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Appendix AStatistial notes

This appendix is an attempt to desribe the main features of the some statistialtehniques used in this study. Some of them (e.g. variane, on�dene interval) whihare largely used in sienes that use samples, measurements, and all sort of numerialdata are desribed here again, as being a support to the following "more omplex"tehniques. The omplete understanding of the mathematial de�nitions seems to bethe only antidote to the many onfusions that an arise, for example, in disussion ofEmpirial Orthogonal Funtions (EOF) and Single Value Deomposition (SVD).It is not the intention to present a omplete desription of those statistialanalyses using demonstrations and theorems, but a summary apable to evidene theirmain di�erenes, where they an exist.



166Nomenlature, symbols, and their respetive meanings, whih are used in thisdesription are shown in the following list, or desribed as the text �ows on.X = {X[m,n℄} data matrix, onsisting of set the set of all data vetors,one vetor per olumn (m = 1 . . .M, n = 1 . . . N)N . . . the number of olumns vetors in the data setM . . . the number of elements in eah olumn vetorL . . . the number of dimensions in the dimensionally reduedsubspae, 1 ≤ L ≤ MC = {C[m,k℄} ovariane matrixR = {R[m,k℄} orrelation matrixV = {V[m,k℄} matrix onsisting of the set of all eigenvetors of C, oneeigenvetor per olumnD = {D[m,k℄} diagonal matrix onsisting of the set of all eigenvaluesof C along its prinipal diagonal, and 0 for all otherelementsW = {W[m,k℄} matrix of basis vetors, one vetor per olumn, whereeah basis vetor is one of the eigenvetors of C, andwhere the vetors inW are a sub-set of those in V



167A.1 VarianeThe variane of a random variable is a measure of its statistial dispersion,indiating how far from the expeted value its values typially are. The variane of arandom variable is the square of its standard deviation.If µ = E(x) is the expeted value (mean) of the random variable x, then thevariane is
var(x) = E((x− µ)2) (A.1)That is, it is the expeted value of the square of the deviation of x from itsown mean - it is the mean squared deviation. The variation of random variable x istypially designated as var(x), σ2
x, or simply σ2.If a distribution does not have an expeted value, it does not have a varianeeither. The onverse is not true: there are distributions for whih the expeted valuesexists, but the variane does not.



168A.2 Con�dene intervals (CI)A on�dene interval is an interval in whih a measurement or trial falls orre-sponding to a given probability. Usually, the on�dene interval of interest is symmet-rially plaed around the mean.If independent samples are taken repeatedly from the same population, and aon�dene interval alulated for eah sample, then a ertain perentage (on�denelevel) of the intervals will inlude the unknown population parameter. If this param-eter is the mean, the width of the on�dene interval gives us some idea about howunertain we are about the mean.Con�dene intervals are more informative than the simple results of hypothesistests (where we deide "rejet" or "do not rejet") sine they provide a range of plau-sible values for the unknown parameter.For a normal distribution, the probability that a measurement falls within nstandard deviations (nσ) of the mean µ (i.e., within the interval [µ − nσ, µ + nσ]) isgiven by
P (µ− nσ < x < µ+ nσ) ≡ 1
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) (A.5)where erf(x) is the alled erf funtion. The following table summarizes the probabilities
P (µ − xn < x < µ + xn) that measurements from a normal distribution fall within
[µ− xn, µ+ xn] for xn = nσ with small values of n.

xn P (µ− xn < x < µ+ xn)

σ 0.68268952σ 0.95448873σ 0.99730024σ 0.99993665σ 0.9999994Conversely, to �nd the probability-P on�dene interval entered about themean for a normal distribution in units of σ, solve equation (A.5) for n to obtain
n =

√
2 erf−1(P ) (A.6)where erf−1 is the inverse erf funtion.



