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1. PREFACE

More often than not, nonlinear equations are chaotic. However, the very few that
are not were shown to posses remarkable properties and play significant roles in an
astonishingly wide range of physical theories. They are known as the integrable
equations. The study of integrable equations begun with that of the Korteweg-
de Vries (KdV) equation, an equation that describes the propagation of waves in
shallow waters [4]. It belongs to a family of nonlinear partial differential equations
(PDEs) which contains many physically important equations including nonlinear
Schrödinger, sine-Gordon, Kadomtsev-Petviashvili (KP) and the Painlevé equa-
tions. Here we will focus on the Painlevé equations which discovered by Paul
Painlevé, French mathematician, about one hunderd years ago, and the following
terminology and notation from [1, 2]. The Painlevé equations are a class of sec-
ond order nonlinear ordinary differential equations.The differential equation has the
Painlevé property if the solutions of the differential equation do not have movable
singularities other than poles. For example , if we have dx

dt
= −x(t)2 where x(t) ≠ 0

(the movable singularity is depending on the initial conditions of the equation )
and its solution is x(t) = 1

t−c
and here c is an integral constant . At point t = c

The solution has a singularity and Since c is determined by the initial condition
at t = t0, then c = t0 − 1

x(t0)
and this is movable singularities.With the Painlevé

property, Painlevé et al. classified all the rational ordinary differential equations of
second order of the form y′′ = F (t, y, y′) where F is the rational in y′ and y and
analytic in t. As a result, they showed that except for the differential equations
which can be integrated algebraically or transformed into linear equations or into
the differential equations solvable by elliptic functions, any differential equation of
the form y = F (t, y, y) with the Painlevé property is reduced to one of the following
equations,

PI ∶ y′′ = 6y2 + t
PII ∶ y′′ = 2y3 + ty + α

PIII ∶ y′′ =
1

y
(y′)2 − 1

t
y′ + 1

t
(αy2 + β) + γy3 + δ

y

PIV ∶ y′′ = 1

2y
(y′)2 + 3

2
y3 + 4ty2 + 2(t2 − α)y + β

y

PV ∶ y′′ = ( 1

2y
+ 1

y − 1
)(y′)2 − 1

t
y′ + (y − 1)2

t2
(αy + β

y
) + γ

t
y + δ y(y + 1)

y − 1

PV I ∶ y′′ =
1

2
(1

y
+ 1

y − 1
+ 1

y − t)(y
′)2 − (1

t
+ 1

t − 1
+ 1

y − t)y
′

+ y(y − 1)(y − t)
t2(t − 1) (α + β t

y2
+ γ t − 1

(y − 1)2 + δ
t(t − 1)
(y − 1)2 ).

(1)

where ′ = d
dt

, and the Greek letters are complex constants (parameters), and as is
evident, the first Painlevé equations does not contain a parameter, while all other
equations have some numbers of parameters. Whereas all these parameters will help
to obtain the symmetry of these equations. One of the many remarkable properties
that characterizes integrable equations is the existence of certain transformations
which relate different solutions of the same equation. To explain we use the fourth



Painlevé equations PIV , given by:

PIV ∶ y′′ = 1

2y
(y′)2 + 3

2
y3 + 4ty2 + 2(t2 − α)y + β

y
(2)

It can be checked that a new function ȳ given by the formula

ȳ = −2t − y + (2t + y)y − y′ − 2α1

2y
+ 4y(1 − α1 − α2)

(2t + y)y − y′ − 2α1
(3)

is a solution of fourth Painlevé Equation (2) if we replace the parameters α1 and α2

by ᾱ1 = α1−1 and ᾱ2 = α2, and this transformation is called a Bäcklund transforma-
tions.To find Bäcklund transformations of an integrable equation used to amount to
something of a black art [5, 10] until it was realized by Okamoto and the Japanese
school in the 80s that the deep reason that lies behind their existences is given
by symmetries of the equation, the set of which forms a Weyl group (or crystallo-
graphic reflection groups) [6, 8]. Using again the PIV equation as an example it
was shown by Noumi and Yamada [7] that Equation (2) can be written in a more
symmetric way. Using this symmetric form of PIV , Noumi and Yamada formulated
a birational realisation of the extended affine Weyl group of type A2

The PIV equation although transcendental, admit special algebraic solutions for
particular values of the parameters. These solutions are now understood to corre-
spond to special points in the parameter space V = {(x, y, z) ∈ R3 ∣ x + y + z = 1},
whose affine geometric structure is given by the Cartan matrix. The geometric
realisation of the Weyl group on R3 allows one to generate a chain of such special
solutions from a simple seed solution using the birational representation formula-
tion of Noumi and Yamada. On the other hand, it is well-known that associated
to each Weyl there is an ring of invariant polynomials[9]. The relation between
the strucutre and the geometry of this ring to the special algebraic solutions of the
Painlevé equations is not clear.

