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ABSTRACT 

The Music from Biosignals project is an exceptionally large project when considering every 

feature of the system involved.  The system itself can be divided into four main subsections: 

Phase 1 – Obtain a biosignal 

Phase 2 – Transmit biosignal data 

Phase 3 – Process the data 

Phase 4 – Play the music 

To achieve a greater understanding of the entire project, research was conducted into each of 

the phases.  After conducting a review into the existing literature it was found that people had 

researched into parts of this project, but nobody had pieced them together as this project does. 

Using an online set of ECG data, attention can be initially focused on Phase 4 where MATLAB 

is used to process the data to create music.  The first sounds were basic two-tone patterns which 

developed into an ascending pattern.  The code was refined to give these sounds musical 

meaning.  Understanding the differences in pitches between musical notes and the separations 

in musical scales, equations can be written, and these sounds can be replicated in MATLAB.  

The code in this case is designed to monitor the mouse cursor on the screen.  As the mouse 

travels along the screen the pitch increases by the equations used for each scale. 

As the project progressed, my focus settled on Phase 2.  Initial electronics were investigated to 

determine how the circuitry should be designed.  It was through this research that  the 

MAX30003 chip was found which reads in ECG with no additional circuitry. 

With a basic understanding of how the system should work, the on-body PCB could now be 

designed.  There were many different aspects to consider in the PCB design process, all of 

which I had very minimal experience in.  There was an incredibly steep learning curve with 

this entire process and in particular navigating the Altium Designer program.  It was eventually 

found that this process can be split into four main steps: 

Step 1 - Build schematic parts 

Step 2 - Design footprints for each schematic part 

Step 3 - Route schematic 

Step 4 - Layout PCB design 

Each step took a large amount of time as I developed a better understanding of the design 

process and continued to rectify errors as they were encountered.  After multiple interactions 

with Engineering Services at Flinders University to ensure the design worked, in the end there 

was simply not enough time to fix every issue and manufacture the board. 

Although there was insufficient time to properly complete the PCB design it was still an 

incredibly worthwhile learning experience, and the knowledge and confidence gained can be 

taken and applied to future PCB designs.  
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1 LITERATURE REVIEW 

1.1 BACKGROUND 

1.1.1 What is Music? 

The Oxford Dictionary defines “music” as “Vocal or instrumental sounds (or both) combined 

in such a way as to produce beauty of form, harmony, and expression of emotion” (Oxford, 

2019). 

This project aims to deliver a wearable electronic device which dancers can utilise to create the 

music that they dance to.  This device will study the movements and biosignals from the body 

and output the appropriate sounds.  During the early stages of this project, the predominant 

focus of “music”, with regards to its formal definition, will be instrumental sounds producing 

form, harmony and expression of emotion.   

The reason why this is the key area of research is because initially instrumental sounds are a 

more achievable goal, but it is crucial that this music have form and sound pleasant while also 

maintaining an expression of emotion.  An example of expression of emotion can come in the 

form of fast music if the dancer moves with an increased heart rate. 

Music takes many different forms and can include a multitude of scales and modes to produce 

a combination of various sounds.  There will be no specific music type or genre that will be 

focused on in this research as it is too broad to consider at this stage. 

1.1.2 What is a Biosignal? 

A biosignal is defined as “any signal in living beings that can be continually measured and 

monitored. The term biosignal is often used to refer to bioelectrical signals, but it may refer to 

both electrical and non-electrical signals” (Nait-Ali, 2009). 

There are a multitude of biosignals and some of these include Electromyography (EMG) which 

is the biosignal produced from muscles, Electrocardiography (ECG) is the electrical signal 

produced from a heartbeat and Electroencephalography (EEG) which studies the electrical 

activity from the brain.  The research presented here will have a focus on creating music from 

the properties of an ECG signal and understanding its key characteristics. 

1.1.3 Electrocardiogram (ECG) 

An ECG measures the electrical activity generated by the heart and is used for monitoring a 

heartbeat and detecting irregularities (Islam et al., 2012).  The ECG signal itself is further 

characterised by its shape which is identified by a simple PQRST plot (refer to Figure 1).  In 

practice the main focal points of this plot is the QRS section i.e. a QRS Complex. 

This image has been removed due to copyright restrictions. Available online from 

[https://www.researchgate.net/profile/Michel_Sorine/publication/233858123/figure/fig1/AS:6

69473623273483@1536626358945/ECG-signal-and-P-Q-R-S-T-waves.png]  

Figure 1: The PQRST Complex for an ECG signal (Illanes, 2006) 

https://www.researchgate.net/profile/Michel_Sorine/publication/233858123/figure/fig1/AS:669473623273483@1536626358945/ECG-signal-and-P-Q-R-S-T-waves.png
https://www.researchgate.net/profile/Michel_Sorine/publication/233858123/figure/fig1/AS:669473623273483@1536626358945/ECG-signal-and-P-Q-R-S-T-waves.png
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1.1.3.1 Noise and Interference 

There are many aspects to consider when studying ECG such as the fact that the signal itself is 

very weak. This means that amplification is required, and it is also more susceptible to noise 

and interference.  There exists a number of different types of noise and sources of interference 

and they are outlined below. 

1.1.3.1.1 Interference from other Electronic Devices 

Often in locations where ECG is being monitored there are a number of other electronic devices 

present.  Due to the nature of these devices they will produce their own signals. These external 

signals from other devices have the capacity to interfere with the weak ECG signal.  It is 

important to note that included in this type of interference are the signals from power lines 

(Joshi et al., 2013). 

This interference can be attenuated out of the final ECG signal using a combination of filters 

in hardware and algorithms in software.  One common algorithm is the Hilbert Transform 

which is used to improve the QRS shape (Benitez et al., 2001).  It is also designed to improve 

the R-R peak detection.  The R peak is the most prominent feature of an ECG signal and is 

therefore crucial in monitoring a heartbeat (Pan and Tompkins, 1985). 

1.1.3.1.2 Motion Artefacts 

Another major source of interference on an ECG signal are motion artefacts.  As the name 
suggests, motion artefacts are discrepancies on the plot which are caused by the movement of 

the person’s body (Joshi et al., 2013).  For example, when monitoring an ECG signal and the 

person moves their arm, the outcome on the ECG plot can be very significant as highlighted in 

Figure 2. 

As previously mentioned, the ECG signal is a very weak signal and so even minute bodily 

movements can have an effect on the plot.  There are often a number of noise-cancelling 

algorithms in place to attenuate these out and as the motion artefacts are large in comparison, 

the QRS complex can be easily isolated (Kumar et al., 2012).  The goal of these types of 

configurations are to reduce the noise on the signal while also enhancing the signal itself for 

improved efficiency of heartbeat monitoring. 

This image has been removed due to copyright restrictions. Available online from 

[https://www.semanticscholar.org/paper/Motion-artifact-removal-in-ECG-signals-using-

Strasser-Muma/84a9ec26403e35fa2884d6e627f1e7bb89964e90] 

Figure 2: An example of a motion artefact in an ECG signal (Strasseer, 2012) 

1.1.3.1.3 Baseline Drift 
One of the main sources of noise on the signal is baseline drift.  Baseline drift is the drift of the 

ECG signal about the x-axis (Chouhan and Mehta, 2007).  In theory, the signal is studied as if 

it travels perfectly horizontal along the x-axis, but in practice real heartbeats do not operate this 

way.  Shown in the figure below, when a dataset of 108000 samples is plotted, the signal indeed 

oscillates by the fact that when zoomed in on a subsection, the QRS shape appears to travel 

along a horizontal line but the shape changes when zoomed out on the entire plot (dataset taken 

from (Physionet, 2005)). 

https://www.semanticscholar.org/paper/Motion-artifact-removal-in-ECG-signals-using-Strasser-Muma/84a9ec26403e35fa2884d6e627f1e7bb89964e90
https://www.semanticscholar.org/paper/Motion-artifact-removal-in-ECG-signals-using-Strasser-Muma/84a9ec26403e35fa2884d6e627f1e7bb89964e90
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Figure 3: Baseline drift of an ECG dataset 

A common software technique to resolve this issue is the implementation of a least square error 

correction algorithm which is designed to restrain the signal for improved readability and 

monitoring (Chouhan and Mehta, 2007). 

