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Abstract

Clustering algorithms have been widely applied and different approaches have

been developed for different domains of application. This thesis investigates ef-

ficient and effective clustering and soft computing algorithms. In the investi-

gation of k-medoids algorithms, several improved algorithms are proposed, such

as the Clustering Large Applications Based on Simulated Annealing (CLASA)

algorithm, the Multi-Centroids with Multi-Runs Sampling Scheme (MCMRS)

and Incremental Multi-Centroid, Multi-Run Sampling Scheme (IMCMRS) algo-

rithms. The Partial Distance Search (PDS), Triangular Inequality Elimination

(TIE) and Previous Medoid Index are also presented to improve the clustering

speed of k-medoids based algorithms. In addition, a new memory utilization

scheme is derived and applied to efficient k-medoids algorithms.

In the investigation of centroid-based clustering algorithms, the tabu search

with simulated annealing algorithm is proposed and applied to codebook design

for vector quantization. Genetic clustering is also presented for mean-residual

vector quantization. Several theorems based on Hadamard Transform for nearest

neighbour search are presented and applied to efficient cluster (codeword) search

for vector quantization. A label bisecting clustering algorithm is proposed and

applied to create a robust watermarking technique.

Parallel particle swarm optimization based on three communication strategies

are proposed to solve the problems in which the relationship between parameters

are either independent, loosely correlated, strongly correlated or unknown. Seven

communication strategies for Ant Colony Systems (ACS) are proposed to improve

the ACS for the traveller salesman problem and the Constrained Ant Colony

Optimization (CACO) based on the quadratic metric, sum of k nearest neighbour

distance, constrained addition of pheromone and a shrinking range strategy is also

proposed and demonstrated to be better than the Ant Colony Optimization with

Different Favor (ACODF ).
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Chapter 1

Introduction

Clustering in data mining is used to group similar objects based on their distance,

connectivity, relative density, or some specific set of characteristics. The cluster-

ing methods have been mentioned in many contexts (Jain & Dubes 1988, Kauf-

man & Rousseeuw 1990, Hartigan 1975) and the applications of clustering include

numerous areas, including pattern recognition (Anderberg 1973), character recog-

nition (Babu & Murty 2001), image processing (Jain & Flynn 1996), computer

vision (Jolion, Meer & Bataouche 1991), information retrieval (Rasmussen 1992),

web search (Krishnapuram, Joshi & Yi 1999, Mobasher, Cooley & Srivastava

1999, Zamir, Etzion, Mandani & Karp 1997), Engineering (Fisher, Xu, Carnes,

Reich, Fenves, Chen, Shiavi, Biswas & Weinberg 1993), Geographic Informa-

tion Systems (Estivill-Castro & Lee 2000a, Estivill-Castro & Lee 2000b, Han,

Kamber & Tung 2001, Ng 1996, Sander, Ester, Kriegel & Xu 1998), Image Com-

pression (Gersho & Gray 1992), OLAP (Markl, Ramsak & Bayer 1999), Pro-

tein Sequencing (Enright & Ouzounis 2000), Psychiatry (Lecompte, Kaufman &

Rousseeuw 1986) and Vector quantization (Pan, McInnes & Jack 1996c). Var-

ious clustering algorithms have been designed to fit various requirements and

constraints of application. Clustering techniques can also be applied to recog-

nize different geometrical structures. Su and Chou (Su & Chou 2001) proposed a

modified k-means algorithm based on point symmetry distance measure to cluster

1
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the ellipsoidal shells and detect human faces.

A number of clustering scenarios have caused problems in the past. Many

have been solved but others still cause some problems, see Figure 1.1.

• Non-spherical clusters. Clustering algorithms such as k-means and k-

medoids naturally form spherical clusters. This means that some irregular

shapes, such as those shown in Figure 1.1(a), would be erroneously clus-

tered together. This problem has largely been solved through grid-based,

hierarchical and density based clustering techniques such as, for example,

CLIQUE (Agrawal, Gehrke, Gunopulos & Raghavan 1998), CURE (Guha,

Rastogi & Shim 1998) and DBSCAN (Ester, Kriegel, Sander & Xu 1996)

respectively.

• Shaped clusters. In some applications, the shape of the eventual clusters

are significant and many algorithms fail to account for this. For example,

it is likely that many algorithms would consider Figure 1.1(c) to consist of

two rather than four clusters.

• Clusters with outliers. While the k-medoids method is considered more

robust to (the influence of) outliers, some forms of outlier can still cause

problems or unduely influence the results of clustering. Moreover, in some

work it is the outliers that are the focus of interest.

• Bridges. Figures 1.1(g-i) shows three scenarios in which the bridge between

two or three obvious clusters need to be handled carefully. In many cases

the bridge itself is required to be identified as a cluster separately.

• Constraints. Although a real-world requirement, the existence of barriers

or other forms of constraint has only relatively recently been considered

(Zäıane & Lee 2002).

• Non-parametric clustering. The need to specify, in advance, parameters

such as the number of clusters to form can be a problem. The acceptable
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Figure 1.1. Problem datasets for some clustering algorithms

criterion, for example, for a neighbour, the required cluster density, etc. is

dealt with by some routines but some issues remain a problem.

• Clusters of varying density. Some routines have problems finding clus-

ters of varying density at the same time, such as those indicated in Fig-

ures 1.1(d) and 1.1(j).

Texture analysis is of high importance for the visual-scene analysis because

an entire image can be interpreted as a composition of different textures (Pan &

Wang 1999). How to segment the texture is an important issue for research. The

texture segmentation can be formulated as a combinatorial optimization problem

which can be solved using clustering technique. The tabu search approach has

been applied to segment the texture (Pan, Wang, Fang & Chen 1998). A modified
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k-means algorithm based on spatial and wavelet domains is also applied to texture

segmentation (Ng & Bouzerdoun 2001).

In business, a market basket database contains transaction per customer and

each transaction contains a set of items purchased by the customer, marketer

can utilize these transaction data to cluster the customers such that customers

with similar buying items are in the same cluster. The clusters can then be

used to classify into the different customer groups, and these characterizations

can be used in targeted marketing and advertising such that specific products

are directed towards specific customer groups. The characterizations can also be

used to predict buying patterns of new customers (Han, Karypis, V. & Mobasher

1997, Guha, Rastogi & Shim 1999).

During the last decade, with the prevalence of Internet access and usage, dig-

ital media, including images, audio, and video sequences, are easily acquired in

our daily life. Owing to the digital nature of such media, the unlimited copying

and easy distribution have made copyright protection an important topic. The

clustering techniques can be applied to embed the watermark in a suitable po-

sition of the original image such that the watermarked image can be robust to

some attacks (Lu, Pan & Sun 2000c, Lu & Sun 2000).

Soft computing is an emerging collection of methodologies to exploit toler-

ance for uncertainly, imprecision and partial truth to achieve useable robustness,

tractability, low total cost and approximate solutions. It is particularly efficient

and effective for NP-hard problems. Recently, many differently challenges posed

by data mining have been solved by various soft computing methodologies. At this

juncture, the main components of soft computing involve fuzzy theory, artificial

neural networks, genetic algorithms, simulating annealing, tabu search approach,

swarm intelligence systems (such as particle swarm optimization, ant systems

and ant colony systems) and other approaches related to cognitive modelling.

Each of them contributes a revealable methodology which only in a cooperative

rather than competitive manner for persuading problems in its field. It is ex-
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pected that soft computing techniques will finally become as general and popular

as traditional methods of computer science.

Because there are many proposed clustering techniques to solve difficult prob-

lems in various areas, clustering has possessed of an influential position. In this

thesis, we focus on developing some novel efficient and effective soft computing

techniques and applying various soft-computing tools and their hybridizations for

improving clustering algorithms.

1.1 Related Existing Clustering Algorithms

Clustering is a dynamic field of research in data mining. Lots of clustering al-

gorithms have been proposed and discussed in many contexts and disciplines.

These can be classified into inter alia partitioning methods, hierarchical meth-

ods, density-based methods, grid-based methods and model-based methods as

described as follows (Han & Kamber 2001):

Partitioning Methods:

Given a database of n objects, a partitioning method creates k partitions of

the objects, where each partition represents a cluster. Each cluster contains

at least one object and each object must belong to exact one group. Both

k-means (MacQueen 1967) (which adopts as the representative point the

weighted mean of the cluster) and k-medoids (Kaufman & Rousseeuw 1990)

(which adopts as the representative point the most central object in the clus-

ter) algorithms are typical partitioning methods. Centroid-based clustering

technique such as k-means (or LBG, GLA) (MacQueen 1967) has been ap-

plied to generate codebook from a large spatial database. The codebook

can be used for image coding, speech recognition and data compression.

Vector quantization is one of the popular data compression methods. One

of the core techniques for vector quantization is to generate useful codebook
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which mainly depends on the clustering techniques. One of the evaluation

criteria in vector quantization aims at generating clusters (or codebook)

from a large spatial database so that the average distortion between the

input vector and the reconstructed vector can be reduced. PAM was the

first method proposed for k-medoids algorithm and had been improved by

CLARA (Kaufman & Rousseeuw 1990). Both PAM and CLARA are re-

ported to be inefficient method based on the computational complexity.

CLARANS was designed for cluster analysis (Ng & Han 1994). Exper-

imental results demonstrate that CLARANS was superior to these two

algorithms. Based on the CLARANS, the spatial domain and non-spatial

domain clustering algorithms were developed. CLARANS has been applied

to find the clusters of Vancouver expensive housing units successfully.

Hierarchical Methods:

A hierarchical method constructs a hierarchical decomposition of the given

set of objects. This method gives rise to dendrogram in which the patterns

are formed a nested sequence of partitions. Hierarchical procedures can be

either agglomerative or divisive. An agglomerative clustering approach is a

process in which each pattern is placed in its own cluster and these atomic

clusters are gradually merged into larger and larger clusters until the de-

sired objective is attained. A divisive clustering approach reverses the pro-

cess of agglomerative clustering approach by starting with all patterns in

one cluster and subdividing into several smaller clusters. BIRCH (Zhang,

Ramakrishnan & Livny 1996), CURE (Guha et al. 1998), ROCK (Guha

et al. 1999) and CHAMELEON (Karypis, Han & Kumar 1999) are all hier-

archical methods. BIRCH is the first clustering algorithm proposed in the

database area to handle noise effectively. The basic idea of BIRCH is to

integrate hierarchical agglomeration and iterative relocation by first using

a hierarchical agglomerative algorithm and then refining the result using

iterative relocation. CURE partitions a random sample firstly, and each
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partition is partially clustered. The partial clusters are then clustered in

a second pass to yield the desired clusters. CHAMELEON generates the

k-nearest neighbor graph from the objects, then partition and merge the

graph based on the criteria of inter-connectivity and closeness to get final

clusters.

Density-Based Methods:

Most partitioning methods cluster objects based on the distance between

objects, such that only spherical-shaped and/or elliptical-shaped clusters

can be found. It is hard to discover clusters of arbitrary shapes. DB-

SCAN (Ester et al. 1996) is a clustering method based on the density

threshold of clusters. The object belong to the same cluster if the dis-

tance between this object and any one object in the cluster is smaller than

a distance threshold, then this object is set to the same cluster. If the num-

ber of objects in the cluster is smaller than a density threshold, then all the

objects in this cluster are recognized as the noise (outliers). Clusters of arbi-

trary shape can be found in this approach and is well appropriate for spatial

databases. The other two related density based clustering algorithms are

OPTICS (Ordering Points To Identify the Clustering Structure) (Ankerst,

Breunig, Kriegel & Sander 1999) and DENCLUE (Clustering Based on Den-

sity Distribution Functions) (Hinneburg & Keim 1998). OPTICS generates

an augmented ordering of the database to represent its density-based clus-

tering structure. DENCLUE is a distribution-based clustering algorithm

according to some influence function to generate clusters.

Grid-based methods:

Grid-based methods quantize the object space into a finite number of grids.

The benefit of this method is the efficient processing time. Normally the

processing time is independent of the number of objects and dependent

only on the number of grids in each dimension in the quantized space.
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STING (Wang, Yang & Muntz 1997) is a grid-based method while CLIQUE (Agrawal

et al. 1998) and WaveCluster (Sheikholeslami, Chatterjee & Zhang 1998)

are clustering algorithm based both on grid-based and density-based meth-

ods.

Model-based methods:

Model-based clustering methods attempt to optimize the clusters of the

objects based on some mathematical models. Statistical approach and neu-

ral network approach are two major approaches for model-based methods.

COBWEB is a popular and simple method of incremental conceptual clus-

tering based on the model of statistical approach (Fisher 1987). SOM

(self-organizing feature map) is a typical clustering algorithm based on the

model of neural network approach (Kohonen 1982).

1.2 Soft Computing

The realm of soft computing encompasses fuzzy logic and other meta-heuristics

such as genetic algorithms, neural networks, simulated annealing, particle swarm

optimization, ant colony systems and parts of learning theory as shown in Fig-

ure 1.2 (Chen 2002). It is expected that soft computing techniques have received

increasing attention in recent years for their interesting characteristics and their

success in solving problems in a number of fields.

1.2.1 Fuzzy Theorem

Along the trace of development of computing machinery, there was a long his-

tory of research trying to endow cybernetics with intelligence. According to the

adopted representation scheme, there are two main streams of approaches: sym-

bolic systems and sub-symbolic systems. In symbolic systems, symbols are given
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Figure 1.2. The hybridization of soft computing

with semantic meanings to represent concrete or abstract entities and the rela-

tionships among them, such as predicate calculus and expert systems. Neural

networks and classifier systems are examples of the second category, in which

knowledge is distributed to the weight or strength of a vast number of simple

units. Formal logic does contribute to the discipline of modern science and en-

gineering, but it did not provide a total solution to the problem faced by the

community of artificial intelligence. The obstacle may be, in part, due to that a

great portion of real world is inexact rather than precise. Therefore, formal logic

alone is insufficient to model the mental activity of human beings. Fuzzy systems,

pioneered by Zadeh (Zadeh 1965), stand at the gray zone between symbolic and

sub–symbolic systems. Rooted in fuzzy theory, fuzzy systems are trying to cope

with the inexact nature of real world and to model the mental activity of human

beings.

Fuzzy systems can been distinguished for the following characteristics (Dubois

& Prade 1980, Mamdani & Gaines 1981):

1. Rule-based: Benefit of symbolic system was preserved by coding expertise

into fuzzy rules described by linguistic variables.
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2. Robust: The representation scheme and inference process of fuzzy systems

are inherently immune to environmental noise, change in system parame-

ters, and damage of rule base.

3. Easy-prototyping: Workable prototype can be easily constructed, and then

tuned according to actual operation data.

4. Highly representative: The fuzzy rules are perceivable to human being. This

characteristic is crucial if a fuzzy system can learn new rules or adapt old

rules by itself.

5. Both symbolic and numerical: Rules are stored symbolically and inferred

numerically making fuzzy systems able to response to wide range of input

by only a few rules.

After decades of research effort, fuzzy systems gain from various prospects. Not

only the idea was settled down to mathematical foundations (Kosko 1992) but

also dedicated hardware was developed (Togai & Watanabe 1986, Yamakawa

1988). Applications in different fields and commercialized product had revealed

the potential of fuzzy systems. Fuzzy controller is a successful application of

fuzzy theory, especially for ill-structured control problems.

1.2.2 Artificial Neural Networks

Neural networks may be one of the future directions of computing. An Artificial

Neural Network (ANN) is an information-processing paradigm that is inspired by

the way biological nervous systems, such as the brain, process information. The

key element of this paradigm is the novel structure of the information processing

system. It is composed of a large number of highly interconnected processing

elements, termed ”neurons” working in unison to solve specific problems.

ANNs are a form of multiprocessor computer system, with simple processing

elements, a high degree of interconnection, simple scalar messages, and adaptive
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interaction between elements. Like people to learn by example, an ANN is config-

ured for specific applications including image processing (Lo, Huai & Freedman

2003, Robinson & Kecman 2003), pattern recognition (Liu & Wechsler 2003),

speech processing (Xiang & Berger 2003), communication systems (Palicot &

Roland 2003), control engineering (Lavretsky, Hovakimyan & Calise 2003, Park,

Harley & Venayagamoorthy 2003), and other areas in engineering, through a

learning process. Learning in biological systems involves adjustments to the

synaptic connections that exist between the neurons. This is true of ANNs as

well. ANNs are important approaches in the area of soft computation.

1.2.3 Simulated Annealing

The original idea of Simulated Annealing (SA) was proposed by Kirkpatrick and

his colleagues (Kirkpatrick, Gelatt & Vecchi 1983). It is a random search method

presented for optimization of NP-hard problems. The idea is analogous to the

process of metal annealing. The temperature is introduced to the optimization

process so as to control the probability to jump out of the current position.

The temperature value may be reduced proportionally to the increase of the

number of iterations. In the initial iterations, the temperature is large so as

to jumping out of the current position easier. As the iteration number is in-

creased, it tends to be converged to the current position with a small probability

to leave the present position. SA is capable of escaping from the local optimum

due to the use of stochastic random number. SA has been successfully applied

to power system engineering (Gallego, Alves, Monticelli & Romero 1997), cell

placement in VLSI design (Kurbel, Schneider & Singh 1998), various codes con-

struction (Gamal, Hemachandra, Shperling & Wei 1987), and the optimization

of wiring problem (Vecchi & Kirkpatrick 1983). Simulated annealing is a key

approach in the members of soft computation family.
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1.2.4 Tabu Search Approach

The Tabu search approach (Skorin-Kapov 1990, Pan & Chu 1996, Glover &

Laguna 1997, Chu & Fang 1999, Lu, Pan & Sun 2000b, Pan, Lu, Shieh &

Sun 2000, Al-Sultan 1995, Franti, Kivijarvi & Nevalainen 1998) is a higher-level

method for solving combinatorial optimization problems. It is a metaheuristic

developed by Glover (Glover 1977, Glover 1986) and designed to optimize the

problem by performing a sequence of moves that lead the procedure from one

test solution to another. The idea of tabu searching is to forbid some search

directions at a present iteration in order to avoid cycling, so as to jump off local

optima. Each move is selected randomly from a set of currently available alter-

natives. The new test solutions are generated by performing the moves from the

current best solution and the current best solution is the test solution which is

not a tabu solution or it is a tabu solution but it satisfies the aspiration crite-

rion. The tabu solution is the solution in which the elements of the solution are

partially or completely recorded in the tabu list memory. Tabu list memory is

used to partially or completely record the elements of move from the current best

solution to its selected neighbour. It is called aspiration if the test solution is in

the tabu condition but it is the best solution for all iterations up to now.

1.2.5 Genetic Algorithms

Based on long-term observation, Darwin asserted his theory of natural evolution.

In the natural world, creatures compete with each other for limited resources.

Those individuals that survive in the competition have the opportunity to repro-

duce and generate descendants. In so doing, any exchange of genes may result in

superior or inferior descendants with the process of natural selection eventually

filtering out inferior individuals and retain those adapted best to their environ-

ment.

Inspired by Darwin’s theory of evolution, Holland (Holland 1975, Goldberg
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1989) introduced the genetic algorithm as a powerful computational model for

optimization. Genetic algorithms work on a population of potential solutions, in

the form of chromosomes, and try to locate a best solution through the process of

artificial evolution, which consist of repeated artificial genetic operations, namely

evaluation, selection, crossover and mutation.

Although the operation of genetic algorithms is quite simple, it does have

some important characteristics providing robustness:

• They search from a population of points rather than a single point.

• The use the object function directly, not their derivative.

• They use probabilistic transition rules, rather than deterministic ones, to

guide the search toward promising regions.

In effect, genetic algorithms maintain a population of candidate solutions and

conduct stochastic searches via information selection and exchange. It is well

recognized that, with genetic algorithms, near-optimal solutions can be obtained

within justified computation cost. However, it is difficult for genetic algorithms

to pin point the global optimum. In practice, a hybrid approach is recommended

by incorporating gradient-based or local greedy optimization techniques. In such

integration, genetic algorithms act as course-grain optimizers and gradient-based

method as fine-grain ones.

The power of genetic algorithms originates from the chromosome coding and

associated genetic operators. It is worth paying attention to these issues so that

genetic algorithms can explore the search space more efficiently. The selection

factor controls the discrimination between superior and inferior chromosomes. In

some applications, more sophisticated reshaping of the fitness landscape may be

required. Other selection schemes (Whitley 1993), such as rank-based selection,

or tournament selection are possible alternatives for the controlling of discrimi-

nation.



CHAPTER 1. INTRODUCTION 14

Numerous variants with different application profiles have been developed fol-

lowing the standard genetic algorithm. Island-model genetic algorithms, or paral-

lel genetic algorithms (Abramson & Abela 1991), attempt to maintain genetic di-

versity by splitting a population into several sub-populations, each of them evolves

independently and occasionally exchanges information with each other. Multiple-

objective genetic algorithms (Gao & Yao 2000, Fonseca & Fleming 1993, Fonseca

& Fleming 1998) attempt to locate all near-optimal solutions by careful control-

ling the number of copies of superior chromosomes such that the population will

not be dominated by the single best chromosome (Sareni & Krahenbuhl 1998).

Co-evolutionary systems (Handa & Katai 2002, Bull 2001) have two or more in-

dependently evolved populations. The object function for each population is not

static, but a dynamic function depends on the current states of other populations.

This architecture vividly models interaction systems, such as prey and predator,

virus and immune system.

1.2.6 Particle Swarm Optimization

Some social systems of natural species, such as flocks of birds and schools of fish,

possess interesting collective behavior. In these systems, globally sophisticated

behavior emerges from local, indirect communication amongst simple agents with

only limited capabilities.

In an attempt to simulate this flocking behavior by computers, Kennedy and

Eberthart (1995) realized that an optimization problem can be formulated as that

of a flock of birds flying across an area seeking a location with abundant food. This

observation, together with some abstraction and modification techniques, led to

the development of a novel optimization technique – particle swarm optimization.

Particle swarm optimization optimizes an object function by conducting a

population-based search. The population consists of potential solutions, called

particles, which are a metaphor of birds in flocks. These particles are randomly
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initialized and freely fly across the multi-dimensional search space. During flight,

each particle updates its velocity and position based on the best experience of its

own and the entire population. The updating policy will drive the particle swarm

to move toward region with higher object value, and eventually all particles will

gather around the point with highest object value.

Numerous variants had been introduced since the first particle swarm opti-

mization. A discrete binary version of the particle swarm optimization algorithm

was proposed by Kennedy and Eberhart (1997). Shi and Eberhart (2001) ap-

plied fuzzy theory to particle swarm optimization algorithm, and successfully

incorporated the concept of co-evolution in solving min-max problems (Shi &

Krohling 2002).

1.2.7 Ant Systems and Ant Colony Systems

Inspired by the food-seeking behavior of real ants, Ant Systems, attributable to

Dorigo et al. (Dorigo, Maniezzo & Colorni 1996), has demonstrated itself to be

an efficient, effective tool for combinatorial optimization problems. In simplistic

terms, in nature, a real ant wandering in its surrounding environment will leave a

biological trace - pheromone - on its route. A more ants take the same route the

level of this pheromone will increase. The intensity of pheromone at any point

will bias the path-taking decisions of subsequent ants. After a while, the shorter

paths will tend to possess higher pheromone concentration and therefore encour-

age subsequent ants to follow them. As a result, an initially irregular path from

nest to food will eventually focus to form the shortest paths. A more promising

method was also developed and referred to as the algorithm of Ant Colony Sys-

tem (ACS) (Dorigo & Gambardella 1997). With appropriate abstractions and

modifications, these natural observations have led to a successful computational

model for combinatorial optimization. The Ant System and Ant Colony Sys-

tem have been applied successfully in many applications such as the quadratic
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assignment problem (Maniezzo & Colorni 1999), data mining (Parpinelli, Lopes

& Freitas 2002), space-planning (Bland 1999), job-shop scheduling and graph

coloring (Dorigo, Caro & Gambardella 1999).

In some respects, the ant system has implemented the idea of emergent com-

putation – a global solution emerges as distributed agents performing local trans-

actions, which is the working paradigm of real ants. The success of ant systems in

combinatorial optimization makes it a promising tool for dealing with a large set

of problems in the NP -complete class (Papadimitriou & Steiglitz 1982). In addi-

tion, the work of Wang and Wu (Wang & Wu 2001) has extended the applicability

of ant systems further into continuous search space.

1.3 Thesis Structure

There are seven main chapters in this thesis. Chapter 2 reviews the history of

k-medoids algorithms and introduces one of the typical partitioning algorithms

– k-medoids-based algorithm for the reader. It includes the complexity of three

well-known algorithms–PAM , CLARA and CLARANS. The concept of Fuzzy

k-means clustering algorithm and genetic k-medoids algorithm are also addressed

in this chapter. An improved k-medoids algorithm using simulated annealing

termed CLASA which has been developed and compared with other k-medoids

algorithms. In Chapter 2, a novel and efficient approach is proposed to reduce

the computational complexity of such k-medoids-based algorithms by using previ-

ous medoid index, triangular inequality elimination criteria, and partial distance

search. In addition, the concept of the utilization of memory for efficient medoid

search is presented. The proposed hybrid search approach which combines the

previous medoid index, the utilization of memory, the criterion of triangular in-

equality elimination and the partial distance search for the problem of nearest

neighbor search will be described clearly in this chapter.

Chapter 3 details a novel sampling scheme using multi-centroids with multi-
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runs (MCMRS). This sampling scheme can be applied to PAM , CLARA,

CLARANS and CLASA algorithms. A MCMRS-CLASA algorithm that com-

bines the benefits of MCMRS with the CLASA algorithm is also proposed and

evaluated. The computation load in MCMRS and MCMRS-CLASA can be

further released by applying a more efficient centroid-based clustering method. A

more advanced sampling scheme termed the Incremental Multi-Centroid, Multi-

Run Sampling Scheme (IMCMRS) is also presented in this chapter.

In contrast to Chapter 2, Chapter 4 explores in depth work done in the

centroid-based clustering algorithms. A cluster generation algorithm for vector

quantization using tabu search approach with simulated annealing is proposed.

We also introduce the concept of VQ, genetic algorithms, tabu search and sim-

ulated annealing and describe our hybrid algorithm applying to clustering. The

main idea of this algorithm is to use the tabu search approach to generate non-

local moves for the clusters and apply the simulated annealing technique to select

suitable current best solution to improve the speed of the cluster generation and

reduce the mean squared error of the clustering. A novel watermarking algo-

rithm based on labeled bisecting k-means clustering technique is presented in

Chapter 4. The embedding process is performed by assigning the input vector

to the cluster whose label is equal to the watermark bit. The related details

will be described in Chapter 4. An efficient nearest neighbour codeword search

algorithm based on Hadamard transform for applying to VQ is also introduced in

this chapter. Four efficient elimination criteria are derived from two important

inequalities based on three characteristic values in the Hadamard transform do-

main. Experimental results demonstrate the proposed algorithm is much more

efficient than most existing nearest neighbour codeword search algorithms in the

case of high dimension.

The swarm intelligence algorithms will be introduced in Chapters 5 and 6.

Firstly, the particle swarm optimization is presented in Chapter 5. A paral-

lelised version of the particle swarm optimization scheme is performed. Three
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communication strategies for PPSO are discussed, which can be used according

to the strength of the correlation of parameters. In Chapter 6, two well known

swarm intelligence algorithms–ant systems (AS) and ant colony systems (ACS)

are introduced. We also proposed the Parallel Ant Colony Systems (PACS) and

Parallel Ant Systems (PAS) to improve the performance for the problem of AS

and ACS. Rather a parallel formulation is developed which gives not only re-

duces the computation time but also obtains a better solution. Pioneer works on

traveling salesman problem using Parallel Ant Colony Systems and Parallel Ant

Systems are explored in this chapter.

The final chapter concludes the thesis with future work and a summary of

contributions.



Chapter 2

Improved K-medoids Algorithms

Various clustering algorithms have been designed to fit various requirements and

constraints of application. In this chapter a number of improvements are sug-

gested that can be applied to most k-medoids-based algorithms. These can be

divided into two categories – conceptual / algorithmic improvements, and imple-

mentational improvements. These include the revisiting of the accepted cases for

swap comparison and the application of partial distance searching and previous

medoid indexing to clustering. We propose extensions to the problem of nearest

neighbor search, by combining the previous medoid index with triangular inequal-

ity elimination and partial distance searching. An improved k-medoids algorithm

using simulated annealing, CLASA, is also discussed, as is a novel mechanism

for managing memory usage.

2.1 Related existing K-Medoids Algorithms

Significantly, no single algorithm is suitable for all types of object, nor are all

algorithms appropriate for all problems, however, k-medoids algorithms have been

shown to be robust to outliers and are not generally influenced by the order

of presentation of the objects. Moreover, k-medoids algorithms are invariant to

19
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translation and the orthogonal transformation of objects (Kaufman & Rousseeuw

1990). Both k-means (which adopts as the representative point the weighted mean

of the cluster) and k-medoids (which adopts as the representative point the most

central object in the cluster) algorithm are partitioning methods.

If we assume T objects x1, x2, . . . xT and k objects chosen from these T objects

as the representative objects (medoids) o1, o2, . . . ok then the total distance for

partitioning these (T − k) objects based on the k representative objects is

Dt =
∑

xm∈Sp

d(xm, op) (2.1)

where Sp is the pth partitioned set (or cluster) such that d(xm, op) ≤ d(xm, on),

n = 1 . . . k, and m = 1 . . . T . Clearly, this is a combinatorial optimization problem

of choosing k medoids from T objects, and as such there are T !
k!(T−k)!

combinations.

This is an NP-hard problem and complexity can be high for even for a moderate

number of objects.

There are a number of existing k-medoids-based algorithms including Par-

titioning Around Medoids (PAM) (Kaufman & Rousseeuw 1990), Clustering

LARge Applications (CLARA) (Kaufman & Rousseeuw 1990), Clustering Large

Applications based on RANdomized Search (CLARANS) (Ng & Han 2002),

Fuzzy c-medoids algorithm (Krishnapuram et al. 1999), Fuzzy c-trimmed medoids

algorithm (Krishnapuram et al. 1999) and a genetic k-medoids algorithm (Lucasius,

Dane & Kateman 1993) while the Clustering Large Applications based on Sim-

ulated Annealing (CLASA) algorithm applies simulated annealing (Kirkpatrick

et al. 1983, Huang, Pan, Lu, Sun & Hang 2001) to select better medoids (Chu,

Roddick & Pan 2001). The major computational drawback of k-medoids algo-

rithms is their time complexity in discovering the medoids. In this chapter, the

CLASA, the three efficient versions of CLASA and three extended versions of

CLARANS (as an exemplar k-medoid-based algorithm) are presented based on

the proposed efficiencies for search algorithms.

One of the goals in terms of improving clustering efficiency is to reduce the
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number of distance calculations required to determine medoids. In this respect,

the complexity of various routines can be compared by evaluating the number of

distances needing to be calculated. This approach eliminates implementation and

dataset considerations. In this section we discuss the complexity of three well-

known algorithms, PAM , CLARA and CLARANS, as examples of the wider

class of algorithms that can benefit from our proposals.

2.1.1 PAM - Partitioning Around Medoids

The PAM k-medoids clustering algorithm, for example, evaluates a set of k

objects considered to be representative objects (medoids) of k clusters within T

objects such that the non-selected objects are clustered with the medoid to which

it is the most similar (i.e. closest in terms of the provided distance metric).

The process operates by swapping one of the medoids with one of the objects

iteratively such that the total distance between non-selected objects and their

medoid is reduced. The algorithm can be depicted as follows:

Step 1: Initialization - choose k medoids from T objects randomly.

Step 2: Evaluation - calculate the cost D′
t − Dt for each swap of one

medoid with one object, where Dt is the total distance before the swap

and D′
t is the total distance after the swap.

Step 3: Selection - accept the swap with the best cost and if the cost

is negative, go to step 2; otherwise record the medoids and terminate

the program.

The computational complexity of the PAM algorithm is O((1 + β)k(T − k)2)

which is based on the number of partitions per object, where β is the number

of successful swaps. It can also be expressed as O′((1 + β)k2(T − k)2) based on

the number of distance calculations, i.e., one partition per object is equivalent to
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Figure 2.1. Clustering LARge Applications (CLARA)

k distances calculations. Clearly, this is time consuming even for the moderate

number of objects and a small number of medoids.

2.1.2 CLARA – Clustering LARge Applications

CLARA (Clustering LARge Applications) (Kaufman & Rousseeuw 1990) shown

in Figure 2.1 reduces the computational complexity by drawing multiple samples

of the objects and applying the PAM algorithm on each sample. The final

medoids are obtained from the best result of these multiple passes as below:
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Repeat the following steps q times

Step 1: Call the PAM algorithm with a random sample, s objects from

the original set of T objects.

Step 2: Partition the T objects based on the k medoids obtained from pre-

vious step. Update the better medoids based on the average distance

of the partition.

The computational complexity of the CLARA algorithm is O(q(ks2 + (T −

k)) + βks2) based on the number of partitions per object or O′(q(k2s2 + k(T −

k)) + βk2s2) based on the number of distance calculations, where q, s, k, β

and T are the number of samples, object size per sample, number of medoids,

the number of successful swaps for all samples tested and the total number of

objects, respectively. Clearly, the CLARA algorithm can deal with a larger

number objects than can PAM algorithm if s≪ T .

If the sample size s is not large enough, the effectiveness (ie. the average

distance) of the CLARA algorithm is reduced. However, the efficiency (in terms

of computation time) is impaired if the sample size is too large. There is tradeoff

between the effectiveness and efficiency in CLARA algorithm. The best cluster-

ing cannot be obtained in CLARA if one of the best medoids is not included

in the sample objects. In order to achieve both efficiency and acceptable per-

formance (in terms of average distance per object) the CLARANS (Clustering

Large Applications based on RANdomized Search) algorithm (Ng & Han 2002)

was proposed.
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2.1.3 CLARANS – Clustering Large Applications Based

on Randomized Search

The clustering process in CLARANS (Ng & Han 2002) is formalized as searching

through a certain graph where each node is represented by a set of k medoids

in which two nodes are neighbors if they differ by one medoid. Each node has

k(T − k) neighbors, where T is the total number of objects. CLARANS starts

with a randomly selected node. It moves to a neighbour node if a test for the

maxneighbour number of neighbours is successful; otherwise it records the cur-

rent node as a local minimum. If the node is found to be a local minimum, it

restarts with a new randomly selected node and repeats the search for a new

local minimum. The procedure continues until some threshold numlocal of local

minima have been found, and returns the best node. As shown in Figure 2.2, the

CLARANS algorithm can be summarised as below:

Repeat the following steps numlocal times.

Step 1: Select a current node randomly and calculate the average distance

of this current code, where node is the collection of k medoids.

Step 2: Repeat the following maxneighbour times.