The aim of this research is clarify the special algebraic solutions of the Painlevé
equations using the Weyl groups via the explicit example of the PIV equation
which admits the Weyl group symmetry of type A2. We do so via an important
object called τ -functions which is defined from the Hamiltonian representation of
the Painlevé equation.

In this research, first in Section 2, we will explain what is a Weyl group and illus-
trate this with examples. Moreover, we will see how the fourth Painlevé equations
can be written in more symmetric way in Section 3.1. In 3.2 we will clarify that
the symmetric form of the PIV (Bäcklund transformations) can be formulated as a

birational representation of the extended affine Weyl group of type A2 , W̃ (A(1)2 ).
After that, we will generate some rational special solutions of the PIV in 3.3. In
the next section,which is Section 4.1, we give the definition of a Hamiltonian sys-
tem and will show the PIV equation can be written in Hamiltonian form. From a
Hamiltonian system we can introduce the τ -functions. Finally,in Section 4.2 you
will see how we introduced three τ -functions for the symmetric form of the fourth
Painlevé equations and derived the Hirota bilinear equations for them. In the end
of this section we will show example of τ -functions corrresponding to the special
rational solutions that in Section 3.3.



2. Weyl group

First let us recall that a group, any group G should satisfies the three following
conditions

i: has identity element (1 ∈ G)
ii: for any s ∈ G then s−1 ∈ G
iii: for any s, t ∈ G then st ∈ G.

We follow closely the terminology and notation of Humphreys[3]. A coxeter
groups (reflection groups) are generated by the set {si = sαi ∣(sisj)mij = 1, s2i = 1}.
The group W generated by all reflections is called a Weyl group (crystallographic
condition) and a Weyl group are precisely the reflection groups all mij ∈ {2,3,4,6}.
Weyl groups of rank n can be realized as group of reflection on a real vector space
of dimension n.

A Weyl group is defined by

W =< s1, ......sn ∣ s2i = 1, (sisj)mij = 1 >,mij ∈ {2,3,4,6} (4)

Here s1, ......sn are sets of simple reflection on real vector spaces, where s2i =
1, (sisj)mij = 1 are the fundemental relations, and note that sisj is a rotation
whose order is given by mij .It is useful encode the fundamental relations using
Dynkin diagram. Dynkin diagram is a diagram of nodes and lines, and each node
corresponds to a particular simple root, two nodes are connected by zero, one, two,
or three lines when the mij is 2 , 3. 4, 6 respectively . That is,

mij = 2, (sisj)2 = 1 ∶ ○ ○
mij = 3, (sisj)3 = 1 ∶ ○ − ○
mij = 4, (sisj)4 = 1 ∶ ○ = ○
mij = 6, (sisj)6 = 1 ∶ ○ ≡ ○.

The classification of Weyl groups has four infinite families An,Bn,Cn and Dn and
five exceptional types E6,E7,E8, F4and G2. Their Dynkin diagrams are shown in
Figure (1).

Let V be a vector space equipped with an inner product < , >. The inner product
is a map, < , >∶ V × V Ð→ R for u, v,w ∈ V and λ,µ ∈ R
i: bilinear < λu + µv,w >= λ < u,w > +µ < v,w >

< u,λv + µw >= λ < u, v > +µ < u,w >
ii: symmetric < u, v >=< v, u >
iii: linearity < λu, v >= λ < u, v >
iv: positive definite < u,u >≥ 0 and < u,u >= 0 iff u = 0.

Recall that, a reflection is an orthogonal transformation sα ∶ V Ð→ V of order
2 (s2α = 1) whose -1-eigenspace is one-dimensional. Its action on V is given by
equation

sα(v) = v −
2 < v,α > α
< α,α > , v ∈ V. (5)

where the vector α is the -1-eigenspac of sα(α) = −α.
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Figure 1. Dynkin diagrams for the Classification of a Weyl groups.

