differences, with SL raw data achieving 73% accuracy and ICA 

74%; whereas SL had 88%. Overall, ICA + SL gave the best result for normalised 

amplitude, where all bands had above 90% accuracy.  

The gamma band for both amplitude and normalised amplitude gave 99% accuracy for 

ICA + SL data, as well as in this data the accuracy was similar or converged in other 

bands. For example, amplitude has three bands with the same 100% accuracy, and the 

rest approached 100%. Also, for normalised amplitude, the bands approached 93%, 

except the gamma band has greater accuracy than the others.  

Table 6. Accuracy percentages and biomarkers informedness for classification of epilepsy 

v control for each band for amplitude and normalised amplitude. The following symbols 

indicate significant differences: * from Raw, + from ICA, # from SL, ^ from ICA+SL 

 Raw data ICA data ICA + SL SL 

Frequency bands Accuracy 

% 

BM Accuracy 

% 

BM Accuracy 

% 

BM Accuracy 

% 

BM 

Amplitude 

Delta  

(1–4 Hz) 

64+#^ 0.28 67*^ 0.16 84*+# 0.60 69*^ 0.38 

Theta  

(4–8 Hz) 

66+#^ 0.32 71*#^ 0.34 83*+# 0.59 77*+^ 0.54 

Alpha  

(8–13 Hz) 

64#^ 0.28 66#^ 0.16 82*+# 0.57 74*+^ 0.48 

Beta  

(13–30 Hz) 

85# 0.70 85# 0.66 86# 0.63 82*+^ 0.65 

Gamma  

(30–45 Hz) 

93+#^ 0.86 92*^ 0.82 96*+# 0.91 92*^ 0.84 

Normalised Amplitude 

Delta  

(1–4 Hz) 

60+#^ 0.19 64*#^ 0.12 77*+# 0.47 68*+^ 0.36 

Theta  

(4–8 Hz) 

62#^ 0.25 62#^ 0.05 66*+# 0.19 67*+^ 0.35 

Alpha  

(8–13 Hz) 

59+#^ 0.17 64*#^ 0.12 77*+# 0.46 67*+^ 0.34 

Beta  

(13–30 Hz) 

70#^ 0.39 71#^ 0.28 80*+# 0.55 74*+^ 0.48 

Gamma  

(30–45 Hz) 

82+#^ 0.64 76*#^ 0.43 87*+# 0.69 91*+^ 0.82 
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5.2.3 Epilepsy versus control 

For this classification, the reduction in accuracy of all results was apparent when 

compared with the other classifications. Moreover, the accuracy percentages for the 

delta to gamma bands do not differ from those of the other classifications, as shown in 

Table 6. For example, raw data in the delta band has 64% accuracy, and gamma has 

93%. However, the alpha band for each type of pre-processing for amplitude is less 

accurate than the theta band, which did not occur for the other classifications (Tables 4 

and 5). For instance, for raw data, the theta band has 66% accuracy, and alpha has 64%; 

for ICA data, the theta band has 1% accuracy, and alpha has 66%. For amplitude at all 

frequency bands, ICA + SL gave the best result of all data pre-processing. The gamma 

band with ICA + SL gave 96% accuracy, the highest accuracy of all bands.  

The disparity between pre-processing is not great, especially between raw, ICA and SL 

data. For example, the delta band raw data got 64% accuracy, ICA 67%, and SL 69%. 

While the disparity between them and ICA + SL is obvious in the lower bands, it is not 

as great in the higher bands. For instance, the delta band ICA + SL had 84% accuracy, 

which is great in comparison with the others; however, the beta band ICA+ SL had 

86%, while raw data and ICA data had 85% and SL had 82%.  

Normalised amplitude had different results from amplitude, with disparities in accuracy 

between the bands for each type of pre-processing. For example, raw data for the alpha 

band had 59% accuracy, while delta had 60%, and theta had 62%. Also, for ICA and 

ICA + SL, delta and alpha have the same accuracy percentages, while theta is less 

accurate. SL gave the highest accuracy in the gamma band, where it was 91%. The 

gamma band ICA + SL was less accurate than SL, which is due to the disparity between 

raw data and ICA data, where raw data had 82% while ICA data had 76%. 