• Select a neighbour node randomly and calculate the average dis-

tance for this node. If the average distance is lower, set current

node to be the neighbour node.

The computational complexity is O((β + numlocal)(T − k)) based on the

number of partitions per object or O′((β + numlocal)k(T − k)) based on the

number of distance calculations, where β is the number of test moves between

nodes.
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Figure 2.2: Clustering Large Applications Based on RANdomized

Search Algorithm (CLARANS)
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2.1.4 Fuzzy K-Medoids Algorithms

The concept of Fuzzy k-means clustering algorithm has been applied to generate

the medoids. Two methods, the Fuzzy k-medoids algorithm and Fuzzy k Trimmed

medoids algorithm were proposed in (Krishnapuram et al. 1999). The evaluation

function of the Fuzzy k-medoids algorithm is to minimize

Jm(O,X) =
T

∑

j=1

k
∑

i=1

um
ij r(xj, oi) (2.2)

where r(xj, oi) is the dissimilarity between object xj and medoid oi.

The Fuzzy k-medoids algorithm can be described as follows:

Step 1: Select initial set of medoids

O = {o1, o2, . . . , ok} from the set of objects

X = {x1, x2, . . . , xT} randomly, where k is the number of clusters and

T is the number of objects.

Step 2: Calculate the membership using

uij =

(

1
r(xj,oi)

) 1
m−1

∑k
q=1

(

1
r(xj,oq)

) 1
m−1

, i = 1, . . . , k, j = 1, . . . , T. where r(xj, oi)

denotes the dissimilarity between object xj and medoid oi , m ∈ [1,∞]

is the fuzzifier.

Step 3: Update the new medoids using

p = argmin1≤v≤T

∑T

j=1 um
vjr(xv, xj),

oi = xp, i = 1, . . . , k.

Step 4: The program is terminated if the medoids are unchanged or the

maximum number of iterations is reached.

A more robust fuzzy k-medoid algorithm can be obtained by using the idea

of Least Trimmed Squares (Kim, Krishnapuram & Dave 1996). Substituting the
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expression of membership uij into Eq. 2.2, the evaluation function

Jm(O,X) =
T

∑

j=1

(

k
∑

i=1

(r(xj, oi))
1

1−m

)1−m
=

T
∑

j=1

hj (2.3)

where hj =
(
∑k

i=1(r(xj, oi))
1

1−m

)1−m
.

The evaluation criterion for the Fuzzy k Trimmed medoids algorithm is as

follows:

JT
m(O,X) =

s
∑

q=1

hq (2.4)

The Fuzzy k-trimmed medoids algorithm can be described as follows:

Step 1: Select initial set of medoids

O = {o1, o2, . . . , ok} from the set of objects

X = {x1, x2, . . . , xT} randomly, where k is the number of clusters and T is

the number of objects.

Step 2: Calculate the harmonic dissimilarities

hj =
(
∑k

i=1(r(xj, oi))
1

1−m

)1−m
, j = 1, . . . , T

sort hj in the ascending order such that

h1 ≤ h2 ≤ . . . ≤ hT .

Step3: Compute the memberships for s objects, uij =

(

1
r(xj,oi)

) 1
m−1

∑k
q=1

(

1
r(xj,oq)

) 1
m−1

,

i = 1, . . . , k, j = 1, . . . , s.

Step 4: Update the new medoids using

p = argmin1≤v≤s

∑s

j=1 um
vjr(xv, xj),

oi = xp, i = 1, . . . k.

Step 5: The program is terminated if the medoids are unchanged or the maxi-

mum number of iterations is reached.
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2.1.5 Genetic K-Medoids Algorithm

Genetic algorithm (Goldberg 1989) has been applied to k-medoids algorithm (Lucasius

et al. 1993). In (Lucasius et al. 1993), the genetic k-medoids algorithm is called

GCA (genetic clustering algorithm). The basic idea of GCA is to generate P in-

dividuals initially and each individual consists of k different parameters selected

from T objects randomly. The fitness function is the inverse of the total distance.

The fitness is also modified using a linear scaling technique. The modified fitness

of each individual is evaluated and pair of individuals is selected based on the

roulette selection. These two selected individuals are used for crossover operation

to generate temporary individual with half the parameters from each selected in-

dividual. If the temporary individual is a wrong one, i.e., two parameters are the

same, then simply replace by one of the selected individual. The mutation tech-

nique is applied to this temporary individual. After getting the same population

size, the evaluation, selection, crossover and mutation are applied again until the

maximum number of generations is reached or the satisfied fitness is obtained.

The experiments are carried out to test the performance of GCA and CLARA

algorithms. Experimental results demonstrate the GCA is superior to CLARA

for a large number of medoids. For small number of medoids, both CLARA and

GCA find acceptable solutions. The computational complexity of GCA based on

the number of distance calculation is O′(PGk(T − k)), where G is the number of

generations.

2.2 CLASA - Clustering Large Applications Based

on Simulated Annealing

Simulated annealing (Kirkpatrick et al. 1983) is a random search method that

has been presented for NP -hard problems. Vecchi and Kirkpatrick (Vecchi &

Kirkpatrick 1983) employed simulated annealing to optimize the wiring problem
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and Gamal et al. used simulated annealing to construct good source codes, error-

correcting codes and spherical codes (Gamal et al. 1987). Simulated annealing

was also applied to codebook design for vector quantization (Huang, Pan, Lu,

Sun & Hang 2001, Cetin & Weerackody 1988).

2.2.1 What’s CLASA

A new approach using simulated annealing for selecting the medoids is presented

in this section. In the CLASA algorithm (Chu et al. 2001), we term the different

collections of k-medoids the state – there are T !
k!(T−k)!

states. It is possible to move

from current state to any other states depending on the moving strategy. For

the preliminary experiments, we may consider only move the current state to the

next state by only changing one medoid. As shown in Figure 2.3, the CLASA

algorithm can be illustrated as follows:

Step 1: Choose an initial state s of the medoids at random and set the

initial temperature Temp = T0.

Step 2: Randomly choose another state s′ (perturbation of state s) by

swapping the medoids with the objects. Calculate the difference of

total distance ∆D = Dt(s
′) − Dt(s). If ∆D < 0, replace the state s

by s′; otherwise replace s by s′ with probability e
−∆D
Temp .

Step 3: If the times of total distance drops Threshold − drop exceeds a

prescribed number or the fixed times of perturbations Threshold−per

is reached, go to step 4; otherwise go to step 2.

Step 4: Terminate the program and return the selected medoids if the

temperature Temp is below some prescribed freezing temperature Tf

or the total times of perturbation TotalPer is reached; otherwise lower

the temperature Temp and go to step 2.
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Figure 2.3: Clustering Large Applications Based on Simulated Anneal-

ing Algorithm (CLASA)
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There are several possible methods for the annealing schedule, it is convenient

to set Temp = T0η
t, where t is the number of iterations, η is a constant coefficient,

0 < η < 1.

2.2.2 Experiments

Four artificial databases are used for the experiments as follows:

1. 400 objects with 8 dimensions are generated from the Gaussian source with

zero mean and unit variance.

2. 1000 objects with 8 dimensions are generated from the Gauss-Markov source

which is of the form yn = αyn−1+wn where wn is a zero-mean, unit variance,

Gaussian white noise process, with α = 0.5.

3. 3000 objects collected from 20 rectangular clusters and 150 objects with

two dimensions belonged to each cluster. The object generation program is

in Figure 2.4.

4. 1500 objects collected from elliptic clusters as shown in Figure 2.5.

Experiments were carried out to test the number of distances calculation and

the average distance per object for PAM , CLARA, CLARANS and CLASA

algorithms. Squared Euclidean distance measure is used. For the first three

experiments in the CLARA algorithm, the parameter q was set to 5 and s was

set to 40 + 2 ∗ k for the sample size, where k is the number of medoids. The

first experiment was to use Gaussian source with zero mean and unit variance

to do the experiment. The total number of objects is 400 and the number of

dimensions is 8 for each object. 20 medoids are selected from these 400 objects.

For CLARANS algorithm, the parameters numlocal and maxneighbor were set

to 30 and 50, respectively. For the CLASA algorithm, the parameters for the

final temperature Tf , the initial temperature T0, η, the number of total distance
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void object generation( ) {
#define num point cluster 150

#define division x 5

#define division y 4

int j,k,i,num; float object[division x*division y*num point cluster][2];

for (j=0;j<division x;j++){
for (k=0;k<division y;k++){

for (i=0;i<num point cluster;i++){
num = i+(j*division y+k)*num point cluster;

object[num][0]=RandVal((float)j,(float)j+1.0);

object[num][1]=RandVal((float)k,(float)k+1.0); }}}
float RandVal (float low, float high)

{float val;

val=((float) (rand() % 1000) / 1000.0) * (high - low) + low;

return (val);}

Figure 2.4. Data Generation Program

drop disdrop, per and the total number of perturbations totalper were set to

0.0005, 10, 0.95, 10, 80 and 250000 respectively. As shown in Table 2.1, with

these settings CLASA performed better than CLARA both in the computation

time and the average distance per object. For the similar number of distances

calculation, CLASA reduced the average distance for more than 4% compared

with CLARANS. PAM is computationally expensive. For the similar average

distance, CLASA may reduce the computation time for more than 95%.

The rectangular clusters are used in the second experiment. 20 medoids are

selected from 3000 objects. For CLARANS algorithm, the parameters numlocal

and maxneighbor are set to 50 and 200, respectively. For the CLASA algorithm,

the parameters for the final temperature Tf , the initial temperature T0, η, the

number of total distance drop disdrop, per and the total number of perturbations

totalper were set to 0.000025, 10, 0.95, 10, 80, 500000, respectively. As shown in

Table 2.2, CLASA performs better than CLARANS both in the computation

time and the average distance. Since the performance of CLARANS is much

better than both PAM and CLARA presented in (Ng & Han 1994) using the
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Figure 2.5. Elliptic Clusters

similar database, we did not tune the computation time and average distance

for both PAM and CLARA for the purpose of comparison. Actually, the per-

formance of CLASA is better than PAM and CLARA for the same running

time.

The Gauss-Markov source was used for the third experiment. 30 medoids are

selected from 1000 objects. For CLARANS algorithm, the parameters numlocal

and maxneighbor are set to 30 and 50, respectively. For CLASA algorithm, the

parameters for the final temperature Tf , the initial temperature T0, η, the number

of total distance drop disdrop, per and the total number of perturbations totalper

were set to 0.000025, 10, 0.95, 10, 80, 500000, respectively.

As shown in Table 2.3, CLASA can reduce the computation time by 33% and

decrease the average distance per object for 4.76% by comparing with CLARANS.

CLASA can also reduce the computation time by 34% and decrease the average

distance per object for 13% in comparison with CLARA. Experimental results

confirm the usefulness of CLASA.

The Gauss-Markov source was also used for the fourth experiment and 20

medoids were selected from 1000 objects. For CLARA algorithm, the parameter
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Table 2.1. Results of Experiment for Gaussian Source

PAM CLARA CLARANS CLASA
seed

Average Count of Average Count of Average Count of Average Count of

dist. dist.(105) dist. dist.(105) dist. dist.(105) dist. dist.(105)

1 4.32 15007 4.75 851 4.61 762 4.38 662

2 4.30 14433 4.72 779 4.64 673 4.32 664

3 4.31 16155 4.60 880 4.50 664 4.36 666

4 4.33 12138 4.70 807 4.59 648 4.35 659

5 4.34 12138 4.71 721 4.57 697 4.35 662

6 4.30 17877 4.75 836 4.60 662 4.41 662

7 4.30 14433 4.83 908 4.50 764 4.40 660

8 4.32 18451 4.78 908 4.59 659 4.34 661

9 4.37 10990 4.79 836 4.50 654 4.37 662

10 4.30 16729 4.73 880 4.49 660 4.37 656

Ave. 4.32 14835 4.74 841 4.56 684 4.37 661

q was set to 5 and s was set to 2k + 40, 2k + 80, 2k + 160 and 2k + 320. For

the CLARANS algorithm, the parameter numlocal was set to 50 and parameter

maxneighbor was set to 50, 100, 200 and 300. For CLASA algorithm, the pa-

rameters for the initial temperature T0, η and the number of total distance drop

disdrop were set to 10, 0.95, and 10, respectively. The final temperature Tf was

set to 0.0025, 0.00025, 0.000025 and 0.0000025. The parameter per was set to

100, 200, 500 and 1000. The total number of perturbations totalper was set to

5000, 50000, 500000 and 50000000. Experimental results are shown in Figure 2.6.

Clearly, the proposed CLASA algorithm can not only reduce computation time,

but also the average distance per object.

The elliptic clusters were used for the fifth experiment and 12 medoids are

selected from 1500 objects. For CLARA algorithm, the parameter q was set

to 5 and s was set to 2k + 160. For the CLARANS algorithm, the parameter

numlocal was set to 5 and parameter maxneighbor was set to 270 (i.e. 1.5%

of k ∗ T ). For CLASA, the parameters for the final temperature Tf , the initial

temperature T0, η, the number of total distance drop disdrop, per and the total

number of perturbations totalper were set to 0.000025, 0.0001, 0.95, 10, 200,

50000, respectively. Experimental results are shown in Table 2.4. To enable
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Table 2.2. Results of Experiment for Rectangular Clusters

PAM CLARA CLARANS CLASA
seed

Average Count of Average Count of Average Count of Average Count of

dist. dist.(105) dist. dist.(105) dist. dist.(105) dist. dist.(105)

1 0.163 1640305 0.194 954 0.181 27922 0.167 26676

2 0.164 1333649 0.206 983 0.181 25534 0.167 27139

3 0.162 2265256 0.196 940 0.179 30487 0.170 27183

4 0.167 1796543 0.200 1084 0.180 29161 0.170 27181

5 0.167 1679364 0.217 1084 0.180 29538 0.171 25976

6 0.167 1679364 0.205 1069 0.186 26499 0.171 26466

7 0.163 2109018 0.196 1069 0.186 30026 0.171 25281

8 0.163 1679364 0.219 1041 0.182 30561 0.173 25793

9 0.163 1913721 0.205 925 0.177 28981 0.172 26990

10 0.164 2148098 0.209 1055 0.182 31592 0.170 26290

Ave. 0.164 1824468 0.205 1020 0.181 29030 0.170 26498

comparison, the experimental results of CLARA and CLARANS algorithms are

averaged for 10 seeds and the result of the first seed of CLASA algorithm are

drawn in Figure 2.7. In our tests, the proposed CLASA algorithm outperforms

the CLARA and CLARANS algorithms.

Preliminary experiments using four artificial databases demonstrate that this

proposed CLASA algorithm not only may reduce the average distance but also

improve the speed the clustering process comparing with respect to the PAM ,

CLARA and CLARANS algorithms.

2.3 Efficient Search Based K-Medoids Algorithms

A distance measure D(X,Ci) is a non-negative dissimilarity measure between

object X and medoids Ci. This distance is used to measure how close the input

object X is to these medoids Ci. The nearest medoid is to be selected in order

to encode the input object X. Therefore, encoding each input object requires N

distance computations and N − 1 comparisons.
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Figure 2.6: Performance Comparison of CLARA, CLARANS and

CLASA for Gauss-Markov Sources
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Table 2.3. Results of Experiment for Gauss-Markov Source

PAM CLARA CLARANS CLASA
seed

Average Count of Average Count of Average Count of Average Count of

dist. dist.(105) dist. dist.(105) dist. dist.(105) dist. dist.(105)

1 4.061 293457 5.053 3355 4.618 3895 4.401 2404

2 4.053 326831 5.048 3399 4.552 3573 4.429 2439

3 4.066 335175 5.261 3532 4.613 3522 4.418 2376

4 4.038 318488 4.971 3266 4.673 3957 4.443 2404

5 4.045 343519 5.055 4153 4.733 3870 4.437 2434

6 4.027 326831 4.988 3710 4.606 3747 4.398 2376

7 4.036 293457 4.930 3576 4.621 3168 4.382 2385

8 4.050 385236 5.065 3665 4.610 3489 4.381 2416

9 4.037 368549 5.215 4020 4.634 3485 4.354 2461

10 4.042 376893 5.146 4065 4.597 3545 4.415 2441

Ave. 4.046 336844 5.073 3674 4.626 3625 4.406 2414

2.3.1 Revisiting Swap-Comparison of PAM

In general, in the PAM (Partitioning Around Medoids) algorithm (Kaufman &

Rousseeuw 1990, Ng & Han 1994) four cases are examined to decide whether it is

worth swapping any object with a medoid. We suggest that it is more reasonable

and reliable to add a fifth case. Indeed, considering these five cases is equivalent

to calculating the difference in total distance before and after swapping. Given

an object onew and a representative object oold, the difference in total distance by

swapping the onew with oold can be calculated according to the following cases:

First Case: In Case 1 (shown in Figure 2.8), the rectangle indicates that

object xj has been initially assigned to the cluster represented by medoid

oold while the oval indicates that the object xj is closer (using whatever

distance measure is appropriate) to the representative object om than to the

new medoid onew, where om is the second most similar representative object

to xj, i.e. d(xj, onew) ≥ d(xj, om) and d(xj, oold) ≤ d(xj, om) ≤ d(xj, on),

n = 1 . . . k and n 6= old,m. Hence the contribution for object xj to the cost

of swapping the medoid oold ↔ onew is Cj = d(xj, om)− d(xj, oold).
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Table 2.4. Results of Experiment for Elliptic Clusters

CLARA CLARANS CLASA
seed

Average Count of Average Count of Average Count of

dist. dist.(105) dist. dist.(105) dist. dist.(105)

1 0.228 2004 0.228 1609 0.221 971

2 0.221 2302 0.232 1067 0.224 991

3 0.236 2388 0.236 1351 0.235 965

4 0.230 2686 0.233 1154 0.217 976

5 0.227 2430 0.232 1572 0.222 993

6 0.237 2260 0.227 1223 0.224 947

7 0.232 2646 0.234 895 0.222 973

8 0.236 2516 0.231 1429 0.231 927

9 0.233 2345 0.231 1148 0.223 993

10 0.238 2728 0.231 1167 0.227 994

Ave. 0.232 2431 0.232 1140 0.225 973

Second Case: Assume oold is the most similar representative object to object

xj, and om is the second most similar representative object to object xj, i.e.

d(xj, oold) ≤ d(xj, om) ≤ d(xj, on), n = 1 . . . k and n 6= old,m. Then, if the

object xj is closer to object onew than to the second most similar represen-

tative object om, i.e. d(xj, onew) < d(xj, om). Hence, the contribution for

object xj to the cost of the swap is Cj = d(xj, onew)− d(xj, oold).

Third Case: Assume the object xj is more dissimilar from both the old rep-

resentative object oold and the new one onew than from one of the other

representative objects (such as medoid om), i.e. d(xj, om) < d(xj, onew) and

d(xj, om) ≤ d(xj, on), m 6= old, n = 1 . . . k. Thus, the contribution for

object xj to the cost Cj of the swap is zero.

Fourth Case: For case. 4, the object xj is closer to the cluster with the

representative object om, but object xj is more similar to object onew than

om, i.e. d(xj, onew) < d(xj, om) and d(xj, om) ≤ d(xj, on), n = 1 . . . k and

m 6= old. Then, the contribution for object xj to the cost of the swap is

Cj = d(xj, onew)− d(xj, om).
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xj
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onew

oold

Case 4

Figure 2.8: Four Cases When Medoid oold Is Replaced as Representative

Object by onew

The above four cases (summarised as in Table 2.5) represent the effect of

changes when medoids and non-medoid objects are swapped from the point of

view of a non-medoid object. However, in the cases when the medoid object in

question itself becomes the non-medoid object, (ie. in the cases above oold) there

is a fifth case to consider and which, if not considered, can result in algorithms

that fail to terminate (Figure 2.9).

Table 2.5: Summarisation of Cases Regarding Cost of Replacing oold

with onew as medoid

Order of Closeness to xj Result of Swap Cost Case

oold - onew - om Cluster representation transfers from oold to onew d(xj , onew) − d(xj , oold) 2

onew - oold - om Cluster representation transfers from oold to onew d(xj , onew) − d(xj , oold) 2

oold - om - onew Cluster representation transfers from oold to om d(xj , om) − d(xj , oold) 1

onew - om - oold Cluster representation transfers from om to onew d(xj , onew) − d(xj , om) 4

om -

{

onew

oold

}

Cluster representation remains with om nil 3
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xj = onew

om oold

Case 5

Figure 2.9: Fifth Case When Medoid oold Becomes The Non-Medoid

Object

Suppose the representative object om is the most similar medoid to oold once

oold is swapped with xj to become a new medoid onew. As oold is more similar to om

than onew, oold will be assigned to the cluster represented by om, i.e. d(oold, onew) >

d(oold, om) and d(oold, om) ≤ d(oold, on), n = 1 . . . k and n 6= old,m. Then, the

contribution for oold to the cost of the swap is

Cold = d(oold, om)− d(oold, oold) = d(oold, om) (2.5)

Otherwise, if replacing oold with onew as a new representative object and oold is

less similar to om than onew, oold will belong to the cluster represented by onew, i.e.

d(onew, oold) ≤ d(oold, om) and d(oold, om) ≤ d(oold, on), n = 1 . . . k and n 6= old,m.

Hence, the contribution for oold to the cost of the swap is

Cold = d(oold, onew)− d(oold, oold) = d(onew, oold) (2.6)

The difference of total distance for the swap can thus be calculated by:

D′
t −Dt = Cold +

∑

j

Cj (2.7)

where D′
t is the total distance after the swap of the representative object oold

by object onew, if the number of objects T is much larger than the number of

representative objects k (T ≫ k), then D′
t −Dt ≈

∑

j Cj. The cost of swapping
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including the four cases is almost the same as to choose the difference of total

distance as the cost. Since the representative object oold also contributes the cost

to the swap of the object onew with oold, it is more reasonable to consider the fifth

case in the PAM algorithm. If
∑

j Cj ≥ 0 for all pairs of medoids and objects,

then the program is terminated. It is possible that the program never terminates

(i.e.
∑

j Cj is always negative), especially for small numbers of objects, due to

Cold in the fifth case never being considered for the cost evaluation.

2.3.2 VQ-Based Techniques

Although k-medoids-based algorithms are designed for clustering large databases,

all existing k-medoids-based algorithms can be time consuming when presented

with significant volumes of data. The computational complexity of k-medoids-

based algorithms can be improved by applying the concepts used in VQ-based

codeword search (Bei & Gray 1985, Guan & Kamel 1992, Lee & Chen 1994, Baek,

Jeon & Sung 1997, Pan, McInnes & Jack 1996b, Soleymani & Morgera 1987, Pan,

Lu & Sun 2000, Vidal 1986, Chen & Pan 1989).

Vector Quantization (VQ) has been widely used for various real-time applica-

tions as encoding and recognition is an important factor in respect of the perfor-

mance of these applications. Unfortunately, a full search is applied in VQ encod-

ing and recognition and this is a time consuming process when the codebook size

is large. A vector quantizer of rate r bits/sample and dimension k is a mapping

from a k-dimensional vector space into some finite subset C = {Cj; j = 1, . . . , N},

where N = 2kr. The subset C is called a codebook and its elements Cj are called

codewords, codevectors, reproducing vectors, prototypes or design samples. A

distance measure D(X,Cj) is a non-negative dissimilarity measure between vec-

tor X and codewords Cj. The distance is used to measure how close the input

vector X is to these codewords Cj. The nearest codeword is selected in order

to encode the input vector X. Therefore, encoding each input vector requires N
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distance computations and N − 1 comparisons.

The codeword search problem in VQ assigns a codeword to the test vector

in which the distance between this codeword and the test vector is the smallest

among all codewords. Given one codeword Ct and the test vector X in the k-

dimensional space, the distance of the squared Euclidean metric can be expressed

as follows:

D(X,Ct) =
k

∑

i=1

(xi − ci
t)

2, (2.8)

where Ct = {c1
t , c

2
t , ..., c

k
t } and X = {x1, x2, ..., xk}.

Each distortion calculation requires k multiplications and 2k − 1 additions.

Therefore, it is necessary to perform kN multiplications, (2k−1)N additions, and

N − 1 comparisons to encode each input vector. The computational complexity

depends on the codebook’s size and dimensions. It needs a large codebook size

and higher dimensionality for high performance in VQ encoding and recognition

systems resulting in increased computation load during codeword search. In order

to reduce the computational complexity of VQ encoding, a variety of techniques

have been developed for codeword search. These algorithms can be grouped into

three categories: spatial domain inequality based (Bei & Gray 1985, Vidal 1986,

Chen & Pan 1989, Huang & Chen 1990, Huang, ChenBi, Stiles & Harris 1992,

Guan & Kamel 1992, Ra & Kim 1993, Lee & Chen 1994, Baek et al. 1997, Pan

& Huang 1998, Pan et al. 1996c, Pan et al. 1996b, Pan, Lu & Sun 2003, Wu &

Lin 2000, Lu & Sun 2003), pyramid structure based (Lee & Chen 1995, Pan, Lu

& Sun 2000, Song & Ra 2002a) and transform domain inequality based (Hwang,

Jeng & Chen 1997, Lu, Pan & Sun 2000a, Jiang, Lu & Wang 2003).

The efficiencies of codeword search algorithms in VQ-based signal compression

have never been applied to k-medoids-based algorithms. For example, the equal-

average nearest neighbor search (ENNS) algorithm (Guan & Kamel 1992) uses

the mean of an input vector to eliminate impossible codewords. This algorithm

reduces a great deal of computation time in comparison with the conventional
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full-search algorithm with only O(k) additional memory, where k is the number

of codewords (or the number of medoids for k-medoids-based algorithms). The

improved algorithm (Lee & Chen 1994) uses the variance as well as the mean of

an input vector. It can be referred to as the equal-average equal-variance nearest

neighbor search (EENNS) algorithm. This algorithm reduces more computation

time with double the additional memory of the ENNS algorithm. The improved

algorithm (Baek et al. 1997) presented by Baek et. al. using the mean and the

variance of an input vector such as EENNS to develop a new inequality between

these features and the distance.

In (Pan et al. 1996b), the bound for Minkowski and quadratic metrics were de-

rived and applied to codeword search. The partial distance search (PDS) (Bei &

Gray 1985) and absolute error inequality criterion (AEI) (Soleymani & Morgera

1987) are all special cases in the bound for Minkowski metric. An inequality for

fast codeword search based on the mean-variance pyramid was also derived (Pan,

Lu & Sun 2000). We apply these concept to k-medoids-based algorithms.

2.3.3 Partial Distance Search

The partial distance search (PDS) algorithm (Bei & Gray 1985) is a simple and

efficient codeword search algorithm which allows early termination of the distance

calculation between a test vector and a codeword by introducing a premature exit

condition in the search process. Given the squared Euclidean distance measure,

one object x = {x1, x2, . . . , xd} and two medoids (representative objects) ot =

{ot1, ot2, . . . , otd} and oj = {oj1, oj2, . . . , ojd}, if we assume the current minimum

distance is

D(x, ot) =
d

∑

i=1

(xi − oti)
2 = Dmin (2.9)

if
h

∑

i=1

(xi − oji)
2 ≥ Dmin, (2.10)

then D(x, oj) ≥ D(x, ot), (2.11)
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where 1 ≤ h ≤ d. The efficiency of PDS is derived from the elimination of

an unfinished distance computation if its partial accumulated distance is larger

than the current minimum distance. This will reduce (d−h) multiplications and

2(d− h) additions at the expense of h comparisons.

2.3.4 Triangular Inequality Elimination

Vidal proposed the approximating and elimination search algorithm (AESA) (Vidal

1986) whose computation time is approximately constant for a codeword search in

a large codebook size. The high correlation characteristics between data vectors

of adjacent speech frames and the triangular inequality elimination (TIE) crite-

rion were utilized to VQ-based recognition of isolated words (Chen & Pan 1989).

The triangular inequality elimination (TIE) criterion is an efficient method for

applying to nearest neighbor search.

Let X be the set of data vectors and C be the set of codewords and x, y

belong to the set X. Assume the distance measure existing for defining the

mapping d : X ×X → R, is used to fulfill the following metric properties:

d(x, y) ≥ 0; d(x, y) = 0iffx = y (2.12)

d(x, y) = d(y, x) (2.13)

d(x, y) + d(y, z) ≥ d(x, z) (2.14)

Let o1 and o2 be two different medoids and t be an object, then three TIE

criteria can be obtained as following:

• Criterion 1 (shown in Figure 2.10):

Given the triangular inequality

d(o1, o2) ≤ d(t, o2) + d(t, o1) (2.15)
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Figure 2.10. The First Criterion of TIE

if

d(o1, o2) ≥ 2d(t, o1) (2.16)

then

d(t, o2) ≥ d(t, o1) (2.17)

Using this criterion, the distances between all pairs of medoids can be com-

puted in advance. If Eq. 2.16 is satisfied, then we omit the computation of

d(t, o2) if d(t, o1) has already been calculated.

In (Chu, Roddick & Pan 2002b), TIE criterion is modified for a squared

error distance measure. Given the medoid size k, a table with memory

size k(k − 1)/2 is made to store one quarter of squared distance between

medoids, ie. if

d2(o1, o2)/4 ≥ d2(x, o1) (2.18)

then

d(x, o2) ≥ d(x, o1) (2.19)
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Figure 2.11. The Second Criterion of TIE

• Criterion 2 (shown in Figure 2.11):

If the medoid oi, i 6= 1, 2, does not locate centered on o2 with radius d(t, o2)+

d(t, o1), the computation of its distance to the test sample can be eliminated.

Given the triangular inequality

d(o3, o2) ≤ d(t, o2) + d(t, o3); (2.20)

if

d(o3, o2) ≥ d(t, o1) + d(t, o2) (2.21)

then

d(t, o3) ≥ d(t, o1) (2.22)

• Criterion 3 (shown in Figure 2.12):

If the medoid oi, i 6= 1, 2, is located centered on o2 with radius d(t, o2) −

d(t, o1), the computation of its distance to the test sample can be omitted.
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Figure 2.12. The Third Criterion of TIE

Assume d(t, o1) ≤ d(t, o2)

Given

d(o3, o2) ≥ d(t, o2)− d(t, o3); (2.23)

if

d(o3, o2) ≤ d(t, o2)− d(t, o1) (2.24)

then

d(t, o3) ≥ d(t, o1) (2.25)

As shown in Figure 2.13, the physical meaning of combined Criterion 2 and 3

can be described as follows:

If the medoid oi, i 6= 1, 2, does not locate between the two concentric circles

centered on o2 with radii d(t, o2) ± d(t, o1), the distance calculation to the test

sample can be eliminated, i.e., if d(o1, o2) > d(t, o2) + d(t, o1) or d(o1, o2) <

d(t, o2) − d(t, o1), then omit the distance computation of o1 (Pan et al. 1996c).

By merging criteria 2 and 3, we may get the following criterion, i.e.,
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if d(x, o1) ≤ |d(o3, o2)− d(x, o2)| (2.26)

then d(x, o3) ≥ d(x, o1) (2.27)

Set

o2 = ~0 (zero vector).

Hence

if d(x, o1) ≤ |d(o3, ~o)− d(x,~0)|, (2.28)

then d(x, o3) ≥ d(x, o1). (2.29)

For Euclidean distance measure and given

dmin = d(x, o1),

if dmin ≤| |

√

√

√

√

d
∑

i=1

o2
3i −

√

√

√

√

d
∑

i=1

x2
i | |, (2.30)

then d(x, o3) ≥ dmin. (2.31)

Since
√

∑d

i=1 o2
3i can be calculated off line and

√

∑d

i=1 x2
i is only computed once

for the nearest neighbor search, the derived inequality (Eq.2.28–Eq.2.31) is very

efficient for the problem of nearest neighbor search. Combine criterion 1, 2 and

3 shown in Figure 2.14, we can eliminate the most of distance computation if the

medoid oi, i 6= 1, 2 is located outside the gray area.

2.3.5 Previous Medoid Index

Most k-medoids-based algorithms check whether the designation of medoid needs

to be transferred to another object. Since only one medoid is changed, most of

the objects will continue to belong to the cluster represented by the same medoid.

By using this property, we can calculate the distance between the object and its

previous medoid index first. Since the probability is high that the object belongs

to the same medoid index, the distance will tend to be small. If there is a small
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Figure 2.13. The Combination of Criterion 2 and 3 of TIE

Figure 2.14. The Combination of Criterion 1, 2 and 3 of TIE
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Before swap After swap

Object Nearest Medoid Object Nearest Medoid

x1 NM(x1) x1 NM(x1) or onew

x2 NM(x2) x2 NM(x2) or onew

x3 NM(x3) x3 NM(x3) or onew

...
...

...
...

xh NM(xh) oold o1 or o2 . . . ok

...
...

...
...

xT−k NM(xT−k) xT−k NM(xT−k) or onew

Figure 2.15. The Three Categories of Distance Calculation

distance between the object and one medoid, then it is easier to use the TIE and

partial distance search criteria to reduce the distance computation.

2.4 Memory Utilization Based K-Medoids Al-

gorithm

This section, discusses how the concepts outlined above can be efficiently accom-

modated into a k-medoids-based algorithm. Specifically, we present an approach

to efficiently using the available memory and the modifications to CLARANS

used in the experiments (Chu, Roddick, Chen & Pan 2002).

Assume k medoids oj, j = 1, . . . k, are chosen from T objects xi, i = 1, . . . T ,

and the number of dimensions for each object or medoid is d. The size of the

memory for all objects in the database is Td. If the distance table for each pair

of objects (xi.xj) is stored, then the memory requirement for the distance table

is T (T−1)
2

. If this memory is available, then all distance calculations need be per-

formed just the once, whether for the PAM , CLARA or CLARANS algorithms.

All these algorithms can thus be made more efficient and the computational com-

plexity will be reduced.

Unfortunately, if the number of objects is large, memory is not always avail-
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Figure 2.16. Usage of Memory for Distance Calculations

able. We thus propose a new approach which uses only O(T −k) memory to store

the distance, although it reduces from O((T − k)k) to O(T + rk) the number of

distance computations required to test for the swap of two objects, where r is

the number of objects whose nearest medoids are swapped. The probability of

swapping the nearest medoid with any object is approximately 1
k
, so r ≈ T

k
and

thus the number of distance calculations can be reduced from O(kT ) to O(T )

if T ≫ k. Assuming NM(xi) is the nearest medoid to the object xi before the

swap, the total distance before the swap of object onew and medoid oold can be

expressed as

Dt =
T−k
∑

i=1

d(xi, NM(xi)). (2.32)

As is shown in Figure 2.15, the distance calculations for the swap of object

onew and medoid oold can be separated into three categories. The utilisation of

memory for the calculation of distance is shown in Figure 2.16.