Let the simple system △ = {α1, ......, αn} be the set of simple root which is a
basis of V. The group element si can be realized as reflections in V by the following
formula

si(v) = sαi(v) = v −
2 < v,αi > αi
< αi, αi >

, v ∈ V. (6)



Define the coroot as α∨i = 2αi

<αi,αi>
, now we can write action si on the simple root as

si(αj) = αj −
2 < αj , αi > αi
< αi, αi >

= αj− < αj ,
2αi

< αi, αi >
> αi

= αj− < αj , α̌i > αi
= αj − aijαi

(7)

The matrix (aij)1≤i,j≤n is called the cartan matrix of the Weyl group where

aij =< αi, α̌j > . (8)

Now we will show some examples that enable us to understand Weyl groups
more accurately.

2.1. Example. Weyl group of type A2 is given by

W (A2) =< s1, s2 ∣ s21 = s22 = 1, (s1s2)3 = 1 > . (9)

The Dynkin diagram of the Weyl group W (A2) consists two nodes that correspond
to the simple reflections s1 and s2, and since the rotation s1s2 is of order three
,there will be a line between the simple roots, then it is given by

○ ○
s1 s2

Figure 2. Dynkin diagrams W (A2)

Let △ = {α1, α2} be a basis of V on which acts as group of reflections. The
two vectors α1 and α2 are orthogonal to the two reflection planes of s1 and s2
respectively. we explain this as follows. The element s1s2 is rotation by 2θ where
the θ is the angle between the two planes of reflection associated to s1 and s2 then
from the condition (s1s2)3 = 1, then we have 3 ∗ 2θ = 2π, so θ = π

3
. Therefore

the angle between α1 and α2 will be ϕ = π − π
3
= 2π

3
. From this and assume that

∣α1∣2 = ∣α1∣2 = 2 we can get the cartan matrix by(8)

aij =< αi, α̌j >=
2 < αi, αj >
< αj , αj

= 2∣αi∣∣αj ∣
∣αj ∣2

cosϕ

(10)

then
aij = 2, for i = j
aij = −1, for i ≠ j. (11)

Hence, the cartan matrix is given by

(aij)1≤i,j≤2 = [ 2 −1
−1 2

] . (12)



Using the fundamental relations given in the definition of Weyl group A2 (9) ,
we can generate the elements of Weyl group type A2 as

W (A2) = {1, s1, s2, s1s2, s2s1, s1s2s1 = s2s1s2}. (13)

The last element s1s2s1 = s2s1s2 comes from the relation (s1s2)3 = 1 , which means
s1s2s1s2s1s2 = 1 if we apply s1 from the left side we get s1s1s2s1s2s1s2 = s1 and
since s21 = 1, then s1s2s1s2s1s2 = s1 , now apply s2 from the left side we get
s1s2s1s2 = s2s1, lastly we apply s1 from the left side s2s1s2 = s1s2s1. Note there
will be no more elements. That is W (A2) is a finite group of order 6.
The root system of W (A2) defined by

Φ =W (A2).△ = {sα ∣ s ∈W (A2), α ∈△}. (14)

Using Equation (7) we have :
s1(α1) = α1 − a11α1 = α1 − 2α1 = −α1,
s1(α2) = α2 − a21α1 = α2 + α1,
s2(α1) = α1 − a12α2 = α1 + α2,
s1s2(α1) = s1(α1 + α2) = −α1 + α2 + α1 = α2,
similarly we have
s2(α2) = −α2, s1s2(α2) = −(α1 + α2) = s2s1(α1), s2s1(α2) = α1,
s1s2s1(α1) = −α2, s1s2s1(α2) = −α1.
Hence

Φ = {±α1,±α2,±(α1 + α2)}. (15)

The picture in Figure (3) shows that the two simple roots α1 and α2 are orthogonal
to the reflections s1 and s2 respectively. All the roots are shown here.

s2

s1

α2

α1

α1 + α2

−α1 − α2

−α1

−α2

É

É

Figure 3. Dynkin diagrams W (A2) with roots.

Now we will see another example, which is an extension of a finite Weyl groups of
type A2.