1.1.4 Other Biosignals 

As previously mentioned, this research focuses primarily on the ECG signal and its capacity to 

create sounds, however, there are a number of different biosignals that can also be considered 

in the creation of music.  This list includes EMG i.e. biosignals from muscles, and respiratory 

biosignals which can be monitored by studying the changes in a respiratory band (Berry, 2016). 

The benefit of studying different signals is that there will be more signal properties that can be 

utilised to create different music.  Increasing the number of sounds that are available means an 

increased repertoire of music that can be created by the dancer. 

1.1.5 MATLAB 

The computer program MATLAB will be used for its programming language and predefined 

functions.  It is a powerful tool containing commands that other languages do not necessarily 

possess or are not as easily accessible. 

In the beginning of the project, in particular with music creation, MATLAB is a valuable aid 

and has two main built-in functions in order to play sounds; they are sound() and audioplayer().  

Sound is useful for creating notes of certain pitch in a more basic manner based on a dataset 
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and frequency whereas audioplayer is an object function that enables flexible audio functions 

such as pausing, resuming and defining audio call-backs (Mathworks, 2019).  For this 

application, audioplayer appears to be the more appropriate selection as it is believed to be 

simpler to implement and more flexible. 

1.1.6 Musical Instrument Digital Interface (MIDI) 

If there is sufficient time towards the end of the project, the final stage of the music created 

will involve having the data sent as a MIDI stream.  MIDI is a common technique used for 

communication between electronic devices, particularly in a musical setting (Lisle et al., 1991).   

The final device’s ability to output MIDI is a crucial component of the system as it allows for 

greater flexibility of the device in the future. 

There are a multitude of MIDI messages available and the table below shows the basic 

messages that may be of interest to this project. 

Table 1: Basic MIDI Messages and their Purpose (Association, 2019) 

Message Description 

Note on The message that is sent when a note has started (depressed). 

Note off The message that is sent when a note has ended (released). 

Timing Clock When synchronisation is required, the timing clock message is sent. 

Reset Resets all receivers in the system. 

Undefined 

(reserved) 

There are multiple undefined message codes which are reserved 

and can be used for custom messages. 

 

1.1.7 The System 

In the beginning stages it is important to understand the key features of the project in its 

entirety.  This will be achieved  by creating a sketch of the system as shown in Figure 4. 

 

This image has been removed due to copyright restrictions. Generic images available online 

from [https://d9np3dj86nsu2.cloudfront.net/image/340bac855592d52ba09f4669b7384063], 

[https://5.imimg.com/data5/HP/NI/GM/IOS-3321626/product-jpeg-500x500.png] and 

[https://www.shutterstock.com/video/clip-26350298-music-notes-flowing-on-white-

background-seamless] 

Figure 4: The Entire System.  Generic images taken from: (Duolingo, 2019), (IndiaMart, 

2019) and (Shutterstock, 2019) 

The above figure is a graphical demonstration of what the entire system will eventually become.  

The sensors (indicated by orange squares) will be placed in strategic places around the body to 

acquire specific biosignals.  These signals will communicate with a printed circuit board (PCB) 

through wired connections (black straight lines) as well as via Bluetooth (blue curved lines) 

where appropriate. 

The information will then be taken from these biosignals and sent to the off-body computer 

through WIFI (black curved lines).  The properties sent from the PCB will be analysed by the 

computer to produce music.  This music can be sent through a specific protocol, for example 

MIDI, to ensure compatibility with other musical devices.  

https://d9np3dj86nsu2.cloudfront.net/image/340bac855592d52ba09f4669b7384063
https://5.imimg.com/data5/HP/NI/GM/IOS-3321626/product-jpeg-500x500.png
https://www.shutterstock.com/video/clip-26350298-music-notes-flowing-on-white-background-seamless
https://www.shutterstock.com/video/clip-26350298-music-notes-flowing-on-white-background-seamless
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1.2 GAPS IN LITERATURE 

Humans have been able to obtain ECG signals for a long time and the concept of taking a signal 

and using its properties to determine an appropriate output is not necessarily a new idea.  

However, using this to create music is something that has not yet been done. 

Additionally, the use of MIDI, or other communicative protocols, in electronics and the music 

industry has allowed for many advancements to ensue, specifically the simplified 

communication between musical devices; but this has not yet been used in conjunction with 

biosignals. 

Essentially, the literature gap here is the fact that there has been no research into connecting 

the two fields.  This project aims to bridge the gap between the acquisition of a biosignal, using 

it to create music and then having it communicate with other electronic instruments within a 

musical setting.  
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1.3 MY PRIMARY CONTRIBUTIONS 

1.3.1 Research and Development 

The Music from Biosignals project is ongoing and will span many years as the technology 

develops.  The research presented in this paper will be mostly focussed on the design of a PCB 

as well as using an ECG signal to create music. A key feature of this system for now and into 

the future will be a generic PCB that the sensors will communicate with in order to relay the 

information to the off-body computer.   

Once it was established that this PCB design was crucial to the project, research was conducted 

into the field and it was found that there already exists a chip for acquiring certain biosignals.  

The MAX30003 chip by Maxim Integrated is a component which has been constructed for 

wearable applications to obtain and filter the wearer’s ECG signal (Integrated, 2019b). 

Further research indicated that a basic development board exists with the inclusion of the 

MAX30003 chip that only reads ECG data (refer to Figure 5). 

This image has been removed due to copyright restrictions. Available online from 

[https://www.protocentral.com/4939-medium_default/protocentral-max30003-single-lead-

ecg-breakout-board.jpg] 

Figure 5: The MAX30003 Single-lead ECG Breakout Board (Electronics, 2019) 

Another board was also found which uses this chip in conjunction with other Maxim Integrated 

chips to obtain the wearers ECG and heart rate, skin temperature as well as study the user’s 

motion (refer to Figure 6). 

This image has been removed due to copyright restrictions. Available online from 

[https://in.element14.com/productimages/large/en_GB/2668592-40.jpg] 

Figure 6: The MAXREFDES100#: Health Sensor Platform (Integrated, 2019a) 

The main issue with these existing boards is that there are no free I/O ports to be able to attach 

other sensors.  This will not be an issue now as this area of research is focussing specifically 

on ECG, however in the future when the same analysis is conducted using other sensors and 

other biosignals, these will no longer be suitable. 

There were a number of different routes this research could take, so a decision matrix was 

created to mathematically find the most appropriate solution for a PCB design. 

 

 

 

 

 

 

 

https://www.protocentral.com/4939-medium_default/protocentral-max30003-single-lead-ecg-breakout-board.jpg
https://www.protocentral.com/4939-medium_default/protocentral-max30003-single-lead-ecg-breakout-board.jpg
https://in.element14.com/productimages/large/en_GB/2668592-40.jpg
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Table 2: The Decision Matrix for PCB solution 

Weights 

3 = Very Important 

2 = Important 

1 = Must be at least considered  

Factors Can be used 

now and into 

the future 

Wide variety of 

applications 

(ECG, EMG, etc) 

Cost 

Effective 

Total 

Weights 3 3 1  

Option 1 – Design entirely 

new boards specific to my 

purpose with MAX30003 

chip. 

