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Abstract

Breast cancer is considered to be one of the major health problems and lead-

ing causes of death among women worldwide. Screening mammography is the

most used and cost-effective tool for detecting early stage cancer. However, de-

tecting cancerous masses in the dense background of a breast is a particularly

challenging task, even for an experienced radiologist. This stems from the simi-

larity of intensity between the masses and the overlapped dense normal tissues.

Mammographic sensitivity is less than 50% in women with dense breasts. The

need for improved diagnosis of breast cancer in women with dense breast is fur-

ther emphasized by the greater risk of breast cancer in this population. Women

with dense breast have four to five times higher risk of getting breast cancer

compared to women with little or no dense tissues. Computer-aided detection

(CAD) has been developed to assist radiologists in early breast cancer detection

and diagnosis. Although many CAD techniques have been developed for mass

classification/detection, the CAD sensitivity in dense breast is still low.

This study aims to improve detection of cancerous masses localised in the

dense background of breasts by characterising the textures of masses, based on

primitive micropatterns (at pixel level) and their macro level (superpixel) repre-

sentations. A new paradigm for texture analysis, based on superpixel tessellation,

is the main contribution of this thesis. The paradigm enables new mechanisms

for understanding complex texture structures in images. Both pixel and super-

pixel level micropatterns are used in this study to distinguish breast masses from

normal dense tissues. The results indicate that the proposed textural features

can produce highly effective and efficient descriptors of breast masses, localised

in a dense background.

The effectiveness of the proposed approaches is validated on two datasets

(DDSM and BSSA) using performance measures such as Dice Index, Hausdorff

distance, receiver operating curve (ROC), area under the curve (AUC) and free

receiver operating curve (FROC). The experimental results indicate that the pro-

posed methods can classify masses with AUC score up to 0.97 and can localise

masses with sensitivity of 80% with only 2.7 false positives per image.
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Chapter 1

Introduction

This introductory chapter provides a brief summary of the incidence of breast can-

cer, current best clinical practice for early breast cancer detection, and presents

the motivation and objectives of this thesis. Section 1.1 describes an overview of

breast cancer incidents and Section 1.2 provides an overview of widely accepted

clinical practice for early breast cancer detection. The most commonly found

mammographic abnormalities are described in Section 1.3. Dense breast tissues

and commonly used methods for estimating breast density are described in Sec-

tion 1.4. Computer-aided detection system is described in Section 1.5. Cancer

detection in dense breast is discussed in Section 1.6. Finally, motivation and

research objectives of this thesis are summarised in Section 1.7 followed by an

overview of the thesis structure in Section 1.8 .

1.1 Breast Cancer Statistics

Breast cancer is considered to be a major health problem and one of the leading

causes of death in women for more than five decades (Tang et al. 2009, Sardanelli

et al. 2017). The incidence of breast cancer has increased worldwide in recent

years. Based on statistics from the World Health Organization (WHO), every year

about 14 million people are diagnosed with cancer. By 2025 it is predicted to be

19 million people per year before striking 24 million by 2035. Approximately 1.7

million new breast cancer cases were diagnosed worldwide in 2012, which accounts

for a quarter (25%) of all cancers identified in women (WCRFI 2017).

According to the Australian Institute of Health and Welfare (AIHW) and the

Australian Cancer Society (ACS), breast cancer is the most commonly diagnosed
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cancer among Australian women. It is the second most frequently diagnosed

cancer to cause death in women, after lung cancer, accounting for 14.9% of all

cancer related mortality in women in 2017. The number of new breast cancer

cases is showing an increasing trend according to the cancer survey. In 1982 the

number of new cases of breast cancer diagnosed in Australian women was 5,303

and in 2010 it had increased to 14,181. In 2014, it was 15,270 and in 2020 about

17,210 Australian women are expected to be diagnosed with breast cancer. On

an average, 1 in 10 Australian women have a chance of developing breast cancer

before the age of 75 and 1 in 8 Australian women have a chance of developing

breast cancer before the age of 85 (AIHW 2017). Most of the women diagnosed

with breast cancer were aged 50 to 69. This shows a greater risk of breast cancer

with increase in age. Figure 1.1 shows the details of breast cancer incidence and

mortality rates by age of diagnosis and by sex.

Figure 1.1: Australian breast cancer incidence and mortality rates, by sex and
cancer diagnosed age (AIHWC 2017).

In the United States (US), as per the American Cancer Society, breast cancer

is the leading cause of death among women. It was estimated that 266,120 new

breast cancer cases were identified, and 40,920 were expected to die from breast

cancer among US women in 2018 (ACS 2018). Figure 1.2 shows the details of

a cancer diagnosis survey conducted in the United States. The chance of an

American woman developing breast cancer in her lifetime is 12.4% (one in eight

women).

Also, in Europe, breast cancer is the most common cancer in women, with

2
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Figure 1.2: United States cancer incidence rates for most commonly diagnosed
cancers for male and female, 1975 to 2010 (Siegel et al. 2014).

1 in 8 women having a chance of developing breast cancer before the age of 85.

In 2018, the estimated number of new female breast incidence was 523,000 cases

and estimated death was 138,000 (Ferlay et al. 2018).

According to Cancer Research UK, there were 55,122 new cases of invasive

breast cancer in 2015, accounting for 15% of all new cancer cases, and 11,433 died

from breast cancer in 2014 (CRUK 2015).

1.2 Screening Mammography

Due to this high incidence rate of breast cancer in females compared to other

types of cancer, some countries have introduced screening programs for early de-

tection. In Australia, women aged 50-74 years are recommended to participate in

the BreastScreen Australia Program every two years for free screening mammo-

grams (BSA 2019). In the United States, women aged 45-54 are recommended

3
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for screening mammography every year and, women aged 55 and older for every

two years or they could continue yearly screening (ACSBC 2018). In UK, women

aged 50-70 years are invited for mammographic screening every three years (NHS

2018).

Mammography, an x-ray imaging technique, is the best available screening

tool for detecting breast cancer at its early stages (Maggio 2004, NHS 2012). It

has shown to reduce the mortality from breast cancer by 30-40% (Weedon-Fekjær

et al. 2014, ACR 2018). In-addition to screening, mammography can also be used

to diagnose cancer (NBCF 2016). The purpose of screening mammography is to

determine if there is any indication of early signs of breast cancer. It is done on

women who have not reported any signs of breast cancer. Diagnostic mammog-

raphy is done on women who have found any change or abnormality in the breast

during self-examination or have found abnormality during the screening.

As the cause of breast cancer is unknown, the only way to reduce the morbid-

ity and mortality rates associated with breast cancer is early detection through

screening mammography. This can give women a greater chance of receiving

successful treatment at a very early stage. Figure 1.3 shows the importance of

screening. Without screening a tumor is normally found at a stage where it is

considerably large in size and may be too late to save the life of the person. This

thesis deals with screening mammogram.

Figure 1.3: Graph showing the importance of screening (Weedon-Fekjær et al.
2010).

4
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Figure 1.4: CC and MLO views (Resource: http://www.imaginis.com).

Figure 1.5: Examples of digital and film mammogram (Parker-Pope 2008)

In routine screening mammography, each breast has two mammograms taken

to capture information from two different views. One is the Cranio-Caudal (CC)

view which is taken from top to bottom and the other is the Medio-Lateral

Oblique (MLO) view which is taken from the side. Figure 1.4 shows the CC

and MLO mammographic views. The mammograms taken are then interpreted

by radiologists. If radiologists find any abnormality, the woman is called back

for further investigations. Double reading is the common practice in Australia

and Europe (Giordano et al. 2012, Pow et al. 2016, NAS 2008). In double read-

ing, two radiologists will independently read the mammograms. If there are any

discrepancies between them, then the mammogram will be further reviewed by a

third radiologist or by a consensus panel or committee (Posso et al. 2017).

The mammographic images for examination can be captured in two different

ways (Gur 2007, Pisano et al. 2007). One is screen film mammography where the

breast images are captured on film cassette. The other is full field digital mam-

mography where digital breast images are captured and stored in a computer.

Figure 1.5 shows an example of digital and film mammogram. Although, digi-
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tal mammograms have some advantages, like easy access, storage and improved

means of transmissions, it has not been proved that the diagnostic accuracy of

digital mammography is better than film based. One major disadvantage of

digital mammography is the cost, which is 1.5 to 4 times higher than film mam-

mography and, hence, it is not available in most screening centres in developing

countries (Pisano et al. 2005).

1.3 Abnormality Indicators in Mammograms

There are different types of mammographic abnormalities. The most commonly

detected mammographic abnormalities are microcalcifications and masses. Micro-

calcifications are tiny deposits of calcium and they appear as small white dots

in mammograms. Breast mass is a term used to indicate a localized swelling or

lump in the breast (Oliver et al. 2010) and it is defined in mammography as a

space-occupying lesion that is noticeable in at least two different mammographic

projections (Tang et al. 2009). Masses vary in size and shape like circumscribed,

spiculated, lobulated or ill-defined (Oliver et al. 2010), and radiologists examine

these associated mass properties to classify them as benign or malignant. It

is widely known that mass detection in mammogram is a challenging task. It

is particularly challenging when masses are localized in the dense regions of a

mammogram. Figure 1.6 shows a mammogram with a mass localized in dense

background. It is evident that the mass is hardly visible and the boundaries

are extremely hard to detect. This thesis deals with masses localized in dense

background.

1.4 Breast Density/Dense Breast Tissue

Breast density is defined as the percentage of the breast occupied by fibroglan-

dular tissue (dense tissue) in relation to the fatty tissue (nondense tissue) (Boyd

et al. 1995). The association of breast parenchymal tissues and breast cancer

has been studied for three decades (Wolfe 1976a,b, Boyd et al. 2007, Harvey &

Bovbjerg 2004, McCormack & Silva 2006, Chen 2013, Tice et al. 2013, Yaghjyan

et al. 2013, Xi-Zhao 2014). Studies show that there is an increased risk associated

with dense breast tissues. Several authors have concluded that women with dense

breast tissues that occupy more than 75% of the mammogram have 4 to 6 fold

increased risk of developing breast cancer compared to others who have less or
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Figure 1.6: Example of mammogram showing mass in dense background (a)
without mass outline (b) with mass outline.

nondense tissues (Boyd et al. 1995, 2007, Harvey & Bovbjerg 2004, McCormack &

Silva 2006, Ursin et al. 2003, Vacek & Geller 2004, Byrne et al. 1995, Mandelson

et al. 2000, Tice et al. 2013, Yaghjyan et al. 2013). The first report for the associ-

ation of patterns of breast parenchymal tissues and breast cancer was published

by Wolfe (1976a). The study described four groups of parenchymal patterns on

the basis of radiographic appearance. The four groups are Nl, PI, P2, and DY.

The Nl and PI groups were considered to be low risk due to the breast being

composed of mostly fatty tissues. The P2 and DY groups were considered to be

at high risk for developing breast cancer due to the breast being composed of

mostly dense tissues. Modification of Wolfe’s parenchymal patterns classification

were proposed by Tabar & Dean (1982) and Gram et al. (1997), both giving more

focus to structure of the patterns reported in the Wolfe study.

Boyd et al. (1995) and BI-RADS (Breast Imaging Reporting and Data Sys-

tem) classification have given more focus to the percentage of the dense breast

tissues instead of the structure of the patterns. Boyd et al. (1995) defined six

classifications based on the percentage of dense breast tissues as follows: none,

less than 10%, 10 to 25%, 25 to 50%, 50 to 75% and above 75%. BI-RADS clas-

sification is introduced by the American College of Radiology (ACR). According

to ACR fourth edition (ACR 2003), have four main classes: BI-RADS I (breast

is almost fatty, glandularity < 25%), BI-RADS II (scattered fibro glandular den-

sities, glandularity 25-50%), BI-RADS III (heterogeneously dense, glandularity
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51-75%)and BI-RADS IV (breast is extremely dense, glandularity >75%). Fig-

ure 1.7 shows examples of mammograms from four BI-RADS density classes. The

fifth edition (ACR 2014) also have four classification same as previous one, but

does not have the percentages.

(a) BI-RADS I (b) BI-RADS II

(c) BI-RADS III (d) BI-RADS IV

Figure 1.7: Examples of mammograms from four BI-RADS density classes from
DDSM database (a) BI-RADS I, (b) BI-RADS II, (c) BI-RADS III and (d) BI-
RADS IV.
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1.5 Computer-Aided Detection

Computer-Aided detection (CAD) is an ongoing area of research and has at-

tracted a lot of attention over the last two decades. A CAD system integrates

digital image analysis techniques, pattern recognition and artificial intelligence

techniques to find abnormalities in mammograms (Rangayyan et al. 2007). It

was developed to help radiologists in making precise clinical decisions for early

detection of breast cancer (Morton et al. 2006). A radiologist still needs to read

the mammogram with a CAD system acting as a second reader and making the

radiologist’s work easier by evaluating the mammogram and highlighting suspi-

cious regions for review (Stark 2000). If two radiologists have different opinions on

a mammogram, the CAD system can help them by providing a machine opinion

to reconsider.

Many studies have shown that with advances in technology, CAD systems can

improve early breast cancer detection. A systematic review (Eadie et al. 2012)

of CAD found an increase of 8% and 7% in sensitivity and specificity respec-

tively, when using CAD compared to a radiologist alone. Cupples et al. (2005)

reported the results of a large clinical study, conducted with 27,274 screening

mammograms. With the help of CAD, there was 8.1% increase in recall rate,

6.7% increase in biopsy rate, and 16.1% increase in cancer detection. Birdwell

et al. (2005) conducted a study on 8,682 patients in a university hospital setting

and reported 7.4% more cancer detection using CAD. A study by Morton et al.

(2006) on 21,349 screening mammograms reported an increase of 10.77% in recall

rate and 7.62% in cancer detection rate. In (Brem et al. 2003), 377 screening

mammograms were interpreted by three radiologist with and without the help of

CAD systems. The study found that CAD significantly improved the detection

of breast cancer by increasing radiologist sensitivity by 21.2%. Freer & Ulissey

(2001) conducted a study using a database containing 12,860 mammograms to

assess the performance of radiologists with and without the assistance of CAD.

The performance of the CAD system was measured using recall rate, positive

predictive value, cancer detection rate and detection of early-stage malignancies.

The study found that with the help of CAD, recall rate increased from 6.5% to

7.7%, an increase of 19.5% in number of cancers detected and early-stage malig-

nancy detection increased from 73% to 78%. There was no change observed in

the positive predictive value for biopsy.

Studies have shown that double reading can increase the breast cancer de-

tection rate (Dinnes et al. 2001, Harvey et al. 2003, Helvie 2007) and hence it
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is the common practice for interpretation of screening mammograms in many

countries (Giordano et al. 2012, Pow et al. 2016, NAS 2008). Many studies sug-

gest single reading with CAD as an alternative (Gilbert et al. 2008, Posso et al.

2017, Sato et al. 2014), since double reading needs two radiologists. In addition,

CAD has shown potential to improve the detection rates similar to what double

reading can achieve. Gilbert et al. (2008) conducted a trial on 31,057 women

undergoing routine screening mammography, to compare the performance of sin-

gle reading with CAD and double reading. The trial found that single reading

with CAD obtained similar cancer detection rate as double reading (87.2% for

single reading with CAD and 87.8% for double reading) and a 0.5% higher recall

rate compared to double reading (3.9% for single reading with CAD and 3.4%

for double reading). Azavedo et al. (2012) was not able to find enough evidence

to determine whether the performance of single reading with CAD is equivalent

to that obtained in double reading. Sato et al. (2014) shows single reading with

CAD as a cost effective approach that can be included in the screening program

instead of double reading.

A large variety of CAD approaches for mammographic image analysis can

be found in the literature. A review of CAD methods for mammographic mass

detection is presented in Section 2.2.

1.6 Cancer Detection in Dense Breast

As mentioned previously, mammography is the best available screening tool for

early detection of breast cancer. However, screening effectiveness declines sig-

nificantly with an increase in overall breast density (Castellano et al. 2011).

Mammographic sensitivity may be as low as 30% to 48% in women with dense

breasts (Castellano et al. 2011, Kolb et al. 2002).

Kolb et al. (2002) conducted a study on the performance of screening mam-

mography with 27,825 screening sessions. The results show that in women with

dense breast, mammography failed to show 52% of cancer while in women with

nondense breast, mammography failed to show only 2% of breast cancers. Man-

delson et al. (2000) shows that breast density was strongly associated with reduced

mammographic sensitivity and increased risk of interval cancer. Interval cancers

are those cancers that are detected some time after a mammographic screening

in which findings are considered normal. The mammographic sensitivity declined

sharply from 80% among women with predominantly fatty breasts to 30% in
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women with extremely dense breasts in their experiment. A study published by

Buist et al. (2004) indicates that breast density is the major factor contributing

to the cancers being undetected at screening.

The need for improved diagnosis of breast cancer in women with dense breast

is further emphasized by the greater risk of breast cancer in this population.

According to Boyd et al. (2002) women with dense breast have 1.8 to six fold

increased risk of developing breast cancer compared to those who have less or

no dense breast tissues. Mandelson et al. (2000) suggest that women with dense

breast have six fold greater risk of interval cancer. Hou et al. (2013) also reported

that women with dense breast have high risk of breast cancer.

CAD systems, which have been developed to help radiologists in making pre-

cise clinical decisions for early detection of breast cancer (Morton et al. 2006),

may also often fail to perform in dense breasts (Ho & Lam 2003, Brem et al. 2005,

Obenauer et al. 2006, Malich et al. 2006, Oliver et al. 2010, Castellano et al. 2011,

Liu et al. 2011, Manso et al. 2013, Tai et al. 2014, de Oliveira Silva et al. 2017).

Christoyianni et al. (2000) presented a detection algorithm for circumscribed

masses in mammograms using radial basis function neural network (RBFNN).

The experiment was tested on 22 mammograms containing circumscribed lesions

from Mini-MIAS. The authors showed that the recognition of abnormal tissue was

90.9% in fatty tissue while it dropped to 33.3% in dense tissue. Ho & Lam (2003)

showed a decrease in sensitivity of CAD from 93.9 % in women with nondense

breasts to 64.3 % in women with dense breasts. Liu et al. (2011) study based on

Complete Local Binary Pattern (CLBP) achieved a sensitivity of 81% with 1.78

false positives per image for BI-RADS I but dropped to a sensitivity of 33.3%

with 1.33 false positives per image for BI-RADS IV. The method was evaluated

on a dataset with 231 images, containing 245 masses taken from DDSM database.

Tai et al. (2014) study based on co-occurrence matrix and optical transformation

methods achieved a sensitivity of 90% with 2 false positives per image for BI-

RADS I, while it dropped to 50% with 2 false positives per image for BI-RADS

IV. The experiment was conducted on 358 mammograms selected from DDSM.

Manso et al. (2013) analysed the effect of breast density on detection of masses.

In the study, mass was detected using an Independent Component Analysis (ICA)

feature extraction method and classification by neural networks (NN) and SVM

classifiers. The experiment was tested on 2324 mammograms taken from DDSM.

It was found that breast density affects the performance, since the performance

measure area under curve decreases from 0.965 to 0.892 (-7.56%) for NN classifiers

and 0.964 to 0.897 (-6.95%) for SVM classifiers, when moving from BI-RADS I
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to BI-RADS IV. Recently, de Oliveira Silva et al. (2017) also showed that masses

in low density are better detected (accuracy of 92.71% in nondense breasts) than

masses in high density (accuracy of 79.17% in dense breasts).

Few studies (Pandey et al. 2012, Singh & Bovis 2005) suggested image en-

hancement can increase the contrast between the malignant and normal tissues

and there by facilitate mass detection in dense breast. Vallez et al. (2014) and

Freixenet et al. (2008) studies suggested that breast tissue classification (or hav-

ing breast density information) prior to mass detection could help to tune the

experiments based on different densities and there by increase mass detection in

dense breast.

1.7 Motivation and Research Objectives of the

Thesis

It is clear from the literature that dense breast is an important risk factor for

breast cancer and mammography is limited in detecting cancer in the dense

breast. Even though there are many CAD techniques developed for mass classifi-

cation/detection, the sensitivity in dense breast is still low. Thus, further research

is required to improve the sensitivity of mammography for detection of masses

in dense breasts. Therefore, the objective of this thesis is to develop computer

methods for analysing masses localized in dense background of mammograms in

order to improve the mass detection in dense breast.

Relative location of mass to the dense regions of the breast has a major influ-

ence in detectability of the mass. Masses localized in dense background are diffi-

cult to identify, even for experienced radiologists as normal dense breast tissues

hides the tumour (masses). Different types of breast tissues respond differently

to X-rays. Fatty tissues are radiographically translucent and let most X-rays pass

through during the mammographic imaging process and, therefore, appear dark

in mammographic images. In contrast fibroglandular tissues are radiographically

dense and absorb more X-rays than fatty tissue during the acquisition process

and, therefore, appear brighter in mammographic images (Wolfe 1976b). The

breast tumors are also dense tissues and they appear as solid white areas on the

mammograms which makes it difficult to detect tumors in dense breasts. Fig-

ure 1.8 shows examples of mammograms with masses localized in dense and non

dense backgrounds. It is clear from the figure that detection of masses localized
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in dense background is a challenging task for human eyes compared to mass de-

tection in non dense background. This study specifically focused on analysing

masses localized in the dense background of mammograms.

(a) Masses in dense background

(b) Masses in non-dense background

Figure 1.8: Examples of mammograms (a) showing masses in dense background
and (b) masses in non dense background.

The main objective of this thesis is to develop texture analysis methods suit-

able for improving detection of masses in dense regions of a mammogram. Texture

analysis of primitive micropatterns (at pixel level) and their macro level (super-
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pixel) representations and suitable mechanisms to understand their topological

representation in masses will be studied. In addition, methods to improve breast

mass segmentation in dense breast, which is an important step for subsequent

mass detection process, will be investigated. Finally, an automatic breast mass

localisation system incorporating the methods is developed.

1.8 Overview of the Thesis

This thesis consists of 8 chapters including this introduction chapter (Chapter 1).

Chapter 2 provides a review of the main steps involved in an automated

CAD system and describes key methods used in this thesis for developing the

final automatic mass localisation system. It also provides an overview of the

currently available texture analysis techniques and their applications to mass

classification/detection.

In Chapter 3, characteristics of masses localized in dense background are

studied using primitive/structured micropatterns generated using Local Binary

Pattern (LBP) technique. The typical histogram concatenation approach of ex-

tracting features from LBP is replaced by features based on combinatorial prop-

erties of the structured micropatterns. This allows for a huge reduction of the

dimension of the feature space while keeping a high rate of mass classification.

Chapter 4 presents a new paradigm for texture analysis: the superpixel tex-

ture analysis paradigm. In this paradigm, the ROIs are transformed into a su-

perpixel tessellation using a regular grid approach and irregular grid approach.

Superpixel patterns are found using a generalized superpixel based local binary

pattern technique and density of macro-structures in the ROI image form the

basis for classification.

Chapter 5 presents a method for building graphs on the structured superpixel

patterns. The topology/connectivity of the structured superpixel patterns is an-

alyzed using multiscale morphology. Graph models are constructed on structured

superpixel patterns using morphological dilation to represent the spatial connec-

tivity relationship between the structured superpixel patterns within an ROI. A

set of graph features is generated from the proposed model and classification is

performed based on graph features.

In Chapter 6, two techniques for improving breast mass segmentation in local

dense background are presented. Initially, a self-adjusting mammogram contrast
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enhancement solution called adaptive CLAHE is proposed, aiming to improve

mass segmentation. Then, an optimization algorithm for automatically tuning

segmentation of mammograms by the Statistical Region Merging (SRM) tech-

nique is proposed, to improve the mass segmentation. Results are compared with

commonly used image enhancement techniques in the literature.

Chapter 7 presents an automatic mass localisation system incorporating the

methods developed in the previous chapters (Chapters 3, 4, 5 and 6 ).

In Chapter 8, conclusions, future work and contributions of this thesis are

summarized.
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Chapter 2

Technical Background and

Literature Review

In this chapter we review the main steps involved in an automated CAD system

and provide an overview of the currently available texture analysis techniques and

their applications to mass detection/classification. The databases searched for the

literature were ScienceDirect and Google scholar. Reference lists of the interested

papers were hand searched for additional records. In addition, manual searching

from proceedings of top conferences in Breast Imaging like IWDM, MICCAI and

citations of key authors. The keywords used for literature search were mammog-

raphy, mass detection/classification, CAD, texture analysis, superpixel, graph

model, micro-patterns, local binary patterns, dense breast, mass enhancement,

and mass segmentation. Texture analysis methods and their applications to mass

detection/classification are presented in Section 2.1. A brief review of the main

steps in the mammographic mass detection and the key methods that have been

incorporated into the mammographic CAD mass detection system developed in

this thesis are described in Section 2.2. An overview of the databases used in this

thesis is described in Section 2.3.

2.1 Texture Analysis

Texture is an important feature of images, formed by variations in the grey levels

of neighbouring pixels of the image. It can be defined as a repeated pattern of

fundamental units called Texels (Blostein & Ahuja 1989, Hild & Shirai 1993).

Texture features have been used and proven to be useful in discriminating differ-

ent classes in many applications of computer image analysis. In mammographic
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image analysis, texture features have been widely used for characterizing breast

tissue patterns (Rabidas et al. 2018a, Suhail et al. 2017, Muramatsu et al. 2016,

Raghavendra et al. 2016, Abdel-Nasser et al. 2015, Wei et al. 2012, He et al.

2011, Blot & Zwiggelaar 2005). Tables 2.1 and 2.2 provide a summary of texture

methods for mass classification and detection respectively, indicating the texture

features used and their results. The methods for extracting texture features can

be divided into two main categories: statistical and structural. The following

subsections briefly explain statistical and structural methods.

2.1.1 Statistical Methods

Statistical methods characterize textures based on the spatial distribution of in-

tensity values in an image. Statistical methods can be classified into three main

categories: first order, second order and higher order statistics. The first order

statistics estimates the texture properties based on individual pixel values, dis-

regarding the relationship between adjacent pixels. Average, variance, skewness

and kurtosis computed on an image intensity histogram are some of the first

order measures. The second order and higher order statistics estimate the tex-

ture properties based on the relationship between two or more pixels. Gray level

co-occurrence matrices (GLCM) proposed by Haralick et al. (1973) is a popular

method for extracting second order texture information from the images. It is also

referred to as spatial gray level-dependence (SGLD) matrices (Rangayyan 2005).

Haralick described fourteen statistical measures (like angular second moment,

contrast, entropy, correlation, and inverse difference) from GLCM to represent

the characteristics of the spatial distribution of gray levels in the image. Gray

level run length method, a higher order statistic, proposed by Galloway (1975),

is another popular statistical texture analysis method. A gray level run is a set

of consecutive pixels having the same intensity/gray value and run length is the

number of pixels in a run. Short and long runs emphasis, gray level and run

length non-uniformity and run percentage are some of the texture features ex-

tracted from gray level run length matrix. These methods are widely used in

analysis and classification of breast masses (Chan et al. 1995, Wei et al. 1997,

Sahiner et al. 1998, Rangayyan et al. 1997, Sahiner et al. 2001, Mudigonda et al.