2.2. Example. Affine Weyl group of type A2, which is the underlying group of
symmetries of the fourth Painlevé equation. It is define as

W (A(1)2 ) =< s0, s1, s2 ∣ s2i = 1, (sisi+1)3 = 1 > (16)

where i ∈ {0,1,2} and its simple system is △(1) = {α0, α1, α2}. The cartan matrix
is given by

(aij)0≤i,j≤2 =
⎡⎢⎢⎢⎢⎢⎣

2 −1 −1
−1 2 −1
−1 −1 2

⎤⎥⎥⎥⎥⎥⎦
. (17)

We can get affine Weyl groups root system by the definition

Φ(1) =W (A(1)2 ).△(1) = {sα ∣ s ∈W (A(1)2 ), α ∈△(1)}
= {α + kδ ∣ α ∈ Φ, k ∈ Z} (18)

where δ = α0 + α1 + α2. Note that W (A(1)2 ) is an infinite group.

Figure (4) shows the Dynkin diagram of affine Weyl groups of type A2.

○ ○

○

s1 s2

s0

Figure 4. Dynkin diagrams for W (A(1)2 ).

Extended affine Weyl group of type A2 is given by W̃ (A(1)2 ) =W (A(1)2 )⋊ < π > where
π is an automorphism of the Dynkin diagram. The element π acts on the Dynkin
diagram in Figure (4) by a rotation of 2π

3
. That is π3 = 1, πsj = sj+1π (j =

0,1,2).

3. The Fourth Painlevé Equation

In this chapter the following terminology and notation from [6].

3.1. The symmetric form of PIV . Recall the fourth Painlevé equation PIV is

y′′ = 1

2y
(y′)2 + 3

2
y3 + 4ty2 + 2(t2 − α)y + β

y
(19)

In this form of the PIV is hard to see the symmetric of the equation, so Noumi and
Yamada [7]. introduced three new dependent variables f0, f1, f2 and parameters
α0, α1, α2, then we can see a symmetric form of the PIV is

f ′0 = f0(f1 − f2) + α0,

f ′1 = f1(f2 − f0) + α1,

f ′2 = f2(f0 − f1) + α2

(20)

where ′ = d/dt,
α0 + α1 + α2 = 1 f0 + f1 + f2 = t. (21)



To see that Equation (20) and (21) is equivalent to the PIV equation given in
Equation (19), we see that substitute f0 = t − f1 − f2 in Equation(20) will give us

f ′1 = f1(f1 + 2f2 − t) + α1,

f ′2 = f2(t − 2f1 − f2) + α2

(22)

by deriving the first equation respect to t , we get

f ′′1 = 2f1f
′

1 + 2f ′1f2 + 2f1f
′

2 − tf ′1 − f1 (23)

then eliminate f2 and f ′2 using the equations in (22) , which will give us equation
containsf1 and its derivatives , if letting y = f1, we have

y′′ = 1

2y
(y′)2 + 3

2
y3 − 2ty2 + ( t

2

2
− α0 + α2)y −

α2
1

2y
. (24)

Now applying change of variables tÐ→
√

2t, y Ð→ −y/
√

2 and take α = α0−α2, β =
−2α2

1, so we have

y′′ = 1

2y
(y′)2 + 3

2
y3 + 4ty2 + 2(t2 − α)y + β

y
(25)

which is exactly the fourth Painlevé equation given in Equation (19).

3.2. Bäcklund transformations. Here will see the extended affine Weyl group

W̃ (A(1)2 )acts on the symmetric form of the PIV as a group of Bäcklund transfor-
mations. Now recall the form of the action of si on αj and define the form of the
action of the π on αj

si(αj) = αj − aijαi, π(αj) = αj+1, (i, j ∈ Z/3Z) (26)

where the aij is the cartan matrix(17), and the action of si and π on fj is given by

si(fj) = fj + uij
αi
fj
, π(fj) = fj+1, , (i, j ∈ Z/3Z) (27)

where the uij is the skew-symmetric matrix

(uij)0≤i,j≤2 =
⎡⎢⎢⎢⎢⎢⎣

0 1 −1
−1 0 1
1 −1 0

⎤⎥⎥⎥⎥⎥⎦
. (28)

For example we have,

s0(α0) = −α0, s0(α1) = α1 + α0, s0(α2) = α2 + α0, π(α0) = α1, (29)

s0(f0) = f0, s0(f1) = f1 +
α0

f0
, s0(f2) = f2 −

α0

f0
, π(f0) = f1; (30)

and similarly for s1 and s2. Bäklund transformations associated with the generators

of W̃ (A(1)2 ) for the symmetric form of PIV are summarised in the following table:

a0 a1 a2 f0 f1 f2
s0 −a0 a1 + a0 a2 + a0 f0 f1 + a0

f0
f2 − a0

f0

s1 a0 + a1 −a1 a2 + a1 f0 − a1
f1

f1 f2 + a1
f1

s2 a0 + a2 a1 + a2 −a2 f0 + a2
f2

f1 − a2
f2

f2
π a1 a2 a0 f1 f2 f0

(31)