1 × 3 = 3 0 × 3 = 0 4 × 1 = 4 7 

Option 2 – Design entirely 

new generic board to 

communicate with the off-

body computer. 

3 × 3 = 9 4 × 3 = 12  5 × 1 = 5 26 

Option 3 – Use ECG 

Board purely for ECG . 

3 × 3 = 9 1 × 3 = 3 2 × 1 = 2 14 

Option 4 – 

MAXREFDES100 Board 

which does more than 

ECG and can be used to 

communicate to an off-

body computer. 

1 × 3 = 3 4 × 3 = 12 0 × 1 = 0 15 

The data from Table 2 shows that the most suitable PCB solution will be the design of a new 

and completely generic PCB.  The table shows that the most important factors in this project 

are the PCB’s ability to communicate with a wide variety of sensors to attain different 

biosignals which is also closely related to the usefulness of the PCB for now and into the future. 
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1.3.2 My PCB 

After much deliberation with Associate Professor Kenneth Pope, the functionality of the PCB 

was defined.  This predominantly involved deciding which components to select for the design.  

The requirements of the board were that it must have a microprocessor with a sufficiently large 

number of I/O ports, Bluetooth and WIFI capability as well as an Analog-Digital Converter 

(ADC).  Aside from these main requirements the other chip specifications did not necessarily 

matter.  The requirements outlined above are detailed in the table below. 

Table 3: PCB Requirements and Reasons 

Requirement Reason 

Large number of 

I/O ports available 

from the 

Microprocessor 

This requirement is in place because the idea of the project will be 

to have a number of sensors acquiring a multitude of biosignals 

simultaneously.  Designing the board with this in mind is crucial 

for the long-term success of the project. 

Bluetooth 

Capability 

Bluetooth will be used to communicate the data from the 

compatible sensors to my PCB. 

WIFI Capability The information that the PCB receives from the biosignals will be 

sent from the board to an off-body computer which will receive that 

data and then create music from it. 

Inclusion of an 

Analog-Digital 

Converter 

The ADC will be responsible for the sensors which produce an 

analog signal.  Essentially the inclusion of the ADC accounts for all 

types of sensors that can be considered for obtaining biosignals. 

 

Appropriate solutions were found to each of these requirements, however, after meeting with 

an expert, more suitable components were identified (Cramer, 2019).  Table 4 below shows the 

originally selected component, the new component  and the reason why changes were made.  

It is worth noting that the originally selected components did meet the requirements stated 

above but the new components perform exactly the same task and are more tailored to this 

application. 
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Table 4: A study into the components on my PCB 

Function Previous 

Component 

New Component Reason for change 

Microprocessor ATSAM3X8CA PIC32MX5/6/7 Although the original 

component met the 

requirement for having a 

sufficient number of I/O ports, 

it lacked Flinders University 

support from a debugging and 

operational viewpoint.  The 

PIC microprocessors have a 

sufficient number of I/O ports 

and are compatible with the 

MPLAB ICD3 debugger which 

is readily available. 

Bluetooth CYBT-353027-02 ESP32 The only requirement of these 

components were to transmit 

data via Bluetooth and WIFI.  

A chip was recommended 

which has both transmission 

techniques in one package.  

This is a better solution and 

allows for a cleaner design as 

there are less components to 

consider.  It also makes 

another I/O port available. 

WIFI ESP8266 

Analog-Digital 

Converter 

ADS130E08 ADS1298 While both components are 

nearly identical, the analog 

front-end of the new 

component is built for 

biopotential measurements 

whereas the previous 

component is simply a generic 

ADC. 

 

In terms of acquiring ECG, the MAX30003 Single-lead ECG Breakout Board shown in Figure 

5 is a relatively cost-effective solution that can be connected to my PCB.  This board uses the 

MAX30003 chip which is responsible for ECG acquisition, filtering and amplification.  

Therefore, it is unnecessary to include these aspects in my PCB design. 
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1.4 OTHER APPLICATIONS FOR THE TECHNOLOGY 

There are a number of different applications for this concept.  The ability to control things, or 

in this case create music, using biosignals can be a powerful tool. 

One example would be to assist people who have limited mobility.  Given that everyone is 

capable of producing biosignals this means that regardless of a person’s physical capabilities 

they will still have the same biosignals as able-bodied people.  If these signals are accessed 

properly then they can be utilised to control equipment such as wheelchairs and communication 

devices.  This is a concept that is beyond the scope of this research and at this stage ECG might 

not be a feasible biosignal to control these assistive technologies.   

There also exists applications of this technology in the field of rehabilitation.  The biosignal 

produced from an elastic band which measures respiration can be used to monitor how a person 

is breathing.  Studying the plots produced by these biosignals, the differences can be studied, 

and changes can be observed over time.  
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2 PROJECT SPECIFICATION 

The system in its entirety is described in Section 1.1.7 of Chapter 1: Literature Review (refer 

to Figure 4 for a diagram of the entire system).  Essentially the project can be divided into four 

main phases: 

Phase 1 – Acquire a biosignal: The data collected from the signals is what will be processed 

to create the sounds.  As previously mentioned, in order to test code and hardware that result 

from my contributions, I focussed my attention on the ECG signal.  Note that there exists a 

number of different biosignals as described in Chapter 1: Literature Review. 

Phase 2 – Transmit biosignal data: The collected data is read in from the sensors to an on-

body PCB placed on the person.  This data is then sent to an off-body computer for processing. 

Phase 3 – Process the data: The data sent to the off-body computer is processed through the 

software which needs to be designed.  This software will filter the information within the data 

to output appropriate music accordingly. 

Phase 4 – Play the music: Based on the information given to the computer after being 

processed, appropriate combinations of notes can be assigned, and music can be played. 

As the project progressed my contributions began to settle on Phase 2.  The collected data 

needed to communicate with a PCB, and it eventuated that the design of that PCB will be my 

primary focus.  In the early stages of the project, in order to gain a better understanding of the 

tasks required each of the four phases were studied.  
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3 MUSIC GENERATION AND SOFTWARE 

3.1 CREATING SOUNDS 

As described in Chapter 1: Literature Review, music is defined as “Vocal or instrumental 

sounds (or both) combined in such a way as to produce beauty of form, harmony, and 

expression of emotion” (Oxford, 2019).  

For this project there were two main components of music composition.  The initial idea behind 

creating sounds was the analysis of an ECG signal and the second part involved taking these 

sounds and putting them into a musical context.   

Studying the dataset found from an online source, this data could be read into MATLAB and 

by simply using these values in conjunction with the inbuilt MATLAB functions, simple 

sounds can be created (Physionet, 2005). 

The construction of the code began by reading in the data values and comparing them with a 

threshold value.  This was an arbitrary value based primarily on the R-peak value (refer to 

Figure 1) within the dataset.  Above that threshold a certain pitch can be outputted and below 

that threshold a different pitch can be outputted.  This was a simple idea to create a two-tone 

music player based on the ECG dataset.  These sounds started out by being generic sounds 

based on the ECG data and the threshold set by the code (refer to Appendix).  With the 

assistance of the audio sharing website Clyp, these raw sounds were recorded through a 

computer and are presented here. 