2001, Khuzi et al. 2009, Amroabadi et al. 2011, Dhungel et al. 2017, Khuzi et al.

2009, Dhahbi et al. 2018, Chakraborty et al. 2018).

Sahiner et al. (1998) introduced a rubber band straightening transform (RBST)

method to analyze the margin characteristics of masses. This method maps the
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Table 2.1: A summary of texture features for mass classification, indicating au-
thors, year of publication, features used, experimental data, results.

Mass Classification

Author & Year Features/Technique Dataset Results

Sahiner et al.
(1998)

SGLD and RLS features
computed using RBST

method
249 mammograms

benign/malignant classification
AUC = 0.94

Khuzi et al.
(2009)

GLCM features
100 mammograms from

Mini-MIAS
malignant/normal classification

AUC = 0.84

Llado et al.
(2009)

LBP features
1792 manually cropped

ROIs
malignant/normal classification

AUC = 0.94

Choi & Ro (2012) LBP features
automatically generated

1693 ROIs
malignant/normal classification

AUC = 0.92

Torrents-Barrena
et al. (2014)

Gabor wavelet filters
322 mammograms from

Mini-MIAS
Accuracy = 0.80

Hussain et al.
(2014)

Gabor filters
1024 manually cropped

ROIs
malignant/normal classification

AUC = 0.99

Abdel-Nasser
et al. (2015)

Uniform local directional
patterns

312 manually cropped
ROIs

AUC= 0.93

Muramatsu et al.
(2016)

Radial local ternary
patterns

376 manually cropped
ROIs

benign/malignant classification
AUC = 0.90

da Rocha et al.
(2016)

LBP and diversity index
1155 ROIs (625

malignant and 530
benign)

AUC =0.88

Raghavendra
et al. (2016)

Gabor filter
690 mammograms from

DDSM
benign/malignant classification

accuracy = 98%

Suhail et al.
(2017)

Texton based approach
400 mammograms from

DDSM
benign/malignant classification

accuracy = 96%

Rabidas et al.
(2018a)

Neighborhood structural
similarity method

58 mass ROIs from
Mini-MIAS and 1316

mass ROIs from DDSM

benign/malignant classification
AUC = 0.98 for Mini-MIAS, AUC

= 0.93 for DDSM

Dhahbi et al.
(2018)

GLCM, fractal dimension,
wavelet, Hilbert’s image

representation and
Kolmogorov Smirnov

distance

1914 manually cropped
masses, automatically
generated 8254 normal

tissues from DDSM

Accuracy = 81.09

Pawar et al.
(2018)

LBP based on sparse
curvelet subband

coefficients

automatically generated
381 suspicious ROIs from

Mini-MIAS and 1343
from DDSM

AUC = 0.98 for Mini-MIAS, AUC
= 0.98 for DDSM

group of pixels surrounding a mass into a rectangular array. Their results show

that SGLD and run-length statistics (RLS) features computed from RBST trans-

formed images have higher potential for discrimination of the malignant tissues

from benign in mammograms, when compared to the same features computed

from entire an ROI containing the mass. Mudigonda et al. (2001) used an adap-

tive ribbons technique to extract pixels surrounding the margin of masses and

computed Haralick features to classify malignant and benign regions in mam-

mograms. Chakraborty et al. (2013, 2018) introduced two angle co-occurrence
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Table 2.2: A summary of texture features for mass detection, indicating authors,
year of publication, features used, experimental data, results.

Mass Detection

Author & Year Features/Technique Dataset Results

Mudigonda et al.
(2001)

Haralick features
56 mammograms from

Mini-MIAS
Sensitivity of 81% with 2.2 false

positive per image

Liu et al. (2011)
Complete Local Binary

Pattern
231 mammograms

Sensitivity = 81% for BI-RADS 1,
Sensitivity = 33.3% for BI-RADS

IV

Dheeba et al.
(2014)

Laws features
216 mammograms from

Mini-MIAS
AUC = 0.96, sensitivity = 94%

and specificity = 92.1%.

Tai et al. (2014)
Co-occurrence matrix and

optical density
transformation method

358 mammograms from
DDSM

Sensitivity = 90% with 2 false
positive per image for BI-RADS I,

sensitivity = 50% with 2 false
positives per image for BI-RADS

IV

Dhungel et al.
(2017)

GLCM
410 mammograms from

INbreast
Sensitivity = 0.98, specificity =

0.7

Chakraborty
et al. (2018)

GLCM and ACM
450 benign, 440

malignant, 410 normal
images from DDSM

sensitivity = 85% with 1.2 FPI
for detection and AUC = 0.87 for

classification

matrices (ACMs) based on the magnitude and angle responses of the Sobel op-

eration and extracted Haralick features from it. Their results show that Haralick

features computed from the ACMs have higher potential for mass classification,

when compared to the same features computed from GLCM. Recently, Dhungel

et al. (2017) used texture features generated from GLCM combined morphologi-

cal features to pre-train the deep learning Convolutional Neural Networks (CNN)

for mass classification. Kanadam & Chereddy (2016) used a sparse matrix to rep-

resent the irregular shape of mass and characterize using GLCM and gray level

aura matrix (GLAM), in contrast to the traditional fixed size window approach.

Texture analysis based on filters is another popular technique that has been

widely used in mammogram image analysis (Wei et al. 1997, Buciu & Gacsadi

2011, Zheng 2010, Hussain et al. 2014). Laws texture energy measures, proposed

by Laws (1980), uses 5 filters (level, edges, spots, ripples and waves) to extract

micro-structure characteristics of the image, which can be used for texture classi-

fication. Miller & Astley (1992) used Laws texture energy measures for classifying

breast tissues. The study found that edge and spot filters have better texture

classification capability than others. Dheeba et al. (2014) used Laws texture fea-

tures along with an optimized wavelet neural network based on particle swarm

optimization to increase the mass classification accuracy.

Other popular filters used for texture analysis are Fourier domain filters, Ga-
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bor filters and wavelength transform. From the filtered images, a variety of

texture features like edge frequency, randomness, coarseness, linearity, and direc-

tionality can be extracted. Fourier analysis requires images to be first transformed

into the Fourier domain and then filters are applied on the transformed images.

The Fourier transform method extracts global frequency information from signal,

however, it takes no account of spatial localisation. Hence, this approach results

in poor performance in many applications (Mirmehdi 2008). The general solution

is to include spatial dependency into the Fourier analysis via a window Fourier

transform. When the Gabor function is used as the window function, it becomes

the popular Gabor transform. Gabor filters and wavelet transforms are popular

for multi-resolution/multi-scale texture analysis. Zheng (2010) introduced a Ga-

bor Cancer Detection (GCD) algorithm for breast cancer detection. Their Gabor

filter was formed with five bands and four orientations (horizontal, vertical, 45

and 135 degree). For each mammogram, 20 filtered images were produced and

edge histogram features were generated from these filtered images. Then these

features were used for classifying mass and non-mass regions in mammograms.

Buciu & Gacsadi (2011) used Gabor features for classifying breast tissues into

normal, benign and malignant. The study used 24 Gabor filters which resulted in

a 86400-dimensional feature vector for each image. Torrents-Barrena et al. (2014)

used multichannel Gabor wavelet filters to extract texture features for classifying

tumor and non tumor. Hussain et al. (2014) used Gabor filters along with SVM

for false positive reduction and mass classification. They applied a Gabor filter

bank at different scales and orientations and extracted statistical features (mean,

standard deviation and skewness) from the Gabor images. Raghavendra et al.

(2016) have used directional textural features generated using a Gabor filter to

differentiate between normal, benign and malignant ROIs.

Wei et al. (1997) used Daubechies’ wavelet transform to decompose mammo-

gram ROIs into different scales and computed SGLD features from each scale to

form the feature vector for mass classification. Midya & Chakraborty (2015) used

Haar wavelet transform to decompose the mammogram region into three levels

and computed angle co-occurrence matrices (ACMs) and gray level co-occurrence

matrices (GLCM) for each level. Texture features extracted from ACMs and

GLCM were used for mass classification.

Fractal theory proposed by Mandelbrot (1977) is another texture analysis

method that has been found useful in mammograms. Ke et al. (2010) used the

differential box-counting method to derive the fractal dimensions of mammo-

grams. Mammograms were analyzed at multiple scales and fractal features were
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extracted from each scale and combined to form a feature vector for mass detec-

tion. Zhen & Chan (2001) used a mass detection framework that combines fractal

dimension for selecting the ROIs followed by segmentation using multi-resolution

Markov random field and classification using shape features.

Local Binary Patterns (LBP) is one of the most discriminative and computa-

tionally simple local texture descriptors and has been investigated by researches

for about two decades (Ojala et al. 1996, Pietikainen & Zhao 2015). LBP and

variants of LBP have been widely used in mammographic mass classification.

Llado et al. (2009) and Choi & Ro (2012) used LBP to represent textural prop-

erties of masses for reduction of false positives in computer-aided detection of

breast masses on mammograms. Muramatsu et al. (2014, 2016) used radial local

ternary patterns (RLTP) to differentiate between benign and malignant ROIs.

Abdel-Nasser et al. (2015) used uniform local directional patterns (ULDP) to

classify breast tissues. Rabidas et al. (2018a) proposed a neighborhood struc-

tural similarity (NSS) method based on gray level difference between the adja-

cent regions of masses. The features generated were combined with uniform LBP

features as the NSS features are global in nature. Pawar et al. (2018) proposed

an LBP method based on sparse curvelet coefficients to describe masses to reduce

the false positives in CAD. Even though LBP based approaches are simple and

efficient texture operators, they produce a very large dimension feature space as

the features are based on concatenation of histograms of LBP labels.

In this thesis, we propose a novel approach for dense breast mass classification

utilizing specific structures of LBP generated patterns, the structured micro and

macro patterns. The typical histogram concatenation approach of extracting

features from LBP is replaced in our study by features based on combinatorial

properties of the structured micro and macro patterns. This allows for a huge

reduction of the dimension of the feature space while keeping a high rate of mass

classification.

2.1.2 Structural Methods

Structural/geometrical methods are based on the structural properties of tex-

ture primitives and understanding the placement rules of these primitives, which

governs texture spatial organization (Haralick 1979). Mathematical morphology,

edge detection, spot detection and neighbourhood operators are some methods

by which primitives can be extracted. Computing statistics of the primitives (e.g.

area, intensity, orientation and elongation) and interpreting the placement rules
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of the elements are common analysis approaches. Ahuja (1982) and Tuceryan &

Jain (1993) used Voronoi tessellations to represent structure and organization of

primitives. Zucker (1976) used a graph method to describe spatial relationship

between the texture primitives. Lu & Fu (1978) used tree grammar for discrimi-

nation of textures.

A large variety of graph based structural approaches can be seen in histopatho-

logical image analysis where the spatial connectivity relationship between the cells

are measured to distinguish between the healthy and cancer tissues (Gunduz et al.

2004, Oztan et al. 2013, Gunduz et al. 2004, Bilgin et al. 2010, 2007). These graph

approaches combine techniques from graph theory, image analysis and machine

learning to predict the underlying functional state. The cell graph approaches

are based on the assumption that cells in a tissue are organized in a way to

perform a specific function and if abnormality is present, that can change this

organization. Hence, understanding the structural organization of cells present

in the tissues can help to predict the normality or abnormality (Yener 2016).

Likewise, in mammogram image analysis, understanding the spatial organization

of the structures present in masses can help in predicting cancerous and normal

tissues. In a recent study, Cheng et al. (2010) used spatial connectivity graphs

to understand the spatial organization of microcalcifications. Graph features ex-

tracted from the spatial connectivity graph models were used for the classification

of malignant and benign microcalcification clusters. However, the literature lacks

structural approaches for mammographic mass texture analysis. The structural

approach better suits describing macro-textures, finding a suitable mechanism to

extract the macro-structures and their spatial organization information (Zhang

& Tan 2002) may be the reason for not using this approach in mass analysis.

In this thesis, we have introduced a novel structural approach for mass analysis

where ROIs were first transformed into superpixel tessellation and macro-textures

were extracted using a superpixel based local binary pattern technique and the

spatial organization of the macro-textures were studied using a graph approach.

2.2 Computer-Aided Breast Cancer Detection

This section provides a brief review of the main techniques that are used for CAD

and reviews the key methods used in this thesis. A typical CAD system consists

of stages like preprocessing, segmentation, feature extraction, feature selection

and classification.
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2.2.1 Mammogram Preprocessing

Mammographic images do not provide good contrast between normal dense tis-

sues and cancerous tissues, as X-ray attenuation between these two tissues does

not vary much. Studies have shown that if region brightness is less than 2% from

its surroundings, then the region is not distinguishable by human eyes (Morrow

et al. 1992). This fact is seen quite evidently in the case of masses localized in

the dense background of mammograms and this makes it more difficult for the

radiologist to distinguish between normal and cancerous tissues. Hence, it is very

important to enhance the contrast between the region of interest and background,

in order to extract mass features effectively and detect/classify the masses more

accurately.

The main task of the mammogram preprocessing stage is to enhance the con-

trast between the diagnostic features from the background (like contrast between

masses and normal breast tissues) using different image processing techniques.

Some of the commonly used contrast enhancement techniques are: wavelength

transform, unsharp masking, histogram equalization (HE) and contrast limited

adaptive histogram equalization (CLAHE) (Cheng et al. 2006). In the wavelet

transformation approach, the mammograms are first transformed into a wavelet

space by applying a mother wavelet function. Then the wavelet coefficients are

modified to enhance the mammographic mass features and finally the enhanced

image is reconstructed using an inverse wavelet transformation (Cheng et al. 2006,

Mencattini et al. 2008). Unsharp masking is a method used to sharpen the mam-

mogram images by emphasizing the high-frequency portions of the image that

contain fine details. It is obtained by subtracting a low-pass filtered image from

the input image, which corresponds to a high-pass filtered image (Panetta et al.

2011, Cheng et al. 2003, McSweeney et al. 1983).

HE is one of the simplest method used to enhance the contrast of an image

based on adjusting image intensity values. The objective of this method is to

transform the image histogram to a uniform one, where the output image has

all its gray levels with equal probability of incidences (Rangayyan 2005). Let I

be a mammogram image with size P and gray levels i ∈ {0, 1, · · ·L − 1}. The

probability of occurrence of gray level i in the image is pi = ni/P , where ni is

the number of occurrence of gray level i in I. Then the original image intensity

I(x, y) can be mapped into new histogram equalized G(x, y) as follows (Cheng
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et al. 2006):

G(x, y) = (L− 1)×
I(x,y)∑
i=0

pi. (2.1)

The histogram equalization is a global approach that is applied to the entire

image and hence it may not enhance local details of the mammograms. Mostly,

in mammogram analysis, it is necessary to enhance the local details of an image.

In such situations, local operations are preferred over global operations. The

local operation requires the information of local neighborhood, which is specified

by a window. Adaptive histogram equalization (AHE) is a variant of HE which

works over a local region. However, in AHE, there is a possibility of image over-

enhancement as noise is also enhanced.

CLAHE proposed by Pizer et al. (1987) is a modification of AHE algorithm.

The algorithm subdivides the image into equal sized nonoverlapping regions and

applies HE to them. In contrast to AHE algorithm, CLAHE reduces the noise

amplification by clipping the histogram at a user defined value called clip limit.

The clipped pixels are redistributed equally among all histograms bins. CLAHE

has been used as a preprocessing step for mass segmentation, classification and de-

tection. Studies have shown that CLAHE can improve the segmentation accuracy

of mass detection in dense breasts compared to the segmentation obtained from

an unenhanced original image (Singh & Bovis 2005). In this thesis, a modified

version of CLAHE (adaptive CLAHE) is proposed and used as a preprocessing

step to improve mass candidate segmentation in Chapter 6 and Chapter 7. In

the proposed approach, instead of user selecting the CLAHE parameters, an opti-

mization algorithm based on entropy is used to automatically select the CLAHE

parameters, then standard Fuzzy C-means clustering is used for segmentation.

2.2.2 Mammographic Image Segmentation

Image segmentation is one of the fundamental steps that helps in analysing the

image data (Sonka et al. 2007). It is the process of dividing an image into several

regions or objects based on some specific similarity measures. The similarity can

be in terms of brightness/intensity, colour, texture etc (Gonzalez & Woods 1992,

Sonka et al. 2007). For CAD, image segmentation can help in delineation and

detection of regions of interest. It can help in extracting the breast region from the

background and can also help in detecting mass regions based on the segmented

bright regions in mammograms. A large variety of image segmentation algorithms
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can be found in the literature. Thresholding, region based segmentation and

clustering are some of the commonly used segmentation methods.

2.2.2.1 Thresholding

Thresholding is a simple and popular method used for image segmentation that

divides the image into several regions based on image intensity values. It can

be divided into global and local thresholding. Global thresholding uses a single

threshold for the whole image (Brzakovic et al. 1990) while local thresholding uses

multiple thresholds depending on the local characteristics of the image (Kallergi

et al. 1992). Selection of the correct threshold value is very important for thresh-

old based image segmentation. One of the simplest threshold selection techniques

is detection of image histogram peaks to find the segmentation threshold. Some

other automatic threshold selection methods are based on optimizing a criterion

function like minimizing the total misclassification error (Nakagawa & Rosenfeld

1979) or maximizing posterior entropy of the partitioned image (Kapur et al.

1985).

Otsu (1979) proposed an automatic threshold selection technique based on

minimizing the weighted intra-class variance. The Otsu algorithm has been widely

used in medical image segmentation applications. In this thesis, Otsu threshold-

ing is used to separate the breast region from the background (Chapter 7). The

algorithm is described as follows. Suppose I is a mammogram image with size P

and gray levels i ∈ {0, 1, · · ·L − 1}. Let S0 and S1 are two classes representing

background and foreground, respectively separated by a threshold t, then the

class probabilities are defined as follows:

w0(t) =
t∑
i=0

pi and w1(t) =
L−1∑
i=t+1

pi, (2.2)

where pi = ni/P is the probability of occurrence of gray level i in the image and

ni is the number of occurrences of gray level i in I. The corresponding class

means are estimated as µ0(t) =
∑t

i=0 ipi/w0(t) and µ1(t) =
∑L−1

i=t+1 ipi/w1(t).

Similarly, the individual class variances σ2
0 and σ2

1 are defined as follows:

σ2
0(t) =

t∑
i=0

[i−µ0(t)]
2pi/w0(t) and σ2

1(t) =
L−1∑
i=t+1

[i−µ1(t)]
2pi/w1(t). (2.3)

Finally, the weighted intra-class variance is defined as σ2
w(t) = w0(t)σ

2
0(t) +
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w1(t)σ
2
1(t). The optimal threshold is obtained by searching through all the t

values and selecting the value that minimizes the σ2
w(t). A detailed survey of

thresholding techniques and threshold selection methods can be found in (Sahoo

et al. 1988, Weszka 1978).

2.2.2.2 Region based segmentation

Region based segmentation divides an image into regions based on some homo-

geneity property (Gonzalez & Woods 1992, Oliver et al. 2010, Sonka et al. 2007).

The homogeneity can be expressed in terms of intensity values, texture or color.

Region growing and region split and merge are two basic region based segmen-

tation methods. The region growing method starts with a set of seed points and

grows by merging neighbouring pixels that have properties similar with the seed

point. The merging procedure stops when there is no pixel to merge that satisfies

the homogeneity criterion. The split and merge method starts with splitting the

image into sub-regions until all regions satisfy a homogeneity criterion and then

adjacent regions are merged if they satisfy another homogeneity criterion.

Statistical Region Merging (SRM) technique proposed by Nock & Nielsen

(2004) is a region growing algorithm. In this thesis, SRM is used to generate

mass candidates in Chapter 6 and superpixels in Chapters 4, 5 and 7. The SRM

algorithm is based on probability theory and contains two components: a merging

predicate that decides whether two regions R1 and R2 should be merged or not,

and the order followed in testing this predicate for growing regions. The merging

predicate is defined as follows:

P (R1, R2) =

true, if |R̄1 − R̄2| ≤
√
b2(R1) + b2(R2)

false, otherwise,
(2.4)

where

b(Ri) = g

√
1

2Q|R1|
ln

2

δ
. (2.5)

where R̄1 and R̄2 denote the average intensity of the regions R1 and R2 respec-

tively, g is the number of the gray levels of the image. Q is a parameter, which

is related to the coarseness of the segmentation. δ denotes the probability error

and |.| stands for cardinality. The order of testing the predicate is based on the
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function f which is defined as follows:

f(x, x′) = abs(xint − x′int). (2.6)

where x and x′ are the pixels of the image I, and I(.) is the intensity function.

2.2.3 Clustering

Clustering associates the data points into groups called clusters based on their

similarity. Some of the commonly used clustering methods are K-means, Fuzzy

C-means (FCM) and Simple Linear Iterative Clustering (SLIC). K-means cluster-

ing (MacQueen 1967), which is the simplest among clustering methods, partitions

the given image into k clusters. Given a set of data points, K-means clustering

partitions the data points into k clusters by minimizing the objective function

Okmeans.

Okmeans =
k∑
i=1

Si∑
j=1

||xj − ci||2, (2.7)

where x represents the data points, S = {S1, S2 · · ·Sk} represents clusters and ci

is the mean of points in Sj.

FCM clustering is a modification of K-means clustering, which allows a data

point to associate with two or more clusters with varying degrees of membership.

In this thesis, FCM is used to generate mass candidates in Chapters 6 and 7.

Let X = {x1, x2 · · · xn} represents an image with n pixels. The algorithm tries to

partition the image into k clusters by minimizing the objective function OFCM .

OFCM =
n∑
i=1

k∑
j=1

Um
ij ||xi − cj||2, (2.8)

where m is the parameter controlling the fuzziness, Uij is the degree of member-

ship of data point xi in the cluster j, cj is the value of jth cluster center, ||.|| is

the similarity measure between data point and cluster center.

SLIC was proposed by Achanta et al. (2012). In this thesis, SLIC is used to

generate superpixels in Chapter 4. SLIC begins by sampling the cluster centers on

a regular grid spaced S pixels apart. It is a modified form of K-means clustering

where the size of the search window is limited to 2S × 2S around the cluster

center to speed up the iterations. The superpixels are generated by clustering

27



pixels based on their intensity and spatial proximity. The clustering proximity is

defined as follows

D =

√
dc

2 +

(
ds
S

)2

m2 (2.9)

dc =

√
(lj − li)2 (2.10)

ds =

√
(xj − xi)2 − (yj − yi)2 (2.11)

where dc is the intensity proximity, ds is the spatial proximity and m is a constant

which controls the relative weight between intensity and spatial proximity.

2.2.4 Feature Extraction

Features are any characteristics or primitives of an image that assist to distin-

guish one object from another object. A good feature describes the object in a

meaningful manner which helps the recognition process and in the discrimina-

tion of these objects. Feature extraction is a task of extraction and generation

of features to assist the task of object classification. Feature generation process

computes new variables (features) from the stored values of an image or a region

within an image that have high information packing properties for discrimination

of different objects (Theodoridis & Koutroumbas 2003). Features can be roughly

divided into: intensity features, morphological features and texture features.

2.2.4.1 Intensity Features

Pixel intensities are the simplest feature available for pattern recognition. Inten-

sity based features are a common choice for mass detection since masses usually

have an intensity higher than the surrounding tissues (Cheng et al. 2006). Con-

trast, average grey level (mean), standard derivation or variance, skewness and

kurtosis of ROIs are some of the intensity based features (Petrick et al. 1999, Li

et al. 2001, Varela et al. 2007). However, the intensity based features may fail
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in classifying masses located in dense backgrounds because of the similarity in

intensity values between masses and normal dense tissues.

2.2.4.2 Morphological Features

Morphological features are also called shape features. Shapes of human organs like

the heart, liver, and kidney are well known, and they do not deviate much in shape

from normal cases. However, the presence of disease like cancer can change the

structural organization and can cause deviation from normal shape (Rangayyan

2005). Hence, analysing shape features can help in understanding/predicting the

presence of any abnormality. Similarly, benign and malignant breast masses differ

in shape. Masses with ill-defined and spiculated borders have a high chance of

malignancy, while benign masses are associated with a circular/oval shape and

smooth borders. Numerous techniques have been developed in the literature for

shape analysis (Rangayyan et al. 1997, 2000, Sahiner et al. 2001, Cheng et al.

2006, Sonka et al. 2007, Oliver et al. 2010).

Shape features are based on parameters such as margin spiculation, mar-

gin sharpness, area, compactness, circularity, convexity and rectangularity of the

ROI (Cheng et al. 2006, Chuand et al. 2015, Dhungel et al. 2016, Choi et al. 2016,

Chokri & Farida 2017) and hence depend on the accuracy of the segmentation

step. Segmentation of masses located in dense background is a challenging task

due to the overlap of normal dense tissues and obscured mass boundaries (Obe-

nauer et al. 2006, Bajger et al. 2009). In this thesis, we have presented two

techniques (Chapter 6) to improve the segmentation of masses located in dense

background.

2.2.4.3 Texture Features

Texture features contain information about the spatial distribution of intensity

variations in an image or a selected region of an image. They are widely used in

mammographic image analysis (Sahiner et al. 1998, Mudigonda et al. 2001, Choi

& Ro 2012, Lin et al. 2014, Abdel-Nasser et al. 2015). As texture features are

the main focus of this thesis, they have been described in detail in Section 2.1.

In addition to the above described three feature extraction methods, deep

learning is seen to be gaining momentum in machine learning due to its capability

to extract features at deeper levels of abstraction using multiple layers of neural
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networks. Recently, a few studies have used deep learning models using Convo-

lutional Neural Networks (CNN) for analysis of masses in mammograms (Kooi

et al. 2017, Levy & Jain 2016, Dhungel et al. 2017). However, CNN features

may not be suitable for mass classification in dense background due to scarcity of

available data. CNNs need large training sets (typically a few thousand images)

to produce accurate classification results.

2.2.5 Feature Selection

Feature selection is a statistical technique for reducing extracted features to a

meaningful and compact set of features. There are many reasons for doing feature

selection. One of the reasons is, not all features extracted have significant mass

discrimination information. Another reason is that high feature dimensionality

carries the risk of classifier overfitting and lack of generalization (Friedman 1997).

Feature selection can save computation time and improve the accuracy of the

classification. Feature dimensionality reduction is highly important, especially

when considering scarcity of labelled data for dense breasts.

Let X = {xi|i = 1, 2, . . . n} be the feature set, then feature selection process

tries to find a subset x = {xi|i = 1, 2, . . .m}, where m < n, that optimizes

an objective function. Traditionally, a feature selection process includes two

components: a search strategy for selecting the subsets of a feature vector and an

objective function to evaluate the class discrimination capability of the selected

feature subset. Exponential search techniques like exhaustive search, sequential

search techniques like sequential forward and backward search, and random search

techniques like genetic algorithms are some of the most commonly used search

strategies.

