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ABSTRACT 

Surface water is the most accessible source of water for humans. It is affected by both 

climate change and human activities. In situ data are not regularly available for 

detecting the changes in surface water. Satellite remote sensing and GIS techniques 

facilitate the investigation of surface water changes and overcome the lack of in situ 

data. The goal of this study was to use images of Landsat 5 Thematic Mapper (TM), 

Landsat 8 Operational Land Imager (OLI) and inundation maps from European 

Commission Joint Research Centre Global Surface Water (EC JRC-GSW) monthly 

water history database to extract and assess accuracy of mapping surface water in 

Milingimbi Island, Northern Territory, Australia during the period from 1987 to 2016. 

On the island, the spatial distribution of shallow surface water inundation of salty 

land is changing frequently. No previous study has been performed on surface water 

inundation on Milingimbi Island. Initially, surface water area was extracted from 

thirteen images by unsupervised and supervised image classifications, Normalised 

Difference Water Index (NDWI), and Modified Normalised Difference Water Index 

(MNDWI). Surface water for each respective month was also extracted from the EC 

JRC-GSW monthly water history maps. Then surface water area was extracted by 

supervised classification from another 11 images for both wet season (Dec- April) and 

dry season (May- Nov). During the wet season, cloud cover has affected almost all 

the wet images and the possibility to extract inundation areas during the wettest 

moments was limited. 



XI 
 

The extracted water area from unsupervised, supervised classifications and MNDWI 

methods was very similar, while the area based on the NDWI method and EC JRC-

GSW corresponded closely. There were significant differences in area between the 

two groups. The accuracy assessment showed the highest accuracy for the supervised 

classification. One of the study objectives of using EC JRC-GSW data as a time series 

of monthly surface water area for investigating the surface inundation process was 

not successful.  

For wet season inundations, the correlation (although relatively low) between 

surface water area and rainfall was comparatively best with sixty days cumulative 

rainfall. Most of the dry season inundations were observed on days with zero or 

insignificant rainfall. Spatial distribution of inundations were mapped separately for 

wet and dry seasons. The inundation areas of higher frequency are different in wet 

and dry season. There is no sea level monitoring station in Milingimbi to investigate 

the correlation of sea level and dry season inundations. When referred to nearest 

SEAFRAME (SEA-level Fine Resolution Acoustic Measuring Equipment) station in 

Darwin, the sea level is the highest during the months of October and November. This 

study recommends use of non-optical satellite remote sensing for improving future 

inundation mapping in Milingimbi Island in investigating wet season characteristics 

and monitoring the sea level, and establishing accurate elevation data to investigate 

dry season inundation.  

Key words 

Surface water, Remote sensing, Unsupervised / Supervised Classification, NDWI, 

MNDWI  
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1. INTRODUCTION  

1.1 Background  

The integrated influence of climate change and anthropogenic activities have 

considerably affected the water cycle (Lawford 2008; Pekel et al. 2016; Xia et al. 

2017). Such impacts influence the environmental evolution of soil and water (Chahine 

1992; Herrick, Sala & Karl 2013; Oki & Kanae 2006). Sea level rise is a major impact of 

climate change (Mimura 2013). McInnes et al. (2013) say since 1800 the sea level has 

been rising at an increasing rate. Two major threats caused by the changes in sea 

levels are the inundation of coastal land and degradation of fresh water resources 

(Mimura 2013).  

 

1.2 Problem statement  

Milingimbi Island is in the Arafura Sea in the Northern Territory and is the largest 

island of the Crocodile Island Group. The island covers approximately 50 km2 of area 

in which the highest elevation is about 16 m above mean sea level in the central part 

of the island. Extensive saline mud flats surround the higher parts of the island 

(Woodgate 2013). The central part of the island is covered with vegetation. There are 

several tidal creeks, which are bounded by mangrove forest. Surface water exists 

within the tidal creeks and a brackish billabong. There are no fresh water features 

(Woodgate 2013). Currently, 1600 Indigenous people live on the island. Water is a 

scarce resource on the island and the drinking water supply depends solely on a 

shallow fresh water aquifer beneath the island (Batelaan et al. 2015). 
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There are three main aquifers beneath the island: a near surface aquifer, central 

aquifer and a deep aquifer separated by two aquitards. The near surface aquifer is 

too small and shallow for water supply. The central fresh water aquifer is shallow and 

current community water supply depends on this aquifer. The deep aquifer is more 

saline. According to present data, the central and the deep aquifers are present only 

in the central portion of the island. There is noticeable increase in the salinity level in 

the central aquifer, according to groundwater samples from the monitoring network. 

If the pumping is increased, there is a possibility of contaminating the central aquifer 

due to upward leakage from the saline aquifer. Also the central aquifer is vulnerable 

to saltwater intrusion from the sea (Batelaan et al. 2015). 

Milingimbi Island is in a tropical climate zone with distinct wet and dry seasons. The 

island receives a high rainfall in the wet season from November to April with an 

average annual rainfall of 1090 mm. Almost no rainfall occurs during the dry season 

from May to October. Groundwater recharges mainly during the wet season. The 

proportion of groundwater recharge, evapotranspiration loss and lateral flow to the 

coast is unknown (Batelaan et al. 2015). 

People of ‘Yolngu’ group has been living on Milingimbi Island for over 40,000 years. 

In 1923, the Methodist Overseas Mission established the settlement. When 

Milingimbi Island was bombed during World War II, the residents moved to Elcho 

Island. The settlement was re-established in 1951. Currently, the majority of the 

people live on the eastern side, in a small township and there is also a small out 

station in the central northern part of the island (Woodgate 2013). 

Other than the tidal creeks and the brackish billabong called ‘Nalajrwa’, seasonal 

surface water exists over the mud flats (Woodgate 2013). Spatial and temporal 
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distribution of surface water on the island has not been studied. According to 

Augustine (1960), ‘Nalajrwa’ water hole is very deep and tested sodium chloride 

content of the water was very close to sea water. Woodgate (2013) says the billabong 

is expected to be connected to the adjacent aquifer. Billabong water has Na-Cl type 

signature and its high salinity may be a result of evaporative concentration of salts. 

According to a Charles Darwin University (2010) report on ‘Milingimbi water’ 

prepared by consulting Milingimbi residents, the small surface water areas, which are 

called wells, have fresh water in the wet season and the water gradually changes to 

saltier in the dry season. The limited knowledge on surface inundation areas, which 

have saline water, has created a potential risk of contaminating the fresh water 

aquifer. 

Seasonal surface inundation in the coastal area has contributed to the degradation 

of the limited land resources of the island. Extending the area of saline mud flats into 

the recharge area of the aquifer lead to contamination of the groundwater. In 

addition, the projected population will be 2300 by the year 2030 (Batelaan et al. 

2015). The quantity and the quality of the groundwater will be critical to meet the 

demands of the future population. Woodgate (2013) says that some years it was 

difficult to meet the water demand during the driest months. The increasing 

population will face difficulties in the future with the already limited fresh water 

resources of the island. According to Batelaan et al. (2015) desalinisation projects are 

not feasible to meet the fresh water requirement. Milingimbi residents highly respect 

and value their traditional land and water. They believe their ancestors secured water 

for generations with their traditional knowledge (Charles Darwin University 2010). As 

a consequence of these developing circumstances, there are high social, cultural and 
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economic aspects in investigating the water resources in Milingimbi Island to develop 

better water management plans. 

 

1.3 Objective of the research 

The objective of this study is to identify the surface water inundation process of the 

island during the 30 years period from 1987 to 2016 and determine if rainfall and/or 

tidal waves were the cause of surface water inundation.  

To achieve this objective, Landsat images from the United States Geological Survey 

(USGS) are used to identify water areas by applying image classification or water 

indices in order to identify the spatial and temporal distribution of surface water area. 

The surface water inundation of Milingimbi Island from the monthly water history 

maps of the European Commission Joint Research Centre – Global Surface Water (EC 

JRC-GSW) are used to compare with the extracted inundation areas from this study. 

The suitability of EC JRC-GSW data will be assessed for use as a data source for 

monthly surface water inundation areas in Milingimbi Island. 
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1.4 Anticipated outcome of the study 

With this study, it is expected: 

• To assess the suitability of EC JRC-GSW monthly water history data to 

estimate the surface water inundation of Milingimbi Island; 

• To gather comprehensive knowledge on the behaviour of seasonal surface 

water in Milingimbi Island, which has not been explored so far; 

• To identify the possible risk of contaminating the fresh water aquifer from 

surface water inundation; 

• To identify future research areas on the surface water inundations. 
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2. LITERATURE REVIEW 

2.1 Remote sensing of water 

Surface water is the most accessible water resource for the human population (Pekel 

et al. 2016). Surface water has been a vital resource for the development and the 

existence of human civilization (Lawford 2008). It is equally important for the 

sustainability of the environment and the ecosystem (Huang et al. 2016). Surface 

water is affected by both climate change and human activities (Lawford 2008; Pekel 

et al. 2016; Vorosmarty et al. 2000). The knowledge of the location, extent and the 

recurrence of surface water is required in water allocation and resource management 

(Khawlie et al. 2005). The change in surface water has many impacts on the human 

social behaviour, related to domestic needs, agricultural production, urbanization, 

water management and eco system balance. 

Lawford (2008) says in-situ data are the best reliable source in analysing the impacts 

on surface water. Sometimes in-situ data are collected through specific studies and 

not regularly available due to lack of technology. Satellite remote sensing augments 

ground-based data, with earth surface observations for many decades. It has 

overcome the time-consuming traditional manual work and high cost in detecting the 

spatial distribution of water. During the last twenty years, Satellite remote sensing 

has been widely used to monitor the distribution and the changes in surface water 

(Gao et al. 2016; Wang et al. 2011).  

In different countries, researchers have used remote sensed data to study long term 

changes in surface water bodies (Gautam et al. 2015; Henry et al. 2006; Idol, Haack 

& Mahabir 2015; Mereuta 2015.; Rokni et al. 2015; Wu & Liu 2014) and surface 

inundation areas during floods (Henry et al. 2006; Zhou et al. 2000). According to 
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Leng et al. (2016), few studies have investigated the change detection of surface 

water and the possible impacts due to climate change. Spatial and temporal variation 

in the surface water extent should be a research strand of climate change impact 

(Prigent et al. 2012). Pekel et al. (2016) have studied the changes in global surface 

water for 32 years, using satellite images. Alsdorf, Rodríguez and Lettenmaier (2007) 

says remote sensing is the only source of data to study the spatial and temporal 

distribution of global surface water.  

According to the Centre for Remote Imaging, Sensing and Processing, at the National 

University of Singapore (CRISP 2001), remote sensing is a technology of observing 

objects at distance by the sensors that are not in direct contact, normally by using 

the electromagnetic radiation for carrying the information. In satellite remote 

sensing Earth objects are observed with electromagnetic radiation captured by the 

sensors in the satellite and resulting products are images. The information about the 

ground objects is extracted by analysing and interpreting these images (Jensen 2014). 

When the radiation from the sun (ESun) reaches a water body, a part of the radiation 

is reflected from the water surface (Ls). Some of the radiation penetrates the air-

water interface, interacts with the constituents in the water and exits the water 

surface (Lv). Some radiation penetrates the water, reaches the bottom, and then 

propagates back and exits the water-air interface (Lb). Some radiation is scattered in 

the atmosphere without reaching the water surface (LP). Figure 1 illustrates the water 

radiance interaction. The energy Ls carries spectral information about the surface 

characteristic. Lv has the characteristics of water column. Lb is important in 

bathymetric mapping of water bodies (Jensen 2014). 
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Figure 1 : Interaction of radiance and water features 

  (Jensen 2014) 

In remote sensing of water, the radiance recorded by the remote sensor records the 

energy from all four sources Ls, Lv, Lb and Lp. The electromagnetic radiation is changed 

due to scattering and absorption by aerosols and gases when transmitting through 

the atmosphere from the Earth surface to the satellite sensor. The atmospheric effect 

is different in different wave bands, as both Rayleigh and Mie scattering depends on 

the wavelength (Richards & Jia 1998).  

Recorded image data by sensors contains geometric and radiometric errors. Image 

pre-processing is done for corrections before an image is used for classifications 

(Richards & Jia 1998). Geometric errors are caused by the relative motion of the 

satellite, scanners and the earth, and curvature of the earth (Richards & Jia 1998). For 

the geometric corrections a standard geographic coordinate system is used to 

develop the geometric relationship with the image by selecting geometric ground 

control points on the image (Du, Teillet & Cihlar 2002) and typically corrected by the 

vendor. 
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Radiometric error is the change in measured brightness value of the pixel due to 

effect of the atmosphere, variations in the solar illumination angles, Earth-sun 

distance and the instrumentation used for recording data (Chen, Vierling & Deering 

2005). There are two methods of radiometric corrections absolute and relative. 

Absolute radiometric correction uses sensor calibration data and an atmospheric 

correction algorithm based on modelling the atmospheric attenuation at the time of 

image acquisition to convert the image data in Digital Numbers (DN) to the 

reflectance at the surface (Du, Teillet & Cihlar 2002). Relative radiometric correction 

uses a base image to adjust the radiometric properties of the other images to reduce 

the atmospheric effect among multiple images. It is an image based method, which 

can correct the noise due to the atmosphere, sensor and other sources in one process 

and is simpler than the absolute method (Chen, Vierling & Deering 2005). 

Accurate measurements of the atmospheric optical properties at the time of image 

acquisition is required for the correction of the atmospheric effect and these 

measurements are frequently unavailable (Richards & Jia 1998). According to Song et 

al. (2001), requirement of atmospheric correction depends on the analytical method 

for the information extraction and the atmospheric correction is not required when 

a single date image is classified with maximum likelihood classifier if the training data 

are derived from the image. However, it is required in the applications of multi-

temporal images, such as change detection with image differencing. Also, 

atmospheric correction is required for indices, such as Normalized Difference 

Vegetation Index (NDVI) and Simple Ratio (SR), as the atmospheric effect is different 

in different bands (Song et al. 2001). In post-classification change detection, 
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atmospheric correction is not required as the resulting images are used to detect 

changes after the classification of the images separately.  