3.2 GIVING MUSICAL MEANING TO THESE SOUNDS 

Once generic sounds were successfully created it came time to add meaning to them.  This was 

in the form of a simple ascending pattern.  It was at this point that Associate Professor Kenneth 

Pope assisted in the further refinement of the code.  Developing this two-tone concept into a 

more flexible design, he suggested subdividing the dataset into blocks, processing them 

individually and outputting sounds based on the individual blocks.  This allowed for different 

sounds to be created.  The result of this refinement can be found through the following link. 

Another additional feature that was added to the code was the loop, i.e. rather than reading 

through the entire dataset and then terminating the program (which only takes several seconds), 

the dataset is then looped.  Rather than thinking of the data like one finite dataset, the data can 

be thought of as an infinite loop of one dataset on repeat.  The main benefit to this was 

particularly for research and development of the code as I strove to understand what the code 

was doing and the effect the dataset had on it. 

Once these sounds were made, it was time to start applying these in a musical context.  For 

increased readability this section will refer to notes on a piano keyboard, specifically Middle 

C as shown in the diagram below.  Note also that the shortest distance between two keys is 

referred to as a “semitone” and one more step is called a “tone”. 

https://clyp.it/joo3sf20?token=c45c5f02f980913db37cdbcf2ffa0f14
https://clyp.it/oazv0wdz?token=534c3d98e655d6935ccff8d6e237ac29
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This image has been removed due to copyright restrictions. Available online from 

[https://acousticnotesblog.files.wordpress.com/2017/01/middleconkeyboard.png] 

Figure 7: The piano keys for reference, note the position of Middle C (Chaffman, 2017) 

Physically speaking Middle C has a frequency of 261.63Hz.  Understanding that the frequency 

difference between Middle C and one semitone higher to C# (C sharp) has a difference of 

15.55Hz, mathematical equations can be written for notes in a scale.  Depending on what type 

of scale we want our music to sound like will depend on which combinations of notes will be 

used in the tune.   

As an example, the major scale is known to have a separation of tone, tone, semitone, tone, 

tone, tone, semitone between notes and hence this can be mathematically represented in 

MATLAB in terms of their respective frequencies.  Similar principles can be taken for other 

scales, such as the minor and pentatonic scales which are based on combinations of notes and 

hence different equations can be written for different sounds. 

Understanding these key musical concepts will assist us in taking ordinary sounds that we have 

created and giving them meaning.  Although the ECG data was used to create musical sounds, 

this part primarily focussed on the mathematical models that can be used to output different 

scales.  With Kenneth Pope’s assistance, MATLAB code was developed which monitors the 

location of the mouse cursor on the computer screen.  As the mouse travels vertically along the 

screen, the volume of the sound changes (up direction for an increase in volume and down 

direction for a decrease in volume) while horizontal travel of the mouse along the screen 

changes pitch of the outputted sound.  Considering this concept, the computer screen can be 

divided into a number of columns.  In each column, a certain pitch is outputted, as the mouse 

passes the line into another column, the pitch changes.  Therefore simply defining this change 

in pitch as the change in frequency according to one of the scales above (major, minor or 

pentatonic) these scales can be easily represented as the mouse changes columns.   

Note the description of the above code of scale creation in MATLAB does not actually work 

in this way, but for simplicity and understanding it can be thought of like this (refer to Appendix 

for the full code for this section). 

The final sounds can be found through the following links for the major, minor and pentatonic 

scales.  These sounds presented here are merely a proof of concept and the timing between 

notes and the volumes can be ignored. 

It should also be reiterated that I worked in conjunction with Associate Professor Kenneth Pope 

on this section in order to get the programs compiling.  As such each line of code will not be 

described in exhaustive detail as this is not the key point of this chapter but rather the thinking 

involved in order to create sounds and the process taken to get to that stage. 

3.3 MIDI IMPLEMENTATION 

As mentioned in Chapter 1: Literature Review, the final stage of this project is to store the 

processed data as a MIDI stream for outputting music.  Unfortunately due to time constraints 

this section could not be sufficiently studied.  There does exist some code online designed by 

(Schutt, 2012) which delves into MIDI using MATLAB programming.  I imported this code 

https://acousticnotesblog.files.wordpress.com/2017/01/middleconkeyboard.png
https://clyp.it/kbin4dk1?token=69000fd1b733ff92493a8c78256c6c06
https://clyp.it/fkwbfbsn?token=43258d99b7502b82f2800e3e846a0235
https://clyp.it/2fq33dhk?token=87e83ef5a5986cd0c2c8101003cbe58f
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into MATLAB for initial research, but the tasks involved with MIDI became too great as my 

priorities changed with my research beginning to develop a key focal area. 

It was at this stage of the project where my focus began to settle on the electronics side of the 

system and more specifically the design of the on-body PCB.  To properly design a PCB more 

research needed to be conducted into its requirements.  Many different configurations were 

designed and tested, and the results are shown below. 
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4 ELECTRONICS AND PCB DESIGN 

4.1 INITIAL ELECTRONICS 

At the commencement of my project I knew I needed to acquire an ECG signal somehow.  

Associate Professor Kenneth Pope assisted by giving experiment documents for designing the 

analog front-end of an ECG circuit.  The documents explained how to filter the ECG signal  in 

conjunction with an ECG signal generator.  Learning how to use a breadboard proved crucial 

for effectively building this circuit.  The figure below shows the ECG signal generator with 

proper filtering and amplification achieved by the analog-front end that I built. 

 

Figure 8: The waveform generator producing an ECG signal on the oscilloscope 

The circuitry designed in Figure 8 is based off the circuit diagram below.  Note the annotations 

at each operational amplifier I added as the circuit was pieced together.  This assisted me in 

monitoring the design as it progressed.  Unfortunately, I did not have time or proper safety 

precautions in place to connect myself to this circuit, however, the waveform generator was 

enough for the research required for this section. 
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Figure 9: The circuit diagram used to design the ECG monitoring circuitry (Pope, 2019) 

In my study of electronics I also had the opportunity to play with a cheap ECG sensor (the 

specifics of which are unknown) and the Flinbit development board provided by Flinders 

University as shown in the figure below.  With this sensor it was a simple task to acquire an 

ECG signal.  However, as demonstrated in the image, the sensor does not effectively filter the 

signal and so the result is an incredibly noisy signal. 

 

Figure 10: The Flinbit development board showing real-time ECG data 

As mentioned in Chapter 1: Literature Review, I was informed that the MAX30003 chip exists 

which is capable of acquiring the signal and filtering it appropriately.  The work I had done on 

the analog-front end was a good learning experience and helped develop a foundation of 

knowledge for my electronic applications.  However, it was not essential in my final design 

due to the capabilities of the MAX30003 chip. 
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Through my research I found the ECG Breakout Board by Protocentral (refer to Figure 11) 

which utilises the functionality of the MAX30003 chip for wearable applications.  The idea of 

this board is to obtain the wearers ECG signal and communicate with an external 

microprocessor through SPI; this information is then displayed on a Graphical User Interface 

(GUI).  The online tutorial shows the board connected to an Arduino Uno kit but due to 

availability, the information will be simply conveyed through the Flinduino board designed by 

Flinders University.  The ECG Breakout Board is approximately 3cm long and 2.5cm high 

which is incredibly small and gave a much greater appreciation for the size of PCB’s used in 

wearable applications. 

 

Figure 11: The ECG Breakout Board (protocentral, 2019) 

Acquiring a signal from this board was no small feat as it required thorough research into the 

workings of SPI communication.  Furthermore, the 10-Pin header came separate and needed to 

be soldered onto the board. 