The evaluation or the objective functions can be broadly categorized into two

groups: wrapper methods and filter methods. Wrapper methods evaluate feature

subsets by training a model on it and evaluating their predictive performance

through statistical resampling or cross validation. Filter methods do not use

any training model, instead evaluate the feature subset by analysing the general

characteristics of the training data such as intra-class and inter-class variance.

An exhaustive search examines all possible subsets of the feature vector in

order to find the best subset satisfying the objective function. This method guar-

antees finding an optimal feature subset. With n features generated there are

2n − 1 feature combinations. This makes exhaustive search computationally ex-

pensive and not practical for larger values of n. However if we limit the maximum
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number of features to d, the exhaustive search is reduced to
(
n
d

)
combinations and(

n
d

)
< 2n − 1. In this thesis, we have used exhaustive search feature selection.

Sequential search is a computationally efficient search technique, but a sub-

optimal feature selection technique as it does not examines all possible subsets of

the feature vector. In addition, sequential methods have a tendency to fall in local

minima. Sequential feature selection methods can be broadly classified into four

categories: sequential forward selection, sequential backward selection, sequen-

tial floating feature selection and bidirectional feature selection. The sequential

forward selection method starts with an empty set and features are added to it.

If the feature increases the performance of the classifier substantially, it can be

added to a semi-optimal feature set. If the contribution of the feature is mini-

mal, the feature can be ignored. This process is continued until the addition of

further features does not improve the objective function. The sequential back-

ward selection method starts with the complete set of attributes. At every stage,

the procedure removes the worst attribute from the set leading to a reduced set.

Two sequential floating methods are sequential floating forward selection and se-

quential floating backward selection. The forward selection method starts with

an empty set and makes, after each forward selection, several backward steps

if the objective function improves. In contrast, the backward selection method

starts with the complete set and makes, after each backward selection, several

forward steps if the objective function improves. Bidirectional feature selection

incorporates the sequential forward and backward feature selections. The proce-

dure begins with sequential forward selection from an empty set, simultaneously

with sequential backward selection from a full set. The procedure converges to

a semi-optimal feature set when added features are not removed and removed

features are not added again.

Random search, like genetic algorithms, incorporates randomness into their

search to minimise the problem of falling into local minima. Genetic algorithms

(GA) are based on the process of natural selection that evolves a population over

time to better adapt to the surroundings. GA starts from a random population

of individuals called candidate solutions and associated properties for each can-

didate called chromosome. Each chromosome is represented in binary strings of

0s and 1s. The number of digits in the binary string represents the total num-

ber of features, and 1 and 0 represents the inclusion and exclusion of particular

features in the classification model. A fitness function is used to evaluate the per-

formance of each individual in solving the problem and the fittest individuals are

selected for producing the next generation individuals. The selected individual’s
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chromosomes are mutated and altered using two genetic operators (crossover and

mutation) to produce new generation individuals. The algorithm usually termi-

nates when the maximum number of allowed generations have been produced or

when two subsequent generations no longer differ significantly from each other.

2.2.6 Classification

After the feature selection process, the selected features are given as input to

a classifier to categorize regions identified as suspicious into normal tissue or

malignant mass. Supervised and unsupervised are the two main classification

techniques. If a set of training data is available and the classifier is designed

by exploiting this prior information, then it is known as supervised classification

while in unsupervised classification, no prior training information is available.

Fisher Linear Discriminant Analysis, Artificial Neutral Networks, Decision Tree,

Random Forest and Support Vector Machine are some of the popular supervised

classification techniques. In this thesis we have used Fisher Linear Discriminant

Analysis and Support Vector Machine classifiers for the experiments.

2.2.6.1 Fisher Linear Discriminant Analysis

Fisher Linear Discriminant Analysis (LDA) is one of the most commonly used

mass classification methods. It was originally developed by Fisher (1936). Let

x = [x1 , x2 , . . . , xd] be the feature vector and w = [w1, w2, . . . , wd] be the corre-

sponding weight vector, then the linear discriminant function is defined as follows:

J(x) = w1x1 + w2x2 + . . .+ wdxd = wTx. (2.12)

The main idea of LDA classification is to find a value for w that maximizes the

value of Z. This provides a ratio between the inter-class and intra-class variances,

in order to increase the separation between two classes. The Fisher criterion Z

is defined as follows (Ganesan et al. 2013a):

Z =
|wT (µ1 − µ2)|2

wTSw
, (2.13)

where µ1 and µ2 are the two class observations means and S is the within-class
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scatter matrix which is defined as follows:

S =
∑
i=1,2

∑
j ∈ classi

(j − µi)(j − µi)T . (2.14)

After finding the value of w based on the training set, the new observation

is classified as abnormal or class 1, if J(x) is positive, otherwise it is normal or

class 2.

2.2.6.2 Support Vector Machine

Support Vector Machine (SVM) is another widely used mass classification method,

originally developed by Vapnik & Lerner (1963). The idea of SVM mass classi-

fication is to design a hyperplane or a set of hyperplanes that can be used for

classifying the training data into two classes (normal, abnormal). An SVM hy-

perplane can be represented in the form of f(x) as given below.

f(x) = ωTx+ ω0 = 0. (2.15)

The hyperplane which can separate the training data into two classes is called a

separating hyperplane and optimal separating hyperplane will be the hyperplane

that separates the classes with maximal distance margin from both classes. Let

ωTx + ω0 ≥ 1 for all x ∈ class1 and ωTx + ω0 ≤ −1 for all x ∈ class2 be two

parallel hyperplanes. Let f(x) be the separating hyperplane, then the margin

is the distance from any point that lies on either of the two hyperplanes to the

separating hyperplane. It is calculated as follows:

d =
| f(x) |
||w||

=
1

||w||
. (2.16)

To maximize the distance, the term ω needs to be minimized. Minimizing ω

is a non linear optimization task, solved by the Karush-Kuhn-Tucker (KKT)

conditions, using Langrange multipliers λi.

w =
N∑
i=1

λiyixi, (2.17)

N∑
i=1

λiyi = 0. (2.18)
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The SVM algorithm was generalized to non linear classifier by applying kernel

function where the feature sample from a lower dimensional space is mapped to a

higher dimensional space for making the classification easier (Guyon et al. 1993).

Polynomials, radial basis function, and hyperbolic tangent are some of the most

commonly used kernels (Ganesan et al. 2013b).

2.2.6.3 Artificial Neutral Networks

Artificial Neutral Networks (ANNs) are the collection of mathematical models

that imitate the properties of biological nervous system and the functions of

adaptive biological learning. They are made of many processing elements that

are highly interconnected together with the weighted links that are similar to the

synapses. The advantage of ANNs is their capability of self-learning and because

of that, they are often suitable to solve the problems that are too complex to use

the conventional techniques, or hard to find algorithmic solutions (Cheng et al.

2006). In the basic form, the perceptron learns a linear decision function that

divides two linearly separable training sets. In ANN a perceptron is a mathe-

matical model of a biological neuron. The response of this basic model based on

weighted sum of its inputs can be represented as given below.

d(x) =
n∑
i=1

wixi + wn+1 (2.19)

where the coefficients wi, i = 1, 2, . . . , n, n + 1 called weights, modify the inputs

before they are summed and fed into the threshold element. Here, the function

that maps the output of the summing junction into the final output of the device

is called activation function. When d(x) > 0, the threshold element causes the

output of the perceptron to be +1, indicating that pattern x belongs to class C1

and C2 if d(x) < 0.

2.2.6.4 Decision Tree

Decision tree is a multistage decision making processes where instead of using a

complete set of features jointly to make a decision, different subsets of features

are used at different levels of the tree (Quinlan 1986). Decisions on choosing the

classes are done in a sequential manner in this technique. Decision trees start from

one parent node and continue splitting until a final result is obtained. Splitting

criteria are set for each of the nodes and adherence to the splitting criterion is
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necessary for node splits. With each split of the node, the node is declared as a

leaf and a particular class label is to be given to that node. Majority rule can be

used to label the node as stated in Equation 2.20.

k = argmaxiP (wi|t) (2.20)

where the rule states that a leaf t is assigned to a class where the majority of the

vectors in the node tree belongs.

2.2.6.5 Random Forest

Random forest (RF) is a popular ensemble classification method, originally devel-

oped by Ho (1995). Ensemble algorithms combine multiple learning algorithms

to achieve better performance than could be achieved from any of the single learn-

ing algorithms alone. RF builds up hundreds to thousands of decision trees and

obtain vote from each tree and then classifies using majority vote. The main

steps of RF algorithm are as follows:

• If N is the number of samples in the training set, then randomly select N

samples but with replacement for growing the trees.

• At each node of the tree, randomly select m variables out of M (m < M )

for splitting. Grow each tree to the largest extend possible.

• Predict new data by aggregating information from all trees. Let Cf (x) be

the class prediction of the f th random forest tree out of F . Then CF
rf (x) =

majority vote {Cf (x)}F1 (Friedman et al. 2001).

2.2.7 Validation

Classifiers are affected by noise and outliers present in the dataset. Some popular

techniques for evaluation of the classification models are k-fold cross validation

and leave one out cross validation.

In k-fold cross validation, the original dataset is randomly partitioned into

k subsets of equal size. For example, if the dataset has 100 instances, then 10

datasets are created with 10 instances each. Each time a classifier is tested, k-1

subsets are considered as the training set and the remaining set is treated as the

test dataset. The process is then repeated for k trials. The overall performance is
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the average of all k trials. The commonly used k-fold cross validation are 5-fold

cross validation and 10-fold cross validation where the value of k is 5 and 10,

respectively. To ensure stable classification results, multiple independent runs of

5-fold or 10-fold cross validation can be performed. In this thesis, we have used

10 independent runs of 5-fold cross validation in Chapters 3, 4 and 5.

Leave one out cross validation is a special form of k-fold cross validation,

where the value of k is the same as the number of instances in the dataset. That

is every instance is considered to be a dataset. For example, if the dataset has

100 instances, then 100 datasets are created with 1 instance each. The classifier

is trained with 99 instances and tested with one instance. Leave one out cross

validation is unbiased and is highly preferred when the dataset is very small. In

this thesis, we have used leave one out cross validation in Chapter 7.

2.2.8 Evaluation

Receiver operating characteristics (ROC) curve is a widely used performance mea-

sure for medical diagnostic classification. ROC curve is a plot of classifiers true

positive rate (sensitivity) versus false positive rate (1-specificity) (Bradley 1997).

It is used to assess the predictive power of a classifier by using Area Under the

ROC curve (AUC). Sensitivity (true positive rate) is defined as the proportion

of correctly detected positive instances (correctly detected cancer ROIs) over to-

tal number of positive instances (total number of cancerous ROIs). Similarly,

specificity (true negative rate) is defined as the proportion of correctly detected

negatives instances (correctly detected normal ROIs) over total number of nega-

tive instances (total number of normal ROIs). A false positive is where the CAD

system wrongly classify an ROI as positive (cancer). The value of AUC is 1.0

when the classification is perfect which means that sensitivity is 100% and false

positive rate is 0%. ROC analysis is mainly used for mass classification while

for mass detection (localisation of the tumor), free-response receiver operating

characteristics (FROC) is used. An FROC curve is obtained by plotting sensi-

tivity (correctly detected masses) on vertical axis and average number of false

positive detections per image on the horizontal axis. In this thesis, we have used

AUC, sensitivity, specificity for mass classification and FROC for localisation of

the tumor.
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2.3 Database

A common description of the datasets used in this study (Chapters 3-7) is pre-

sented here to avoid repetition in subsequent chapters. The data used in this

research are taken from two databases. The publicly available Digital Database

for Screening Mammography (DDSM) (Heath et al. 2001) and BreastScreen SA

(BSSA), a local screening archive in Adelaide, South Australia.

The dense background in this study refers to density of the immediate back-

ground environment of the mass and not the overall density of the breast as used

in the BI-RADS. Figure 2.1 illustrates the difference. A mass may be located in a

non-dense area of a breast despite high BI-RADS density category and similarly

low BI-RADS density score does not exclude masses located in dense tissues.

(a) (b)

Figure 2.1: Examples of mammograms showing masses in dense backgrounds.
(a) BI-RADS category IV (Glandularity > 75%) and (b) BI-RADS category II
(Glandularity 25− 50%).

Mass annotations were provided in the DDSM database; however, the an-

notation contours were often very generous. Similarly, mass annotations in the

BSSA database were provided using a rectangular box indicating only approx-

imate location of the mass. For this reason, the core mass contours for both

databases were manually delineated for this study by the author under the guid-

ance of an experienced radiologist (more than 20 years) in mammography. All

the annotations were reviewed and validated by the radiologist. These core mass

contours were used in experiments in Chapters 3, 4, 5, 6 and 7. ImageJ software

package (Schneider et al. 2012) was used to draw the contours.
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2.3.1 Public Databases

The Mammographic Image Analysis Society (MIAS) (Suckling et al. 1994), Digi-

tal Database for Screening Mammography (DDSM) and INbreast (Moreira et al.

2012) are three well-known and well-tested public databases available to re-

searchers. The MIAS database is from an organization of UK research groups

while DDSM is a collaborative effort between Massachusetts General Hospital,

Sandia National Laboratories and the University of South Florida Computer Sci-

ence and Engineering Department. The INbreast database is from a breast center

located in a university hospital, Portugal. Both MIAS and DDSM contain digi-

tized film mammograms whereas INbreast contains full field digital mammograms

(FFDM). The MIAS and INbreast databases were explored as a part of this study,

but not included for further research due to an insufficient number of mammo-

grams with masses in dense background (less than 10), which is the main focus

of this study. Hence, DDSM is the only publicly available database used in this

study.

The DDSM database contains mammographic images from approximately

2500 women. For each woman, four images were taken (CC and MLO views

for each breast). The mammograms were acquired using four scanners : Lumisys

200 Laser (50 µm pixel size, 12 bits), DBA M2100 ImageClear (42 µm pixel size,

16 bits), Howtek 960 (43.5 µm pixel size, 12 bits) and Howtek Multi-Rad850 (43.5

µm pixel size, 12 bits). We selected all the malignant cases satisfying our criteria

(malignant masses located in dense background). This resulted in 41 cases (41

mammograms from 41 different women). In addition, 41 malignant mammograms

(41 cases) with mass in nondense background and 52 normal dense mammograms

(26 cases - either CC or MLO view for each breast) were identified and employed

in this study. Table 2.3 shows the statistics. For mass region, a subtlety rating

indicating the difficulty level of detecting mass is provided. A lower rating indi-

cates higher level of difficulty in detection. Figures 2.2 and 2.3 show the mass

subtlety and distributions of mass size for masses in dense background dataset

and masses in nondense background dataset respectively.

2.3.2 BreastScreen SA

The Computer Aided Screening Mammography (CASM) group at Flinders Uni-

versity has a long standing agreement with BreastScreen SA to digitize screening

film mammograms in their archives. The CASM group has collected over one
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Table 2.3: Statistics of DDSM dataset.

Number of
cases

Number of
mammograms

Number of
masses

Mass in dense background (malignant) 41 41 41
Mass in nondense background (malignant) 41 41 41
Normal 26 52 -

(a) (b)

Figure 2.2: Information of DDSM masses in dense background (a) Diameter of
masses in millimeter (b) subtlety of masses.

(a) (b)

Figure 2.3: Information of DDSM masses in nondense background (a) Diameter
of masses in millimeter (b) subtlety of masses.

thousand de-personalized screening mammograms, but the metadata (details of

the mammogram - cancerous/normal etc) was not available in a digital form.

The author collated the associated metadata and prepared the BSSA database
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Table 2.4: Statistics of BSSA dataset.

Number of
cases

Number of
mammograms

Number of
masses

Mass in dense background (malignant) 29 29 29
Normal 39 39 -

Figure 2.4: Diameter of BSSA masses in millimeter.

for the purpose of this study. All the malignant mammograms having masses

located in dense background (29 cases) and 39 normal dense mammograms (39

cases) were selected for this study. Table 2.4 shows the statistics. The collection

of images and information corresponding to one woman is referred as a ”case”.

One mammogram (either left or right breast taken in either CC or MLO view)

per case is selected for this study.

The mammograms in BSSA were acquired using a Vidar Diagnostic Pro Ad-

vantage digitiser (48 µm pixel size, 12 bit). Figure 2.4 shows the distributions

of mass size. The dataset does not contains the information about the difficulty

level of detecting the mass.
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Chapter 3

Structured Micropattern

Analysis

The main focus of this thesis is to find efficient texture descriptors for masses lo-

calized in dense background of mammograms. In this chapter, a novel approach is

presented for classification of mammographic dense regions as malignant masses

or normal dense regions using structured micropatterns generated from LBP.

Section 3.1 provides a brief overview of various methods used to describe tex-

ture structures. Section 3.2 describes the LBP technique which is used in this

chapter to generate structured micropatterns and Section 3.3 provides details

of the structured micropatterns. Section 3.4 describes datasets used for con-

ducting experiments in this chapter and Section 3.5 presents the methodology.

Experimental set up and results are presented in Section 3.6 and Section 3.7,

respectively. Section 3.8 provides a direct comparison of proposed method with a

recent state-of-the-art mass classification method. Discussion and conclusion are

provided in Section 3.9 and Section 3.10, respectively.

3.1 Introduction

Texture features have proven to be useful in discriminating different classes in

many applications of computer image analysis. Studies (Varma & Zisserman

2003, Li et al. 2014) have shown that local features are more effective than global

ones for texture classification. The local texture features are extracted based on

the local neighborhood of image pixels, describing the spatial intensity distri-

bution in a pixel’s neighborhood. The literature presents many approaches for

design of micropatterns to describe the local spatial context of the image (Lowe
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1999, Yang et al. 2005, Wei et al. 2007, Ravela & Manmatha 1997, Hadjidemetriou

et al. 2004). Lowe (1999) introduced scale invariant feature transformation to cal-

culate the regional characteristics of micropatterns used for object recognition.

Yang et al. (2005) used Markov Random Field method to design adaptive mi-

cropatterns for face identification. The micropattern has also been extended to

Gabor filters (Wei et al. 2007), difference of Gaussians (Ravela & Manmatha

1997) and with multiresolution histogram (Hadjidemetriou et al. 2004) to encode

the structure information.

Local Binary Pattern (LBP) (Ojala et al. 1996, 2002) is another popular

technique used to describe micropatterns. It is one of the most discriminative

and computationally simple local texture descriptors and has been investigated

for about two decades (Ojala et al. 1996, Pietikainen & Zhao 2015). Due to

its ease of implementation and ability to describe fine texture details, LBP has

gained significant attention and has been applied in various fields such as fa-

cial image analysis (Zhang et al. 2005, Tan & Triggs 2010), biometrics (Bai

& Hatzinakos 2010), medical image analysis (Llado et al. 2009, Choi & Ro

2012), motion analysis (Heikkila & Pietikainen 2006) and content based retrieval

from image or video databases (Liao & Chen 2002). Examples of research us-

ing LBP in medical fields include search and retrieval methods for finding rele-

vant slices in brain MRIs (Unay & Ekin 2008), textural features extraction from

thyroid ultrasounds (Keramidas et al. 2008), automated cell phenotype image

classification (Nanni & Lumini 2008) and mammogram breast density classifica-

tion (George et al. 2018).

In the field of mammographic mass classification, Llado et al. (2009) used

LBP to represent textural properties of masses for reduction of false positives in

computer-aided detection of breast masses in mammograms. The study followed

the original idea of the LBP operator proposed by Ojala et al. (1996, 2002), where

parts of an image (Regions of Interests (ROIs)) were used to compute the LBP

histograms which were later concatenated to form a high dimensional (more than

500) feature vector. Choi & Ro (2012) extracted LBP patterns from two specific

regions of the ROI (core and margin regions) for classifying ROIs as either breast

cancer or normal breast tissues. Again, the approach was based on histogram

concatenation which yielded a high-dimensional feature space (255). It can be

noted that the histogram concatenation approach does not recognize any specific

patterns structure in the feature space, thus, it naturally leads to a very large

dimension.

In this chapter, a novel method for dense breast mass classification utilizing
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specific structures of LBP generated patterns, the structured micropatterns, is

proposed. The typical histogram concatenation approach of extracting features

from LBP is replaced by features based on combinatorial properties of the struc-

tured micropatterns. Using combinatorial properties of the structured micropat-

terns, a small set of features was extracted, which enabled successful classification

of cancerous dense ROIs.

3.2 LBP Overview

A preliminary study of encoding information in an image by mapping a local

neighborhood surrounding a pixel was first presented by He & Wang (1990). In

their approach, the 3× 3 neighborhood of a central pixel is assigned a value of 0,

1 or 2 according to this rule:

ei =


0, if Ii < Ic,

1, if Ii = Ic,

2, if Ii > Ic,

(3.1)

where Ic is the intensity of the central pixel and Ii {i = 1, 2, . . . 8} is the inten-

sity value of a neighboring pixel. The central pixel, or a texture unit (T), is

represented as follows:

T =
8∑
i=1

3i−1ei. (3.2)

This representation produces 38 = 6561 possible texture units for describing

the three level patterns in eight directions. Later Ojala et al. (1996) introduced

a two level version of the Wang and He method, known as Local Binary Pattern.

In Ojala’s approach, there are only 28 = 256 possible texture units instead of

6561. The 3× 3 neighborhood is assigned a value of 0 or 1 (see Figure 3.1 for an

illustration ) instead of three possible values considered in (He & Wang 1990).

The LBPP,R for a pixel (xc, yc) is calculated by comparing this (central) pixel

intensity value gc with intensities of its P neighboring pixels (g0, · · · , gP−1) on a
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Figure 3.1: Example of basic LBP operator for 3× 3 grid neighborhood.

circle of radius R. It is computed as follows:

LBP (xc, yc) =
P−1∑
i=0

A(gi − gc)2i (3.3)

where A(gi − gc) is 1 if gi > gc and 0, otherwise. If the coordinates of the

center pixel (xc, yc) are (0,0), then the coordinates of neighboring pixels (xi, yi)

are given by xi = Rcos(2πi/P ) and yi = −Rsin(2πi/P ). The pixel intensities of

the neighbors which do not fall exactly on the center of the pixels are calculated

by interpolation. Figure 3.2 shows a circular neighborhood LBP approach with

P=8 and R=1, 2, 3 and 4. The histogram of LBP labels is often used in the

literature as a texture descriptor.

Figure 3.2: Example of a circularly symmetric LBP neighborhood around a cen-
tral pixel with P=8 and R=1, 2, 3 and 4.

The LBP operator is made rotation invariant by performing P bit-wise shifts,

where P is the number of neighbors, and selecting the smallest value of the binary

pattern (Pietikäinen et al. 2000, Ojala et al. 2002). An LBP pattern is considered

‘uniform’ if the number of transitions between 0 and 1 in the sequence is at most

two, when viewed as a circular string.

Even though LBP is a simple and efficient texture descriptor method, the

major issue with the LBP histogram based texture descriptor is that the feature

44



space increases exponentially with the number of LBP neighbors. For example, a

uniformly sampled circular neighbourhood of P pixels at radius R (LBPP,R) has

2P histogram bins. For P = 8, LBP produces 256 histogram bins which represents

256 features, whereas one with 24 neighbors produces 16,777,216 features. In the

typical LBP approach to find features, an image is subdivided into rectangular

blocks and the LBP histogram for each block is obtained, which are later con-

catenated to form a high dimensional feature vector. This may result in increased

computational complexity, redundant information and poor generalization prop-

erties of the classifiers.

3.3 Structured Micropatterns

LBP produces 36 rotationally invariant LBP patterns for 8 neighbourhood. Among

these 36, nine are categorized as uniform. The nine uniform rotationally invari-

ant local binary patterns are: p0 (00000000), p1 (00000001), p3 (00000011), p7

(00000111), p15 (00001111), p31 (00011111), p63 (00111111), p127 (01111111) and

p255 (11111111). Figure 3.3 illustrates the nine patterns. Ojala et al. (2002) stated

that these nine rotational invariant uniform patterns are fundamental properties

of texture, providing the majority of patterns, over 90% of LBP8,1 patterns. These

patterns can describe micro-structures like edges, lines, spots and flat areas that

refer back to Julesz Textons which are the basic elements of pre-attentive human

perception (Julesz 1981). Another advantage of these nine rotational invariant

uniform patterns is their statistical robustness (Pietikainen et al. 2011). They

are less prone to noise when compared to non uniform patterns.

Figure 3.3: Nine uniform rotational invariant LBP patterns. Black and white
circles represents the bit values of 0 and 1, respectively, in the 8 bit LBP pattern
and the numbers inside represents the LBP label for that particular pattern. The
first pattern is called spike and the last one is named pit.

The mass ROI classification capability of these 9 structured micropatterns

(nine uniform rotational invariant patterns) generated using LBP technique are

analyzed in this chapter. Female breast is made of different types of parenchymal

patterns and the presence of masses can change the composition of these pat-

terns (Midya & Chakraborty 2015). Normal dense regions are mostly homoge-
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neous and have regular and repetitive patterns, whereas cancer/masses typically

have random patterns due to their heterogeneous nature (Rabidas et al. 2018b).

From these observations, it can be hypothesized that the density/proportion of

the structured micropatterns found in a mass region may differ from those found

in a normal dense region. Hence these local geometrical features could be used

to distinguish the mass from a normal dense region. This study of structured

micropatterns was motivated by the above heuristic.

3.4 Data

The data used in the experiments were taken from both DDSM and BSSA

databases (Section 2.3). As mentioned previously, the core mass contours were

manually delineated by the author under the guidance of an experienced radi-

ologist in mammography. These core mass contours were used to generate the

breast mass ROIs. Using MATLAB the smallest rectangular region containing

the core mass contour was extracted. We call it mass ROI. Normal dense ROIs

were selected manually from dense regions of a healthy dense breast. Figure 3.4

shows an example of a normal dense ROI cropped from a dense healthy breast.

There was no overlap between the ROIs selected from the same mammogram.

Figure 3.5 shows an example of mass ROIs (a and b) and healthy dense region

ROIs (c and d). The figure reveals that, it is a very challenging task to identify

which ROI contains the cancer or not as both mass ROI and normal ROI looks

very similar.

As described previously, all the malignant mammograms from the DDSM

database satisfying the criteria (malignant masses located in dense background)

were selected for this study. This resulted in 41 malignant mass ROIs (41 mam-

mograms from 41 different women and one mass per mammogram). Normal

dense ROIs were selected from 52 dense breast mammograms (52 mammograms

from 26 different women and 5 ROIs from each mammogram) which resulted in

260 normal ROIs. This makes a total of 301 ROIs selected from DDSM for this

study. From the BSSA database, all the available malignant mammograms satis-

fying the criteria (malignant masses located in dense background) were selected.