α2 = 2

α2 = 1

α2 = 0

α2 = −1

α2 = −2

s2

É

α1 = 0α1 = −1 α1 = 1 α1 = 2 α1 = 3
s0

É

α0 = 1 α0 = 0 s1
É

α0 = −1 α0 = −2α0 = 2

↶

↶
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Figure 5. Translational actions of W̃ (A(1)2 ).

and these transformations satisfy the defining relations of W̃ (A(1)2 ):

s2j = 1, (sjsj+1)3 = 1, π3 = 1, πsj = sj+1π. (32)

Figure (5) is the two dimensional parameter space with triangular coordinate
defined by α0 + α1 + α2 = 1, that is each point corresponds to a set of parameter
values of the PIV equation. The fundamental triangular region F with barycenter C
is bounded by the reflection hyperplanes associated with three reflection generators
s0, s1, s2,where the Dynkin diagram automorphism π acts by anti-clockwise rota-
tion of 2π/3 centered at point C. A translation in the plane is given by T1 = πs2s1.
Let us look at the action of T1 on the parameters and variables of the symmetric
PIV Equation (20) by using Table (31) .



T1(α0, α1, α2; f0, f1, f2)
=πs2s1(α0, α1, α2; f0, f1, f2)

=πs2(α0 + α1,−α1, α2 + α1; f0 −
α1

f1
, f1, f2 +

α1

f1
) (33)

=π(α0 + α1 + 2α2,−α1 − α2, α1; f0 +
α2

f2
− α1 + α2

f1 − α2

f2

, f1 −
α2

f2
, f2 +

α1 + α2

f1 − α2

f2

)

=(α1 + α2 + 2α0,−α2 − α0, α2; f1 +
α0

f0
− α2 + α0

f2 − α0

f0

, f2 −
α0

f0
, f0 +

α2 + α0

f2 − α0

f0

)

Since we have α0+α1+α2 = 1, then we can simplify the expression of parameter,
and finally we have,

T1(α0, α1, α2; f0, f1, f2)

=(α0 + 1, α1 − 1, α2; f1 +
α0

f0
− α2 + α0

f2 − α0

f0

, f2 −
α0

f0
, f0 +

α2 + α0

f2 − α0

f0

) (34)

we see that T1 is exactly Bäklund transformations discussed earlier in Equation
(3).

3.3. Special seed solutions. The PIV equation has rational special solutions for
certain parameter values. One of them is when everything is symmetric with respect
to the three indices 0,1,2 , if we consider that is α0 = α1 = α2 and f0 = f1 = f2, then
Equation (21) give us

(α0, α1, α2; f0, f1, f2) = (1

3
,
1

3
,
1

3
,
t

3
,
t

3
,
t

3
). (35)

It is easy to see that Equation(35) also satisfies Equation (20).
Now by using symmetry of the equation, we can compute the other special value
of the parameters α0, α1, α2 which will give rethonal special solution of the PIV
equation. Applying T1 to ( 1

3
, 1
3
, 1
3
) we have T1C = ( 4

3
, −2

3
, 1
3
) (see Figure 5). To

get the corresponding special solution of PIV we substitute (f0, f1, f2) = ( t
3
, t
3
, t
3
)in

Equation (34):

T1(α0, α1, α2; f0, f1, f2) = (4

3
,
−2

3
,
1

3
;
−9 − 6t2 + t4
3t(−3 + t2) ,

−3 + t2
3t

,
t(3 + t2)

3(−3 + t2)). (36)

4. Hamiltonian System

All Painelvé equations have Hamiltonian structures, and having Hamiltonian
structure is characteristic of integrable systems[8, 6]. But first we give the general
definition of a Hamiltonian system.

Hamiltonian system is a system of ordinary differential equations in dependent
unknown variables (q, p) of the form

dq

dt
= ∂H
∂p

,
dp

dt
= −∂H

∂q
(37)

where H is some function of (q, p; t), known as the Hamilton function, or Hamil-
tonian, of the system (37).
Here we will mention some advantages of Hamiltonian system.



