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Abstract

The principle aim of this thesis is to redefine our understanding of the dynamics
of microbial communities in groundwater systems. We focused on elucidating
fundamental biological parameters in aquifers by determining baseline levels of
bacterial and viral abundances and investigating the diversity and metabolic
potential of subsurface microbiota. We show that microbial abundances are highly
variable in the subsurface. Our data clearly indicates that microbes inhabiting
groundwater systems display high levels of small scale heterogeneity. We
attribute this microbial heterogeneity to hydrophysicochemical conditions driving
niche formation and ecosystem dynamics including top-down and bottom-up
processes influencing the composition and dynamics of resident microbial
consortia. Recognising environmental heterogeneity and the role of niche
partitioning is important in understanding how resident bacterial communities
vary as a result of habitat alteration. Our results highlight the importance of
heterogeneity, niche specialisation and microbial succession in subsurface
environments. We suggest that variability in the abundance and diversity of
subsurface microbial communities may be an intrinsic feature of aquifer biology
and should be considered when designing groundwater microbial sampling
methodologies. Recognition of the highly variable nature of subsurface microbial
communities will facilitate a greater understanding of groundwater microbial

ecology.
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Chapter 1—Thesis introduction

Microbes in the subsurface

Prokaryotes and viruses, herein referred to as microbes, dominate the Earth’s
biological systems and form an essential part of ecosystem functioning through
the turnover of energy and matter and by increasing biological activity through
nutrient recycling and supporting foodwebs (Azam et al. 1983; Chapelle 2000;
Glud and Middleboe 2004; Skidmore et al. 2005; Suttle 2005; Goldscheider et al.
2006; Griebler and Lueders 2008; Humphreys 2009). Microbes are the most
abundant organisms on the planet, with total prokaryotic abundance estimated at
> 10% cells (Whitman et al. 1998), and estimates of total viral abundance ranging
from 10%° to 10* viruses (Suttle 2005). Microbes are ubiquitous and found in
almost all habitats (Whitman et al. 1998). In comparing the components of the
biosphere, the subsurface is estimated to contain the greatest number of
prokaryote cells and subsurface prokaryotic biomass likely exceeds the biomass of

all life existing on the surface (Gold 1992; Whitman et al. 1998).

Microbiological activity in the subsurface is dependent on a myriad of factors
including biological interactions, hydrochemical and geophysical conditions, and
the availability of nutrients and energy sources (Hackenkamp 1993; Dahm et al.
1998; Hancock et al. 2005; Lozupone and Knight 2007; Jeffries et al. 2011).
Research on the role of subsurface microbes has often focused on the impacts of
anthropogenic activities on aquifers and groundwater systems (Chapelle 1993;
Pedersen 1993; Brockman and Murray 1997; Lundegard et al. 1997; West and

Chilton 1997; Abbaszadegan et al. 2003; Hancock et al. 2005), with less attention



paid to investigating the abundance and diversity of microbes from pristine

aquifers (Griebler and Lueders 2008; Flynn 2008; Zhou et al. 2012).

Subsurface microbial heterogeneity

Aquifers are saturated geological formations, typically of either permeable or
unconsolidated materials, and are capable of yielding significant quantities of
water to wells and springs. In contrast, aquitards store water but are limited in
their ability to transmit or exchange water. Aquifers are inherently complex due to
geological heterogeneity and hydrological anisotropy resulting in spatial and
temporal variation of hydrological, physical and chemical conditions (Hancock
et al. 2005; Goldschieder et al. 2006; Griebler and Lueders 2008). Variable and
fluctuating  hydrophysicochemical  conditions can  drive  contrasting
biogeochemical processes, which influence microbial abundances and distribution
at the meter, millimetre or potentially even at the micrometre-scale (Hendricks

1993; Manga 2001; Goldschieder et al. 2006; Griebler and Lueders 2008).

