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Appendix AStatisti
al notes

This appendix is an attempt to des
ribe the main features of the some statisti
alte
hniques used in this study. Some of them (e.g. varian
e, 
on�den
e interval) whi
hare largely used in s
ien
es that use samples, measurements, and all sort of numeri
aldata are des
ribed here again, as being a support to the following "more 
omplex"te
hniques. The 
omplete understanding of the mathemati
al de�nitions seems to bethe only antidote to the many 
onfusions that 
an arise, for example, in dis
ussion ofEmpiri
al Orthogonal Fun
tions (EOF) and Single Value De
omposition (SVD).It is not the intention to present a 
omplete des
ription of those statisti
alanalyses using demonstrations and theorems, but a summary 
apable to eviden
e theirmain di�eren
es, where they 
an exist.



166Nomen
lature, symbols, and their respe
tive meanings, whi
h are used in thisdes
ription are shown in the following list, or des
ribed as the text �ows on.X = {X[m,n℄} data matrix, 
onsisting of set the set of all data ve
tors,one ve
tor per 
olumn (m = 1 . . .M, n = 1 . . . N)N . . . the number of 
olumns ve
tors in the data setM . . . the number of elements in ea
h 
olumn ve
torL . . . the number of dimensions in the dimensionally redu
edsubspa
e, 1 ≤ L ≤ MC = {C[m,k℄} 
ovarian
e matrixR = {R[m,k℄} 
orrelation matrixV = {V[m,k℄} matrix 
onsisting of the set of all eigenve
tors of C, oneeigenve
tor per 
olumnD = {D[m,k℄} diagonal matrix 
onsisting of the set of all eigenvaluesof C along its prin
ipal diagonal, and 0 for all otherelementsW = {W[m,k℄} matrix of basis ve
tors, one ve
tor per 
olumn, whereea
h basis ve
tor is one of the eigenve
tors of C, andwhere the ve
tors inW are a sub-set of those in V



167A.1 Varian
eThe varian
e of a random variable is a measure of its statisti
al dispersion,indi
ating how far from the expe
ted value its values typi
ally are. The varian
e of arandom variable is the square of its standard deviation.If µ = E(x) is the expe
ted value (mean) of the random variable x, then thevarian
e is
var(x) = E((x− µ)2) (A.1)That is, it is the expe
ted value of the square of the deviation of x from itsown mean - it is the mean squared deviation. The variation of random variable x istypi
ally designated as var(x), σ2
x, or simply σ2.If a distribution does not have an expe
ted value, it does not have a varian
eeither. The 
onverse is not true: there are distributions for whi
h the expe
ted valuesexists, but the varian
e does not.



168A.2 Con�den
e intervals (CI)A 
on�den
e interval is an interval in whi
h a measurement or trial falls 
orre-sponding to a given probability. Usually, the 
on�den
e interval of interest is symmet-ri
ally pla
ed around the mean.If independent samples are taken repeatedly from the same population, and a
on�den
e interval 
al
ulated for ea
h sample, then a 
ertain per
entage (
on�den
elevel) of the intervals will in
lude the unknown population parameter. If this param-eter is the mean, the width of the 
on�den
e interval gives us some idea about howun
ertain we are about the mean.Con�den
e intervals are more informative than the simple results of hypothesistests (where we de
ide "reje
t" or "do not reje
t") sin
e they provide a range of plau-sible values for the unknown parameter.For a normal distribution, the probability that a measurement falls within nstandard deviations (nσ) of the mean µ (i.e., within the interval [µ − nσ, µ + nσ]) isgiven by
P (µ− nσ < x < µ+ nσ) ≡ 1

σ
√

2π

∫ µ+nσ

µ−nσ

e−
(x−µ)2

2σ2 dx (A.2)
=

1

σ
√

2π

∫ µ+nσ

µ

e−
(x−µ)2

2σ2 dx (A.3)



169Let u ≡ x−µ
√

2
σ, so du = dx√

2
σ. Then,

P (µ− nσ < x < µ+ nσ) =
2

σ
√

2π

√
2σ

∫ x/
√

2

0

e−u2

du (A.4)
=

2

π

∫ x/
√

2

0

e−u2

du = erf

(

n√
2

) (A.5)where erf(x) is the 
alled erf fun
tion. The following table summarizes the probabilities
P (µ − xn < x < µ + xn) that measurements from a normal distribution fall within
[µ− xn, µ+ xn] for xn = nσ with small values of n.

xn P (µ− xn < x < µ+ xn)

σ 0.68268952σ 0.95448873σ 0.99730024σ 0.99993665σ 0.9999994Conversely, to �nd the probability-P 
on�den
e interval 
entered about themean for a normal distribution in units of σ, solve equation (A.5) for n to obtain
n =

√
2 erf−1(P ) (A.6)where erf−1 is the inverse erf fun
tion.