First, for objects belonging to medoids not involved in the swap, the distance

can be expressed as

D′
t1 =

T−k
∑

i=1

min(d(xi, NM(xi)), d(xi, onew)). (2.33)
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Second, the distance for the medoid which is swapped to be an object is:

D′
t2 = min(d(oold, oj)), j = 1, . . . k. (2.34)

Third, for those objects whose nearest medoids are swapped to be objects as

follows:

D′
t3 =

T−k
∑

i=1

d(xi, op), xi ∈ Sp (2.35)

where Sp is the pth partitioned set where op is the representative medoid.

Hence the total distance after the swap of an object onew and medoid oold can be

expressed as:

D′
t =

T−k
∑

i=1

{min(d(xi, NM(xi)), d(xi, onew))

+ d(xi, op)}

+ min(d(oold, oj)), j = 1, . . . k (2.36)

If the distances from all points to their medoids are stored (i.e. d(xi, NM(xi)),

then only (T − k − r − 1) distance calculations for d(xi, onew), k calculations for

d(oold, oj), and rk calculations for d(xi, op) are required. Since the memory size

(T −k) is generally reasonable for the clustering of objects with memory size Td,

this is a useful approach. Note that this approach can be applied fairly widely

including to clustering algorithms such as PAM , CLARA, CLARANS.

2.5 Experimental Results

In order to test the utility of the different approaches to the problem of medoid

search, various combinations of the search elements were combined. Where ap-

propriate, these new search approaches are applied to the CLARANS and the

proposed CLASA algorithm and compared to CLARA and CLARANS.
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• Modified CLARANS and CLASA algorithms incorporating previous medoid

index, the criterion of TIE and PDS. These algorithms are referred to as

CLARANS-ITP and CLASA− ITP .

• CLARANS and CLASA with the proposed utilization of memory are re-

ferred to as CLARANS-M and CLASA−M .

• The application of the previous medoid index, the proposed utilization

of memory, the criterion of TIE and partial distance search algorithm

to CLARANS and CLASA are referred to as CLARANS-MITP and

CLASA−MITP .

Experiments were carried out to test the number of distance calculations, the

running time and the average distance per object for CLARA, CLARANS, and

the three extended version of CLARANS and CLASA above. Since computation

time depends not only on the clustering algorithm but also on the choice of

target system, it is better to choose a measurable system-independent criterion

so that results are comparable – for clustering algorithms the number of distance

calculations if often chosen. However, to provide some indication of real-world

performance we also give our empirical run-time results which were run on an

850MHz Intel Pentium III. The squared Euclidean distance measure is used for

the experiments. It can be noted that the number of distance calculations was

approximately proportional to the computation time in all cases. Seven sets of

experiments were conducted on different datasets as discussed below.

2.5.1 Gaussian Source

A dataset of 400 objects with 8 dimensions are generated from the Gaussian

source with zero mean and unit variance to do the experiment. 20 medoids are

selected from these 400 objects. For CLARA algorithm, the parameter q was

set to 5 and s to 40 + 2k where k is the number of medoids. For CLARANS
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algorithm, in (Ng & Han 2002) indicates to keep a good balance between runtime

and quality, the value of maxneighbor between 1.25 percent and 1.5 percent is very

reasonable. Therefore, the parameters numlocal and maxneighbor were set to 5

and 750 (kn×1.25%, where n is the number of objects), respectively. As shown in

Table 2.6, CLARANS-MITP , CLARANS-M and CLARANS-ITP performed

better than CLARA both in the distance calculations and the average distance

per object. Comparing with CLARANS, CLARANS-MITP , CLARANS-M

and CLARANS-ITP can reduce the number of distance computations by 91%,

89% and 51%, respectively. Similarly, there is a significant reduction in execution

time.

2.5.2 Gauss-Markov Source

A dataset of 3,000 objects in 8 dimensions were generated from a Gauss-Markov

source (of the form yn = αyn−1 + wn) where wn is a zero-mean, unit variance,

Gaussian white noise process, with α = 0.5. For this experiment, 32 medoids

were selected from 3,000 objects. For CLARA, q was set to 5 and s was set to

320 + 2k, where k is the number of medoids. For CLARANS, the parameters

numlocal and maxneighbor were set to 5 and 1200, respectively. Experimental

results are shown in Table 2.7 and Figure 2.19, and show that compared with

CLARANS, CLARANS-MITP , CLARANS-M and CLARANS-ITP can re-

duce the number of distance computations by 95%, 93% and 67%, respectively.

For the measurement of executive time, there is a significant reduction in the

execution time.

For CLASA, the parameters for the final temperature Tf , the initial tem-

perature T0, η, the number of total distance drop disdrop, per and the total

number of perturbations totalper were set to 0.000025, 10, 0.95, 10, 200, 500000,

respectively. As shown in Table 2.7 and Table 2.8, with these settings CLASA

performed better than CLARA both in the computation time and the aver-
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age distance per object. For the similar average distance, CLASA reduced the

number of distance calculations for more than 38% compared with CLARANS.

The experiments are also shown a satisfactory results in these three extended

CLASA algorithms, comparing with CLARANS, CLASA-MITP , CLASA-M

and CLASA-ITP may reduce the number of distance computations by 96%, 96%

and 79%, respectively. The table also shows a significant reduction in the exe-

cution time. Obviously, the experimental results confirm the usefulness of these

proposed search approaches.

2.5.3 Rectangular Clusters

A dataset of 3,000 objects collected from 20 rectangular clusters and 150 objects

with two dimensions belonged to each clusters. For CLARA, the parameter q

was set to 5 and s to 200+2k. For the CLARANS, the parameter numlocal was

set to 5 and parameter maxneighbor was set to 750. Experimental results are

shown in Table 2.9, with these settings CLARANS-MITP , CLARANS-M and

CLARANS-ITP performed better than CLARA both in the computation time

and the average distance per object. Based on the similar average distance per

object, comparing with CLARANS, CLARANS-MITP , CLARANS-M and

CLARANS-ITP can reduced the number of distance calculations by 93%, 90%

and 89%, respectively.

For CLASA, the parameters for the final temperature Tf , the initial tem-

perature T0, η, the number of total distance drop disdrop, per and the total

number of perturbations totalper were set to 0.000025, 10, 0.95, 10, 200, 50000,

respectively. As shown in Table 2.9 and Table 2.10, with these settings CLASA

performed better than CLARANS both in the computation time and the aver-

age distance per object. For the similar average distance, CLASA reduced the

number of distance calculations for more than 11% compared with CLARANS.

The experiments are also shown a satisfactory results in these three extended
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Figure 2.17. Twelve Elliptic Clusters

CLASA algorithms, comparing with CLARANS, CLASA-MITP , CLASA-M

and CLASA-ITP may reduce the number of distance computations by 98%,

95% and 98%, respectively. Again, there is a significant reduction in the execu-

tion time.

2.5.4 Elliptic Clusters

A dataset of 12,000 objects in 2 dimensions collected from twelve elliptic clus-

ters were used for experiment as shown in Figure 2.17. 12 medoids were selected

from 12,000 objects. For CLARA, the parameter q was set to 5 and s was

set to 960 + 2k. For CLARANS, the parameters numlocal and maxneighbor

were set to 5 and 1,800, respectively. It can be seen in Table 2.11 and Fig-

ure 2.20 that, compared with CLARANS, CLARANS-MITP , CLARANS-M

and CLARANS-ITP can reduce the number of distance computations by 88%,

84% and 84%, respectively. The result also shows a significant reduction in the

execution time.
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Figure 2.18. Curved Clusters

2.5.5 Curved Clusters

A dataset of 5,000 objects in 2 dimensions was generated from curve datasets as

shown in Figure 2.18. The object (x, y) is collected from the area −2 ≤ x ≤ 2

and y = 8x3 − x. 20 medoids were selected from 5,000 objects. For CLARA,

q was set to 5 and s to 400 + 2k. For CLARANS, the parameters numlocal

and maxneighbor were set to 5 and 1,250, respectively. Results are shown in Ta-

ble 2.12 and Figure 2.21 that, compared with CLARANS, CLARANS-MITP ,

CLARANS-M and CLARANS-ITP we can reduce the number of distance com-

putations by 93%, 90% and 91%, respectively.

2.5.6 Lena Dataset

The Lena gray-level image data with size 512 by 512 is used for the sixth ex-

periment. 16,384 objects with 16 dimensions were extracted from this image. 8

medoids were selected from these 16,384 objects. For CLARA, the parameter

q was set to 5 and s was set to 1, 000 + 2k. For CLARANS, the parameters

numlocal and maxneighbor were set to 5 and 1,800, respectively. In order to

facilitate and enrich the effectiveness and efficiency, we decide to deepen our un-

destanding of these proposed search strategies–16, 32, 64 medoids were selected
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from these 16,384 objects, respectively. Table 2.13 and Table 2.14 present traces

of a typical run of these algorithms for Lena dataset. This can be observed that, in

which the proposed CLARANS-MITP , CLARANS-M and CLARANS-ITP

are superior to the CLARA and CLARANS.

Due to CLARA is computationally expensive in a large dataset with more

medoids; we omit to calculate the computation complexity of CLARA in these ex-

periments which were selected 32 and 64 medoids for the purpose of comparison.

With same parameters settings we observed that, a much better performance is

obtained in the experiment that 64 medoids were selected for Lena dataset. Com-

paring with CLARANS, the Table 2.15 indicates that the proposed CLARANS-

MITP , CLARANS-M and CLARANS-ITP can reduce the number of distance

computations by 98%, 96% and 94%, respectively.

2.5.7 Real-World Dataset

In this experiment, the co-occurrence texture, one of image features extracted

from the Corel image collection 1 is used for the final experiment. There are

68,040 photo images mostly of natural scenes from various categories. These

images are converted to 16 dimensions gray-scale images. 10 medoids were se-

lected from these 68,040 objects. For CLARANS, the parameters numlocal and

maxneighbor were set to 5 and 8,505, respectively. Experimental results are

shown in Table 2.16, with these settings CLARANS-MITP , CLARANS-M

and CLARANS-ITP outperformed better than CLARANS with the same av-

erage distance per object. Comparing with CLARANS, CLARANS-MITP ,

CLARANS-M and CLARANS-ITP can reduced the number of distance cal-

culations by 87%, 80% and 77%, respectively. The table also shows a significant

reduction in the execution time.

1The Corel collection of images available online at

http://kdd.ics.uci.edu/databases/CorelFeatures/CorelFeatures.html.
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2.5.8 Summary

In our work, various extended versions of CLARANS are presented based on

enhanced search strategies. In addition, a new algorithm based on simulated

annealing was presented and it too was amended with these search strategies.

Experimental results demonstrate that applying a hybrid search method using

previous medoid index, utilization of memory, the criterion of TIE and partial

distance search to CLARANS can reduce the number of distance computations

from 87% to 98%. In terms of the running time, the proposed CLARANS-

MITP algorithm can reduce the computation time up to 96%. Experiments with

CLASA also indicate an improvement over CLARANS which is improved still

further using the search strategies discussed. AS shown in Figure 2.22 and 2.23,

they show that the extensions suggested can provide significant improvement, of

in some cases up to 98%, over CLARA and CLARANS. While other, more

efficient algorithms have been developed, few show such improvements.Moreover,

in many cases the techniques outlined here will be applicable.

It is important to note that the proposed search strategies can also be applied

to other clustering algorithms. Indeed, as part of our future work, we aim extend

the ideas in this chapter to other well-known clustering algorithms.
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Table 2.6. Results of Experiment for Gaussian Source

CLARA CLARANS CLARANS-ITP CLARANS-M CLARANS-MITP

Seed Distance Average Running Distance Running Distance Running Distance Running Distance Running Average

Calcs (105) Distance Time (secs) Calcs (105) Time (secs) Calcs (105) Time (secs) Calcs (105) Time (secs) Calcs (105) Time (secs) Distance

1 851 4.748 16 205 4 99 3 21 1 18 1 4.504

2 779 4.720 15 247 5 119 4 35 1 21 1 4.479

3 880 4.595 17 201 4 98 3 21 1 17 1 4.475

4 807 4.698 15 200 4 97 3 20 1 17 1 4.467

5 721 4.714 14 249 5 121 4 25 1 22 1 4.524

6 836 4.753 16 194 4 93 3 19 1 17 1 4.550

7 908 4.829 17 289 6 141 5 29 1 25 1 4.461

8 908 4.781 17 231 5 110 4 23 1 20 1 4.540

9 836 4.788 16 295 6 143 5 30 1 25 1 4.489

10 880 4.732 17 265 5 128 4 27 1 23 1 4.528

Ave. 841 4.736 16 238 5 115 4 24 1 20 1 4.502
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Table 2.7. Results of Experiment for Gauss-Markov Source

CLARA CLARANS CLARANS-ITP CLARANS-M CLARANS-MITP

Seed Distance Average Running Distance Running Distance Running Distance Running Distance Running Average

Calcs (107) Distance Time (secs) Calcs (107) Time (secs) Calcs (107) Time (secs) Calcs (107) Time (secs) Calcs (107) Time (secs) Distance

1 1548 4.559 2790 376 662 126 410 23 47 18 49 4.432

2 1637 4.592 2942 532 934 177 576 33 64 25 62 4.359

3 1789 4.551 3218 375 659 123 406 23 47 18 44 4.381

4 1726 4.578 3111 406 713 133 437 25 49 19 47 4.398

5 1827 4.559 3289 397 697 131 428 25 49 19 46 4.367

6 1675 4.526 3012 414 727 137 448 26 50 20 48 4.384

7 1853 4.527 3331 323 568 106 348 20 44 15 38 4.380

8 1624 4.483 2920 396 697 130 425 25 47 19 46 4.394

9 1903 4.545 3426 367 646 120 394 23 45 17 45 4.377

10 1802 4.514 3245 358 634 119 388 22 44 17 41 4.406

Ave. 1738 4.543 3128 394 694 130 426 24 49 19 47 4.388
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Table 2.8: Results of Experiment for Gauss-Markov Source–Compared with CLARANS and Extended CLASA

Algorithms

CLARANS CLASA CLASA-ITP CLASA-M CLASA-MITP

Seed Distance Average Running Distance Running Distance Running Distance Running Distance Running Average

Calcs (107) Distance Time (secs) Calcs (107) Time (secs) Calcs (107) Time (secs) Calcs (107) Time (secs) Calcs (107) Time (secs) Distance

1 376 4.432 662 243 479 79 308 15 37 12 31 4.366

2 532 4.359 934 242 479 80 311 15 39 12 35 4.362

3 375 4.381 659 241 475 79 309 15 37 11 30 4.334

4 406 4.398 713 242 479 80 309 15 39 12 31 4.344

5 397 4.367 697 242 477 80 310 15 37 12 31 4.343

6 414 4.384 727 241 478 79 307 15 39 11 35 4.374

7 323 4.380 568 245 483 80 312 15 37 12 31 4.401

8 396 4.394 697 241 478 79 307 15 38 11 30 4.364

9 367 4.377 646 242 478 80 309 15 37 12 31 4.356

10 358 4.406 634 242 478 80 309 15 39 11 31 4.377

Ave. 394 4.388 694 242 478 80 309 15 38 12 32 4.362
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Table 2.9. Results of Experiment for Rectangular Clusters

CLARA CLARANS CLARANS-ITP CLARANS-M CLARANS-MITP

Seed Distance Average Running Distance Running Distance Running Distance Running Distance Running Average

Calcs (107) Distance Time (secs) Calcs (107) Time (secs) Calcs (107) Time (secs) Calcs (107) Time (secs) Calcs (107) Time (secs) Distance

1 192 0.181 110 167 97 18 36 16 12 11 11 0.172

2 205 0.185 120 132 76 14 29 13 9 9 10 0.177

3 169 0.182 97 120 70 13 26 12 9 8 8 0.169

4 219 0.186 127 138 80 15 31 14 10 9 10 0.173

5 174 0.184 101 178 103 19 39 17 12 12 12 0.172

6 205 0.181 118 144 84 15 32 14 10 10 10 0.174

7 172 0.183 100 155 90 17 34 15 11 10 10 0.176

8 205 0.183 119 157 91 17 35 15 11 10 11 0.175

9 207 0.185 120 147 85 16 32 14 10 10 10 0.176

10 180 0.182 104 177 103 19 39 17 12 12 12 0.175

Ave. 193 0.183 112 151 88 16 33 15 11 10 10 0.174
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Table 2.10: Results of Experiment for Rectangular Clusters–Compared with CLARANS and Extended CLASA

Algorithms

CLARANS CLASA CLASA-ITP CLASA-M CLASA-MITP

Seed Distance Average Running Distance Running Distance Running Distance Running Distance Running Average

Calcs (107) Distance Time (secs) Calcs (107) Time (secs) Calcs (107) Time (secs) Calcs (107) Time (secs) Calcs (107) Time (secs) Distance

1 167 0.172 97 134 88 2 34 7 10 2 10 0.174

2 132 0.177 76 136 88 2 35 8 10 2 10 0.171

3 120 0.169 70 136 89 2 35 8 11 2 10 0.173

4 138 0.173 80 134 87 2 35 7 10 2 10 0.173

5 178 0.172 103 132 86 2 34 7 10 2 10 0.175

6 144 0.174 84 133 87 2 35 7 10 2 10 0.171

7 155 0.176 90 132 86 2 34 7 10 2 10 0.173

8 157 0.175 91 136 89 2 36 8 10 2 10 0.172

9 147 0.176 85 135 88 2 35 7 10 2 10 0.173

10 177 0.175 103 136 88 2 36 8 10 2 10 0.173

Ave. 151 0.174 88 134 87 2 35 7 10 2 10 0.173
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Table 2.11. Results of Experiment for Elliptic Clusters

CLARA CLARANS CLARANS-ITP CLARANS-M CLARANS-MITP

Seed Distance Average Running Distance Running Distance Running Distance Running Distance Running Average

Calcs (107) Distance Time (secs) Calcs (107) Time (secs) Calcs (107) Time (secs) Calcs (107) Time (secs) Calcs (107) Time (secs) Distance

1 1157 0.940 684 918 715 143 370 147 298 105 280 0.931

2 925 0.942 547 635 483 100 254 102 202 74 203 0.943

3 1225 0.956 721 769 584 120 305 123 260 89 235 0.935

4 1034 0.951 612 796 603 125 322 127 265 92 253 0.928

5 1116 0.946 659 900 686 142 359 144 287 104 273 0.949

6 1089 0.960 647 721 548 114 291 115 240 84 218 0.936

7 776 0.972 455 849 635 132 337 136 278 98 264 0.936

8 939 0.944 556 931 714 146 369 149 301 108 282 0.934

9 844 0.954 493 592 449 94 241 95 189 69 191 0.930

10 844 0.942 489 751 576 118 298 120 236 87 234 0.931

Ave. 995 0.951 586 786 599 123 315 126 256 91 243 0.935
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Table 2.12. Results of Experiment for Curved Clusters

CLARA CLARANS CLARANS-ITP CLARANS-M CLARANS-MITP

Seed Distance Average Running Distance Running Distance Running Distance Running Distance Running Average

Calcs (107) Distance Time (secs) Calcs (107) Time (secs) Calcs (107) Time (secs) Calcs (107) Time (secs) Calcs (107) Time (secs) Distance

1 741 2.232 425 652 397 53 148 64 86 40 58 2.151

2 734 2.278 432 626 372 51 123 61 71 38 50 2.181

3 847 2.317 498 702 422 57 151 69 80 43 67 2.179

4 797 2.342 463 719 425 58 141 70 82 44 67 2.192

5 840 2.321 475 574 341 45 122 56 65 35 46 2.156

6 805 2.252 465 623 368 49 121 61 59 38 57 2.157

7 741 2.305 432 650 398 52 139 64 74 39 60 2.171

8 797 2.238 463 636 378 51 134 62 60 39 59 2.144

9 741 2.209 429 551 339 44 107 54 63 34 54 2.185

10 805 2.317 473 484 285 38 102 47 46 29 43 2.165

Ave. 785 2.281 455 622 373 50 129 61 69 38 56 2.168
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Table 2.13: Experimental Results for Ten Runs of CLARANS, CLARANS-ITP , CLARANS-M and CLARANS-MITP

Algorithms for 8 Medoids of Lena Dataset

CLARA CLARANS CLARANS-ITP CLARANS-M CLARANS-MITP

Seed Distance Average Running Distance Running Distance Running Distance Running Distance Running Average

Calcs (107) Distance Time (secs) Calcs (107) Time (secs) Calcs (107) Time (secs) Calcs (107) Time (secs) Calcs (107) Time (secs) Distance

1 299 2829.559 1014 797 2985 183 1197 187 1108 130 949 2816.426

2 312 2833.360 1057 568 2127 130 853 133 795 92 678 2831.768

3 325 2839.221 1100 761 2853 174 1133 179 1066 123 904 2806.479

4 358 2821.522 1216 597 2236 137 896 140 835 97 710 2814.164

5 286 2827.433 969 442 1656 102 664 104 619 72 530 2821.410

6 286 2842.224 972 544 2034 123 809 127 750 87 643 2822.102

7 306 2838.232 1257 559 2094 128 835 131 776 90 666 2817.135

8 286 2843.913 1179 568 2128 131 856 133 789 93 680 2819.383

9 247 2820.759 1210 646 2419 148 968 151 905 104 769 2823.581

10 286 2819.524 966 590 2210 135 884 138 819 96 701 2826.953

Ave. 299 2831.575 1094 607 2274 139 910 142 846 98 723 2819.940
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Table 2.14: Experimental Results for Ten Runs of CLARANS, CLARANS-ITP , CLARANS-M and CLARANS-MITP

Algorithms for 16 Medoids of Lena Dataset

CLARA CLARANS CLARANS-ITP CLARANS-M CLARANS-MITP

Seed Distance Average Running Distance Running Distance Running Distance Running Distance Running Average

Calcs (107) Distance Time (secs) Calcs (107) Time (secs) Calcs (107) Time (secs) Calcs (107) Time (secs) Calcs (107) Time (secs) Distance

1 2220 2108.098 8328 1249 4984 164 1152 152 887 97 719 2064.426

2 2273 2093.875 8541 1530 6110 203 1424 186 1076 120 899 2082.017

3 2114 2115.623 7943 1417 5651 183 1303 172 1007 108 813 2068.945

4 2379 2070.973 7936 1216 4850 157 1116 148 857 93 703 2086.675

5 2114 2158.374 7033 1756 7010 228 1617 213 1247 135 1010 2065.860

6 2643 2071.464 8791 1313 5204 171 1213 159 924 101 764 2083.383

7 2167 2140.907 7224 1736 6884 226 1600 210 1230 134 999 2059.370

8 2009 2097.309 6742 1477 5683 192 1364 179 1045 113 855 2073.808

9 1982 2126.558 6633 2018 8009 263 1854 245 1425 157 1168 2064.848

10 1824 2089.289 6832 1312 4632 171 1205 159 920 102 763 2074.241

Ave. 2172 2107.247 7600 1502 5920 196 1385 182 1062 116 869 2072.357

Table 2.15. Results of Experiment for Lena Dataset

CLARANS CLARANS-ITP CLARANS-M CLARANS-MITP

Medoids Distance Running Distance Running Distance Running Distance Running Average

Calcs (107) Time (secs) Calcs (107) Time (secs) Calcs (107) Time (secs) Calcs (107) Time (secs) Distance

64 10577 35458 530 4480 329 1888 187 1444 1257.929

32 4133 14181 326 2482 255 1469 153 1164 1606.656

16 1502 5920 196 1385 182 1062 116 869 2072.357

8 607 2274 139 910 142 846 98 723 2819.940
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Table 2.16. Results of Experiment for Co-Occurence Texture of Corel Image Collection

CLARANS CLARANS-ITP CLARANS-M CLARANS-MITP

Seed Distance Running Distance Running Distance Running Distance Running Average

Calcs (107) Time (secs) Calcs (107) Time (secs) Calcs (107) Time (secs) Calcs (107) Time (secs) Distance

1 12557 43754 2793 16473 2383 14390 1615 14001 4.600

2 18523 64562 4072 23900 3519 21286 2365 16934 4.612

3 13845 48110 3088 18187 2632 15536 1788 12742 4.632

4 19136 66388 4287 25336 3637 21151 2474 18505 4.610

5 15938 55768 3563 20953 3028 17781 2059 16435 4.648

6 15844 55024 3519 20498 3459 18123 2032 14147 4.646

7 15097 52272 3391 26678 2869 19456 1958 13966 4.618

8 11963 41403 2640 20762 2275 13516 1540 11037 4.618

9 13528 46781 2981 17519 2572 15222 1736 12264 4.619

10 18400 63728 4070 23739 3497 20476 2365 16884 4.571

Ave. 15483 53779 3440 21404 2987 17694 1993 14691 4.617
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Figure 2.19. Results of Gauss-Markov Experiment
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Figure 2.20. Results of Elliptic Clusters Experiment
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Figure 2.21. Results of Curved Clusters Experiment
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Chapter 3

Sampling Schemes for K-Medoids

Algorithm

Clustering in data mining is used to group homogeneous objects based on the

value of their attributes, connectivity, relative density, or some specific charac-

teristics. The k-medoids-based algorithms have been shown to be effective to

spherical-shaped clusters with outliers. However, they are not efficient for large

database. In this chapter, we propose a novel Multi-Centroids with Multi-Runs

Sampling Scheme (MCMRS) to improve the performance of many k-medoids-

based algorithms, including PAM , CLARA and CLARANS (Chu, Roddick &

Pan 2002a). MCMRS is also further improved by combining with the CLASA

algorithm. In addition, we have also applied the adaptive concept to further

improve this novel sampling scheme (MCMRS), Incremental Multi-Centroid,

Multi-Run Sampling Scheme termed IMCMRS by adjusting the NumSample,

NumRun and NumCandidate automatically (Chu, Roddick & Pan 2002c, Chu,

Roddick & Pan 2002d, Chu, Roddick & Pan 2004c). Experimental results demon-

strate the proposed scheme can not only reduce by more than 80% computation

time but also reduce the average distance per object compared with CLARA and

CLARANS. IMCMRS is also superior to MCMRS.

74
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3.1 Introduction

Clustering techniques have been studied extensively in many research area. There

exist a large number of clustering algorithms in the literature including k-means (MacQueen

1967), k-medoids (Kaufman & Rousseeuw 1990), CACTUS (Ganti, Gehrke &

Ramakrishnan 1999), CURE (Guha et al. 1998), CHAMELEON (Karypis

et al. 1999) and DBSCAN (Ester et al. 1996). For k-means, each cluster is rep-

resented by the mean value of the objects in the cluster whereas in the k-medoids

algorithm each cluster is represented by one of the objects located near the centre

of the cluster. k-means can be sensitive to outliers (or noise) while k-medoids

is generally more robust. The drawback of the k-medoids algorithms is the time

complexity of determining the medoids. In order to ameliorate this shortcoming,

a novel sampling scheme based on Multi-Centroids with Multi-Runs Sampling

scheme (MCMRS) is proposed to improve k-medoids-based algorithms. Signif-

icantly, all existing k-medoids algorithms, including CLASA, can be improved

by combining with MCMRS. Both the MCMRS and the combined MCMRS-

CLASA are shown to be superior to PAM , CLARA, CLARANS and CLASA.

The proposed Multi-Centroids with Multi-Runs Sampling scheme (MCMRS)

and the combined version, MCMRS-CLASA algorithm are described in sec-

tion 3.2.1. Although MCMRS (Chu, Roddick & Pan 2002a, Chu, Roddick &

Pan 2004c) improves the efficiency and effectiveness of the k-medoids algorithms,

it can be further improved by adopting the adaptive concept. IMCMRS not

only can reduce the average distance but also speed the clustering process. The

computation load in IMCMRS can be further released by applying a more ef-

ficient centroid-based clustering method (Huang, Pan, Lu, Sun & Hang 2001).

Section 3.2.2 and 3.3.2 will present some experimental results using three arti-

ficial databases and a real image database.
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3.2 Multi-Centroid, Multi-Run Sampling Scheme

(MCMRS)

3.2.1 Motivation

K-means and k-medoids are both popular partitioning clustering algorithms. K-

means can be sensitive while k-medoids is generally more robust to outliers (or

noise). One of the main factors to limit the use of the k-medoids algorithm

is the inefficiency of k-medoids algorithms comparing with k-means – k-means

algorithm can be several orders of magnitude faster than the k-medoids algorithm.

In general, it is not efficient for k-medoids algorithm even for moderate sized

datasets. This drawback can be overcome with the aid of an efficient sampling

scheme. The idea for the sampling scheme in this section is motivated from the

efficiency of the centroid-based clustering algorithms (Huang, Pan, Lu, Sun &

Hang 2001, Huang, Chu, Pan & Lu 2001). From our empirical observations, we

noticed that there is a higher probability of better medoids being selected within

some distance from the centroids of the clusters. Based on this observation and

the efficiency of the centroid-based clustering, we can generate k groups of medoid

candidates with each group containing NumCandidate nearest objects from the

centroid for each centroid-based cluster. K medoids can be collected from each

object in each group randomly. This process interates NumSample times. This

sampling scheme can be more robust by repeating the above procedure many

times. The proposed MCMRS can be depicted as follows:
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Step 1:Repeat the following steps for NumRun times.

Step 2:Get representative centroids by calling the centroid-based cluster-

ing algorithm (such as k-means or GLA algorithm (Linde, Buzo &

Gray 1980)) with random initialization.

Step 3:Get NumCandidate objects for each cluster by selecting the

NumCandidate nearest objects from the centroid in each cluster.

Step 4:Repeat the following steps NumSample times.

Step 5:Generate medoids by selecting one object from the NumCandidate

nearest objects in each cluster.

Step 6:Calculate the average distance per object and update the best

medoids.

MCMRS sampling scheme can be combined with PAM , CLARA, CLARANS

and CLASA to further improve the performance. The combined version of

MCMRS and CLASA for example, (referred here as MCMRS-CLASA) can

be described as follows:

Step 1:Choose the best centroids whose average distance per object is a

minimum by running the centroid-based clustering NumRun times.

Step 2:Get NumCandidate objects for each cluster by selecting the

NumCandidate nearest objects from the centroid in each cluster.

Step 3:Call CLASA by using the nearest object from the centroid in each

cluster as the initial medoids. The candidate medoid is swapped from

the NumCandidate nearest objects in the same group.

Step 4:Terminate the program and return the medoids when the prede-

fined criterion is satisfied.
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Figure 3.1. Compact Clusters with Noise

3.2.2 Experimental Results

Three artificial databases and one real image database were used for the experi-

ments are as follows:

1. 1,500 objects collected from four elliptic clusters shown in Figure 2.5.

2. 12,000 objects collected from twelve elliptic clusters shown in Figure 2.17.

3. 3,100 objects collected from five compact clusters shown in Figure 3.1.

4. 16,384 objects with 16 dimensions are generated from the Lena grey-level

image with size 512 by 512 .

Experiments were carried out to test the number of distance calculations and

the average distance per object for the CLARA, CLARANS, CLASA algo-

rithms and the proposed MCMRS and MCMRS-CLASA algorithms. Squared

Euclidean distance measure is used. The four elliptic clusters were used for the

first experiment and 12 medoids are selected from 1500 objects. For CLARA,

the parameter q was set to 5 and s was set to 160 + 2× k.

For CLARANS, the parameter numlocal was set to 5 and parameter maxneighbour

was set to 270 (i.e. 1.5% of k×T ). For CLASA, the parameters for the final tem-

perature Tf , the initial temperature T0, η, the times of distance drops dis drop,
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per and the total number of perturbations total per were set to 0.000025, 0.0001,

0.95, 10, 200, 50000, respectively. For MCMRS, a k-means algorithm is used to

generate 12 centroid-based clusters. The parameters NumRun, NumCandidate

and NumSample in MCMRS were set to 20, 10 and 200, respectively. For

MCMRS-CLASA algorithm, k-means algorithm is also used to generate 12

centroid-based clusters. The parameters NumRun and NumCandidate in MCMRS-

CLASA algorithm were set to 60 and 10, respectively. The other parameters in

MCMRS-CLASA were the same as for CLASA. The experimental results of

CLARA, CLARANS, MCMRS and MCMRS-CLASA are averaged for 10

seeds are shown in Table 3.1 and the result of the first seed of CLASA are shown

in Figure 3.2. As shown in Figure 3.2, both MCMRS-CLASA and MCMRS

algorithms outperform CLASA, CLARANS and CLARA algorithms.

Table 3.1. Results of Experiment for Four Elliptic Clusters

CLARA CLARANS MCMRS MCMRS-CLASA
seed

Average Count of Average Count of Average Count of Average Count of

dist. dist.(105) dist. dist.(105) dist. dist.(105) dist. dist.(105)

1 0.228 2004 0.228 1609 0.216 808 0.212 541

2 0.221 2302 0.232 1067 0.217 821 0.213 567

3 0.236 2388 0.236 1351 0.218 825 0.212 527

4 0.230 2686 0.233 1154 0.218 811 0.213 572

5 0.227 2430 0.232 1572 0.216 807 0.213 546

6 0.237 2260 0.227 1223 0.217 803 0.213 549

7 0.232 2646 0.234 895 0.217 821 0.213 591

8 0.236 2516 0.231 1429 0.217 803 0.213 580

9 0.233 2345 0.231 1148 0.216 803 0.213 524

10 0.238 2728 0.231 1167 0.216 805 0.212 581

Ave. 0.232 2431 0.232 1140 0.218 811 0.213 558

Twelve elliptic clusters were used for the second experiment. 12 medoids

are selected from 12,000 objects. For CLARA, the parameter q was set to 5

and s was set to 960 + 2 ∗ k. For CLARANS, the parameters numlocal and

maxneighbour are set to 5 and 1800, respectively. For MCMRS, a k-means al-

gorithm is used to generate 12 centroid-based clusters. The parameters NumRun,

NumCandidate and NumSample in MCMRS were set to 20, 10 and 200, re-
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Figure 3.2: Performance comparison of CLARA, CLARANS, CLASA,

MCMRS-CLASA and MCMRS for Four Elliptic Clusters

spectively. For MCMRS-CLASA, a k-means algorithm is also used to generate

12 centroid-based clusters. The parameters NumRun and NumCandidate in

MCMRS-CLASA were set to 60 and 10, respectively. The parameters for the

final temperature Tf , the initial temperature T0, η, the number of total distance

drop dis drop, per and the total number of perturbations total per were set to

0.000025, 0.001, 0.95, 5, 20, 500000, respectively. Experimental results for 10

runs for CLARA, CLARANS, MCMRS and MCMRS-CLASA are shown in

Table 3.2 and Figure 3.3.