In literature, both optical (passive systems) and radar (active systems) remote sensing 

have been used to detect surface water, with challenges for both systems (Martinis 

et al. 2015). In optical remote sensing, electromagnetic radiation (EMR) is captured 

by the sensors usually in visible, near infrared (NIR) and short wave infrared (SWIR) 

regions of the electromagnetic spectrum. Passive, visible infrared (VIR) and short 

wave infrared (SWIR) sensors are widely used due to data accessibility, and 

interpretability (Li et al. 2016). Landsat satellite images have been widely used in 

literature for water detection as the images are of medium spatial and moderate 

temporal resolution and provide continuous data for long-term analysis (Zhou et al. 

2017).  

2.2 Spectral characteristics of water  

The reflectance of solar radiation depends on the objects on the ground. In optical 

remote sensing, objects are distinguished with the spectral reflectance pattern of the 

objects (Jensen 2014). Therefore, identifying spectral characteristics of different land 

cover types is important to distinguish water from other land features such as 

vegetation, soils, and buildings (Haibo et al. 2011). The spectral reflectance curve 

gives the percentage of energy that an object reflects in different wavelengths. Figure 

2 shows the spectral reflectance pattern of water with grass and soil taken from the 

ASTER (Advanced Space borne Thermal Emission and Reflection Radiometer) spectral 

library. Figure 3 shows spectral reflectance curves of common ground objects 

extracted from Landsat ETM+ by Wen and Yang (2011). The spectral curves show that 
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water absorbs most of the radiation and show very low reflections in all wavelengths 

compared to other objects. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3 : Spectral reflectance curves of different objects on the ground  
 extracted from Landsat ETM+ image (Wen & Yang 2011) 

 

Figure 2 : Spectral reflectance pattern of water, soil and grass  
observed by ASTER sensor (https://www.e-education.psu.edu 2017) 
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According to Jensen (2014), there are three important spectral characteristic of 

water. The least amount of absorption and scattering is in the blue wavelength (400-

500 nm). Relatively little scattering and higher absorption takes place in green and 

yellow light (520- 580 nm). Absorption is high and scattering is insignificant in orange 

and red wavelength energy (580- 740 nm). Almost all the incident near infrared (NIR) 

and Middle infrared (MIR) (740-3000 nm) is absorbed in deep pure water. Therefore, 

the best wavelength to distinguish pure water from land features is the NIR and MIR 

wavelengths. At these wavelengths, there reflectance of vegetation and bare soil 

contrasts significantly to that of water.  

The spectral reflectance of water changes due to the constituents in water. Organic 

and inorganic constituents of water, especially near the surface dramatically increase 

the NIR radiance leaving the water surface (Jensen 2014). Algae floating near the 

water surface reflect highly in NIR (Lillesand, Kiefer and Chipman (2004). Jensen 

(2014) shows that chlorophyll-a changes the spectral characteristics of water at four 

noticeable spectral regions. Figure 4 shows that algae-laden water has high 

absorption of blue light between 400-500 nm and red light at approximately 675 nm. 

There is a prominent reflectance peak around 690-700nm and another peak around 

550 nm. There are dramatic changes in spectral reflectance when both suspended 

sediments (red loam for these curves) and chlorophyll occur in the water with 

significant increase in the green wavelength (Figure 5). It shows that peak reflectance 

in the visible region shifts towards longer wavelengths particularly increase at 700nm 

as shown in Figure 5. 
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Spectral characteristics of water varies with hydrological, biological and chemical 

characteristics of water (Seyhan & Dekker 1986). The transmittance of water is high 

Figure 4 : Percent reflectance of clear and algae-laden water 
based on in situ spectroradiometer measurement (Jensen 2014) 

Figure 5 : Percent reflectance of algae-laden water with suspended sediment 
in various concentration ranging from 0-500 mg/l (Jensen 2014). 
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in all visible wavelengths. It increases when the wavelength decreases and almost all 

incident radiation in NIR and then SWIR is absorbed by water. Van Der Meer and De 

Jong (2001) argue that suspended sediments, plankton and pigments in water 

increase the reflectance.  

Many researchers have used Landsat images for monitoring constituents in water for 

assessing the water quality. According to Lavery et al. (1993), many researchers, such 

as Lathrop and Lillesand (1986), Dwivedi and Narain (1987), and Bagheri and Dias 

(1990), have found that there is a significant correlation between Landsat TM band 

1, 2, and 3 with chlorophyll concentration in coastal and inland water bodies. Lavery 

et al. (1993) observed high correlations in algorithms developed with multiple 

regression analysis to monitor salinity in two estuaries using Landsat TM band 4 and 

band 7. Alparslan et al. (2007) derived formulae through regression analysis using the 

reflectance values of band 1, 2, 3, and 4 of Landsat 7 ETM images to assess the water 

quality parameters of Omeli reservoir. According to Pekel et al. (2016) the spectral 

properties of water vary according to the suspended solids and dissolved organic 

matter, chlorophyll concentration, depths and water body bottom material in 

shallow water at the wave lengths used by Landsat sensors. 

Wen and Yang (2011) used stepwise multiple linear regression analysis in monitoring 

water quality in five lakes in China using Landsat ETM+ images. The average spectral 

reflectance curves for water in five lakes of different water quality are given in Figure 

6. It shows that the spectral reflectance of water dramatically changes due to 

constituents of water.  
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Figure 7 shows that the average spectral curves of water used for training data in 

defining different levels of water quality. The sixth level represents the average 

spectra of a lake with alga.  

 

 

  

Figure 6 : Average spectral reflectance curves of water in five lakes 
of different water quality, extracted from a Landsat ETM + 
image (Wen & Yang 2011) 

Figure 7 : Average spectral reflectance curves of water for different water quality 
levels collected for training data (Wen & Yang 2011) 
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2.3 Methods of water detection with satellite remote sense images  

Image classification is the method used to categorise all the pixels in an image into 

themes or land cover types using a numerical basis for the spectral pattern of the 

data for each pixel. The method for a particular classification depends on the nature 

of the data and the applications of the classified data (Lillesand, Kiefer & Chipman 

2004). 

McFeeters (1996) reviewed the methods to detect open water features in practice 

and found that the researchers have used either a single band or a ratio of two bands 

to detect open water bodies. Single band method used reflected NIR radiation as NIR 

is strongly absorbed by water and strongly reflected by dry soil and terrestrial 

vegetation. However, single band threshold may introduce error through the decision 

of the analyst to discriminate water from land and may lead to over or under 

estimation of water, as has been identified by many researches such as McFeeters 

(1996), Xu (2006), Haibo et al. (2011), and Liu, Yao and Wang (2016). Water 

contaminants such as suspended sediment, algae, etc. will increase the reflectance 

in the NIR and MIR region thus the distinction between water and land becomes more 

difficult to delineate. 

The band ratio methods use the ratio of the reflections in visible bands, such as green 

or red, to the NIR and MIR bands. Soil and terrestrial vegetation show high reflectance 

in NIR band thus are suppressed with the band ratio. Open water bodies are 

enhanced as the reflectance in NIR band is low. McFeeters (1996) argued that the 

band ratio is an improvement to distinguish water from non-water features though 

it is unable to eliminate all non-water features. Therefore, McFeeters (1996) 
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proposed the Normalized Difference Water Index (NDWI) to eliminate the vegetation 

and land features enhancing the water features in the image.  

 NDWI =  Green−NIR
Green +NIR

    (Eq. 1) 

Where green is the reflectance of the Green band and NIR is the reflectance in Near 

Infrared band.  

The reflectance of water is maximum in the green wavelength and is lower in NIR 

wavelength. Therefore, incorporating Green band maximises the reflectance of water 

features. NDWI is a dimensionless index, which ranges from -1 to +1. Water bodies 

are enhanced in the image as NDWI has positive values for water. In contrast, 

vegetation and soil features are suppressed with zero or negative NDWI values. 

Later, Xu (2006) studied the performance of the algorithm NDWI in three image 

subsets of Landsat ETM+ in lake, river, and sea environments with built-up lands. Xu 

(2006) showed that the Green band (band 2) has higher reflection than the NIR band 

(band 4), in both water and built up area as shown in Figure 8. Then, NDWI shows 

positive values for both built-up land and water. In an urban environment, extracted 

water bodies applying NDWI are mixed with noise from built up lands. Hence, NDWI 

is not efficient to suppress the built up lands. 

 



 

18 

 

 

 

 

 

 

Xu (2006) showed that average DN number for built up area is greater in MIR band 

(Band5) than the green band (band 2) and introduced Modified Normalized 

Difference Water Index (MNDWI).  

 MNDWI =  Green−MIR
Green+MIR

    (Eq. 2) 

Where green is green band (band 2 in Landsat TM) and MIR is Middle Infra-Red band 

(band 5 in Landsat TM) in the raw Landsat image. 

MNDWI has a negative value for built-up areas as DN is greater in MIR than Green 

band. Water absorbs more MIR light than NIR light, hence MNDWI has higher positive 

value for water than NDWI. Soil reflects more in MIR than in NIR and soil has a 

negative MNDWI value. The reflectance of vegetation in MIR is lower than NIR though 

it is higher than Green. Hence, MNDWI of vegetation is still negative. Consequently, 

MNDWI suppresses the vegetation and soil, enhances the water features and 

increases the contrast between water and built up area. 

Figure 8 : Spectral reflectance curves of lake water, vegetation and built-up land 
extracted from a Landsat ETM+ image for Fuzhou city (Xu 2006) 
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Later, Shen and Li (2010) studied the performance of the spectral characteristics of 

Landsat TM bands in different environments and proposed a new algorithm named 

as Water Ratio Index (WRI). They found that the performance of WRI is favourable 

compared with NDWI in two environments; built up area in the mountains covered 

with vegetation, and bare area with mountain shadows. 

 WRI =  Green+R
NIR+MIR

     (Eq. 3) 

As the reflectance of water bodies in green and red bands are greater than NIR and 

MIR bands, WRI gives a value greater than 1 for water bodies.  

Following the work by Shen and Li (2010), Haibo et al. (2011) proposed the New 

Water Index (NWI) based on the DN values of water and other ground features on 

the Landsat ETM image where C is a constant.  

NWI =  Band 1−(Band 4+Band 5+Band 7)
Band 1+(Band 4+Band 5+Band 7)

 ∗ C   (Eq. 4) 

Haibo et al. (2011) used supervised classification, unsupervised classification, single 

band threshold in band 5 (MIR band), NDWI, MNDWI, and NWI to extract water 

bodies from a Landsat ETM, DN value image and used the supervised classification as 

the base line to compare the methods. In this study Haibo et al. (2011) found that 

NWI is able to extract water features but it is not efficient in distinguishing water and 

built up areas. Meanwhile, Haibo et al. (2011) found that MNDWI has the highest 

accuracy in extracting small water bodies in comparison to NDWI in built up areas 

and single band threshold in band 5 has more noise.  
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In the above study, Haibo et al. (2011) showed that the image classification methods 

such as unsupervised and supervised classifications which are already been used for 

satellite image analysis, can be used to detect water in the images other than the 

methods described above. Unsupervised and supervised classification are spectrally 

oriented classification systems (Jensen 2014). Unsupervised classification could be 

used where there is no prior knowledge about the area. It is a cluster analysis where 

the analysis software forms several feature classes by clustering similar pixels 

depending on the parameters specified by the analyst. Then the clusters forming 

water features are identified by comparing with ground data. The selection of initial 

class parameters and the iterative adjustments is an issue in unsupervised 

classification (Haibo et al. 2011). 

For the supervised classification, prior knowledge of the ground features is required 

(Lillesand, Kiefer & Chipman 2004). The pixels of water features are identified on the 

image and a classification model is built to enable the computer to automatically 

identify the pixels with the same spectral characteristics. The water and other land 

cover classes are classified based on the spectral signatures of the selected training 

pixels. Supervised classification has limited usage in large scale or reproducible 

mapping mainly due to the time constraints (Zhou et al. 2017). 

Fang-fang et al. (2011) applied NDWI, MNDWI, and single band threshold of MIR band 

on reflectance values after pre-processing of Landsat TM and ETM+ images, to detect 

water in different environments such as built up area, dense vegetation area, 

mountain area, bare ground, and lake area. The study found that the performance 

accuracies of indices were different in various environments. MNDWI appeared to 

have a high accuracy for built up areas and bare grounds. Gautam et al. (2015) detect 
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surface water bodies in an urban environment applying NDWI, MNDWI, WRI, and 

supervised image classification. According to their study, they found that the 

MNDWI, WRI, show closely matching outcomes with supervised classification.  

Feyisa et al. (2014) proposed the Automatic Water Extraction Index (AWEI) to extract 

water especially in areas under shadow and dark surfaces. AWEInsh is proposed for 

situations where shadow is not a major problem, while AWEIsh is for situations with 

shadow. 

 AWEInsh = 4*(ρband2 - ρband5) – 0.25 * ρband4 + 2.75 *ρband7  (Eq. 5) 

 AWEIsh = ρband1 + 2.5 * ρband2 – 1.5 * (ρband4 + ρband5) – 0.25 * ρband7  (Eq. 6) 

where ρ is the reflectance value of spectral bands of Landsat 5 TM; band 1, band 2, 

band 4, band 5 and band 7.  

Li et al. (2016) highlight that the water extraction is not accurate with available 

indices in areas with low-albedo surface backgrounds, such as in cities with asphalt 

roads, under the shadows of clouds, mountains, and buildings, and then proposed 

NDWI-DB. Based on the spectral curves of typical water and shadow pixels in Landsat 

8 OLI (Figure 9), NDWI–DB is proposed as   

 NDWI − DB =  DND−DNS
DND+DNS

     (Eq. 7) 

 Where DND is the DN of the dark blue band 1 and DNS is the DN of the SWIR-7 band. 
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Figure 9 : Spectral reflectance curves for typical water and shadow pixels 
extracted from Landsat 8 OLI image (Li et al. 2016) 

 

 

Li et al. (2016) extracted waterbodies by applying NDWI–DB, MNDWI, and AWEI in 

natural mountainous area, plain city and plain country and showed that NDWI–DB 

has the best ability to extract water whereas other indices were not able to extract 

small water areas, such as narrow rivers and small ponds. However, the accuracy of 

AWEI was higher in natural mountains and lower in plain region when compared to 

NDWI–DB. The study further found that MNDWI extracts most water in natural 

mountainous area though it is not successful in removing the shadow. 

