Core temperature and brown adipose tissue activity during therapeutic whole body cooling in human neonates

Anthony Carlisle BEng (Biomedical & Electronic) School of Computer Science, Engineering and Mathematics Faculty of Science and Engineering Flinders University Adelaide, South Australia

> This thesis was submitted on 5th September 2014 as part of the requirements for the degree of Doctor of Philosophy

TABLE OF CONTENTS

	LIST O	f Figur	ES	V
	LIST O	F TABLE	:S	VI
	THESIS	S SUMM/	ARY	VII
	DECLA	RATION	OF ORIGINALITY OF THIS REPORT	IX
	ACKNO	OWLEDG	MENTS	IX
	LIST O	F COMM	ON ABBREVIATIONS	Х
1	INTR	ODUCI	TION & THESIS OBJECTIVES	1
	1.1	INTRO		1
	1.2	THESIS	SOBJECTIVES	4
2	LITE	RATUR	E REVIEW	6
_	2.1	RATION	ALE FOR THERAPEUTIC COOLING, MEASUREMENT OF	
	(CORE 8	& BODY TEMPERATURES ALONG WITH ADAPTIVE RESPON	ISE
	(DNATES TO COLD STRESS	6
	2.1.	1 Pilot	t studies of cerebral cooling in human newborns	7
	2	2.1.1.1	Pilot study 1	7
	2	2.1.1.2		8
	2	2.1.1.3	Pilot study 3	10
	2	2.1.1.4	Pilot study 4	12
	2 1 4	2.1.1.5 2. Sum	Pliot study 5	. 13
	2.1.4	2 Juli 2 Pan	domised controlled trials of therapoutic hypothermia	. 14
	2.1.	5 Naii 0121		. 15
	2	.1.3.1		10
	2	.1.3.2	TOBY Study Group	
	2	.1.3.3	China Study Group	22
	2	21.3.5	neo nFURO network	20
	2	2.1.3.6		30
	2.1.4	4 Sum	mary of Randomised Controlled Trials	33
	2.2	CONCL	USION OF CLINICAL DATA REVIEW & COOLING RCTs	35
	2.3	WHAT I	DETERMINES BRAIN TEMPERATURE?	35
	2.4	INTRAC	CRANIAL TEMPERATURE	39
	2.4.	1 Tem	perature difference: deep brain & superficial brain in animals	39
	2.4.2	2 Tem	perature difference: deep brain & superficial brain in humans	44
	2.5	CONCL	.USION: INTRACRANIAL TEMPERATURE MEASUREMENT	50
	2.6 I	BODY 1	EMPERATURE REFLECTING BRAIN TEMPERATURE	50
	2.6.	1 Anir	nal studies of body temperature reflecting brain temperature	51
	2.6.2	2 Con to a	clusion of animal studies that compared deep brain temperatur core body site	e 55
	2.6.3	3 Hun	nan studies of body temperature reflecting brain temperature	55

		2.6	.3.1	Discussion of body site suitability as a measure of global brain temperature in adults	63
	2.7	CC TF		USION OF BODY TEMPERATURE REFLECTING BRAIN	66
	2.8	NE NE CC	ONA ONA	ATAL THERMOREGULATION. HOW DO NEWLY BORN HUMAN ATES REGULATE THEIR TEMPERATURE IN RESPONSE TO	67
	2.8	3.1	Ada	ptive responses to cold	67
	2.8	3.2	Bro	wn adipose tissue & non-shivering thermogenesis	68
	2.9	SL	JMM/	ARY & RATIONALE FOR THESIS	74
3	TEN Exf	/IPE PER	RAT IMEN	URE MEASUREMENT & METHODS FOR CLINICAL	77
	3.1	ME	EASL	JRING TEMPERATURE	77
	3.2	DII	REC	T CONTACT TEMPERATURE SENSING	77
	3.2	2.1	Dire	ect Contact: Thermocouples	78
	3.2	2.2	Dire	ct Contact: Resistance type temperature devices	78
	3.2	2.3	Dire	ect Contact: Thermistors	79
	3.2	2.4	Dire	ect contact: inferred temperature	79
		3.2	.4.1	Direct contact: Heat Flux sensor	80
		3.2	.4.2	Direct contact: Zero Heat Flux sensor	80
		3.2	.4.3	Direct contact: Zero heat flow method	80
	3.3	NC	N-C	ONTACT TEMPERATURE SENSING	81
	3.3	3.1	Nor	-contact: IR temperature measurement	81
	3.3	3.2	Nor	-contact: Microwave temperature measurement	81
	3.3	3.3	Nor	-contact: MRI temperature measurement	82
	3.4	ΒA	CKG	ROUND SUMMARY OF TEMPERATURE MEASUREMENT	82
	3.5	TE EX	MPE PER	RATURE MEASUREMENT METHODS FOR CLINICAL	82
	3.5	5.1	A ba	attery operated datalogger	83
	3.5	5.2	Sen	sor connection & rectal temperature recording	84
	3.5	5.3	Elec	ctronic interface circuit	85
	3.5	5.4	Ten	nperature sensor & datalogger accuracy	87
	3.5	5.5	Ten	nperature sensors for use in studies	87
	3.5	5.6	Ten	nperature calibration of sensors & datalogger	87
	3.5	5.7	Exte	ension battery for datalogger	88
	3.5	5.8	Infra	a-red (IR) temperature measurement	89
	3.6	СС	NCL	USION	90
4	IND	IRE	ст с	ALORIMETRY FOR CLINICAL EXPERIMENTS	91
	4.1	IN	TRO	DUCTION	91
	4.2	ME	ASL	JREMENT & CALCULATION OF OXYGEN CONSUMPTION	92
	4.3	O>	YGE	EN CONSUMPTION EQUIPMENT & METHODS	93
	4.3	3.1	Cal	culating VO ₂ & VCO ₂ using first principles	95