The compact clusters with noise were used for the third experiment. 5 medoids

are selected from 3,100 objects. For CLARA, the parameter q was set to 5

and s was set to 200 + 2 ∗ k. For CLARANS, the parameters numlocal and

maxneighbour are set to 5 and 200, respectively. For MCMRS, a k-means algo-

rithm is used to generate 5 centroid-based clusters. The parameters NumRun,

NumCandidate and NumSample in MCMRS were set to 20, 10 and 200, re-

spectively. For MCMRS-CLASA, a k-means algorithm was again used to gen-

erate 5 centroid-based clusters. The parameters NumRun and NumCandidate

in MCMRS-CLASA were set to 60 and 10, respectively. The parameters for the
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Table 3.2. Results of Experiment for Twelve Elliptic Clusters

CLARA CLARANS MCMRS MCMRS-CLASA
seed

Average Count of Average Count of Average Count of Average Count of

dist. dist.(105) dist. dist.(105) dist. dist.(105) dist. dist.(105)

1 0.940 115659 0.931 91792 0.922 6587 0.920 5217

2 0.942 92528 0.943 63512 0.920 6554 0.918 5479

3 0.956 122462 0.935 76873 0.930 6496 0.920 5312

4 0.951 103413 0.928 79582 0.928 6447 0.918 5373

5 0.946 111577 0.949 90014 0.921 6483 0.918 5374

6 0.960 108856 0.936 72069 0.922 6632 0.918 5407

7 0.972 77562 0.936 84914 0.920 6426 0.920 5509

8 0.944 93889 0.934 93092 0.920 6549 0.918 5413

9 0.954 84365 0.930 59242 0.923 6573 0.918 5426

10 0.942 84365 0.931 75053 0.923 6541 0.920 5171

Ave. 0.951 99467 0.935 78615 0.923 6529 0.919 5368

Figure 3.3: Performance Comparison of CLARA, CLARANS, MCMRS

and MCMRS-CLASA for Twelve Elliptic Clusters

final temperature Tf , the initial temperature T0, η, the times of distance drops

dis drop, per and the total number of perturbations total per were set to 0.00025,

0.001, 0.85, 10, 200, 50000, respectively. Experimental results based on 10 runs

for CLARA, CLARANS, MCMRS and MCMRS-CLASA are shown in Fig-

ure 3.4. If the database is not large and the medoid size is small, the performance

of CLARA is better than CLARANS shown in Table 3.3 and Figure 3.4. Both
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Figure 3.4: Performance Comparison of CLARA, CLARANS, MCMRS

and MCMRS-CLASA for Compact Clusters with Noise

MCMRS and MCMRS-CLASA are more efficient and effective than CLARA

and CLARANS.

Table 3.3. Results of Experiment for Compact Clusters

CLARA CLARANS MCMRS MCMRS-CLASA
seed

Average Count of Average Count of Average Count of Average Count of

dist. dist.(105) dist. dist.(105) dist. dist.(105) dist. dist.(105)

1 2.436 253 2.432 584 2.398 646 2.397 243

2 2.425 274 2.457 600 2.397 647 2.397 232

3 2.430 264 2.429 604 2.398 655 2.397 239

4 2.440 295 2.442 504 2.397 649 2.397 251

5 2.445 232 2.431 583 2.398 651 2.397 232

6 2.411 253 2.419 606 2.398 655 2.397 244

7 2.435 243 2.457 530 2.397 642 2.397 256

8 2.422 285 2.470 519 2.397 654 2.397 241

9 2.444 253 2.417 620 2.397 647 2.397 267

10 2.440 274 2.424 581 2.398 645 2.397 283

Ave. 2.429 263 2.438 573 2.398 649 2.397 249

The Lena gray-level image data with size 512 by 512 is used for the fourth

experiment. 16,384 objects with 16 dimensions are extracted from this image.

8 medoids are selected from these 16,384 objects. For CLARA, the parameter

q was set to 5 and s was set to 1000 + 2 ∗ k. For CLARANS, the parameters
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numlocal and maxneighbour are set to 5 and 1800, respectively. For MCMRS, a

k-means algorithm is used to generate 8 centroid-based clusters. The parameters

NumRun, NumCandidate and NumSample in MCMRS were set to 20, 10 and

200, respectively. For MCMRS-CLASA, a k-means algorithm is used to gen-

erate 8 centroid-based clusters. The parameters NumRun and NumCandidate

in MCMRS-CLASA were set to 20 and 10, respectively. The parameters for

the final temperature Tf , the initial temperature T0, η, the times of distance

drops dis drop, per and the total number of perturbations total per were set to

0.000025, 0.0001, 0.85, 10, 200, 50000, respectively. Experimental results based on

10 runs for CLARA, CLARANS, MCMRS and MCMRS-CLASA are shown

in Table 3.4. The proposed MCMRS-CLASA algorithm can reduce the compu-

tation time by approximately a factor of 20 and obtain better average distance

comparing with CLARANS.

Table 3.4. Results of Experiment for Lena Image

CLARA CLARANS MCMRS MCMRS-CLASA
seed

Average Count of Average Count of Average Count of Average Count of

dist. dist.(105) dist. dist.(105) dist. dist.(105) dist. dist.(105)

1 2829.56 30057 2816.43 79704 2800.15 6121 2795.64 3135

2 2833.36 31379 2831.77 56796 2802.49 5897 2795.64 3135

3 2839.22 32700 2806.48 76182 2801.81 6138 2795.64 3135

4 2821.52 36003 2814.16 59684 2801.98 6080 2795.76 3264

5 2827.43 28736 2821.41 44216 2802.71 6067 2795.64 3287

6 2842.22 28736 2822.10 54274 2801.52 6158 2793.44 3184

7 2838.23 30718 2817.13 55947 2800.16 6145 2795.76 3192

8 2843.91 28736 2819.38 56845 2803.82 6036 2795.76 3179

9 2820.76 24772 2823.58 64621 2802.98 6229 2796.01 3387

10 2819.52 28736 2826.95 59039 2801.34 6019 2793.54 3065

Ave. 2831.57 30057 2819.94 60731 2801.90 6089 2795.28 3196

Experimental results based on three artificial databases and one real image

database indicates that the proposed MCMRS and MCMRS-CLASA algo-

rithms can not only reduce the average distance but also improve the clustering

process. The computation load in MCMRS and MCMRS-CLASA can be fur-

ther released by applying a more efficient centroid-based clustering method (Huang,
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Pan, Lu, Sun & Hang 2001).

3.3 Incremental Multi-Centroid, Multi-Run Sam-

pling Scheme (IMCMRS)

3.3.1 Motivation

Although MCMRS improves the efficiency and effectiveness of the k-medoids al-

gorithms, it can be further improved by adopting the adaptive concept. The idea

of an Incremental Multi-Centroid, Multi-Run Sampling Scheme (IMCMRS) is

based on the observation that better medoids are not always found near the cen-

tres of the clusters for each run of the centroid-based clustering algorithm. In or-

der to reduce computation time, the sampling times and the number of candidate

objects should be increased when obtaining better results with centroid-based

clustering and conversely reduced when obtaining worse than average results.

Based on this observation and given the efficiency of the centroid-based clus-

tering, we can generate NumRun groups of medoid candidates with each group

containing several objects close to the centroid for each centroid-based cluster.

k medoids can be collected from each object in each group randomly. This pro-

cess iterates NumSample times. The groups with poor results are deleted and

more objects are chosen from the better groups. As shown in Figure 3.5, the

IMCMRS sampling scheme can be described as follows:
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1. Get NumRun groups representative centroids by calling the centroid-

based clustering algorithm (such as k-means or GLA (Linde et al.

1980)) with random initialisation for NumRun times.

2. Get the nearest object to the centroid for each cluster and choose the

nearest objects as the medoids. Calculate the average distance per

object. Set n = 1, where n is the iteration count.

3. Set NumRun = NumRun/2 and choose NumRun groups with bet-

ter average distance and get O = NumCandidate + NumSelect × n

objects for each cluster by sorting the O nearest objects from the

centroid in each cluster.

4. Repeat the following NumSample + StepSample× n times.

(a) Generate medoids by selecting one object from the nearest ob-

jects in each cluster.

(b) Calculate the average distance per object and update the best

medoids. If NumRun = 1, terminate the program; otherwise

increment n and go to step 3.

3.3.2 Experimental Results

3.3.2.1 Test Datasets

Four artificial datasets and one real image dataset were used for the experiments

as follows:

1. 1,500 objects collected from four elliptic clusters.

2. 12,000 objects collected from twelve elliptic clusters.

3. 3,100 objects collected from five compact clusters.
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Figure 3.5: The flowchart of Incremental Multi-Centroid, Multi-Run

Sampling Scheme (IMCMRS)

4. 3,000 objects with 8 dimensions were generated from the Gauss-Markov

source that is of the form yn = αyn−1 + wn where wn is a zero-mean, unit

variance, Gaussian white noise process, with α = 0.5.

5. 16,384 objects with 16 dimensions were generated from the LENA grey-

scale 512 × 512 image.

3.3.2.2 Implementation and Description

Experiments were carried out to test the number of distance calculations and

the average distance per object for the CLARA, CLARANS, MCMRS and

IMCMRS algorithms. Since the computation time depends not only on the
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clustering algorithm but also on the use of computation facility. It is thus better

to choose a measure criterion such that the measure results are the same for all

types of computers and this measure criterion is proportional to the computation

time – we chose the number of distance calculation as the benchmark. Squared

Euclidean distance measure is used.

The four elliptic clusters were used for the first experiment and 12 medoids

were selected from 1500 objects. For CLARA, the parameter q was set to 5 and

s was set to 160+2k. For CLARANS, the parameter numlocal was set to 5 and

parameter maxneighbor was set to 270 (ie. 1.5% of k × t). For MCMRS, k-

means is used to generate 12 centroid-based clusters. The parameters NumRun,

NumCandidate and NumSample in MCMRS were set to 20, 10 and 200, re-

spectively. For IMCMRS, k-means is also used to generate 12 centroid-based

clusters. The parameters NumRun, NumCandidate, NumSample, NumSelect

and StepSample in IMCMRS were set to 32, 1, 1, 1 and 5 respectively. The

experimental results based on 10 runs for CLARA, CLARANS, MCMRS and

IMCMRS are shown in Table 3.5 and Figure 3.6. Comparisons with CLARA

and CLARANS, show that IMCMRS may reduce the computation time by

more than 91% and 80%. Both MCMRS and IMCMRS performed better than

CLARANS and CLARA both in the computation time and the average distance

per object.

The twelve elliptic clusters were used for the second experiment. 12 medoids

were selected from 12000 objects. For CLARA, the parameter q was set to 5 and s

was set to 960+2k. For CLARANS, the parameters numlocal and maxneighbor

were set to 5 and 1800, respectively. For MCMRS, k-means is used to gen-

erate 12 centroid-based clusters. The parameters NumRun, NumCandidate

and NumSample in MCMRS were set to 20, 10 and 200, respectively. For

IMCMRS, k-means algorithm is also used to generate 12 centroid-based clus-

ters. The parameters NumRun, NumCandidate, NumSample, NumSelect and

StepSample in IMCMRS were set to 32, 1, 1, 1 and 5 respectively. As shown
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Table 3.5. Results of Experiment for Four Elliptic Clusters

CLARA CLARANS MCMRS IMCMRS
seed

Average Count of Average Count of Average Count of Average Count of

dist. dist.(105) dist. dist.(105) dist. dist.(105) dist. dist.(105)

1 0.228 2004 0.228 1609 0.216 808 0.213 197

2 0.221 2302 0.232 1067 0.217 821 0.212 221

3 0.236 2388 0.236 1351 0.217 825 0.212 197

4 0.230 2686 0.233 1154 0.218 811 0.213 249

5 0.227 2430 0.232 1572 0.218 907 0.213 199

6 0.237 2260 0.227 1223 0.216 803 0.212 223

7 0.232 2646 0.234 895 0.217 821 0.213 244

8 0.236 2516 0.231 1429 0.217 803 0.213 232

9 0.233 2345 0.231 1148 0.216 803 0.213 194

10 0.238 2728 0.231 1167 0.218 805 0.212 215

Ave. 0.232 2431 0.232 1140 0.217 811 0.213 217

Figure 3.6: Performance Comparison of CLARA, CLARANS, MCMRS

and IMCMRS for Four Elliptic Clusters

in Table 3.6 and Figure 3.7, IMCMRS will reduce the computation time by

more than 98%, 97% and 73% by comparing with CLARA, CLARANS and

MCMRS. Both MCMRS and IMCMRS are more efficient and effective than

CLARA and CLARANS.

The compact clusters with noise were used for the third experiment. 5 medoids

were selected from 3100 objects. For CLARA, the parameter q was set to 5
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Table 3.6. Results of Experiment for Twelve Elliptic Clusters

CLARA CLARANS MCMRS IMCMRS
seed

Average Count of Average Count of Average Count of Average Count of

dist. dist.(105) dist. dist.(105) dist. dist.(105) dist. dist.(105)

1 0.940 115659 0.931 91792 0.922 6587 0.927 1707

2 0.942 92528 0.943 63512 0.920 6554 0.920 1848

3 0.956 122462 0.935 76873 0.930 6496 0.920 1746

4 0.951 103413 0.928 79582 0.928 6447 0.939 1729

5 0.946 111577 0.949 90014 0.921 6483 0.918 1772

6 0.960 108856 0.936 72069 0.922 6632 0.919 1726

7 0.972 77562 0.936 84914 0.920 6426 0.918 1746

8 0.944 93889 0.934 93092 0.920 6549 0.920 1807

9 0.954 84365 0.930 59242 0.923 6573 0.922 1726

10 0.942 84365 0.931 75053 0.923 6541 0.920 1658

Ave. 0.951 99467 0.935 78615 0.923 6529 0.922 1747

Figure 3.7: Performance Comparison of CLARA, CLARANS, MCMRS

and IMCMRS for Twelve Elliptic Clusters

and s was set to 200 + 2k. For CLARANS, the parameters numlocal and

maxneighbor were set to 5 and 200, respectively. For MCMRS, k-means is used

to generate 5 centroid-based clusters. The parameters NumRun, NumCandidate

and NumSample in MCMRS were set to 20, 10 and 200, respectively. For

IMCMRS, k-means is also used to generate 5 centroid-based clusters. The pa-

rameters NumRun, NumCandidate, NumSample, NumSelect and StepSample
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Figure 3.8: Performance comparison of CLARA, CLARANS, MCMRS

and IMCMRS for Five Compact Clusters

in IMCMRS were set to 32, 1, 1, 1 and 5 respectively. Experimental results

based on 10 runs for CLARA, CLARANS, MCMRS and IMCMRS are shown

in Table 3.7. If the database is not large and the medoid size is small, the perfor-

mance of CLARA is better than CLARANS shown in Figure 3.8. Comparing

with CLARA, CLARANS and MCMRS IMCMRS may reduce the computa-

tion time by more than 60%, 81% and 83%, respectively.

Table 3.7. Results of Experiment for Compact Clusters

CLARA CLARANS MCMRS IMCMRS
seed

Average Count of Average Count of Average Count of Average Count of

dist. dist.(105) dist. dist.(105) dist. dist.(105) dist. dist.(105)

1 2.436 253 2.432 584 2.398 646 2.397 99

2 2.425 274 2.457 600 2.397 647 2.397 107

3 2.430 264 2.429 604 2.398 655 2.397 96

4 2.440 295 2.442 504 2.397 649 2.397 102

5 2.405 232 2.431 583 2.398 651 2.397 103

6 2.411 253 2.419 606 2.398 655 2.397 102

7 2.435 243 2.457 530 2.397 642 2.397 104

8 2.422 285 2.470 519 2.397 654 2.397 104

9 2.444 253 2.417 620 2.397 647 2.397 112

10 2.440 274 2.424 581 2.398 645 2.397 120

Ave. 2.429 263 2.438 573 2.398 649 2.397 105
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The Gauss-Markov source was used for the fourth experiment. 32 medoids

were selected from 3000 objects. For CLARA, the parameter q was set to 5 and s

was set to 320+2k. For CLARANS, the parameters numlocal and maxneighbor

were set to 5 and 1200, respectively. For MCMRS, k-means algorithm is used to

generate 32 centroid-based clusters. The parameters NumRun, NumCandidate

and NumSample in MCMRS were set to 20, 10 and 200, respectively. For

IMCMRS, k-means is also used to generate 32 centroid-based clusters. The pa-

rameters NumRun, NumCandidate, NumSample, NumSelect and StepSample

in IMCMRS were set to 32, 1, 1, 1 and 5 respectively. Experimental results are

shown in Table 3.8 and Figure 3.9, comparing with CLARA and MCMRS,

IMCMRS may reduce the computational complexity by more than 99% and

70%, respectively. The proposed IMCMRS can reduce the computation time

by approximately a factor of 30 and also obtains a better average distance in

comparison with CLARANS.

Table 3.8. Results of Experiment for Gauss-Markov Source

CLARA CLARANS MCMRS IMCMRS
seed

Average Count of Average Count of Average Count of Average Count of

dist. dist.(105) dist. dist.(105) dist. dist.(105) dist. dist.(105)

1 4.559 154809 4.432 37604 4.487 4439 4.357 1340

2 4.592 163692 4.359 53234 4.476 4349 4.382 1330

3 4.551 178918 4.381 37512 4.490 4411 4.376 1273

4 4.578 172574 4.398 40559 4.495 4417 4.371 1364

5 4.559 182725 4.367 39694 4.489 4403 4.375 1234

6 4.526 167498 4.384 41370 4.489 4357 4.379 1278

7 4.527 185263 4.380 32312 4.485 4379 4.377 1309

8 4.483 162423 4.394 39600 4.499 4382 4.361 1307

9 4.545 190338 4.377 36707 4.491 4400 4.369 1276

10 4.514 180187 4.406 35835 4.485 4378 4.329 1309

Ave. 4.543 173843 4.388 39443 4.489 4391 4.368 1302

The Lena grey-level image data with size 512 by 512 is used for the fifth ex-

periment. 16384 objects with 16 dimensions were extracted from this image. 8

medoids were selected from these 16384 objects. For CLARA, the parameter q

was set to 5 and s was set to 1000+2k. For CLARANS, the parameters numlocal
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Figure 3.9: Performance Comparison of CLARA, CLARANS, MCMRS

and IMCMRS for Gauss-Markov Source

and maxneighbor were set to 5 and 1800, respectively. For MCMRS, k-means al-

gorithm is used to generate 8 centroid-based clusters. The parameters NumRun,

NumCandidate and NumSample in MCMRS were set to 20, 10 and 200, re-

spectively. For IMCMRS, k-means is also used to generate 8 centroid-based

clusters. The parameters NumRun, NumCandidate, NumSample, NumSelect

and StepSample in IMCMRS were set to 32, 1, 1, 1 and 5 respectively. Ex-

perimental results based on 10 runs for CLARA, CLARANS, MCMRS and

MCMRS-CLASA are shown in Table 3.9 and Figure 3.10, comparing with

CLARA and MCMRS, IMCMRS may reduce the computational complexity

by more than 93% and 69%, respectively. The proposed IMCMRS can reduce

the computation time by approximately a factor of 33 and also get better average

distance compared with CLARANS.
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Table 3.9. Results of Experiment for Lena Image

CLARA CLARANS MCMRS IMCMRS
seed

Average Count of Average Count of Average Count of Average Count of

dist. dist.(105) dist. dist.(105) dist. dist.(105) dist. dist.(105)

1 2829.56 30057 2816.43 79704 2800.15 6121 2796.00 1869

2 2833.36 31379 2831.77 56796 2802.49 5897 2795.52 1781

3 2839.22 32700 2806.48 76182 2801.81 6138 2796.36 1760

4 2821.52 36003 2814.16 59684 2801.98 6080 2796.62 1822

5 2827.43 28736 2821.41 44216 2802.71 6067 2796.00 1925

6 2842.22 28736 2822.10 54274 2801.52 6158 2796.44 1801

7 2838.23 30718 2817.13 55947 2800.16 6145 2796.54 1892

8 2843.91 28736 2819.38 56845 2803.82 6036 2795.62 1862

9 2820.76 24772 2823.58 64621 2802.98 6229 2796.36 2097

10 2819.52 28736 2826.95 59039 2901.34 6019 2796.80 1592

Ave. 2831.57 30057 2819.94 60731 2801.90 6089 2796.14 1840

Figure 3.10: Performance Comparison of CLARA, CLARANS, MCMRS

and IMCMRS for Lena Image



Chapter 4

Improved Centroid-Based

Clustering Algorithms

The goal of clustering is to group sets of objects into classes such that homoge-

neous objects are placed in the same cluster while dissimilar objects are in sep-

arate clusters. There are three important evaluation criteria for centroid-based

cluster generation as follows:

• To reduce the average distortion for each pattern in the training database.

• To get the high classification rate for test database.

• To reduce the computational complexity.

One of the most well known techniques for centroid-based clustering is the

k-means algorithm (or GLA, or LBG) (MacQueen 1967, Linde et al. 1980). Un-

fortunately, it is a descent algorithm and often obtains the local optimum. In

order to improve the performance, the simulated annealing method (Vaisey &

Gersho 1988), the tabu search approach (Al-Sultan 1995) and tabu search with

GLA method (Franti et al. 1998) were proposed. In this chapter, the tabu search

approach combining with the simulated annealing algorithm for cluster genera-

tion will be proposed in section 4.2. The main idea is to modify the tabu search

94
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approach by introducing the counter to limit the non-local moves from the cur-

rent best solution and forbid the current best solution to keep the same more

than some fixed iterations. Especially, the simulated annealing method is applied

to select the suitable current best solution so that the performance is improved

compared with the tabu search approach with GLA algorithm for cluster gener-

ation (Chu & Roddick 2000), (Chu & Roddick 2003).

K-means and some related algorithms are effective for uniformly distributed

data, but it is not effective for non-uniformly distributed data. In section 4.3, the

genetic algorithm with stochastic relaxation approach on mutation operator was

developed for clustering and was also applied to the codebook design of mean-

residual vector quantization. An incremental splitting clustering algorithm is pre-

sented in section 4.4 to improve the centroid-based clustering for non-uniformly

distributed data. In addition, we explained a novel labeled bisecting k-means

clustering algorithm and applied to the robust image watermarking depicted in

section 4.5. Finally, an efficient nearest neighbour clustering algorithm based on

Hadamard transform was proposed and applied to the codeword search for vector

quantization, which was presented in section 4.6. In the following section, we will

review some centroid-based clustering algorithms.

4.1 Related Existing Centroid-Based Clustering

Algorithm

The existing clustering algorithms can be simply classified into the following

two categories: hierarchical clustering and partitional clustering (Jain & Dubes

1988). The hierarchical clustering operates by partitioning the patterns into

successively fewer structures. Hierarchical procedures can be either agglomerative

or divisive. Partitional clustering procedures typically start with the patterns

partitioning into a number of clusters and divide the patterns by increasing the
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number of partitions. The most popular class of partitional clustering methods

are the prototype-based clustering algorithms. In the prototype-based clustering

algorithms, each cluster in represented by a prototype, and the sum of distance

from the pattern to the prototype is usually used as the objective function. If the

prototype of one cluster is the centre of this cluster, it is called centroid-based

cluster. Normally, the prototypes are the centres of the clusters.

4.1.1 K-Means (GLA)

K-means (or GLA, or LBG) (Linde et al. 1980) is a centroid-based cluster algo-

rithm. It is a descent algorithm in the sense that the average distortion is reduced

at each iteration. For this reason, the k-means algorithm tends to get trapped in

local optima. The performance of the k-means algorithm depends on the number

of optima and the choice of the initial condition. The k-means (or GLA, or LBG)

algorithm can be described as follows:

Step 1. Select N clustering data vectors as the initial centroids of the clusters

randomly, where N is the number of clusters (or codebook size). Set n = 0,

where n is the iteration count.

Step 2. Find the nearest centroid to each clustering data vector. Put Xj in the

partitioned set (or cluster) Pi if Ci is the nearest centroid to Xj.

Step 3. After obtaining the partitioned sets P = (Pi; 1 ≤ i ≤ N), increment n.

Calculate the overall average distortion

Dn =
1

T

N
∑

i=1

Ti
∑

j=1

D(X
(i)
j , Ci)

where Pi = {X(i)
1 , X

(i)
2 , . . . , X

(i)
Ti
}, Ti is the number of clustering data vectors

belonging to the partitioned set Pi.

Step 4. Find centroids of all disjoint partitioned sets Pi by

Ci =
1

T

Ti
∑

j=1

X
(i)
j
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Step 5. If Dn−1−Dn

Dn
> ǫ, go to step 2; otherwise terminate the program. ǫ is a

small distortion threshold.

4.1.2 Simulated Annealing for Clustering

Simulated annealing is a metaheuristic recently proposed by Kirkpatrick et. al (Kirkpatrick

et al. 1983) specifically for combinatorial optimization problems. Simulated an-

nealing is termed a metaheuristic because it can be combined with other heuristic

procedures to prevent them from trapping at local optima. Vecchi and Kirk-

patrick applied a simulated annealing method to the optimization of a wiring

problem (Vecchi & Kirkpatrick 1983). Gamal et al. also used the method of

simulated annealing to construct good source codes, error-correcting codes and

spherical codes (Gamal et al. 1987). The simulated annealing was also applied to

cluster generation for vector quantization (Cetin & Weerackody 1988, Vaisey &

Gersho 1988). The simulated annealing for clustering patterns can be described

as follows:

Step 1. The training pattern Xj, j = 1, 2, . . . T , is partitioned into the cluster

Si, i = 1, 2, . . . N randomly. Set n = 0 and calculate the center of the

cluster.

Ci = 1
|Si|

∑

Xj∈Si
Xj

where |Si| denotes the number of training patterns in the cluster Si.

Step 2. The clusters are perturbed by randomly selecting a pattern and mov-

ing this pattern from its current cluster to the different randomly selected

cluster. Calculate the new centroids.

Step 3. The change in distortion ∆D is defined as the distortion of current

clusters minus the distortion of previous clusters. The perturbation is ac-

cepted if e
−∆D

T̂n > γ , where γ is a random value generated uniformly on the

interval [0, 1]. T̂n is nth iterative temperature.
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Step 4. If the distortion of the current clusters reaches the desired value or

the iterative number n reaches the predetermined value, then terminate the

program; otherwise, set n = n + 1 and go to step 2.

The simulated annealing algorithm starts with an initial temperature T̂0. The

temperature sequence T̂0, T̂1, T̂2 · · · are positive numbers which is called an an-

nealing schedule where

T̂0 ≥ T̂1 ≥ T̂2 · · ·

and

limn→∞ T̂n = 0.

4.1.3 Tabu Search Approach for Clustering

Al-Sultan (Al-Sultan 1995) applied the tabu search approach to cluster the pat-

terns. A set of test solutions is generated from the current solution randomly.

For each pattern, a random number, 0 ≤ R ≤ 1, is generated. If R ≥ Pt, then

this pattern is assigned to cluster i, where i is randomly generated but not the

same cluster as in the current solution, 1 ≤ i ≤ N , and Pt is the predefined prob-

ability threshold; otherwise it is partitioned to the same cluster as in the current

best solution. Starting with the best solution and progressing to the worst one,

if the aspiration level is satisfied or the tabu conditions are avoided, then this

test solution is chosen as the current best solution and each pattern assigned to

the ith cluster in the current best solution is recorded in the tabu list memory.

If all solutions are tabu, then new solutions are generated from the current best

solution again. The program is terminated if the predefined distance or the max-

imum number of iterations is reached. The tabu search approach for clustering

patterns in (Al-Sultan 1995) is illustrated in Figure 4.1.

The tabu search approach is also combined with the k-means (or GLA) algo-

rithm for cluster generation (Franti et al. 1998) and the centers of the clusters are

taken as the codevectors for vector quantization. The performance comparison of
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Figure 4.1: Flowchart of The Tabu Search Approach for Clustering

Patterns

this algorithm is better than both GLA algorithm and the tabu search approach

for cluster generation. In (Franti et al. 1998), there are two types of test solutions:

partition based test solution and codebook based test solution. In partition based

test solution, all the training patterns form the test solutions. In codebook based

test solution, the elements of the test solution are the centers of the clusters. The

basic procedure of the tabu search approach with GLA algorithm for clustering

patterns is illustrated in Figure 4.2.
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Figure 4.2: Flowchart of The Tabu Search Approach with GLA Algo-

rithm
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4.1.4 Clustering Using Stochastic Relaxation Approach

The simulated annealing for clustering is to perturb the centers of the clusters by

moving the training pattern from its current cluster to a different cluster. The

perturbation is accepted based on the probability of the generated random num-

ber, the change in distortion and current temperature. For stochastic relaxation

approach (Zeger & Gersho 1989, Zeger, Vaisey & Gersho 1992), the parturbation

is applied by adding some values to the centers of the clusters definitely for each

iteration. The stochastic relaxation approach for clustering can be described as

follows:

Step 1. Randomly select initial centers of clusters C
(1)
i , i = 1, 2, . . . N , N is the

number of clusters. Set iterative number n = 1 and D0 =∞.

Step 2. Assign the training data Xp to the ith cluster if d(Xp, Ci) ≤ d(Xp, Cj),

i 6= j, j = 1, 2, . . . N . Calculate the overall distortion Dn = Dn+‖Xp−Ci‖2.

Step 3. If |Dn−1−Dn|
Dn

< ǫ, then terminate the program; otherwise, set n = n+1.

Step 4. Calculate the centers of clusters Ci = 1
|Si|

∑

Xp∈Si
Xp, i = 1, 2, . . . N .

where |Si| denotes the member of training patterns in the ith cluster.

Step 5. Perturb the centers of clusters using C
(n)
i = C

(n)
i + δi(Tn). Go to Step 2.

δi(Tn) is a prturbation function where the value of the temperature Tn de-

creases with the increase of the iterative number n. δi(Tn) can be a uniform

distribution with zero mean and Tn is the range (Zeger & Gersho 1989, Zeger

et al. 1992). Tn can be σ2
xα

n, α = 0.95, σ2
x is the variance of the training pat-

terns.
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4.2 Clustering using Tabu Search with Simu-

lated Annealing

4.2.1 Motivation

A cluster generation for vector quantization using the tabu search approach with

simulated annealing was proposed (Chu & Roddick 2003). The main idea of this

algorithm is to use the tabu search approach to generate non-local moves for

the clusters and apply the simulated annealing technique to select current best

solution, thus improving the time taken for cluster generation and reducing the

mean squared error. Although the tabu search approach can avoid the cycling

condition so that jumps out of local optimum, it can be further improved by

introducing counters to calculate the frequency of the move for each element, i.e.,

the non-local moves from the current best solution can be limited by counting

the frequency of the move. The idea is to keep the movement of each element

within the same probability to reduce the probability of cycling. This is done as

sometimes the est solution does not change for long periods which reduces the

clustering performance. Simulated annealing is used to decide which test solution

is suitable to be the current best solution for generating the test solutions for next

iteration. The proposed tabu search approach with simulated annealing algorithm

for cluster generation is shown in Figure 4.3 and described as follows:

Step 1. Generate an initial solution Cinit using GLA algorithm. Set Ccurr=Cbest=Cinit.

Set a counter Countj for each element in the solution, j = 1, 2, . . . T . T is

the total number of training patterns.

Step 2. Generate S test solutions Ci by changing the values of elements from

the current best solution Ccurr with probability Pt. For each test solution,

if the qth element of the test solution is changed and the value of Countq

is smaller than ν, then increment Countq. If all the values of the counters
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are equal to ν, then reset all counters to zero.

Step 3.Calculate the mean squared error D(Ci) for each test solution and sort

these test solutions using mean squared error in increasing order.

Step 4. From the best test solution to the worst test solution, if D(Cbest) >

D(Ci), set Ccurr = Ci and go to step 6; otherwise go to next step.

Step 5. Calculate ∆D = D(Ccurr) − D(Ci) and set T̂n = T̂0α
n. Generate a

random number γ (0 ≤ γ ≤ 1), if γ < e
∆D

T̂n , then set Ccurr = Ci and go to

step 6, else if i = S, then go to step 2; otherwise increment i and go to step

4.

Step 6. If D(Cbest) remains unchanged for M iterations, then set Ccurr=Cbest,

clear the counter Countj, j = 1, 2, . . . T . If D(Cbest) > D(Ccurr) then set

Cbest = Ccurr. If the number of iteration has reached, then terminate the

program; otherwise go to step 2.

4.2.2 Experimental Results

Experiments were carried out to test the clustering distortion using the GLA algo-

rithm (Linde et al. 1980), the tabu search approach with GLA algorithm (Franti

et al. 1998) (referred to as TABU−GLA), and our proposed tabu search approach

with simulated annealing (referred to as TABU − SA) (Chu & Roddick 2003).

The initialization of the tabu search approach with simulated annealing can

be randomly generated or obtained from the GLA algorithm. Since the codebook

based test solution for the tabu search approach with GLA algorithm is better

than the partitioned based test solution in (Franti et al. 1998), we adopt the

codebook based test solution for the tabu search approach with GLA algorithm

for cluster generation. The evaluation function of the clustering distortion is the
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Figure 4.3: Flowchart of The Tabu Search Approach with Simulated

Annealing

mean squared error (MSE) as following:

MSE =
1

kT

N
∑

i=1

Ti
∑

j=1

D(X
(i)
j , Ci)

where Ti is the number of clustering patterns belonging to the ith cluster. T is

the total number of training patterns and k is the number of dimension for each

pattern. X
(i)
j is the jth pattern belonging to the ith cluster.

Three 512 × 512 images, the "Lena", "Baboo", and "Pepper" images were
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used as the test material. 4×4 pixel blocks were taken from these gray images as

the training patterns, i.e., the number of dimensions was 16. The parameters used

for the test solutions S, number of training patterns T , probability threshold Pi,

the limit value of counter ν, the limit number of the same current best iterations,

the initial temperature T̂0 and the value of α were 20, 16384, 100
16384

, 3, 30, 500 and

0.99, respectively.

Experimental results shown from Table 4.1 to Table 4.3 and Figure 4.4 to

Figure 4.6 demonstrate that, at the 1 hour mark, the proposed algorithm can re-

duce the average distortion by 0.3% ∼ 9.6% and 10% ∼ 13% compared with the

GLA algorithm and tabu search approach with GLA algorithm, respectively.

After 8 hours, the proposed algorithm will reduce the average distortion by

1.67% ∼ 9.99% and 1.65% ∼ 5.15% comparing with the GLA algorithm and

tabu search approach with the GLA algorithm, respectively. The original image

and decoded images using GLA, TABU −GLA, TABU − SA with random ini-

tialization, and TABU − SA with GLA initialization are shown in Figure 4.7,

4.8 and 4.9.