The improvement of radiometric resolution in Landsat sensors from 8 to 12 bits in 

Landsat 8 OLI, increases the grey scale levels of data. It avoids the saturation in 

extreme dark regions and facilitates discriminating subtle features in water bodies 

(Gao et al. 2016; Li et al. 2016; Zhou et al. 2017). 

In DN images of Landsat 8 OLI, Gao et al. (2016) extracts water bodies in a mountain 

area and a relatively flat plateau area using NDWI and wetness component of 



 

23 

Tasseled Cap transformation (TCW). They concluded that NDWI was able to eliminate 

mountain shadow though it was weak in extracting small water bodies. TCW is able 

to extract more water bodies but includes noise from shadow areas.  

Some studies use DN value images, whereas other studies use the reflectance images 

to calculate NDWI (Liu, Yao & Wang 2016). Liu, Yao and Wang (2016) evaluate NDWI 

and MNDWI using both Landsat 8 DN value image and reflectance image. Green, NIR 

and MIR bands for Landsat OLI images are bands 3, 5 and 6 respectively. Therefore, 

McFeeters (1996) NDWI is applied with band 3 and 5 as NDWI35 and Xu (2006) 

MNDWI is applied with band 3 and 6 as NDWI36 for Landsat 8 OLI images. According 

to the definitions, NDWI uses reflectance values and MNDWI uses DN values. The 

study concludes that the performance of NDWI35 is better with reflectance images 

whereas the performance of NDWI36 is better with DN value images. Liu, Yao and 

Wang (2016) conclude that NDWI35 with reflectance images is the best method and 

complies with the original definition, while NDWI36 with DN images is preferred 

when compared to single band threshold for identifying water with Landsat 8 OLI 

images. 

Zhou et al. (2017) studied the performance of water indices TCW, NDWI, MNDWI, 

and AWEI in an environment of shallow and deep fresh water bodies. Surface 

reflectance data images of Landsat 7 ETM+, Landsat 8 OLI, and Sentinel–2 MSI were 

used in this study. The study shows that NDWI has the higher accuracy in all three 

sensors. TCW shows the lowest accuracy with the highest commission error and the 

lowest user accuracy identifying built-up lands as water.  

According to the literature, there are multiple methods available for water body 

extraction, such as thematic classification methods of supervised and unsupervised 
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classifications, single band thresholds, spectral relationship methods, and water 

index methods (Li et al. 2016; Zhou et al. 2017). Threshold based water detection and 

water index methods have undergone a succession of evolutions (Zhou et al. 2017) 

and many techniques and methods for water extraction are investigated by 

researchers (Shen & Li 2010). Some water indices are originally proposed to be based 

on DN values and some other water indices are originally based on reflectance. Apart 

from this fact, some researchers (Gao et al. 2016; Li et al. 2016) have used DN value 

images to extract water bodies with water indices, which are originally defined to be 

used with reflectance values.  

According to (Li et al. 2016), although some indices and methods are used for water 

extraction today, there is a lack of accurate, efficient and automatic extraction 

methods. Fang-fang et al. (2011) argue that there are no universal acceptable indices 

for detecting surface water and each index has different performance on the 

background environment. Zhou et al. (2017) argue that water indices are the most 

common methods due to easiness and high accuracy. Li et al. (2016) conclude that 

MNDWI is the most common water index used by the researchers.  

The review of available methods for detecting the surface water features from 

satellite images shows that the performance of each method depends largely on the 

background environment. The finding in the above studies may not be simply 

applicable to other areas. Many other factors, including water constituents with 

sediment, salinity, and phytoplankton, may affect the performance of the indices. 

Supervised classification is effective in detecting water bodies with background 

knowledge of land cover types by the researchers. Some researchers, such as Haibo 

et al. (2011), use the supervised classification image as the base map to compare 
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other classifications. However, it is a time consuming method when compared to the 

water index methods. Also, some researchers such as Gautam et al. (2015) shows 

that water extraction with MNDWI closely matches with the result of supervised 

classification. Many studies (Fang-fang et al. 2011; Haibo et al. 2011; Li et al. 2016) 

show higher accuracy in extracting water with MNDWI and some other studies show 

higher accuracy with NDWI. For NDWI the main problem was the noise from built up 

area. MNDWI has shown better performance in extracting small water bodies (Haibo 

et al. 2011).  

The study area of Milingimbi Island covers a small area, has a flat terrain and low 

rising residential buildings in the southern corner of the island. Therefore, there is no 

effect from mountain or building shadows in this study area. However, the shadow 

from heavily vegetated areas could be a challenge. The surface water areas change 

rapidly from wet season to dry season with various levels of inundations and may 

consist of small water areas. The water inundation is mostly over the salty mud flat 

area. The water quality may change from fresh to saline during the inundation period 

and lead to different spectral reflectance patterns. Due to the unknown variation of 

the characteristics of water, unsupervised classification is suitable to identify clusters 

of similar spectral characteristics and to distinguish water. Considering the accuracy 

of identifying and extracting changing water areas, unsupervised classification, 

supervised classification, and indices NDWI, and MNDWI were selected to find the 

best performance method for the study area. A classification system should be 

mutually exclusive in the sense that any area should fall into one category, and it 

should classify every area in the image; this highlights the importance of identifying 

a suitable classification system at the beginning of a study (Congalton 1991). 
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2.4 Accuracy assessment 

Once an image classification is completed, it is necessary to assess the accuracy of 

the image to check the degree of confidence of the result (Richards & Jia 1998). 

Classification accuracy is the main measure of the quality of the map prepared by 

applying various image classification techniques on remote sense images. Accuracy 

assessment evaluates the suitability of a map for operational applications (Foody 

2008). The accuracy is assessed by comparing the sample pixels of the classified map 

against the reference ground data (Lillesand, Kiefer & Chipman 2004). Classification 

accuracy seems a simple concept but is a very difficult to assess due to many 

problems (Foody 2008).  

The most widely used methods for assessing the accuracy of image classification are 

based on the error matrix (Comber et al. 2012; Congalton 1991; Foody 2002). The 

comparison of the ground data and the classification is given in a tabular form, which 

is referred to as confusion or error matrix. Error matrix shows the number of correctly 

identified pixels and the number of erroneously identified pixels for each class in the 

classified map. 

There are many factors to consider in an accuracy assessment to represent the 

classification with the error matrix. They are the collection of ground data, spatial 

auto correlation, sample size, sampling scheme, and classification method (Congalton 

1991). Collection of ground data could be difficult depending on the level of 

classification. Although no ground data set is completely accurate, the assessment of 

the accuracy is critically affected by the accuracy of the reference data. When there 

is an influence from the presence, absence or degree of a certain characteristics of a 
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pixel for the presence, absence or degree of a certain characteristics of neighbouring 

pixels is referred as spatial auto correlation.  

The sample size should be large enough to maintain the accuracy assessment 

statistically valid. The sample size should be kept minimum, as the sample collection 

is expensive. Congalton (1991) introduces a rule of thumb to use a minimum of 50 

samples for each land use category for the error matrix. Further recommendations 

are to increase the sample size up to 75 or 100 samples per category when there are 

more than 12 land use categories and the area is larger than approximately 4000 km2. 

According to Lillesand, Kiefer and Chipman (2004) the samples of the category of 

interest can be increased and the samples of low importance categories can be 

decreased considering the practical limitations of the time and the cost. Few samples 

can be taken for the categories of low variability such as water. More samples should 

be considered for categories with a high degree of variability such as uneven aged 

forests. When the classification is good or number of samples are insufficient, the 

error matrix has many zeroes at off diagonal values. Richards and Jia (1998) note that 

choosing random samples of individual pixels across the thematic map is more 

statistically significant in excluding the correlated near-neighbouring pixels.  

Overall accuracy is the ratio between total number of correctly classified pixels and 

the total number of reference pixels. Omission error and commission error show the 

exclusion or inclusion to the proper land cover type respectively. User’s accuracy is 

the ratio of the number of correctly classified pixels to the total number of pixels in 

each category. Producer’s accuracy is the ratio of the number of correctly classified 

pixels to the number of reference pixels in each category (Lillesand, Kiefer & Chipman 

2004). The overall accuracy is perhaps the most simple descriptive statistic calculated 
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with the error matrix (Congalton 1991). Richards and Jia (1998) indicate that the 

distinction between the producer’s accuracy and user’s accuracy is important; the 

user’s accuracy has a potential to be mostly adapted for assessing the required 

accuracy of a classification. 

Kappa is a discrete multivariate technique used for accuracy assessment which is a 

statistical test done on the error matrix. This method is appropriate on remotely 

sensed data as the data is discrete and binomially or multinomially distributed 

(Congalton 1991).  

 

𝑘𝑘�  = 𝑁𝑁 ∑ 𝑥𝑥𝑖𝑖𝑖𝑖𝑟𝑟
𝑖𝑖=1 −∑  (𝑥𝑥𝑖𝑖+∗ 𝑥𝑥+𝑖𝑖 𝑟𝑟

𝑖𝑖=1 )  
𝑁𝑁2−∑  (𝑥𝑥𝑖𝑖+∗ 𝑥𝑥+𝑖𝑖 𝑟𝑟

𝑖𝑖=1 )  
    (Eq. 8) 

Where, 

 

𝑘𝑘�  - Kappa Coefficient 
r - number of rows in the error matrix 

xii - number of observations in row i and column i (on the major diagonal) 
xi+ - total of observations in row i (shown as marginal total to right of the matrix) 
x+i - total of observations in column i (shown as marginal total at bottom of the 

matrix) 
N - the total number of observations included in matrix 

      (Lillesand, Kiefer & Chipman 2004). 

 

It is important to define the minimum level of required overall accuracy in order to 

reduce the potential for subjective post classification evaluation in thematic mapping 

with remote sensed images. In literature, an accuracy value of over 85% has been 

widely used as the target for overall accuracy and explicitly as a standard for thematic 
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mapping with remote sensed imagery. However Foody (2008) argues that the target 

accuracy is a function of variables, such as spatial and spectral resolution of remotely 

sensed data, the number of classes defined in the classification, and the users 

requirements, such as tolerance to error and impacts of variations due to severity of 

the error. In assessing the acceptability of the map, the map accuracy is compared 

with the target accuracy. 

However, the accuracy measurements calculated on the error matrix provide 

accuracy measures based on the total area only. It does not provide any information 

about the spatial distribution of the error. The overall accuracy measured from the 

error matrix may differ in sub regions of the study area. The error in local areas may 

be much higher or smaller than the overall accuracy. On the other hand, errors in 

local regions may cancel out, which may lead to erroneous high overall accuracy. The 

spatial error of classification is important and, therefore, Foody (2002) says a land 

cover map should include a map of the spatial distribution of the error.  

Perica and Foufoula-Georgiou (1996) use spatial measure with the “figure of merit” 

index in comparing the spatial patterns of two images. Figure of merit measures the 

ratio of the intersection and the union of the areas in two Boolean maps. It is a 

dimensionless index, which has a theoretical range between 0 for ‘no agreement’ and 

1 for ‘perfect agreement’ of the two corresponding maps. 
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3. DATA AND METHODS 

3.1 Study area 

The study area is Milingimbi Island in Northern Territory, Australia (Figure 10). The 

geographical extent of the island is 134050’-134056’ E, 1202’-1209’S and the total 

area is about 50 km2. The highest elevation is about 16 m above sea level at the 

central area of the island.  

 

Figure 10 : Location of the study area, Milingimbi Island, NT 

 

3.2  Data source 

3.2.1 Remote sensing data 

Landsat data was chosen for the study because of the continuous dataset for the 

study area that are available from 1987 to present. Landsat satellites are sun 

synchronous satellites of near polar orbiting at an altitude of 705 km above the earth. 
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The repeat cycle of a satellite is 16 days and two satellites operate concurrently with 

an 8-day cycle (Pekel et al. 2016) observing 183 km wide swath of the earth in each 

pass. Landsat 5 Thematic Mapper has operated from March 1984 to Nov 2011. 

Landsat 5 consists of seven spectral bands of band 1 to 5 and band 7 of spatial 

resolution of 30m (Table 1). Thermal band 6 is of 120m spatial resolution and images 

are resampled to 30m (USGS 2017).  