170The following table then gives the values of xP suh that [µ−xP , µ+xP ] is theprobability-P on�dene interval for a few representatives values of P .
P xP0.800 1.28155σ0.900 1.64485σ0.950 1.95996σ0.990 2.57583σ0.995 2.80703σ0.999 3.29053σ



171A.3 Empirial Orthogonal Funtions (EOF)In statistis and signal proessing, the method of Empirial Orthogonal Fun-tions (EOF) is a deomposition of a signal or data set in terms of orthogonal basisfuntions whih are determined from the data. The kth basis funtion is hosen to beorthogonal to the basis funtions from the �rst through k − 1, and to minimize theresidual variane. That is, the basis funtions are hosen to be di�erent from eahother, and to aount for as muh variane as possible. Thus this method has muh inommon with the method of kriging in geostatistis, and Gaussian proess models.The method of EOF is similar in spirit to harmoni analysis, but harmonianalysis typially uses predetermined orthogonal funtions, for example, sine and o-sine funtions at �xed frequenies. In some ases the two methods may yield essentiallythe same results.The basis funtions are typially found by omputing the eigenvetors of theovariane matrix of the data set. This is the same as performing Prinipal Compo-nents Analysis (PCA) on the data.Assuming zero empirial mean (the empirial mean of the distribution has beensubtrated away from the data set), the prinipal omponent w1 of the dataset x anbe de�ned as:
w1 = argmaxE{(wt

x)2} with ‖w‖ = 1 (A.7)where E is the expeted value operator; for the �rst k−1 omponents, the kth omponentan be found by subtrating the �rst k − 1 prinipal omponents from x:
x̂k−1 = x −

k−1
∑

i=1

wiw
t
ix (A.8)and by substituting this as the new dataset to �nd a prinipal omponent in
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wk = argmaxE{(wt

x̂k−1)
2} with ‖w‖ = 1 (A.9)The EOF transform is therefore equivalent to �nding the singular value deom-position of the data matrix X,

X = W

∑

V
t (A.10)and then obtaining the redued-spae data matrix Y by projeting X down into theredued spae de�ned by only �rst L singular vetors, WL:
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L (A.11)The matrix W of singular vetors of X is equivalently also the matrix W ofeigenvetors of the matrix of observed ovarianes C = XX
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t (A.12)By �nding the eigenvalues and eigenvetors of the ovariane matrix, theeigenvetors with the largest eigenvalues orrespond to the dimensions that have thestrongest orrelation in the dataset.



173A.4 Single Value Deomposition (SVD)The Single Value Deomposition (SVD) method an be thought as a general-ization to retangular matries of the diagonalization of the square symmetri matrix(like in EOF analysis).The SVD of the ross-ovariane matrix yields two spatially sets of singularvetors (spatial patterns analogous to the eigenvetors or EOF's, but one for eah vari-able) and a set of singular values assoiated with eah pair of vetors (analogous to theeigenvalues). Eah pair of spatial patterns desribe a fration of the Square Covariane(SC) between the two variables. The �rst pair of patterns desribes the largest frationof the SC and eah sueeding pair desribes a maximum fration of the SC that isunexpliated by the previous pair. The orrelation value (r) between the kth expansionoe�ient of the two variables indiates how strongly related the kth oupled patternsare. As SVD is an statistial analysis of the two �elds, the symbols and respetivemeanings already desribed, here, will be applied to matries X (={X[m,n℄} and Y(={Y[m,n℄}.Assuming the time mean of the the matries has been removed, the ovarianematrix is formed by
C = X

t
Y (A.13)If the matries X and Y were normalized by their respetives standard vari-ation, the result would be the ross-orrelation matrix, rather than ross-ovarianematrix.The single value deomposition is performed on C,
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C = UDV

t (A.14)where the singular vetors of X are the olumn of U, the singular vetors of Y are theolumn of V, and D is the diagonal matrix.Like EOF's, these patterns represent standing osillations in the data �elds.Eah mode of variability osillates in time - the expansion oe�ients - arealulated by,
A = XU (A.15)
B = YV (A.16)where, the olumns of A and B ontain the expansion oe�ients of eah mode. SineU and V are both orthogonal, the reonstrution of the data matries an be doneusing X = AU

t and Y = BV
t.If lk = L(k, k) is the kth singular value (L =

∑

l(k, k)), the Fration of SquareCovariane (SCF) explained by the orresponding singular vetor ~uk and ~vk is given by
SCFk =

l2k
∑

l2k
(A.17)The omputing of the SCF for eah singular value allows to deide how manywe want to keep.