5.2.4 T-test  

Student’s t-test has been used for statistically analysing the results. The t-test was 

calculated for each band in both amplitude and normalised amplitude frequency bands 

between the pre-processing data. Tables 4, 5 and 6 show the significant differences and 

non-significant differences between the data pre-processing types for each 

classification (p < 0.05).  
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In delta and alpha bands over both amplitude and normalised amplitude usually give 

significant different level between data pre-processing. However, the other bands have 

different result from one classification table to other table.  

The t-test results for raw and ICA data shows non-significant difference in more than 

one of the different frequency bands. Most of the time, the non-significant difference 

arose between those data pre-processing in all classification tables and over all bands, 

were 13 out of 30. ICA + SL has significant difference with each pre-processing over 

all bands in each Tables 4, 5 and 6. ICA+SL has proved that the combination between 

those pre-processing gives the best result overall all bands.  

As mentioned previously, the SL has used to confirm that the ICA+SL is affected only 

by influence of SL or by the combination of both methods. The differences in the 

accuracy percentages have shown that as well as the t-test with the significant different 

in the almost all the t-test between ICA+SL and SL data pre-processing. Therefore, the 

ICA+SL is an effective combination of both methods   

5.2.5 EMG contamination 

Classification of diseases under the pre-processing data gave different accuracies, 

shown in Tables 4, 5 and 6. ICA data has non-significant differences with raw data 

more than other data pre-processing, which means ICA did not quite improve data, 

similar to in the first section. In this case, there may be two reasons for that. The first is 

the classification was performed on 124 channels on the scalp, and some have minimal 

muscle contamination (Fitzgibbon et al. 2016). Accuracy percentages for raw data and 

SL in Tables 4, 5 and 6 show small improvements over raw data and significant 

different in t-test in the most bands. Therefore, we can say that combination of ICA + 

SL improved both t-test and accuracy. As we mentioned in the first section, ICA is able 

to isolate and remove the EMG contamination and SL collects data from local sources. 

These features in the combination of ICA and SL proved the first reason. The second 

reason is the number of subjects in the study was limited. The number of subjects for 

training and testing the validation was limited, which may have affected identification 

of the features that were hidden by EMG contamination. SL makes the features that 

were hidden by EMG clear; hence, the best result was from ICA + SL. 
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Chapter 6  

Conclusion 

This thesis has demonstrated the effect of EMG on the EEG signal by comparing EEG 

signals under three different types of data pre-processing. The study was divided into 

two major sections and each of them had a goal to determine the effect of EMG 

contamination. The first section used three types of data pre-processing: raw data (no 

pre-processing), data after applying ICA, and data after applying ICA + SL. The second 

section used the same pre-processing as well as the raw data + SL. 

The first section used NBT to determine the EMG contamination effect on the EEG 

signal. In this section, a random sample of subjects was used to expand the data. The 

tasks chosen were eyes closed, eyes open, and maze solving. The comparison was 

between eyes closed or open and maze solving. The Student’s paired t-test was used to 

compare tasks under normalised amplitude as a computed biomarker for various 

frequency bands (delta (1–4 Hz), alpha (8–13 Hz), and gamma (30–45 Hz)). These 

frequency bands gave brain activity and the effect of EMG contamination. The result 

of the first section showed that brain activity in the gamma band is affected by EMG 

contamination. ICA cleans the data of EMG contamination and gives better brain 

activity. However, the combination of ICA + SL cleared the brain activity of EMG 

contamination and showed the brain activity positions and showed the difference 

between the tasks in the brain regions. The delta and alpha bands showed non-

significant differences between tasks under all types of pre-processing, which means 

brain activity was not affected by applying ICA and SL. The gamma band proved the 

effect of EMG contamination and how ICA and SL isolated and removed it. 