This resulted in 29 malignant mass ROIs (29 mammograms from 29 different

women and one mass per mammogram). The normal dense ROIs were selected

from 39 dense breast mammograms (39 mammograms from 39 different women

and 5 ROIs from each mammogram) which resulted in 195 normal ROIs. This
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Figure 3.4: An example of a dense healthy breast and an ROI cropped from dense
region

(a) Mass ROI (b) Mass ROI (c) Normal ROI (d) Normal ROI

Figure 3.5: Examples of Mass and Normal ROIs.

makes a total of 224 ROIs selected from BSSA for this study. Table 3.1 shows the

statistics of the datset. The same ROIs (301 from DDSM and 224 from BSSA)

are used in next two chapters (Chapters 4 and 5).

Table 3.1: Dataset Information.

DDSM BSSA

Mass ROIs 41 29
Normal ROIs 260 195

For texture analysis and classification (Chapters 3, 4 and 5) experiments,

260 DDSM normal dense ROIs were divided into five subsets (five ROIs from

each of 52 healthy dense breast mammograms). This was then combined with 41

malignant dense mass ROIs. This resulted in five balanced datasets with 93 ROIs
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in each (52 normal and 41 malignant mass ROIs). Figure 3.6 shows the dataset

subdivision procedure. The same procedure was repeated for the BSSA database

to get five balanced datasets of 68 ROIs in each (39 normal and 29 malignant

mass ROIs). Figure 3.7 shows the BSSA dataset subdivision procedure. For

feature selection in this chapter and Chapters 4 and 5, only the DDSM subset

(Dataset 1 shown in Figure 3.6) was used and for evaluation extended DDSM (all

5 datasets) were used. All 5 BSSA datasets were used in the evaluation stage.

BSSA datasets served as unseen data for the classification models, as they were

not used at any stage of the feature selection process.

Figure 3.6: DDSM dataset subdivisions: 41 mass ROIs from 41 mammograms
with masses located in dense background and 52 normal dense ROIs from 52
normal dense breast mammograms combined to form each datasets. The mass
ROIs were the same in all five datasets as shown in figure.

3.5 Methodology

The mass classification approach consists of five steps: denoising, ROI extraction,

structured micropatterns extraction from ROI, feature generation and classifica-

tion using the features generated from structured micropatterns. Figure 3.8 shows

the flowchart for the mass classification scheme.

3.5.1 Denoising

Mammographic images contain noise and LBP is susceptible to noise. Hence all

images from DDSM and BSSA were denoised, to alleviate the influence on the

classification process, using a 3× 3 median filter before ROIs extraction.
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Figure 3.7: BSSA dataset subdivisions: 29 mass ROIs from 29 mammograms
with masses located in dense background and 39 normal dense ROIs from 39
normal dense breast mammograms combined to form each datasets. The mass
ROIs were the same in all five datasets as shown in figure.

Figure 3.8: Flowchart for the mass classification algorithm

3.5.2 Feature Generation

The LBP technique proposed by Ojala et al. (2002) (as described in Section 3.2)

was used to build the LBP labeled image. For the experiments, the number of

neighbors P was selected to be 8 and the radius R ∈ {1, 2, 3, 4}. The number of

occurrences of each of the nine rotationally invariant LBP patterns (structured

micro patterns) per unit area is used as a feature for the purpose of discriminating

mass ROI and normal dense ROI. That is, for each ROI the features are defined

as follows:

fi =
|patterni|
|ROI|

, (3.4)

where |.| stands for the number of elements in the set, i = 0, 1, 3, 7, 15, 31, 63, 127,

255 and patterni is the ith structured micropattern. Using notation introduced

in Section 3.3, the features corresponding to the 9 structured micropatterns: p0,
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p1, p3, p7, p15, p31, p63, p127, p255 are: f0, f1, f3, f7, f15, f31, f63, f127, f255.

This results in 9 features for each of the 4 levels. The features generated are

independent of ROI size since it was normalized with the number of pixels in

each ROI.

3.5.3 Feature Selection

All feature combinations generated from the nine structured micropatterns may

not contain significant mass discrimination information. Hence, these nine struc-

tured patterns were analysed individually and in combination for their capability

for classifying dense mass ROI. An initial study was conducted with 8 neighbour-

hood and radius = 1. Exhaustive search was used for feature selection. This

resulted in a total of 511 feature combinations (29 − 1 = 511). The dataset used

for feature selection was a subset of the DDSM database (dataset1 (93 ROIs)-

see Section 3.4). The effectiveness of different features extracted from structured

micropatterns for the separation of cancerous and normal regions was evaluated

using LDA. Ten independent runs of 5 fold cross validation were performed and

the performance of each selection was analysed using AUC score.

While analysing 511 feature combinations, the {f1, f3, f7, f31, f255} feature

combination achieved the highest AUC of 0.972. Pairwise T -test was conducted

to see whether this highest score was significantly different from others at the p

= 0.05 level. All feature combinations of 1, 2, 3, 4 and 5 features (in total 381

feature combinations) were tested one at a time against the highest scored feature

set {f1, f3, f7, f31, f255}. Only feature sets with up to five dimensions were tested,

as the classifier performance was not increased with further increase in the feature

dimension. From the T-test results it was found that the highest scored feature

set {f1, f3, f7, f31, f255} was significantly better than others except for 81 (out

of 381) feature combinations. Out of these 81 feature combinations, 5 feature

sets {f0, f1, f255}, {f0, f3, f255}, {f0, f7, f255}, {f1, f3, f128}, and {f1, f31, f255}
had lower dimensionality than the highest performing feature set {f1, f3, f7, f31,
f255}. Hence these 5 feature sets, not statistically different in performance than

the highest scored feature set, were selected for further analysis (see Table 3.2).

3.6 Experimental Setup

The ROI classification power of the selected features was evaluated on the ex-

tended DDSM database (301 ROIs - all 5 datasets) and unseen BSSA database
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Table 3.2: DDSM classification results from 10 runs of 5-fold cross validation
for dataset 1 (50 values) using LDA. AUC is the mean AUC scores ± standard
deviation.

Feature Set AUC p-value

{ f1, f3, f7, f31, f255} 0.972 ± 0.005 -

{ f1, f31, f255} 0.967 ± 0.006 0.576

{ f1, f3, f128} 0.957 ± 0.006 0.096

{ f0, f7, f255} 0.956 ± 0.004 0.229

{ f0, f1, f255} 0.952 ± 0.005 0.084

{ f0, f3, f255} 0.949 ± 0.007 0.051

(224 ROIs - all 5 datasets). See Section 3.4 for details. In addition to radius 1, ra-

dius 2, 3 and 4 and their combinations were analysed. LDA and SVM with linear

kernel (SVM-L) were used to validate the classification power of selected features.

These classifiers were chosen because of their general popularity in machine learn-

ing (Hastie et al. 2009). The MATLAB code for the classifiers (fitcdiscr for LDA

and fitcsvm for SVM) were taken from the Statistics and Machine Learning Tool-

box of MATLAB 2015b package with default parameter values. To ensure stable

classification results, 10 independent runs of five-fold cross validation was applied

for each of the 5 datasets. The results reported are averages of these 10 runs over

5 datasets (for both DDSM and BSSA). In addition to AUC score, sensitivity

and specificity were reported.

3.7 Results

The five feature sets identified in Section 3.5.3 were applied to the unseen BSSA

data using LDA and their highest AUC scores (out of all radius combinations)

are shown in Table 3.3. Out of these five feature sets, set {f0, f1, f255} achieved

the highest AUC score of 0.885. As it is shown in the table, two other feature

sets ({f0, f3, f255} and {f0, f7, f255}) also performed at a similar level. Hence,

we have presented the detailed results for these three feature sets {f0, f1, f255},
{f0, f3, f255} and {f0, f7, f255} in Table 3.4 and Table 3.5 for LDA and SVM,

respectively. Both tables show results from DDSM and BSSA.

Table 3.4 presents the LDA classifier experimental results using structured

micropatterns features ({f0, f1, f255} , {f0, f3, f255} and {f0, f7, f255} with 4 radii
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Table 3.3: BSSA classification results from 10 runs of 5-fold cross validation
over 5 balanced datasets (250 values), the highest performance of each
feature set when considering all radius combinations using LDA. AUC is the mean
AUC scores ± standard deviation.

Feature Set Mean p-value

{ f0, f1, f255} 0.885 ± 0.026 -

{ f0, f3, f255} 0.874 ± 0.021 0.6780

{ f0, f7, f255} 0.867 ± 0.020 0.0700

{ f1, f31, f255} 0.858 ± 0.015 0.0263

{ f1, f3, f128} 0.856 ± 0.024 0.0003

levels and their combinations for both datasets. Each row of the table corresponds

to the classification results of radii levels 1, 2, 3, 4 and their combinations for each

feature set. For a single radius level, {f0, f1, f255} obtained the highest AUC score

of 0.957 (with radius 1) for DDSM and 0.814 (with radius 2) for BSSA. With two

radii levels, radius 1 and radius 4 combination obtained highest score of 0.885

for BSSA. In case of DSSM, combining information from two radii levels did not

result in increased the performance. With three radii levels, radius 1, radius 2

and radius 3 combination obtained highest score of 0.966 for DDSM and four radii

level combination did not result in any increased classifier performance. In case of

BSSA, three radii level combination and four radii level combination did not result

in any increased classifier performance. These results are highlighted in bold in

the table. Similar results for {f0, f3, f255} and {f0, f7, f255}) are also highlighted

in bold in the table. Table 3.5 shows the experimental results for SVM-L classifier.

Similar results were achieved with SVM-L classifier also. Figures 3.9, 3.10 and

3.11 show examples of 3D feature plot for SVM-linear for DDSM dataset1 for

feature sets {f0, f1, f255}, {f0, f3, f255} and {f0, f7, f255} respectively.

3.8 Comparison with Related Publication

For a direct comparison of the proposed approach with the ‘classic’ histogram

concatenation technique used in Llado et al. (2009) and Choi & Ro (2012), the

mass ROI classification method proposed by Llado et al. was implemented and

tested, on the selected DDSM subset of dense ROIs. There are two reasons for

selecting the Llado et al. method over the Choi and Ro technique. First, Llado

et al. used (like the proposed approach) a manual ROI selection while Choi and
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Table 3.4: DDSM and BSSA mass classification using LDA classifier for different
radius levels and their combinations for features {f0, f1, f255}, {f0, f3, f255} and
{f0, f7, f255}.

DDSM - LDA

{f0, f1, f255} {f0, f3, f255} {f0, f7, f255}

Radius AUC Sensitivity Specificity AUC Sensitivity Specificity AUC Sensitivity Specificity

1 0.957 0.859 0.987 0.957 0.879 0.985 0.954 0.793 0.993

2 0.903 0.778 0.940 0.911 0.800 0.923 0.900 0.785 0.945

3 0.882 0.735 0.917 0.908 0.793 0.903 0.891 0.773 0.903

4 0.861 0.734 0.854 0.880 0.762 0.849 0.860 0.742 0.852

1&2 0.955 0.843 0.979 0.961 0.829 0.979 0.951 0.840 0.971

1&3 0.955 0.889 0.968 0.955 0.872 0.968 0.955 0.868 0.975

1&4 0.956 0.900 0.970 0.961 0.880 0.960 0.957 0.900 0.972

2&3 0.903 0.811 0.913 0.902 0.808 0.913 0.902 0.811 0.912

2&4 0.912 0.829 0.919 0.904 0.818 0.912 0.909 0.824 0.910

3&4 0.917 0.822 0.895 0.905 0.829 0.880 0.906 0.842 0.878

1&2&3 0.966 0.886 0.975 0.958 0.878 0.974 0.947 0.871 0.965

1&2&4 0.959 0.885 0.978 0.958 0.888 0.965 0.953 0.881 0.961

1&3&4 0.952 0.886 0.978 0.957 0.883 0.965 0.951 0.879 0.974

2&3&4 0.906 0.806 0.916 0.901 0.828 0.900 0.907 0.810 0.915

1&2&3&4 0.960 0.873 0.976 0.960 0.882 0.962 0.944 0.864 0.969

BSSA - LDA

{f0, f1, f255} {f0, f3, f255} {f0, f7, f255}

Radius AUC Sensitivity Specificity AUC Sensitivity Specificity AUC Sensitivity Specificity

1 0.801 0.657 0.768 0.801 0.621 0.760 0.771 0.577 0.759

2 0.814 0.627 0.792 0.810 0.635 0.775 0.817 0.679 0.773

3 0.801 0.630 0.800 0.802 0.645 0.805 0.810 0.639 0.820

4 0.807 0.634 0.839 0.809 0.653 0.823 0.809 0.627 0.844

1&2 0.846 0.750 0.824 0.824 0.650 0.803 0.824 0.648 0.805

1&3 0.855 0.721 0.863 0.852 0.690 0.861 0.848 0.671 0.857

1&4 0.885 0.748 0.860 0.874 0.722 0.874 0.867 0.705 0.860

2&3 0.824 0.652 0.819 0.819 0.666 0.818 0.828 0.683 0.833

2&4 0.849 0.701 0.848 0.838 0.699 0.859 0.842 0.688 0.837

3&4 0.856 0.682 0.823 0.817 0.668 0.832 0.831 0.685 0.828

1&2&3 0.833 0.719 0.848 0.822 0.674 0.836 0.827 0.660 0.843

1&2&4 0.858 0.739 0.840 0.847 0.703 0.851 0.851 0.676 0.852

1&3&4 0.860 0.728 0.841 0.857 0.683 0.847 0.842 0.670 0.845

2&3&4 0.838 0.679 0.808 0.828 0.666 0.812 0.826 0.642 0.824

1&2&3&4 0.840 0.712 0.826 0.833 0.703 0.856 0.815 0.674 0.846

Ro used automatic ROI selection. Secondly, the performance of the Llado et al.

method was better than the Choi and Ro approach. For the purpose of a fair

comparison of results, implementation guidelines given in Llado et al. (2009) were

strictly followed. Each ROI was divided into 5x5 squared local image patches.

Then, uniform LBP features were extracted from these local regions with P=8

and R=1 and their LBP histograms were concatenated. As suggested by the
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Table 3.5: DDSM and BSSA mass classification using SVM-L classifier for dif-
ferent radius levels and their combinations for features {f0, f1, f255}, {f0, f3, f255}
and {f0, f7, f255}.

DDSM - SVM-L

{f0, f1, f255} {f0, f3, f255} {f0, f7, f255}

Radius AUC Sensitivity Specificity AUC Sensitivity Specificity AUC Sensitivity Specificity

1 0.953 0.889 0.975 0.958 0.907 0.965 0.949 0.870 0.978

2 0.905 0.764 0.948 0.917 0.802 0.910 0.911 0.766 0.948

3 0.872 0.593 0.970 0.907 0.740 0.909 0.897 0.644 0.966

4 0.846 0.609 0.918 0.882 0.746 0.862 0.858 0.667 0.906

1&2 0.952 0.881 0.967 0.957 0.889 0.958 0.953 0.884 0.956

1&3 0.960 0.890 0.954 0.957 0.896 0.957 0.962 0.903 0.957

1&4 0.961 0.912 0.956 0.959 0.901 0.953 0.965 0.907 0.952

2&3 0.918 0.812 0.925 0.906 0.813 0.909 0.918 0.832 0.930

2&4 0.920 0.841 0.909 0.910 0.820 0.896 0.919 0.852 0.907

3&4 0.900 0.763 0.910 0.904 0.786 0.893 0.907 0.802 0.902

1&2&3 0.962 0.881 0.958 0.958 0.892 0.963 0.958 0.893 0.954

1&2&4 0.961 0.906 0.968 0.957 0.900 0.960 0.964 0.905 0.957

1&3&4 0.959 0.900 0.957 0.956 0.894 0.957 0.962 0.907 0.957

2&3&4 0.917 0.845 0.905 0.907 0.814 0.902 0.921 0.860 0.916

1&2&3&4 0.961 0.901 0.965 0.957 0.895 0.963 0.961 0.901 0.957

BSSA - SVM-L

{f0, f1, f255} {f0, f3, f255} {f0, f7, f255}

Radius AUC Sensitivity Specificity AUC Sensitivity Specificity AUC Sensitivity Specificity

1 0.802 0.644 0.751 0.800 0.608 0.748 0.799 0.587 0.781

2 0.817 0.616 0.796 0.811 0.621 0.778 0.815 0.637 0.790

3 0.804 0.606 0.793 0.799 0.600 0.792 0.818 0.638 0.805

4 0.816 0.567 0.843 0.807 0.570 0.843 0.817 0.590 0.851

1&2 0.819 0.654 0.786 0.801 0.586 0.774 0.815 0.616 0.787

1&3 0.840 0.656 0.825 0.819 0.620 0.812 0.826 0.620 0.828

1&4 0.855 0.672 0.852 0.848 0.646 0.853 0.852 0.622 0.854

2&3 0.823 0.618 0.822 0.813 0.642 0.809 0.833 0.655 0.808

2&4 0.835 0.637 0.856 0.829 0.672 0.838 0.845 0.653 0.841

3&4 0.825 0.633 0.831 0.810 0.614 0.845 0.837 0.645 0.834

1&2&3 0.837 0.657 0.825 0.825 0.632 0.810 0.823 0.606 0.819

1&2&4 0.857 0.677 0.858 0.838 0.658 0.846 0.833 0.614 0.849

1&3&4 0.855 0.671 0.863 0.841 0.661 0.851 0.844 0.629 0.860

2&3&4 0.836 0.642 0.857 0.830 0.667 0.858 0.838 0.654 0.856

1&2&3&4 0.853 0.680 0.865 0.841 0.647 0.854 0.835 0.621 0.849

authors, this concatenated histogram was combined with the LBP histogram

extracted from central 3 × 3 local regions to form the final texture descriptor,

which resulted in 2006 features. Table 3.6 shows the comparison outcomes. It is

clear that the proposed approach was significantly better with respect to feature

dimensionality with comparable AUC score.
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(a)

Figure 3.9: Example showing 3D feature plot for SVM-linear for {f0, f1, f255} for
radius 1 for classifying mass and normal class in dataset1.

Table 3.6: AUC score comparison of the proposed approach with the approach
introduced by Llado et al. (2009). Best results are highlighted in bold. DDSM,
LDA result 0.957 and SVM-L result 0.965 obtained for {f0, f7, f255} at radius 1
and 4, BSSA, LDA result 0.885 and SVM-L result 0.855 obtained for {f0, f1, f255}
at radius 1 and 4

Approach No. of Features
DDSM BSSA

LDA SVM-L LDA SVM-L

Llado et al. (2009) 2006 0.949 0.972 0.910 0.918
Proposed 6 0.957 0.965 0.885 0.855

3.9 Discussion

In this study, LBP was computed on individual pixel gray values to describe

structured micropatterns. Mammographic images are noisy and pixel based LBP

is susceptible to noise (Liu et al. 2016). Hence, a median filter was used to

alleviate the noise influence on the classification procedure.
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(a)

Figure 3.10: Example showing 3D feature plot for SVM-linear for {f0, f3, f255}
for radius 1 for classifying mass and normal class in dataset1.

While analysing the best performing feature sets, it can be observed that the

spike and pit combinations ({f0, f255}) with any other pattern from (f1, f3 f7)

gave the best results. Therefore, one could expect that this combination (spike

and pit) has a high potential in discriminating a cancerous region from a normal

region.

Our analysis shows that LBP feature dimensionality can be reduced signif-

icantly using efficient LBP features (see Table 3.4, 3.5), while retaining high

texture classification accuracy. Recent studies have indicated that a compara-

ble performance is achieved only with high feature dimensionality (240 to 6000

features) (Junior et al. 2009, Nascimento et al. 2013), carrying risk of classifier

overfitting and lack of generalization. Feature dimensionality reduction is highly

important, when considering scarcity of labeled data for dense breasts. To our

knowledge, there is no study in the literature specifically focusing on dense breasts

which may be due to lack of data set availability. We have visually analyzed more

than 4000 mammograms across DDSM and BSSA to get 70 mass ROIs localized

in dense background. This selection was evaluated by an experienced radiologist.
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(a)

Figure 3.11: Example showing 3D feature plot for SVM-linear for {f0, f7, f255}
for radius 1 for classifying mass and normal class in dataset1.

The efficient LBP features were validated with multiple classifiers (LDA and

SVM) and achieved consistent results. Additionally, the Llado et al. (2009) ap-

proach was executed on the same ROIs as our approach to get a fair comparison

and the outcome is shown in Table 3.6. The resultant performance was com-

parable with significant reduction in feature dimensionality (2006 features to 6

features). This is a significant achievement in terms of generalization. It is a well

known fact from general theory of classification in pattern recognition that the

capacity of a linear classifier is about twice the number of features. That is, the

probability that a random distribution of classes will result in linear separability

is very close to zero if the number of instances exceeds the number of features by

more than twice.

In order to validate the performance of our method on unseen data, the test

was conducted on a different database BSSA, which was not used in the feature

selection procedure. The result shows that the classification performance on

DDSM data is better than on BSSA data (0.965 for DDSM and 0.885 for BSSA).

It may be partly because feature selection was done on a subset of the DDSM
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database and this might have resulted in a slight bias. An AUC score of 0.885

for BSSA is a significantly good outcome for mass classification in dense breast

using very few features.

However, the proposed approach has some limitations that need to be ad-

dressed. As the features are based on pixel based LBP, they are susceptible to

noise and cannot represent macrostructures present in the image. Finally, these

features do not reflect the spatial distribution and closeness of the patterns. To

overcome these limitations, a new paradigm - the superpixel tessellation which

can represent macrostructures in a image and is robust to noise - is presented

in Chapter 4. Moreover, to reflect the spatial distribution and closeness of the

patterns, a novel spatial connectivity graph model is developed in Chapter 5.

3.10 Conclusion

This chapter has presented a method for classification of mammographic dense

regions as malignant masses or normal dense breast regions using structured

micropatterns generated from LBP. The proposed method has been tested on

525 ROIs taken from two databases and compared with a recent state-of-the art

mass classification outcome found in literature. Experimental results show that

the proposed approach has a high potential to discriminate dense cancerous ROIs

from normal dense breast ROIs. The typical histogram concatenation approach

of extracting features from LBP was replaced by features generated from the

efficient structured micropatterns. This resulted in a huge reduction of dimension

of the feature space while keeping a high rate of mass classification. The efficient

LBP features obtained the highest AUC score of 0.965 for DDSM and 0.885

for BSSA with only 6 features using LDA classifier. When compared with the

recent state-of-the-art mass classification method, the proposed approach was

significantly better in comparison to feature dimensionality and very comparable

in terms of performance. However, as described in the discussion section, there are

limitations for this approach such as susceptibility to noise, inability to represent

macrostructures and their spatial distribution. These limitations are addressed

in the next two chapters.
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Chapter 4

Superpixel Texture Analysis

Mammographic images are noisy in nature and LBP computed on individual pixel

grey values is sensitive to noise. In order to overcome these limitations, in this

chapter we propose a simple and highly efficient approach, the superpixel-based

LBP (SLBP), which can also capture image macrostructures. In the proposed

approach, ROIs are transformed into superpixel tessellations. The superpixel tes-

sellation represents the ROI in further texture analysis. The SLBP computed on

the superpixels can better represent the macrostructures in the image. The nine

rotational invariant uniform local binary patterns (structured micropatterns), de-

scribed and analysed in Chapter 3, are defined on a superpixel grid structure in

this chapter for analysing mass ROI classification. Similar to the previous chapter,

class discrimination capability of the structured superpixel patterns is evaluated

using AUC, sensitivity and specificity. Section 4.2 presents the proposed SLBP

technique. Methodology is described in Section 4.3 and validity of the proposed

method is evaluated using two datasets in Section 4.4. Finally, discussion and

conclusions are provided in Section 4.5 and Section 4.6, respectively.

4.1 Dataset

The data used in this chapter for experiments are the same as described in Sec-

tion 3.4. A total of 525 ROIs were used (301 extracted from DDSM and 224 from

BSSA). All 525 ROIs were localized in dense backgrounds of breasts.
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4.2 Superpixel Based Local Binary Patterns

Superpixel representation is an important preprocessing step in many computer

vision algorithms. It is formed by locally grouping the pixels of an image and

representing the group using a representative value. Superpixels simplify the

image representation and make it more meaningful and easier to analyse. Super-

pixel representation has been used in various computer vision applications such

as object recognition (Endres & Hoiem 2014), video analysis (Drucker & Mac-

Cormick 2009), breast image segmentation (Chuand et al. 2015, Hao et al. 2012),

and cell segmentation and tumor detection in histopathological images (Lee &

Kim 2016, Ushizima et al. 2014). The main advantages of using superpixels are:

better representation of the image by reducing redundancy, computational effi-

ciency, robustness to noise (Achanta et al. 2012) and ability to describe texture

macrostructures in the image (Liu et al. 2016). Superpixels can be generated by

regular grid approach or by irregular grid approach.

In literature, few studies (Liao et al. 2007, Zhang et al. 2007, Liu et al. 2016)

have used LBP based on regular grid superpixel approach for face recognition

and scene image classification. Liao et al. (2007) and Zhang et al. (2007) used

regular grid superpixel to compute local binary patterns for face recognition. The

superpixel was represented by the mean value of the pixels grouped. Liu et al.

(2016) proposed Median Robust Extended LBP (MRELBP), to compute LBP

where the size of superpixels were different with different radii calculated. How-

ever, in all the above mentioned studies (Liao et al. 2007, Zhang et al. 2007,

Hafiane et al. 2008, Liu et al. 2016), the feature vector was generated using tradi-

tional histogram (LBP label histogram) concatenation approach which does not

recognize any specific structured patterns and hence leads to high dimensionality

of the feature space (800 in Liu et al. (2016)). Another main disadvantage of

the above studies using regular grid superpixel approach is, that the pixels in the

group may not be homogeneous thus compromising the accuracy of macrostruc-

ture representation. In this study, we have used regular grid and irregular grid

approach as described in Section 4.3.1 for generating superpixels. As mentioned

previously, the nine rotational invariant uniform local binary patterns (structured

micropatterns), described and analysed in Chapter 3, are defined on a superpixel

grid structure in this chapter for analysing mass ROI classification. The his-

togram concatenation approach of extracting features from LBP utilised in (Liao

et al. 2007, Zhang et al. 2007, Liu et al. 2016) is replaced in our study by features

based on combinatorial properties of the structured superpixel patterns. This
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allows for a huge reduction of the dimension of the feature space while keeping a

high rate of mass classification. To our knowledge, this study is the first study of

building LBP on irregular grid superpixel for mass classification.

4.2.1 The Proposed SLBP

In SLBP, superpixels take the role of pixels in LBP. Single pixel intensity values

are replaced by the mean or median value of the superpixels and compared with

the mean/median value of its k neighbouring superpixels. Given a centre super-

pixel sc and the φ operator defined on superpixels (e.g., mean or median), the

SLBP label is calculated as follows

SLBP (sc) =
k−1∑
i=0

2iS(φ(si)− φ(sc)), (4.1)

where

S(φ(si)− φ(sc)) =

1, if φ(si) > φ(sc),

0, if φ(si) < φ(sc).
(4.2)

The SLBP pattern is made rotation invariant by performing k bit-wise shifts

and selecting the smallest value of the binary pattern as follows

SLBP (sic) = min{Rot(SLBP (sc, i))|i = 0, 1, . . . , k − 1}, (4.3)

where Rot(r, i) performs an i step circular bit-wise right shift on k-bit number r.