Table 4.1: Performance Comparison Using Lena Image as The Training

Patterns

Algorithm TS-SA with TS-SA with GLA TS-GLA

GLA initialization random initialization

Initialization 92.476 99.403 72.360 68.634

1 hour 55.912 57.354 59.889 64.309

2 hour 55.431 56.310 59.889 60.234

3 hour 55.431 56.129 59.889 59.445

4 hour 55.431 56.129 59.889 59.280

5 hour 55.431 56.129 59.889 59.216

6 hour 55.431 56.129 59.889 59.018

7 hour 55.431 56.129 59.889 58.501

8 hour 55.431 56.129 59.889 58.434

Preliminary experimental results demonstrate the proposed tabu search ap-
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Table 4.2: Performance Comparison Using Baboo Image as The Train-

ing Patterns

Algorithm TS-SA with TS-SA with GLA TS-GLA

GLA initialization random initialization

Initialization 355.181 360.119 330.381 323.543

1 hour 308.624 305.591 309.636 312.276

2 hour 306.797 304.385 309.636 311.043

3 hour 305.628 304.141 309.636 309.958

4 hour 305.005 303.492 309.636 309.693

5 hour 304.575 303.218 309.636 309.298

6 hour 304.399 302.906 309.636 309.264

7 hour 304.304 302.772 309.636 309.264

8 hour 304.158 302.695 309.636 309.264

Table 4.3: Performance Comparison Using Pepper Image as The Train-

ing Pattern

Algorithm TS-SA with TS-SA with GLA TS-GLA

GLA initialization random initialization

Initialization 127.286 140.189 82.332 75.351

1 hour 60.328 61.788 66.788 67.041

2 hour 60.117 60.891 66.788 66.005

3 hour 60.117 60.891 66.788 64.969

4 hour 60.117 60.891 66.788 64.409

5 hour 60.117 60.891 66.788 64.185

6 hour 60.117 60.891 66.788 63.804

7 hour 60.117 60.891 66.788 63.496

8 hour 60.117 60.891 66.788 63.381

proach with simulated annealing algorithm for cluster generation is superior to

the tabu search approach with Generalised Lloyd algorithm (GLA).
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Figure 4.4. Performance Comparison Using LENA Image

Figure 4.5. Performance Comparison Using Baboo Image

Figure 4.6. Performance Comparison Using Pepper Image
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Figure 4.7: Comparison of Lena Image Recovered by Different Algo-

rithm
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Figure 4.8: Comparison of Baboo Image Recovered by Different Algo-

rithm
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Figure 4.9: Comparison of Pepper Image Recovered by Different Algo-

rithm
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4.3 Genetic Clustering for Mean-Residual Vec-

tor Quantization

4.3.1 Motivation

Vector quantization (VQ) has been shown to be effective for pattern recogni-

tion, image coding and data compression (Gersho & Gray 1992). It is shown in

Figure 4.10, the encoder of VQ encodes a given set of k-dimensional data patterns

X = {Xj | Xj ∈ Rk; j = 1, 2, . . . T}

with a much smaller set of codevectors

C = {Ci | Ci ∈ Rk; i = 1, 2, . . . N}

, where T is total number of data patterns and N is the codebook size. The

compression operator by storing or sending the index only. The decoder has the

same codebook as the encoder and decoding is operated by table look-up proce-

dure. The performance of the data compression depends on good representative

codevectors. Normally the representative codevectors are the centroids of the

clusters generated from the training data patterns.

The mean-residual vector quantization (M/R VQ) (Gersho & Gray 1992) is

a two-stage vector quantization that takes the mean and residual values to effect

the vector quantization. It consists of the mean codebook (or mean scalars)

and the residual codebook (or residual vectors). Assuming the data vector X =

{x1, x2, . . . , xk} and the code vector Ci = {ci1, ci2, . . . , cik}, the squared Euclidean

distortion measure can be expressed as

D(X,Ci) =
k

∑

j=1

(xj − cij)
2. (4.1)

The index i (compressed data) can be obtained from the nearest neighbor search

and

i = argminpD(X,Cp). (4.2)
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Figure 4.10. Block Diagram of VQ Compression

Assuming X̃j is the recovered data vector for the data vector Xj, j = 1, 2, . . . , T ,

T is the total number of input vectors. The benchmark for evaluating the per-

formance of data compression can be mean squared error (MSE), signal to noise

ratio (SNR) and the peak signal to noise ratio (PSNR) as follows:

MSE =

∑T

j=1 D(Xj, X̃j)

T
(4.3)

SNR =

∑T

j=1 X2
j

∑T

j=1 D(Xj, X̃j)
(4.4)

PSNR = 10 log
(peak signal)2

MSE
(4.5)

Obviously, the performance of the data compression depends on good code vec-

tors.

The main benefit of M/R VQ is to reduce the storage of the codebook and

the encoding time with only a small degradation in the recovery performance.

As shown in Figure 4.11, the mean is calculated from the input vector X =

{x1, x2, . . . , xk} and the residual vector X−m ·~1 = {x1−m,x2−m, . . . , xk−m}
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is obtained by subtracting the mean m from the input vector X. The mean index

i and the residual index j are obtained by using the nearest neighbor search from

the mean codebook and residual codebook, respectively. The indices i and j are

the compressed data vector which may be stored as the database or sent to the

receiver, and the recovered vector X̃ = {Mi + rj1 ,Mi + rj2 , . . . ,Mi + rjk
} can

be obtained by a table lookup procedure from the mean codebook and residual

codebook.

The GLA algorithm (Linde et al. 1980) is the most popular algorithm for

designing the codebook from training data. Genetic algorithms (Delport &

Koschorreck 1995, Pan, McInnes & Jack 1995) and simulated annealing meth-

ods (Vaisey & Gersho 1988, Flanagan, Morrell, Frost, Read & Nelson 1989, Lu

& Morrell 1991) have been applied to generate better codebooks of single stage

VQ with more computation time. In (Pan et al. 1996b), several fast clustering

algorithms are presented by using the previous vector candidate, partial distance

search, triangular inequality elimination and improved absolute error inequality

criterion to design the codebook. A more promising algorithm combined with

the genetic algorithm and simulated annealing method is proposed not only to

reduce the peak signal to noise ratio but also to accelerate the design of the code-

book (Huang, Pan, Lu, Sun & Hang 2001). There much research on codebook

design of the single stage vector quantization, but, as yet, no advanced report on

the codebook design of mean-residual vector quantization.

Genetic algorithms (Goldberg 1989) are an effective, parallel and near global

optimum search method based on the ideas found in natural selection and ge-

netics. During the search process, it can automatically achieve and accumulate

the knowledge about the search space, and adaptively control the search process

to approach a globally optimal solution. As shown in Figure 4.12, the GLA al-

gorithm is applied to cluster the mean scalars and residual vectors (for MaxIte

iterations) separately. In (Chu & Roddick 2002, Chu, Roddick & Chen 2004), ge-

netic algorithm with stochastic relaxation approach is used in combination with
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Figure 4.11: Schematic for Mean-Residual Vector Quantization (M/R

VQ)

the GLA algorithm to cluster the data vectors for mean-residual vector quan-

tization. The chromosome consists of the mean code scalars and residual code

vectors. The operators of selection, crossover and mutation are used on both the

mean code scalars and residual code vectors simultaneously. The fitness function

is the inverse of the mean squared error (or peak signal to noise ratio) based on
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the original data vectors and recovered data vectors. After running the genetic

algorithm, the GLA algorithm is applied again. The procedure continues until

the maximum number of iterations (MaxGen) is reached or some quality metric

is satisfied. The proposed algorithm can be described as follows:

Step 0. Calculate the mean scalars

mi =

∑k

p=1 xip

k

and residual vectors ri = {ri1, ri2, . . . rik}, rij = xij = mi from the training

data vectors Xi = {xi1, xi2, . . . xik}, (i = 1, 2, . . . , T, j = 1, 2, ..., k), T is the

size of training data vectors and k is the vector dimension. Compute the

central residual vector

rc =

∑T

i=1 ri

T
.

Step 1. Initialization: Select N1 mean code scalars Mi and N2 residual code

vectors Rj for every individual of the population using random number

generator, (i = 1, 2, . . . , N1 and j = 1, 2, . . . , N2), N1 is the mean codebook

size and N2 is the residual codebook size. P sets of N1 mean code scalars

and N2 residual code vectors are generated, where P is the population size.

Step 2. Update: The GLA algorithm is used to update N1 mean code scalars

and N2 residual code vectors for MaxIte times for individuals in the pop-

ulation.

Step 3. Evaluation: The peak signal to noise ratio (PSNR) is used as the

fitness to evaluate every individual of the population, where

PSNR = 10 log

∑T

i=1(peak signal)2

∑T

i=1 D(Xi, X̃i)
,

T , Xi and X̃i are the total number of data vectors, data vector and recovered

data vector, respectively.
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Step 4. Selection: The survival rate Ps is used to decide whether the individual

is a survivor of the current population. If a random generation number is

smaller than rate Ps, then this individual survives; otherwise it does not

survive.

Step 5. Crossover: The mean code scalars and residual code vectors are sorted

in decreasing order according to the value of the mean code scalar and

the squared Euclidean distance between the central residual vector and the

residual code vector of current population. The single point crossover can be

used to crossover the mean code scalars and residual code vectors separately

to produce the next generation from the selected survivors in the previous

step.

Step 6. Mutation: The mutation rate Pm is used to select the individual for

mutation. Pm×(population size)×(codebook size) individuals are mutated

by adding the random value to the mean code scalar and residual codevec-

tor, where the random value can be set between ±(αGen× deviation of the gene

2
),

gene is the component of the mean code scalar or residual code vector, Gen

is the number of generations and 0 ≤ α ≤ 1.

Step 7. Termination: If the maximum number of generations has been reached

or the quality is satisfied, then termination the program; otherwise, go to

step 2.
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Figure 4.12: Flowchart of Genetic Clustering Algorithm for (M/R VQ)
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Figure 4.13. Experiment for Mutation Rate

4.3.2 Experiments

The test materials for these experiments consisted of two gray-level images, i.e.,

Lena and Pepper images with resolution 512×512 pixels, 8 bits per pixel. 16384

data vectors with 16 dimensions are generated from each of the images. The

first experiment is to test the performance of the mutation rate, survival rate,

population size, maximum number of generations Max-Gen, and the number of

iterations for GLA MaxIte. Peppers image is used as the test image and mean

scalars with size 32 and residual code vectors with size 32 are generated using

genetic clustering algorithm. The results were averaged from 5 runs. For the

experiment of mutation rate, the parameters of the population size, maximum

number of generations Max-Gen, the number of iterations for GLA MaxIte, the

survival rate Ps were set to be 20, 50, 5, and 0.5, respectively. The mutation rate

is set from 0.1 to 0.8 with interval 0.1. As shown in Figure 4.13, the proposed

algorithm is robust to the mutation rate.

For the experiment of survival rate, the parameters of the population size,

maximum number of generations Max-Gen, the number of iterations for GLA

MaxIte, and the mutation rate Pm were set to be 20, 50, 5, and 0.1, respectively.

The survival rate is also set from 0.1 to 0.8 with interval 0.1. The experimental
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Figure 4.14. Experiment for Survival Rate

Figure 4.15. Experiment for Population Size

result is shown in Figure 4.14. The performance is similar if the survival rate is

set more than 0.2.

For the experiment of population size, the parameters of the maximum number

of generations Max-Gen, the number of iterations for GLA MaxIte, the survival

rate Ps and the mutation rate Pm were set to be 50, 5, 0.5 and 0.1, respectively.

The population size is set from 10 to 80 with interval 10. As shown in Figure 4.15,

the performance is similar if the population size is set more than 10.

For the experiment of maximum number of generations Max-Gen, the pa-
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Figure 4.16. Experiment for Maximum Number of Generation

rameters of the population size, the number of iterations for GLA MaxIte, the

survival rate Ps and the mutation rate Pm were set to be 20, 5, 0.5 and 0.1,

respectively. The parameter Max-Gen is set from 10 to 80 with interval 10. As

shown in Figure 4.16, the performance is only influenced a little if the maximum

number of generations is more than 10.

The experiment for the number of iterations for GLA MaxIte, the parameters

of the population size, maximum number of generations Max−Gen, the survival

rate Ps and the mutation rate Pm were set to be 20, 50, 0.5 and 0.1, respectively.

The parameter MaxIte is set from 1 to 8 with interval 1. The experimental result

is shown in Figure 4.17. The performance is similar if the parameter MaxIte is

set more than 2.

The second experiment was carried out to test the peak signal to noise ratio of

the proposed genetic clustering algorithm and the conventional GLA algorithm

for mean-residual vector quantization for 10 runs. The parameter ǫ for GLA

algorithm was set to 0.001. The parameters of the population size, maximum

number of generations Max-Gen, the number of iterations for GLA MaxIte, the

survival rate Ps and the mutation rate Pm were set to be 20, 50, 5, 0.5 and 0.1,

respectively. Firstly, the experiments compared the performance of the genetic

clustering algorithm with the GLA algorithm for the mean-residual vector quan-
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Figure 4.17. Experiment for the Number of Iteration for GLA

tization with mean code size 64 and residual code size 64 for Peppers and Lena

images. As shown in Table 4.4 and Table 4.5, the proposed genetic clustering

algorithm improves the PSNR by 0.22 and 0.18 dB.

Table 4.4: Performance Comparison for M/R VQ with Mean Codebook

Size 64 and Residual Codebook Size 64 Using Pepper Image

Seed GA (dB) GLA (dB)

1 32.5588 32.3736

2 32.5670 32.2930

3 32.5654 32.3510

4 32.5662 32.2936

5 32.5334 32.2855

6 32.5610 32.3727

7 32.5539 32.3615

8 32.5581 32.3242

9 32.5554 32.3630

10 32.5653 32.3275

Ave. 32.5585 32.3346

The experiments also compared the performance of the genetic clustering

algorithm with the GLA algorithm for the mean-residual vector quantization

with mean code size 128 and residual code size 128 for Peppers and Lena images.
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Table 4.5: Performance Comparison for M/R VQ with Mean Codebook

Size 64 and Residual Codebook Size 64 Using Lena Image

Seed GA (dB) GLA (dB)

1 32.7985 32.6291

2 32.8020 32.5925

3 32.8129 32.5572

4 32.8183 32.6642

5 32.8029 32.6386

6 32.7987 32.6020

7 32.7982 32.6687

8 32.8166 32.5967

9 32.8112 32.6280

10 32.8119 32.6723

Ave. 32.8071 32.6249

As shown in Table 4.6 and Table 4.7, the proposed genetic clustering algorithm

improves the PSNR by 0.36 and 0.33 dB.

Table 4.6: Performance Comparison for M/R VQ with Mean Codebook

Size 128 and Residual Codebook Size 128 Using Pepper Image

Seed GA (dB) GLA (dB)

1 33.4780 33.0772

2 33.5299 33.1633

3 33.4962 33.1403

4 33.5062 33.1149

5 33.5167 33.0715

6 33.5057 33.2084

7 33.5359 33.0946

8 33.4673 33.1390

9 33.4713 33.2042

10 33.5208 33.2335

Ave. 33.5028 33.1447

For the experiments of mean code size 256 and residual code size 256 for

Peppers and Lena images, the proposed genetic clustering algorithm improves
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Table 4.7: Performance Comparison for M/R VQ with Mean Codebook

Size 128 and Residual Codebook Size 128 Using Lena Image

Seed GA (dB) GLA (dB)

1 33.7917 33.4953

2 33.8132 33.4805

3 33.7900 33.4510

4 33.7898 33.4934

5 33.8007 33.4409

6 33.7859 33.4904

7 33.8024 33.4474

8 33.8115 33.5000

9 33.8206 33.4628

10 33.8058 33.4842

Ave. 33.8012 33.4746

the PSNR by 0.61 and 0.61 dB shown in Table 4.8 and Table 4.9. Experimental

results demonstrate the usefulness of the proposed genetic clustering algorithm

for M/R VQ.

Table 4.8: Performance Comparison for M/R VQ with mean Codebook

Size 256 and Residual Codebook Size 256 Using Pepper Image

Seed GA (dB) GLA (dB)

1 34.3471 33.7332

2 34.3842 33.7675

3 34.4132 33.7442

4 34.3103 33.8159

5 34.3240 33.6789

6 34.3824 33.7931

7 34.3406 33.7165

8 34.4045 33.7849

9 34.4379 33.8309

10 34.4055 33.7759

Ave. 34.3750 33.7641
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Table 4.9: Performance Comparison for M/R VQ with Mean Codebook

Size 256 and Residual Codebook Size 256 Using Lena Image

Seed GA (dB) GLA (dB)

1 34.7745 34.1504

2 34.7631 34.2104

3 34.7229 34.1366

4 34.7447 34.1040

5 34.7502 34.1887

6 34.7511 34.2024

7 34.7725 34.1145

8 34.7811 34.2021

9 34.7374 34.1145

10 34.7980 34.1075

Ave. 34.7596 34.1531

For the previous experiments, the training data and the test data are the same.

For the final experiment, Peppers and Lena are used as the training images for

M/R VQ with mean code size 64 and residual code size 64. F16, PEPPERS and

Lena images are used as the test images. The parameter ǫ for GLA algorithm

was set to 0.001. The parameters of the population size, maximum number of

generations Max−Gen, the number of iterations for GLA MaxIte, the survival

rate Ps and the mutation rate Pm were set to be 20, 50, 5, 0.5 and 0.1, respectively.

Experimental results are shown in Table 4.10. Even the F16 test image outside

of the training images, the proposed genetic clustering algorithm may improve

0.2 dB compared with GLA algorithm for M/R VQ with mean code size 64 and

residual code size 64.

In (Chu & Roddick 2002), the genetic algorithm is applied in combination with

the GLA algorithm for the codebook design of mean-residual vector quantization.

Experiments based on the LENA, PEPPERS and F16 images confirm that the

proposed genetic clustering algorithm comparing with GLA algorithm may im-
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Table 4.10: Performance Comparison for M/R VQ with Mean Codebook

Size 64 and Residual Codebook Size 64 Using F16, Pepper and Lena

Image

Test Image GA (dB) GLA (dB)

F16 29.7143 29.5162

Pepper 32.3492 32.1740

Lena 32.5417 32.4112

prove the peak signal to noise ratio by 0.2, 0.35 and 0.61 dB for mean/residual

codebook size 64/64 and 128/128, respectively. The proposed algorithm is also

robust to the wide range of parameters setting. Even the test image outside

the training images, the genetic clustering algorithm may also get outstanding

results.

4.4 Incremental Splitting Clustering

4.4.1 Introduction

Data clustering is a common practice in various fields of research and application

development. For instance, in data mining, we might need to extract and capture

hidden regularities diffused across a large database and store them as a limited

number of representative entities. For codebook design in vector quantization,

we require a small number of most representative vectors, i.e., the centers of

clusters from potentially vast volumes of training data in order to minimize the

quantization error.

Without loss of generality, data clustering can be formulated as a problem

of finding N most representative entities, Ci, i = 1 . . . N , from T supplied data

items, Xi, i = 1 . . . T . Generally N ≪ T . The located C ′
is serve as centers of
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clusters and are used to partition the T supplied data items into N mutually

exclusive clusters, Si, i = 1 . . . N . A given data point Xi is considered to belong

to cluster Si if Ci is the ”nearest” center to Xi.

Certain cost functions are required to measure the ”distance” between given

any data item and cluster center. In problem domain of k-dimensional vectors,

the distance between data item Xi and the cluster centre Cj can be defined as:

D(Xi, Cj) =

√

∑k

p=1(X
p
i − Cp

j )2

k

where Xp
i is the pth component of vector Xi.

Given the availability of a cost function, we can evaluate the quality of a

particular clustering according to an error function defined in Eq. 4.6. A lower

E is an indication of good clustering, and vice versa.

E =

∑T

i=1 D(Xi, Cj)

T
(4.6)

where Cj is the center of the cluster to which Xi belongs.

It had been shown that an optimal clustering using an exhaustive search is

prohibitive for any problem of a practical size. Numerous heuristic methods have

thus been developed to achieve near-optimal clustering within reasonable compu-

tation constraints. Our algorithm, incremental splitting, performs an informed,

guided search towards a more promising result in the solution space. Consistent

improvement over other methods is an indication of the superiority of our ap-

proach. Our method incurs more computational overhead than others. However,

we argue that the cost is justified with respect to the improvements obtained.

Moreover, it may be possible to reduce the computational cost without sacrificing

the advantages. We are now investigating the possibility of dynamic threshold for

the k-means inner loop. The basic idea is to adopt higher threshold at early phase

for coarse-grained refinement, and lower thresholds during later phases for fine-

grained refinement. This scheme is expected to substantially reduce the overall

computation without degradation in clustering quality. Section 4.4.2 will review
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Cluster Initialization

DO

Cluster Splitting / Cluster Merge

CALL k-means method to refine the clustering

UNTIL N clusters is obtained

Figure 4.18. Pseudo Code for Local-Descent Methods

some of the widely used methods. Our approach is presented in section 4.4.3

while section 4.4.4 will report on some promising results we have so far obtained.

4.4.2 Related Works

An agglomerative clustering approach is a process in which each training data

item is placed in its own cluster and these atomic clusters are gradually merged

into larger and larger clusters until the desired objective is attained. In con-

trast, a divisive clustering approach starts with all training data in one cluster

and subdividing these into several smaller clusters. Among wide variety of al-

ternatives (Jain & Dubes 1988), local-descent methods prevail when complexity

and computation cost is concerned. Most local-descent methods are derived from

k-means method (MacQueen 1967) and bear a similar algorithmic structure, as

shown in Figure 4.18.

The k-means method in itself an iterative process, performs local descent to

search for better clustering. With k-means method, the error function in Eq. 4.6

monotonically decreased. However, local-descent methods, such as k-means, run

the risk of being trapped into local optima. The pseudo code in Figure 4.19

outlines the process of k-means method, where new centers are calculated as the

average of all Xi within the same cluster. Different local-descent methods differ in

the manner in which they deal with cluster initialization, splitting, and merging.

Three widely used heuristics are listed below together with brief descriptions:
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DO

Calculate new center Ci for each cluster Si, i = 1 . . . N

Conduct Re-clustering using the new centers

UNTIL Percentage of improvement fall below threshold ǫ

Figure 4.19. Pseudo Code for K-Means Method

Random Initalization (Jain & Dubes 1988): N samples are randomly drawn

from M given data and act as initial centers. K-means method is called

only once. There is no cluster splitting / merging.

Binary Splitting (Linde et al. 1980): Start with a single cluster. In each it-

eration, every cluster C is spilt into two smaller ones C1 and C2, where

C1 = C × (1 + δ), C2 = C × (1− δ), δ is a perturbation factor. Therefore,

the number of clusters doubles after each iteration. The k-means method

is called to refine the clustering in each iteration.

Pair-wise Nearest Neighbor Merge (Equitz 1989): Start with T clusters, one

cluster for each supplied data item. In each iteration, one pair of nearest

neighbors is merged. The k-means method is called to refine the clustering

in each iteration.

4.4.3 Proposed Algorithm – Incremental Splitting

The general structure discussed in the previous section can be regarded as an

interleaved integration of local optimization and escaping mechanisms. The k-

means method acts as a local optimizer, while different heuristics serve as mech-

anisms for escaping local optima. However, to some degree, all three heuristics

are blind in that they do not make good use of the distribution of the supplied

data to control the allocation of clusters. In our efforts to improve clustering,

the intuitive strategy we have adopted here is to allocate more clusters to those
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Start with a single cluster

DO

Split only the cluster having largest total error

CALL k-mean method to refine the clustering

UNTIL N clusters is obtained

Figure 4.20. Pseudo Code for Incremental Splitting Algorithm

regions having more sample data. With this in mind, we propose splitting only

the cluster having the largest total error in each iteration. This new approach

is termed incremental splitting and is shown in Figure 4.20. A cluster having

a large error can have two causes: first, the cluster has too wide coverage; sec-

ond, that the cluster contains too many samples. In either case, splitting the

cluster will effectively reduce the total error and therefore improve the quality of

clustering (Chu & Roddick 2001).

4.4.4 Experimental Results

A series of experiments was conducted to verify our idea. While the method

will work with any dimensionality of data (by amending the distance functions

accordingly) these were performed on a 2-D vector in order to visualize the dis-

tribution of resultant clusters under different heuristics. Figure 4.21 shows the

distribution of 10000 sample data, which are randomly generated using Gaussian

function. The threshold and the perturbation factor are set to 0.001 and 0.02

respectively in all experiments. Figure 4.22 reports the error and the distribution

of 256 cluster centers using different heuristics. The incremental spitting heuristic

outperforms all others, and the distribution of resultant clusters closely resembles

the distribution of sample data.

To obtain more confidence in our conclusion, we examine the relative merit of

different heuristics under different sample sizes and different number of clusters.
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Figure 4.21. Distribution of 10,000 Sample Data

The results are summarized in Table 4.11 and Table 4.12. Random initializa-

tion and binary splitting are competitive, while our method shows consistent

improvement over both methods in all cases.

From Figure 4.22, the proposed incremental splitting clustering may allocate

more representatives (clusters) for the compact region and less representatives

(clusters) for the sparse region, this will cause the reduction of the total distor-

tion. It is typically useful for the non-uniformly distributed data and it is suitable

to be applied to data compression and pattern recognition using vector quanti-

zation.

Table 4.11: Error for Different Sample Size (Number of Cluster=256)

Number of Sample Data Random Initialization Binary Splitting Incremental Splitting

1000 0.153637 0.137252 0.131204

2000 0.176120 0.160780 0.155279

4000 0.184560 0.175639 0.169673

8000 0.190036 0.186481 0.179899

16000 0.194979 0.193206 0.186768

32000 0.196600 0.197891 0.192024
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Table 4.12: Error for Different Number of Clusters (Sample Size =

10000)
Number of Clusters Random Initialization Binary Splitting Incremental Splitting

32 0.536971 0.548424 0.535818

64 0.386860 0.391035 0.379582

128 0.272711 0.275201 0.265303

256 0.191920 0.188622 0.182477

512 0.134390 0.129469 0.1123353

1024 0.092086 0.084134 0.080145

Figure 4.22. Distribution of 256 Clusters Using Different Heuristics
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4.5 Labelled Bisecting K-Means Clustering Al-

gorithm for Watermarking

A novel digital image watermarking algorithm based on labelled bisecting k-means

clustering technique will be introduced in this section. The embedding process

is performed by assigning the input vector to the cluster whose label is equal

to the watermark bit. The security is guaranteed by two keys, the labelling key

and the permutation key. In addition, the extraction process can be performed

blindly. The proposed method is robust to JPEG compression and some spatial-

domain processing operations. Simulation results demonstrate the effectiveness

of the proposed algorithm (Chu, Roddick, Lu & Pan 2004a, Chu, Roddick, Lu &

Pan 2003).

4.5.1 Introduction

Over the last decade, digital watermarking has been presented to complement

cryptographic processes. Digital watermarking is a technique to insert a secret

signal (i.e., a watermark) in digital data (namely audio, video or a digital image),

which enables one to establish ownership or identify a buyer. Most of existing

invisible watermarking schemes are designed for either copyright protection or

content authentication. Robust watermarks (O’Ruanaidh, Dowling & Boland

1996, Cox, Kilian, Leighton & Shamoon 1997, Swanson, Bin & Tewfik 1998,

Voyatzis & Pitas 1999, Pereira & Pun 2000, Wang, Doherty & Van Dyck 2002)

are generally used for copyright protection and ownership verification because

they are robust to nearly all kinds of image processing operations. Recently, some

robust image watermarking techniques based on vector quantization (VQ) (Lu &

Sun 2000, Lu et al. 2000c, Jo & Kim 2002, Makur & Selvi 2001, Huang, Wang &

Pan 2002, Huang, Wang & Pan 2001) have been presented.

The watermark information is embedded into the encoded indices by codebook
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partition or expansion technique under the constraint that the extra distortion

is less than a given threshold (Lu & Sun 2000, Lu et al. 2000c, Jo & Kim 2002).

Reference (Makur & Selvi 2001) embeds the watermark bit in the dimension

information of the variable dimension reconstruction blocks of the input image.

References (Huang et al. 2002, Huang, Wang & Pan 2001) embed the watermark

information by utilizing the properties, such as mean and variance, of neighboring

indices. In this paper, we present a novel VQ-based image watermarking method.

In this scheme, a VQ codebook is first generated by the labelled bisecting k-

means clustering method, where each codeword or cluster center is labelled either

’0’ or ’1’. For each image block, the nearest codeword whose label is equal to

the watermark bit is found and used to reconstruct the watermarked image.

The extraction process can be performed without the original image because

the embedded watermark bit is just the label of the nearest codeword for each

watermarked image block.

4.5.2 Proposed Algorithm

Before describing the proposed method, we introduce some basic concepts of

vector quantization. VQ is an efficient block-based lossy image compression tech-

nique with a high compression ratio and a simple table lookup decoder. VQ can

be defined as a mapping from k-dimensional Euclidean space Rk into a finite

codebook C = {ci|i = 0, 1, · · · , N − 1} where ci is called a codeword and N is

the codebook size. Before online encoding, VQ first generates a representative

codebook off-line from a number of training vectors using the well-known GLA

algorithm (Linde et al. 1980).

In image vector quantization, the image to be encoded is first segmented into

vectors and then the encoding is operated sequentially encoded vector by vector.

In the encoding stage, for each k-dimensional input vector x = (x1, x2, · · · , xk),

we find the nearest neighbor codeword ci = (ci1, ci2, · · · , cik) in the codebook
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C = {c0, c1, · · · , cN−1}. And then the index i of the nearest neighbor codeword

assigned to the input vector x is transmitted over the channel to the decoder. The

decoder has the same codebook as the encoder. In the decoding phase, for each

index i, the decoder merely performs a simple table look-up operation to obtain

ci and then uses ci to reconstruct the input vector x. Compression is achieved by

transmitting or storing the index of a codeword rather than the codeword itself.

The main idea of the proposed VQ-based digital watermarking scheme is to assign

each input image block to different cluster centers or codewords according to the

corresponding watermark bit. Assume the codebook C = {c0, c1, · · · , cN−1} has

been generated by k-means algorithm.

In order to recognize the watermark bit in the extraction process without the

original image, we assign a label either ’0’ or ’1’ to each cluster as well as the

codeword. For description convenience, the embedding process for each input

image block can be shown in Figure 4.23. Each cluster is labelled either ’0’ or ’1’

based on the labelling key generated by the labelled bisecting k-means algorithm

that will be discussed later. Assume the input image block x is located in the

cluster i labelled ’0’, while cluster j and cluster l are all labelled ’1’, as shown

in Figure 4.23(a). If the watermark bit is equal to 0, then the codeword ci is

assigned to x. Otherwise, from all the neighboring clusters labelled ’1’, we find

the nearest codeword cj and assign it to x. In the extraction stage, we can easily

extract the watermark bit by detecting only the label of the cluster to which the

watermarked image block belongs.

Now we turn to investigate the labelling problem. People may consider adopt-

ing the random labelling method to label all of the clusters generated by k-means

algorithm. However, there may be the case that all of the clusters surrounding

cluster i are labelled ’0’ as shown in Figure 4.23(b). Thus, if the watermark bit

is equal to ’1’, we cannot find a neighboring codeword labelled ’1’ to represent x.

In other words, the labelling result should satisfy the following condition: Sur-

rounding each cluster, there should be at least a cluster labelled a different label.
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Figure 4.23: A Concrete Example to Describe The Embedding Process

for Each Input Vector

In addition, to obtain a better watermarked image, the label assignment should

also lead to a less extra average distortion due to the embedding operation with

a random watermark bit sequence. Based on above consideration, we adopt not

the conventional GLA algorithm (Linde et al. 1980) or k-means algorithm but a

novel labelled bisecting k-means algorithm to generate the codeword-labelled VQ

codebook. As shown in Figure 4.24, this scheme can be expressed as follows:

Step 0: The whole training set is viewed as a single cluster. Split this cluster



CHAPTER 4. IMPROVED CENTROID-BASED CLUSTERING ALGORITHMS 136

Figure 4.24: Flowchart of labelled bisecting k-means clustering algo-

rithm

into two sub-clusters. One is labelled ’0’, the other is labelled ’1’.

Step 1: Pick the cluster Cp that has the largest distortion to split.

Step 2: Find 2 sub-clusters using the basic k-means algorithm (Bisecting step).

Step 3: Repeat Step 2 for Im times and take the split that produces the clus-

tering with the highest overall similarity. Thus, we can obtain two new

clusters Ca and Cb.
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Step 4: For clusters Ca and Cb, find their neighboring clusters other than them-

selves. If Ca (or Cb) has a nearest neighboring clusters Cc labeled l, and Cb

(or Ca) has no neighboring clusters, then Ca (or Cb) is labeled 1 − l and

Cb (or Ca) is labeled l. Otherwise, if Ca has a nearest neighboring clusters

Cc labeled l, and Cb also has a nearest neighboring cluster Cd (may be just

Cc) labeled m, then Ca is labeled 1− l and Cb is labeled 1−m .

Step 5: Repeat steps 1, 2, 3 and 4 until the desired number of clusters is reached.

Step 6: Record all cluster labels and centers to form the labeling key Keyl and

the final codebook C, respectively.

We can easily prove that the above labeling technique can satisfy the em-

bedding requirement. However, this technique cannot guarantee obtaining the

optimal label assignment for a random watermark bit sequence. Therefore, how

to obtain the optimal label assignment is still a hard problem to be solved in the

future.

After obtaining the codeword-labeled VQ codebook, we can describe the em-

bedding process as follows. The binary watermark image is first permuted by the

key Keyp to form a watermark bit sequence to be embedded, and the original

image X is divided into blocks with the same size as that of the codeword. Then

the embedding process can be performed block by block. For each image block x,

we first find its nearest codeword ci and compare the corresponding label p with

the watermark bit w. If p = w, then the codeword ci is used to reconstruct x.

Otherwise, select the nearest codeword cj from the neighboring clusters labeled

w to reconstruct x. Finally, piece all reconstructed codewords together to form

the watermarked image.

The extraction process is very simple and can be performed blindly. Firstly,

the suspicious image is divided into blocks. Secondly, the extraction is performed

block by block. For each block, find its nearest codeword and record the corre-

sponding label according to the labeling key Keyl. Thirdly, piece all the obtained
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labels together to form a bit sequence. Finally, perform the inverse permutation

operation on the bit sequence to obtain the extracted watermark.

4.5.3 Experimental Results

To test the performance of the proposed method, we adopt the 256-grayscale Lena

image of size 512 × 512 and a binary watermark W of size 128 × 128 as shown

in Figure 4.25. The Lena image is divided into 16384 blocks of size 4× 4, which

are served as the training set for the labeled bisecting k-means algorithm. In our

experiment, 256 to 8192 clusters are generated and labeled for embedding, and we

employ the Normalized Hamming Similarity, NHS, to evaluate the effectiveness

of the proposed algorithm. The NHS between the embedded binary watermark

W and the extracted one W ′ is defined as

NHS = 1− HD(W,W ′)

number of watermark bits
(4.7)

where HD(·, ·) denotes the Hamming distance between two binary strings, i.e.,

the number of bits different in the two binary strings. We can easily prove that

NHS ∈ [0, 1]. If we acquire the higher NHS values, the embedded watermark

is more similar to the extracted one. The PSNR of the watermarked image is

31.11dB obtained by the proposed method for 2048 clusters. As shown in Ta-

ble 4.13, the quality can be improved by the increase of the number of clusters.