Developing a better understanding of SPI involves gaining knowledge of the different aspects 

of this communication method.  There are four wires involved in SPI and they are as follows: 

Table 5: SPI Commands and their Functions 

Pin Description 

SCLK The clock, sent from the master to control 

timing 

MOSI When data is sent from the master to the 

slave it is sent down the Master Out – Slave 

In line 

MISO When data is sent from the slave to the 

master it is sent down the Master In – Slave 

Out line 

SS SS stands for Slave Select and is used 

particularly when there are multiple slaves 

connected to a single master 
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Connecting the Breakout Board to the Flinduino gave me a much greater understanding of 

electronics and programming in a more practical application.  In order to program onto the 

Flinduino, the Flinduino chip set had to be downloaded from the Flinduino wiki page. 

Fortunately the board came with code which had already been written.  Some changes did need 

to be made to the code to support the Flinduino in the Arduino programming environment.  The 

main change was renaming some of the pins.  For example, the slave select pin on the Arduino 

Uno is pin 6 whereas on the Flinduino it is pin number 11. 

As previously mentioned, connecting this device gave me a deeper understanding into 

electronics in a more practical situation.  I had plugged the wires in and could not successfully 

obtain my ECG signal.  I took it to Engineering Services at Flinders University and it was not 

until the schematic was studied that it was realised the power was coming from a 5V supply 

rather than the 3.3V supply that the Flinduino operates at.  Fortunately this error caused no 

damage to the components and simply swapping the wire allowed the successful reading of 

ECG data from my body. 

 

Figure 12: I connected myself to the circuitry and successfully obtained an ECG signal 

Note that there was some confusion regarding SPI connections, so it is worthwhile reiterating 

that MISO from the master connects to MISO from the slave.  It is also important to note that 

for my safety, my laptop had been disconnected from the mains power and was operating on 

its battery alone. 

Now that I had a clearer understanding of the electronics involved in attaining a biosignal and 

more importantly, the direction of which I wanted my electronics to go, I could now begin to 

develop the on-body PCB. 
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4.2 MY PCB DESIGN 

4.2.1 My Initial Block Diagram 

I had never designed a PCB on my own and initially it was a daunting task.  Much research 

was done to determine whether or not a board already exists which performs similar tasks as a 

starting point.  Unfortunately, there was nothing in this field that was particularly useful for 

this application. 

Everything involved in the PCB design process was a learning experience.  I began with the 

initial block diagram physically written down on paper showing each component and how they 

communicate with each other (refer to Figure 13). 

 

Figure 13: My initial block diagram 

After meeting with the expert as explained in Chapter 1: Literature Review, a new block 

diagram was designed considering the new components as shown in the following figure. 
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Figure 14: My second block diagram 

4.2.2 Using Altium Designer 

I then had to transfer this drawing onto Altium Designer.  There was an incredibly steep 

learning curve from the very beginning.  The assistance of engineers Lucas Moss, Lucas Paix 

and an online series of tutorials designing a PCB in Altium gave me a strong base on which I 

could begin my work with Altium Designer. 

I began by implementing the large components such as the microprocessor, the ESP32 

(Bluetooth and WIFI) module and Analog to Digital Converter.  Fortunately, rather than 

needing to design the schematic for each of these parts I was able to find their schematics 

through online sources.  Having these schematics readily available online proved to be an 

effective time saving measure as I did not need to manually draw them on Altium.  The trade-

off to this, however, was that I had to cross reference each schematic with their respective 

datasheets to ensure that each part was correct, and each pin was present and labelled correctly.  

Finding the component through the online supplier Digi-Key and copying the part number into 

Altium was a skill that was learnt through research.  This part is imported into Altium which 

results in a blank schematic part being created. The schematic found online can be copied and 

pasted into this imported Digi-Key part (Feranec, 2018). 

Simultaneously while I was doing this, I was also searching for 3D models and footprints for 

the PCB parts.  My intention is not to reinvent the wheel and if a free to use footprint and 3D 

model is available for a component then it is a clever time-saving method.  These footprint files 
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can be easily opened in Altium through the use of the “Footprint Wizard” tool.  Following the 

prompts in the tool, the model can be imported into Altium Designer and then added into the 

project. 

It is worth noting at this stage that for my design I employed a USB of type micro.  The reason 

why this was done is because it is compatible with the hardware that is available at Flinders 

University.  The standard for USBs appears to be moving towards the Type C USB but for 

simplicity I decided to maintain the USB micro and further refinements can be made on this 

design in the future (refer to Figure 15 for a comparison of the two USB standards). 

This image has been removed due to copyright restrictions. Available online from 

[https://asset.conrad.com/media10/isa/160267/c1/-/sv/1341725_LB_00_FB/image.jpg] 

Figure 15: Type C USB (left) and Micro USB (right) (Banks, 2017) 

Although the footprints are collected and designed at the same time that the schematic parts 

are designed, these parts are not yet ready to be placed onto the PCB.  Firstly, the schematic 

parts must be wired together in a schematic document.  For my particular design I opted for a 

multisheet design as it could allow for a tidier top-level schematic (refer to Figure 16).  Each 

component piece was quite large with a vast number of pins so having them all on one page 

did not seem like a sensible solution. 

This portion of the PCB design process assisted me in understanding how to read datasheets.  

Each component that was selected has an associated datasheet which clearly outlines the 

function of each pin as well as recommended configurations.  Often in the datasheet there will 

also be a “Typical Application Schematic” section which outlines the additional electronics 

required to make the component to work.  Parts like decoupling capacitors which are used to 

exclude noise will usually be found in this part of the datasheet.  Once it is clear which extra 

circuitry will be required, the process of including these extra capacitors and resistors etc. is 

exactly the same as for the bigger components.  This involves simply finding them in Digi-Key 

and including their schematic and footprint to go towards the final PCB design. 

An error was encountered where the footprint had not been correctly assigned to the schematic 

component for one of the resistors in the design.  There is a tool in Altium called “Footprint 

Manager” which, rather than looking at components individually, it opens a list of every single 

component and their corresponding footprint.  When this list was opened, it was found that 

there was indeed a problem with the way in which I had initially assigned the footprint to the 

schematic part; where a thumbnail of the footprint should have been, instead there was a black 

square.  This was a simple fix and all that needed to be done was to delete the current footprint 

and assign the footprint again in the Footprint Manager.  It is unsure what caused this issue but 

fortunately the solution was straightforward. 

Having a multisheet design makes the schematic more readable, however, research needed to 

be done in order to know how each sheet pieced together and it was found that Altium has tools 

to achieve this. Utilising the “Port” tool, creating and naming ports across two different pages 

is a way that connects each sheet and Altium automatically handles the resultant hierarchical 

structure of sheets.  It is important to note that  in order to properly connect these ports, on the 

master sheet, the function “Sheet symbols created from sheets” must be used  and Altium 

automatically creates the ports on the sheet symbols.  It is also important to understand that 

ports which are required to connect to each other must be called the same name otherwise 

https://asset.conrad.com/media10/isa/160267/c1/-/sv/1341725_LB_00_FB/image.jpg
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Altium will display a warning message.  The following five figures are the schematics created 

for each major component, including the master sheet. 
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Figure 16: The master sheet of the schematic. Note the ports used to connect the sheets
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Figure 17: The schematic configuration for the PIC32MX microprocessor
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Figure 18: The ESP32 schematic 
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Figure 19: The schematic for the Analog to Digital Converter
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Figure 20: The schematic for the voltage regulator component
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The schematic of the analog to digital converter (Figure 19) is particularly interesting because 

it was the first schematic I created when this process began.  Once Engineering Services had 

reviewed it, they informed me that there was a multitude of flaws that needed to be reconsidered, 

particularly with some of the configurations of the pins.  After gaining more experience with 

the other schematics, I was able to return to the ADC schematic and remedy the errors with 

greater ease than I had initially.  This was a particularly good experience as it demonstrated an 

obvious growth in my own knowledge. 

