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Appendix A

Statistical notes

This appendix is an attempt to describe the main features of the some statistical
techniques used in this study. Some of them (e.g. variance, confidence interval) which
are largely used in sciences that use samples, measurements, and all sort of numerical
data are described here again, as being a support to the following "more complex"
techniques. The complete understanding of the mathematical definitions seems to be
the only antidote to the many confusions that can arise, for example, in discussion of

Empirical Orthogonal Functions (EOF) and Single Value Decomposition (SVD).

It is not the intention to present a complete description of those statistical
analyses using demonstrations and theorems, but a summary capable to evidence their

main differences, where they can exist.
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Nomenclature, symbols, and their respective meanings, which are used in this

description are shown in the following list, or described as the text flows on.

X — {X|m,n|} data matrix, consisting of set the set of all data vectors,

one vector per column (m=1...M,n=1...N)

N ... the number of columns vectors in the data set
M ... the number of elements in each column vector
L ... the number of dimensions in the dimensionally reduced

subspace, 1 < L < M

C — {Clmk]} covariance matrix

R — {R[m/k|} correlation matrix

V= {V|mk|} matrix consisting of the set of all eigenvectors of C, one
eigenvector per column

D - {D[mk|} diagonal matrix consisting of the set of all eigenvalues
of C along its principal diagonal, and 0 for all other
elements

W — {W|mk|} matrix of basis vectors, one vector per column, where
each basis vector is one of the eigenvectors of C, and

where the vectors in W are a sub-set of those in V
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A.1 Variance

The variance of a random variable is a measure of its statistical dispersion,
indicating how far from the expected value its values typically are. The variance of a

random variable is the square of its standard deviation.

If 4 = E(z) is the expected value (mean) of the random variable z, then the

variance is

var(z) = E((z — 1)*) (A1)

That is, it is the expected value of the square of the deviation of x from its
own mean - it is the mean squared deviation. The variation of random variable x is

typically designated as var(z), o2, or simply o2.

If a distribution does not have an expected value, it does not have a variance
either. The converse is not true: there are distributions for which the expected values

exists, but the variance does not.
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A.2 Confidence intervals (CI)

A confidence interval is an interval in which a measurement or trial falls corre-
sponding to a given probability. Usually, the confidence interval of interest is symmet-

rically placed around the mean.

If independent samples are taken repeatedly from the same population, and a
confidence interval calculated for each sample, then a certain percentage (confidence
level) of the intervals will include the unknown population parameter. If this param-
eter is the mean, the width of the confidence interval gives us some idea about how

uncertain we are about the mean.

Confidence intervals are more informative than the simple results of hypothesis
tests (where we decide "reject" or "do not reject") since they provide a range of plau-

sible values for the unknown parameter.

For a normal distribution, the probability that a measurement falls within n
standard deviations (no) of the mean p (i.e., within the interval [y — no, u + nol) is

given by

1 KRG (@
P(p—no <z <p+no)= e 27 dx (A.2)
oV21 Jyu—no

1 ptno (z—p)2
= / et dx (A.3)
oV2m J,
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Let u = TO’ so du = \d/aia Then,

Plu—no <z <p+no)=

Vag [
U\/_ O’/ e " du (A.4)

2 :c/\f 2 n
— “du = erf| — A5
7T/0 e U = er (\/5) (A.5)

where erf(z) is the called erf function. The following table summarizes the probabilities
P(p— 1z, < z < p+ x,) that measurements from a normal distribution fall within

[ — T, pp + x,] for x,, = no with small values of n.

r, Plp—z,<zx<p+mz,)

o 0.6826895
20 0.9544887
30 0.9973002
4o 0.9999366
o0 0.9999994

Conversely, to find the probability-P confidence interval centered about the

mean for a normal distribution in units of ¢, solve equation (A.5) for n to obtain

n =2 erf'(P) (A.6)

where erf™! is the inverse erf function.
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The following table then gives the values of xp such that [y —xp, p+ xp| is the

probability- P confidence interval for a few representatives values of P.