Landsat 8 was launched in Feb 2013. It has two instruments on board Operational 

Land Image (OLI) and Thermal Infrared Sensor (TIRS). Landsat 8 consists of nine 

spectral bands. Bands 1 to 7 and band 9 are of spatial resolution of 30m and 

panchromatic band 8 is of 15 m spatial resolution (USGS 2017). Ultra Blue band 1 

senses deep blue and designated for coastal and aerosol studies. Band 9 is designated 

for cirrus clouds (NASA 2013). Liu, Yao and Wang (2016) say that the band 

composition of both sensors in visible and NIR bandwidths are within close ranges 

but with slight differences.  
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Table 1. Band details of Landsat sensors 
Landsat 5 TM and Landsat 8 OLI (USGS 2017) 

Satellite/Sensor Bands Wavelength 
(µm) 

Resolution  
(m) 

 Landsat 5 TM Band 1 - Blue 0.45-0.52 30 
  Band 2 - Green 0.52-0.60 30 
  Band 3 - Red 0.63-0.69 30 
  Band 4 - Near Infrared (NIR) 0.76-0.90 30 
  Band 5 - Shortwave Infrared 

(SWIR) 1 1.55-1.75 30 

 Band 6- Thermal 10.40-12.50 120 (30) 
  Band 7 - Shortwave Infrared 

(SWIR) 2 2.08-2.35 30 

 Landsat 8 OLI Band 1 - Ultra Blue 
(coastal/aerosol) 0.435 - 0.451 30 

  Band 2 - Blue 0.452 - 0.512 30 
  Band 3 - Green 0.533 - 0.590 30 
  Band 4 - Red 0.636 - 0.673 30 
  Band 5 - Near Infrared (NIR) 0.851 - 0.879 30 

  
  
 
 

Band 6 - Shortwave Infrared 
(SWIR) 1 1.566 - 1.651 30 

Band 7 - Shortwave Infrared 
(SWIR) 2 2.107 - 2.294 30 

Band 8 - Panchromatic 0.503 - 0.676 15 
Band 9 - Cirrus 1.363 - 1.384 30 
Band 10 - Thermal Infrared 
(TIRS) 1 10.60 - 11.19 100 (30) 

Band 11 - Thermal Infrared 
(TIRS) 2 11.50 - 12.51 100 (30) 

 

All images of both Landsat 5 and Landsat 8 sensors were checked in the “Glovis” 

website to scrutinised suitable images for the study. The images of no cloud cover on 

the study area or with clouds not affecting the inundation area were selected. From 

the Landsat archive, a limited number of images showing inundation in the study area 

could be used for the study due to the heavy cloud cover during the wet season. The 

selected images of the study area are of Path 103 and row 068. The Landsat DN 

images (L1T products) in the USGS remote sensing archive were downloaded through 

the “Glovis” viewer. The Surface Reflectance (LEDAPS) products of Landsat TM 5 and 
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LASRC products of Landsat 8 OLI were received through Landsat archive data sets in 

“Earth Explorer”. Table 2 shows the images used for the study. 

Level 1 Terrain (corrected) L1T are radiometrically and geometrically corrected top of 

atmosphere radiance products (USGS 2016). Top of atmosphere reflectance is 

corrected for scattering and absorbing effect of the atmosphere in Surface 

Reflectance products (Vermote et al. 2016). Landsat 8 surface reflectance products 

are 30m spatial resolution images delivered from band 1 to band 7 with condition 

specific files (USGS 2017).  

Table 2. Landsat images used for the study 

No. Sensor  Date  No. Sensor  Date  
1 Landsat 5 TM 1988 Aug 31 16 Landsat 8 

 

2014 Apr 01 

2 Landsat 5 TM 1989 Sep 19 17 Landsat 8 

 

2014 APR 17 

3 

 

 

Landsat 5 TM 1990 Oct 8 18 Landsat 8 

 

2014 May 03 

4 Landsat 5 TM 1992 Mar 19 19 Landsat 8 

 

2014 July 22 

5 Landsat 5 TM 1995 Nov 23 20 Landsat 8 

 

2014 Aug 23 

6 Landsat 5 TM 1998 Jan 31 21 Landsat 8 

 

2014 Nov 11 

7 Landsat 5 TM 1998 Aug 11  22 Landsat 8 

 

2014 Nov 27 

8 Landsat 5 TM 2003 Oct 28 23 Landsat 8 

 

2015 Sep 27 

9 Landsat 5 TM 2004 Apr 05 24 Landsat 8 

 

2016 Nov 16 

10 Landsat 5 TM 2004 Nov 15 
11 Landsat 5 TM 2008 Jan 27 
12 Landsat 5 TM 2009 Aug 25 
13 Landsat 5 TM 2010 Feb 01 
14 Landsat 5 TM 2010 Apr 22 
15 Landsat 5 TM 2011 Oct 02  

 

3.2.2 Rainfall data 

Measured daily rainfall data for Milingimbi Island from January 1987 to Dec 2016 was 

taken from the Bureau of Meteorology (BoM) website. Weather station 14402 

(latitude 12.120 S and longitude 134.910 E) was operated from 1923 to March 2003. 

Weather station 14404, (latitude 12.090 S and longitude 134.890 E) has been in 
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operation since July 2003 to the present date (BoM, 2017). Where there were periods 

of missing measured BoM rainfall data, the database of Scientific Information for 

Land Owners (SILO) maintained by the Department of Science Information 

Technology and Innovation (DSITI) was used. SILO provides gridded datasets for 

fifteen climate variables in grid resolution of 0.050 latitude by 0.050 longitude. It is 

approximately a 5 km by 5 km grid. Daily rainfall for Milingimbi Island was extracted 

from the SILO gridded dataset for the study period. Point rainfall data for each day 

was estimated with a Thiessen polygon method.  

A comparison of BoM and SILO data was done for the period from 01 Jan 1999 to 18 

Nov 2014, as continuous daily rainfall was available in both datasets. Days when there 

was no rain were not considered to avoid the bias with many zero values in the data 

(Table 3). Figure 11 shows the graph of daily rainfall of SILO vs BoM data. The RMSE 

value of the distribution is 0.89. 

Table 3. Comparison of daily rainfall between BOM and SILO data 

Sum of daily rainfall in SILO data (form 01 Jan 1999 to 18 Nov 2014) = 15890 mm 

Sum of daily rainfall in BoM data (form 01 Jan 1999 to 18 Nov 2014) = 16100 mm 

Percentage difference between sums = 1.3 % 

  

Mean of (SILO daily rainfall – BoM daily rainfall) = -0.12 mm 

Sum of (SILO daily rainfall – BoM daily rainfall) = - 210 mm 

  

Mean of absolute (SILO daily rainfall – BoM daily rainfall) = 2.12 mm 

Sum of absolute (SILO daily rainfall – BoM daily rainfall) =3640.5 mm 
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Figure 11 : Graph of daily SILO rainfall vs daily BoM rainfall  
from 01 Jan 1999 to 18 Nov 2014 

 

The data gaps of BoM daily rainfall data were filled with the SILO data to provide a 

continuous daily rainfall record for the study period (Table 4). 
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Table 4. Rainfall data for the study area 

Year 

BoM Data SILO Data Annual 
Rainfall 

considered 
for the 
study 
(mm) 

Maximum 
Daily 

Rainfall 
(mm) 

Date of 
maximum 

daily 
rainfall 

Annual Rainfall (mm) 
Annual 
Rainfall 
(mm) 

Station 
14402 

Station 
14404 

1987 NA   1665.8 1665.8 134.9 11-Feb 
1988 NA   1172.5 1172.5 111.1 28-Mar 
1989 NA   1539.8 1539.8 112.2 12-Mar 
1990 NA   563.5 563.5 54.6 10-Jan 
1991 NA   956.8 956.8 49.1 12-Jan 
1992 NA   1150.6 1150.6 94.3 7-Jan 
1993 NA   1311.7 1311.7 82.4 20-Dec 
1994 NA   914.3 914.3 71.1 18-Mar 
1995 916.8*   1740.6 1740.6 101.7 17-Jan 
1996 733.6*   1219.9 1219.9 94.4 2-Apr 
1997 457.6*   1103.2 1103.2 61.8 4-Jan 
1998 NA   1604.5 1604.5 71.6 26-Jan 
1999 NA   1853.2 1853.2 135.6 25-Nov 
2000 NA   1737.7 1737.7 110.9 11-Nov 
2001 1351.8*   1758.5 1758.5 89.5 10-Jan 
2002 758*   743 758 81.0 2-Jan 
2003 NA NA 1698.8 1698.8 185.0 6-Jan 
2004   993.2 1244.8 993.2 211.8 31-Dec 
2005   586.2 989 586.2 120.0 13-Mar 
2006   745.2 1524.1 745.2 101.6 14-Mar 
2007   1354.4 1353.7 1354.4 81.6 28-Feb 
2008   1160.2 1295.4 1160.2 71.8 18-Feb 
2009   882.2 1159.8 882.2 179.8 18-Feb 
2010   1227.4 1501 1227.4 78.6 5-Jan 
2011   1726.4 2339.8 1726.4 110.2 30-Mar 
2012   301.8* 819.6 819.6 69.2 20-Apr 
2013   1387.8 1203.5 1387.8 179.6 30-Mar 
2014   1218.0   1218.0 109.8 2-Feb 
2015   1494.4   1494.4 140.0 24-Mar 
2016   839.6   839.6 82.2 31-Jan 

* annual rainfall is not completed and not correct. 

Figure 12 shows the graphs of daily rainfall for the study area from both measured 

BoM data and generated SILO data. Visual inspection of BoM and SILO data shows 

the strong seasonality in rainfall between the wet and dry season. Figure 13 shows 

the combined data sets of daily rainfall from 1987 to 2016. 
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Rainfall seasonality for the study area 

The period of available measured rainfall data from 2004 to 2016 was considered to 

study the seasonality over the study area. During this period, the highest annual 

rainfall was 1726.4 mm in 2011. The lowest annual rainfall of 586.2 mm was in 2005. 

When the highest daily rainfall is compared between year 2005 and 2011, it was 

110.2 mm in 2011, and 120.0 mm in 2005. In year 2005, the annual total rainfall is 

lower and the highest daily rainfall is higher. The annual total rainfall does not 

indicate the temporal distribution of daily rainfall throughout the year. The highest 

daily rainfall in each year was considered from 2004 to 2016. The highest daily rainfall 

of 211.8 mm in year 2004 is the maximum and 69.2 mm in year 2012 is the minimum 

during the period.  

The daily rainfall in years 2004, 2005, 2011 and 2012 were plotted to observe the 

variability in rainfall between years for the study area. The rainfall distribution graphs 

in Figure 14 show that the rainy season in dry and wet years in the study area is from 

December to April. Accordingly, December to April is considered to be the wet 

season, while from May to November is considered to be the dry season.  
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Figure 12: Daily rainfall available for Milingimbi Island in BoM and generated rainfall in SILO database from 1987 to 2016 

Figure 13 : Daily rainfall used for the study from 1987 to 2016 



 

39 

     

Figure 14 : Daily rainfall distribution in four years 
 2004, 2005, 2011, and 2012 in the study area 
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3.2.3 Sea level data 

There is no sea level monitoring station at Milingimbi Island; however, there are 

monthly sea level measurements recorded at SEAFRAME (SEA-level Fine Resolution 

Acoustic Measuring Equipment) stations in Darwin and Milner Bay- Groote Eylandt, 

which are available from Bureau of Meteorology (BoM) website. Figure 15 and Figure 

16 show the monthly maximum, minimum and mean sea level data for Darwin and 

Groote Eylandt from 1990 and 1993 respectively. Zero sea level represents an 

arbitrary fixed offset from the zero of the tide gauge (BoM 2017). Figure 17 shows 

the locations of SEAFRAME stations. 

 

 

Figure 15 : Monthly mean sea level at Darwin 
from 1990 to 2016 (BoM 2017)  
zero sea level represents an arbitrary fixed offset from the zero of the tide 
gauge 
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Figure 16 : Monthly mean sea level at Groote Eylandt 
from 1993 to 2016 (BoM 2017) 
zero sea level represents an arbitrary fixed offset from the zero of the tide 
gauge 

Figure 17 : Location map of SEAFRAME stations 
Showing the Darwin and Milner Bay- Groote Eylandt stations (BoM, 2017) 
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According to BoM (2016), the rate of sea level rise observed in North of Australia is 

between 5 to 7 mm/year (Figure 18).  

 

 

 

 

 

 

 

  

Figure 18 : Sea surface height trend around Australia 
 (BoM 2016) 
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3.3 Methodology 

3.3.1 Data preparation  

The downloaded images were combined by layer stack in Erdas Imagine to get the 

multispectral image. A subset image covering the study area was cut out from each 

image for this study. The downloaded images were georeferenced in WGS84 UTM 

projection zone 53.  

3.3.2 Image analysis and data processing  

Image classifications and water indices were applied to distinguish water from non-

water features. Different methods and different indices behave differently in 

different environments. Initially four methods were used to select the most suitable 

method to detect water in the environment of the study area to develop a time series 

of water availability. Unsupervised and supervised image classifications, indices of 

NDWI and MNDWI, was performed on the selected Landsat images. The software 

Erdas Imagine was used for image analysis and to develop the thematic maps of 

‘Water’ and ‘Non Water’. The thematic images were converted into vector files and 

polygon features in ArcGIS software for extracting areas. 

3.3.3 Unsupervised image classification  

In unsupervised classification, image data are classified into spectral groups or 

clusters by the classification software based on the given parameters and then the 

image analyst assigns a land cover type for each spectral group with ground reference 

data. The ISO DATA (Iterative Self Organizing Data Analysis Technique) method was 

applied with 25 to 30 classes and two standard deviations. This was done to keep a 

small distance between pixels in the same class and to make a large distance between 

pixels from different classes. A maximum iteration of 20 was selected with a 

convergence threshold of 0.95. The convergence threshold specifies to stop the 
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processing when 95% or more pixels stay in the same cluster between iterations 

(Erdas 2010). The computer-generated clusters were assigned to classes by visual 

interpretation.  

When clouds occurred over the area, dry salty flats and the clouds were classified 

into one cluster. The cloud shadow and water were also classified into one cluster. 

According to Pekel et al. (2016), shadows may overlap with water because spectral 

characteristics of surface underlying shadows are not identified. Water area was 

estimated in ArcMap using the vector form of the classified image. 

3.3.4 Supervised image classification 

In supervised classification, the analyst controls the classification specifying the 

algorithm and the numerical description of the spectral attributes of each land cover 

type by selecting training areas in the image. Each pixel is classified to the most 

closely resembling land cover type. 

Parallel-piped classifier and Gaussian maximum likelihood classifier are the most 

commonly used algorithms in supervised classification. Maximum likelihood classifier 

uses both variance and the covariance to classify any unknown pixels.  

Training data is used in the classification to develop a set of statistics for each land 

cover type based on the spectral response pattern. Training data should be collected 

to represent all variations of the one land cover type and be sufficient in number to 

determine the statistical parameters. The number of training samples to represent 

spectral variability of one cover type depends on factors such as information classes 

and complexity of the geographic area (Lillesand, Kiefer & Chipman 2004).  
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Selection of training samples throughout the image for one cover type will increase 

the representativeness of all the variations. According to Lillesand, Kiefer and 

Chipman (2004) the theoretical minimum number of pixels for a training set is n+1, 

where n is the number of spectral bands. In practice, the number of pixels for a 

training set is used as a minimum of 10n to 100n pixels to improve the mean vectors 

and the covariance matrices.  