Another interesting point about this schematic is the pins which are not connected.  The pins 

which are not connected are those that are responsible for the biopotential measurements.  Due 

to time constraints these extra features for the analog to digital converter could not be taken 

advantage of but are still available for future students to implement. 

At the end of this section, once each schematic part has been connected, the project can be 

compiled to determine whether or not any warnings/errors have occurred. 

I encountered multiple warnings but there were two main ones.  The first one was the 

connectivity of certain pins, for example an I/O port connected to a Power pin.  As these 

schematics were obtained from online sources, I did my best to check and confirm each pin 

was correct, however, some were overlooked.  I fixed these warnings by going through the 

datasheet of the components and identifying the function of each pin and made the necessary 

changes to the schematics. 

The other, more difficult issue I was getting was in relation to the multisheet design.  As 

previously mentioned, connecting pages in a multisheet design is done using ports.  I was 

getting a warning message which explained that there were contradictions with the net names 

of the wires that were being used to connect ports across sheets.  Initially I did not understand 

the nature of these warnings, but through research and patience I was able to identify that in 

order to properly connect ports across sheets they must have the same name.  This may seem 

like a simple fix but pinpointing what exactly was causing the warning proved to be quite a 

difficult task. 

4.2.3 Finishing my schematic and starting the PCB Layout 

In essence the entire PCB design process began by me conducting my own research into each 

section and teaching myself the majority of the work.  Once I had connected each component 

and completed the schematic to a finished state, I submitted it through to Engineering Services 

at Flinders University for review.  Engineering Services are a team of engineers who assist 

students with their projects.  The benefit of completing my PCB through Engineering Services 

is that it gives an opportunity to gain a deeper understanding into specific components and 

configurations. 

The first time I had sent my schematic through,  Engineering Services had informed me that 

decoupling capacitors had been forgotten as well as a reset circuit.  They also suggested that I 

study the schematic for the Flinduino board as it uses the same PIC32MX microprocessor that 

is in my design. 

Once these revisions were made, my schematic document was again sent to Engineering 

Services for another review.  During this time I began to piece together the footprints of each 

component and begin my PCB layout. 
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Figure 21: An early revision of my PCB design 

I simply started by importing the components into the PCB document to piece together the 

design shown in the figure above. The next step of the process is to route the design.  By routing 

the design, wired links are made between the connections imported from the schematic 

document.   

This is a process which is typically done manually to optimise the board but Altium has an 

“auto-route” function which connects these pads automatically.  This has the added benefit of 

decreasing the time spent on routing, but the cost is that the resultant design is of poorer quality.  

The auto-route function creates connections where it thinks the best paths are, however, it does 

not consider the reality of the connections it makes like a person would.  Just to get a routed 

design done, I used auto-route to see how my design managed at this stage.  Not all of my 

connections could be made, and the auto-route terminated.  To see where the errors were 

occurring, I cleared the routes that had been made and I had to run a check of my PCB. 

In order to check the PCB, Altium has a tool called “Design Rule Check” which essentially 

checks the PCB against a set of criteria to ensure its design before it gets physically printed.  It 

was at this point that I ran the check to see how my design fared at this stage of development.   

By default the Design Rule Check terminates once it reaches 500 errors and my design easily 

reached this 500-error point.  An example of this check is shown below where the types of rule 

violations are listed and can be simply pinpointed. 
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Figure 22: The Altium Designer Design Rule Check 

It is worth reiterating that each part of the PCB design process was new to me and repairing 

over 500 errors seemed like an incredible task.  I began simply with the first error and I found 

that some of the nets were not properly imported into the PCB layout.  The nets are the 

properties that each wire has and is determined by what the wire is connected to.  This error of 

importing the nets is also the reason why the auto-route failed. 

After much research it was found that the reason these nets were not importing correctly is due 

to the fact that the component’s pin numbers in its schematic was different to the corresponding 

pad number in the footprint. 

As an example, the figure below shows the footprint of the 10𝜇𝐹 capacitor with pads labelled 

“1” and “2”. 

 

Figure 23: Footprint of the 10𝜇𝐹 capacitor 

The corresponding schematic part is shown below which clearly shows pins 1 and 2.  When 

these schematic components were created, the default of these pin values can change and at the 

time it was not known that this would cause an error later in the design process. 

 

Figure 24: Schematic of the 10𝜇𝐹 capacitor 
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Simply changing the labels of the pins in the schematic to match the pad numbers in the 

footprints, this caused a number of nets to be successfully imported into the PCB layout and 

hence assisted in clearing some of the errors. 

The largest source of errors that the Design Rule check was presenting to me was the “Unrouted 

Net Constraint” Error, which was giving me over 200 sources of error.  Again, this seemed like 

a large task to repair all of these errors.  Through further research it was found that this error is 

related to the connections between pads in the PCB design layout.  As I had only just placed 

the components onto the board without routing them, none of the wires had been connected in 

the PCB document.  At this stage, having successfully imported all of the nets into the PCB 

document, I tried the autoroute again which produced the following PCB design.  Note some 

changes had been made to the schematics to include additional headers. 

 

Figure 25: Updated PCB design with routing done by autoroute 

After making all the refinements of my design, everything had been appropriately connected 

in the PCB document.  The little holes scattered across the board are called “vias” and are used 

to swap the connection between the top and bottom layers of the PCB.  Switching between 

layers in this way is a simple way to avoid unwanted connections between components. 

The next sources of error that I was getting were the “Minimum Solder Mask Sliver”, “Silk to 

Solder Mask” and “Clearance Constraint”.  These errors are related to the distances between 

parts.  For example there is a minimum allowable distance between routing to vias, labels to 

components and also distance between pads on a component.   

To accommodate the small sizes of my components these design rules needed to be modified.  

By decreasing the minimum allowable distances of the “Minimum Solder Mask Sliver” and 

“Silk to Solder Mask” from 10mil to 1mil many of the errors can be remedied. The “Clearance 

Constraint” design rule could also be cleared by unselecting the tick-box located in the design 

rule modification window.  Although the methods outlined above seem to mask the issues 



 

 

39 

rather than explicitly repair each design breach, the design rules needed to be modified to suit 

the size of the components.  For example, the 64 pins on the microprocessor are particularly 

small and modifying the design rules to accommodate this was crucial. 

Note that the unit “mil” is an Imperial unit commonly used in electronics.  It is the name given 

to one-thousandth of an inch and has a metric equivalence of 0.0254mm. 

Once my PCB layout was completed, I had received the second review of my schematic from 

Engineering Services.  The first improvement to be suggested was that the UART pins from 

the ESP32 (Bluetooth and WIFI) were one of the methods used by the chip to communicate 

and hence should be brought into a header. 

The next point that they had made was, again, to do with the communication pins of the 

microprocessor and the ESP32 module.  The schematic documents had been misread and the 

programming clock (PGC) and data lines (PGD) on the microprocessor had not been included.  

The ESP32 was communicating with the microprocessor through SPI communication, but were 

not connected to the correct pins.  The errors from above were vital repairs as they are all 

methods used for communication and without proper implementation the microprocessor and 

the ESP32 could not communicate with each other and other components on the board. 