4.2.2 SLBP Neighbourhood Structure

Given superpixel s, the neighbourhood NL,k
s is defined for L ∈ {1, 2, 3} and k ∈

Z+. For each neighbourhood level L (we call it neighbourhood level instead of ra-

dius, because it is not fixed length in all directions), we find k neighbours by divid-

ing the angular space θ = 3600 into k equal angles and drawing k radial lines from

the centroid of each superpixel towards the boundary. For example, k = 8 yields

the following quantization of θ : {0, π/4, π/2, 3π/4, π, 5π/4, 3π/2, 7π/4}.
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Figure 4.1 illustrates the proposed SLBP neighbourhood selection with central

superpixel and neighbours marked. The first level neighbourhood was composed

of neighbours that are the immediate neighbours of the centre superpixel at spec-

ified direction (θ) (see Figure 4.1 superpixel and first level neighbours ).

In some cases, more than one radial line may pass through the same superpixel.

For example, in Figure 4.1 two radial lines (θ = 7π/4 and θ = 0) pass through

the same first level superpixel neighbour. The same is the case with radial lines

passing through (θ = π and θ = 5π/4). To find the second level neighbours,

all first level neighbours are merged with the centre superpixel to form a bigger

superpixel and superpixels connecting to that merged superpixel in particular di-

rections were taken as the second level neighbours (see Figure 4.1 ). The same

procedure was repeated for finding the third level neighbours (see Figure 4.1 ).

By altering the values of k and L, SLBP operators for any spatial resolution and

for any quantization of the angular space can be achieved. Observe that since

superpixels can share neighbours in more than one direction, the mean/median

value of the shared superpixel is used to represent all those directions. In addi-

tion, if any particular neighbourhood level does not exist (boundary conditions),

then we ignore that superpixel from making the SLBP patterns at that particular

level.

Figure 4.1: Example of SLBP neighbourhood showing N1,8
s ∪ N2,8

s ∪ N3,8
s where

s is the center (in white) superpixel.

4.2.3 Structured Superpixel Patterns (SpPatterns)

Recall the nine uniform rotationally invariant local binary patterns: p0 (00000000),

p1 (00000001), p3 (00000011), p7 (00000111), p15 (00001111), p31 (00011111), p63
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(00111111), p127 (01111111) and p255 (11111111) described in Section 3.3. In

this chapter, these nine rotational invariant uniform local binary patterns are

redefined as SLBP patterns on the superpixel grid structure to represent nine

macrostructures as described in Sections 4.2.1 and 4.2.2. The dense mass ROI

classification capability of these nine structured SLBP patterns are investigated

in this chapter.

4.3 Methods

The proposed approach consists of the following steps: ROI extraction, superpixel

generation, structured superpixel patterns extraction using the proposed SLBP

technique, feature generation and classification using the features generated from

structured superpixel patterns. Figure 4.2 shows the block diagram of the pro-

posed approach. The data used in this chapter and ROI extraction mechanism,

are the same as described in Section 3.4.

Figure 4.2: Block diagram of the proposed SLBP approach for mass classification.

4.3.1 Superpixel Generation

Three different superpixel generation algorithms were studied. First is a regu-

lar grid approach, where superpixels are generated by grouping the neighbouring

pixels. In this approach, all the superpixels are of similar size and so intensity

homogeneity within a superpixel cannot be guaranteed. Second is an irregular

grid approach with controlled maximum size of superpixels, using the SLIC al-

gorithm (Achanta et al. 2012). The superpixels generated using SLIC are partly

homogenous and quasi similar in size. Third is an irregular grid approach using

SRM algorithm (Nock & Nielsen 2004). The superpixels generated using SRM

are highly homogeneous but their size approximation cannot be guaranteed.

Three different sizes of superpixels (9, 16 and 25 pixels) were generated. The

regular grid superpixels of size 9, 16 and 25 were generated by grouping the 3×3,
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4 × 4 and 5 × 5 neighbourhood of a center pixel respectively. SLIC superpixels

were generated based on the initial grid structure (3 × 3, 4 × 4 and 5 × 5) and

the parameter m that controls the relative weight between intensity and spatial

proximity. The parameter m was set to the superpixel size to give equal weight

to both intensity and spatial proximity. For SRM, the Q value was selected

automatically for each ROI to generate superpixels of approximately 9, 16 and

25 pixels. To automatically select the right Q value, each ROI was segmented

using the SRM algorithm for a specified range (1000 to 20000 with step 200) of

Q values. Then for each value of Q, the median value of the superpixels size was

computed. The smallest values of Q resulting in median superpixel sizes 9, 16

and 25 were selected. Figure 4.3 shows an example of superpixel generation using

regular grid approach, SLIC and SRM.

4.3.2 Feature Generation

To reduce the computational complexity, the number of neighbours k was selected

to be 8 and the level L ∈ {1, 2, 3}. The number of occurrences of each of the

nine structured superpixel patterns (SpPatterns) generated using the proposed

SLBP technique per unit area were used as features. That is, for each ROI we

define a feature as follows:

fi =
|SpPatterni|
|ROI|

, (4.4)

where |.| stands for the number of elements in the set (number of superpixels),

i = 0, 1, 3, 7, 15, 31, 63, 127, 255 and SpPatterni is the ith pattern. Using notation

introduced in Section 4.2.3 we have features f0, f1, f3, f7, f15, f31, f63, f127, f255

corresponding to the prominent nine SpPatterns. This results in nine features

for each of the 3 levels. The features generated are independent of ROI size as it

was normalized with the number of superpixels in each ROI.

4.3.3 Feature Selection

Similar to Chapter 3, exhaustive search was used for feature selection. The study

was conducted with superpixel size ≈ 3×3 (approximate only for irregular grid),

k = 8, L = 1 and superpixels generated using three different approaches (regular

grid, SLIC and SRM) and two different representations for superpixel (mean and
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(a) (b)

(c) (d)

Figure 4.3: An example of superpixel generation (a) original (b) regular grid
approach (c) SLIC and (d) SRM.

median representation). With nine features generated from structured SLBP pat-

terns there are 29− 1 = 511 feature combinations. The dataset (DDSM dataset1

(93 ROIs)-see Section 3.4), learning algorithm (LDA), performance evaluation

method (AUC) and validation method (ten independent runs of 5-fold cross val-

idation) used here are also same as described in Section 3.5.3.

While analysing 511 feature combinations, LBP on regular grid superpixels

(Regular-SLBP) with mean representation, the {f1, f7, f15, f127} feature combi-

nation obtained the highest AUC of 0.685; and with median representation, the
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{f0, f7, f15, f255} combination obtained the highest AUC of 0.930. In the case of

SLIC-SLBP with mean representation, the {f0, f1, f15, f127, f255} combination

obtained the highest AUC of 0.794; and with median representation, the {f3,
f31, f63, f127} obtained the highest AUC of 0.825. For SRM-SLBP with mean

representation, the {f0, f1, f31, f63, f255} combination obtained the highest AUC

of 0.938; and with median representation, the {f0, f7, f63, f255} combination

obtained the highest AUC of 0.941. Table 4.1 shows these results. The table

also shows a comparison of highest scored mean and median features set with its

corresponding median and mean feature set, for a fair comparison.

Table 4.1: Performance comparison for DDSM mass ROI (dataset1-93 ROIs) clas-
sification using regular grid, SLIC and SRM approaches with mean and median
representation.

Regular-SLBP SLIC-SLBP SRM-SLBP

Highest AUC Scored Feature Sets

Feature Set AUC Feature Set AUC Feature Set AUC

Mean {f1, f7, f15, f127} 0.685 {f0, f1, f15, f127, f255} 0.794 {f0, f1, f31, f63, f255} 0.938
Median {f0, f7, f15, f255} 0.930 {f3, f31, f63, f127} 0.825 {f0, f7, f63, f255} 0.941

Comparison

Feature Set AUC Feature Set AUC Feature Set AUC

Mean {f1, f7, f15, f127} 0.685 {f0, f1, f15, f127, f255} 0.794 {f0, f1, f31, f63, f255} 0.938
Median {f1, f7, f15, f127} 0.724 {f0, f1, f15, f127, f255} 0.767 {f0, f1, f31, f63, f255} 0.932

Mean {f0, f7, f15, f255} 0.600 {f3, f31, f63, f127} 0.695 {f0, f7, f63, f255} 0.892
Median {f0, f7, f15, f255} 0.930 {f3, f31, f63, f127} 0.825 {f0, f7, f63, f255} 0.941

The experimental results show that SLBP computed on SRM superpixels

can describe the mass characteristics better than the regular grid and SLIC.

It can be observed that performance of the homogeneous superpixel based ap-

proach using SRM was comparable between mean and median representation

while non-homogeneous superpixel (regular grid and SLIC) varies significantly

between mean and median representation. Even though Regular-SLBP with su-

perpixel size 3× 3 and median representation was comparable with SRM-SLBP,

Regular-SLBP performance degraded significantly for the superpixel sizes 4 × 4

(AUC = 0.659) and 5×5 (AUC = 0.712) with selected features, as the variability

of the pixels in the superpixel increases with size. In case of SRM-SLBP, perfor-

mance remains similar with superpixel sizes 4×4 (AUC = 0.930) and 5×5 (AUC

= 0.917) with selected features. Based on this analysis, the SRM superpixel

approach with median representation was selected as the best choice for mass

classification in this chapter and the other two approaches were not selected for

further analysis.

As mentioned, the feature set {f0, f7, f63, f255} generated using SRM su-
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perpixel approach with median representation achieved the highest score 0.941.

Pairwise T -test was conducted to see whether this highest score was significantly

different from others at a significance level of 0.05. All feature combinations of

1, 2, 3 and 4 features (in total 255 feature combinations) from SRM-SLBP with

median representation were tested (one at a time) against the highest scored fea-

ture set {f0, f7, f63, f255}. From the T-test results, 24 feature combinations were

found to be not statistically different in performance from the highest performing

feature set {f0, f7, f63, f255}. Out of these 24 feature combinations, four feature

sets were selected {f0, f7, f255}, {f1, f7, f255}, {f1, f31, f255} and {f0, f1, f255}
for further analysis as their dimension was less than the highest scored feature

set and not statistically different in performance.

4.4 Experimental Results

Similar to Chapter 3, the ROI classification power of the selected features was

evaluated on the DDSM database (301 ROIs - all 5 datasets) and the unseen BSSA

database (224 ROIs - all 5 datasets). Similarly ten independent runs of 5-fold

cross validation were applied for each of the five data sets of BSSA and DDSM to

ensure stable classification results. The reported results are averages of 10 runs

over 5 balanced data sets. In addition to neighbourhood level 1, neighbourhood

levels 2, 3 and their combinations were analysed.

The 4 three dimensional feature sets identified in Section 4.3.3 were applied

to unseen BSSA data using LDA and their highest AUC scores (when considering

all radius combinations) are shown in Table 4.2. Out of these 4 sets, the feature

set {f0, f1, f255} achieved the highest AUC score of 0.924. As shown in the table,

the feature set {f0, f7, f255} also performed at the same level. Hence we have

presented the detailed results for these two feature sets {f0, f1, f255} and {f0, f7,
f255} for three superpixel sizes (≈(3 × 3), ≈(4 × 4) and ≈(5 × 5)), two datasets

(DDSM and BSSA) and two classifiers (LDA and SVM).

Table 4.3 presents the experimental results using SLBP features ({f0, f1,
f255}) for DDSM and BSSA using LDA classifier for different superpixel sizes

and neighbourhood levels. Each row of the table corresponds to the classification

results of neighbourhood levels 1, 2, 3 and their combinations for feature set

{f0, f1, f255}. For example, each level (1, 2 and 3) has 3 features {f0, f1, f255}
generated at respective levels. Combination of levels 1 and 2 has 6 total features

({f0, f1, f255} for level 1 and {f0, f1, f255} for level 2). Similarly combination
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Table 4.2: BSSA classification results from 10 runs of 5-fold cross validation over
5 balanced datasets (250 values), the best performance of each feature set. Mean
is the mean of AUC scores.

Feature Set Mean p-value

{ f0, f1, f255} 0.924 -

{ f0, f7, f255} 0.915 0.65

{ f1, f7, f255} 0.869 7.12E-10

{ f1, f31, f255} 0.851 1.50E-14

of levels 1 & 2 & 3 have nine total features. The highest AUC score of 0.961

for DDSM and AUC score of 0.924 for BSSA with six features (superpixel size

3 × 3, level 1 and 3 combination) were achieved. Similarly, Table 4.4 presents

the experimental results for the SVM-L classifier for the same feature set. The

highest scores are highlighted in bold in the table.

Table 4.5 and 4.6 show the experimental results using feature set {f0, f7, f255}
for LDA and SVM-L classifiers respectively. The highest scores are highlighted

in bold in the table and they are comparable with results from feature set {f0,
f1, f255}. Figure 4.4 shows the ROC curves for LDA and SVM-L classifiers for

DDSM and BSSA datasets.

4.5 Discussion

In this chapter, LBP was computed on superpixels to describe the structured

superpixel patterns. The structured superpixel patterns capture the local re-

gion appearance, spatial structure and their density forms the feature descriptor.

The superpixels were generated using regular and irregular grid approaches and

represented using both mean and median values of the pixels grouped in the

superpixels.

Superpixel sizes starting from 3×3 were considered, as sizes below that (2×2)

are expected to be susceptible to noise. It was also found that performance de-

graded with larger superpixel size, and so superpixel sizes beyond 5× 5 were not

considered. For Regular-SLBP, median represents superpixels more effectively

than mean (see Table 4.1). This result is expected as regular grid superpixels

consist of non homogeneous pixels and median is a better representation than

mean, since it is more robust to outliers (noisy pixels). In the case of Irregular-
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Table 4.3: Comparison of AUC scores obtained for selected features {f0, f1,
f255} for DDSM and BSSA mass classification using LDA classifier for different
superpixel sizes and neighbourhood levels).

SRM-SLBP {f0, f1, f255}

DDSM

≈(3× 3) ≈(4× 4) ≈(5× 5)

Levels AUC Sensitivity Specificity AUC Sensitivity Specificity AUC Sensitivity Specificity

1 0.937 0.821 0.909 0.930 0.817 0.896 0.916 0.785 0.897

2 0.853 0.742 0.861 0.800 0.697 0.845 0.759 0.607 0.803

3 0.712 0.590 0.762 0.639 0.434 0.790 0.546 0.293 0.808

1&2 0.923 0.851 0.890 0.932 0.826 0.902 0.948 0.853 0.925

1&3 0.961 0.852 0.919 0.944 0.851 0.908 0.950 0.823 0.918

2&3 0.907 0.842 0.866 0.887 0.774 0.848 0.809 0.663 0.795

1&2&3 0.946 0.855 0.905 0.942 0.850 0.922 0.946 0.831 0.920

BSSA

≈(3× 3) ≈(4× 4) ≈(5× 5)

Levels AUC Sensitivity Specificity AUC Sensitivity Specificity AUC Sensitivity Specificity

1 0.839 0.759 0.769 0.779 0.670 0.776 0.761 0.631 0.770

2 0.770 0.612 0.793 0.808 0.606 0.817 0.747 0.533 0.794

3 0.848 0.629 0.821 0.827 0.604 0.833 0.881 0.673 0.873

1&2 0.874 0.777 0.796 0.870 0.710 0.824 0.795 0.680 0.800

1&3 0.924 0.812 0.878 0.858 0.688 0.840 0.900 0.730 0.889

2&3 0.871 0.671 0.868 0.840 0.646 0.817 0.883 0.699 0.893

1&2&3 0.906 0.777 0.859 0.875 0.729 0.845 0.870 0.699 0.883

SLBP both measures give similar scores. Even though Regular-SLBP with su-

perpixel size 3× 3 and median representation was comparable with SRM-SLBP,

Regular-SLBP performance degraded significantly for the superpixel sizes 4 × 4

(AUC = 0.659) and 5×5 (AUC = 0.712) with selected features, as the variability

of the pixels in the superpixel increases with size. Hence Regular-SLBP was not

considered for further analysis.

The experimental results shows that similar to micro-structures (Chapter 3),

macro-structures generated from homogeneous superpixel representation are suc-

cessful in identifying the signs of cancer in dense mammograms. With only 6

features f0, f1, f255 at level 1 and 3 (Table 4.3), an AUC score of 0.961 on DDSM

and 0.924 on unseen BSSA data was achieved with LDA classifier and similar

performance with SVM-L classifier (see Table 4.4). Overall it is clear from the

experimental results that structured superpixel patterns generated from homo-

geneous SRM superpixel representation has a high potential in classifying dense

mass ROIs.

While analysing the best performing feature sets ({f0, f1, f255} and {f0, f7,
f255}), it can be observed that the spike and pit superpixel combination ({f0,
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Table 4.4: Comparison of AUC scores obtained for selected features {f0, f1,
f255} for DDSM and BSSA mass classification using SVM-L classifier for different
superpixel sizes and neighbourhood levels.

SRM-SLBP {f0, f1, f255}

DDSM

≈(3× 3) ≈(4× 4) ≈(5× 5)

Levels AUC Sensitivity Specificity AUC Sensitivity Specificity AUC Sensitivity Specificity

1 0.939 0.850 0.907 0.930 0.814 0.889 0.917 0.760 0.897

2 0.858 0.750 0.858 0.802 0.682 0.855 0.763 0.564 0.834

3 0.717 0.582 0.787 0.633 0.422 0.792 0.526 0.184 0.857

1&2 0.924 0.828 0.908 0.930 0.817 0.905 0.945 0.870 0.893

1&3 0.947 0.848 0.905 0.947 0.841 0.905 0.947 0.828 0.910

2&3 0.894 0.789 0.874 0.880 0.758 0.867 0.811 0.637 0.817

1&2&3 0.948 0.849 0.913 0.948 0.864 0.924 0.953 0.858 0.906

BSSA

≈(3× 3) ≈(4× 4) ≈(5× 5)

Levels AUC Sensitivity Specificity AUC Sensitivity Specificity AUC Sensitivity Specificity

1 0.844 0.723 0.786 0.784 0.668 0.775 0.765 0.637 0.773

2 0.786 0.643 0.777 0.807 0.586 0.844 0.751 0.539 0.814

3 0.866 0.595 0.850 0.839 0.589 0.839 0.887 0.673 0.873

1&2 0.863 0.739 0.811 0.849 0.685 0.819 0.801 0.675 0.790

1&3 0.916 0.795 0.845 0.867 0.698 0.848 0.906 0.753 0.881

2&3 0.882 0.643 0.873 0.852 0.634 0.839 0.896 0.741 0.887

1&2&3 0.911 0.770 0.849 0.872 0.699 0.844 0.886 0.730 0.868

f255}) with one other pattern (f1 or f7) gave the best results. Similar results were

observed in the previous chapter (Chapter 3). This shows that these combinations

of structural patterns have high potential in discriminating cancerous regions from

normal regions in micro (pixel) level and macro (superpixel) level representations.

The proposed approach is based on superpixel, which is inherently robust

to noise and an explicit preprocessing step for denoising was not required. The

absence of denoising is a significant advantage because local spatial information

is important for texture recognition and denoising potentially suppresses some

important local texture information. The performance comparison between the

pixel-based features (Chapter 3) and the superpixel based features also shows the

same. The superpixel based one achieved an AUC score of 0.924 on unseen BSSA

data (see Table 4.3) while pixel one achieved only an AUC score of 0.885 (see

Table 3.4).

The proposed approach has another advantage of no parameter tuning. In

this study, only the SRM technique had a parameter Q which was selected auto-

matically for each image.

The superpixel tessellation, introduced in this chapter, can lead to a range
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Table 4.5: Comparison of AUC scores obtained for selected features {f0, f7,
f255} for DDSM and BSSA mass classification using LDA classifier for different
superpixel sizes and neighbourhood levels .

SRM-SLBP {f0, f7, f255}

DDSM

≈(3× 3) ≈(4× 4) ≈(5× 5)

Levels AUC Sensitivity Specificity AUC Sensitivity Specificity AUC Sensitivity Specificity

1 0.921 0.812 0.909 0.919 0.817 0.899 0.908 0.784 0.880

2 0.833 0.716 0.823 0.727 0.578 0.780 0.692 0.505 0.783

3 0.583 0.360 0.788 0.490 0.198 0.818 0.461 0.190 0.819

1&2 0.912 0.821 0.905 0.915 0.815 0.911 0.946 0.841 0.927

1&3 0.951 0.840 0.904 0.949 0.865 0.912 0.942 0.794 0.901

2&3 0.887 0.786 0.857 0.837 0.734 0.785 0.750 0.564 0.795

1&2&3 0.943 0.831 0.918 0.945 0.866 0.923 0.944 0.816 0.917

BSSA

≈(3× 3) ≈(4× 4) ≈(5× 5)

Levels AUC Sensitivity Specificity AUC Sensitivity Specificity AUC Sensitivity Specificity

1 0.824 0.735 0.759 0.778 0.662 0.773 0.760 0.648 0.779

2 0.784 0.615 0.797 0.813 0.602 0.827 0.779 0.571 0.829

3 0.860 0.659 0.838 0.833 0.631 0.815 0.882 0.707 0.861

1&2 0.859 0.771 0.802 0.867 0.746 0.828 0.789 0.656 0.817

1&3 0.915 0.782 0.871 0.853 0.708 0.839 0.884 0.737 0.878

2&3 0.867 0.667 0.857 0.815 0.621 0.834 0.866 0.674 0.875

1&2&3 0.898 0.763 0.874 0.879 0.753 0.854 0.867 0.719 0.874

of effective texture descriptors with high potential for texture classification. One

such method is proposed in this chapter and another one in next chapter, there

could be much more that is yet to be explored. Finally, as features explored in

this chapter are based on density of structured superpixel patterns, it solves the

limitations of the previous chapter (Chapter 3) such as, susceptibility to noise

and inability to represent macrostructures in the image. However, it still lacks

addressing the spatial distribution and closeness of the patterns, which is solved

in the next chapter (Chapter 5).

4.6 Conclusion

In this study, a novel solution to extract texture features for characterization of

mammographic dense masses was proposed. Structured superpixel patterns were

computed on regular and irregular grid superpixels using SLBP technique. The

proposed method has been tested on two databases. Experimental results show

that the structured superpixel patterns computed from homogeneous superpixels

have a high potential to discriminate dense cancerous ROIs from normal dense
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Table 4.6: Comparison of AUC scores obtained for selected features {f0, f7,
f255} for DDSM and BSSA mass classification using SVM-L classifier for different
superpixel sizes and neighbourhood levels .

SRM-SLBP {f0, f7, f255}

DDSM

≈(3× 3) ≈(4× 4) ≈(5× 5)

Levels AUC Sensitivity Specificity AUC Sensitivity Specificity AUC Sensitivity Specificity

1 0.917 0.801 0.916 0.919 0.786 0.914 0.910 0.781 0.885

2 0.827 0.688 0.834 0.713 0.508 0.823 0.672 0.432 0.795

3 0.543 0.280 0.817 0.450 0.082 0.920 0.447 0.065 0.929

1&2 0.906 0.799 0.913 0.919 0.782 0.925 0.942 0.832 0.913

1&3 0.940 0.810 0.913 0.950 0.848 0.935 0.945 0.792 0.907

2&3 0.876 0.713 0.882 0.835 0.715 0.777 0.731 0.525 0.789

1&2&3 0.929 0.809 0.916 0.954 0.883 0.943 0.953 0.856 0.908

BSSA

≈(3× 3) ≈(4× 4) ≈(5× 5)

Levels AUC Sensitivity Specificity AUC Sensitivity Specificity AUC Sensitivity Specificity

1 0.824 0.682 0.771 0.788 0.654 0.777 0.765 0.646 0.774

2 0.800 0.643 0.787 0.817 0.588 0.846 0.790 0.584 0.833

3 0.861 0.595 0.852 0.838 0.639 0.818 0.881 0.699 0.856

1&2 0.852 0.739 0.797 0.854 0.694 0.834 0.795 0.670 0.819

1&3 0.909 0.749 0.857 0.860 0.699 0.857 0.878 0.747 0.866

2&3 0.885 0.683 0.861 0.845 0.650 0.855 0.878 0.692 0.885

1&2&3 0.899 0.749 0.848 0.881 0.737 0.852 0.874 0.748 0.863

breast ROIs. The structured SLBP features f0, f1 and f255 with level 1 and 3

information yielded the highest AUC score of 0.961 for DDSM and 0.924 for

BSSA using LDA classifier. The proposed approach has the advantages of high

discriminative power, noise robustness, no parameter tuning and better texture

representation.
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Figure 4.4: ROC curves illustrating the effectiveness of selected features for ROI
classification for DDSM and BSSA datasets. The feature set {f0, f1, f255} was
used to compute the ROC curves.
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Chapter 5

Topological Modeling of

Superpixel Patterns

In the previous two chapters, structured micro (pixel) and macro (superpixel)

patterns, were described and their potential shown in discriminating dense mam-

mographic ROIs. The proportion/density of the structured micropatterns and

macro-patterns in each ROI were taken as the feature for classification. In this

chapter, a novel method is proposed based on the topology of structured super-

pixel patterns. Graph models are constructed on structured superpixel patterns

using morphological dilation to represent the spatial connectivity relationship

between the structured superpixel patterns within a ROI. A set of topological

features are generated from the proposed graph models and ROI classification is

performed based on these features. Section 5.2 provides a brief review of various

graph based approaches for image analysis. Section 5.3 describes the methodol-

ogy adopted in this study. Section 5.4 details the experimental results obtained

followed by comparison with other recent state-of-the-art mass classification tech-

niques in Section 5.5. Discussion and conclusion is provided in Section 5.6.

5.1 Dataset

The data used in this chapter for experiments are the same as described in Sec-

tion 3.4. A total of 525 ROIs were used (301 extracted from DDSM and 224 from

BSSA). All 525 ROIs were localized in dense backgrounds of breasts.
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5.2 Graph based Approaches

In literature, numerous graph based approaches can be seen in histopathological

image analysis where the spatial connectivity relationship between the cells is

measured to distinguish between cancerous and healthy tissues (Gunduz et al.