170The following table then gives the values of xP su
h that [µ−xP , µ+xP ] is theprobability-P 
on�den
e interval for a few representatives values of P .
P xP0.800 1.28155σ0.900 1.64485σ0.950 1.95996σ0.990 2.57583σ0.995 2.80703σ0.999 3.29053σ



171A.3 Empiri
al Orthogonal Fun
tions (EOF)In statisti
s and signal pro
essing, the method of Empiri
al Orthogonal Fun
-tions (EOF) is a de
omposition of a signal or data set in terms of orthogonal basisfun
tions whi
h are determined from the data. The kth basis fun
tion is 
hosen to beorthogonal to the basis fun
tions from the �rst through k − 1, and to minimize theresidual varian
e. That is, the basis fun
tions are 
hosen to be di�erent from ea
hother, and to a

ount for as mu
h varian
e as possible. Thus this method has mu
h in
ommon with the method of kriging in geostatisti
s, and Gaussian pro
ess models.The method of EOF is similar in spirit to harmoni
 analysis, but harmoni
analysis typi
ally uses predetermined orthogonal fun
tions, for example, sine and 
o-sine fun
tions at �xed frequen
ies. In some 
ases the two methods may yield essentiallythe same results.The basis fun
tions are typi
ally found by 
omputing the eigenve
tors of the
ovarian
e matrix of the data set. This is the same as performing Prin
ipal Compo-nents Analysis (PCA) on the data.Assuming zero empiri
al mean (the empiri
al mean of the distribution has beensubtra
ted away from the data set), the prin
ipal 
omponent w1 of the dataset x 
anbe de�ned as:
w1 = argmaxE{(wt

x)2} with ‖w‖ = 1 (A.7)where E is the expe
ted value operator; for the �rst k−1 
omponents, the kth 
omponent
an be found by subtra
ting the �rst k − 1 prin
ipal 
omponents from x:
x̂k−1 = x −

k−1
∑

i=1

wiw
t
ix (A.8)and by substituting this as the new dataset to �nd a prin
ipal 
omponent in
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wk = argmaxE{(wt

x̂k−1)
2} with ‖w‖ = 1 (A.9)The EOF transform is therefore equivalent to �nding the singular value de
om-position of the data matrix X,

X = W

∑

V
t (A.10)and then obtaining the redu
ed-spa
e data matrix Y by proje
ting X down into theredu
ed spa
e de�ned by only �rst L singular ve
tors, WL:

Y = W
t
LX =

∑

LV
t
L (A.11)The matrix W of singular ve
tors of X is equivalently also the matrix W ofeigenve
tors of the matrix of observed 
ovarian
es C = XX

t,
XX

t = W

∑

2
W

t (A.12)By �nding the eigenvalues and eigenve
tors of the 
ovarian
e matrix, theeigenve
tors with the largest eigenvalues 
orrespond to the dimensions that have thestrongest 
orrelation in the dataset.



173A.4 Single Value De
omposition (SVD)The Single Value De
omposition (SVD) method 
an be thought as a general-ization to re
tangular matri
es of the diagonalization of the square symmetri
 matrix(like in EOF analysis).The SVD of the 
ross-
ovarian
e matrix yields two spatially sets of singularve
tors (spatial patterns analogous to the eigenve
tors or EOF's, but one for ea
h vari-able) and a set of singular values asso
iated with ea
h pair of ve
tors (analogous to theeigenvalues). Ea
h pair of spatial patterns des
ribe a fra
tion of the Square Covarian
e(SC) between the two variables. The �rst pair of patterns des
ribes the largest fra
tionof the SC and ea
h su

eeding pair des
ribes a maximum fra
tion of the SC that isunexpli
ated by the previous pair. The 
orrelation value (r) between the kth expansion
oe�
ient of the two variables indi
ates how strongly related the kth 
oupled patternsare. As SVD is an statisti
al analysis of the two �elds, the symbols and respe
tivemeanings already des
ribed, here, will be applied to matri
es X (={X[m,n℄} and Y(={Y[m,n℄}.Assuming the time mean of the the matri
es has been removed, the 
ovarian
ematrix is formed by
C = X

t
Y (A.13)If the matri
es X and Y were normalized by their respe
tives standard vari-ation, the result would be the 
ross-
orrelation matrix, rather than 
ross-
ovarian
ematrix.The single value de
omposition is performed on C,
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C = UDV

t (A.14)where the singular ve
tors of X are the 
olumn of U, the singular ve
tors of Y are the
olumn of V, and D is the diagonal matrix.Like EOF's, these patterns represent standing os
illations in the data �elds.Ea
h mode of variability os
illates in time - the expansion 
oe�
ients - are
al
ulated by,
A = XU (A.15)
B = YV (A.16)where, the 
olumns of A and B 
ontain the expansion 
oe�
ients of ea
h mode. Sin
eU and V are both orthogonal, the re
onstru
tion of the data matri
es 
an be doneusing X = AU

t and Y = BV
t.If lk = L(k, k) is the kth singular value (L =

∑

l(k, k)), the Fra
tion of SquareCovarian
e (SCF) explained by the 
orresponding singular ve
tor ~uk and ~vk is given by
SCFk =

l2k
∑

l2k
(A.17)The 
omputing of the SCF for ea
h singular value allows to de
ide how manywe want to keep.