The second section used machine learning to classify those with neuropsychiatric 

diseases (anxiety, depression, and epilepsy) and control subjects under the four types 

of data pre-processing (raw data, ICA, ICA + SL, and SL). ANN was used for training 

data and testing validation. The features were extracted from NBT, which were 

amplitude and normalised amplitude for all frequency bands. Also, the Student’s t-test 

was applied to discover the significant differences and non-significant differences 

between types of pre-processing for amplitude and normalised amplitude for all bands. 

The result was that SL had the highest accuracy for all the bands and had significant 

differences between it and raw data for anxiety v control and depression v control, and 
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non-significant differences for epilepsy v control, with obvious differences in accuracy 

percentages in all bands. However, ICA had non-significant differences for all the 

classifications with raw data in the t-test and showed no improvement in accuracy 

percentages. Moreover, SL gave non-significant differences in the t-test with raw data; 

however, with the observed bands, accuracy percentages are improved.  

In general, section one has proved the third expectation, which is that brain activity is 

hidden by EMG contamination, which means the isolation and removal of EMG 

contamination by ICA gave improvement in recordings between different tasks, and SL 

has further improved brain recordings and given the different positions between tasks 

on the scalp.  

Section two has different data and methods used for classification, and the result was 

between the second and third expectations. ICA does not improve the accuracy 

percentages, which means the EMG contamination did not affect brain activity for the 

classification. However, ICA + SL improved the accuracy percentages, which means 

EMG contamination affects brain activity and by removing EMG contamination, the 

accuracy was improved. The effect of SL was not the only reason for the improvement 

in the accuracy, which was confirmed when we applied SL to raw data giving small 

improvements in accuracy. Therefore, ICA played role in improving the results when 

integrated with SL.  

6.1 Study limitations  

The NBT that we used is version 0.5.5-public, which has limitations in that some 

features cannot gives limitation in result whatever the data that has been computed. 

For example, Coherence, Phase Locking Value, phase looking value and Detrended 

fluctuation analysis (DFA) Also, for biomarker statistics we had to use the MATLAB 

version 2014a to display the figures. As well as the statistical tests some of them do 

not display figures such as one-way or two-way ANOVA, Wilcoxon paired sum test 

and Permutation test for paired mean difference. NBT does not provide multi-test 

correction and it choose to plot significance with the absence of effect size.  

In the data set used in the first section, the subjects had different diseases, and some 

were control subjects, which may have affected the comparison because each disease 

had different brain activity. Moreover, the data set in section two had a small number 
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of subjects for training the ANN and testing the validation, which may have affected 

the results. 

This study used 124 channels to examine the entire scalp. Some of these channels are 

affected by EMG contamination, and some diseases are different from normal in 

specific regions of the brain while the rest has the same brain activity; therefore, we 

believe that has affected the results, especially for classification.  

6.2 Future work  

This study has used 124 channels from all the brain regions. However, in future work, 

the classification of neuropsychiatric diseases and control subjects must be specific on 

the regions of differentiation between each disease and the controls. As well, the 

number of subjects must be increased to give more accurate results.  

Amplitude and normalised amplitude are the features that have been used in this study. 

However, it would be interesting to investigate further features such as bandwidth 

(BW), peak frequency, spectral edge frequency (SEF), root mean-squared EEG 

amplitude (RMS Amp), minima and maxima, and Shannon entropy (HSH). 

The focus of this thesis was the different muscle reducing pre-processing methods and 

not necessarily the machine learning algorithms. It would be interesting to investigate 

further using the dataset with different machine learning algorithms such as SVM or 

even Deep Learning if the data is sufficiently large. As well as the numbers and sizes 

of hidden layers will be tried to see the result with different machine learning algorithms 

and different hidden layers. 

Using the fusion of the classifiers for the 10 different band + normalised approaches, 

which may give much better result. More over using a diversity analysis would also be 

useful.  
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