The NHS value of the watermark extracted from the watermarked image with-

out any attack is equal to 1.0, which means that the proposed algorithm is able

to extract the watermark perfectly because the embedded watermark and the

extracted one are identical.

To check the robustness of our algorithm, we perform several attacks on the

watermarked image. As shown in Table 4.14, the NHS values of the extracted

watermarks for the JPEG compressed watermarked images with QF = 100%
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Table 4.13: The relationship between the PSNR of the watermarked

image and the number of clusters.

Number of 32 64 128 256 512 1024 2048 4096 8192

Clusters

PSNR of the

watermarked 24.37 25.93 27. 63 28.76 29.80 30.63 31.11 31.99 32.47

image (dB)
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Figure 4.25. Original Image and Watermark

and QF = 80%, the VQ compressed watermarked images with Codebook 1 used

in the embedding process and Codebook 2 of size 1024 trained from the Lena

image, the median filtered and blurred watermarked images, the sharpened and

contrast enhanced watermarked images and the cropped watermarked image.

From these results, we can see that the proposed algorithm is robust to JPEG

compression and some common spatial processing operations. In addition, the

proposed algorithm can extract the watermark with NHS = 1.0 from the VQ-

compressed watermarked image with the same codebook used in the embedding

process. Figure 4.26 ∼ 4.30 show the watermarked images and the corresponding
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Table 4.14. NHS Value for Various Attacks

Attack NHS

No Attack 1.0

JPEG (QF=100%) 0.999

JPEG (QF=80%) 0.962

VQ (Codebook 1) 1.0

VQ (Codebook 2) 0.778

Median Filter (radius=1) 0.835

Blurring (radius=1, threshold=10) 0.872

Sharpen 0.969

Contrast Enhamement 4% 0.904

Image Cropping in The Upper-Left Corner 0.849
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Figure 4.26: JPEG Compressed Watermarked Image and Correspond-

ing Extracted watermark

extracted watermarks for the attack of JPEG (QF=100%), Median Filtering,

Blurring, Sharpening and Image Cropping.
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Figure 4.27: Median Filtered Watermarked Image and Corresponding

Extracted Watermark
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Figure 4.28: Blurred Watermarked Image and Corresponding Ex-

tracted Watermark
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Figure 4.29: Sharpened Watermarked Image and Corresponding Ex-

tracted Watermark
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Figure 4.30: Attacked Watermarked Image by Cropping and Corre-

sponding Extracted Watermark
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4.6 Hadamard Transform Based Fast Codeword

Search Algorithm for High-Dimensional VQ

Encoding

Vector quantization (VQ), as we previously described in section 2.3.2, is a block-

based lossy compression technique, which has been widely used in image com-

pression and speech coding (Gersho & Gray 1992), (Linde et al. 1980). The main

idea of VQ is to exploit the statistical dependency among vector components to

reduce the spatial or temporal redundancy and obtain a high compression ratio.

VQ can be defined as a mapping from k-dimensional Euclidean space Rk into

a finite subset C of Rk. We call this finite set C the codebook and, moreover,

C = y1, y2, · · · , yN , where yi is a codeword and N is the codebook size. There are

two key problems involved in VQ, codebook design and codeword search. The

task of codebook design is to generate N most representative codewords from

a large training set that consists of M training vectors, where M ≫ N . One

of the famous codebook design methods is called LBG algorithm or GLA algo-

rithm (Linde et al. 1980). The task of codeword search is to search the best

match codeword from the given codebook for the input vector. That is to say,

the nearest codeword yj = (yj1, yj2, · · · , yjk) in the codebook C is found for each

input vector x = (x1, x2, · · · , xk) such that the distortion between this codeword

and the input vector is the smallest among all codewords.

In this section, we present an efficient nearest neighbor codeword search al-

gorithm based on Hadamard transform for vector quantization. Four efficient

elimination criteria are derived from two important inequalities based on three

characteristic values in the Hadamard transform domain. Before the encoding

process, all codewords in the codebook are Hadamard-transformed and sorted

in the ascending order of their first elements. During the encoding process, we

firstly perform the transform on the input vector and calculate its characteris-
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tic values, and initialize the current closest codeword of the input vector to be

the codeword whose first element of Hadamard transform is nearest to that of

the input vector, and secondly use the proposed elimination criteria to find the

nearest codeword to the input vector using the up-down search mechanism near

the initial best-match codeword. Experimental results demonstrate the proposed

algorithm is much more efficient than most existing nearest neighbor codeword

search algorithms in the case of high dimension.

4.6.1 Introduction

The spatial (or temporal) inequality based algorithms eliminate unlikely code-

words by utilizing the inequalities based on the characteristic values such as sum,

mean, variance, and L2 norm of the spatial vector. These inequalities can be

mainly classified into five types, triangle inequalities, absolute error inequali-

ties, mean inequalities, variance inequalities, and norm inequalities. The partial

distance search (PDS) algorithm (Bei & Gray 1985) (see Section 2.3.3) is a sim-

ple and efficient codeword search algorithm that allows early termination of the

distortion calculation between an input vector and a codeword by introducing

a premature exit condition in the searching process. The triangular inequality

elimination (TIE) criterion (see Section 2.3.4) is used in (Vidal 1986, Chen &

Pan 1989, Huang & Chen 1990, Huang et al. 1992) to reject a large number of

unlikely codewords. However, the TIE criterion requires considerable memory

space of size (N−1)N
2

to store the distance between any pair of codewords. The

equal-average nearest neighbor search (ENNS) algorithm (Guan & Kamel 1992, Ra

& Kim 1993) uses the mean value to reject impossible codewords. This algorithm

reduces a great deal of computational time compared with the conventional full

search algorithm with only N additional memory. The improved algorithm, i.e.,

the equal-average equal-variance nearest neighbor search (EENNS) algorithm (Lee

& Chen 1994), uses the variance as well as the mean value to reject more code-
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words. This algorithm reduces the computational time further with 2N addi-

tional memory. The improved algorithm (Baek et al. 1997) termed IEENNS uses

the mean and the variance of an input vector like EENNS but develops a new

inequality between these features and the distance. Another improved ENNS

method (Pan & Huang 1998) referred to as IENNS, is based on the inequality

derived from the IAEI criterion (Pan et al. 1996c, Pan et al. 1996b). In that

method, a vector is separated into two sub-vectors: one is composed of the first

half of vector components and the other consists of the remaining vector compo-

nents. Two inequalities based on the sums of its two sub-vectors components are

used to reject those codewords that cannot be rejected by ENNS. Reference (Pan

et al. 2003) presents so-called sub-vector based equal-average equal-variance near-

est neighbor search algorithm (SV EENNS), where a vector is also separated

into two sub-vectors: one is composed of the first half of vector components and

the other is composed of the remaining vector components. For each codeword

and its two sub-vectors, the sums and variances of their vector components are

computed and saved off-line. These codewords are sorted in the ascending or-

der of the sum of their vector components. In the encoding phase, compared

to IEENNS, four extra inequalities are used to reject those codewords which

have not been rejected by IEENNS. Wu and Lin presented a new kick-out

condition (Wu & Lin 2000) based on the norms of codewords, and we call it NOS

(Norm-Ordered Search) algorithm in this paper. Recently, Lu and Sun (Lu &

Sun 2003) have presented the Equal-average Equal-variance Equal-norm Nearest

Neighbor Search (EEENNS) algorithm, which uses three significant features of a

vector, mean value, variance, and norm, to reject many unlikely codewords and

saves a great deal of computation time. Because the variance of a vector can be

calculated from the norm and the mean of the vector, EEENNS algorithm can

only compute and store N mean values and N norms of all codewords off-line.

The pyramid structure based algorithms reject impossible codewords by using

the inequalities layer by layer. Lee and Chen (Lee & Chen 1995) present a fast
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codeword search algorithm based on mean pyramids for image coding in which

the vector dimension is 2n×2n. Pan et. al. (Pan, Lu & Sun 2000) present a more

efficient pyramid structure called the mean-variance pyramid, which can be used

to reject a large number of unmatched codewords. Recently, Song and Ra (Song

& Ra 2002a) use L2-norm pyramid of codewords to reject unlikely codewords.

The transform domain-based algorithms efficiently perform the PDS algorithm

in wavelet or Hadamard transform, i.e., so-called WTPDS (Hwang et al. 1997) or

HTPDS (Lu et al. 2000a) algorithm. Recently, Jiang et. al. (Jiang et al. 2003)

also present a new Hadamard transform based NOS algorithm.

4.6.2 Related Existing Nearest Neighbour Codeword Search

Algorithms

This section reviews some important related nearest neighbor codeword search

algorithms, including PDS, ENNS, IENNS, EENNS, IEENNS, SVEENNS, NOS

and EEENNS algorithms. Before describing these algorithms, we give the follow-

ing definitions in advance.

Definition 1: The sum of a k-dimensional vector x = (x1, x2, · · · , xk) is defined

as:

Sx =
k

∑

l=1

xl (4.8)

Definition 2: The mean of a k-dimensional vector x = (x1, x2, · · · , xk) is defined

as:

mx =

∑k

l=1 xl

k
(4.9)

Based on (4.8) and (4.9), we have:

Sx = kmx (4.10)

Definition 3: In the Euclidean space Rk, the central line l is defined as the line on

which the coordinates (components) of any point (vector) have the same value.

The hyperplane orthogonal to l is called an equal-average hyperplane.
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Definition 4: The variance of a k-dimensional vector x = (x1, x2, · · · , xk) is de-

fined as:

vx =

√

√

√

√

k
∑

l=1

(xl −mx)2 =
√

d(x, Lx) (4.11)

Where Lx = (mx,mx, · · · ,mx) is a k-dimensional vector, which is the projection

point of x on the central line l.

Definition 5: The L2 norm of a k-dimensional vector x = (x1, x2, · · · , xk) is

defined as:

‖x‖ =

√

√

√

√

k
∑

l=1

x2
l (4.12)

From above definitions, we can easily prove that the variance, the mean, and

the norm of the vector x satisfy the following equation:

v2
x = ‖x‖2 − k ·m2

x (4.13)

Definition 6: The ’so far’ smallest distortion is defined as:

dmin = min{d(x, yi)|yi has been inspected} (4.14)

For convenience, we often assume dmin = d(x, yp). In other words, we often

assume the current best match codeword is yp.

4.6.2.1 Partial Distance Search

The partial distance search (PDS) algorithm (Bei & Gray 1985) allows early

termination of the distortion calculation between a training vector and a codeword

by introducing a premature exit condition in the search process. Assume the

’so far’ smallest distortion is dmin. If the uninspected codeword yi satisfies the

condition:
q

∑

l=1

(xl − yil)
2 ≥ dmin (4.15)



CHAPTER 4. IMPROVED CENTROID-BASED CLUSTERING ALGORITHMS 148

which guarantees that d(x, yi) ≥ dmin, then the codeword yi can be rejected

without computing the whole distance d(x, yi), where 1 ≤ q ≤ k. Although the

PDS algorithm is not efficient enough, it can be combined with other fast search

algorithms to reject the codewords that cannot be eliminated by other algorithms.

4.6.2.2 Equal-average Nearest Neighbor Search

The ENNS algorithm (Guan & Kamel 1992, Ra & Kim 1993) takes advantage of

the fact that the nearest codeword is usually in the neighborhood of the minimum

squared mean distance. The ENNS algorithm is based on the following Lemmata:

Lemma 1: Assume mx and mi are the mean values of x and yi respectively, then

k · (mx −mi)
2 ≤ d(x, yi) (4.16)

Based on above lemma, we can easily obtain the elimination criterion de-

scribed by the following theorem:

Theorem 1: Assume the ’so far’ smallest distortion is dmin, if the mean of the

uninspected codeword yi satisfies:

mi ≥ mx +

√

dmin

k
or mi ≤ mx −

√

dmin

k
(4.17)

Then yi will not be the nearest neighbor to x.

The above theorem means that the search range can be bounded by two

equal-average hyperplanes with mean values mmax = mx +
√

dmin

k
and mmin =

mx −
√

dmin

k
. In other words, the search area is bounded by two lines l1 and

l2 perpendicular to the central line l at Lmax = (mmax,mmax, · · · ,mmax) and

Lmin = (mmin,mmin, · · · ,mmin), respectively. To perform the ENNS algorithm,

N mean values of all codewords should be computed off-line and stored.

In the ENNS algorithm, the mean of each codeword is calculated first and then

these values are sorted in the increasing order. In the encoding stage, the mean of

the input vector is computed, and the codeword yp that has the absolute minimal
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difference in the mean value with the input vector is selected as the tentative

matching codeword. The squared Euclidean distortion dmin between the input

vector and this tentative matching codeword is calculated. Then the codewords

yi for which ml ≥ mx +
√

dmin

k
or mi ≤ mx −

√

dmin

k
are eliminated. Otherwise,

the PDS is applied to calculate the distortion and update dmin. The search is

performed up and down near the codeword yp iteratively. If the condition given

in (4.17) is satisfied in either direction, then the search will be stopped in this

direction and continued in another direction until the nearest codeword is found.

The IENNS algorithm (Pan & Huang 1998) is based on the Improved Absolute

Erorr Inequality (IAEI) criterion (Pan et al. 1996c, Pan et al. 1996b). The basic

idea of IENNS algorithm is to split each vector into two equal-sized sub-vectors

to derive another two elimination criteria. Assume the vector x is split into sub-

vectors xf and xs, and the codeword yi is split into sub-vectors yif and yis, then

the two extra elimination criteria can be expressed as follows:

Theorem 2: Assume Sxf , Sif , Sxs, and Sis, are the sum values of xf , yif , xs, and

yis respectively, if

(Sxf − Sif )
2 ≥ k

2
· dmin (4.18)

or

(Sxs − Sis)
2 ≥ k

2
· dmin (4.19)

then d(x, yi) ≥ dmin, i.e., the codeword yi can be rejected. Thus, besides the elim-

ination criterion of ENNS, inequalities (4.18) and (4.19) can be used to eliminate

more unlikely codewords.

4.6.2.3 Equal-average Equal-variance Nearest Neighbor Search

As discussed previously, the ENNS algorithm uses mean value as a feature to

reject unlikely codewords. However, two vectors with the same mean value may

have a large distance. Based on this condition, the EENNS algorithm (Lee &

Chen 1994) introduces another significant feature of a vector, the variance, to
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reject more codewords. First, we give another lemma for EENNS algorithm.

Lemma 2: Assume vx and vi are the variances of x and yi respectively, then

(vx − vi)
2 ≤ d(x, yi) (4.20)

Based on this lemma, we can obtain the following elimination criterion for EENNS

algorithm besides the ENNS elimination criterion.

Theorem 3: Assume the ’so far’ smallest distortion is dmin, if the variance of the

uninspected codeword yi satisfies

vi ≥ vx +
√

dmin or vi ≤ vx −
√

dmin (4.21)

Then yi will not be the nearest neighbor to x. Based on above elimination criteria,

the elimination process of the EENNS algorithm consists of two steps. In the first

step, if mi ≥ mx +
√

dmin

k
or mi ≤ mx −

√

dmin

k
, then the codeword yi can be

rejected. Otherwise, in the second step, if vi ≥ vx +
√

dmin or vi ≤ vx −
√

dmin,

then the codeword yi can also be rejected. To perform the EENNS algorithm, N

mean values and N variances of all codewords should be computed off-line and

stored.

The IEENNS algorithm (Baek et al. 1997) is similar to the EENNS algorithm.

Both algorithms use two characteristic values of a vector, the mean and the

variance. However, the IEENNS algorithm uses the variance and the mean of

a vector simultaneously, whereas the EENNS algorithm uses them separately.

In order to use the variance and mean of a vector simultaneously, the following

lemma was presented in (Baek et al. 1997):

Lemma 3:

k(mx −mi)
2 + (vx − vi)

2 ≤ d(x, yi) (4.22)

Comparing Lemmata 1 and 2 with Lemma 3, we can easily see that both

Lemmata 1 and 2 are the special cases of Lemma 3. Based on Lemma 3, the

following elimination criterion can be obtained:
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Theorem 4: Assume the ’so far’ smallest distortion is dmin, if the mean and

variance of the uninspected codeword yi satisfy:

k · (mx −mi)
2 + (vx − vi)

2 ≥ dmin (4.23)

then d(x, yi) ≥ dmin, i.e., yi can be rejected.

Therefore, the IEENNS algorithm consists of two steps. The first step is the

same as the EENNS algorithm, and the second is to use (4.23) to reject the

codewords that cannot be rejected by the first step. In order to further improve

the elimination efficiency, reference (Pan et al. 2003) presents a sub-vector based

equal-average equal-variance nearest neighbor search algorithm (SVEENNS), which

exploits another two elimination criteria as follows:

Theorem 5: Assume Sxf , Sif , Sxs, and Sis are the sum values of xf ,yif , xs, and

yis respectively, and vxf , vif , vxs, and vis are the variances of xf , yif , xs, and yis

respectively, if

(Sxf − Sif )
2 +

k · (vxf − vif )
2

2
≥ k · dmin

2
(4.24)

or

(Sxs − Sis)
2 +

k · (vxs − vis)
2

2
≥ k · dmin

2
(4.25)

then D(x, yi) ≥ dmin, i.e., the codeword yi can be rejected.

4.6.2.4 Norm Ordered Search

Above algorithms use mean (or sum) and/or variance of the vector to reject

unlikely codewords. Recently, reference (Wu & Lin 2000) presents a kick-out

condition based on norm, which is called norm-ordered search (NOS) algorithm

in this paper. First, we can rewrite the distortion measure as

d(x, yi) = ‖x‖2 + ‖yi‖2 − 2
k

∑

l=1

xlyil (4.26)

Because ‖x‖2 is a common term in the distortion measure (4.26) from x to every

codeword, the goal to find the codeword yi that minimizes (4.26) is equivalent to
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the goal to find the codeword that minimizes

d1(x, yi) = d(x, yi)− ‖x‖2 = ‖yi‖2 − 2
k

∑

l=1

xlyil (4.27)

Assume that the ’so far’ nearest codeword is yp, and the corresponding d1-

distortion is:

d1min = d1(x, yp) = min{d1(x, yi)|yi has been inspected} (4.28)

According to Cauchy-Schwarz inequality, the following inequality is always true.

d1(x, yi) ≥ ‖yi‖2 − 2‖x‖ · ‖yi‖ = ‖yi‖(‖yi‖ − 2‖x‖) (4.29)

As a result, we can obtain the following theorem:

Theorem 6: Assume the ’so far’ smallest d1-distortion is d1min, if the uninspected

codeword yi satisfies

‖yi‖(‖yi‖ − 2‖x‖) ≥ d1min (4.30)

then d1(x, yi) ≥ d1min is guaranteed, and hence, yi can be kicked out.

Let f(t) = t(t−2‖x‖) = (t−‖x‖)2−‖x‖2 be a function of t, we can see that this

parabola has the absolute minimum at t = ‖x‖. In addition, f(t) is monotonously

increasing in the interval (‖x‖, +∞), and monotonously decreasing in the interval

(−∞, ‖x‖). Note that the norms {‖yi‖}Ni=1 can be calculated off-line and the

codebook can be sorted, so that ‖y1‖ ≤ ‖y2‖ ≤ · · · ≤ ‖yN‖. Therefore, if the

uninspected codeword yi satisfies (4.30) and ‖yi‖ ≥ ‖x‖, then all codewords yl

whose l ≥ i can be kicked out. On the other hand, if the uninspected codeword

yi satisfies (4.30) and ‖yi‖ ≤ ‖x‖, then all codewords yl whose l ≤ i can also be

kicked out.

4.6.2.5 Equal-average Equal-variance Equal-norm Nearest Neighbor

Search

In this section, we will discuss the EEENNS algorithm (Lu & Sun 2003), which

uses the mean, the variance and the norm of a vector as three significant features
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to speed up the closest codeword search process. According to the Cauchy-

Schwarz inequality, we can easily obtain the inequality from the following Lemma:

Lemma 4: Assume ‖x‖ and ‖yi‖ are the norms of x and yi respectively, then

(‖x‖ − ‖yi‖)2 ≤ d(x, yi) (4.31)

Based on Lemma 4, we can easily derive the elimination criterion denoted by

the following theorem.

Theorem 7: Assume the ’so far’ smallest distortion is dmin, if the norm ‖yi‖ of

the uninspected codeword yi satisfies:

‖yi‖ ≥ ‖x‖+
√

dmin or ‖yi‖ ≤ ‖x‖ −
√

dmin (4.32)

Then yi will not be the nearest neighbor to x. The elimination process of the

EEENNS algorithm consists of three steps. In the first step, if mi ≥ mx +
√

dmin

k

or mi ≤ mx−
√

dmin

k
, then the codeword yi can be rejected. Or else, in the second

step, vi ≥ vx +
√

dmin or vi ≤ vx −
√

dmin, then the codeword yi can be rejected.

Otherwise, in the third step, if ‖yi‖ ≥ ‖x‖+
√

dmin or ‖yi‖ ≤ ‖x‖ −
√

dmin, then

the codeword yi can be rejected. In addition, it can be easily shown that the

variance vx, the mean mx, and the norm ‖x‖ of the vector x satisfy (4.13). Thus,

only N mean values and N norms of all codewords should be computed off-line

and stored before performing the EEENNS algorithm.

4.6.3 Basic Definitions And Properties

In previous section, we have reviewed several important codeword search algo-

rithms based on spatial domain. In this section, we give some basic definitions and

properties in Hadamard transform domain, which are the basis of HTPDS (Lu

et al. 2000a), TNOS (Jiang et al. 2003) and the proposed algorithms. Let Hn be

the 2n×2n Hadamard square matrix with elements in the set {1,-1}. By assuming

all of the following vectors are k-dimensional vectors and k = 2n (n > 0), the

following basic definitions can be introduced:
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Definition 7:

H1 =





1 1

1 −1



 and Hn+1 =





Hn Hn

Hn −Hn



.

Definition 8: The Hadamard-transformed vector X of the vector x is defined as:

X = Hnx (4.33)

Definition 9: The Hadamard-transformed variance of vector X can be defined as:

VX =

√

√

√

√

k
∑

l=2

X2
l (4.34)

Definition 10: The Hadamard-transformed norm of vector X can be defined as:

‖X‖ =

√

√

√

√

k
∑

l=1

X2
l (4.35)

Note that compared with (4.34), Equation (4.35) takes the first element of

the vector X into account. Based on above definitions, we can get the following

lemmata.

Lemma 5: The distortion between two spatial vectors and the distortion between

the corresponding transformed vectors have the following relationship:

d(X,Yi) = kd(x, yi) (4.36)

Proof:

d(X,Yi) =
k

∑

l=1

(Xl − Yil)
2 = (X − Yi)

T (X − Yi)

= [Hn(x− yi)]
T [Hn(x− yi)] = (x− yi)

T HT
n Hn(x− yi)

= (x− yi)
T kIk(x− yi) = k(x− yi)

T (x− yi)

= k

k
∑

l=1

(xl − yil)
2 = kd(x, yi)

Where Ik is the unit identity matrix of order k. This completes the proof.

Lemma 6: The first element of X is equal to the sum of all components of x, i.e.,

X1 = Sx (4.37)
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Where Sx denotes the sum of vector x. This equation can be derived from the

fact that each element in the first row of Hn has the same value ’1’.

Lemma 7: The variance of the transformed vector X and the norm of the trans-

formed vector X have the following relationship:

VX =
√

‖X‖2 −X2
1 (4.38)

Based on (4.34) and (4.35), we can easily obtain (4.38).

Lemma 8: The variance of the transformed vector X and the variance of the

spatial vector x have the following relationship:

VX =
√

k · vx (4.39)

According to above definitions and lemmas, we can obtain the following four

properties:

Theorem 8: Assume X1 and Yil are the first elements of x and yi respectively,

and VX and Vi are the Hadamard-transformed variances of X and Yi respectively,

then

(X1 − Yil)
2 + (VX − Vi)

2 ≤
√

d(X,Yi) (4.40)

Proof: This inequality is equivalent to the following inequalities:

⇔ X2
1 + Y 2

i1 − 2X1Yi1 + V 2
i − 2VXVi ≤

∑k

l=1(Xl − Yil)
2

⇔ (X2
1 + V 2

X) + (Y 2
i1 + V 2

i )− 2X1Yi1 − 2VXVi ≤
∑k

l=1(Xl − Yil)
2

⇔ ∑k

l=1 X2
l +

∑k

l=1 Y 2
il − 2X1Yi1 − 2VXVi ≤

∑k

l=1 X2
l +

∑k

l=1 Y 2
il −

∑k

l=1 2XlYil

⇔ −2VXVi ≤ −
∑k

l=2 2XlYil

⇔ VXVi ≥
∑k

l=2 XlYil

⇔
√

∑k

l=2 X2
l ·

∑k

l=2 Y 2
il ≥

∑k

l=2 XlYil

The last inequality is the Cauchy-Schwarz inequality. This completes the proof.

Based on Theorem 8, we can easily obtain the following two useful corollaries:

Corollary 1:

|X1 − Yi1| ≤
√

d(X,Yi) (4.41)
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In fact, since (X1−Yi1)
2 is one of the summation items in

∑k

l=1(Xl−Yil)
2 , above

inequality is obviously tenable. Corollary 2:

|VX − Vi| ≤
√

d(X,Yi) (4.42)

Theorem 9: Assume ‖X‖ and ‖Yi‖ are the norms of X and Yi respectively, then

|‖X‖ − ‖Yi‖| ≤
√

d(X,Yi) (4.43)

Proof: This inequality is equivalent to the following inequalities:

⇔ ‖X‖2 + ‖Yi‖2 − 2‖X‖ · ‖Yi‖ ≤
∑k

l=1(Xl − Yil)
2

⇔ ∑k

l=1 X2
l +

∑k

l=1 Y 2
il − 2‖X‖ · ‖Yi‖ ≤

∑k

l=1 X2
l +

∑k

l=1 Y 2
il −

∑k

l=1 2XlYil

⇔ 2‖X‖ · ‖Yi‖ ≥
∑k

l=1 2XlYil

⇔
√

∑k

l=1 X2
l ·

√

∑k

l=1 Y 2
il ≥

∑k

l=1 XlYil

The last inequality is the Cauchy-Schwarz inequality. This completes the proof.

4.6.4 Proposed Algorithm

From Lemma 5, we know that the codeword that is closest to the input vector in

the spatial domain is also closest to the input vector in the HT domain. Therefore

we can find the corresponding best codeword in the spatial domain by searching

the best codeword in the HT domain. From Definition 7, we know that the

Hadamard transform based algorithms require the vector dimension to be the

power of 2, i.e., k = 2n. From Definition 8, we can also see that no multiplication

is required for the HT.

Before describing the proposed algorithm, we first review the HTPDS method

presented in (Lu et al. 2000a) and the TNOS method presented in (Jiang et al.

2003). It is well known that the energy of codewords can be compacted into

few elements by HT, so PDS can be efficiently used to reject unlikely codewords.

Suppose each codeword yi is with dimension k = 2n. Assume the ’so far’ smallest
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transform domain distortion is Dmin, if the first element Yil of the uninspected

transformed codeword Yi is larger than MAXSUM = X1 +
√

Dmin or less than

MINSUM = X1 −
√

Dmin, then Yi will not be the nearest codeword of X ac-

cording to Corollary 1. Therefore, the distance calculation is necessary only for

those transformed codewords whose first elements range from MINSUM to MAX-

SUM. To perform the HTPDS algorithm, N Hadamard transformed codewords

for all spatial codewords should be computed off-line and stored. TNOS performs

the Norm-Ordered Search (NOS) in Hadamard transform based on Theorem 9.

The norms {‖Yi‖}Ni=1 can be calculated off-line and the codebook can be sorted,

so that ‖Y1‖ ≤ ‖Y2‖ ≤ · · · ≤ ‖YN‖. If the uninspected codeword Yi satisfies

|‖Yi‖ − ‖X‖| ≥
√

Dmin and ‖Yi‖ ≥ ‖X‖, then all codewords Yl whose l ≥ i

can be kicked out. On the other hand, if the uninspected codeword Yi satisfies

|‖Yi‖ − ‖X‖| ≥
√

Dmin and ‖Yi‖ ≤ ‖X‖, then all codewords Yl whose l ≤ i

can also be kicked out. To perform the TNOS algorithm, N Hadamard trans-

formed codewords and N transformed norms for all spatial codewords should be

computed off-line and stored.

From above, we can easily see that the HTPDS algorithm only uses one char-

acteristic value, i.e., the sum of the spatial vector or the first element of the

transformed vector, so HTPDS can be viewed as the equal-average (or equal-sum)

nearest neighbor search algorithm in Hadamard transform domain (HTENNS).

We can also easily see that the TNOS algorithm only uses one characteristic value,

i.e., the norm of the transformed vector. To further improve the search efficiency

of HTPDS and TNOS algorithms, we also consider another characteristic value,

i.e., Hadamard transformed variance, in the proposed algorithm.

Based on Theorems 8 and 9, together with Corollaries 1 and 2, assume the ’so

far’ smallest transform domain distortion is Dmin, four elimination criteria based

on transformed vector X and codeword Yi can be stated as follows:
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Theorem 10: If

Yi1 ≥ X1 +
√

Dmin or Yi1 ≤ X1 −
√

Dmin (4.44)

Then d(X,Yi) ≥ Dmin, and thus the codeword yi can be eliminated.

Theorem 11: If

Vi ≥ VX +
√

Dmin or Vi ≤ VX −
√

Dmin (4.45)

Then d(X,Yi), and thus the codeword yi can be eliminated.

Theorem 12: If

(X1 − Yi1)
2 + (VX − Vi)

2 ≥
√

Dmin (4.46)

Then d(X,Yi) ≥ Dmin, and thus the codeword yi can be eliminated.

Theorem 13: If

‖Yi‖ ≥ ‖X‖+
√

Dmin or ‖Yi‖ ≤ ‖X‖ −
√

Dmin (4.47)

Then d(X,Yi) ≥ Dmin, and thus the codeword yi can be eliminated.

With the above elimination criteria in hand, we can turn to describe the

proposed algorithm. If we only use Theorems 10, 11, and 13, then the proposed

algorithm can be viewed as the equal-average equal-variance equal-norm nearest

neighbor search method based on Hadamard transform, which can be denoted as

HTEEENNS (Chu, Roddick, Lu & Pan 2004b). Because our algorithm is based

on four elimination criterion, so we can denote our algorithm as the improved

HTEEENNS, i.e., IHTEEENNS.

Let dm(X,Yi) =
∑m

l=1(Xl − Yil)
2 denote the partial distance between X and

Yi, where 1 ≤ m ≤ k, the proposed algorithm can be illustrated as follows:

During the off-line process, HT is performed on all codewords yi to obtain

transformed codewords Yi, and then the transformed codewords Yi are sorted

in the ascending order of their first elements. The variance Vi and norm ‖Yi‖

of each transformed codeword Yi are also computed and stored in the ordered

transformed codebook.
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During the on-line stage, the encoding process for each input vector x can be

illustrated as follows:

We first perform the HT on the input vector x to obtain X and compute its

variance VX and norm ‖X‖, and then initialize the current closest codeword of

X to be Yp, where p = argmini|X1 − Yi1|, and compute the current minimum

transform domain distortion Dmin = d(X,Yp). We then perform the codeword

search process up and down as described in ENNS method, and set Smin =

X1 −
√

Dmin, Smax = X1 +
√

Dmin, Vmin = VX −
√

Dmin, Vmax = VX +
√

Dmin,

Nmin = ‖X‖ −
√

Dmin, Nmax = ‖X‖ +
√

Dmin. For each codeword Yi to be

searched in each direction, if Yi1 ≥ Smax or Yi1 ≤ Smin, then Yi can be rejected

and the corresponding search direction can be terminated. Otherwise, if Vi ≥

Vmax or Vi ≤ Vmin then Yi can also be rejected. Otherwise, we compute A =

(X1 − Yi1)
2 + (VX − Vi)

2 and compare A with Dmin. If A ≥ Dmin, then Yi can

be also rejected. Otherwise, if ‖Yi‖ ≥ Nmax or ‖Yi‖ ≤ Nmin, then Yi can be

also rejected. Otherwise, we perform the following PDS process. Starting from

m = 2, for each value of m, m = 2, 3, · · · , k, we first evaluate dm(X,Yi). If

dm(X,Yi) > Dmin, then Yi can be rejected. Otherwise, we go to next value of m

and repeat the same process. This PDS process is repeated until Yi is rejected or

m reaches k. If m = k, then we compare d(X,Yi) with Dmin. If d(X,Yi) < Dmin,

then Dmin is replaced by d(X,Yi) and the current closest codeword of X is set

to be Yi, and then Smin, Smax, Vmin, Vmax, Nmin, and Nmax are also recomputed.

The search process can be stopped in the down direction once Yi1 ≤ Smin and

stopped in the up direction once Yi1 ≥ Smax. After the best codeword of X in

the transformed domain is found, the corresponding best match codeword of x in

the spatial domain is also found.
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4.6.5 Experimental Results

We performed experiments on a Pentium-4 (2GHz) IBM-PC using two 512× 512

monochrome images ’Lena’ and ’Baboo’ with 256 grey scales. Four codebooks

of different sizes (512 or 1024) and dimensions(8 × 8 = 64 or 16 × 16 = 256)

were designed using LBG algorithm (Linde et al. 1980) with the Lena image as

the training set. The two images were used to test the effectiveness of the algo-

rithms. The proposed HTEEENNS and IHTEEENNS algorithms were compared

to the FS, PDS (Bei & Gray 1985), ENNS (Guan & Kamel 1992), IENNS (Pan

& Huang 1998), EENNS (Lee & Chen 1994), IEENNS (Baek et al. 1997),

EEENNS (Lu & Sun 2003), SVEENNS (Pan et al. 2003), NOS (Wu & Lin 2000),

TNOS (Jiang et al. 2003) and HTPDS (Lu et al. 2000a) algorithms in terms of

the CPU time and the arithmetic complexity (the average number of distance

calculations per input vector) for different codebook sizes and vector dimensions

as shown in Table 4.15 for ’Lena’ image and Table 4.16 for ’Baboo’ image.