2004, Oztan et al. 2013, Gunduz et al. 2004, Bilgin et al. 2010, 2007). Segmen-

tation and detection of cell nucleus is the initial step for most of the cell graph

based studies. The centroids of the cell nuclei forms the graph nodes and edges

are formed based on the spatial proximity between the nuclei. Different topolog-

ical properties are captured based on the cell graph features and classification of

tissues is performed based on these graph features. Early studies on cell graphs

were based on graph techniques like Voronoi tessellation and Delaunay triangula-

tion (Stephen et al. 2000, Barbara et al. 1999). Barbara et al. (1999) constructed

a Voronoi diagram on the image and then its Gabriel’s Graph (GG) and Mini-

mum Spanning Tree (MST) were built. The graph features were extracted from

the Voronoi diagram, GG and MST. In (Stephen et al. 2000), Delaunay trian-

gulation was built on the image and graph features were extracted from the

Delaunay triangulation graph. Both studies performed cell nuclei segmentation

and identification before graph construction. However, these conventional graph

techniques (Voronoi and Delaunay) construct global graph which connects ev-

ery node. Hence, from these graphs, only global information like edge length

statistics can be extracted. Later, cell graph approaches were generalized by in-

troducing/allowing arbitrary edges based on the pairwise distance relationship

between the nodes (Oztan et al. 2013, Gunduz et al. 2004, Bilgin et al. 2010,

2007). Cells or cell nuclei form the graph nodes and an edge between a pair of

nodes exists based on the spatial proximity/distance between them. Both local

and global graph features can be extracted from these approaches.

In the field of mammography, graph methods are used for pectoral muscle

identification (Ma et al. 2007), breast segmentation (Don et al. 2011, Susukida

et al. 2008) and temporal analysis of mammograms (Ma et al. 2008). Recently,

Chen et al. (2015) used spatial connectivity graphs (similar to cell graph ap-

proaches) for classification of microcalcifications. However, graph based ap-

proaches for mammographic mass texture analysis have not been explored in

the literature. One of the reasons for that could be graph models on pixel based

texture features are complex and computationally expensive.

As mentioned previously, female breast is made of different types of parenchy-

mal patterns. Organization of these patterns are not random but are linked with
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the underlying function or functional state. The presence of cancer/masses can

change the normal organization of the tissue patterns. Hence, understanding the

tissue patterns/structure organization and their relationships can be used to pre-

dict malfunctioning when the patterns start changing. From these observations,

it can be hypothesized that the spatial relationships between the structured su-

perpixel patterns found in mass regions may differ from those found in normal

dense regions. Hence, graph theoretical features extracted from the superpixel

pattern graph that reflect their topological properties could be used to distinguish

mass regions from normal dense regions. This study was motivated by the above

hypothesis and related literature (Chen et al. 2015, Oztan et al. 2013, Gunduz

et al. 2004, Bilgin et al. 2010, 2007).

In the proposed approach, first, superpixel ROI tessellations are produced

by the SRM technique (Nock & Nielsen 2004). Then, using SLBP described in

the previous chapter (Section 4.2), nine structured superpixel patterns are gen-

erated from superpixel tessellations. Subsequently, superpixel patterns graphs

are constructed based on these nine patterns. Finally, the topology/connectivity

of these nine superpixel pattern graphs is analysed and used to extract feature

vectors for discriminating cancer and healthy dense ROIs. Similar to the previ-

ous two chapters, class discrimination capability of features generated from the

structured superpixel patterns graphs are evaluated using AUC, sensitivity and

specificity.

5.3 Methodology

The proposed approach consists of the following steps: ROI extraction, SRM

superpixel generation, superpixel patterns extraction, morphological operation,

superpixel pattern graph generation, topological feature extraction and classifi-

cation. Figure 5.1 shows the block diagram of the proposed approach. SRM

superpixel generation (≈(3 × 3)) and superpixel patterns extraction were the

same as the previous chapter and hence are not detailed in this chapter.

5.3.1 Morphological Operation

Mathematical morphology is based on set theory and is used widely for the anal-

ysis of spatial structures from an image (Sonka et al. 2007). It uses a collection

of operations to extract relevant structures of the image. This is achieved by
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Figure 5.1: Block diagram of the proposed superpixel patterns topological mod-
elling approach for mass classification.

probing the image with a structuring element (a small set). The shape of the

structuring element can be decided based on prior knowledge of the shape of the

object that needs to be processed (Chen 2013). Erosion and dilation are the

two main morphological operations and many others are derived from these two

operations. This study uses morphological dilation operation for constructing

spatial connectivity graphs. Dilation operation increases an object boundary and

is defined as follows. Assume X is a set and E is the structuring element, then

dilation (X ⊕ E) is defined as:

(X ⊕ E) =
⋃
e∈E

Xe, (5.1)

where Xe denotes the translations of X by the vectors −e of E. The dilation

operation works on binary image. The binary images for structured superpixel

patterns are defined as follows. Let p be one of the nine structured superpixel

patterns defined in Section 4.2.3 and I be the image corresponding to one of the

ROI. Define the binary image associated with the pattern p as follows

Ip(x, y) =

1, if s(x,y) ∈ p,

0, otherwise,
(5.2)

where s(x,y) is the unique superpixel containg (x, y). Figure 5.2 shows an example

of mass ROI and binary images corresponding to the nine structured superpixel

patterns. Only level 1 neighbors are used to create the structured superpixel

patterns. Visually different pattern clusters are clearly visible. The next section

describes a technique used to analyze the characteristics of these clusters.
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(a) Mass ROI (b) p0 (c) p1 (d) p3

(e) p7 (f) p15 (g) p31 (h) p63

(i) P127 (j) p255

Figure 5.2: An example showing pattern-based binary images for an ROI. (Only
level 1 neighbors were used.)

5.3.2 Superpixel Pattern Graph

To describe the texture of ROIs, a pattern graph for each of the binary images as-

sociated with the pattern (defined in Eq. 5.2) was built. The graph was generated

utilizing spatial connectivity between patterns within a cluster. The connectivity

was established by means of morphological dilation (with a disk shaped struc-

tural element) applied to individual superpixels at two scales: scale 1 - using one

superpixel size as radius (9 pixels), and scale 2 - using two superpixel size as

radius (18 pixels). In the graph, each node represents the structured superpixel,

and an edge is added between two nodes if the two corresponding superpixels are

connected or overlap with each other in the binary image plane. The adjacency

matrix was used to encode the superpixel pattern graph. Let M be the adjacency

matrix, then Mxy ∈ {0, 1}, x, y = 1, 2, . . . k, where k is the number of nodes in

graph and Mxy = 1 if two nodes i and j are connected, otherwise Mxy = 0. Fig-

ure 5.3 and 5.4 show an example of a mass ROI and its superpixel pattern graph

constructed at scale 1 and 2 respectively.
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(a) Mass ROI (b) p0 (spike) (c) p255 (pit)

Figure 5.3: spike and pit superpixel patterns graphs at scale 1 for a selected mass
ROI.

(a) Mass ROI (b) p0 (spike) (c) p255 (pit

Figure 5.4: spike and pit superpixel patterns graphs at scale 2 for a selected mass
ROI.

5.3.3 Topological Feature Extraction

The topological properties of graphs can be captured by various graph met-

rics (Chen et al. 2015). In this study, graph theoretical features such as average

vertex degree, cluster coefficient, percentage of isolated nodes and giant connected

component ratio are investigated. These properties are defined below.

Let G(V,E) be a graph where V is the vertex set and E is the edge set. The

cardinality of V and E is represented by |V | and |E|, respectively.

1. Average Vertex Degree: The degree of a vertex k in a graph G(V,E),

represented by d(k), is the number of edges incident on that vertex. The

average vertex degree is calculated as
∑

k∈V d(k)/|V |. This feature describes

the average relatedness between a structured superpixel and its neighboring

structured superpixels in the ROI.
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2. Average Clustering Coefficient: The clustering coefficient of a vertex

k in a graph G(V,E), represented by c(k), is the ratio between number

of edges adjacent to k and the number of all possible edges between k′s

neighbors. The average clustering coefficient is defined by
∑

k∈V c(k)/|V |.
This feature indicates how concentrated a superpixel’s neighborhood is or,

more precisely, how close it is to being a complete graph (a clique).

3. Percentage of Isolated Vertices: An isolated vertex of a graph G(V,E)

is a vertex with degree of zero. The percentage of isolated vertices is the

ratio of the number of isolated vertices to the total number of vertices in

G.

4. Giant Connected Component Ratio: The giant connected component

of a graph G(V,E) is the largest set of vertices that are reachable from

any other. The ratio of the number of vertices in the giant connected

component to the total number of vertices in |V | is called giant connected

component ratio. This feature shows the percentage of superpixels in the

giant connected component with respect to all superpixels in an ROI.

5.3.4 Feature Selection

In this chapter, the maximum dimensionality of the feature space is 72 (9 struc-

tured superpixel patterns, 2 scales, 4 graph features = 9× 2× 4 = 72). Feature

selection was conducted with DDSM dataset1 similar to Chapters 3 and 4. How-

ever, in this chapter, exhaustive search was limited to three structured superpixel

patterns graph combination features, due to computational complexity (272 − 1

feature combinations) and observations from previous experiments (in both Chap-

ters 3 and 4, best performance was achieved with three pattern combination,

further increase in pattern combinations did not increase the classification ac-

curacy). The three structured superpixel patterns graph combination resulted

in 5805 feature combinations as follows. Individual structured superpixel pat-

tern graphs resulted in 405 feature combinations (9 graphs corresponding to nine

superpixel patterns, 2 scales (3 combinations) and 4 graph features (15 combi-

nations) = 9× 3× 15 = 405). Two graph combination, resulted in 1620 feature

combinations (9 graphs in combination of 2 (36 combinations), 3 scale combina-

tions and 15 graph features combination = 36× 3× 15 = 1620) and three graph

combinations resulted in 3780 feature combinations (9 graphs in combination of

3 (84 combination), 3 scale combinations and 15 graph features combination =
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84× 3× 15 = 3780). Similar with the previous two chapters, learning algorithm

(LDA), performance evaluation method (AUC) and validation method (ten inde-

pendent runs of 5-fold cross validation) were used to analyse the effectiveness of

different graph features extracted from structured macro-patterns for the separa-

tion of cancerous and normal regions. These details are summarized in Table 5.1.

Table 5.1: Summary of feature selection experiments.

Dataset DDSM
Sample Size 93 ROIs (41 mass ROIs and 52 normal ROIs)
Classifier LDA
Feature Selection Exhaustive search and AUC
Validation method 5-fold cross validation
No. of repetitions 10
Total no. of features/combinations 72 features and 272 − 1 feature combinations
No. of feature combinations considered for analysis 5805 feature combinations
• Individual structured superpixel pattern graphs 405 feature combinations
• Two graph combination 1620 feature combinations
• Three graph combinations 3780 feature combinations

While analysing structured superpixel patterns graph combinations up to 3

(total 5805 feature combinations), the highest AUC score of 0.935 was obtained

for patterns {p0, p1, p255} for scale 1 and 2 combination, and average vertex

degree, average clustering coefficient and percentage of isolated vertices graph

feature combination. {p0, p1, p255} means graph features extracted from p0, p1

and p255 combined. In addition, out of 5805 feature combinations, it was found

that 9 feature combinations generated from {p0, p1, p255} were not statistically

different in performance from the highest performing feature set. Table 5.2 shows

the details. As the highest performed and all other nine feature combinations were

generated from {p0, p1, p255} as shown in Table 5.2, the graph features generated

from {p0, p1, p255} were selected for further analysis.

5.4 Experimental Results

Similar to the previous two chapters (see Section 3.6), the ROI classification power

of the selected features was evaluated on the DDSM database (301 ROIs - all 5

datasets) and the unseen BSSA database (224 ROIs - all 5 datasets). Similarly,

ten independent runs of 5-fold cross validation were applied for each of the five

data sets of BSSA and DDSM to ensure stable classification results. The reported

results are averages of 10 runs over 5 balanced data sets.

Table 5.3 shows the performance comparison for DDSM and BSSA for graph

features generated from {p0, p1, p255} superpixel patterns and using LDA. Col-
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Table 5.2: Best performed DDSM classification results from 10 runs of 5-fold
cross validation for dataset1 using LDA. Column 1 represents the scale 1 and
2, column 2 represents the pattern combinations, column 3 represents the graph
features average vertex degree, cluster coefficient, percentage of isolated vertices
and giant connected component ratio as 1, 2, 3 and 4 respectively.

Scale Patterns Graph Features AUC p-value

1 & 2 {p0, p1, p255} 1 & 2 & 3 0.935 ± 0.021 -
1 {p0, p1, p255} 1 & 2 & 3 0.929 ± 0.021 0.803
1 & 2 {p0, p1, p255} 1 & 3 0.927 ± 0.011 0.684
1 {p0, p1, p255} 1 & 2 & 3 & 4 0.925 ± 0.021 0.542
2 {p0, p1, p255} 1 & 3 0.924 ± 0.015 0.395
2 {p0, p1, p255} 1 & 2 & 3 0.920 ± 0.012 0.213
1 & 2 {p0, p1, p255} 1 & 2 0.919 ± 0.017 0.194
2 {p0, p1, p255} 1 & 2 & 3 0.915 ± 0.013 0.151
2 {p0, p1, p255} 1 & 2 & 3 & 4 0.911 ± 0.017 0.104
2 {p0, p1, p255} 1 & 3 & 4 0.910 ± 0.012 0.066

umn 1 represents the graph features: average vertex degree, cluster coefficient,

percentage of isolated vertices and giant connected component ratio as 1, 2, 3 and

4, respectively and their combinations. For example, when considering individual

graph features (1, 2, 3 and 4), having one feature for p0 (corresponding to each

graph feature), 2 features for {p0, p1} (individual feature for p0 and p1) and 3

features for {p0, p1, p255} } (individual feature generated for p0, p1 and p255).

For DDSM, when considering individual graph features (1, 2, 3 and 4) gen-

erated from individual scales (1 and 2), average vertex degree feature generated

from scale 2 obtained the highest AUC score of 0.875. Combining the informa-

tion from scale 1 and 2 did not result in increased classifier performance. With

two graph features and individual scales, combination of average vertex degree

and percentage of isolated vertices features obtained the highest AUC score of

0.918 for scale 2. Combining the information from two scales the performance

has increased to 0.926. With 3 graph features, combination of average vertex

degree, cluster coefficient and percentage of isolated vertices for scale 1 achieved

the highest AUC score of 0.928 and combining information from two scales in-

creased the performance to 0.934. Similarly for BSSA, with single graph feature,

average vertex degree feature generated from scale 2 achieved the highest AUC

score of 0.734. Combining the information from scale 1 and 2 did not increase

the performance. With 2 graph features, average vertex degree and giant con-

nected component ratio generated from scale 1 achieved the highest AUC score

of 0.808. Combining the information from scale 1 and 2 and further increase in
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graph features did not result in increased performance. The highest scores are

highlighted in bold in the table. SVM-L classifier results for DDSM and BSSA

are shown in Table 5.4. The highest scores are highlighted in bold in the table.

Table 5.3: Comparison of AUC scores obtained for different graph features and
their combinations generated from {p0, p1, p255} superpixel patterns graph for
DDSM and BSSA mass classification using LDA classifier for scale 1, scale 2 and
scale 1 and 2 combination. Column 1 represents the graph features average vertex
degree, cluster coefficient, percentage of isolated vertices and giant connected
component ratio as 1, 2, 3 and 4 respectively and their combinations.

DDSM - LDA

Scale 1 Scale 2 Scale 1, 2

Graph
features

AUC Sensitivity Specificity AUC Sensitivity Specificity AUC Sensitivity Specificity

1 0.837 0.661 0.838 0.875 0.766 0.843 0.873 0.741 0.853

2 0.742 0.540 0.816 0.705 0.416 0.838 0.732 0.547 0.804

3 0.847 0.640 0.862 0.714 0.438 0.870 0.841 0.626 0.858

4 0.745 0.559 0.764 0.810 0.538 0.891 0.816 0.624 0.830

1&2 0.884 0.775 0.829 0.911 0.844 0.843 0.914 0.855 0.835

1&3 0.892 0.777 0.825 0.918 0.832 0.855 0.926 0.849 0.870

1&4 0.812 0.671 0.820 0.896 0.797 0.857 0.885 0.752 0.847

2&3 0.843 0.689 0.851 0.734 0.502 0.833 0.826 0.672 0.843

2&4 0.771 0.646 0.776 0.780 0.564 0.866 0.797 0.666 0.801

3&4 0.831 0.674 0.829 0.815 0.594 0.873 0.841 0.667 0.846

1&2&3 0.928 0.866 0.852 0.918 0.878 0.843 0.934 0.894 0.852

1&2&4 0.868 0.731 0.842 0.903 0.868 0.838 0.899 0.828 0.820

1&3&4 0.877 0.757 0.817 0.909 0.805 0.863 0.900 0.805 0.863

2&3&4 0.841 0.718 0.833 0.792 0.608 0.865 0.837 0.732 0.826

1&2&3&4 0.918 0.836 0.838 0.909 0.848 0.845 0.905 0.847 0.848

BSSA - LDA

Scale 1 Scale 2 Scale 1, 2

Graph
features

AUC Sensitivity Specificity AUC Sensitivity Specificity AUC Sensitivity Specificity

1 0.710 0.461 0.770 0.734 0.543 0.769 0.734 0.590 0.765

2 0.632 0.354 0.788 0.453 0.123 0.889 0.688 0.465 0.775

3 0.623 0.288 0.842 0.565 0.161 0.944 0.602 0.348 0.825

4 0.686 0.299 0.910 0.470 0.068 0.916 0.633 0.320 0.817

1&2 0.686 0.508 0.751 0.720 0.547 0.769 0.692 0.526 0.770

1&3 0.651 0.441 0.735 0.699 0.471 0.764 0.643 0.477 0.718

1&4 0.808 0.609 0.827 0.707 0.581 0.742 0.785 0.615 0.800

2&3 0.609 0.373 0.778 0.530 0.261 0.826 0.629 0.447 0.749

2&4 0.779 0.563 0.832 0.424 0.170 0.803 0.763 0.580 0.805

3&4 0.737 0.448 0.842 0.502 0.184 0.885 0.712 0.512 0.791

1&2&3 0.631 0.468 0.720 0.679 0.495 0.762 0.634 0.466 0.721

1&2&4 0.782 0.617 0.795 0.676 0.529 0.750 0.744 0.584 0.776

1&3&4 0.804 0.639 0.805 0.678 0.494 0.744 0.719 0.544 0.783

2&3&4 0.731 0.534 0.802 0.515 0.270 0.788 0.721 0.561 0.781

1&2&3&4 0.772 0.607 0.784 0.655 0.477 0.748 0.689 0.536 0.758
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Table 5.4: Comparison of AUC scores obtained for different graph features and
their combinations generated from {p0, p1, p255} superpixel patterns graph for
DDSM and BSSA mass classification using SVM-L classifier for scale 1, scale 2 and
scale 1 and 2 combination. Column 1 represents the graph features average vertex
degree, cluster coefficient, percentage of isolated vertices and giant connected
component ratio as 1, 2, 3 and 4 respectively and their combinations.

DDSM - SVM-L

Scale 1 Scale 2 Scale 1, 2

Graph
features

AUC Sensitivity Specificity AUC Sensitivity Specificity AUC Sensitivity Specificity

1 0.712 0.463 0.692 0.769 0.585 0.731 0.771 0.707 0.731

2 0.538 0.171 0.827 0.508 0.049 0.885 0.557 0.366 0.692

3 0.772 0.415 0.904 0.557 0.171 0.962 0.811 0.634 0.827

4 0.642 0.463 0.712 0.777 0.463 0.865 0.747 0.512 0.731

1&2 0.733 0.512 0.769 0.830 0.780 0.769 0.823 0.854 0.769

1&3 0.872 0.756 0.750 0.855 0.854 0.731 0.898 0.902 0.788

1&4 0.540 0.463 0.654 0.857 0.854 0.712 0.801 0.683 0.750

2&3 0.659 0.537 0.750 0.665 0.341 0.808 0.730 0.634 0.769

2&4 0.668 0.488 0.750 0.776 0.463 0.846 0.743 0.659 0.769

3&4 0.749 0.659 0.750 0.726 0.366 0.846 0.828 0.707 0.788

1&2&3 0.889 0.829 0.788 0.845 0.756 0.731 0.927 0.902 0.846

1&2&4 0.718 0.634 0.788 0.819 0.805 0.750 0.806 0.780 0.750

1&3&4 0.807 0.707 0.712 0.812 0.707 0.712 0.856 0.707 0.731

2&3&4 0.746 0.610 0.750 0.709 0.415 0.788 0.730 0.707 0.769

1&2&3&4 0.877 0.732 0.788 0.876 0.732 0.769 0.873 0.732 0.712

BSSA - SVM-L

Scale 1 Scale 2 Scale 1, 2

Graph
features

AUC Sensitivity Specificity AUC Sensitivity Specificity AUC Sensitivity Specificity

1 0.670 0.214 0.905 0.772 0.517 0.878 0.775 0.393 0.905

2 0.500 0.143 0.881 0.448 0.000 1.000 0.641 0.310 0.805

3 0.653 0.071 0.857 0.591 0.107 0.881 0.659 0.241 0.878

4 0.723 0.429 0.905 0.669 0.034 0.951 0.773 0.517 0.878

1&2 0.648 0.379 0.780 0.783 0.571 0.881 0.731 0.517 0.829

1&3 0.607 0.250 0.881 0.653 0.393 0.833 0.667 0.357 0.857

1&4 0.866 0.690 0.805 0.699 0.357 0.881 0.835 0.607 0.857

2&3 0.594 0.276 0.902 0.643 0.310 0.878 0.679 0.464 0.881

2&4 0.748 0.643 0.810 0.478 0.138 0.878 0.795 0.607 0.810

3&4 0.715 0.500 0.762 0.555 0.103 0.854 0.724 0.464 0.762

1&2&3 0.589 0.379 0.805 0.749 0.517 0.829 0.772 0.586 0.878

1&2&4 0.788 0.679 0.810 0.753 0.571 0.857 0.868 0.828 0.805

1&3&4 0.787 0.571 0.833 0.739 0.393 0.833 0.786 0.621 0.805

2&3&4 0.858 0.690 0.829 0.628 0.179 0.881 0.784 0.621 0.854

1&2&3&4 0.759 0.607 0.786 0.640 0.429 0.762 0.803 0.724 0.805
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5.5 Comparison with recent state-of-the art meth-

ods

The results from the proposed approaches (Chapter 3, 4 and 5) were compared

with recent state-of-the art mass classification found in literature. Table 5.5 shows

the comparison results. It is important for a fair comparison to use images from

the same database and the same ROI extraction method. Therefore, the proposed

approaches were compared with studies that used images from DDSM, manually

cropped ROIs, and classification of mass and normal regions. It is also worth

emphasizing that the proposed techniques were applied to dense ROIs, which is

a particularly difficult and challenging task in mass classification, whereas the

data used in the other studies have only a small percentage of ROIs located in

the dense areas of mammograms. Despite this, the proposed mass classification

method performed comparably or better with a very small number of features.

All other studies used at least a couple of hundred features to get such high

classification scores.

The method we presented in Chapter 3 achieved an AUC score of 0.96 (see

Table 3.4 on page 53 {f0, f1, f255} with radius 1 and 4 information). The method

presented in Chapter 4 also achieved an AUC score of 0.96 (see Table 4.3 on

page 69 {f0, f1, f255} with level 1 and 3 information). The method presented in

this chapter achieved an AUC score of 0.92 (see Table 5.3 on page 83 { p0, p1,
p255 } for scale 2 and average vertex degree and percentage of isolated vertices

combination). This makes the proposed approaches a very promising method

towards building a robust mass classification system.

Table 5.5: Performance comparison of the proposed approaches with the recent
state-of-the art mass classification techniques found in literature.

Works Database ROI selection Dense only Technique No.of features AUC

Gargouri et al. (2012) DDSM Manual No GLLD with ANN 1000+ 0.95
Hussain (2013) DDSM Manual No MSWLD with SVM 337 0.99 ± 0.003

Nascimento et al. (2013) DDSM Manual No Wavelets and Polynomial classifier 6000 0.98 ± 0.030
Junior et al. (2009) DDSM Manual No Geary’s coefficient with SVM 240 0.94

Hussain et al. (2014) DDSM Manual No Gabor features with SVM 2000+ 0.96 ± 0.021
Choi & Ro (2012) DDSM Automatic No LBP with SVM 255 0.92 ± 0.026
Llado et al. (2009) DDSM Manual No LBP with SVM 2000+ 0.94 ± 0.020

Proposed - Chapter 3 DDSM Manual Yes structured micropatterns with LDA 6 0.96 ± 0.005
Proposed - Chapter 4 DDSM Manual Yes SRM-SLBP with LDA 6 0.96 ± 0.005
Proposed - Chapter 5 DDSM Manual Yes Superpixel patterns graph with LDA 6 0.92 ± 0.022

However, the proposed approaches (Chapters 3, 4 and 5) have considered a

smaller number of normal ROIs (manually cropped ones) when compared to the

automatically generated ones in the real CAD. To overcome this limitation the
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features selected from the proposed approaches are evaluated using a larger set

of automatically generated ROIs in Chapter 7.

5.6 Discussion and Conclusions

In this chapter, we have presented a novel approach for classifying dense ROIs

in mammograms based on topology analysis of structured superpixel patterns

generated using the SLBP technique. The SRM technique was used to generate

the superpixels, as SRM superpixels are statistically homogeneous in terms of

pixel gray level values and show high classification potential, based on the results

from the previous study (Chapter 4). Superpixel size ≈(3 × 3) was selected in

this study as it has shown better performance than superpixel sizes ≈(4× 4) and

≈(5× 5) (details in Chapter 4). Multiscale morphology was used to analyze the

spatial relationships between the individual superpixel patterns. In this study

we have focused on four clinically recognizable features that were extracted from

the superpixel patterns graphs for mass classification. Even though all features

related to the relative closeness of individual superpixel patterns in the ROI, each

feature gives different information in describing the topological structure of su-

perpixel pattern clusters. Alike average vertex degree gives information of interior

connectivity within the superpixel pattern, which is a local feature, whereas giant

connected component ratio gives the percentage of the largest connected compo-

nent size over the size of the entire graph resulting from dilating each superpixel,

is a global measure.

Similar with the results from the two previous chapters, spike (p0 or p1) and

pit (p255) combination gave the best results. No biological explanation was found

in the literature for this observation.

Overall results show that the proposed approach can identify meaningful su-

perpixel patterns present within mass-like regions. The topology of superpixel

patterns, captured using spatial connectivity graphs, can reveal significant differ-

ences between cancerous and healthy areas of breasts.

Finally, it is worth mentioning that the proposed technique does not involve

any parameter tuning and by its nature as superpixel based method is robust to

noise present in images and is computationally efficient since the graph was built

on superpixels instead of pixels.

In the future, we plan to investigate other properties of connectivity graphs

generated from subsets of the nine superpixel local binary patterns. Similarity
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measures between the superpixel patterns graphs could be investigated. In ad-

dition to LDA and SVM, classifiers such as random forests, ANN, and ensemble

classifiers could also be explored. In this study we have built the graph on struc-

tured superpixel patterns generated using SLBP technique. Additional texture

representation techniques could be investigated for graph study.
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Chapter 6

Improving Breast Mass

Segmentation in Local Dense

Background

In an automatic mass localisation system, the ROIs are selected by mass seg-

mentation algorithm followed by a method for prescreening of suspicious ROIs.