	4.3	3.2	Haldane's transform	95
	4.4	MA Me	ATHEMATICALLY COMPARING THREE VO2 CALCULATION ETHODS	96
	4.4	1.1	Evaluation of three methods used to measure VO ₂ & VCO ₂	99
	4.5	EC	QUIPMENT USED TO BUILD AN INDIRECT CALORIMETER	100
	4.5	5.1	System air flow	100
	4.5	5.2	Mixing chamber & water vapour removal	101
	4.5	5.3	VO ₂ calculation error	102
	4.5	5.4	Gas measuring equipment	102
	4.5	5.5	Suction flow for gas sensors	103
	4.5	5.6	System air flow & barometric pressure	104
	4.5.7		Ambient temperature	104
	4.5	5.8	Uninterruptible power supply	104
	4.5	5.9	Recording gas analyser measurements	104
	4.5	5.10	Gas calibration	105
	4.6	СС	DNCLUSION	106
5	EXF HE	PER	IMENTS TO MEASURE BROWN ADIPOSE TISSUE ACTIVITY I	N 107
	5.1	IN.		107
	5.2	ME	THODS	108
	5.3	RE	SULTS	114
	5.4	DI	SCUSSION	124
	5.5	СС	DNCLUSION	128
6	ME BRO NEO	ASL DWI DNA	IREMENT OF OESOPHAGEAL & RECTAL TEMPERATURE & N ADIPOSE TISSUE ACTIVITY IN INTUBATED NORMOTHERM ATES	IIC 129
	6.1	IN.		129
	6.2	ME		130
	6.3	RE		134
	6.4	DI	SCUSSION	139
	6.5	CC	JNCLUSION	141
7	OE: DUI	SOF	PHAGEAL & RECTAL TEMPERATURE: DYNAMIC DIFFERENC G THERAPEUTIC HYPOTHERMIA	ES 143
	7.1	IN	TRODUCTION	143
	7.2	ME	ETHODS	144
	7.3	RE	SULTS	147
	7.4	DI	SCUSSION	151
	7.5	СС	DNCLUSION	153

8	BAT HUN	FACTIVITY & CORE TEMPERATURES DURING HYPOTHERMIA IN MAN NEONATES	HIE 155		
	8.1	INTRODUCTION	155		
	8.2	METHODS	156		
	8.3	RESULTS	161		
	8.4	DISCUSSION	177		
	8.5	CONCLUSION	182		
9	HYF	POTHERMIC BAT & MRI FINDINGS	183		
	9.1	INTRODUCTION	183		
	9.2	METHODS	184		
	9.3	RESULTS	187		
	9.4	DISCUSSION	189		
	9.5	CONCLUSION	190		
10 THESIS CONCLUSION					
•	DDEN	DICES	109		
A			190		
APPENDIX A. SENSOR CONNECTOR BOX 198					
APPENDIX B. EXTENSION BATTERY PACK					
-			000		
K	EFER	ENCE LIST	203		