P Tp
0.800 1.281550
0.900 1.644850
0.950 1.959960
0.990 2.575830
0.995 2.807030
0.999 3.290530
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A.3 Empirical Orthogonal Functions (EOF)

In statistics and signal processing, the method of Empirical Orthogonal Func-
tions (EOF) is a decomposition of a signal or data set in terms of orthogonal basis
functions which are determined from the data. The k;, basis function is chosen to be
orthogonal to the basis functions from the first through k£ — 1, and to minimize the
residual variance. That is, the basis functions are chosen to be different from each
other, and to account for as much variance as possible. Thus this method has much in

common with the method of kriging in geostatistics, and Gaussian process models.

The method of EOF is similar in spirit to harmonic analysis, but harmonic
analysis typically uses predetermined orthogonal functions, for example, sine and co-
sine functions at fixed frequencies. In some cases the two methods may yield essentially

the same results.

The basis functions are typically found by computing the eigenvectors of the
covariance matrix of the data set. This is the same as performing Principal Compo-

nents Analysis (PCA) on the data.

Assuming zero empirical mean (the empirical mean of the distribution has been
subtracted away from the data set), the principal component w; of the dataset x can

be defined as:
w, = argmarE{(w'x)?} with [|[w]| =1 (A.7)

where [E is the expected value operator; for the first k—1 components, the k;, component

can be found by subtracting the first £ — 1 principal components from x:

k—1
Xp1] = X — Z w,wix (A.8)
i=1

and by substituting this as the new dataset to find a principal component in
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wi, = argmazB{(w'%,_1)?} with [|[w]| =1 (A.9)

The EOF transform is therefore equivalent to finding the singular value decom-

position of the data matrix X,

X=W>» V' (A.10)

and then obtaining the reduced-space data matrix Y by projecting X down into the
reduced space defined by only first L singular vectors, W:

Y=WiX=> V] (A11)

The matrix W of singular vectors of X is equivalently also the matrix W of

eigenvectors of the matrix of observed covariances C = XX,

XX =W W' (A.12)

By finding the eigenvalues and eigenvectors of the covariance matrix, the
eigenvectors with the largest eigenvalues correspond to the dimensions that have the

strongest correlation in the dataset.
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A.4 Single Value Decomposition (SVD)

The Single Value Decomposition (SVD) method can be thought as a general-
ization to rectangular matrices of the diagonalization of the square symmetric matrix

(like in EOF analysis).

The SVD of the cross-covariance matrix yields two spatially sets of singular
vectors (spatial patterns analogous to the eigenvectors or EOF’s, but one for each vari-
able) and a set of singular values associated with each pair of vectors (analogous to the
eigenvalues). Each pair of spatial patterns describe a fraction of the Square Covariance
(SC) between the two variables. The first pair of patterns describes the largest fraction
of the SC and each succeeding pair describes a maximum fraction of the SC that is
unexplicated by the previous pair. The correlation value (r) between the &y, expansion
coefficient of the two variables indicates how strongly related the k;, coupled patterns

are.

As SVD is an statistical analysis of the two fields, the symbols and respective

meanings already described, here, will be applied to matrices X (={X|m,n|} and Y

(- {Y[m,n]}.

Assuming the time mean of the the matrices has been removed, the covariance

matrix is formed by

C=X'Y (A.13)

If the matrices X and Y were normalized by their respectives standard vari-
ation, the result would be the cross-correlation matrix, rather than cross-covariance

matrix.

The single value decomposition is performed on C,
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C =UDV* (A.14)

where the singular vectors of X are the column of U, the singular vectors of Y are the

column of V, and D is the diagonal matrix.
Like EOF’s, these patterns represent standing oscillations in the data fields.