175A.5 WaveletsIn signal analysis, there are a number of di�erent fun
tions one 
an performon that signal in order to translate it into di�erent forms that are more suitable fordi�erent appli
ations. The most popular fun
tion is the Fast Fourier Transform (FFT)that 
onverts a signal from time versus amplitude to frequen
y versus amplitude. Thistransform is useful for many appli
ations, but it is not based in time. To 
ombat thisproblem, mathemati
ians 
ame up with the Short Term Fourier Transform (STFT)whi
h 
an 
onvert a signal to frequen
y versus time. Unfortunately, this transformalso has its short
omings mostly that it 
annot get de
ent resolutions for both highand low frequen
ies at the same time.So how 
an a signal be 
onverted and manipulated while keeping resolutiona
ross the entire signal and still be based in time? This is where wavelets 
ome intoplay. Wavelets are �nite windows through whi
h the signal 
an be viewed. In order tomove the window about the length of the signal, the wavelets 
an be translated abouttime in addition to being 
ompressed and widened.Wavelet transforms are broadly 
lassi�ed into the Dis
rete Wavelet Transform(DWT) and the Continuous Wavelet Transform (CWT). The prin
ipal di�eren
e be-tween the two is the 
ontinuous transform operates over every possible s
ale and trans-lation whereas the dis
rete uses a spe
i�
 subset of all s
ale and translation values.All wavelet transforms may be 
onsidered to be forms of time-frequen
y rep-resentation and are, therefore, related to the subje
t of harmoni
 analysis. Almost allpra
ti
ally useful dis
rete wavelet transforms make use of �lterbanks 
ontaining �niteimpulse response �lters. The wavelets forming a CWT are subje
t to Heisenberg's un-
ertainty prin
iple and, equivalently, dis
rete wavelet bases may be 
onsidered in the
ontext of other forms of the un
ertainty prin
iple.



176The CWT is formally written as:
γ(s, τ) =

∫

f(t)Ψ∗
s,τ(t)dt (A.18)where * denotes 
omplex 
onjugation. This equation shows how a fun
tion f(t) isde
omposed into a set of basis fun
tions Ψs,τ(t), 
alled the wavelets. The variables sand τ , s
ale and translation, are the new dimensions after the wavelet transform. For
ompleteness sake the next equation gives the inverse wavelet transform

f(t) =

∫∫

γs,τΨs,τ(t)dτds (A.19)The wavelets are generated from a single basi
 wavelet Ψ(t), the so-
alledmotherwavelet, by s
aling and translation:
Ψs,τ(t) =

1√
s
Ψ

(

t− τ

s

) (A.20)In A.20 s is the s
ale fa
tor, τ is the translation fa
tor and the fa
tor s−1/2 isfor energy normalization a
ross the di�erent s
ales. For the CWT, the pair (s, τ) variesover the full half-plane R+ × R; for the dis
rete WT this pair varies over a dis
retesubset of it, whi
h is also 
alled a�ne group.It is important to note that in A.18, A.19 and A.20 the wavelet basis fun
tionsare not spe
i�ed. This is a di�eren
e between the wavelet transform and the Fouriertransform, or other transforms. The theory of wavelet transforms deals with the gen-eral properties of the wavelets and wavelet transforms only.The most important properties of wavelets are the admissibility and the regu-larity 
onditions and these are the properties whi
h gave wavelets their name. It 
anbe that square integrable fun
tions ψ(t) satisfying the admissibility 
ondition,
∫ |Ψ(ω)|2

|ω| dω < +∞ (A.21)



177In A.21 Ψ(ω) stands for the Fourier transform of ψ(t).Being in this spa
e ensures that one 
an formulate the 
onditions of zero meanand square norm one:
∫

ψ(t)dt = 0 (A.22)is the 
ondition for zero mean, and
∫

|ψ(t)|2 dt = 1 (A.23)is the 
ondition for square norm one. In other words, ψ(t) must be a wave.For ψ(t) to be a wavelet for the 
ontinuous wavelet transform, the motherwavelet must satisfy an admissibility 
riterion in order to get a stably invertible trans-form. This 
ondition - the admissibility 
riterion - is related to the appli
ation whi
hthe wavelet te
hnique will be used for.