Training data are refined to identify that all the important spectral classes are 

included and to avoid redundancies in the collected training sample. This improves 

the accuracy of the classification. The training data is analysed to include normally 

distributed and spectrally separable data. Hypothetical histograms for all cover types 

in all bands are visually checked to identify the normal distribution. It shows the 

distribution of an individual category. A biomodal distribution shows that two 

subclasses of slightly different spectral characteristics are included in the sample. To 

improve the classification, each sub class is taken as a separate category. The original 

training data set is refined to get a normally distributed, spectrally separable data set 

by merging, deleting and adding.  

The training samples for the supervised classification were collected from the image 

by visual interpretation and using the Area of Interest tool (AOI) in Erdas Imagine. 

Three land cover classes were considered water, vegetation and soil. A separate class 

for residential area was not considered as the area was in one class with soil during 

unsupervised classification and the classification was to identify water and non-

water. The Maximum Likelihood classifier was used for the supervised classification 

and the classified image was recoded into two land cover types of ‘Non water’ and 

‘Water’. 
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3.3.5 Normalised Differential Water Index 

The Normalized Difference Water Index (NDWI) proposed by McFeeters in 1996 was 

used to identify the water. NDWI is given by NDWI =  Green−NIR
Green +NIR

. 

Green is the reflection in green wavelength and NIR is the reflection in NIR 

wavelength. In the images of Landsat TM, band 2 and band 4 correspond to the green 

and NIR wavelength respectively. For the images of Landsat 8 OLI, band 3 and band 

5 correspond to the green and NIR wavelength. Spatial modeller (Figure 19) was used 

in Erdas Imagine to perform the NDWI classification. 

 

 

For NDWIref, Landsat surface reflectance products were used. According to the 

original proposal by (McFeeters 1996) the optimal threshold for NDWIref would be 

zero, where surface water areas are typically shown with positive pixel values and 

not-water areas with negative pixel values in the output NDWIref image. With a 

threshold of zero, the water area on the image included the billabong in many images 

and no water areas appeared in high ground area for NDWIref. 

  

Figure 19 : Spatial modeller for NDWI classification 

used in Erdas 
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In this study DN image was used to model NDWIDN using the same model for NDWIref. 

A threshold value of zero for the NDWIDN model identified many areas in the central 

high ground of the island as water areas in the output image which are not-water 

areas. Liu, Yao and Wang (2016) note threshold selection is important in identifying 

water bodies, as the threshold value can lead to under-estimation or over-estimation 

of the water area with an empirical or arbitrary selected value. The optimum 

threshold for indices depends on the background environment. The threshold 

estimation for each image was performed in Arc Map and the optimum threshold 

values were selected by looking at the ground conditions to exclude impossible 

inundation areas, and not to exclude ‘Nalajrwa’ billabong. Then all the pixels with a 

value higher than the threshold were assigned to water with the raster calculator 

tool. For NDWI the threshold values varied between +0.02 to +0.1. 

3.3.6 Modified Normalised Differential Water Index 

Modified normalized difference water index (MNDWI) proposed by Xu (2006) was 

also used to detect water. MNDWI is given by  

MNDWI =  
Green − MIR
Green + MIR

 

Green is the reflectance in green band and MIR is the reflectance of Middle Infra-Red 

band. Landsat TM, band 2 and band 5 correspond to the green band and MIR band 

respectively. For Landsat 8 OLI, band 3 and band 7 are correspondent to the green 

band and MIR band. Spatial modeller (Figure 20) was used in Erdas Imagine to 

perform the MNDWI classification.  
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As a zero threshold for MNDWI did not show a suitable area with the visual inspection 

at the corresponding image, optimum threshold values were selected by visual 

inspection. Threshold values for MNDWI varied from +0.1 to +0.3. With the raster 

calculator, all the pixels with values higher than the threshold value were assigned to 

the class ‘water’. 

3.3.7 Water area extracted from European Commission Joint Research Centre’s 
Global Surface Water dataset (EC JRC-GSW) 

Pekel et al. (2016) have studied changes in global surface water over 32 years using 

Landsat satellite images. This study used orthorectified, top of atmosphere 

reflectance, and brightness L1T images, which were acquired between 16 March 

1984 and 10 October 2015 by Landsat 5 (TM ), Landsat 7 ETM + and Landsat 8 OLI. 

The water area larger than 30m by 30m open to the sky, including fresh and salt 

water, was classified as open water. Each pixel was assigned to either one of the 

classes ‘water’, ‘not water’, or ‘no data’ using an expert system, which was based on 

spectral reflectance characteristics of different land cover types. The expert system 

was run in Google Earth Engine (GEE). GEE is an application-programming interface 

Figure 20 : Spatial modeller for MNDWI classification 
used in Erdas  
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and a computational infrastructure, which is optimised for parallel processing of 

geospatial data. 

The performance of the expert system was evaluated by omission and commission 

error using 40124 control points distributed both temporally and geographically and 

across all three sensors. Overall omission error was less than 5% and commission 

error less than 1%. The omission of seasonal water classes was higher than the 

permanent water classes. The study by Pekel et al. (2016) found that during the 

period from 1984 to 2015, permanent surface water in an area of approximately 

90,000 square kilometres has disappeared and new permanent surface water bodies 

of an area of 184,000 square kilometres have formed in the world. Loss of surface 

water is linked with long-term drought conditions, damming, river diversions, and 

extensive withdrawals while the increase is related to new constructions of water 

bodies, or new inundations affected by changing climate (Pekel et al. 2016). 

‘Monthly water history’ data developed in this study shows all the global water 

detections at monthly level. The collection of 380 images showing monthly water 

history is available in Google Earth Engine code editor 

(https://code.earthengine.google.com/). In this study of Milingimbi Island, surface 

water data for the required months were extracted from water availability maps 

through GEE.  

3.3.8  Accuracy assessment of identifying inundation area 

Four images from the dry and wet season were selected for the accuracy assessment 

of the different extent of inundation areas, distributed throughout the study period. 

The selected images were 19 Sep 1989, 31 Jan 1998, 28 Oct 2003 and 01 Feb 2010. 
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For accuracy assessment of each image, ground data was extracted by visual 

interpretation. The spectral resolutions of Landsat TM and OLI image were sufficient 

to distinguish water surface and land features visually on the true colour image. Two 

hundred ground data points were generated in ArcMap based on random sampling 

by excluding the training area to avoid the bias (Figure 21). The ground points were 

assigned manually to classes, water and not water. The points that could not be 

assigned to a class were deleted.  

 

Figure 21 : Selection of ground data for accuracy assessment 
excluding training areas on image 28 Oct 2003 

 

The same set of random ground points was used to extract the predicted land cover 

in each classification. Error matrices were developed using the Frequency and Pivot 

tools in Arc GIS. Based on the error matrix, Overall Accuracy and Kappa values for 

each classification were estimated. Considering the behaviour of Overall Accuracy 
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and Kappa values for the different classifications on the four Landsat images, the best 

suitable classification for the study area was selected. 

3.3.9 Correlation between rainfall and inundation area 

Extraction of surface inundation area using remote sense images provides the 

inundation area at a particular time for the study area. The daily rainfall for the 

preceding day is collected at 9.00 am next day. The preceding rainfall in the island up 

to the image acquisition day was considered to study whether the rainfall has 

contributed to the surface inundation. The preceding accumulated rainfall over the 

past 15 days, 30 days, 60 days and 90 days were calculated from the daily rainfall 

series. The surface inundation area and the rainfall were plotted separately for 

different periods. The inundations during wet and dry season were separated.  
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4. RESULTS AND DISCUSSIONS 

Maps of water inundation area in 13 different images using various extraction 

methods are presented in Appendix 2. The figures show the inundation area 

extracted by unsupervised and supervised classifications, and water indices MNDWI 

and NDWI. Areas of water inundation extracted by NDWI using both surface 

reflectance image and DN image are shown. The water inundation area for the 

particular month, which is extracted from the EC JRC GSWE, is also presented in the 

same figure. The wet image, showing the maximum water area for a particular month 

was selected from the Landsat Archive. For a particular month, the selected image 

for this study was the available cloud free image showing the highest inundation area. 

EC JRC GSW data is developed based on the Landsat data. By visual inspection of the 

images for each month, it is apparent that EC JRC GSW has used the same image used 

in this study to extract maximum water area for that particular month. The visual 

inspection was made by separating wet and dry images, comparing the water spread 

area and the clouds over the image.  

The water extraction by different methods is discussed below for two images. The 

image on 01 Feb 2010 with the highest inundation area and the image on 28 Oct 2003 

with partially inundated area were selected for the discussion. 

4.1  Extraction of water area on 01 Feb 2010  

The DN image (L1T product) of Landsat 5 on 01 Feb 2010 was used for the extraction 

of inundation area by supervised, unsupervised, MNDWI, and NDWIDN method and 

the surface reflectance image was used for NDWIref method.  



 

53 

4.1.1 Investigating the spectral signature 

Figure 22 shows the extracted spectral reflectance curves for four major land features 

in the study area. The spectral reflectance curves show similar pattern of behaviour 

with typical curves for soil, water and vegetation. The spectral reflectance curve of 

water at billabong shows higher reflectance in band 4. Vegetation shows slight 

increase in reflectance in band 2, more absorption in band 3, red edge from band 3 

to band 4 (NIR). The vegetation reflectance is maximum in band 4 and then decreases. 

The soil reflectance curve shows increase in reflectance in band 1 to band 4. The 

spectral signature of vegetated mud flat shows mixed behaviour of reflectance in 

vegetation and soil.  

  

 

 

 

 

 

  

 

 

 

 

Figure 22 : Spectral reflectance curves of different land features 
 extracted form Landsat 5 TM image  
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Figure 23 shows spectral signatures of water at different locations in the area. The 

spectral reflectance curves of water in the creek, the inundation area in the north, 

and the sea shows typical behaviour of water. Water in the billabong shows a 

different behaviour in band 4. The reflectance value in band 1, band 2, and band 3 

dramatically changes in water at different locations. The change in band 3 shows the 

highest variability. The variability in band 2 is higher than band 1.  

Water in the creek, the north inundation area and the sea show the highest 

reflectance in band 2 and then the absorption is increased from band 2 to band 3. 

The absorption is drastically increased from band 3 to band 5. The reflectance in sea 

water is slightly increased from band 5 to band 7. The reflectance of water in the 

creek and the north inundation area slightly decreased from band 5 to band 7. 

The reflectance in water in the billabong is decreased from band 2 to band 3 and then 

is increased significantly in band 4. Then the reflectance is decreased from band 4 to 

band 7. The reflectance in billabong water in band 7 is higher than the water in other 

locations and matches more closely to the reflectance in seawater. 

4.1.2 Water extraction with different methods 

Figure 24 shows the extraction of inundation area by different methods and the 

image on 01 Feb 2010 in false colour composite in BGR 147. It shows a similar pattern 

of spatial distribution of inundation area in all the methods. The supervised, 

unsupervised, MNDWI and NDWIDN methods show higher inundation area than 

NDWIref and EC JRC-GSW extraction. The supervised classification shows the highest 

inundation area.  
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The permanent water feature, the billabong, is identified in the supervised 

classification, but as non-water in the unsupervised classification. The threshold in 

MNDWI and NDWIDN were at 0.07 and 0.05 to avoid water pixels in known non-water 

areas in the central area. At these thresholds, the billabong disappeared. The 

Figure 23 : Spectral reflectance curves of different water features 
 in the study area extracted form Landsat 5 TM image 
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threshold of NDWIref was taken as zero and the billabong did not appear. In EC JRC-

GSW classification also, the billabong area was not identified as water. 

Referring to the accuracy assessment on image classification in section 5.3, 

supervised classification has the highest accuracy in the image on 01 Feb 2010. 

Therefore, the inundation area extracted by the supervised classification is used as 

the base map for the comparison with other methods. 

4.1.3 Comparison of water extraction by different methods 

Figure 25 shows the maps comparing the inundation area extracted by unsupervised, 

MNDWI, and NDWIref, methods with the supervised classification. The three methods 

were selected as they show higher accuracy on image classification as per the section 

5.3. The comparison map for a method shows the pixels of similar identification as 

‘Water’ in both the methods, the pixels of ‘Water’ according to supervised 

classification but ‘Not-water’ in the other method, and the pixels of ‘Not-water’ in 

supervised classification but ‘Water’ in the other method. The images of comparison 

show that most of the pixels identified as water in the other methods are identified 

as water in the supervised classification. The number of pixels, which are ‘Not-water’ 

in supervised classification but ‘Water’ in other classifications are very low.  

Compared to the supervised classification the percentage of non-identified water 

pixels and newly identified water pixels are given in Table 5. Accordingly, 

unsupervised classification and MNDWI has not identified 5.65 % of area compared 

to the water area in supervised classification. This may be because the supervised 

classification often has over-classified pixels (fault positives). Both methods have 

identified 1.12% of other area as water. NDWIref has not identified 34.97% of the area 

and has not identified other area as water. 
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Figure 24 : Extraction of surface water area on 01 Feb 2010  
by different methods 

 

 

Source: EC JRC/Google 
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The spatial distribution of pixels not picked up by unsupervised classification as water 

shows similarity with MNDWI and the percentage of areas is similar in both methods 

not taken as water and newly identified as water compared to the supervised 

classification. Water pixels newly identified in other methods are most likely to be 

edge pixels and could be mixed pixels.  