The heterogeneous distribution of microbes in the subsurface can influence the
rate of biochemical reactions, affect groundwater chemistry and nutrient turnover,
and control the effectiveness of subsurface anthropogenic operations such as
bioremediation and groundwater extraction schemes (West and Chilton 1997,
Bennett et al. 2000; Chapelle 2000; Griebler and Lueders 2008). The presence of
a solid and an aqueous substrate phase in an aquifer can result in the partitioning
of different biochemical processes in each substrate phase and drive the
heterogeneous distribution of microbes between phases (Fontes et al. 1991;

Hancock et al. 2005). For example, groundwater prokaryotic abundances typically



range between 10 to 10° cells mI™ (Ghiorse and Wilson 1998; Griebler and
Lueders 2008) while abundances of prokaryotes attached to the solid substrate of
the aquifer matrix are typically 1-2 orders of magnitude greater than the adjacent
waters (Storey et al. 1999; Lehman et al. 2001). Furthermore, spatially and
structurally complex environments, such as groundwater systems which
experience fluctuating hydrophysicochemical conditions, can lead to the
formation of niches and result in increased species diversity (MacArthur and

Wilson 1967; Bennett et al. 2000; Torsvik et al. 2002).

Subsurface heterogeneity enables the presence and persistence of a multitude of
microbial cells and species (Brockman and Murray 1997; Lozupone and Knight
2007; Griebler and Lueders 2008) which are able to exploit different
hydrophysicochemical conditions until all functional niches are filled (Gofray and
Lawton 2001; Torsvik et al. 2002; Lytle and Poff 2004). The formation of niches
is likely to be enhanced due to naturally occurring processes and fluctuating
heterogeneous conditions that can stimulate the production of specialised niches
for indigenous microbes (Griebler and Lueders 2008). In contrast, anthropogenic
influences such as the over-extraction of groundwater can also lead to niches
which promote microbially mediated environmental problems such as the
production of acid sulphate soils (Fitzpatrick 2003; Fitzpatrick et al. 2009).
Research on the effects of increasing acidity due to the production of acid
sulphate soils on resident microbial populations are limited, indicating a need for
a greater understanding of these systems. Furthermore, subsurface heterogeneity

and niche specialisation provide logistical challenges to the sampling and



characterisation of the microbial dynamics of groundwater systems (Brockman

and Murray 1997) due to the inaccessible nature of the subsurface environments.

Sampling and characterising subsurface microbes

Accessing groundwater is typically conducted using piezometers or bores,
however, water in the casing of a bore can differ chemically in water from the
surrounding aquifer (Humenick et al. 1980; Robin and Gillham 1987). Standard
groundwater physicochemical sampling methodologies typically rely on purging a
bore or piezometer to ensure that samples obtained are representative of the
aquifer and are not artefacts from stagnant water in the bore (Summers and
Brandvold 1967; Garvis and Stuermer 1980; Schuller et al. 1981; Barcelona and
Helfrich 1986; US EPA 1986; Pionke and Urban 1987; Lundegard et al. 1997). At
present, it is unknown whether prokaryotic and viral abundances in unpurged bore
water are the same as purged aquifer water. While two studies have partially
investigated the effect of continuously purging bore water on bacterial abundances
(Kwon et al. 2008; Kozuskanich et al. 2011) there is a lack of information on the
effect of continual purging on viral abundances, which may stem from the

challenges involved in enumerating viruses from groundwater.