First, consider q = q(t), p = p(t) are given solutions of the Hamiltonian system, and
define

h(t) =H(q(t), p(t); t) (38)

by plugging the solutions into the Hamiltonian system, and calculating the t-
derivative of the Function (38), then

dh

dt
= ∂H
∂q

dq

dt
+ ∂H
∂p

dp

dt
+ ∂H
∂t

= ∂H
∂t

(39)

For a Hamiltonian system, if H = H(q, p; t) does not depend on t explicitly, then
the function h(t) is constant. In this case , the Hamiltonian H is a first integral of
the system (37). Now if H = H(q, p; t) explicitly contains the variable t , then the
function h(t) can be thought of as a measure indicating how far the system is from
a differential system which can be integrated by quadrature.
The other advantage of Hamiltonian system is related to Poisson structure and
canonical transformation. The Poisson bracket denoted by {,}, and if we have two
functions ϕ = ϕ(p, q, t) and ψ = ψ(p, q, t) then the Poisson bracket for is defined as

{ϕ,ψ} = ∂ϕ
∂p

∂ψ

∂q
− ∂ϕ
∂q

∂ψ

∂p
(40)

Furthermore it has a significant properties

i: It is bilinear and skew-symmetric {ϕ,ϕ} = 0, {ϕ,ψ} = −{ψ,ϕ}.
ii: It satisfies the Leibniz rule

{ϕψ,h} = {ϕ,h}ψ + ϕ{ψ,h}, {ϕ,ψh} = {ϕ,ψ}h + ψ{ϕ,h}.
iii: It satisfies the Jacobi rule {ϕ,{ψ,h}} + {ψ,{h,ϕ}} + {h,{ϕ,ψ}} = 0.

Since we have

{ϕ, q} = ∂ϕ
∂p
, {ψ, p} = ∂ψ

∂q
(41)

the Hamiltonian system is expressed as

q′ = {H,q}, p′ = {H,p}. (42)

If the variables q,p are subject to Hamiltonian system with Hamiltonian H =
H(q, p; t), then we have

dϕ

dt
= {H,ϕ} + ∂ϕ

∂t
. (43)

Now consider two function q̃ = q̃(q, p; t) and p̃ = p̃(q, p; t) in (q,p,t) such that
{q̃, p̃} = 1, a pair of functions defines a mapping (q, p) Ð→ (q̃, p̃) whose Jacobian
determinant is the constant function, the pair (q̃, p̃) is called a canonical coordinate
system, where the mapping (q, p)Ð→ (q̃, p̃) is called a canonical transformation. If
we transform the Hamiltonian system by such a canonical transformation, at least
locally the transformed equation can be expressed again as a Hamiltonian system.

4.1. Hamiltonian structure of the PIV equation. Define the Poisson bracket
using the matrix then extract the representation of PIV (the symmetric form )as a
Hamiltonian system. First, recall the symmetric form of PIV is given by

f ′0 = f0(f1 − f2) + α0, f ′1 = f1(f2 − f0) + α1, f ′2 = f2(f0 − f1) + α2 (44)

α0 + α1 + α2 = 1 f0 + f1 + f2 = t (45)



and let the skew-symmetric matrix be

(uij)0≤i,j≤2 =
⎡⎢⎢⎢⎢⎢⎣

0 1 −1
−1 0 1
1 −1 0

⎤⎥⎥⎥⎥⎥⎦
. (46)

Then, we can determine the Poisson bracket for the variables f0, f1, f2 using matrix
(46) by

{fi, fj} = uij , {fi, fj} = −{fj , fi}, {fi, fi} = 0, (i, j = 0,1,2) (47)

Hence

{ϕ,ψ} =
2

∑
i,j=0

∂ϕ

∂fj
uij

∂ψ

∂fj
(48)

where ϕ,ψ any functions in f0, f1, f2, from this we can reach the Poisson bracket
form of a general function ϕ with fj which is

{ϕ, fj} =
2

∑
i,j=0

∂ϕ

∂fi
ui,j

∂fj

∂fj

=
2

∑
i=0

∂ϕ

∂fi
ui,j

= ∂ϕ

∂f0
u0,j +

∂ϕ

∂f1
u1,j +

∂ϕ

∂f2
u2,j

= ∂ϕ

∂fj−1
− ∂ϕ

∂fj+1
.