LIST OF FIGURES

Figure 3.1	A general purpose battery operated datalogger	84
Figure 3.2	The sensor connector box	85
Figure 3.3	Electronic interface circuit inside the sensor connector box	86
Figure 3.4	An extension battery pack	89
Figure 4.1	A soft rubber funnel was used to collect expired breath	100
Figure 4.2	Inverting an air flowmeter to control suction flow	101
Figure 4.3	Using small bore tubing to control suction air flow through sensors	103
Figure 5.1	Equipment used for experiments	111
Figure 5.2	Infrared (IR) imaging method	112
Figure 5.3	3 litre saline bag temperatures on an open incubator mattress	114
Figure 5.4	Mean temperatures during three 7 minute stages	118
Figure 5.5	Parametric changes as a result of turning the heater off	119
Figure 5.6	Example of a ninety minute experiment showing variation in RER	121
Figure 5.7	Combined plot of VO ₂ and RER	122
Figure 5.8	An example of HR and $\ensuremath{VO_2}$ averaged over 30 seconds from one experiment	123
Figure 6.1	Mean temperatures during heater on/off step transitions	135
Figure 6.2	Contact and non-contact temperatures after heater-off	136
Figure 6.3	Temperatures during steady state heater-on and heater-off periods	137
Figure 7.1	24 hours of oesophageal temperature compared to rectal	148
Figure 7.2	Examples of three manual cooling methods	149
Figure 7.3	Percentage of time core temperature spent above 34°C	150
Figure 8.1	Mean temperatures during heater on and off step transitions	162
Figure 8.2	Heater-off response for passive and actively cooled subjects	163
Figure 8.3	Contact and non-contact temperatures after heater-off	165
Figure 8.4	Endotracheal extubation during cooling	167
Figure 8.5	Temperatures during steady state heater-on and heater-off periods for the whole study group	168
Figure 8.6	Steady state temperatures from passively cooled subjects	170
Figure 8.7	Steady state temperatures from actively cooled subjects	172
Figure 8.8	Normothermic temperatures during steady state heater-on and heater-off periods after rewarming	174
Figure A1.	Sensor connector box used for experiments and studies	198
Figure A2	Rectal sensor interface circuit inside the sensor connector box	199
Figure B1.	Extension battery pack for datalogger	201
Figure B2.	An extension battery in situ beneath the datalogger	202

LIST OF TABLES

Table 2.1	Temperature measurement methodology used in six RCTs
Table 2.2	<i>Temperature between deep and superficial brain in animals detailing methods and limitations</i>
Table 2.3	Temperature between deep and superficial brain in human adults detailing methods and limitations
Table 2.4	Temperature between deep and superficial brain in human neonates detailing methods and limitations
Table 2.5	Temperature between deep brain and a core body site in animals detailing methods and limitations
Table 2.6	Temperature between deep brain and a core body site in human adults detailing methods and limitations
Table 2.7	Temperature between deep brain and the lower oesophagus in children 62
Table 2.8	Temperature between deep brain and the lower oesophagus in neonates 62
Table 4.1	VO_2 calculation error in relation to sensor accuracy
Table 5.1	Demographics and study conditions of five healthy normothermic neonates 115
Table 5.2	Mean results of indirect calorimetry and body temperatures from healthy normothermic neonates
Table 5.3	Mean IR temperature values from healthy normothermic neonates during cooling
Table 6.1	Temperatures and differences during heater on/off steady states 138
Table 8.1	Mean IR temperatures after a heater-off transition 166
Table 8.2	Overall temperatures and differences during steady state heater on and off periods
Table 8.3	Temperatures and differences during steady state heater-on and heater-off periods (passively cooled neonates)
Table 8.4	Temperatures and differences during steady state heater-on and heater-off periods (actively cooled neonates)
Table 8.5	Overall temperatures and differences after rewarming during steady state heater on and off periods
Table 8.6	Temperature differences during normothermic steady state heater on and off periods between post-cooled and non-cooled neonates
Table 9.1	Clinical characteristics of actively cooled and passively cooled neonates 187
Table 9.2	Cerebral lesions seen on MRI in actively cooled and passively cooled

THESIS SUMMARY

Brain injury caused by the combination of inadequate blood flow and oxygen delivery to the brain before and during birth is called neonatal hypoxic ischaemic encephalopathy (HIE). Whole body hypothermia has been shown by randomised controlled trials to reduce brain injury due to hypoxic-ischaemic insults, and is an accepted treatment for HIE. However, HIE still results in considerable morbidity with 40% or more of cooled neonates nevertheless dying or suffering moderate or severe long-term impairment.

The aim of whole body hypothermia is to lower brain temperature to $33-34^{\circ}$ C within 6 hours of birth and continue this for 72 hours before rewarming to normothermia. However, direct measurement of brain temperature is not generally possible in the human neonate during whole body hypothermia and there is a reliance on proxy measures of systemic core temperature, the most common of which is rectal temperature (T_{rec}).