The automatically extracted suspicious ROIs may have overlapping mass and

normal tissues which may reduce the accuracy of the algorithm for finding effi-

cient texture descriptors for mass ROIs. Hence for dense ROI texture analysis

and classification in Chapters 3, 4 and 5, manually cropped ROIs were used to

find the efficient texture descriptors. However the selected features are evaluated

by the automatically extracted ROIs in the mass localisation stage (described in

Chapter 7).

Accurate mass candidate segmentation is an important step for the subsequent

mass localisation process and, from the literature, it is clear that segmentation

of masses in dense background is a challenging task (Bajger et al. 2009, Ma et al.

2009, Ho & Lam 2003, Obenauer et al. 2006). Hence in this chapter, two meth-

ods for improving the breast mass segmentation in local dense background are

presented. The first method analyses the effects of image enhancement on mass

segmentation. In this method, a self-adjusted mammogram contrast enhancement

solution called adaptive CLAHE is developed, aiming to improve mass segmenta-

tion. In the second method, an optimization algorithm for automatically tuning

segmentation of mammograms by SRM technique is proposed, to improve the

mass segmentation. Section 6.1 describes the image dataset used for conducting

experiments in this chapter. Section 6.2 describes the adaptive CLAHE which au-
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tomatically selects the clip limit and block size for individual images. Section 6.3

describes the self-adjusted SRM which automatically selects the best Q value for

optimal segmentation. Section 6.4 provides the discussion and summary.

6.1 Dataset

As the focus of this thesis is to find efficient descriptors for masses in dense regions,

the previous three chapters used only mammograms with masses localized in

dense background. However, in this chapter, the dataset is extended with images

of masses in nondense background to investigate performance of the proposed

methods in masses in nondense background.

For experiments in this chapter, all the malignant mammograms with masses

localized in dense background from the DDSM database (41) and the BSSA

database (29), and 41 mammograms from DDSM having masses in nondense

background were selected.

Experiments conducted for this chapter used downsampled images (by a factor

of 8) to reduce the processing time. The effect of downsampling is discussed in

last paragraph of Section 6.2.6.

6.2 Optimized Image Enhancement for

Improving Mass Segmentation

Studies have shown that image enhancement can increase the contrast between

malignant and normal tissue in dense breast and improve mass localisation/ de-

tection (Jo et al. 2013, Pandey et al. 2012, Singh & Bovis 2005). Jo et al.

(2013) applied Adaptive Histogram Equalization (AHE) to increase the detec-

tion rate of cancer in dense breast. Pandey et al. (2012) used Adaptive Volterra

Filter to improve the contrast of mammographic masses from the surrounding

tissues. Singh & Bovis (2005) proposed a set of metrics (Distribution Separation

Measure, Target-to-Background Contrast Enhancement Measurement Based on

Entropy and Combined Enhancement Measure) to measure the quality of the

image enhancement of mammographic images in a CAD for finding masses using

machine learning techniques. Based on these metrices, performance of differ-

ent contrast enhancement techniques was evaluated. According to their study,

a good enhancement method may greatly improve the segmentation accuracy of
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mass detection in dense breasts compared to the segmentation obtained from

an unenhanced original image. Their experimental results showed that image

enhancement has a significant influence on image segmentation and optimizing

enhancement on a per image basis, giving better results compared to using the

same method for all images. Choosing a single best technique for image enhance-

ment is a difficult task and the performance of the enhancement is often evaluated

based on the performance of the subsequent segmentation performance (Gonzalez

& Woods 1992). Performance of the proposed adaptive CLAHE is also evaluated

using the subsequent segmentation performance.

6.2.1 CLAHE

Pisano et al. (2000) tested different image enhancement techniques: Manual In-

tensity Windowing, Histogram-based Intensity Windowing, Mixture-Model Inten-

sity Windowing, Contrast-Limited Adaptive Histogram Equalization (CLAHE),

unsharp masking, peripheral equalization, and Trex processing for digital mam-

mography to check how these algorithms may affect the ability of radiologists to

interpret the images. According to their study, the CLAHE method improves

the detection of simulated spiculations in dense mammograms compared to oth-

ers. The CLAHE algorithm is extensively used by various researchers for CAD

applications in medical imaging because of its efficiency and straightforward im-

plementation (Sundaram et al. 2011, Rahmati et al. 2010, Shelda & Ravishankar

2013, Wu et al. 2013, Maitra et al. 2012).

Sundaram et al. (2011) used CLAHE based contrast enhancement for mam-

mograms. Rahmati et al. (2010) used fuzzy CLAHE as a preprocessing filter to

eliminate the noise and intensity inhomogeneities in mammograms to improve

segmentation of masses. Wu et al. (2013) adopted CLAHE to enhance the high

frequency subbands coefficients in-order to enhance the features and image con-

trast. Maitra et al. (2012) also used CLAHE as a preprocessing technique for

digital mammograms. CLAHE can effectively remove the noise and enhance the

local features, edges and image contrast without losing any relevant information

in the original mammogram image (Wu et al. 2013, Maitra et al. 2012). How-

ever, the performance of the standard CLAHE technique depends on two key

parameters, clip limit (c) and block size (b), and these parameter values were

heuristically chosen by users (Sundaram et al. 2011, Rahmati et al. 2010, Shelda

& Ravishankar 2013, Wu et al. 2013, Maitra et al. 2012).

In this chapter, an adaptive CLAHE based on entropy is proposed to improve
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the segmentation of masses in local dense background. As mentioned previously,

standard CLAHE heavily depends on the clip-limit c and block size b, which are

user defined. In our approach, these two parameters are determined adaptively

for each image using an optimization algorithm that uses a measure of entropy.

To analyse the effect of the proposed enhancement method on mass segmentation,

FCM clustering is used to produce the mass candidates. Figure 6.1 shows the

block diagram for mass segmentation.

Figure 6.1: Flow chart for mass segmentation

6.2.2 Adaptive CLAHE based on Entropy

6.2.2.1 An Overview

The standard CLAHE algorithm is a modification of AHE (Pizer et al. 1987),

which limits the amplification by clipping the histogram at a user-defined value

called the clip limit. The clip limit determines how much noise in the histogram

should be smoothed and, hence, how much contrast should be enhanced. CLAHE

equally redistributes the histogram above the clip limit among all the histogram

bins. The histogram can have different distributions such as uniform, exponential,

Rayleigh etc. A uniform probability density distribution does not help in the mass

localisation in dense regions, as it simultaneously distributes the dynamic range

between background and foreground. Therefore, Rayleigh distribution which is

a nonuniform distribution function, is used in this study. Finally, a cumulative

distribution function is determined for the gray scale mapping where the mapping

at each pixel is interpolated using bi-linear interpolation of the neighboring pixels.

Even though CLAHE with Rayleigh distribution gives good contrast enhance-

ment for mammogram images, it heavily depends on the clip limit and block size.

These parameter values are set up by the user. When a user determines inappro-

priate parameter values, the results of the CLAHE may be worse than that of the

original image. Figures 6.2 shows an example of CLAHE with different clip limits
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and block sizes. In un-enhanced image mass located in a local dense background

is hardly visible and the boundaries are extremely hard to detect (See Figure 6.5

(a)). This can cause failure of mass localisation in the original image due to under

segmentation, while CLAHE with proper parameter settings can provide better

noise removal and enhanced contrast between mass and background, which can

help in proper mass segmentation (See Figure 6.5 bottom row).

(a) (b) (c)

(d) (e) (f)

Figure 6.2: Example of CLAHE application with different clip limit and block size
on a mammogram from DDSM (a) Original image (b) CLAHE (c=0.1, b=8× 8)
(c) CLAHE (c=0.02, b=16 × 16) (d) CLAHE (c=0.3, b=32 × 32) (e) CLAHE
(c=0.1, b=64× 64) (f) CLAHE (c=0.008, b=64× 64)

The parameters clip limit and block size controls the contrast of the image and

hence the quality of enhancement. In most applications of the CLAHE algorithm,

clip limit and block size are fixed empirically for a class of images with results

that are far from the optimal for some members of the class. In this chapter, clip

limit and block size are adjusted automatically for each image by optimizing a

measure of entropy as described in the next section.
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6.2.2.2 Entropy of Enhanced Image

Adjusting parameters values without human intervention is a difficult task in im-

age processing. This is because automatic image enhancement requires specifying

an objective criterion for enhancement and this objective criterion should adjust

the quality of the image for the particular task. This study of automatically

tuning the clip limit and block size of CLAHE uses an unsupervised evaluation

criterion based on information theory (entropy) that adjusts the quality of the

enhanced image without any prior knowledge. The entropy value predicts/reveals

the information contained in an image and, hence, widely used in optimizing im-

age enhancement techniques (Niu et al. 2016, Panetta et al. 2008, Wan et al.

2018, Shelda & Ravishankar 2013). Based on the image histogram, the entropy

value is calculated on the enhanced image Ie as given below (Shannon 1948, Pun

1980)

H(Ie) = −
L−1∑
i=0

hilog2hi, (6.1)

where hi is the probability occurrence of the intensity value in the enhanced gray

image Ie and intensity values/gray levels i ∈ {0, 1, · · ·L− 1}.

6.2.2.3 Optimization Algorithm

To determine optimal values for the clip limit (c) and block size (b) the following

algorithm was used. Every mammogram was enhanced using CLAHE with a

limited range of values of c and b. For each value of c and b, the entropy of the

enhanced image was computed using Equation 6.1. The value of c and b resulting

in the maximum difference in entropy were selected as optimal parameter values

for the enhanced image. The reasonable range (estimated experimentally) for c

was selected as 0.001 : 0.001 : 0.02, and block size as 16 × 16, 32 × 32, 48 × 48

and 64× 64.

6.2.3 FCM

To demonstrate the effectiveness of automatically optimized clip-limit and block

size of CLAHE, the FCM clustering algorithm was adopted. FCM clustering is
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(a) (b) (c) (d)

Figure 6.3: Mass candidate segmentation with morphological filling (a) ROI show-
ing the location of the mass (b) Outer component of the selected mass candidate
(c) Inner component (d) Single mass component after applying morphological
filling

one of the most popular algorithms for segmentation. FCM uses iterative opti-

mization of an objective function based on weighted similarity measures between

the pixels in the image and each cluster center (Rangayyan 2005). The FCM

algorithm was described in detail in Section 2.2.3. In this chapter, for the FCM

algorithm, 10 clusters were used to determine the mass candidate. Ten clusters

were chosen based on our previous experience on the mini-MIAS database.

6.2.4 Mass Candidate Selection

Masses are usually hyper-dense with respect to the background with core parts

having high intensity values that tend to decrease as the distance to core parts

increases (Rangayyan 2005). This property is preserved with the proposed ap-

proach. This allows morphological filling to be used to get a good mass like com-

ponent, as shown in Figure 6.3. The figure shows the mass in an FCM clustered

image. It can be observed that the mass has an inner core with a high-intensity

that decreases as the distance to core increases. This high intensity region of the

mass is identified as a single core component with the outer area being another

component. Morphological filling is used to obtain mass like components. The

component whose centroid resides inside of the annotated region (ground truth)

with the highest Dice index, described next, is accepted as the mass region.

6.2.5 Performance Measures

The performance measures used are Dice index and Hausdorff distance. They are

popular similarity measures for sets. The Dice index for two sets is calculated as
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follows (Dice 1945)

DICE(X, Y ) =
2 | X ∩ Y |
|X|+ |Y |

,

where X and Y are the two sets to be measured. It is calculated by simply taking

twice the number of elements common to both sets divided by the total number

of elements in the two sets. The Dice index value ranges between 0 and 1. A

value of 0 indicates that two sets have no common elements and value 1 indicates

that the segmentation result and ground truth overlap entirely.

Hausdorff distance is the maximum distance of a set to the closest point in

the other set (Rote 1991). In this chapter, Hausdorff distance is used as measure

of the distance between the segmented mass candidate and the ground truth.

Lower value for Hausdorff distance is preferable for segmentation evaluation. Let

X = {x1, x2, . . . , xm} and Y = {y1, y2, . . . , yn} are two sets with m and n number

of elements, then the Hausdorff distance from X to Y is defined as follows:

h(X, Y ) = max
x∈X

min
y∈Y
‖x− y‖

As most of the times h(X, Y ) 6= h(Y,X), a general definition of Hausdorff distance

between two sets X to Y is defined as:

HD(X, Y ) = max(h(X, Y ), h(Y,X))

6.2.6 Results

The performance of the proposed adaptive CLAHE is compared with five en-

hancement techniques: Adjustable HE (Arici et al. 2009), traditional Unsharp

Masking (UM), neutrosophy based enhancement (Guo & Cheng 2009), standard

CLAHE, adaptive clip limit (ACL)-CLAHE based on standard deviation (Abbas

et al. 2013) and original image (no enhancement). For the enhancement tech-

niques, the best parameters values were determined empirically. For mass in

local dense background, the parameters values for Adjustable HE (sigma), UM

(scaling factor), CLAHE (clip-limit and block-size), ACL-CLAHE based on stan-

dard deviation (block-size) and neutrosophy (alpha and beta) were 0.6, 0.7, 0.013,

64× 64, 64× 64, 0.85 and 0.85 and for mass in local nondense background were

0.2, 0.5, 0.01, 64× 64, 64× 64, 0.85 and 0.85 respectively.
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Table 6.1 shows the performance comparison for mass segmentation using Dice

index for both mass in local dense and local nondense background. The results

demonstrate that the mass segmentation performance with the proposed adaptive

CLAHE enhancement is significantly better than the other five methods. With

the proposed method, 95% of the images were segmented with a high Dice index

for mass in local dense background (BSSA and DDSM - dense) and 98% for mass

in local nondense background (DDSM - nondense). It shows an increase of 44%

for mass segmentation (Dice index greater than 0.5) in local dense background

and 15% for mass segmentation in local nondense background in comparison

with the original image with no enhancement for the DDSM dataset. Similar

results were achieved for BSSA dataset. For both mass segmentation in local

dense and nondense background, the proposed method is better compared with all

others. Figure 6.4 shows plots of the proportion of the correctly segmented masses

as functions of Dice index for mass in dense and nondense background. These

plots also indicate that the proposed adaptive CLAHE method, using entropy

performance is significantly better than original image and other commonly used

enhancement methods.

Table 6.1: Performance comparison for FCM mass segmentation using Dice index
for BSSA (29 images) and the DDSM set for both mass in dense background (41
images) and nondense background (41 images) for each of the seven methods.
Columns 2, 3 and 4 show the percentage of the number of images whose Dice
index is greater than 0.5 for BSSA - mass in dense background, DDSM - mass in
dense background and DDSM - mass in nondense background respectively. The
corresponding number of images is shown in brackets.

Approach
BSSA - Mass
in dense back-
ground

DDSM - Mass
in dense back-
ground

DDSM - Mass
in nondense
background

Original 55% (16/29) 51% (21/41) 83% (34/41)

Adjustable HE (Arici et al. 2009) 34% (10/29) 73% (30/41) 80% (33/41)

Unsharp Masking 55% (16/29) 61% (25/41) 88% (36/41)

Neutrosophic (Guo & Cheng 2009) 66% (19/29) 71% (29/41) 85% (35/41)

CLAHE 86% (25/29) 88% (36/41) 98% (40/41)

ACL-CLAHE (std) (Abbas et al. 2013) 79% (23/29) 78% (32/41) 90% (37/41)

Proposed Adaptive CLAHE 95% (27/29) 95% (39/41) 98% (40/41)

Table 6.2 shows the performance comparison for mass segmentation using

Hausdorff Distance for both mass in local dense and local nondense background.

This result is also consistent with Dice index measure and it can be concluded that

adaptive CLAHE enhancement is significantly better than the other six methods.
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(a) BSSA - Mass in dense background (b) DDSM - Mass in dense background

(c) DDSM - Mass in nondense background

Figure 6.4: Performance comparison for FCM mass segmentation in local dense
and nondense background with six different image enhancement methods and
original image without any enhancement.

Figure 6.5 shows the impact of the proposed adaptive CLAHE for mass de-

lineation in comparison with CLAHE (fixed clip limit and block size) enhanced

image and the original image with no enhancement for mass in local dense back-

ground. The top row shows the process of obtaining the mass candidate for the

original image, middle row shows the same for CLAHE enhanced image and the

bottom row shows the proposed adaptive CLAHE enhanced image. It is evident

from the original image (see Figure 6.5 top row (a)) that the mass is hardly visible

and the boundaries are extremely hard to detect. Figure demonstrates that the

proposed method is found to be effective in segmenting such hard cases while the

mass candidate is lost in the original image as well as CLAHE enhanced image

due to under segmentation. The under segmentation may be due to the high
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Table 6.2: Performance comparison for FCM mass segmentation using Hausdorff
Distance for BSSA (29 images) and the DDSM set for both mass in dense back-
ground (41 images) and nondense background (41 images) for each of the seven
methods. Columns 2, 3 and 4 show the mean Hausdorff Distance for BSSA -
mass in dense background, DDSM - mass in dense background and DDSM - mass
in nondense background respectively. Standard deviation is shown in brackets.

Approach
BSSA - Mass
in dense back-
ground

DDSM - Mass
in dense back-
ground

DDSM - Mass
in nondense
background

Original (no enhancement) 5.45 (2.75) 4.00 (1.06) 4.08 (2.63)

Adjustable HE (Arici et al. 2009) 5.15 (1.73) 3.75 (0.98) 3.93 (1.83)

Unsharp Masking 5.15 (1.73) 4.04 (0.98) 3.63 (2.45)

Neutrosophic (Guo & Cheng 2009) 5.18 (2.29) 4.10 (1.07) 3.11 (1.10)

CLAHE 3.88 (1.13) 3.62 (0.87) 3.19 (1.30)

ACL-CLAHE (std) (Abbas et al. 2013) 3.92 (1.12) 3.92 (1.12) 3.41 (1.46)

Proposed Adaptive CLAHE 3.90 (0.87) 3.15 (1.00) 3.11 (1.63)

similarity in intensity values. Adaptive CLAHE is able to segment regions ade-

quately because of the effective contrast enhancement mechanism. Morphological

filling helps to overcome the over segmentation.

To understand the effect of downsampling, an experiment was conducted with

original resolution images (without any enhancement) from DDSM dense dataset.

It was found that after FCM segmentation, 56% of images achieved Dice index

greater than 0.5 which is comparable to 55% for downsampled images (Table 6.1).

In addition, the average running time was 1612 s for an original resolution image

compared to 30 s for downsampled images.

6.3 Optimization of SRM Segmentation

Algorithm

In addition to the method proposed in Section 6.2.2, another approach is pro-

posed in this chapter for improving breast mass segmentation in dense regions is

by optimizing the SRM segmentation algorithm without using any enhancement.

This approach was motivated by the fact that any preprocessing step may sup-

press some important local texture information that can be used in a subsequent

feature analysis step for mass localisation.
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Figure 6.5: The impact of the proposed adaptive CLAHE on mass delineation,
first row shows the process of obtaining the mass candidate for original image
(with out any enhancement) and the second row shows the same for the CLAHE
(fixed clip limit and block size) enhanced image and third row shows the proposed
adaptive CLAHE enhanced image, (a), (e) and (i) original, CLAHE enhanced and
proposed adaptive CLAHE enhanced image with core mass contour, respectively
(b), (f) and (j) segmented image after applying FCM, (c), (g) and (k) mass
candidate detected inside the ground-truth for original, CLAHE enhanced and
proposed adaptive CLAHE enhanced image, respectively and finally (d), (h) and
(l) mass candidate superimposed on original, CLAHE enhanced and proposed
adaptive CLAHE enhanced image respectively.

99



6.3.1 SRM

In SRM segmentation, Q is a parameter whose value has to be set by the user.

This parameter quantifies the statistical complexity of the image and hence con-

trols the granularity of the SRM segmentation. Smaller Q values result in under

segmentation and high Q values produces over segmentation. In applications us-

ing SRM technique, a fixed value of Q is selected empirically for a class of images

with the result that may not be optimal for all members of the class. Hence,

it is critical to select a Q value in such a way that objects of interest are well

segmented. In this chapter, the Q value is selected automatically for each image

by optimizing a measure of local and global image entropy.

6.3.2 Entropy of Segmented Image

It is widely accepted that some breasts appear in mammograms with very few

features as they have little dense tissue that could be interpreted as mass-like,

while some others contain intensity variation and many mass-like regions (Ba-

jger et al. 2009). In both cases, a better segmentation results if a good balance

is reached between the overall variation of image intensity and variation asso-

ciated with mass-like regions. This can be achieved by measuring the image

entropy (Susukida et al. 2008, Min et al. 2013). In (Susukida et al. 2008), a

region based measure of entropy was used to automatically tune a graph based

image segmentation algorithm to delineate large objects in mammograms. Our

study of automatically tuning the Q value of the SRM algorithm was motivated

by above mentioned work.

The approach used to optimize the SRM algorithm uses an entropy measure

of the effectiveness of an image segmentation introduced in (Zhang et al. 2004).

For image I, the total image entropy H is defined as

H(I) = Hl(I) +Hr(I). (6.2)

In Equation (6.2), Hl(I) measures the global image disorder called layout

entropy. Usually this number increases with the number of components. It is

defined by the following formula

Hl(I) = −
N∑
j=1

|Aj|
|A|

log
|Aj|
|A|

,

100



where |A| is the area of the whole image and |Aj| is the area of the j-th segmented

component and N is the number of components.

The second term Hr(I), called region entropy, measures the uniformity within

components. The region entropy decreases when the number of regions increases

and is given by the formula

Hr(I) =
N∑
j=1

|Aj|
|A|

Hµ(Aj),

where Hµ(Aj) is the entropy of attribute µ for component Aj. In Zhang et al.

(2004), luminance was used as the attribute µ. In this work, µ is the intensity

value of the image pixel. Denoted by Mj the set of values associated with feature

µ in component Aj and by Lj(m) the number of pixels in component Aj with

value m for feature µ, the entropy of component Aj is expressed as

Hµ(Aj) = −
∑
m∈Mj

Lj(m)

|Aj|
log

Lj(m)

|Aj|
.

6.3.3 Optimizing Algorithm

To optimize the value of the parameter Q, each mammogram was segmented

using the SRM technique for a specified range of values of Q. Then, for each

value of Q, the entropy of the segmented image was computed using the formula

in (6.2). The value of Q resulting in the maximum difference in entropy was

selected as optimal. The range for Q was selected empirically (50:10:300). The

detailed flow-chart of the proposed technique is shown in Figure 6.6.

6.3.4 SRM Mass Candidate Selection

In the adaptive CLAHE method described in Section 6.2.2, morphological filling

was used to obtain mass like components. FCM clustering produces concentric

layers for segmentation with an inner high intensity mass core as one region and

an outer less bright region as another region (see Figure 6.3). Hence morpho-

logical filling enabled the production of good mass candidates. Figure 6.7 shows

examples of SRM mass candidate segmentation. It is clear from the figure that

morphological filling does not help to produce good mass candidates. Therefore,

a different approach was adopted to select the mass candidate as described be-

low. All reasonable components that overlap the annotated region were merged
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Figure 6.6: Flow-chart for proposed entropy based optimization of SRM segmen-
tation of mammograms.

to produce mass candidates. A component with at least 60% of its area residing

within the annotated region and with Dice index more than 0.2 is considered to

be a reasonable component. In other words, we have used ground truth (anno-

tated region) to merge the segmented components to analyse the potential of the

approach. There should be an automatic merging criterion when applying this

approach to unknown case as there will be no annotated region. This is further

explained in detail in last paragraph of Section 6.4.
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(a) (b) (c) (d)

Figure 6.7: Examples of SRM mass candidate segmentation outcomes with mass
contour drawn in red.

6.3.5 Results

The performance of automatically optimized SRM segmentation was compared

with the FCM clustering method. For a fair comparison, the FCM method was

optimized by the proposed optimization algorithm. Like the Q value in SRM, in

FCM the range of cluster numbers was selected empirically (8:1:20).

Table 6.3 shows the performance comparison for mass segmentation using Dice

index when merging the reasonable components as described in Section 6.3.4.

The result shows that the proposed SRM parameter tuning algorithm has the

potential to produce effective mass segmentation without any preprocessing (en-

hancement) when merging the components. The SRM outcome outperformed the

FCM outcome by 44% and 17% for masses in dense background BSSA and DDSM

respectively, and by 8% for masses in nondense background DDSM. Figure 6.8

show plots of the proportion of the correctly segmented masses as functions of

Dice index for the union of reasonable components approach. These plots also

indicate that for the original image using optimized SRM performance was sig-

nificantly better compared with FCM. From this analysis, SRM was selected over

FCM as the mass segmentation technique for the further investigations.

The SRM algorithm performance was further evaluated with different pre-

processing (enhancement) techniques. As described in Section 6.2.5, Dice index

and Hausdorff distance were used as performance measures. Table 6.4 shows the

performance comparison of optimized SRM (with merging component approach)

using Dice index when preprocessing was applied. For the enhancement tech-

niques, the best parameters values were determined empirically. For mass in

local dense background, the parameters values for Adjustable HE (sigma), UM

(scaling factor), neutrosophy (alpha and beta), CLAHE (clip-limit and block-size

), and ACL-CLAHE based on standard deviation (block-size) were 0.6, 0.2, 0.85
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Table 6.3: Performance comparison of FCM and SRM for mass segmentation
using Dice index for the DDSM set for both mass in dense background (41 images)
and nondense background (41 images) and for BSSA (29 images) for original (un-
enhanced) images. Columns 2 and 3 are the percentage of the number of images
whose Dice index is greater than 0.5 for FCM and SRM. The corresponding
number of images is shown in brackets.

Dataset FCM SRM

BSSA - Mass in dense background 66% (19/29) 100% (29/29)
DDSM - Mass in dense background 73% (30/41) 90% (37/41)
DDSM - Mass in nondense background 90% (43/48) 98% (47/48)

(a) BSSA - Mass in dense background (b) DDSM - Mass in dense background

(c) DDSM - Mass in nondense background

Figure 6.8: Performance comparison for mass segmentation in local dense and
nondense background using merging technique
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and 0.85, 0.01 and 32× 32, 32× 32, and for mass in local nondense background

0.3, 0.7, 0.85 and 0.85, 0.01, 32 × 32, 32 × 32, respectively. Results show that

optimized SRM without preprocessing performance is comparable with results

obtained with most of the enhancement techniques. Figure 6.9 shows plots of the

proportion of the correctly segmented masses as functions of Dice index for mass

in dense and nondense background. These plots also indicate that the proposed

optimized SRM without preprocessing, is comparable with all other commonly

used enhancement methods.