Because the Lena image is in the training set, whereas the Baboo image is a

high-detail image outside the training set, the encoding time of Baboo image is

much longer than that of the Lena image. From Tables 4.15 and 4.16, we can see

that the proposed algorithm is superior to all other algorithms for both low-detail

and high-detail images, especially in the case of high dimensionality. For Lena

image encoding with the codebook of size 1024, the encoding time of proposed

algorithm IHTEENNS is only about 1.3 percent of the full search algorithm on

average. Comparing Table 4.15 with Table 4.16, we can see that the proposed

algorithms are more efficient in the case of high-detail image.
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Table 4.15: Comparisons of various fast search algorithms for ’LENA’

image in the training set

Codebook size 512 1024

Performance CPU Time(s) Complexity CPU Time(s) Complexity

Dimension 8× 8 16× 16 8× 8 16× 16 8× 8 16× 16 8× 8 16× 16

FS 9.33 8.64 512 512 17.93 17.19 1024 1024

PDS (Bei & Gray 1985) 1.69 1.87 60.57 71.39 2.73 2.45 99.62 112.25

ENNS (Guan & Kamel 1992) 0.31 0.47 16.65 27.72 0.43 0.59 24.10 34.77

IENNS (Pan & Huang 1998) 0.21 0.40 9.19 19.00 0.24 0.40 10.83 19.21

EENNS (Lee & Chen 1994) 0.24 0.42 13.03 23.95 0.33 0.51 17.71 29.04

IEENNS (Baek et al. 1997) 0.22 0.36 13.73 20.83 0.31 0.43 19.47 24.78

EEENNS (Lu & Sun 2003) 0.24 0.40 12.68 23.07 0.31 0.49 17.25 27.94

SVEENNS (Pan et al. 2003) 0.22 0.34 14.87 21.14 0.30 0.38 19.87 23.71

NOS (Wu & Lin 2000) 0.76 0.84 49.87 61.28 1.26 1.03 81.10 74.18

TNOS (Jiang et al. 2003) 0.29 0.32 11.66 16.36 0.44 0.39 15.92 19.04

HTPDS (Lu et al. 2000a) 0.20 0.26 10.79 15.35 0.29 0.32 15.22 18.22

Proposed HTEEENNS 0.18 0.24 9.33 14.68 0.24 0.29 12.22 16.72

Proposed IHTEEENNS 0.18 0.24 8.82 13.44 0.23 0.26 11.61 15.01

Table 4.16: Comparisons of various fast search algorithms for ’BABOO’

image in the training set

Codebook size 512 1024

Performance CPU Time(s) Complexity CPU Time(s) Complexity

Dimension 8× 8 16× 16 8× 8 16× 16 8× 8 16× 16 8× 8 16× 16

FS 8.75 9.17 512.00 512.00 17.92 17.69 1024.00 1024.00

PDS (Bei & Gray 1985) 3.61 4.08 139.03 161.89 6.90 7.85 270.31 315.28

ENNS (Guan & Kamel 1992) 1.30 1.64 74.96 97.30 2.54 3.49 147.06 193.14

IENNS (Pan & Huang 1998) 0.87 1.57 41.50 75.38 1.31 2.44 62.73 118.89

EENNS (Lee & Chen 1994) 1.17 1.62 65.17 94.24 2.17 3.18 122.68 185.05

IEENNS (Baek et al. 1997) 0.89 1.26 54.29 73.76 1.59 2.35 98.40 138.40

EEENNS (Lu & Sun 2003) 1.11 1.54 68.78 90.03 2.09 3.02 117.27 176.57

SVEENNS (Pan et al. 2003) 0.83 1.13 54.94 70.09 1.46 2.10 98.07 130.33

NOS (Wu & Lin 2000) 2.01 2.31 138.86 169.35 3.93 4.54 272.58 331.33

TNOS (Jiang et al. 2003) 1.08 1.23 57.06 68.11 2.07 2.70 111.22 136.12

HTPDS (Lu et al. 2000a) 0.87 1.13 56.61 67.63 1.69 2.13 111.65 136.17

Proposed HTEEENNS 0.77 1.00 49.10 66.06 1.42 1.96 92.63 131.40

Proposed IHTEEENNS 0.65 0.85 39.36 54.80 1.15 1.61 70.77 105.22



Chapter 5

Parallel Particle Swarm

Optimization

Unlike using genetic operator, particle swarm optimization is a population-based

evolutionary algorithm. In contrast of evolutionary computation technique, PSO

is motivated from the simulating social behavior such as fish schooling and bird

flocking. In this chapter, a parallel version of the particle swarm optimization

(PPSO) algorithm is presented together with three communication strategies

which can be used according to the independence of the data. The experimental

results demonstrate the usefulness of the proposed PPSO algorithm.

5.1 History of Particle Swarm Optimization

PSO is a population based evolutionary algorithm and has similarities to the

general evolutionary algorithm. However, PSO is motivated from the simulation

of social behavior which differs from the natural selection scheme of genetic algo-

rithms (Goldberg 1989, Davis 1991, Gen & Cheng 1997). The metaphor is that

of multiple collections (a swarm) of objects moving in space and thus objects

are said to possess position and velocity and are influenced by the others in the

162
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swarm. One advantage of PSO is that it often locates near optima significantly

faster than evolutionary optimization (Angeline 1998, Eberhart & Shi 1998).

PSO processes the search scheme using populations of particles which corre-

spond to the use of individuals in genetic algorithms. Each particle is equivalent

to a candidate solution of a problem. The particle will move according to an

adjusted velocity, which is based on the corresponding particles experience and

the experience of its companions. For the D-dimensional function f(.), the ith

particle for the tth iteration can be represented as

X t
i = (xt

i(1), xt
i(2), . . . , xt

i(D)). (5.1)

Assume that the best previous position of the ith particle at the tth iteration

is represented as

P t
i = (pt

i(1), pt
i(2), . . . , pt

i(D)), (5.2)

then

f(P t
i ) ≤ f(P t−1

i ) ≤ . . . ≤ f(P 1
i ). (5.3)

The velocity of the ith particle at the tth iteration can be represented as

V t
i = (vt

i(1), vt
i(2), . . . , vt

i(D)). (5.4)

Gt = (X t(1), X t(2), . . . , X t(D)) (5.5)

is defined as the best position amongst all particles from the first iteration to

the tth iteration, where best is defined by some function of the swarm.

The original particle swarm optimization algorithm can be expressed as fol-

lows:

V t+1
i = V t

i + C1.r1.(P
t
i −X t

i ) + C2.r2.(G
t −X t

i ) (5.6)

X t+1
i = X t

i + V t+1
i , i = 0, . . . N − 1 (5.7)

where N is particle size, −Vmax ≤ V t+1
i ≤ Vmax, (Vmax is the maximum veloc-

ity) and r1 and r2 are random numbers such that 0 ≤ r1, r2 ≤ 1. A discrete
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binary version of the particle swarm optimization algorithm was also proposed

by Kennedy and Eberhart (Kennedy & Eberhart 1997).

The particle swarm optimization algorithm has been applied inter alia to

optimize reactive power and voltage control (Fukuyama & Yoshida 2001) and

human tremor (Eberhart & Hu 1999). A modified version of the particle swarm

optimizer (Shi & Eberhart 1998) and an adaption using the inertia weight1 of the

modified particle swarm (Shi & Eberhart 1999) have also been presented. The

latter version of the modified particle swarm optimizer can be expressed as

V t+1
i = W t.V t

i + C1.r1.(P
t
i −X t

i ) + C2.r2.(G
t −X t

i ) (5.8)

X t+1
i = X t

i + V t+1
i , i = 0, . . . N − 1 (5.9)

where W t is the inertia weight at the tth iteration. Shi and Eberhart (Shi &

Eberhart 2001) have also applied fuzzy theory to adapt the particle swarm opti-

mization algorithm. In addition, the explosion, stability and convergence of the

PSO has been analyzed by Clerc and Kennedy (Clerc & Kennedy 2002).

To experience the power of particle swarm optimization, applied program to

the following test function, as visualized in Figure 5.1.

F2(x, y) = −xsin(
√

| x |)− ysin(
√

| y |), −500 < x, y < 500 (5.10)

where global optimum is at F2(−420.97,−420.97) = 837.97.

In the tests above, both learning factors, c1 and c2, are set to a value of 2,

and a variable inertia weight w is used according to the suggestion from Shi and

Eberhart (1999). Figure 5.2 reports the progress of particle swarm optimization

on the test function F2(x, y) for the first 300 iterations. At the end of 1000

iterations, F2(−420.97,−420.96) = 837.97 is located, which is close to the global

optimum.

1Strictly speaking, the term should be simply inertia but we use the term as per (Shi &

Eberhart 1998).
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�
Figure 5.1. Object function F2.

�
Figure 5.2. Progress of PSO on object function F2.
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Figure 5.3. The distribution of particles at different iterations.

It is worthwhile to look into the dynamics of particle swarm optimization.

Figure 5.3 presents the distribution of particles at different iterations. There is

a clear trend that particles start from their initial positions and fly toward the

global optimum.
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5.2 Particle Swarm Optimization with Commu-

nication Strategies

5.2.1 Motivation and Description

Parallel processing is concerned with producing the same results using multiple

processors with the goal of reducing the running time. The two most common

parallel processing methods are pipeline processing and data parallelism. The

principle of pipeline processing is to separate the problem into a cascade of tasks

where each of the tasks is executed by an individual processor. Data are trans-

mitted through each processor which executes a different part of the process on

each of the data elements. Since the program is distributed over the processors

in the pipeline and the data moves from one processor to the next, no processor

can proceed until the previous processor has finished its task. Data parallelism

is an alternative approach which involves distributing the data to be processed

amongst all processors which then executes the same procedure on each subset

of the data. Data parallelism has been applied fairly widely including to genetic

algorithms.

The parallel genetic algorithm (PGA) works by dividing the population into

several groups and running the same algorithm over each group using different

processors (Cohoon, Hegde, Martine & Richards 1987). However, the purpose of

applying parallel processing to genetic algorithms goes further than merely be-

ing a hardware accelerator. Rather a distributed formulation is developed which

gives better solutions with lower overall computation. In order to achieve this, a

level of communication between the groups is performed every fixed number of

generations. That is, the parallel genetic algorithm periodically selects promising

individuals from each subpopulation and migrates them to different subpopu-

lations. With this migration (communication), each subpopulation will receive

some new and promising chromosomes to replace the poorer chromosomes in a
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subpopulation. This strategy helps to avoid premature convergence. The paral-

lel genetic algorithm has been successfully applied to vector quantization based

communication via noisy channels (Pan, McInnes & Jack 1996a).

In this work, the spirit of the data parallelism method is utilized to create

a parallel particle swarm optimization (PPSO) algorithm (Chu, Roddick & Pan

2004b).

It is difficult to find an algorithm which is efficient and effective for all types

of problem. As shown in previous work by Shi and Eberhart (2001), the fuzzy

adaptive particle swarm optimization algorithm is effective for solutions which

are independent or are loosely correlated such as the generalized Rastrigrin or

Rosenbrock functions. However, it is not effective when solutions are highly cor-

related such as for the Griewank function. Our research has indicated that the

performance of the PPSO can be highly dependent on the level of correlation

between parameters and the nature of the communication strategy – this can be

explained as follows. Assuming the parameters of solutions are independent or

are only loosely correlated. If we tune the value of one parameter to get a better

solution cost by keeping the other parameters constant, the value of this parame-

ter is always in the neighborhood of the best solution. Based on this observation,

we may update the best particle among all particles to each group and mutate

to replace the poorer particles in each group very frequently. However, the above

observation is not true if the parameters of solutions are strongly correlated. In

fact the best solutions can be spread throughout the search space. In this case,

we need to keep the parameters be divergent and the best particles cannot be

used to replace the poorer particles for all groups and the communication fre-

quency should be infrequent. Thus in this case it is more effective to limit the

communication to the neighbourhood only in order to retain the divergence. If

the properties of the parameters are unknown, we may apply the communication

strategy 3 which is the hybrid version of the communication strategy 1 and 2.

Three communication strategies are thus presented and experiments have been
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carried out which show the utility of each strategy.

The mathematical form of the parallel particle swarm optimization algorithm

can be expressed as follows:

V t+1
i,j = W t.V t

i,j + C1.r1.(P
t
i,j −X t

i,j) + C2.r2.(G
t
j −X t

i ) (5.11)

X t+1
i,j = X t

i,j + V t+1
i,j (5.12)

f(Gt) ≤ f(Gt
j) (5.13)

where i = 0, . . . Nj − 1, j = 0, . . . S − 1, S (= 2m) is the number of groups (and

m is a positive integer), Nj is the particle size for the jth group, X t
i,j is the ith

particle position in the jth group at the tth iteration, V t
i,j is the velocity of the

ith particle in the jth group at the tth iteration, Gt
j is the best position among

all particles of the jth group from the first iteration to the tth iteration and Gt is

the best position among all particles in all groups from the first iteration to the

tth iteration.

As discussed above, three communication strategies have been developed for

PPSO. The first strategy, shown in Figure 5.4, is based on the observation that

if parameters are independent or are only loosely correlated, then the better

particles are likely to obtain good results quite quickly. Thus multiple copies

of the best particles for all groups Gt are mutated and those mutated particles

migrate and replace the poorer particles in the other groups every R1 iterations.

However, if the parameters of a solution are loosely correlated the better

particles in each group tend not to obtain optimum results particularly quickly.

In this case, a second communication strategy may be applied as depicted in

Figure 5.5. This strategy is based on self-adjustment in each group. The best

particle in each group Gt
j is migrated to its neighbour groups to replace some of

the more poorly performing particles every R2 iterations. Since we have defined

the number of clusters S as a power of two, neighbours are defined as being those

clusters where the binary representation of the cluster number j differs by one

bit.



CHAPTER 5. PARALLEL PARTICLE SWARM OPTIMIZATION 170

Figure 5.4: Communication Strategy for Loosely Correlated Parame-

ters.

When the correlation property of the solution space is known the first and

second communication strategies work well. However, they can perform poorly

if applied in the wrong situation. As a result, in the cases where the correlation

property is unknown, a hybrid communication strategy can be applied. This

hybrid strategy separates the groups into two equal sized subgroups with the first

subgroup applying the first strategy every R1 iterations and all groups applying

the second strategy every R2 iterations as depicted in Figure 5.6.

The complete parallel particle swarm optimization (PPSO) algorithm with its
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Figure 5.5: Communication Strategy for strongly correlated parame-

ters.

three communication strategies is as follows:

1. Initialization: Generate Nj particles X t
i,j for the jth group, i = 0, . . . Nj−

1, j = 0, . . . S − 1, S is the number of groups, Nj is the particle size for the

jth group and t is the iteration number. Set t = 1.

2. Evaluation: The value of f(X t
i,j) for every particle in each group is eval-

uated.

3. Update: Update the velocity and particle positions using equations ( 5.11),

( 5.12) and ( 5.13).

4. Communication: Three possible communication strategies are as follows:
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Figure 5.6: A General Communication Strategy for Unknown Corre-

lation Between Parameters.

Strategy 1: Migrate the best particle among all particles Gt to each

group and mutate Gt to replace the poorer particles in each group and

update Gt
j with Gt for each group, every R1 iterations.

Strategy 2: Migrate the best particle position Gt
j of the jth group to its
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neighbouring groups to substitute for some poorer particles, every R2

iterations.

Strategy 3: Separate the groups into two subgroups. Apply communica-

tion strategy 1 to subgroup 1 every R1 iterations and communication

strategy 2 to both subgroup 1 and subgroup 2 for every R2 iterations.

5. Termination: Steps 2 to 5 are repeated until the predefined value of the

function or some maximum number of iterations has been reached. Record

the best value of the function f(Gt) and the best particle position among

all particles Gt.

5.2.2 Experiments

Let X = {x1, x2, . . . , xn} be an n-dimensional real-value vector. The Rosenbrock

function can be expressed as follows:

f1(X) =
n

∑

i=1

(100(xi+1 − x2
i )

2 + (xi − 1)2). (5.14)

The second function used in the experiments was the generalized Rastrigrin func-

tion which can be expressed as:

f2(X) =
n

∑

i=1

(x2
i − 10cos(2πxi)

2 + 10). (5.15)

The third function used was the generalized Griewank function as follows:

f3(X) =
1

400

n
∑

i=1

x2
i −

n
∏

i=1

cos

(

xi√
i

)

+ 1. (5.16)

Experiments were carried out to test the performance of the PPSO commu-

nication strategies. They confirmed that the first strategy works best when the

parameters of the solution are loosely correlated such as for the Rastrigrin and

Rosenbrock functions while the second strategy applies when the parameters of

the solution are more strongly correlated as is the case for the Griewank function.
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A final experiment tested the performance of the third strategy for all three func-

tions. All three experiments are compared with the linearly decreasing inertia

weight PSO (Shi & Eberhart 1999) for 50 runs.

The parameters of the functions for PSO and PPSO were set as in Table 5.1.

We did not limit the value of X, C1 and C2 were set to 2, the maximum number

of iterations was 2000, W 0
t = 0.9, W 2000

t = 0.4 and the number of dimensions was

set to 30.

Table 5.1. Asymmetric initialization ranges and Vmax values

Function Asymmetric Initialization Range Vmax

f1 15 ≤ xi ≤ 30 100

f2 2.56 ≤ xi ≤ 5.12 10

f3 300 ≤ xi ≤ 600 600

To ensure a fair comparison, the number of groups × the number of particles

per group was kept constant – the particle size for the PSO was 160, one swarm

with 160 particles, as reported by 1× 160. For PPSO, the particle size was also

set to be 160 that was divided into 8 groups with 20 particles in each group (i.e.

8× 20), 4 groups with 40 particles in each group (i.e. 4× 40) and 2 groups with

80 particles in each group (i.e. 2 × 80), respectively. For the first experiment,

the number of iterations for communication was set to 20 and the best particle

position was migrated and mutated to substitute 25%, 50%, 75% and 100% of

the poorer particles in the receiving group.

As shown in Table 5.2 and Table 5.3, the first communication strategy is

effective for the parameters of solution that are independent or loosely correlated.

For the second experiment, the number of iterations for communication was

set to 100 and the number of poorer particles substituted at each receiving group

was set to 1 and 2. Experimental results are shown in Table 5.4 and show that

the second communication strategy for 8 groups may improve the performance
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Table 5.2: Performance Comparison of PSO and PPSO with The First

Communication Strategy for Rosenbrock Function

Percentage of cost of f1(X)

Migration PSO PPSO(2,80) PPSO(4,40) PPSO(8,20)

None 108.74

25% 65.38 98.56 75.95

50% 75.99 61.10 67.18

75% 61.19 64.51 59.96

100% 68.44 60.20 50.88

Table 5.3: Performance Comparison of PSO and PPSO with The First

Communication Strategy for Rastrigin Function

Percentage of cost of f2(X)

Migration PSO PPSO(2,80) PPSO(4,40) PPSO(8,20)

None 24.54

25% 16.88 17.91 16.06

50% 15.12 12.88 12.84

75% 12.88 11.18 11.02

100% 11.24 10.51 10.03

by up to 66%.

Finally, in the case of the third experiment, the parameters are the same as

Table 5.4: Performance Comparison of PSO and PPSO with The Second

Communication Strategy for Griewank Function

Number of cost of f3(X)

Migration PSO PPSO(2,80) PPSO(4,40) PPSO(8,20)

None 0.01191

1 0.01137 0.00822 0.00404

2 0.01028 0.01004 0.00601
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the first and second experiments. 50% of particles are substituted in the receiving

group for the first communication strategy and 2 particles are substituted in the

receiving group for the second communication strategy. As shown in Table 5.5,

the hybrid communication strategy can be effective for all three functions.

Table 5.5: Performance Comparison of PSO and PPSO with The Third

Communication Strategy

Function cost

PSO PPSO(4,40) PPSO(8,20)

Rosenbrock 108.74 76.59 82.62

Rastrigin 24.54 18.63 19.14

Griewank 0.01191 0.01053 0.00989



Chapter 6

Parallel and Constrained Ant

Colony Optimizations

Parallelization strategies for AS (Bullnheimer, Kotsis & Strauss 1997) and ACS (Stützle

1998) have been investigated, however, these studies are based on simply applying

AS or ACS on the multi-processor, ie. the parallelization strategies simply share

the computation load over several processors. No experiments demonstrate the

sum of the computation time for all processors can be reduced compared with

the single processor works on the AS or ACS.

In this chapter, we apply the concept of parallel processing to Ant Colony

System (ACS) and a Parallel Ant Colony System (PACS) is proposed. The pur-

pose of the PAS and PACS is not just to reduce the computation time. Rather

a parallel formulation is developed which gives not only reduces the elapsed and

the computation time but also obtains a better solution. The artificial ants are

firstly generated and separated into several groups. The Ant Colony System

algorithm is then applied to each group and communication between groups is

applied according to some fixed cycles. The basic idea of the communication is

to update the pheromone level for each route according to the best routes found

by neighbouring groups or, in some cases, all groups. Three and Sever communi-

177
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cation strategies are separately proposed for PACS. Experimental results based

on the traveling salesman problem confirm the efficiency and effectiveness of the

proposed PACS (Chu, Roddick, Pan & Su 2003, Chu, Roddick & Pan 2004a).

6.1 History of Ant System and Ant Colony Sys-

tem

The Ant System algorithm (Colorni, Dorigo & Maniezzo 1991, Dorigo et al. 1996)

is a cooperative population-based search algorithm inspired by the behaviour of

real ants. As each ant construct a route from nest to food by stochastically

following the quantities of pheromone level, the intensity of laying pheromone

will bias the path-choosing decision-make of subsequent ants. It is a new mem-

ber of the class of metaheuristics joining algorithms such as simulated anneal-

ing (Kirkpatrick et al. 1983, Huang, Pan, Lu, Sun & Hang 2001), genetic al-

gorithms (Goldberg 1989, Pan et al. 1995), tabu search approaches (Glover &

Laguna 1997, Pan & Chu 1996) and neural networks (Kohonen 1995, Kung 1993).

In common with many of these the Ant System algorithm is similarly derived from

nature.

The operation of ant systems can be illustrated by the classical Travelling

Salesman Problem (see Figure 6.1 for example). In the TSP problem, a travelling

salesman problem is looking for a route which covers all cities with minimal total

distance. Suppose there are n cities and m ants. The entire algorithm starts with

initial pheromone intensity set to τ0 on all edges. In every subsequent ant system

cycle, or episode, each ant begins its trip from a randomly selected starting city

and is required to visit every city exactly once (a Hamiltonian Circuit). The

experience gained in this phase is then used to update the pheromone intensity

on all edges.

Given a finite set of cities and the distance between each pair of cities, the
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�

Figure 6.1. A traveling salesman problem with 12 cities.

Traveling Salesman Problem (TSP ) aims at finding a route through all cities by

visiting each exactly once and returning to the initial city such that the total

distance traveled is minimized. Assume m artificial ants travel through n cities.

The operation of ant systems for the traveling salesman problem (TSP ) is given

below (Dorigo et al. 1996, Dorigo & Gambardella 1997):

Step 1: Randomly select the initial city for each ant. The initial pheromone

level between any two cities is set to be a small positive constant . Set the

cycle counter to be 0.

Step 2: Calculate the transition probability from city r to city s for the kth

ant as

Pk(r, s) =











[τ(r,s)]·[η(r,s)]β
∑

u∈Jk(r)[τ(r,u)]·[η(r,u)]β
, if s ∈ Jk(r)

0 , otherwise
(6.1)
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where r is the current city, s is the next city, τ(r, s) is the pheromone level

between city r and city s, η(r, s) = 1
δ(r,s)

the inverse of the distance δ(r, s)

between city r and city s, Jk(r) is the set of cities that remain to be visited

by the kth ant positioned on city r, and β is a parameter which determines

the relative importance of pheromone level versus distance. Select the next

visited city s for the kth ant with the probability Pk(r, s). Repeat step 2

for each ant until the ants have toured all cities.

Step 3: Update the pheromone level between cities as

τ(r, s)←− (1− α) · τ(r, s) +
m

∑

k=1

∆τk(r, s) (6.2)

∆τk(r, s) =







1
Lk

, if (r, s) ∈ route done by ant k

0 , otherwise
(6.3)

∆τk(r, s) is the pheromone level laid down between cities r and s by the kth

ant, Lk is the length of the route visited by the kth ant, m is the number

of ants and 0 < α < 1 is a pheromone decay parameter.

Step 4: Increment cycle counter. Move the ants to the originally selected cities

and continue Steps 2 to 4 until the behavior stagnates or the maximum

number of cycles has reached, where a stagnation is indicated when all ants

take the same route.

From Eq. 6.1 it is clear Ant System (AS) needs a high level of computation

to find the next visited city for each ant.

An implementation of the ant system by applying program to the test problem

in Figure 6.1 are given in Figure 6.2 and 6.3. Figure 6.2 reports a found shortest

route of length 3.308, which is the truly shortest route validated by exhaustive

search. Figure 6.3 gives a snapshot of the pheromone intensities after 20 episodes.

A higher intensity is represented by a wider edge. Notice that intensity alone

cannot be used as a criteria for judging whether a link is a constitute part of the
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�

Figure 6.2. The shortest route found by the ant system.

�Figure 6.3. The snapshot of pheromone intensities after 20 episodes.

shortest route or not, since the shortest route relies on the cooperation of other

links.
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In order to improve the search efficiency, the Ant Colony System (ACS) was

proposed (Dorigo & Gambardella 1997). ACS is based on AS but updates the

pheromone level before moving to the next city (local updating rule) and updating

the pheromone level for the shortest route only after completing the route for

each ant (global updating rule). The algorithm of the Ant Colony System can be

described as follows:

Step 1: Randomly select the initial city for each ant. The initial pheromone

level between any two cities is set to be a small positive constant τ0. Set

the cycle counter to be 0.

Step 2: Calculate the next city s to be visited for each ant according to

s =







arg maxu∈Jk(r)[τ(r, u)] · [η(r, u)]β , if q ≤ q0 (exploitation)

S , otherwise (biased exploration)

(6.4)

where q is a random number between 0 and 1, q0 is a constant between 0

and 1, S is random variable selected using the probability distribution given

in Eq. 6.1 and β is a parameter which determines the relative importance

of pheromone level versus distance.

Step 3: Update the pheromone level between cities as

τ(r, s)←− (1− ρ) · τ(r, s) + ρ ·∆τ(r, s) (6.5)

where ∆τ(r, s) = τ0 = (n ∗ Lnn)−1 and Lnn is an approximate distance of

the route of all cities using Nearest Neighbour Heuristic, n is the number

of cities and 0 < ρ < 1 is a pheromone decay parameter. Repeat Steps 2

and 3 for each ant until all cities are visited.

Step 4: Increment cycle counter. Update the pheromone level of the shortest

route according to

τ(r, s)←− (1− α) · τ(r, s) + α ·∆τ(r, s) (6.6)
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∆τ(r, s) =







(Lgb)
−1 , if (r, s) ∈ global best route

0 , otherwise
(6.7)

where Lgb is the length of the shortest route and α is a pheromone decay

parameter. Move the ants to the originally selected cities and continue

Steps 2 to 4 until the stagnates behavior or a maximum number of cycles

has reached, as before.

6.2 Ant Colony System with Communication Strate-

gies

A parallel computer consists of a large number of processing elements which can

be dedicated to solving a single problem at a time. Pipeline processing and

data parallelism are two popular parallel processing methods. The function of

the pipeline processing is to separate the problem into a cascade of tasks where

each task is executed by an individual processor, while data parallelism involves

distributing the data to be processed amongst all processors which then executes

the same procedure on each subset of the data. Data parallelism has been applied

to genetic algorithm by dividing the population into several groups and running

the same algorithm over each group using different processor (Cohoon et al. 1987).

The resulting parallel genetic algorithm has been successfully applied to noise

reduction of vector quantization based communication (Pan et al. 1996a).

6.2.1 Description

The Ant Colony System has been shown to be the improved version of Ant System

by adding the local updating pheromone level immediately after moving each city

for each ant and global updating pheromone level for the best route. we apply

the idea of data parallelism to Ant Colony System (ACS) and a Parallel Ant
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Colony System (PACS) (Chu, Roddick & Pan 2004a) is proposed. The Parallel

Ant Colony System (PACS) is described as follows:

Step 1: Initialization – Generate Nj artificial ants for the jth group, j =

0, 1 . . . G− 1. Nj and G are the number of artificial ants for the jth group

and the number of groups, respectively. Randomly select an initial city for

each ant. The initial pheromone level between any two cities is set to be a

small positive constant τ0. Set the cycle counter to be 0.

Step 2: Movement – Calculate the next visited city s for the ith ant in the

jth group according to

s = arg maxu∈Ji,j(r)[τj(r, u)] · [η(r, u)]β, if q ≤ q0 (exploitation)

visit city s with Pi,j(r, s), if q > q0 (biased exploration)

Pi,j(r, s) =











[τj(r,s)]·[η(r,s)]β
∑

u∈Jk(r)[τj(r,u)]·[η(r,u)]β
, if s ∈ Ji,j(r)

0 , otherwise

where Pi,j(r, s) is the transition probability from city r to city s for the ith

ant in the jth group. τj(r, s) is the pheromone level between city r to city s

in the jth group. η(r, s) = 1
δ(r,s)

the inverse of the distance δ(r, s) between

city r and city s. Ji,j(r) is the set of cities that remain to be visited by the

ith ant in the jth group and β is a parameter which determines the relative

importance of pheromone level versus distance. q is a random number

between 0 and 1 and q0 is a constant between 0 and 1.

Step 3: Local Pheromone Level Updating Rule – Update the pheromone

level between cities for each group as

τj(r, s)←− (1− ρ) · τj(r, s) + ρ ·∆τ(r, s)

∆τ(r, s) = τ0 = (n ∗ Lnn)−1

where τj(r, s) is the pheromone level between cities r and s for the ants

in the jth group, Lnn is an approximate distance of the route between all
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cities using the Nearest Neighbour Heuristic, n is the number of cities and

0 < ρ < 1 is a pheromone decay parameter. Continue Steps 2 and 3 until

each ant in each group completes the route.

Step 4: Evaluation – Calculate the total length of the route for each ant in

each group.

Step 5: Global Pheromone Level Updating Rule – Update the pheromone

level between cities for each group as

τj(r, s)←− (1− α) · τj(r, s) + α ·∆τj(r, s)

∆τj(r, s) =







(Lj)
−1 , if (r, s) ∈ best route of jth group

0 , otherwise

where Lj is the shortest length for the ants in the jth group and α is a

pheromone decay parameter.

Step 6: Updating From Communication – Seven communication strate-

gies are proposed as follows:

Figure 6.4: Update the pheromone level according to the best route of

all groups

• Strategy 1: As shown in Figure 6.4, update the pheromone level

between cities for each group for every R1 cycles as

τj(r, s)←− τj(r, s) + λ ·∆τbest(r, s)
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∆τbest(r, s) =







(Lgb)
−1 , if (r, s) ∈ best route of all groups

0 , otherwise

where λ is a pheromone decay parameter and Lgb is the length of the

best route of all groups, i.e., Lgb ≤ Lj, j = 0, 1 . . . G− 1.

Figure 6.5. Update the pheromone level between each pair of groups

• Strategy 2: As shown in Figure 6.5, update the pheromone level

between cities for each group for every R2 cycles as

τj(r, s)←− τj(r, s) + λ ·∆τng(r, s)

∆τng(r, s) =







(Lng)
−1 , if (r, s) ∈ best route of neighbour group

0 , otherwise

where neighbour is defined as being the group whose binary represen-

tation of the group number j differs by the least significant bit. λ is

a pheromone decay parameter and Lng is the length of the shortest

route in the neighbour group.

Figure 6.6: Update the pheromone level according to the ring structure

• Strategy 3: As shown in Figure 6.6, update the pheromone between
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cities for each group for every R3 cycles as

τj(r, s)←− τj(r, s) + λ ·∆τng(r, s)

∆τng(r, s) =







(Lng)
−1 , if (r, s) ∈ best route of neighbour group

0 , otherwise

where neighbour is defined as being the group arranged as the ring

structure. λ is a pheromone decay parameter and Lng is the length of

the shortest route in the neighbour group.

Figure 6.7: Update the Pheromone level to the neighbours according

to the group number j differs by one bit

• Strategy 4: As shown in Figure 6.7, update the pheromone between

cities for each group for every R4 cycles as

τj(r, s)←− τj(r, s) + λ ·∆τng(r, s)

∆τng(r, s) =







(Lng)
−1 , if (r, s) ∈ best route of neighbour group

0 , otherwise

where neighbour is defined as being those groups where the binary rep-

resentation of the group number j differs by one bit. λ is a pheromone

decay parameter and Lng is the length of the shortest route in the

neighbour group.

• Strategy 5: Update the pheromone between cities for each group

using both Strategy 1 and Strategy 2.

• Strategy 6: Update the pheromone between cities for each group

using both Strategy 1 and Strategy 3.
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• Strategy 7: Update the pheromone between cities for each group

using both Strategy 1 and Strategy 4.

Step 7: Termination – Increment the cycle counter. Move the ants to the

originally selected cities and continue Steps 2 to 6 until the stagnation

or a present maximum number of cycles has reached, where a stagnation

indicated by all ants taking the same route.

6.2.2 Experimental Results

To evaluate the effectiveness of PACS, we have performed an extensive perfor-

mance study. In this section, we report our experimental results on comparing

PACS with Ant System (AS) and Ant Colony System (ACS). It is shown that

PACS and various combinations outperform both Ant System (AS) and Ant

Colony System (ACS).

We used three generally available and typical data sets, EIL101, ST70 and

TSP225 as the test material 1 to test the performance of the Ant System (AS),

Ant Colony System (ACS) and Parallel Ant Colony System (PACS) for the

traveling salesman problem.

To ensure a fair comparison among AS, ACS and PACS, the number of

groups × the number of ants per group was kept constant – the number of ants

for AS and ACS were set to be 80, one swarm with 80 ants, as reported by

1 × 80. For PACS, the number of ants was also set to be 80 that was divided

into 4 groups with 20 ants in each group (i.e. 4× 20) and 8 groups with 10 ants

in each group (i.e. 8×10), respectively. The parameters were set to the following

values: β = 2, q0 = 0.9, α = ρ = λ = 0.1 (Dorigo & Gambardella 1997). The

number of iterations for both EIL101 and ST70 were set to be 1000 and TSP225

was set to be 2000 as the cities of TSP225 are more than EIL101 and ST70 data

1available from http://www.iwr.uniheidelberg.de/groups/comopt/software/
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sets. The number of cycles (i.e. R1, R2, R3 and R4) between updates of the

pheromone level from communication for strategies 1 to 7 in PACS were set to

be 30. In order to test the performance of the different approaches to the traveling

salesman problem, variously proposed communication strategies for updating the

pheromone level between groups in PACS were combined. Where appropriate,

these seven communication strategies are applied to the PACS and compared to

AS and ACS.

EIL101, ST70 and TSP225 are data sets with 101, 70 and 225 cities, respec-

tively. Experimental results were carried out to the average shortest length for

10 seeds. The performance of PACS (i.e. ACS with communication strategy)

is better by in comparison with AS and ACS can be illustrated by Figure 6.8,

6.9 and Figure 6.10. As can be seen from the Table 6.1, Table 6.2 and Table 6.3,

PACS outperforms both AS and ACS on effectiveness.