175A.5 WaveletsIn signal analysis, there are a number of di�erent funtions one an performon that signal in order to translate it into di�erent forms that are more suitable fordi�erent appliations. The most popular funtion is the Fast Fourier Transform (FFT)that onverts a signal from time versus amplitude to frequeny versus amplitude. Thistransform is useful for many appliations, but it is not based in time. To ombat thisproblem, mathematiians ame up with the Short Term Fourier Transform (STFT)whih an onvert a signal to frequeny versus time. Unfortunately, this transformalso has its shortomings mostly that it annot get deent resolutions for both highand low frequenies at the same time.So how an a signal be onverted and manipulated while keeping resolutionaross the entire signal and still be based in time? This is where wavelets ome intoplay. Wavelets are �nite windows through whih the signal an be viewed. In order tomove the window about the length of the signal, the wavelets an be translated abouttime in addition to being ompressed and widened.Wavelet transforms are broadly lassi�ed into the Disrete Wavelet Transform(DWT) and the Continuous Wavelet Transform (CWT). The prinipal di�erene be-tween the two is the ontinuous transform operates over every possible sale and trans-lation whereas the disrete uses a spei� subset of all sale and translation values.All wavelet transforms may be onsidered to be forms of time-frequeny rep-resentation and are, therefore, related to the subjet of harmoni analysis. Almost allpratially useful disrete wavelet transforms make use of �lterbanks ontaining �niteimpulse response �lters. The wavelets forming a CWT are subjet to Heisenberg's un-ertainty priniple and, equivalently, disrete wavelet bases may be onsidered in theontext of other forms of the unertainty priniple.



176The CWT is formally written as:
γ(s, τ) =

∫

f(t)Ψ∗
s,τ(t)dt (A.18)where * denotes omplex onjugation. This equation shows how a funtion f(t) isdeomposed into a set of basis funtions Ψs,τ(t), alled the wavelets. The variables sand τ , sale and translation, are the new dimensions after the wavelet transform. Forompleteness sake the next equation gives the inverse wavelet transform

f(t) =

∫∫

γs,τΨs,τ(t)dτds (A.19)The wavelets are generated from a single basi wavelet Ψ(t), the so-alledmotherwavelet, by saling and translation:
Ψs,τ(t) =

1√
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) (A.20)In A.20 s is the sale fator, τ is the translation fator and the fator s−1/2 isfor energy normalization aross the di�erent sales. For the CWT, the pair (s, τ) variesover the full half-plane R+ × R; for the disrete WT this pair varies over a disretesubset of it, whih is also alled a�ne group.It is important to note that in A.18, A.19 and A.20 the wavelet basis funtionsare not spei�ed. This is a di�erene between the wavelet transform and the Fouriertransform, or other transforms. The theory of wavelet transforms deals with the gen-eral properties of the wavelets and wavelet transforms only.The most important properties of wavelets are the admissibility and the regu-larity onditions and these are the properties whih gave wavelets their name. It anbe that square integrable funtions ψ(t) satisfying the admissibility ondition,
∫ |Ψ(ω)|2

|ω| dω < +∞ (A.21)



177In A.21 Ψ(ω) stands for the Fourier transform of ψ(t).Being in this spae ensures that one an formulate the onditions of zero meanand square norm one:
∫

ψ(t)dt = 0 (A.22)is the ondition for zero mean, and
∫

|ψ(t)|2 dt = 1 (A.23)is the ondition for square norm one. In other words, ψ(t) must be a wave.For ψ(t) to be a wavelet for the ontinuous wavelet transform, the motherwavelet must satisfy an admissibility riterion in order to get a stably invertible trans-form. This ondition - the admissibility riterion - is related to the appliation whihthe wavelet tehnique will be used for.