Table 6.4: Performance comparison for SRM mass segmentation using Dice in-
dex for the DDSM set for both mass in dense background (41 images) and non-
dense background (41 images), BSSA (29 images) for each of the seven methods.
Columns 2, 3 and 4 show the percentage of the number of images whose Dice
index is greater than 0.5 for BSSA - mass in dense background, DDSM - mass in
dense background and DDSM - mass in nondense background respectively. The
corresponding number of images is shown in brackets.

Approach
BSSA - Mass
in dense back-
ground

DDSM - Mass
in dense back-
ground

DDSM - Mass
in nondense
background

Original (no enhancement) 100% (29/29) 90% (37/41) 98% (40/41)

Adjustable HE (Arici et al. 2009) 83% (24/29) 95% (39/41) 90% (37/41)

Unsharp Masking 69% (20/29) 90% (37/41) 95% (39/41)

Neutrosophic (Guo & Cheng 2009) 93% (27/29) 75% (30/41) 98% (40/41)

CLAHE 97% (28/29) 88% (36/41) 93% (38/41)

ACL-CLAHE (std) (Abbas et al. 2013) 83% (24/29) 83% (34/41) 81% (33/41)

Adaptive CLAHE (entropy) 97% (28/29) 95% (39/41) 98% (40/41)

Table 6.5 shows the SRM performance comparison using Hausdorff distance

for both mass in local dense background and nondense background. This results

also show that optimized SRM without preprocessing is comparable/slightly bet-

ter than results obtained from enhancement techniques

6.4 Discussion and Summary

In this chapter, two methods for improving breast mass segmentation in dense

background were proposed. The first was based on adaptive CLAHE followed

by FCM. The performance of the proposed approach was compared with five

other enhancement techniques and the original image without any preprocessing.

Morphological filling was used for selecting the mass candidate, Dice index and

Hausdorff distance were used as the performance measures. The experimental
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(a) BSSA - Mass in dense background (b) DDSM - Mass in dense background

(c) DDSM - Mass in nondense background

Figure 6.9: Performance comparison for SRM mass segmentation in local dense
and nondense background with six different image enhancement methods and
original image without any enhancement.

results shows that the proposed adaptive CLAHE with FCM outperformed all

other techniques for both masses in dense background and masses in nondense

background (see Table 6.1 and 6.2). In addition, the automatic parameter selec-

tion capability of the proposed adaptive CLAHE provides a superior advantage

by removing manual effort and reducing accuracy issues.

The second method to improve mass segmentation was using optimized SRM.

The entropy measure used to optimize the SRM segmentation algorithm was dif-

ferent from the one used for CLAHE enhancement optimization. For SRM, a

component measure of entropy that calculates the layout entropy based on the

number of SRM segmented regions and a region entropy that measures the uni-

formity within the regions were used. A different approach based on the union
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Table 6.5: Performance comparison for SRM mass segmentation using Hausdorff
Distance for BSSA (29 images) and the DDSM set for both mass in dense back-
ground (41 images) and nondense background (41 images) for each of the seven
methods. Columns 2, 3 and 4 show the mean Hausdorff Distance for BSSA -
mass in dense background, DDSM - mass in dense background and DDSM - mass
in nondense background respectively. Standard deviation is shown in brackets.

Approach
BSSA - Mass
in dense back-
ground

DDSM - Mass
in dense back-
ground

DDSM - Mass
in nondense
background

Original (no enhancement) 3.79 (1.04) 3.70 (1.25) 2.93 (1.17)

Adjustable HE (Arici et al. 2009) 4.19 (0.88) 3.78 (0.91) 3.20 (1.09)

Unsharp Masking 4.53 (0.88) 3.78 (1.27) 2.99 (0.91)

Neutrosophic (Guo & Cheng 2009) 3.61 (1.09) 4.51 (0.92) 3.25 (0.95)

CLAHE 3.66 (1.07) 3.76 (1.11) 3.25 (1.30)

ACL-CLAHE (std) (Abbas et al. 2013) 3.43 (0.79) 3.86 (1.46) 3.49 (1.49)

Adaptive CLAHE (entropy) 3.48 (0.75) 3.62 (0.98) 3.10 (1.17)

of reasonable components inside the ground truth with Dice index as the per-

formance measure was analyzed. In addition to Dice index, Hausdorff distance

was also used as the performance measure. The experimental results show that

the proposed adaptive SRM technique has the potential to produce effective mass

segmentation in dense background while retaining high performance on local non-

dense background when merging the components (see Table 6.3). The result is

particularly promising since without any enhancement, with the proposed auto-

matic tuning, SRM was able to produce significantly better mass segmentation

when compared to FCM results (Table 6.3). However, it has some limitations

when compared to the first approach (adaptive CLAHE with FCM). The opti-

mized SRM showed better performance with merging the segmented components.

Finding a criteria to automatically merge the segmented components is not an

easy task. In this chapter, ground truth was used to analyze the potential, it

needs to be automatic when used in the mass localisation process. Due to time

constraints, we were unable to find an efficient automatic merging criteria for

SRM components and hence this is kept as future work arising from this thesis.

Considering the above limitation of the proposed SRM technique, the proposed

adaptive CLAHE with FCM will be used in the next mass localisation chapter

for mass candidate generation.
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Chapter 7

Automatic Mass Localisation

In Chapters 3, 4 and 5, we have presented different strategies using local fea-

tures based on primitive micropatterns and their macro level representations to

characterize breast mass tissues localized in dense background. In Chapter 6, we

have presented two methods for improving breast mass segmentation in dense

background. In this chapter, we present a framework for automatic mass local-

isation in dense breast using the techniques developed in the previous chapters.

Section 7.1 describes the image dataset. Methodology adopted is described in

Section 7.2. Experimental results obtained are presented in Section 7.3 followed

by discussion and conclusion in Section 7.4.

7.1 Dataset

The data used in this chapter for experiments are the same as described in Sec-

tion 6.1. Original image resolution was used to extract the texture features and

downsampled images (by a factor of 8) were used for all the initial steps to save

the processing time.

7.2 Methods

The proposed mass localisation approach consists of six major stages: breast re-

gion extraction using Otsu thresholding (Otsu 1979), contrast enhancement using

the proposed adaptive CLAHE (Section 6.2.2), segmentation based on FCM clus-

tering, selection of suspicious mass regions, feature extraction and classification.
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7.2.1 Breast Region Extraction

Mammographic images normally contain irrelevant elements like labels, back-

ground etc., which can interfere with the accuracy of the mass CAD. Hence, the

first step in the mass CAD is removing these unwanted elements. This step helps

to focus the search for suspicious mass candidates to the breast area only and

thus improve the mass localisation. Otsu thresholding method (Otsu 1979) was

used to separate the foreground regions with high intensity from the dark back-

ground region. After thresholding the background intensity values are changed

to zero. Morphological opening operation with a disk shaped structuring element

with size 10 was applied to remove small objects from mammograms and filling

was used to obtain a smooth breast border. Then the region with largest area

was selected as the breast region. Figure 7.1 shows an example of breast region

extraction.

(a) (b) (c) (d) (e)

Figure 7.1: (a) Original mammogram (b) after Otsu thresholding (c) after mor-
phological operation (d) largest area selection (e) mammogram after breast region
extraction.

7.2.2 Contrast Enhancement using Adaptive CLAHE

As mentioned previously, one of the main difficulties in detecting masses in mam-

mograms is similarity of brightness of the objects in the mammograms. Normal

dense tissues and masses have similar X-ray attenuation and appear as bright

regions in mammograms. This may increase the difficulty of mass localisation

in dense breast. In order to alleviate this difficulty, contrast enhancement using

adaptive CLAHE based on entropy, which was proposed in Chapter 6, is used.
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The objective of this step is to enhance the contrast between the masses and their

background in-order to improve the mass candidate segmentation and to improve

the localisation accuracy. The adaptive CLAHE steps are explained in Chap-

ter 6. Figure 7.2 shows an example of original mammogram (a) and enhanced

mammogram (b).

(a) (b)

Figure 7.2: (a) Before contrast enhancement (b) after adaptive CLAHE contrast
enhancement.

7.2.3 Breast Segmentation and Suspicious Mass Regions

Selection

Adaptive CLAHE with FCM clustering, proposed in Chapter 6 was used to pro-

duce ROIs in this chapter. The number of clusters (10) for FCM was chosen

based on the results from Chapter 6. The segmented mammograms were further

processed by applying morphological filing of holes, followed by morphological

opening operation, with the size 2 structuring element of disk type. The opening

operation smooths contours, break narrow isthmuses and eliminates small islands.

All connected components with area bigger than 50px were considered for further

analysis.

In FCM, lower clusters have regions with low intensity values and top clusters

have regions with high intensity values. For finding the suspicious mass regions,

we considered only top clusters as mass regions have higher intensity compared

to others. The top four clusters, in the case of DDSM, and the top three clusters,
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in case of the BSSA, were considered. After removing the regions in the lower

clusters of FCM resulted in 1905 ROIs for 41 mammograms (mass in dense back-

ground) collected from the DDSM database. In that, 75 were mass ROIs and

1830 were normal ROIs. Using core mass contours information, an automatically

generated ROI was considered to be a true mass ROI only if it met two criteria:

(1) the centroid of a segmented region was included in the annotated area and

(2) more than 25% of the segmented region intersected with the true mass re-

gion (annotated region) (Choi & Ro 2012, Mudigonda et al. 2001, Dominguez &

Nandi 2008, Eltonsy et al. 2007, Varela et al. 2007). The details of ROIs in each

datset are provided in Table 7.1. None of the masses were missed in the process.

Figure 7.3 shows an example of the mammogram with suspicious regions.

(a) (b) (c)

Figure 7.3: Example showing suspicious regions (a) original mammogram (b)
after breast region extraction and contrast enhancement (c) suspicious regions
with ground truth marked with a box.

Table 7.1: Number of ROIs extracted from each dataset. Dense refers to mass
in dense background and nondense refers to mass in nondense background. The
number underneath each dataset shows the number of mammograms in each set.

BSSA DDSM - dense DDSM - nondense
(29) (41) (41)

No. of mass regions 49 75 77
No.of normal regions 1708 1830 1851

ROIs/image 60.5 46.5 47
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7.2.4 Feature Extraction

After suspicious regions identification, features were extracted to find the char-

acteristics of the detected objects. The texture features that were proposed in

this thesis (Chapters 3, 4 and 5) were extracted. The details of the feature

extraction were given in the respective chapters.

In addition to the proposed texture features, some basic mass features (mean

intensity, area and eccentricity) were also extracted to study the effect of com-

bined feature set.

The texture feature extraction used the original resolution image. Although

ROI contours were estimated initially at low resolution, they were expanded to

original resolution prior to feature extraction. As mentioned in Section 3.4, using

MATLAB, the smallest rectangular region fitting the contours were extracted and

features were calculated from it. Red box shown in Figure 7.3 (c) is an example.

7.2.5 Classification

The best features found from each of the proposed texture analysis methods in

previous chapters were included in the feature set for this study. As per the

previous chapters, LDA and SVM-L were used for classification. As the data

for classification was highly unbalanced (see Table 7.1), for training, minority

class was over sampled using SMOTE (Synthetic Minority Over-Sampling Tech-

nique) (Chawla et al. 2002). Based on the features of the original dataset, this

technique generates new instances of minority class from the nearest neighbors of

line joining the minority class samples. In our study, SMOTE was used to gener-

ate same number of mass samples as normal ones to have a balanced dataset for

training the classifier. Due to very small dataset, leave one out cross validation

was used. For DDSM, the classifier was trained with ROIs from 40 mammograms

and tested on ROIs from one mammograms and this was repeated 41 times. Sim-

ilarly, for BSSA, the classifier was trained with ROIs from 28 mammograms and

tested on ROIs from one mammograms and this was repeated 29 times.

7.3 Experimental Results

Table 7.2 shows the performance of features generated from individual approaches

and their combined performance. The features selected in the previous chapters
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(Chapters 3, 4 and 5) were analysed and the best results are shown. Results

shown are for the features: micropatterns (Chapter 3) - {f0, f1, f255} at radius

1, 2 and 3, macropatterns (Chapter 4) - {f0, f7, f255} at levels 1 and 3, super-

pixel pattern graph (Chapter 5) - 3 graph features (average vertex degree, cluster

coefficient, and giant connected component ratio) generated from scale 1 and 2

of {p0, p1, p255} combination. When the features from the three approaches were

combined, all performance measures showed significant improvement for all three

datasets.

Adding basic mass features (mean intensity, area and eccentricity) along with

the proposed texture feature again improved the classification results. Table 7.3

show the combined results for LDA and SVM-L classifiers. Figure 7.4 shows

the ROC curves for each of the classifiers (LDA, SVM-L) for BSSA, DDSM dense

and nondense datasets. The proposed method achieved an AUC score up to 0.925

and 0.950 for mass in dense and nondense background respectively. The same

features showed an AUC score of 0.923 when tested on BSSA dataset, with a

model trained on DDSM dense dataset, and an AUC score of 0.907 was achieved

when tested on DDSM - dense dataset, with a model trained on BSSA dataset.

The results are summarized in Table 7.4.

(a) LDA (b) SVM-L

Figure 7.4: ROC curves illustrating the effectiveness of proposed approach for
DDSM and BSSA datasets with LDA and SVM-L classifiers.

To evaluate the localisation performance of the CAD system based on pro-

posed features (texture features combined with basic mass features), FROC
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Table 7.2: Performance of individual feature extraction approaches (micropat-
terns, macropatterns and superpixel patterns graph developed in Chapters 3, 4
and 5 respectively) and their combined performance for BSSA, DDSM - dense
and DDSM - nondense using LDA and SVM-L classifiers.

BSSA - mass in dense background

LDA SVM-L

Features AUC Sensitivity Specificity AUC Sensitivity Specificity

micropatterns 0.875 0.861 0.742 0.880 0.860 0.810

macropatterns 0.834 0.825 0.721 0.820 0.840 0.720

superpixel patterns graph 0.802 0.800 0.710 0.810 0.800 0.710

combined - above three 0.901 0.880 0.802 0.913 0.880 0.801

DDSM - mass in dense background

LDA SVM-L

Features AUC Sensitivity Specificity AUC Sensitivity Specificity

micropatterns 0.826 0.867 0.685 0.823 0.837 0.714

macropatterns 0.783 0.695 0.718 0.793 0.724 0.694

superpixel patterns graph 0.802 0.789 0.704 0.801 0.814 0.674

combined - above three 0.871 0.827 0.761 0.870 0.870 0.790

DDSM - mass in nondense background

LDA SVM-L

Features AUC Sensitivity Specificity AUC Sensitivity Specificity

micropatterns 0.780 0.740 0.695 0.780 0.741 0.800

macropatterns 0.881 0.867 0.797 0.890 0.900 0.786

superpixel patterns graph 0.714 0.680 0.690 0.720 0.657 0.712

combined - above three 0.893 0.874 0.815 0.878 0.803 0.800

Table 7.3: Classification results for proposed texture features (combined Ta-
ble 7.2) along with basic mass features.

LDA SVM-L

Database AUC Sensitivity Specificity AUC Sensitivity Specificity

BSSA 0.925 0.877 0.852 0.892 0.780 0.870

DDSM - dense 0.910 0.883 0.816 0.900 0.760 0.850

DDSM - nondense 0.950 0.911 0.879 0.940 0.853 0.911

curves were used. Figure 7.5 show the FROC results obtained for LDA and SVM-

L classifiers for three datasets (BSSA-dense, DDSM-dense and DDSM-nondense).

For BSSA, we obtained a sensitivity of 80% at 2.7 false positive per image (FPI),

while DDSM - dense obtained a sensitivity of 79% at 2.9 FPI and DDSM - non-
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dense obtained a sensitivity of 80% at 2.8 FPI using LDA classifier. It should be

noted that when compared to the initial suspicious ROIs selection, FPI fell from

58.8 (1708/29) to 2.7 (95% reduction from initial selection) with the proposed

features for BSSA. For DDSM - dense, the reduction was from 44.6 (1830/41) to

2.9 (93% reduction) and for DDSM - nondense, from 45 (1851/41) to 2.8 (94%

reduction). Both classification and localisation results indicate that the proposed

features were equally good in dense and nondense background. Figure 7.6 shows

the example of mammograms illustrating the effectiveness of the proposed solu-

tion for correctly finding the true mass from the false positive regions. From the

figure, it is clear that the false positive regions are removed using the proposed

approach without losing the true mass region.

Table 7.4: Classification results: DDSM used for training and BSSA used for
testing (DDSM/BSSA), and BSSA used for training and DDSM used for testing
(BSSA/DDSM). The combined feature set was used.

DDSM/BSSA BSSA/DDSM

Classifiers AUC Sensitivity Specificity AUC Sensitivity Specificity

LDA 0.923 0.918 0.800 0.885 0.825 0.879

SVM-L 0.907 0.878 0.845 0.867 0.796 0.895

To our knowledge, there is no study in the literature that particularly focuses

on dense breast, due to its challenging nature. A few studies have reported their

mass localisation performance in dense breast from DDSM, even though their

focus was not on dense breast. There is no evidence to show that all the masses

used in these studies are located in dense background, even though they are of

density 3 and 4. Tai et al. (2014) reported 80% sensitivity with 3 FPI in BI-

RADS breast density 3 and 69% sensitivity with 4 FPI in breast density 4. Liu

& Zeng (2015) reported 77% sensitivity with 4.9 FPI in BI-RADS breast density

3 and 57% sensitivity with 4.1 FPI in breast density 4. Compare to these results,

our approach obtained a sensitivity of 79% at 2.9 FPI for DDSM mass in dense

background. This shows that the features resulting from this study characterizes

masses in dense background significantly better than the closest research available

in literature.
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(a) LDA (b) SVM-L

Figure 7.5: FROC curves illustrating the effectiveness of proposed approach for
mass localisation for DDSM and BSSA datasets with LDA and SVM-L classifier.

7.4 Conclusion and Discussion

In this chapter, all the methods proposed in the previous chapters are evaluated

using an automatic breast mass CAD system. Adaptive CLAHE was used for

contrast enhancement and local geometrical features generated from micro and

macro patterns were used to describe the mass texture features.

Performance of the proposed system was evaluated using ROC and FROC

curves. The highest AUC scores of 0.925 and 0.910 were obtained for mass clas-

sification on BSSA and DDSM - dense respectively. To prove the worth of the

proposed approach in the general case, experiment was conducted on DDSM

masses in nondense background and results were comparable (DDSM - nondense:

AUC = 0.950). For mass localisation, with the proposed automatic approach,

we obtained a sensitivity of 80% with 2.7 FPI for BSSA. This gave a 95% FPI

reduction, when compared with the initial number of false positives of 58.8. Sim-

ilar results were achieved for DDSM - dense (sensitivity of 79% at 2.9 FPI) and

DDSM - nondense (sensitivity of 80% at 2.8 FPI) datasets.

A significant reduction in false positives with high sensitivity shows the mass

discrimination capability of the proposed features. It shows that it could be

used in the clinical setting for mass localisation in dense breast, which is very

challenging for radiologists. At present, radiologists are finding it very challenging
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(a) (b)

Figure 7.6: Example demonstrating the effectiveness of the proposed method. a)
initial suspicious ROIs selection b) after classification using the proposed feature
set. Mass region pointed at with an arrow.

to visually identify cancer in dense breast as normal dense breast tissue hides the

tumor. This undetected, so untreated, masses/tumors could result in mortality.

With the proposed CAD approach, highly suspicious regions are detected and,

thus, allow radiologists to do a focused investigation on these regions. This could

save many lives that otherwise may fall for undetected cancer.
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Chapter 8

Conclusion and Future Work

8.1 Summary of the Thesis

This thesis presented a set of mammographic image analysis methods that can

be incorporated into a CAD system for efficient mass localisation in dense breast.

The thesis started with a brief introduction on breast cancer statistics, screen-

ing mammography, abnormalities in mammograms, problems with dense breast

tissues and the usefulness of CAD in mammography. Following this, a literature

review of texture analysis was presented. Then the main techniques used in a

CAD system and related works in applications of texture analysis to mass detec-

tion/classification and mass detection in dense breast were described. From the

literature review, it was found that mass detection in dense breast is a challenging

task for radiologists and existing CAD. In addition, there was no evidence found

in literature for structural texture analysis for mammographic masses. Hence, it

is worthwhile developing effective structural texture analysis methods that can be

incorporated into the CAD systems that can help radiologists in analysing masses

that are localized in the dense background. Three different texture analysis meth-

ods were developed. Subsequently, two methods were developed for improving

breast mass segmentation as a preprocessing step. Finally, all methods were in-

corporated into the automatic mass localisation system. The main contributions

of this thesis to the literature are the texture analysis methods developed.

For dense breast mass texture analysis (Chapter 3, Chapter 4 and Chapter 5),

which was the main aim of this thesis, three approaches, which can be viewed as

an extension/improvement of one another, were developed. In the first approach,

the characteristics of masses localized in dense background were analyzed using

structured micropatterns generated using LBP technique at different radius lev-
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els. These patterns can describe micro-structures like edges, lines, spots and flat

areas, which refer back to Julesz Textons which are the basic elements of pre-

attentive human perception (Julesz 1981). In addition, this approach provides

a combination of structural and statistical texture analysis. Structural, as these

patterns describes the micro structures in the image, and statistical, as propor-

tion/density of these patterns form features in the study. The performance of the

proposed approach was evaluated on ROIs (all localized in dense backgrounds

of breasts) extracted from the DDSM and BSSA databases. The experimental

results show that features generated from structured micropatterns can produce

very effective and efficient texture descriptors of cancerous ROIs. The traditional

histogram concatenation approach of extracting features from LBP is replaced by

features based on combinatorial properties of the structured micropatterns. This

allows for a huge reduction of the dimension in the feature space while keeping

a high rate of mass classification. With few features (6 features) AUC scores of

0.961 for DDSM and 0.885 for BSSA were achieved.

Even though the pixel level approach showed high potential in mass discrim-

ination, it lacks an ability to capture the macrostructures in the image and sen-

sitive to noise. Hence, to overcome that, a new paradigm for texture analysis

based on superpixel tessellation was proposed. In this paradigm, ROIs were

first transformed into a superpixel tessellation using a regular grid approach and

an irregular grid approach. The superpixel texture analysis paradigm has the

potential to generate a range of new textures. In this thesis, from the super-

pixel tessellation, structured superpixel patterns were constructed to represent

the macrostructures in the ROI image and density of each pattern formed the

basis for mass classification. The performance of the proposed approach was eval-

uated on the same dataset used for the pixel level approach. The highest AUC

scores of 0.961 on DDSM and 0.924 on BSSA were achieved with few features.

The features generated from the pixel based and superpixel based approaches

captures the density/proportion of the structured patterns, but it did not reflect

the spatial distribution and closeness of the patterns. In order to overcome this,

spatial connectivity graphs on structured superpixel patterns were developed.

The superpixel patterns connectivity graphs based approach is computationally

efficient and provides a robust tool for characterizing and representing dense mass

ROIs according to the spatial distribution of texture patterns. Four clinically

recognizable features were extracted from the superpixel graphs and used for mass

classification. The performance of the developed approaches were compared with

related publications in the literature.
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For breast mass segmentation (Chapter 6), two methods were developed.

First one based on the combination of adaptive CLAHE and FCM and, second,

an adaptive SRM. The performance of the developed methods was tested on

BSSA and DDSM images: mammograms with masses in dense background. In

addition, to investigate the performance in masses in nondense background, it was

tested on mammograms with masses in nondense background taken from DDSM

database. The experimental results showed a high percentage of acceptable mass

segmentation for both methods for masses localized in dense and nondense back-

ground (adaptive CLAHE approach obtained 95% and 98% for masses in local

dense and nondense background respectively). A direct comparison with four

commonly used enhancement techniques from the literature and the original im-

age was provided. The results demonstrate that the developed methods have

a high potential to improve the breast mass segmentation in dense background

while retaining high performance levels on local nondense background.

Finally, an overall evaluation of all the proposed methods described earlier

was presented in Chapter 7, demonstrating the effectiveness of these methods for

mammographic mass localisation. For masses in dense background, the proposed

approach achieved a sensitivity of 79% with 2.9 FPI and a sensitivity of 80%

with 2.7 FPI for DDSM and BSSA respectively. The experimental results shows

that the proposed approaches can be incorporated in to a real clinical setting to

help radiologists in identifying cancer localized in dense background. With the

proposed CAD approach, highly suspicious regions are detected and thus allow

radiologists to do a focused investigation on these regions. This could save many

lives that otherwise may have been left undetected and, therefore untreated and

result in mortality.

8.2 Future Work

Even though the proposed approaches in this thesis have showed high potential

in enhancement, segmentation, classification and localisation of masses in dense

regions of mammograms, there are some limitations and observations that are

seeds for future work.

The optimized SRM technique (Chapter 6) showed a high potential for mass

segmentation via merging of the SRM segmented components. In Chapter 6,

ground truth was considered to select the components that needed to be merged.

Due to limited time, finding a criteria to automatically merge the segmented SRM
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components was kept as future work.

The methods used to generate superpixel tessellation and textures generated

from the superpixel tessellation presented in this thesis are not the only ones

(Chapters 4 and 5) possible. Other methods need to be explored in the future.

In the graph based approach (Chapter 5), instead of topological features, graph

similarity/dissimilarity measures between cancer and normal superpixel pattern

graphs could be explored in the future.

In mass localisation approach (Chapter 7), pectoral muscle removal from

mammograms could be included in the preprocessing stage to further reduce

false positives. In addition, different mass segmentation algorithms other than

FCM and SRM could be analysed for their potential.

The proposed approaches need to be applied to different computer vision

applications such as cancer detection in histopathological images especially the

graph study, which has high potential for cell graphs. The texture approaches

could also be applied to other imaging like CT and MRI and cancer like abnor-

mality detection in lung and brain.

The availability of dense breast data is a challenge that, if we could overcome

in the future, can lead to efficient learning.

8.3 Contributions of this thesis

The main contributions of this thesis are summarized below:

1. A novel approach of extracting structured micropatterns using LBP tech-

nique for dense mass ROI classification was developed. This technique was

tested with images from DDSM and BSSA. The proposed approach pro-

duced comparative results compared to state of the art work with huge

reductions in the feature dimensionality.

2. A new paradigm for texture analysis based on superpixel tessellation was

developed. From the superpixel tessellation, structured superpixel patterns

were constructed to represent the macro-structures in the ROI. The density

of each pattern formed the basis for mass classification.

3. A new graph representation for dense mass classification was developed. A

set of structured superpixel patterns graphs were constructed to analyse the
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characteristics of masses. The topology of superpixel patterns, captured by

using spatial connectivity graphs, revealed significant differences between

cancerous and healthy areas of breasts.

4. A self-adjusted mammogram contrast enhancement solution called adaptive

CLAHE was developed. The method automatically tunes the clip limit and

block size of the CLAHE algorithm. The proposed contrast enhancement

algorithm improved the subsequent mass segmentation process.

5. Finally, an automated breast mass localisation system was developed that

has the potential to localise masses located in dense background.
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