Making these adjustments and importing the new schematic design allowed for an updated 

PCB to be laid out.  The layout was also improved significantly at this stage with the inclusion 

of 3D models for each of the header components.  A website was found called 3D Content 

Central which is an online database full of three-dimensional models.  The inclusion of these 

3D models helped to produce the image shown in Figure 25. 

 

Figure 26: The final rendition of my PCB design 
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The above design has also been improved further in a number of other ways.  The first 

improvement technique is to tent the vias.  This essentially means that the vias will be covered 

with  a layer of soldermask to enclose the holes in the board (Dillman, 2018).  This improves 

safety of the vias as they are now protected, as well as the overall appearance of the board.  

Another simple, yet effective improvement technique was by improving the labels of the 

components.  Appropriately naming each component and laying the names out properly is a 

key concept in good PCB design.  It should also be noted that the ESP32 module has been 

shifted to the top of the board.  This was done intentionally as the top of the module is an 

antenna and requires some separation from the other components on the board. 

At Flinders University before a PCB design can be printed, Engineering Services reviews it to 

ensure that the design has the best chance of working once it is manufactured.  This process is 

very much a repeat-loop method in the sense that the PCB can be reviewed multiple times with 

many iterations being cycled through before it is deemed ready.  Unfortunately this is not a 

step which was allocated the time it deserved and due to time constraints my final PCB was 

unable to be manufactured.  It was also found that there was insufficient time to properly layout 

the capacitors, in particular the decoupling capacitors, with respect to their corresponding chips, 

hence the capacitor layout in Figure 26. 

4.2.4 Techniques employed to guide me through Altium Designer 

There were a number of different techniques I employed in order to help me navigate Altium.  

Using a pen and paper to physically write down key aspects of my design really helped me 

understand what needed to be done.  This was particularly useful when debugging the errors 

and warnings after compiling the project.  

Another one of the main methods which really helped solidify my understanding of the work I 

was doing was writing down the steps to access different tools within the environment.  The 

table below shows some of these tools just as a brief example of the thought processes involved 

as I underwent this portion of the project. 

Table 6: A brief list of the tools I commonly used in Altium 

Function Flow 

Annotating schematics 𝑇𝑜𝑜𝑙𝑠 → 𝐴𝑛𝑛𝑜𝑡𝑎𝑡𝑖𝑜𝑛 → 𝐴𝑛𝑛𝑜𝑡𝑎𝑡𝑒 𝑆𝑐ℎ𝑒𝑚𝑎𝑡𝑖𝑐𝑠 → 

𝑈𝑝𝑑𝑎𝑡𝑒 𝐶ℎ𝑎𝑛𝑔𝑒𝑠 𝐿𝑖𝑠𝑡 → 𝑂𝐾 → 

𝐴𝑐𝑐𝑒𝑝𝑡 𝐶ℎ𝑎𝑛𝑔𝑒𝑠 (𝐶𝑟𝑒𝑎𝑡𝑒 𝐸𝐶𝑂) → 𝐸𝑥𝑒𝑐𝑢𝑡𝑒 𝐶ℎ𝑎𝑛𝑔𝑒𝑠 

Accessing footprint 

manager 

𝑇𝑜𝑜𝑙𝑠 → 𝐹𝑜𝑜𝑡𝑝𝑟𝑖𝑛𝑡 𝑀𝑎𝑛𝑎𝑔𝑒𝑟 

Adjusting origin position 

in footprint 

𝐸𝑑𝑖𝑡 → 𝑆𝑒𝑡 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 → 𝐶𝑒𝑛𝑡𝑒𝑟 

Delete entire track in PCB 

design 

𝑆𝑒𝑙𝑒𝑐𝑡 𝑜𝑛𝑒 𝑠𝑒𝑔𝑚𝑒𝑛𝑡 → 𝑇𝑎𝑏 → 𝐷𝑒𝑙𝑒𝑡𝑒 
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This is not a complete list of the functions and tools that were used in Altium but explicitly 

writing down steps in this fashion really helped to learn the primary functions of the program 

without researching every time the location of a tool was forgotten. 

Another technique I employed to understand the work I was doing in Altium, was storing each 

PCB component in a separate spreadsheet in Microsoft Excel.  I stored the name of the 

component, the quantity and a URL address to the component’s purchase location.  I also 

compiled a folder of the 3D models of each part as they were used.  Keeping lists like these 

helped me monitor the parts used in my design so I could keep track of what I had done and 

what I had yet to do for my PCB. 
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5 DISCUSSION AND CONCLUSION 

There are many different aspects to this project in its entirety and is too much for one person.  

This project has been worked on by previous students of Flinders University, but no one has 

worked on the on-body PCB where my research has been primarily focussed.   

Taking the initiative of dividing the project into four different phases assisted in overall 

understanding of the tasks which needed to be achieved, who was responsible for achieving 

them and how.  Separating the project in this manner was the primary method used to identify 

my key areas of research and my role in the project long-term.  Before coming to this 

conclusion of my place within the project, I did research into each of the phases to broaden my 

knowledge of the tasks that needed to be done. 

Beginning the project by studying ECG data and using it to create music assisted me in the way 

I logically thought about code and the way to structure it.  Converting the musical scales of 

major, minor and pentatonic from piano scales to MATLAB code taught me how to look for 

relationships between real world situations and the ability to model them using mathematics. 

Designing the ECG circuitry using nothing but a circuit diagram (refer to Figure 9) taught me 

how to read circuit diagrams and make sense of them in terms of real-world electronics.  

Labelling the circuit diagram as I went was a useful tool to help guide my research while 

piecing together in this design. 

There were many tasks which came with extremely steep learning curves.  One of the initial 

roadblocks which actually seemed quite simple initially was using the ECG Breakout Board 

with the MAX30003 chip.  It was known that this communicates with an external 

microprocessor through an SPI connection.  Although there are numerous sources which assist 

beginners with communicating using SPI, translating these solutions to my setup using the 

Flinduino proved to be quite a difficult task. 

I had connected the Breakout Board with a number of different wires, downloaded the GUI in 

order to see my ECG signal but nothing happened.  With the assistance of Engineering Services, 

we were able to conclude that the incorrect voltage was being applied to the board.  Swapping 

the wires around allowed the board to work properly and I was successfully able to monitor 

my ECG signal in real time. 

The main factor which haltered any major progress on the project was learning, understanding, 

and implementing my design in Altium Designer.  At the commencement of the project there 

was an overwhelming number of subtasks involved which I simply did not know how to do.  I 

attended a multitude of meetings with Altium users to help guide the first few steps of the 

process.  In addition, I found an extremely helpful series of online tutorials which at this stage 

are out of date but were similar enough for me to understand the starting point for each of the 

steps involved.  To simplify the required tasks, I explicitly divided the Altium Designer process 

into four steps which are outlined below. 

Step 1 - Build Schematic Parts 

Step 2 - Design footprints for each schematic part 

Step 3 - Route Schematic 
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Step 4 - Layout PCB design 

The online tutorial really cemented the process for me and allowed me to not only know where 

to start, but how the design starts, progresses and where it ends.  Furthermore, the assistance I 

received from Engineering Services at Flinders University helped broaden my knowledge of 

the PCB design process and gave me a much greater understanding of electronics at a deeper 

level. Unfortunately, the PCB design process was grossly underestimated, especially for a 

beginner, and as a result there was insufficient time to manufacture the board.  Regardless, 

debugging the PCB gave the opportunity to practice a useful skill and was an incredibly 

worthwhile learning experience.  