Microbial abundances in groundwater are typically enumerated using
epifluorescence microscopy, plate counting or plaque assays (Wilson et al. 1983;
Yates et al. 1985; King and Parker 1988; Goldschieder et al. 2006; Griebler and
Lueders 2008). An alternative technique, flow cytometry (FCM), is an efficient
and established technique used to enumerate the abundances of bacteria and

viruses, termed virus-like particles (VLPs), in marine and limnotic systems (Marie



et al. 1997, 1999; Noble and Fuhrman 1998; Brussaard et al. 2000; Danovaro et
al. 2000; Seymour et al. 2005; Duhamel and Jacquet 2006). However, the
utilisation of FCM for bacterial and viral enumerations in groundwater studies is
limited (Kieft et al. 2005; Seymour et al. 2007; Anneser et al. 2010; Leys et al.
2010). FCM can also be used to discriminate microbial subpopulations based on
DNA content and cell size (Marie et al. 1999; Seymour et al. 2007) where, for
example, prokaryotic cells showing higher DNA content and a larger cell size are
likely undergoing replication (Gasol and del Giorgio 2000; Lebaron et al. 2001;
Lebaron et al. 2002; Servais et al. 2003). While FCM defined subpopulations can
provide additional insight into the ecology of bacteria and virus-like particle
consortia, FCM does not provide any information on genomic function or

diversity.

To effectively characterise the dynamics of subsurface microbial communities it is
necessary to elucidate the vast spectrum of functional capabilities reflected in the
genomes of subsurface microbial communities. The enormous diversity in the
subsurface encompasses microbes with vastly different functional capabilities
(Torsvik et al. 2002). Metagenomics is a technique that can provide insight into
the entire community genomics, including taxonomic discrimination and
metabolic characterisation of the resident microbial community (Handelsman
2004; Tringe et al. 2005). This technique is a powerful tool in understanding
whole of community composition and capability, and has been used to investigate
microbes in numerous environments previously (Dinsdale et al. 2008; Jeffries et
al. 2011, Lavery et al. 2012; Smith et al. 2012, 2013). Measuring the abundances,

classifying the diversity and characterising the metabolic potential of groundwater



bacteria will aid in elucidating the intrinsic heterogeneous nature of the subsurface
and contribute to understanding the patterns behind niche specialisation and
groundwater ecosystem functioning. A greater understanding of subsurface

microbes is crucial for the optimal preservation of groundwater ecosystems.

1.1 Thesis structure and objectives

This thesis aims to contribute to a greater understanding of subsurface microbial

ecology by:

)] Investigating the effectiveness of groundwater sampling approaches and
the role of subsurface heterogeneity on microbial abundances.

1) Characterising the influence of heterogeneity and niche partitioning on the
abundance, diversity and genomics of subsurface microbial communities.

[11)  Investigating the effects of changes in physicochemistry and niche
formation on indigenous microbial communities as a result of the over-

extraction of groundwater.

This thesis contains five data chapters (Chapters 2 to 6) that build upon each other

to aid in the elucidation of these aims.

Aim | was addressed in Chapters 2, 3 and 4. Chapter 2 used flow cytometry to
enumerate bacterial and viral concentrations in purged and unpurged aquifer water
in order to investigate specific sampling techniques and employ them to identify
the influence of heterogeneity on the effectiveness of groundwater microbial
sampling techniques. Chapter 3 further explores microbial groundwater sampling
methodologies through the use of flow cytometry to enumerate bacterial and VLP

6



abundances from different aquifers under continually purged conditions. Chapter
4 investigates the role of groundwater heterogeneity by determining the influence
of hydrologically distinct aquifer units and the subsequent effect on flow-
cytometrically defined bacterial and VLP subpopulation structures. Aim Il was
investigated in Chapter 5 through the use of metagenomics to characterise the
indigenous bacterial community’s taxonomic composition and metabolic potential
from the aqueous and solid substrate components of an aquifer. Chapter 5 further
investigates the role of niche partitioning by elucidating the higher ecological
trophic groupings of resident bacteria consortia. Aim Il was investigated in
Chapter 6 by using metagenomics to investigate the taxonomic and metabolic
signatures of the resident bacterial community present in acid sulphate soil that
formed as a consequence of groundwater depletion. Together, these chapters
aimed to contribute to a holistic understanding of subsurface microbial

communities.
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