Table 5. Comparison of extracted water area on 01 Feb 2010  
 by different methods with supervised classification 

  
Unsupervised 
Classification MNDWI NDWIref 

Area not identified as Water 
compared to water area in 
supervised classification (%) 

5.65 5.65 34.97 

Other area identified as Water 
compared to water area in 
supervised classification (%) 

1.12 1.12 0.00 

 

4.1.4 Comparison of water extraction by supervised classification and NDWIref 

NDWIref has the highest area not identified as water but classified as water in 

supervised classification. The spectral signatures at three locations identified as 

‘Water’ in supervised classification and ‘Not-water’ in NDWIref were investigated. The 

selection of three random points on the comparison map of supervised and NDWIref 

methods and overlaid random points on the map are shown in Figure 26.  
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classification with supervised 
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other classification 

 Similar land cover in both 
classifications 

 Water pixel in other 
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 Comparison of NDWIref 
classification with supervised  

Figure 25 : Comparison of surface water area extracted on 01 Feb 2010 image 
 by unsupervised classification, MNDWI, and NDWIref with supervised classification  
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Selection of random pixels in the 
variable area by overlaying on the 
image.  

Investigating spectral reflectance 
curves at random pixels on the 
image (BGR : 147)  

Map showing the variation of water 
area between supervised 
classification and NDWIref 
classification.  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 
Water pixel in supervised 
classification and Not-Water in 
NDWIref 

 Similar land cover in both 
classifications 

 Water pixel in NDWIref and 
Not-Water in supervised 
classification 

Figure 26 : Investigation of spectral reflectance curves at random pixels 
of water in supervised classification and non- water  
in NDWIref on 01 Feb 2010 image 
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The plotted spectral reflectance curves at three points are shown in Figure 27. The 

spectral reflectance curves for water in creek and the billabong from the same image 

are also plotted in the graph.  

 

Figure 27 : Comparison of spectral reflectance curves on 01 Feb 2010 image 
at random points and water points  

 

The spectral reflectance curves for three points behave in a similar way. The 

reflectance increases from band 1 to band 2 and then decreases slightly in band 3. 

The reflectance in band 4 is increased deviating the spectral reflectance curve of pure 

water. The reflectance in band 5 and band 7 are very low. The behaviour is similar to 

billabong water though the reflectance in band 1, 2, 3, and 4 are higher and in band 

5 and 7 are marginally lower. The reflectance in NIR is higher than the reflectance in 

green at point 1, 2 and 3 thus NDWI is negative. The pixels, which behave similar to 

the pixels at these points are not classified as water in NDWI at zero threshold.  
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4.2 Extraction of water area on 28 Oct 2003 

The DN image (L1T product) of Landsat 5 on 28 Oct 2003 was used for the extraction 

of inundation area by supervised, unsupervised, MNDWI, and NDWIDN method and 

the surface reflectance image was used for NDWIref method.  

4.2.1 Investigating the spectral signature 

The colour composite BGR bands 1, 4, 7, in Figure 28, shows water in blue, vegetation 

in green and soil in brown colour. Points 1, 4, 5, and 6 are blue coloured pixels. The 

colour is heterogeneous when comparing the pixels. The point 2 is at the billabong, 

which is the permanent water feature in the island. The point 9 is at sea. The spectral 

reflectance curves at these different locations in inundation area, mud flat area, and 

the sea are also shown in Figure 28.  

Spectral reflectance curves at point 1, point 3 (creek), and point 9 (sea) show a 

pattern similar to water, although the reflectance in band 1, 2, and 3 is comparatively 

higher than water. Point 2 (billabong) shows a slight increase in reflectance from band 

1 to 2, then insignificant decrease in band 3, slight increase in band 4 and decrease in 

band 5 and band 7. The reflectance is low in billabong, however, the increase in 

reflectance in band 4, deviates from the behaviour of water. The reflectance at point 

4 and 5 increases from band 1 to band 5, and then decreases in band 5 and band 7. 

The spectral reflectance curves behave differently, though the points seem to be 

water for this colour composite image.  

The points 6, 7 and 8 are located in not-water area. The reflectance at these points 

increases significantly from band 1 to band 5 and decreases in band 7. There is sudden 

increase in reflectance from band 4 to band 5. The points 6 and 8 are located in salty 

area and the reflectance of about 0.4 in band 5 is very high. Point 7 is bare soil and 
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the spectral reflectance in band 5 is lower than 0.02. The curve behaves in a similar 

pattern with soil but the reflectance is lower. The reflectance values could be affected 

by the high moisture in the soil. 

 

 

Figure 28 : Investigation of Spectral reflectance curves on 28 Oct 2003 image 
 at different locations  
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4.2.2 Water extraction with different methods 

The inundation areas extracted with different methods are shown in Figure 29. 

Supervised and unsupervised classification, and MNDWI show higher inundation area 

when compared to NDWIDN, NDWIref methods and extracted water area from EC JRC-

GSW. This behaviour of different methods on the image of partially inundated area is 

similar to the behaviour in the image on 01 Feb 2010 with a higher inundation area 

almost over all the mud flat area.  

In supervised classification and unsupervised classification, the billabong is classified 

as not-water. In MNDWI, NDWIDN, NDWIref and EC JRC-GSW the billabong appears as 

water. In all the methods, some area under the cloud shadow, as shown in Figure 28, 

has been classified as water.  

The supervised classification gives the highest inundation area and the highest overall 

accuracy for the extraction of water from the image with partially inundated area.  

4.2.3 Comparison of water extraction by different methods 

The extraction methods with a higher overall accuracy were considered for further 

investigation. The comparison of inundation areas of unsupervised classification, 

MNDWI and NDWIref with supervised classification is shown in Figure 29 and Table 6. 

The percentage of non-identified water pixels and newly identified water pixels is 

compared to the supervised classification. Unsupervised classification, MNDWI 

NDWIref has not identified 7.51% 9.76% and 14.94% of area and has identified 0.62%, 

2.19% and 1% of new area as water compared to the water area in supervised 

classification.  
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Figure 28 : Extraction of water area on 28 Oct 2003  
by different classifications and methods 
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Figure 29 : Comparison of water area extracted on 28 Oct 2003  
by different methods with supervised classification 
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Table 6. Comparison of extracted water area on 28 Oct 2003 
by different methods with supervised classification 

Type Unsupervised 
Classification MNDWI NDWIref 

Area not identified as water compared to 
water area in supervised classification (%) 7.51 9.76 14.94 

Other area identified as water compared to 
water area in supervised classification (%) 0.62 2.19 1.00 

 

4.2.4 Comparison of water extraction by supervised classification and NDWIref  

 The comparison of extracted inundation areas of supervised classification and 

NDWIref was considered due to the high difference of areas. The spectral reflectance 

of five pixels is shown in Figure 30. Accordingly, point 1, 2 and 3 are at pixels classified 

as water by supervised classification and as non-water in NDWIref. Point 4 and 5 are 

classified as water in both methods.  

At point 1, 2 and 3 the spectral reflectance increases from band I to band 4 deviating 

the spectral reflectance curve of water. From band 4 to band 5 reflectance decreases 

drastically. The spectral reflectance at point 5 shows a similar behaviour as water in 

the area (Figure 27) though the reflectance values are marginally low. At point 4 the 

reflectance slightly increases from band 3 to band 4 deviating from behaviour of 

water. Then the reflectance is slightly lower in band 4 and much lower in band 5.  

Though all the points are blue colour, the pixels visually appear heterogeneous. The 

water depth is shallow in the inundation area. Point 5 is located in a dark blue zone. 

It is located in the drainage path and the water depth could be comparatively higher. 

For visual comparison with the colour composite image it could be water at other 

points, however, the spectral reflectance does not comply with the behaviour of 

water.  
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The water index NDWI compares reflectance in green and NIR. At point 4 the 

reflectance in NIR is slightly lower than in green. Therefore, pixels similar to the point 

4 pixel is classified as water with positive NDWI values above the zero threshold. At 

point 1, 2 and 3 NIR reflectance is higher than green reflectance and NDWI is 

negative. Thus those pixels are classified as not-water.  

 

Figure 30 : Comparison of spectral reflectance curves on 28 Oct 2003 image 
 at random points and water points  
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4.3 Discussion on surface water extraction 

In both images, some water inundation area according to the visual inspection, shows 

different spectral behaviour compared to pure water. A higher reflectance in band 1, 

2, and 3 and a considerably higher reflectance in band 4 is observed in these areas. A 

closer look at the pixels in these locations shows heterogeneity in the colour in pixels 

around the considered pixel. These inundation areas are of shallow water depths. 

According to Van Der Meer and De Jong (2001), water colour is possibly affected by 

the constituents and the substrate. 

The mud flats in the area are vegetated partly with low sparse samphire shrub lands 

(Woodgate 2013). This could be observed in the images during wet season and early 

dry season. It is apparent that there is a seasonal cycle of the vegetation. During the 

end of dry season, vegetation is not observed on mud flats. Vegetation may dry out 

due to low soil moisture and increasing salinity due to evaporation. During the wet 

season, vegetation blooms on the mud flats. These submerged vegetated mud flats 

may affect the increase in reflectance. According to Van Der Meer and De Jong (2001) 

the suspended sediments and the planktons in water increases the reflectance. 

The spectral reflectance curve for pure water in Figure 2 and 3 show that the 

reflectance in band 1, 2, and 3 are well below 0.05. Figure 21 shows that the 

reflectance in band 1, 2, and 3 for water in the billabong are above 0.05 and are higher 

for band 4. According to Woodgate (2013) the billabong water has high salinity 

concentration. According to Lavery et al. (1993), Landsat TM band 4 is correlated with 

salinity. The higher reflectance in the water in the study area could be due to the 

sediments, salinity in water, shallow water depth, and the salty background.  
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The water area includes many small isolated water pockets. The areas smaller than 

30 m by 30 m are most likely not classified as water due to the limiting spatial 

resolution of 30 m in Landsat. The mixed pixels near the boundaries contribute 

significantly to the difference in identifying water based on the behaviour of the 

index. The submerged weeds, sediments, bottom reflection, and overhanging trees 

could be reasons for mixed pixels.  

In all methods used for water extraction, the creeks were not identified as water. The 

creeks paths were classified as vegetation in supervised and unsupervised 

classifications and as not-water in index methods. This could be due to the 

overhanging mangroves and the spatial resolution of 30 m in Landsat images. 

According to Woodgate (2013) tidal creeks are fringed by Rhizophera mangrove 

forest. 

For NDWIref, zero threshold was used as proposed by McFeeters (1996) and the 

image was visually appealing without known not-water areas classified as water. For 

MNDWI and NDWIDN, most images were visually not appealing at the land boundary 

and with many water pixels in not-water area at the zero threshold. However, the 

classified images visually showed similar pattern and distribution of water area. The 

overlay of 1 m or 0.5 m contours developed with SRTM 30 seconds data was not 

successful to distinguish low elevation areas to improve the threshold. Use of 

accurate elevations could improve the threshold in identifying possible lower 

elevation areas prone to inundations compared to adjacent higher elevations.  

The permanent water feature, the billabong is a small area shown in the images by 

about six pixels. The inundation area changes for each image. The water depth is 

shallow, the bottom reflection is significant, and the spectral behaviour of water is 
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affected. The ground data of inundation area concurrent with an image is not 

available. Supervised classification is more appropriate for the study of changing 

shallow surface water inundations in this study area. The inland water area, which is 

classified in one class with seawater could be used to take training samples. Also, the 

training samples could be located at pixels of similar behaviour with water by 

investigating the spectral reflectance pattern. Unsupervised classification could be 

used to identify the spectral distinct classes before the supervised classification. 

Optimum results can be achieved using a combination of supervised and 

unsupervised classification (Erdas 1999).   
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4.4 Performance of water extraction on multiple images  

The graph in Figure 31 shows the inundation area extracted from different methods 

on 13 images. According to the graph, the general performance of different water 

extraction methods showed consistent behaviour in each image. 

 

Except for the image of 31 Aug 1988, supervised classification shows the highest 

inundation area of all images. Unsupervised classification and MNDWI show closely 

matching inundation area but slightly higher with the unsupervised classification. The 

MNDWI inundation area of 31 Aug 1988 are higher than the supervised classification. 

Generally, unsupervised classification, supervised classification, and the index 

MNDWI show higher inundation areas for all images. The inundation area extracted 

from NDWI and EC JRC GSW is lower.  

When comparing NDWIref and NDWIDN, the performance is not consistent. NDWIref 

images have the variable atmosphere removed as well as normalised earth-sun 

distance and solar elevation normalised, where the NDWIDN images have not. 

Atmospheric attenuation can seriously affect the DN values of green wavelengths to 

the fourth power relative to NIR, thus the results from ratioing these two bands under 

Figure 31: Extraction of inundation area on thirteen images 
 with different methods 
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different atmospheres will produce vastly different results due to green bias. Also, 

the zero value used as the threshold will shift under different illumination and 

atmospheric conditions. All of this is normalised and robust comparisons over time 

can only be made using at surface reflectance data. NDWIref extracts higher 

inundation areas for the images of 31 Aug 1988, 19 Sep 1989, 19 Mar 1992, 31 Jan 

1998 and 15 Nov 2004 compared to NDWIDN. However, the inundation area of 

NDWIDN on 01 Feb 2010 and 01 Apr 2014 is significantly higher than NDWIref. The 

inundation area of NDWIref is extracted with a zero threshold according to the original 

proposal by McFeeters (1996). The water extraction at zero threshold shows 

consistent performance with visual inspection of the images. The billabong was 

mapped as water and no water areas appeared in higher elevation areas or in 

vegetation areas in the central part. Whereas the threshold values between 0.02 to 

0.1 were used for NDWIDN. According to Liu, Yao and Wang (2016) NDWIref has better 

performance than NDWIDN. 

Both unsupervised and supervised classifications use spectral behaviour of the land 

cover types. The extracted inundation area in unsupervised classification was 5.6% 

(Table 5) and 7.5 % (Table 6) lower than supervised classification respectively on 01 

Feb 2010 and 28 Oct 2003. ISO DATA method in the unsupervised classification use 

the straight Euclidean distance to measure the similarity in clustering (Sohn & Rebello 

2002). ISO DATA method is iterative, hence, it is not geographically biased to the top 

of the data as it redefines the criteria for each class again in each iteration, so that 

spectral distance patterns in the data gradually emerge (Erdas 1999). The threshold 

is applied so that the patterns, which shows probabilities below the threshold, are 

not classified. 
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In supervised classification, taking appropriate training samples to represent the 

mean vector and the variability in the class is most important. The performance of 

the maximum likelihood method used for the supervised classification depends on 

the estimation of mean vector and the covariance matrix (Richards & Jia 1998). The 

decision rule of the maximum likelihood method is based on the probability that each 

pixel belongs to a particular class estimated on a weighted distance (Sohn & Rebello 

2002). When the band shows normal distribution, equal probabilities are assumed 

for each of the classes (Erdas 1999).  