The research and work conducted through my contributions to the project provide a solid 

foundation for following students to continue where I leave it.  There are opportunities to refine 

my design based on what I have achieved using Altium Designer or start something completely 

new using the research that I have done.  This project was incredibly difficult at times but 

taught me different concepts in coding, electronics and overall thinking.  This learning process 

really helped me overcome barriers and gave me the knowledge and confidence to implement 

future PCB designs. 
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7 APPENDIX 

%% Initial stages: Creating sounds with no musical meaning %% 
  
% File Reader % 
data = importdata('ecg_datatest.txt'); 
x = data(:,1); 
y = data(:,2); 
  
% Sound Maker % 
% definitions 
Fs = 18000;         % Sampling frequency: 8kHz, 44.1kHz, 48kHz, 88.2kHz, 96kHz 
i = 1; 
block_time = 0.025; 
amplitude_threshold = 0.4; 
count_threshold = 0.1; 
bandwidth = 0.01; 
pulse_frequencies = [300 500]; 
  
% derived 
Ts = 1 / Fs;        % Sampling period 
t = 0:Ts:1;         % Time range 
B = block_time * Fs; 
tB = (1:B) * Ts; 
Np = numel(pulse_frequencies); 
  
% make the pulses 
g = zeros(Np, B); 
tb = ((1-B/2):(B/2))/Fs; 
for pi = 1:Np 
    g(pi,:) = gauspuls(tb,pulse_frequencies(pi),bandwidth); 
end 
  
% while there is enough data in my data vector 
ptr = 0; 
while numel( y) >= ptr + B      
    % choose which frequency to play 
    if sum( y( ptr + ( 1:B)) > amplitude_threshold) > count_threshold * B 
        pulse_index = 2; 
    else 
        pulse_index = 1; 
    end 
    ptr = ptr + B; 
     
    % play the sound 
    sound( g( pulse_index, :), Fs); 
    pause( block_time); 
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end 
  
%% Development Stages: Creating sound of ascending pattern with no musical 
meaning %% 
  
% Sound Maker % 
% how much feedback do you want? 
verbose = false;  %#ok<*UNRCH> 
  
% which source and how to process it 
biosignal_source = 'ecg datafile 1'; 
block_time = 0.15; % Block length for analysing ECG data 
amplitude_threshold = 0.4; 
count_threshold = 0.1; 
  
% fade in 
fadein = 1; 
fadeinframes = 100; 
  
% Allowed notes for major scale 
fm = 110;  % fundamental frequency for creating audio 
Noctaves = 6; 
major = reshape(repmat([0; 2; 4; 5; 7; 9; 11], 1, Noctaves) + ... 
    repmat(12*(0:(Noctaves-1)), 7, 1), Noctaves*7, 1)'; 
  
% create the audio output device 
Fs = 44100; % audio sampling frequency 
audiodevice = audioDeviceWriter('SampleRate', Fs); 
  
% Load in the biosignal % 
switch biosignal_source 
    case 'ecg datafile 1' 
        data = importdata( 'ecg_datatest.txt'); 
        fs = 500; 
        x = data(:,1); 
        y = data(:,2); 
        if verbose 
            plot(x,y,'b-','LineWidth',2) 
            title('ECG Data Set of 108000 Samples') 
            xlabel('Time(samples)') 
            ylabel('Amplitude') 
        end 
    otherwise 
        error('Unknown biosignal source'); 
end 
  
% Derived Variables 
Ns = numel(y); 
Block = round(block_time*fs); % Number of samples per block 
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% process a frame at a time % 
% initalise for the loop 
ptr = 0; 
phase = 0; 
note_index = 1; 
% freq = fm*(1+4*abs(y)); 
t = (1:(block_time*Fs))/Fs; % Time range 
counter = 0; 
while ptr + Block <= Ns     
    % determine the frequency we want to use 
    freq = fm*2^(major(note_index)/12); 
    ph = 2*pi*freq*t; 
    ph = ph+phase; 
    audiosignal = sin(ph)*fadein; 
     
    % Update for next frame 
    phase = ph(end); 
    fadein = min(1,fadein+1/fadeinframes); 
     
    % Play the sound and advance the ecg frame 
    if sum(y(ptr+(1:Block)) > amplitude_threshold) > count_threshold*Block 
        audiodevice(audiosignal'); 
        note_index = mod(note_index, numel major))+1; 
    end 
    ptr = ptr+Block; 
end 
  
% Tidy up 
release( audiodevice) 
  
%% Final stage: Monitoring mouse position to create sounds with musical meaning %% 
  
% definitions 
framelength = 256; 
samplerate = 8000; 
ecgfile = 'C:\Users\Adam\Documents\MATLAB\ecg_datatest.txt'; 
ecgframelength = 16;  
which_notes = 'linear_spaced_pentatonic'; 
  
% create the allowed notes for pentatonic, major, minor 
Noctaves = 16; 
pentatonic = reshape(repmat([0; 2; 5; 7; 9], 1, Noctaves) + ... 
    repmat(12*(0:(Noctaves - 1)), 5, 1), Noctaves*5, 1)'; 
major = reshape(repmat([0; 2; 4; 5; 7; 9; 11], 1, Noctaves) + ... 
    repmat(12*(0:(Noctaves - 1)), 7, 1), Noctaves*7, 1)'; 
harmminor = reshape(repmat([0; 2; 3; 5; 7; 8; 11], 1, Noctaves) + ... 
    repmat(12*(0:(Noctaves - 1)), 7, 1), Noctaves * 7, 1)'; 
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% how to generate the sound 
fm = 100; 
t = ( 1:framelength) / samplerate; 
  
% fade in 
fadein = 0; 
fadeinframes = 100; 
  
% load the ecg data 
ecg = textread( ecgfile); %#ok<DTXTRD> 
Ns = numel( ecg); 
  
% use pointer location 
Ns = 1e9; 
scrsz = get( 0, 'ScreenSize'); 
  
% create the audio output device 
audiodevice = audioDeviceWriter( 'SampleRate', samplerate); 
  
% process a frame at a time 
ptr = 0; 
phase = 0; 
while ptr + ecgframelength <= Ns 
    % play with pointer location 
    pl = get( 0, 'PointerLocation'); 
    freq = fm * ( 1 + 4 * pl( 1) / scrsz( 3)); 
     
    % quantise frequency to a note in the scale 
    % logarithmically space notes 
    switch which_notes 
        case 'log_spaced_semitones' 
            ns = round( 12 / log( 2) * ( log( 2 * freq) - log( 220))); 
            freq = 220 * 2 ^ ( ns / 12); 
        case 'linear_spaced_semitones' 
            ns = round( freq / 20); 
            freq = 220 * 2 ^ ( ns / 12); 
        case 'linear_spaced_pentatonic' 
            ns = round( freq / 50); 
            freq = 110 * 2 ^ ( pentatonic( ns + 1) / 12); 
        case 'linear_spaced_major' 
            ns = round( freq / 50); 
            freq = 110 * 2 ^ ( major( ns + 1) / 12); 
        case 'linear_spaced_minor' 
            ns = round( freq / 50); 
            freq = 110 * 2 ^ ( harmminor( ns + 1) / 12); 
        otherwise 
            error( 'Don''t know how to make the frequencies'); 
    end 
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    ph = 2 * pi * freq * t; 
    ph = ph + phase; 
    audiosignal = pl( 2) / scrsz( 4) * sin( ph) * fadein; 
     
    % update for next frame 
    phase = ph( end); 
    fadein = min( 1, fadein + 1 / fadeinframes); 
     
    % play the sound and advance the ecg frame 
    audiodevice( audiosignal'); 
    ptr = ptr + ecgframelength; 
end 
  
% tidy up 
release( audiodevice) 