The inability of hypothermia to prevent all brain injury following HIE is likely to relate to a complex interplay of many factors, including the timing of injury and application of cooling, and inadequate knowledge of the ideal depth and duration of cooling. However, hypothermia is also energetically costly where thermoregulation is activated to defend a core temperature set-point, and induces a hormonal stress response which may be harmful. An important concept is that induced hypothermia is quite different to anapyrexia, which is the adaptive response to hypoxia highly conserved in evolution where the core set point is lowered thus reducing oxygen consumption and stress responses.

Brown adipose tissue (BAT) thermogenesis is the metabolic mechanism used by neonates to defend core temperature during exposure to cold, and has an essential role in warming the brain in animal models. The activity of BAT during hypothermia treatment for HIE has not been examined in the human neonate.

Furthermore, the premise that T_{rec} reflects brain temperature is weakly supported with a paucity of human neonatal data. Extrapolation from animal data and adult human data may be invalid due to thermoregulatory differences, in particular BAT thermogenesis. T_{rec} as a monitoring site has not been adequately validated by comparison with temperature at other core sites during whole body hypothermia.

In this thesis, temperature control during whole body hypothermia in human neonates is studied, with an emphasis on BAT activity and temperature gradients between core body sites. The following hypotheses are tested: (i) thermogenesis in BAT is active during therapeutic hypothermia for HIE; (ii) BAT activity influences temperature in the lower oesophagus (T_{oes}) more than T_{rec} ; (iii) T_{rec} does not accurately reflect T_{oes} ; (iv) BAT activity is associated with severity of brain injury.

Manually controlled hypothermia using T_{rec} as the target temperature site was studied because this is the standard practice in South Australian tertiary neonatal intensive care units. Furthermore, servo-controlled cooling blankets (by cooling the skin of the back) preclude the assessment of changes in interscapular skin temperature (T_{scap}) that may be associated with BAT thermogenesis. A series of experiments measured core temperature (T_{rec} and T_{oes}) and T_{scap} using standard temperature probes, and exposed surface temperatures using infrared imaging, both in healthy neonates, and in critically ill normothermic and hypothermic neonates nursed supine with the back in contact with an insulating mattress of an open radiant warmer.

These studies conclude that rectum is an inappropriate site to monitor and regulate core temperature during manually controlled hypothermia. T_{rec} underestimates T_{oes} , appears to be influenced by leg skin temperature, and demonstrates a long lag time to change after a change in environmental temperature that promotes temperature fluctuations in more rapidly responding sites such as T_{oes} . Evidence is presented that supports the presence of BAT thermogenesis in many neonates during whole body hypothermia, and that thermogenesis is more closely aligned to T_{oes} than T_{rec} . If T_{oes} is considered more reflective of central venous and aortic blood temperature, then T_{rec} monitoring will result in warmer than expected blood perfusing deep brain. T_{oes} is therefore more likely to provide a stable and relevant measure of brain temperature and should be used in clinical practice.

The data presented in this thesis also suggest that neonates with HIE can be divided into those that demonstrate anapyrexia and those that defend core temperature via activation of BAT. Those neonates with anapyrexia have a greater likelihood of MRI visible brain injury. The data do not suggest that activation of BAT results in harm to the brain. However conclusions are limited by small study numbers and a lack of clinical follow-up. The influence of BAT thermogenesis on the recovery of the brain during hypothermia requires further study and consideration should also be given to the study of therapeutic interventions that turn off BAT as a means of inducing therapeutic hypothermia.

DECLARATION OF ORIGINALITY OF THIS REPORT

I certify that this thesis does not incorporate without acknowledgment any material previously submitted for a degree or diploma in any university; and that to the best of my knowledge and belief it does not contain any material previously published or written by another person except where due reference is made in the text.

Anthony Carlisle

Date:

ACKNOWLEDGMENTS

The author is very grateful to the following people:

Academic Supervisor, Professor Karen Reynolds, for ongoing support, resources and academic guidance.

Clinical Supervisor, Dr Scott Morris for ongoing support, resources, scientific acumen and generosity in sharing his expert clinical knowledge.

Neonatal staff in the Flinders Medical Centre and Women's and Children's Hospital in Adelaide and to the parents and neonates participating in this study.

Neonatal Research Nurse, Kathy Cornthwaite for helping recruit subjects and assistance during experiments in Chapter 5.

Associate Professor Richard Woodman and Dr Susan Kim who contributed to statistical analysis in Chapters 6 and 7 and statistical advice with Chapters 5, 8 and 9.

Flinders Biomedical Engineering staff for ongoing support, resources and use of engineering facilities.

Professor Bill Blessing for encouragement and rousing an interest in neuroscience, particularly with brown adipose tissue.

Professor Helen Manock for her motivation and encouragement.

To my wife Patricia, for her ongoing support and encouragement, and assistance with editing this thesis.