Figure 6.8: Performance comparison among AS, ACS and two arbi-

trarily chosen strategies for EIL101 data set.

The EIL101 data set was used for the first experiment. As shown in Table 6.1,

the average improvement on EIL101 for proposed strategy 5 for 4 groups with 20

ants in each group by comparing with AS and ACS were much better up to be
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Figure 6.9: Performance comparison among AS, ACS and two arbi-

trarily chosen strategies for ST70 data set

Figure 6.10: Performance comparison among AS, ACS and two arbi-

trarily chosen strategies for TSP225 data set

10.57% and 4.70%, respectively. In comparison with AS and ACS, the average

improvement on EIL101 for proposed strategy 3 for 8 groups with 10 ants in each
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group were 10.41% and 4.52%, respectively.

The ST70 data set was used for the second experiment. As we can see from

Table 6.2, the average performance of proposed strategy 3 for 4 groups with

20 ants in each group by compared with AS and ACS were 6.20% and 3.06%,

respectively and that of proposed strategy 6 for 8 groups with 10 ants in each

group were 6.06% and 2.92%, respectively.

Finally, in the case of TSP225 data set, the experimental results shown in

Table 6.3, compared with AS and ACS, shows that the average performance of

proposed strategy 3 for 4 groups with 20 ants in each group were 13.97% and

6.35%, respectively and that of proposed strategy 5 for 8 groups with 10 ants in

each group were 14.06% and 6.44%, respectively.

The main contribution of this section is to propose the parallel formulation

for the Ant Colony System (ACS). Seven communication strategies between

groups which can be used to update the pheromone levels are presented. For our

preliminary experiments, the proposed Parallel Ant Colony System (PACS) out-

performs both ACS and AS based on three available traveling salesman data sets.

In general, our presented systems based on data set with large data can get much

better performance such that the average improvement of TSP225 is better than

that of ST70. The proposed PACS may be applied to solve the quadratic assign-

ment problem (Maniezzo & Colorni 1999), data mining (Parpinelli et al. 2002),

space-planning (Bland 1999), data clustering and the combinatorial optimization

problems.



C
H

A
P

T
E

R
6
.

P
A

R
A

L
L
E

L
A

N
D

C
O

N
S
T

R
A

IN
E

D
A

N
T

C
O

L
O

N
Y

O
P

T
IM

IZ
A

T
IO

N
S

192

Table 6.1: The performance of ACS with communication strategies (strategy 1 ∼ 7) obtained in comparison with

AS and ACS for EIL101 data set on TSP problem

Seed AS ACS Strategy1 Strategy2 Strategy3 Strategy4 Strategy5 Strategy6 Strategy7

1,80 1,80 4,20 8,10 4,20 8,10 4,20 8,10 4,20 8,10 4,20 8,10 4,20 8,10 4,20 8,10

1 730 683 657 655 648 653 649 645 654 644 646 651 646 653 647 646

2 730 680 657 655 650 647 643 648 647 649 641 650 660 643 648 643

3 731 681 644 646 655 655 641 646 653 646 641 648 646 645 648 642

4 720 678 645 648 651 654 651 647 647 647 643 646 642 647 650 652

5 727 676 641 643 648 663 648 656 651 651 644 650 647 651 647 647

6 727 673 656 655 648 644 645 655 648 649 647 653 651 653 644 655

7 698 675 642 644 649 658 646 648 651 650 650 646 647 648 645 645

8 726 679 646 651 653 662 658 645 647 645 653 650 647 653 652 655

9 721 672 645 646 651 656 652 642 649 650 652 647 649 651 646 650

10 718 685 643 651 654 647 645 645 652 651 646 647 646 652 650 648

Average 723 678 648 649 651 654 648 648 650 648 646 649 648 650 648 648
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Table 6.2: The performance of ACS with communication strategies (strategy 1 ∼ 7) obtained in comparison with

AS and ACS for ST70 data set on TSP problem

Seed AS ACS Strategy1 Strategy2 Strategy3 Strategy4 Strategy5 Strategy6 Strategy7

1,80 1,80 4,20 8,10 4,20 8,10 4,20 8,10 4,20 8,10 4,20 8,10 4,20 8,10 4,20 8,10

1 734 701 679 680 683 684 678 683 681 683 684 679 680 677 682 681

2 721 700 681 681 677 686 688 681 677 681 679 681 677 681 677 681

3 722 700 681 682 678 683 678 681 678 681 677 681 681 682 678 677

4 717 701 677 688 682 687 678 682 679 694 685 683 686 681 681 689

5 721 703 678 684 678 686 678 681 678 678 678 679 682 683 677 682

6 713 702 691 690 694 683 678 682 678 678 692 681 689 684 689 686

7 714 700 682 683 678 683 677 683 681 677 681 682 678 677 677 677

8 730 701 677 682 677 679 677 682 681 683 681 677 678 678 678 683

9 730 696 677 681 679 685 678 678 677 682 683 679 683 677 678 681

10 736 699 678 693 682 688 678 681 681 682 680 691 682 678 677 690

Average 724 700 680 684 681 684 679 681 679 682 682 681 682 680 680 683
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Table 6.3: The performance of ACS with communication strategies (strategy 1 ∼ 7) obtained in comparison with

AS and ACS for TSP225 data set on TSP problem

Seed AS ACS Strategy1 Strategy2 Strategy3 Strategy4 Strategy5 Strategy6 Strategy7

1,80 1,80 4,20 8,10 4,20 8,10 4,20 8,10 4,20 8,10 4,20 8,10 4,20 8,10 4,20 8,10

1 4587 4145 3907 3933 3913 3914 3879 3885 3903 3949 3882 3905 3866 3905 3884 3943

2 4492 4215 3903 3883 3879 3879 3883 3877 3955 3942 3916 3871 3902 3892 3891 3881

3 4454 4149 3888 3926 3900 3900 3889 3896 3953 3916 3906 3888 3878 3894 3919 3902

4 4609 4160 3892 3886 3908 3952 3889 3885 3895 3890 3871 3885 3866 3879 3919 3899

5 4538 4163 3881 3869 3888 3898 3879 3885 3879 3880 3882 3910 3878 3884 3886 3922

6 4483 4146 3942 3915 3916 3978 3892 3901 3961 3895 3883 3877 3901 3866 3882 3882

7 4555 4149 3904 3911 3876 3939 3881 3891 3881 3887 3881 3876 3892 3885 3882 3912

8 4491 4148 3950 3900 3912 3925 3950 3889 3890 3902 3957 3891 3936 3950 3952 3903

9 4500 4108 3903 3916 3903 3904 3889 3887 3896 3886 3882 3891 3904 3875 3881 3898

10 4521 4161 3877 3915 3875 3911 3877 3896 3876 3873 3884 3876 3919 3917 3895 3909

Average 4523 4154 3905 3905 3897 3920 3891 3889 3909 3902 3894 3887 3894 3895 3899 3905
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6.3 Adaptive Ant Colony System for Data Clus-

tering

Processes that simulate natural phenomena have successfully been applied to a

number of problems for which no simple mathematical solution is known or is

practicable. Such meta-heuristic algorithms include genetic algorithms, particle

swarm optimization and ant colony systems and have received increasing attention

in recent years.

In this section, an advanced version of the ACO algorithm, termed the Con-

strained Ant Colony Optimization (CACO) algorithm, is proposed here for data

clustering by adding constrains on the calculation of pheromone strength. The

proposed CACO algorithm has the following properties:

• It applies the quadratic metric combined with the Sum of K Nearest Neigh-

bor Distances (SKNND) metric to be instead of the Euclidean distance

measure.

• It adopts a constrained form of pheromone updating. The pheromone is

only updated based on some statistical distance threshold.

• It utilises a reducing search range.

6.3.1 Ant Colony Optimization with Different Favor (ACODF)

Ant Colony Optimization with Different Favor (ACODF) algorithm (Tsai, Wu &

Tsai 2002) modified the Ant Colony Optimization (ACO) (Dorigo & Gambardella

1997) for data clustering by adding the concept of simulated annealing (Kirkpatrick

et al. 1983) and the strategy of tournament selection (Brindle 1981). It is useful

in partitioning the datasets for the clear boundaries among clusters, however, it

is not suitable to partition the datasets for the clusters with arbitrary shapes,

clusters with outliers and bridges between clusters.
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Ant Colony Optimization with Different Favor (ACODF ) applies ACO for

use in data clustering. The difference between the ACODF and ACO is that

each ant in ACODF only visits a fraction of the total clustering objects and the

number of visited objects decreases with each cycle. ACODF also incorporates

the strategies of simulated annealing and tournament selection and results in an

algorithm which is effective for clusters with clearly defined boundaries. However,

ACODF does not handle clusters with arbitrary shapes, clusters with outliers

and bridges between clusters well. In order to improve the effectiveness of the

clustering based on the technique of Ant Colony Optimization, our proposed

CACO algorithm may solve these problems of clusters with arbitrary shapes,

clusters with outliers and bridges between clusters.

6.3.2 The Constrained Ant Colony Optimization (CACO)

An advanced version of Ant Colony Optimization algorithm termed Constrained

Ant Colony Optimization (CACO) algorithm was proposed for data clustering by

adding constrains for computing the pheromone strength. The CACO algorithm

extends the Ant Colony Optimization algorithm by accommodating a quadratic

metric, Sum of K Nearest Neighbor Distances (SKNND), constrained addition of

pheromone and a shrinking range strategy to improve the data clustering (Pan,

Chu, Roddick & Su 2004). In order to improve the effectiveness of the clustering

the following four strategies are applied:

Strategy 1: While the Euclidean distance measure is used in conventional

clustering techniques such as in the ACODF clustering algorithm, it is not

suitable for clustering non-spherical clusters, (for example, a cluster with a

slender shape). In this work we therefore opt for a quadratic metric (Pan

et al. 1996b) as the distance measure. Given an object at position O and

objects Xi, i = 1, 2, . . . , T , (T is the total number of objects), the quadratic

metric between the current object O and the object Xm can be expressed
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Figure 6.11. Ant tends moving toward the object with dense cluster

as

Dq(O,Xm) = (O −Xm)tW−1(O −Xm) (6.8)

where (O − Xm) is error column vector and W is the covariance matrix

given as

W =
1

T

T
∑

i=1

(Xi − X̄)(Xi − X̄)t (6.9)

here X̄ is the mean of Xi, i = 1, 2, · · · , T defined as

X̄ =
1

T

T
∑

i=1

Xi (6.10)

W−1 is the inverse of covariance matrix W .

Strategy 2: We use the Sum of K Nearest Neighbor Distances (SKNND)

metric in order to distinguish dense clusters more easily. The example

shown in Figure 6.11 shows an ant located at A which will tend to move

toward C within a dense cluster rather than object B located in the sparser

region. By adopting SKNND, as the process iterates, the probability for

an ant to move towards the denser clusters increases. This strategy can

avoid clustering errors due to bridges between clusters.

Strategy 3: As shown in Figure 6.11, as a result of strategy 2, ants will tend

to move towards denser clusters. However, the pheromone update is in-

versely proportional to the distance between the visited objects as shown in

Equation 6.5 and Equation 6.6 and the practical distance between objects
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A and C could be farther than that between objects A and B reducing the

pheromone level and causing a clustering error. In order to compensate for

this, a statistical threshold for the kth ant is adopted as below.

Lk
ts = AvgLk

path + StDevLk
path (6.11)

where AvgLk
path and StDevLk

path are the average of the distance and the

standard deviation for the route of the visited objects by the kth ant ex-

pressed as

AvgLk
path =

∑

Lk
ij

E
, if (Xi, Xj) path visited by the kth ant (6.12)

StDevLk
path =

√

∑

(Lk
ij − AvgLk

path)
2

E
,

if (Xi, Xj) path visited by the kth ant (6.13)

where E is the number of paths visited by the kth ant. We may roughly

consider object Xi and object Xj are located in different clusters if Lk
ij > Lk

ts.

The distance between object Xi and object Xj cannot be added into the

length of the path and the pheromone cannot be updated between the

objects.

Strategy 4: Equation 6.1 is the conventional search formula between objects

r and s for ant colony optimization. However this formula is not suitable

for robust clustering as object s represents all un-visited objects resulting

in excessive computation and a tendency for ants to jump between dense

clusters as shown in Figure 6.12. In order to improve clustering speed and

eliminate this jumping phenomenon, Equation 6.1 is modified to be

Pk(r, s) =











[τ(r,s)]·[Dq(r,s)]−β ·[SKNND(s)]−γ
∑

u∈J
N2
k

(r)
[τ(r,u)]·[Dq(r,u)]−β ·[SKNND(u)]−γ , if s ∈ JN2

k (r)

0 , otherwise

(6.14)



CHAPTER 6. PARALLEL AND CONSTRAINED ANT COLONY OPTIMIZATIONS 199

Figure 6.12. Conventional search route using Equation 6.1

where JN2
k (r) is to shrink the search range to N2 nearest un-visited objects.

N2 is set to be 1/10 objects. Dq(r, s) is the quadratic distance between

object r and object s. SKNND(s) is the Sum of the distance between the

object s and the N2 nearest objects. β and γ are two parameters which

determine the relative importance of pheromone level versus the quadratic

distance and the Sum of N2 Nearest Neighbor Distance, respectively. β

is set to 2 and γ would be robust to set between 5 and 15. As shown in

Figure 6.13, the jumping phenomenon is deleted after using the shrinking

search formula.

The Constrained Ant Colony Optimization algorithm for data clustering can be

expressed as follows:

Step 1: Initialization

Randomly select the initial object for each ant. The initial pheromone τij

between any two objects Xi and Xj is set to be a small positive constant

τ0.

Step 2: Movement

Let each ant moves to N1 objects only using Equation 6.14. Here N1 is set

to be 1/20 data objects.
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Figure 6.13. Shrinking search route using Equation 6.14

Step 3: Pheromone Update

Update the pheromone level between objects as

τij(t + 1) = (1− α)τij(t) + ∆τij(t + 1) (6.15)

∆τij(t + 1) =
T

∑

k=1

∆τ k
ij(t + 1) (6.16)

∆τ k
ij(t + 1) =







Q

Lk
, if ((i, j) ∈ route done by ant k and Lk

ij < Lk
ts

0 , otherwise
(6.17)

where τij is the pheromone level between object Xi and object Xj, T is the

total number of clustering objects, α is a pheromone decay parameter and

Q is a constant and is set to 1. Lk is the length of the route after deleting

the distance between object Xi and object Xj in which Lk
ij > Lk

ts for the

kth ant.

Step 4: Consolidation

Calculate the average pheromone level on the route for all objects as

Avgτ =

∑

i,j∈E τij

E
(6.18)

where E is the number of paths visited by the kth ant. Disconnect the

path between two objects if the pheromone level between these two objects
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Figure 6.14. Clustering result of CACO (N1 = 1
55

)

is smaller than Avgτ . All the objects connected together are in the same

cluster.

6.3.3 Experiments and Results

The experiments were carried out to test the performance of the data cluster-

ing for Ant Colony Optimization with Different Favor (ACODF ), DBSCAN ,

CURE and the proposed Constrained Ant Colony Optimization (CACO). Four

data sets, Four-Cluster, Four-Bridge, Smile-Face and Shape-Outliers were used

as the test material consisting of 892, 981, 877 and 999 objects, respectively.

In order to cluster a data set using CACO, N1 and γ are two important

parameters which will influence the clustering results. N1 is the number of objects

to be visited in each cycle for each ant. If N1 is set too small, the ants cannot

finish visiting all the objects belonged to the same cluster resulting in a division

of slender shaped cluster into several sub-clusters as shown in Figure 6.14. Our

experiments indicated that good experimental results were obtained by setting

N1 to 1/20 as shown in Figure 6.15.

γ also influences the clustering result for clusters with bridges or high numbers

of outliers. As shown in Figure 6.16, the Four-Bridge data set will be partitioned
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Figure 6.15. Clustering result of CACO (N1 = 1
20

)

Figure 6.16. Clustering result of CACO (γ = 1)

into just two clusters if γ is set to 1. By setting γ to 5, the Four-Clusters data

set can be correctly partitioned as shown in Figure 6.17. We found that γ set

between 5 and 15 provided robust results.

DBSCAN is a well-known clustering algorithm that works well for clusters

with arbitrary shapes. Following the recommendation of Ester et al. (1996),

MinPts was fixed to 4 and ǫ was changed during the experiments. CURE pro-

duces high-quality clusters in the existence of outliers, allowing complex shaped

clusters and different size. We performed experiments with shrinking factor is
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Figure 6.17. Clustering result of CACO (γ = 5)

0.3 and the number of representative points as 10, which are the default values

recommended in Guha et al. (1998).

The first experiment tested the clustering performance of the Four-Cluster

data set using the ACODF , DBSCAN , CURE and CACO algorithms. As is

illustrated in Figure 6.18, the ACODF algorithm was able to correctly cluster

the Four-cluster data set. Figure 6.19 shows the clusters found by CACO for

Four-Cluster data set. For the results shown in Figure 6.20, DBSCAN worked

well when the MinPts was fixed to 4 and ǫ = 8.357. CURE was able to find

the right clusters, but some noises were present inside the clusters as shown in

Figure 6.21.

The second experiment was to partition the Four-Bridge data sets. As we can

see from Figures 6.22 to 6.25, the ACODF algorithm puts the four spheres into

the same clusters as the outlier points connecting these clusters while DBSCAN

cannot correctly separate these clusters. In Figure 6.23, DBSCAN fails to per-

form well and puts the four spheres into two clusters because of the outlier points

connecting these spheres. Although CURE clusters the data set into four clus-

ters, there is noise inside and around these clusters shown in Figure 6.24. The

CACO algorithm is able to separate this data set to four clusters as well as
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Figure 6.18: Clustering results of Four-Cluster by ACODF algorithm.

Figure 6.19. Clustering results of Four-Cluster by CACO algorithm.

identify the rest as outlier points connecting the four spheres.

The third experiment was to test the Smile-Face data set. Figure 6.26 shows

the results obtained by ACODF algorithm for Smile-Face data set, which par-

titions this data set as one cluster only. As shown in Figure 6.27, the results

illustrate that DBSCAN is able to find eyes, nose and mouth clusters but it fails

to find the outline cluster as the outline cluster has a few fragments. CURE can-

not effectively find clusters shown in Figure 6.28 because the clusters in the data

set are fragmented into a number of smaller clusters while the CACO algorithm
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Figure 6.20: Clustering results of Four-Cluster by DBSCAN algorithm.

Figure 6.21. Clustering results of Four-Cluster by CURE algorithm.

can correctly partition the Smile-Face to five clusters shown in Figure 6.29.

The last experiment was to partition the Shape-Outliers data set. As in

the previous experiment, the ACODF algorithm cannot correctly partition the

Shape-Outliers data set shown in Figure 6.30. Figure 6.31 shows the clusters

found by DBSCAN , but it also makes a mistake in that it has fragmented the

clusters in the right-side ’L’-shaped cluster. Figure 6.32 shows that CURE fails

to perform well on Shape-Outliers data set, with the clusters has fragmented into

a number of smaller clusters. Looking at Figure 6.33, we can see that CACO



CHAPTER 6. PARALLEL AND CONSTRAINED ANT COLONY OPTIMIZATIONS 206

Figure 6.22. Clustering results of Four-Bridge by ACODF algorithm.

Figure 6.23: Clustering results of Four-Bridge by DBSCAN algorithm.

algorithm correctly identifies the clusters.
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Figure 6.24. Clustering results of Four-Bridge by CURE algorithm.

Figure 6.25. Clustering results of Four-Bridge by CACO algorithm.
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Figure 6.26. Clustering results of Smile-Face by ACODF algorithm.

Figure 6.27. Clustering results of Smile-Face by DBSCAN algorithm.
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Figure 6.28. Clustering results of Smile-Face by CURE algorithm.

Figure 6.29. Clustering results of Smile-Face by CACO algorithm.
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Figure 6.30: Clustering results of Shape-Outliers by ACODF algo-

rithm.

Figure 6.31: Clustering results of Shape-Outliers by DBSCAN algo-

rithm.
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Figure 6.32: Clustering results of Shape-Outliers by CURE algorithm.

Figure 6.33: Clustering results of Shape-Outliers by CACO algorithm.



Chapter 7

Conclusions and Future Work

7.1 Summary

This thesis includes the improved algorithms for soft computing and effective

and/or efficient clustering algorithms. It can be separated into five topics con-

cerning the efficient and effective k-medoids algorithms, improved centroid-based

clustering algorithms and applications, efficient Particle Swarm Optimization,

efficient Ant Colony System, and improved clustering algorithm based on Ant

Colony Optimization.

In Chapter 2, several efficient and effective approaches for k-medoids algo-

rithm are proposed, such as Clustering Large Applications based on Simulated An-

nealing (CLASA), efficient k-medoids algorithms based on the Partial Distance

Search (PDS), Triangular Inequality Elimination (TIE) and Previous Medoid In-

dex. Especially, a novel approach based on the memory utilization for k-medoids

algorithms are analyzed and presented.

The sampling schemes are developed for efficient and effective k-edoids algo-

rithms in Chapter 3. The idea of the sampling schemes are motivated from the

efficiency of the centroid based clustering algorithm and the higher probability

of the better medoids near the centroids of the centroid based clustering so as

212
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to develop the Multi-Centroid, Multi-Run Sampling scheme (MCMRS) and an

advanced Incremental Multi-Centroid, Multi-Run Sampling scheme (IMCMRS).

Experimental results demonstrate the proposed MCMRS and IMCMRS may

dramatically reduce the computational complexity and also improve the cluster-

ing quality.

Several efficient centroid based clustering algorithms are proposed in Chap-

ter 4. The simulated annealing is combined with the tabu search approach to get

an effective clustering algorithm for image coding. Genetic clustering combined

with descent algorithm is also applied for mean residual vector quantization.

An incremental splitting clustering algorithm is developed for non-uniform dis-

tributed data. Especially, a novel labeled bisecting k-means clustering algorithm

is proposed and applied to digital image watermarking to robust for various at-

tacks. Several new inequalities based on the Hadamard transform are presented

and applied to efficient codeword search for vector quantization.

Particle Swarm Optimization (PSO) is investigated in Chapter 5 . A parallel

version for Particle Swarm Optimization termed Parallel Particle Swarm Opti-

mization (PPSO) is proposed. Three communication strategies based on the

properties of the optimization function are developed. The first communication

strategy is designed for the parameters of the solution that are independent or

are not much correlated such as the Rosenbrock function and Rastrigrin function.

The second communication strategy can be applied to those parameters that are

much correlated such as the Griewank function. In case the properties of the

parameters are unknown, a third communication strategy can be used. Experi-

mental results demonstrate the usefulness of the proposed PPSO algorithm with

three communication strategies.

In Chapter 6, Ant System (AS) and Ant Colony System (ACS) are studied

based on traveler salesman problem. Parallel Ant Colony System (PACS) are

proposed not only to reduce the computation time but also obtains a better so-

lution. Seven communication strategies based on pheromone updating rule are
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proposed for Parallel Ant Colony System. An adaptive Ant Colony Optimization

scheme is proposed for data clustering called Constrained Ant Colony Optimiza-

tion (CACO). The main idea is to apply the quadratic metric combined with the

Sum of K Nearest Neighbor Distances (SKNND) to be instead of the Euclidean

distance measure, adopts a constrained form of pheromone updating and reduces

the search range so as to get an effective clustering algorithm comparing with the

ACODF , DBSCAN and CURE data clustering algorithms.

7.2 Conclusions

7.2.1 Efficient and Effective K-medoids Algorithms

The simulated annealing (SA) is applied to generate K-medoids which is called

Clustering Large Applications Based on Simulated Annealing (CLASA) algorithm

in this thesis. The collection of the k medoids in CLASA algorithm is called

state. There are T !
k!(T−k)!

states for generating k medoids from T objects. It is

possible to move from current state to any other states depending on the moving

strategy. Preliminary experimental results demonstrate the CLASA algorithm

outperforms the CLARA and CLARANS algorithms.

Several efficient k-medoids approaches incorporating with previous medoid

index, partial distance search (PDS), triangular inequality elimination (TIE)

and utilization of memory are proposed. CLARANS and CLASA algorithms

with previous medoid index, TIE and PDS are referred to as CLARANS-ITP

and CLASA-ITP, respectively. CLARANS and CLASA algorithms combined

with the proposed memory utilization technique are referred to as CLARANS-M

and CLASA-M, respectively. The application of the proposed memory utiliza-

tion technique, previous medoid index, PDS and TIE to CLARANS and CLASA

are CLARANS-MITP and CLASA-MITP. Experimental results demonstrate the

hybrid search method CLARANS-MITP can reduce the number of distance com-
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putations from 87% to 98%. In terms of the computation time, the proposed

CLARANS-MITP can reduce the computation time up to 96%. The CLASA-

MITP also indicates the improvement over CLARANS-MITP. The proposed hy-

brid search techniques may also applied to the other clustering algorithms.

7.2.2 K-medoids Algorithms Based on Sampling Schemes

The drawback of the k-medoids algorithms is the computational complexity. The

drawback can be overcome by applying the sampling schemes. Since the k-means

algorithm can be several orders of magnitude faster than the k-medoids algorithm,

we may apply the k-means algorithm several times to collect the candidate ob-

jects from the objects near the centers of clusters, then choose the medoids from

the candidate objects. Based on this idea, Multi-Centroid, Multi-Run Sampling

Scheme (MCMRS) and Incremental Multi-Centroid, Multi-Run Sampling Scheme

(IMCMRS) are proposed. These two sampling schemes can also combine with

the CLASA and the other k-medoids algorithms. Comparing with the CLARANS

algorithm, the IMCMRS may reduce the computation time by a factor of 30 and

also get a better average distance based on the Gauss-Markov source to generate

32 medoids. In fact, the proposed IMCMRS not only can reduce the average

distance but also speed the clustering process for all datasets used in this thesis.

7.2.3 Centroid-Based Clustering Algorithms

A centroid-based clustering using a tabu search approach with simulated an-

nealing is presented. The main idea of this algorithm is to use the tabu search

approach to generate non-local moves for the clusters and apply the simulated

annealing technique to select the current best solution, thus improving the clus-

ter generation and reducing the distortion. In our proposed modified tabu search

approach, if the distortion of the best solution of all iterations is same for some

fixed number of iterations, we reset the current best solution using the best so-
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lution of all iterations. Simulated annealing is used to decide which test solution

is suitable to be the current best solution for generating the test solutions for

next iteration. Experimental results confirm the proposed clustering approach

by comparing with some existing tabu search based clustering methods.

Genetic algorithms in combination with the generalized Lloyd algorithm (GLA)

are applied to the codebook design of mean-residual vector quantization (M/R

VQ). The mean codebook and residual codebook are trained using GLA algo-

rithm separately, then genetic algorithms are used to evaluate and evolve the

combined mean codebook and residual codebook. Parameters setting approach

is also analyzed so that the parameters are robust in the proposed algorithm.

Experimental results also demonstrate the usefulness of this approach.

An innovative method, termed incremental splitting, is presented for our works

on the clustering of non-uniformly distributed data. Taking the k-means method

as the core, the proposed approach splits only clusters with the largest total error

in each iteration. This heuristic has the effect of allocating more clusters to those

regions having more sample data. Consistent experimental results reveal that our

method outperforms commonly used heuristics, including random initialization,

binary splitting, and pair-wise nearest neighbour.

7.2.4 Labeled Bisecting K-means Clustering

A novel VQ-based watermarking scheme using the labeled bisecting k-means clus-

tering technique is presented in this thesis. Each cluster (or codeword) is labeled

either 0 or 1 based on the labeling key before embedding. During the embedding

phase, each input block is assigned to the nearest codeword or cluster centre whose

label is equal to the watermark bit. The watermark extraction can be performed

without the original image. Experimental results confirm the effectiveness of the

proposed algorithm, and the proposed algorithm is robust to JPEG compression

and some spatial-domain processing operations.
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7.2.5 Hadamard Transform Based Inequalities for Effi-

cient Clustering

An efficient nearest neighbor codeword search algorithm based on Hadamard

transform for vector quantization. Four efficient elimination criteria are de-

rived from two important inequalities based on three characteristic values in the

Hadamard transform domain. Before the encoding process, all codewords in the

codebook are Hadamard-transformed and sorted in the ascending order of their

first elements. During the encoding process, we firstly perform the transform on

the input vector and calculate its characteristic values, and initialize the current

closest codeword of the input vector to be the codeword whose first element of

Hadamard transform is nearest to that of the input vector, and secondly use the

proposed elimination criteria to find the nearest codeword to the input vector

using the up-down search mechanism near the initial best-match codeword. The

main contribution for the proposed algorithm is to analyze the characteristics

of the Hadamard-transform based codeword search and derive several efficient

inequalities. Experimental results demonstrate the proposed algorithm is much

more efficient than most existing nearest neighbor codeword search algorithms,

particularly in the case of high dimension.

7.2.6 PPSO with Communication Strategies

A parallel particle swarm optimization (PPSO) algorithm is studied in this thesis.

Three communication strategies for the PPSO algorithm are presented. The first

communication strategy is designed for the parameters of the solution that are

independent or are not much correlated such as the Rosenbrock function and

Rastrigrin function. The second communication strategy can be applied to those

parameters that are much correlated such as the Griewank function. In case the

properties of the parameters are unknown, a third communication strategy can

be used. Experimental results demonstrate the usefulness of the proposed PPSO
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algorithm with three communication strategies.

7.2.7 PACS with Communication Strategies

A Parallel Ant Colony System (PACS) with communication strategies is devel-

oped. The artificial ants are partitioned into several groups. Seven communi-

cation methods for updating the pheromone level between groups in PACS are

proposed and work on the traveling salesman problem using our proposed system

is presented. Experimental results based on three well-known traveling salesman

data sets demonstrate the proposed PACS with communication strategies are

superior to the existing Ant Colony System (ACS) and Ant System (AS) with

similar or better running times.

7.2.8 Constrained Ant Colony Optimization for Data Clus-

tering

Ant colony system is discussed and extended to a novel data clustering process

using Constrained Ant Colony Optimization (CACO). The CACO algorithm ex-

tends the Ant Colony Optimization algorithm by accommodating a quadratic

distance metric, the Sum of K Nearest Neighbor Distances (SKNND) metric,

constrained addition of pheromone and a shrinking range strategy to improve

data clustering. We show that the CACO algorithm can resolve the problems of

clusters with arbitrary shapes, clusters with outliers and bridges between clus-

ters. Experimental results based on synthetic data sets demonstrate the proposed

CACO algorithm can outperform the Ant Colony Optimization with Different Fa-

vor (ACODF), DBSCAN and CURE algorithms.
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7.3 Future Work

7.3.1 Transform Domain Based K-medoids Algorithm

The k-medoids algorithms have been shown to be robust to outliers and are

not generally influenced by the order of presentation of objects. Moreover, k-

medoids algorithms are invariant to translations and orthogonal transformations

of objects. Several efficient and effective approaches are developed for k-medoids

algorithms, however, no one utilizes the properties of transform domain for gen-

erating medoids. Further work will develop new k-medoids algorithms based on

transform domain, such as the Hadamard Transform (HT), Principal Component

Transform, Discrete Cosine Transform (DCT) and Discrete Wavelet Transform

(DWT). Several Hadamard Transform based inequalities developed in this thesis

can combine with the k-medoids algorithms to further improve the efficiency and

effectiveness.

7.3.2 PSO for Clustering of Objects

To the best of our knowledge, no one has yet applied the PSO for clustering.

Further work may apply the PSO and PPSO for clustering the numerical objects.

The positions of several particles may group to form a cluster. It is an open

issue how to form a cluster from several particles and what are the properties

to determine the total number of clusters from the history of the positions of

the particles. In the beginning, the PSO and PPSO may be applied to design

the centroid-based numerical clustering for vector quantization. Then further

work may modify this numerical object clustering to fit the categorical objects

by getting the experience from the extending the k-means to k-modes algorithm

(Chiang, Chu, Hsin & Pan 2003, Huang 1998, Huang & Ng 1999, Wong & Ng

2000).
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7.3.3 Sampling Scheme and Tree Structure for CACO

If the size of the data set for clustering is too big, it would be time consuming for

CACO algorithm. This problem may be solved by applying the R-tree data struc-

ture and/or the development of sampling scheme for CACO algorithm. Further

work will develop some new sampling schemes for CACO algorithm and apply the

new mean-variance-norm pyramid (Lee & Chen 1995, Pan, Lu & Sun 2000, Song

& Ra 2002b) search technique to R-tree data structure for CACO algorithm.

7.3.4 Application of CACO for Texture Segmentation

Texture segmentation has been shown to be an important issue and practical

application in the area of image processing. The texture segmentation is to

separate the whole texture into several sub-textures so that boundaries among

the sub-textures best match. In fact, the texture segmentation can be formalized

as the clustering problem. However no one has applied the Ant System or Ant

Colony System to texture segmentation. Further work could apply the CACO

for the segmentation of texture image.

7.3.5 Application of CACO for Clustering of Categorical

Objects

CACO algorithm may also be applied to the clustering of categorical objects. The

first step is to define the distance between different attribute values. The distance

may also be obtained by getting the assistance of some optimization techniques

such as the genetic algorithm (Chiang et al. 2003). Then apply the CACO

algorithm to the clustering of categorical objects by modifying the quadratic

distance metric, Sum of K Nearest Neighbor Distance, the visit probability of

non-visited objects and the constrained addition of pheromone and shrinking

range of strategy.
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Zäıane, O. R. & Lee, C. H. (2002), Clustering spatial data when facing physical con-

straints, in ‘IEEE International Conference on Data Mining (ICDM 2002)’, Mae-

bashi City, Japan, IEEE Computer Society, pp. 737–740.

Zamir, O., Etzion, O., Mandani, O. & Karp, R. (1997), Fast and intuitive clustering

of web documents, in D. Heckerman, H. Mannila, D. Pregibon & R. Uthurusamy,

eds, ‘Third International Conference on Knowledge Discovery and Data Mining’,

AAAI Press, Menlo Park, California, Newport Beach, CA, USA, pp. 287–290.

Zeger, K. A. & Gersho, A. (1989), ‘Stochastic relatxation algorithm for improved vector

quantizer design’, Electronics Letters 25(14), 896–898.

Zeger, K. A., Vaisey, J. & Gersho, A. (1992), ‘Globally optimal vector quantizer design

by stochastic relaxation’, IEEE Transactions on Signal Processing 40(2), 310–322.

Zhang, T., Ramakrishnan, R. & Livny, M. (1996), BIRCH: An efficient clustering

method for very large databases, in ‘ACM SIGMOD Workshop on Research Issues

on Data Mining and Knowledge Discovery’, Montreal, Canada, pp. 103–114.