Gautam et al. (2015) found that water extraction by MNDWI is closely matching with 

supervised classification, and that performance is similar in this study. Gao et al. 

(2016) found that NDWI is weak in extracting small water bodies.  
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4.5 Accuracy assessment 

4.5.1 Overall accuracy 

The overall accuracies of the accuracy assessment done by the interpretation of 

colour composite image as substitute for ground data, for the six methods of water 

extraction are shown in Figure 32. 

 

 

 

 

 

 

The accuracy assessment is required to ascertain the best performing method for the 

study area and to evaluate the confidence for using the inundation area for 

developing a time series of inundations. According to the results, the overall accuracy 

varies from 81.77% to 98.80% for all the methods in different images. Both 

unsupervised and supervised classifications show overall accuracy greater than 85%, 

Figure 32: Overall accuracies of different methods 
 of water extraction on four Landsat 5 images 
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which is widely accepted for image classifications with remote sensing data (Foody 

2008).  

Supervised classification shows the highest accuracy in all the three images with a 

highest accuracy of 98.8% for 28 Oct 2008 and a lowest accuracy of 89.5% for the 19 

Sep 1989 image. On 01 Feb 2010, the highest overall accuracy of 91.28% is in NDWIDN 

whereas the value in supervised classification is 90.60%. The highest overall accuracy 

of unsupervised classification is 97.6 % for the 28Oct 2008 image and the lowest 

accuracy is 86.7% for the 19 Sep 1989 image. Overall accuracy of both supervised and 

unsupervised classification show similar patterns of change in performance in all four 

images.  

The water index MNDWI shows a highest accuracy of 97.6%, however its lowest 

accuracy of 83.89% is below the widely accepted accuracy level. The comparison of 

performance of overall accuracy of NDWIDN and NDWIref is inconsistent. The overall 

accuracy of NDWIref is higher in two images, and lower in one image compared to 

NDWIDN. On the 28 Oct 2003 image, NDWIref is similar to NDWIDN. EC JRC-GSW shows 

the lowest overall accuracy level in all the four images, and it is lower than 85%.  

The overall accuracy is highest in supervised classification for three images. NDWIDN 

shows the highest overall accuracy for the 01 Feb 2010 image, whereas this image 

shows the highest inundation area among the images used for this study.  
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4.5.2 Kappa coefficient 

The kappa coefficients of the accuracy assessment for the six methods of water 

extraction are shown in Figure 33. 

 

 

 

 

 

 

 

 

 

 

Kappa coefficient varies from 0.37 to 0.97 for all the classifications. Supervised 

classification shows the highest kappa coefficient for three images. For the 01 Feb 

2010 image, NDWIDN shows the highest kappa coefficient whereas NDWIDN shows 

the highest overall accuracy on the same image and the image shows the highest 

inundation area among all the images. The kappa coefficient of 0.79 for supervised 

classification closely matches the highest value of 0.80 for NDWIDN. 

Figure 33: Kappa coefficients of different methods  
of water extraction for four Landsat 5 images 
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The kappa coefficient for 19 Sep 1989 is low for all the methods. Other than that, 

supervised, unsupervised and MNDWI methods show higher kappa coefficients than 

other methods. Similar to overall accuracy the comparison of performance of kappa 

coefficient in NDWIDN and NDWIref is inconsistent. Both methods show good values 

and low values on different images. The kappa coefficients of EC JRC-GSW show the 

lowest values out of the six methods. 

4.5.3 Figure of merits 

4.5.3.1 Figure of Merits on 01 Feb 2010 

The ‘Figure of Merits’ measure on comparing the spatial distribution is shown in 

Figure 34. The agreement between supervised and unsupervised classifications (0.86) 

is similar to the agreement between supervised and MNDWI method. It is a clearly 

better than the value of 0.58 between supervised and NDWIref method. 

4.5.3.2 Figure of Merits on 28 Oct 2003 

According to the ‘Figure of Merits’ measure (Figure 34), the agreement between 

supervised and unsupervised classifications is the best with the value of 0.87. The 

agreement between supervised and MNDWI method (0.84) is closely matching with 

the best value. The poorest performance with an agreement value 0.77 is between 

supervised and NDWIref method.  
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Figure 34: Estimation of Figure of Merits 
between different classification and methods on 01 Feb 2010 and 28 Oct 2003  
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4.5.4 Discussion on accuracy assessment 

Overall accuracy and the kappa coefficient is non-site specific accuracy assessment. 

It considers only the total amount of water and not-water pixels without considering 

their spatial distribution. In this method of accuracy assessment, there is a possibility 

of balancing out the errors in different locations. It may lead to a misleading result of 

high accuracy. A better assessment would be achieved if the accuracies were 

assessed separately for different zones of inundation. Comber et al. (2012) use a 

geographically weighted regression to analyse the spatial variations in the accuracy 

of the classification.  

In the accuracy assessment of the maps of low inundation area, with random 

sampling the number of sample points in the water area was very low. The random 

sampling is a weighted based method on the area. Selecting 200 sampling points was 

not adequate to represent the small class of water when compared to the bigger class 

of non-water in the images of partially inundated area particularly when the land area 

contains more points than the water area. In addition, ambiguous pixels in the water 

and non-water boundary were deleted without assigning them to a class. There was 

a possibility that the smaller number of points in the water class could not be 

adequately represented in the accuracy assessment.  

Therefore, the accuracy assessment of the classification, especially for the images of 

low inundation area, could be improved by using a stratified random sampling 

approach. This could be achieved if the image is divided into grid cells and sample 

points were developed based on the grid cells. In a better way, the image could be 

considered in two thematic layers of water and non-water for the random sampling. 
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Then a near-similar number of random points could be chosen from each thematic 

class for the accuracy assessment. 

During the accuracy assessment in this study, the areas used to train the classifier 

were excluded in generating the random ground data points to avoid overestimation 

of the accuracy and bias on the accuracy of the supervised classification. However, 

taking a homogeneous training area may not provide the variability within one cover 

type in individual pixel levels during the classification. Water inundation area in this 

study shows different characteristics of different salinity levels over salty flats, 

submerged weeds, and water under the overhanging vegetation along the creeks and 

mangrove forest. This may be reflected in the accuracy assessment.  

In accuracy assessment, the error matrix is used based on the assumption of pure 

pixels and the perfectly located ground data points. The ground data set is considered 

as accurate. However, there could be mis-location of referenced ground data points 

and points in the thematic map. Foody (2008) says very large numbers of mixed pixels 

are in an image as a function of spatial resolution and the land cover mosaic. The 

accuracy assessment could be improved by using a high resolution image to collect 

ground data. As the inundation area is changing, it was not possible to find concurrent 

Google Earth images to collect ground data.  

According to the accuracy assessments on the four images excluding the training area 

for random sampling to avoid bias, the supervised classification shows the best 

accuracy in three images. The supervised classification showed values close to those 

values with the highest accurate method of NDWIDN on the other image on 01 Feb 

2010. The image on 01 Feb 2010 shows the highest inundation area and, for most of 

the time, that area is partially inundated. Supervised classification showed highest 
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accuracy in extracting water area in partially inundated maps. Therefore, supervised 

image classification was considered as the best performing method for extracting 

surface inundation areas according to the environmental conditions of the study 

area. 

4.6 Correlation between rainfall and inundation area 

The extracted inundation area by supervised classification for 24 selected images 

(Figure 35) with no clouds during the study period from 1987 to 2016 is plotted in 

Figure 36 with the daily rainfall. The inundations in the wet and dry season are 

distinguished by colours. It shows that there are large inundations in the dry season. 

The plots of inundation area against cumulative rainfall for 15 days, 30 days, 60 days, 

and 90 days are shown in Figure 37. According to the Figure 37, most of the 

inundation occurrences in the dry season have either zero rainfall or close to zero 

rainfall. It follows that there are areas being inundated during the dry season at times 

when there is no or very low rainfall in Milingimbi Island. 

Figure 35 : Extracted surface water inundation areas by supervised classification  
on 24 images from 1987 to 2016  
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Figure 36 : Investigating surface water inundation areas and rainfall  

by comparing extracted inundation area on 24 images with 
daily rainfall from 1987 to 2016 
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Inundation area in wet season 

 
Inundation area in dry season 

Figure 37 : Correlation between inundation area and cumulative rainfall 
 of 15, 30, 60 and 90 days 
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According to the plots of inundation area compared to an increasing number of days 

of cumulative rainfall (15, 30, 60, and 90 days), the best correlation of 31% is shown 

for 60 days cumulative rainfall. The low number of data points would have affected 

the correlation. In the wet season, there are two images, (22 Apr 2010 and 03 May 

2014) at the end of the wet season, with high rainfall but low inundation areas. This 

small area of inundation could be a result of the inundation being very shallow and 

combined with a high evaporation rate reducing the extent of the inundation area.  

To investigate the extent of inundation area during the dry season, all available 

images with surface inundation (3 in wet season and 4 in dry season) in 2014 were 

plotted with daily rainfall (Figure 38). In the months of June, August, September and 

October (dry season) no inundation areas were observed in the images. The rainy 

season finished in the month of April and during the months from May to December, 

there was no considerable rainfall other than a few minor daily events of less than 

10mm. In the dry season, this rainfall is unlikely to generate surface runoff and areas 

of inundation due to rapid infiltration and high evaporation rates.  

 

  

Figure 38 : Daily rainfall and extracted surface inundations in 2014 
 from seven images 



 

86 

4.7 Correlation between sea level and inundation area 

The correlation between sea level variation recorded at Darwin and Groot Eylandt 

tidal gauge stations and inundation area on Milingimbi Island was investigated for the 

years 2003, 2011, and 2016 in which large areas of water inundation were observed 

in the dry season without periods of rainfall (Figure 39 and Figure 40).  

At the Darwin tidal gauge the average monthly sea level is higher from January to 

April, and drops in May with a lower sea level recorded in June and July. The sea level 

increases from August and is high again in October and November. At Groote Eylandt, 

sea level is higher from January to March, becomes lower from March to November, 

and increases again in December.  

If sea level variation at Milingimbi Island has a similar pattern to that of Darwin, there 

are higher tides during October and November and therefore the higher tide can 

cause inundation in the lower elevation coastal area of Milingimbi Island. 

In the late dry season, larger areas of inundation on the island were observed in the 

months of October and November. Therefore, it is reasonable to suggest that the rise 

in sea level in Milingimbi Island in the months of October and November may be the 

cause for coastal inundation. 
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Figure 39 : Average monthly sea level variation recorded at Darwin tidal gauge and dry season 
surface water inundation area in Milingimbi Island for years 2003, 2011, and 2016. 

Figure 40 : Average monthly sea level variation recorded at Groot Eylandt tidal gauge and 
dry season surface inundations in Milingimbi Island for years 2003, 2011, and 
2016 
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4.8 Frequency of inundation  

4.8.1 Frequency of wet season inundation 

The map in Figure 41 showing the inundation area during the wet season was 

prepared by stacking nine thematic maps of the wet season as shown in Figure 35. 

The frequency of inundation was assigned to each pixel with the ratio of number of 

times water was observed in the pixel compared to the total number of times of 

observations. 

During the wet season 5.8 km2 and 5.2 km2 of area has the frequency of inundation 

between 25.1 -50 % and 0.1 – 25% respectively. The inundation area is low for the 

frequency above 50%.  

4.8.2 Frequency of dry season inundation 

Fifteen thematic maps of the dry season as shown, in Figure 35, were used to prepare 

the dry season inundation map shown in Figure 42. The frequency of inundation was 

assigned to each pixel with the ratio of number of times water was observed in the 

pixel compared to the total number of times of observations (15 for dry season map). 

During the dry season, larger area of 6.8 km2 has the frequency of inundation of 0.1 

– 25%. The area is significantly reduced to 3.5 km2 for the frequency of 25.1 -50 %. 

The land area of frequency of inundation above 50% is low (2.6 km2). 

 

 



 

89 

 

Figure 41 : Wet season inundation areas and the frequency 
 of inundation mapped with nine wet season images  
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Figure 42 : Dry season inundation areas and the frequency  
of inundation mapped with nine dry season images  
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The given inundation area and the frequency may change both in wet and dry 

seasons, if the inundation area map is prepared with more images. For higher 

frequency of inundation over 50%, the area of inundation is significantly low in both 

wet and dry seasons. This could be affected by rapid surface runoff or high 

evaporation during the dry season. 
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5. CONCLUSION 

5.1 Research findings 

In this study, Landsat images were used to detect the surface inundation area in 

Milingimbi Island. Unsupervised classification, supervised classification, NDWI, 

MNDWI, and the water area from EC JRC-GSW data were used to extract the 

inundation area. Unsupervised, supervised classifications and MNDWI methods show 

similar values of inundations. This value has a significant difference with the areas of 

NDWI and EC JRC-GSW data. The inundations in this study area are of shallow water 

on salty flats and vegetated mud flats. The water constituents have affected the 

spectral characteristics and the performance of NDWI. The inundation area changes 

rapidly; therefore, use of prior knowledge of the area will improve the classifications. 

With the accuracy assessment of the classifications, and the above background 

conditions, supervised classification was found appropriate for extracting inundation 

areas in this study area. 