Each mode of variability oscillates in time - the expansion coefficients - are

calculated by,

A =XU (A.15)
B=YV (A.16)

where, the columns of A and B contain the expansion coefficients of each mode. Since

U and V are both orthogonal, the reconstruction of the data matrices can be done

using X = AU and Y = BV".

If I, = L(k, k) is the ky, singular value (L = > l(k, k)), the Fraction of Square

Covariance (SCF) explained by the corresponding singular vector ) and vj, is given by

li
21

The computing of the SCF for each singular value allows to decide how many

SCF, = (A.17)

we want to keep.
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A.5 Wavelets

In signal analysis, there are a number of different functions one can perform
on that signal in order to translate it into different forms that are more suitable for
different applications. The most popular function is the Fast Fourier Transform (FFT)
that converts a signal from time versus amplitude to frequency versus amplitude. This
transform is useful for many applications, but it is not based in time. To combat this
problem, mathematicians came up with the Short Term Fourier Transform (STFT)
which can convert a signal to frequency wversus time. Unfortunately, this transform
also has its shortcomings mostly that it cannot get decent resolutions for both high

and low frequencies at the same time.

So how can a signal be converted and manipulated while keeping resolution
across the entire signal and still be based in time? This is where wavelets come into
play. Wavelets are finite windows through which the signal can be viewed. In order to
move the window about the length of the signal, the wavelets can be translated about

time in addition to being compressed and widened.

Wavelet transforms are broadly classified into the Discrete Wavelet Transform
(DWT) and the Continuous Wavelet Transform (CWT). The principal difference be-
tween the two is the continuous transform operates over every possible scale and trans-

lation whereas the discrete uses a specific subset of all scale and translation values.

All wavelet transforms may be considered to be forms of time-frequency rep-
resentation and are, therefore, related to the subject of harmonic analysis. Almost all
practically useful discrete wavelet transforms make use of filterbanks containing finite
impulse response filters. The wavelets forming a CW'T are subject to Heisenberg’s un-
certainty principle and, equivalently, discrete wavelet bases may be considered in the

context of other forms of the uncertainty principle.
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The CWT is formally written as:

A(s,7) = / )V (t)dt (A18)

where * denotes complex conjugation. This equation shows how a function f(t) is
decomposed into a set of basis functions W, ,(¢), called the wavelets. The variables s
and 7, scale and translation, are the new dimensions after the wavelet transform. For

completeness sake the next equation gives the inverse wavelet transform

F(t) = / / o, (H)drds (A.19)

The wavelets are generated from a single basic wavelet W(¢), the so-called mother

wavelet, by scaling and translation:

V(1) = %\p (t . T) (A.20)

In A.20 s is the scale factor, 7 is the translation factor and the factor s—1/2

is
for energy normalization across the different scales. For the CWT, the pair (s, 7) varies
over the full half-plane R, x R; for the discrete W'T this pair varies over a discrete

subset of it, which is also called affine group.

It is important to note that in A.18, A.19 and A.20 the wavelet basis functions
are not specified. This is a difference between the wavelet transform and the Fourier
transform, or other transforms. The theory of wavelet transforms deals with the gen-

eral properties of the wavelets and wavelet transforms only.

The most important properties of wavelets are the admissibility and the regu-
larity conditions and these are the properties which gave wavelets their name. It can

be that square integrable functions 1 (t) satisfying the admissibility condition,

/ “I’ﬁ:‘")'de < +o0 (A.21)
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In A.21 ¥(w) stands for the Fourier transform of ¢(¢).

Being in this space ensures that one can formulate the conditions of zero mean

and square norm one:

/ Y(t)dt =0 (A.22)

is the condition for zero mean, and

/|¢(t)|2dt =1 (A.23)

is the condition for square norm one. In other words, ¥ (¢) must be a wave.

For #(t) to be a wavelet for the continuous wavelet transform, the mother
wavelet must satisfy an admissibility criterion in order to get a stably invertible trans-
form. This condition - the admissibility criterion - is related to the application which

the wavelet technique will be used for.