There are no on-site records or previous studies done on the surface water in 

Milingimbi Island (Batelaan et al. 2015). This study demonstrates the capability of 

finding the inundations in the past using remote sensing which is required to 

investigate any changes in the inundation areas. EC JRC-GSW data gives the water 

area for each month from May 1987 to Sep 2015 for this study area. In addition to 

Landsat 5 and Landsat 8 images used for this study, EC JRC-GSW has used Landsat 7 

ETM+ images for some months with scan line correction and for some months without 

the correction. EC JRC-GSW data has not proven a high accuracy in matching water 

areas with the classifications performed in this study. According to Huntington (2006) 

global and regional analyses are sometimes contradictory and variable to local 
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situations if not verified with local ground truth data, as there is a certain error in 

each classification. The use of EC JRC-GSW data as a monthly time series of surface 

water for investigating the surface inundation of Milingimbi Island is therefore not 

recommended.  

According to this study, it is evident that there are areas of inundations on Milingimbi 

Island during the dry season when there is no or insignificant rainfall. The area of 

highest frequency of inundation between the wet and dry season is distinct and 

shows the possibility of different sources of inundation, which are either by rainfall 

or by higher tidal inflows. In the dry season, the cloud cover does not affect most of 

the images showing surface inundation. Therefore, remote sensed images of Landsat 

could be used to extract dry season inundations. Additionally, accurate onsite sea 

level monitoring in Milingimbi Island is required for further investigations of the 

inundation area and the effect of sea level rise.  

The cloud cover has affected almost all wet season images in this study area. Use of 

optical remote sensing to observe the inundation area during the wet season is 

limited because of this factor. The hydrological characteristics of these small 

catchments are difficult to model especially with low temporal resolution optical 

remote sense images. The observed correlation between wet season inundation and 

cumulative rainfall in this study is poor. The result is highly affected by the low 

number of data points. In this study 60 days cumulative rainfall has shown the best 

correlation of R2 0.31. Use of more data points by extracting inundations in more 

images will improve the correlation.  
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5.2 Limitations of the study 

The cloud cover over the study area in the wet season has affected the extraction of 

inundation area.  

The surface inundation on Milingimbi Island is seasonal and the area changes within 

a short duration. The possibility of observing different status of inundation under one 

significant rainfall event depends on many other factors, including repeat cycle of the 

Landsat satellite and the cloud cover. It also affects the possibility of using high-

resolution image data for verification. Concurrent Google earth images were not 

found for the considered images during this study. Near-time data is not accurate for 

the verification of changing water area though could be used for accuracy assessment 

of permanent water features. Prior knowledge of the area provides limited 

information if the same inundation event is not observed. Therefore, collection of 

ground data of inundation for verification, concurrent with satellite passing time 

would improve the accuracy of the classification. 

It was not possible to identify inundation areas that were smaller than 30 m by 30 m 

due to the 30 m spatial resolution of Landsat images. Most of the classifications were 

not able to pick up the creeks due to overhanging vegetation. At the boundaries of 

the creek lines, the submerged and the overhanging vegetation affected the water 

detection. Also due to the temporal resolution of satellite images, small water areas 

of short duration would not contribute to the possible inundation area in identifying 

the total inundation area under a certain sea level or cumulative rainfall. During the 

dry season, high evaporation may also affect the drying out of small, shallow 
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inundation areas. Use of better spatial and temporal resolution images or radar 

images would be an advantage for developing a time series of inundation data.  

5.3 Outcome of the study 

This study shows that there are surface inundations on Milingimbi Island during the 

dry season, which could be occurring due to the inland propagation of the tides.  

For the first time, two maps of wet season and dry season inundation areas were 

developed for Milingimbi Island using extracted inundation area from eight images 

and sixteen images respectively. The maps show the frequency of inundation for each 

inundation area. The change in spatial distribution of dry season inundation was 

compared between Sep 1989 and Nov 2016 in which the total inundation area has 

closer values. The outcome has the limitation of unknown corresponding sea levels. 

These maps could be used, 

• To inform the Bureau of Meteorology to identify the requirement of 

establishing sea level monitoring station in Milingimbi.  

• By Power and Water Corporation, NT for improving the water management 

plan for the island.  

• By the Department of Environment, Water and Natural Resources to 

implement precautionary actions to protect the aquifer recharging area and 

to minimise the adverse impacts to the groundwater due to overland tidal 

flows. 

• By Northern Land Council, NT to implement land management plans 

addressing control measures for land degradation. 
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• By the researchers for studies on surface water, and interaction between 

surface and groundwater in Milingimbi Island. 

The outcome of this study provides a significant alert to the local community in 

the Milingimbi Island, water resources managers, and local and national 

administrators on the problem of land surface inundation from the tidal waves.  

5.4 Recommendations for future researches 

According to BoM (2016), the sea level in Northern Australia is rising at a greater rate 

than the global average. This would lead to increases in surface inundation due to 

tidal waves. However, this comparison of inundation area is more meaningful if the 

corresponding sea level is considered. Therefore, establishment of sea level 

monitoring on Milingimbi Island in co-operation with the local Indigenous community 

is a most important recommendation to investigate the impacts on the surface 

inundation due to sea level rise. 

Erosion on the island due to runoff during the rainy season or the propagation of tidal 

waves can lead to an increase in degraded lands. Identifying the change in the low 

lying degraded salty mudflat land area would provide more understanding on the 

dynamics of this environment. The degraded land is easily identifiable in the dry 

season. This would require accurate ground data for training and verification in the 

classification process to overcome the challenges in distinguishing spectral 

characteristics of ground objects. This would be more prominent in distinguishing the 

boundary between salty flats and dry soil.  

The increase in degraded low land area would increase the inundation area. 

Increased inundation with saline water has the possibility of affecting the only 
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drinking water source: the central aquifer. Identify the recharging area of the aquifer 

and precautionary measures to prevent intrusion of surface water in salty land area 

is the most important research recommended for the welfare and future livelihood 

of Indigenous people on Milingimbi Island. 

Time of the highest inundation area and the satellite passing over the study area is 

not concurrent. Therefore, the area of inundation extracted from the images would 

not give the maximum inundation area corresponding to a sea level rise or rainfall. 

Establishing an accurate elevation data is important to identifying the inundation 

area correctly for each height of the sea level gauge. High vertical resolution elevation 

data would help to develop inundation maps for different tidal heights. 

This study recommends accurate in situ sea level monitoring, identifying the 

groundwater recharge area, study of land degradation, and establishing accurate 

elevation data to project the future impacts on the limited land and water resources 

of Milingimbi Island. In the first instance, establishment of a tidal gauge on Milingimbi 

Island would help to identify the impact of sea level rise on areas of surface water 

inundation, particularly during the dry season. These recommendations form a 

valuable, strategic and timely approach to investigating and ultimately overcoming 

the problem of inundation and degradation of the environment of Milingimbi Island. 
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6. APPENDICES 
Appendix 1 - Summary on literature review on different methods for detecting surface water 

Method Algorithm  Proposed by Applied by Satellite/ 

Sensor 

Study Environment Remarks 

Threshold in 

band 5 

Single band threshold  Haibo et al. 

(2011) 

Landsat ETM+ Small water features 

and reservoir in built-

up environment. 

Extraction with more noise, and 

need lot of visual comparison. 

Low accuracy. 

(in DN value image) 

NDWI 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 =  
𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 − 𝑁𝑁𝑁𝑁𝑁𝑁
𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 + 𝑁𝑁𝑁𝑁𝑁𝑁

 

 

McFeeters 

(1996) 

McFeeters 

(1996 

Landsat MSS With both fresh and 

alkaline lakes and 

irrigated fields 

Enhance water features. 

(proposed with reflectance ) 

 Xu (2006) Landsat ETM+ Three environments of 

lake, river and ocean 

with vegetation and 

built up lands 

Noise of built up area is mixed 

with Extracted water features. 

(in DN value image) 
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Method Algorithm  Proposed by Applied by Satellite/ 

Sensor 

Study Environment Remarks 

NDWI   (Haibo et 

al. 2011) 

Landsat ETM Small water features in 

built-up 

 environment. 

Water extraction is mixed with 

noise from non-water features 

buildings and soils. 

(in DN value image) 

 Liu, Yao and 

Wang 

(2016) 

Landsat 8 OLI Highland area with 

many large lakes  

NDWI35 with reflectance image 

is better compared to NDWI36 

with DN value image. 

 

 (Gao et al. 

2016) 

Landsat 8 OLI Mountainous area and 

flat plateau area 

Eliminate mountain shadow, 

weak in extracting small water 

bodies. 

(in DN value image) 
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Method Algorithm  Proposed by Applied by Satellite/ 

Sensor 

Study Environment Remarks 

MNDWI 𝑀𝑀𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 =  
𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 −𝑀𝑀𝑁𝑁𝑁𝑁
𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 + 𝑀𝑀𝑁𝑁𝑁𝑁

 Xu (2006) Xu (2006) Landsat ETM+ Three environments of 

lake, river and ocean 

with vegetation and 

built up lands 

Suppress or remove the noise of 

built up environment  

(in DN value image) 

Xu (2006) Landsat ETM+ River environment 

with vegetation 

No major difference in water 

features between the MNDWI 

and NDWI images.(in DN value 

image) 

 Haibo et al. 

(2011) 

Landsat ETM Small water features in 

built-up 

 environment. 

MNDWI has the highest 

accuracy in extracting small 

water bodies compared to 

NDWI and NWI (in DN value 

image). 

 Liu, Yao and 

Wang 

(2016) 

Landsat 8 OLI Highland area with 

many large lakes  

Performance of NDWI36 is 

better in DN value image. 
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Method Algorithm  Proposed by Applied by Satellite/ 

Sensor 

Study Environment Remarks 

WRI WRI =  
Green + R
NIR + MIR

 

 

Shen and Li 

(2010) 

 Landsat TM Water features in 

built-up area in 

mountainous region. 

WRI outcome is favourable with 

NDWI 

NWI NWI =  
Band 1− (Band 4 + Band 5 + Band 7)
Band 1 + (Band 4 + Band 5 + Band 7) ∗ C Haibo et al. 

(2011) 

Haibo et al. 

(2011) 

Landsat ETM  Small water bodies in 

built-up area.  

Not efficient to distinguish 

water and built up areas  

(in DN value image). 

Image  

classification 

Unsupervised Image classification  Haibo et al. 

(2011) 

Landsat ETM Small water bodies in 

built-up area. 

Fast, easy and high accuracy (in 

DN value image). 
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Method Algorithm  Proposed by Applied by Satellite/ 

Sensor 

Study Environment Remarks 

Image  

classification 

Supervised Image classification  Haibo et al. 

(2011) 

Landsat ETM Small water bodies in 

built-up area. 

Used as the baseline to 

compare with different 

methods (in DN value image). 

Tasselled cap 

transformation 

and wetness 

index 

 Wang et al. 

(2011) 

Wang et al. 

(2011) 

Landsat ETM+ Irrigated paddy fields 

in hilly area,  

water bodies with 

aquatic plants 

Water classification accuracy 

was 79 %. 

   Gao et al. 

(2016) 

Landsat 8 OLI Mountainous area and 

flat plateau area 

Better in extracting small water 

bodies compared to NDWI. (in 

DN value image) 

NDWI –DB NDWI− DB =  
DND − DNS

DND + DNS
 Li et al. (2016) (Li et al. 

2016) 

Landsat 8 OLI Natural mountainous 

area, plain city and 

plain country 

NDWI –DB extracts small water 

bodies better when Compared 

with MNDWI, NEW, and AWEI 
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Appendix 2 – Extraction of inundation area by different methods 

Extraction of water area on 31 August 1988 

 

    
L5 on Image on 31 Aug BGR :147 Supervised Classification Unsupervised Classification MNDWI 

   

 

 Not Water 

 Water 

NDWIDN NDWIref EC JRC-GSW monthly water data  
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Extraction of water area on 19 Sep 1989 

    
L5 on Image on BGR :147 Supervised Classification Unsupervised Classification MNDWI 

   

 

 Not Water 

 Water 

NDWIDN NDWIref EC JRC-GSW monthly water data  
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Extraction of water area on 8 Oct 1990 

 
  

 L5 on Image on BGR :147 Supervised Classification Unsupervised Classification MNDWI 

   

 

 Not Water 

 Water 

NDWIDN NDWIref EC JRC-GSW monthly water data  
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Extraction of water area on 19 Mar 1992 

   

 

L5 on Image on BGR :147 Supervised Classification Unsupervised Classification MNDWI 

   

 

 Not Water 

 Water 

NDWIDN NDWIref EC JRC-GSW monthly water data  
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Extraction of water area on 31 Jan 1998 

    L5 on Image on BGR :147 Supervised Classification Unsupervised Classification MNDWI 

   

 

 Not Water 

 Water 

NDWIDN NDWIref EC JRC-GSW monthly water data  
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Extraction of water area on 05 Apr 2004 

    L5 on Image on BGR :147 Supervised Classification Unsupervised Classification MNDWI 

   

 

 Not Water 

 Water 

NDWIDN NDWIref EC JRC-GSW monthly water data  
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Extraction of water area on 15 Nov 2004 

   
 L5 on Image on BGR :147 Supervised Classification Unsupervised Classification MNDWI 

   

 

 Not Water 

 Water 

NDWIDN NDWIref EC JRC-GSW monthly water data  



 

110 

Extraction of water area on 27 Jan 2008 

    L5 on Image on BGR :147 Supervised Classification Unsupervised Classification MNDWI 

   

 

 Not Water 

 Water 

NDWIDN NDWIref EC JRC-GSW monthly water data  



 

111 

Extraction of water area on 22 Apr 2010 

    L5 on Image on BGR :147 Supervised Classification Unsupervised Classification MNDWI 

   

 

 Not Water 

 Water 

NDWIDN NDWIref EC JRC-GSW monthly water data  
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Extraction of water area on 01 Apr 2014 

  
 

 L5 on Image on BGR :147 Supervised Classification Unsupervised Classification MNDWI 

   

 

 Not Water 

 Water 

NDWIDN NDWIref EC JRC-GSW monthly water data  
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Extraction of water area on 27 Sep 2015 

    L5 on Image on BGR :147 Supervised Classification Unsupervised Classification MNDWI 

   

 

 Not Water 

 Water 

NDWIDN NDWIref EC JRC-GSW monthly water data  
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