(49)

Defining a polynomial with three parameters (b0, b1, b2) as

H = f0f1f2 + b0f0 + b1f1 + f2b2 (50)

so from Equation (49), we get

{H,f0} =
∂H

∂f2
− ∂H
∂f1

= f0(f1 − f2) + (b2 − b1)

{H,f1} =
∂H

∂f0
− ∂H
∂f2

= f1(f2 − f0) + (b0 − b2)

{H,f2} =
∂H

∂f1
− ∂H
∂f0

= f2(f0 − f1) + (b1 − b0)

(51)

if we take

b2 − b1 = α0 − 1, b0 − b2 = α1, b1 − b0 = α2 (52)

which give us the right hand sides of (44) and we added (-1) in first one to satisfies
the condition α0 + α1 + α2 = 1, and this means

f ′0 = {H,f0} + 1, f ′1 = {H,f1}, f ′2 = {H,f2} (53)

To write(50) with α0, α1, α2 we need to normalization b0 + b1 + b2 = 0 for Equation
(52) , we get

b0 =
1

3
(α1 − α2), b1 =

1

3
(α1 + 2α2), b3 = −

1

3
(2α1 + α2). (54)

Hence

H = f0f1f2 +
1

3
(α1 − α2)f0 +

1

3
(α1 + 2α2)f1 −

1

3
(2α1 + α2)f2. (55)



taking ϕ as a general function of f0, f1, f2 , then

ϕ′ =
2

∑
j=0

∂ϕ

∂fj
f ′j =

2

∑
j=0

∂ϕ

∂fj
{H,fj} +

∂ϕ

∂f0
= {H,ϕ} + ∂ϕ

∂f0
(56)

Now to derive a representation of the symmetric of the PIV as a Hamiltonian system,
we set

f1 = p, , f2 = q, t = f0 + f1 + f2 ⇒ f0 = t − q − p (57)

then

H = (t − q − p)pq + α2p − α1q +
1

3
(α1 − α2)t. (58)

Hence

q′ = {H,q} = ∂H
∂p

= q(t − q − 2p) + α2

p′ = {H,p} = ∂H
∂q

= p(2q + p − t) + α1,

(59)

4.2. τ-Function. Now we will discuss one of the significant object in the theory
of the PIV , the τ -function for a Hamiltonian system see [7], and defined by

H = d

dt
logτ = τ

′

τ
(60)

note that the indices 0,1,2 in Equation (55) are no longer equal because the special
role that gave to the index 0 , so let h0 = H,h1 = π(h0) and h2 = π(h1) so we can
recover the symmetry :

h0 = f0f1f2 +
1

3
(α1 − α2)f0 +

1

3
(α1 + 2α2)f1 −

1

3
(2α1 + α2)f2

h1 = π(h0) = π(f0f1f2 +
1

3
(α1 − α2)f0 +

1

3
(α1 + 2α2)f1 −

1

3
(2α1 + α2)f2)

= f1f2f0 +
1

3
(α2 − α0)f1 +

1

3
(α2 + 2α0)f2 −

1

3
(2α2 + α0)f0

= f0f1f2 −
1

3
(2α0 + α1)f0 +

1

3
(α2 − α0)f1 +

1

3
(α2 + 2α0)f2

h2 = π(h1) = π(f0f1f2 −
1

3
(2α0 + α1)f0 +

1

3
(α2 − α0)f1 +

1

3
(α2 + 2α0)f2)

= f1f2f0 −
1

3
(2α1 + α2)f1 +

1

3
(α0 − α1)f2 +

1

3
(α0 + 2α1)f0

= f0f1f2 +
1

3
(α0 + 2α1)f0 −

1

3
(2α1 + α2)f1 +

1

3
(α0 − α1)f2.

(61)

To represent f0, f1, f2 in terms of h0, h1, h2, we will do the subtraction , and using
the condition α0 + α1 + α2 = 1 and f0 + f1 + f2 = t

h2 − h1 =
2

3
(α0 + α1 + α2)f0 −

1

3
(α0 + α1 + α2)f1 −

1

3
(α0 + α1 + α2)f2

= 2

3
f0 −

1

3
f1 −

1

3
f2 = f0 −

1

3
(f0 + f1 + f2) = f0 −

t

3
.

(62)

That is,

f0 = h2 − h1 +
t

3
(63)



and similar for f1 and f2, and defining three τ -function τ0, τ1, τ2 and set

h0 =
τ ′0
τ0
, h1 =

τ ′1
τ1
, h2 =

τ ′2
τ2
, (64)

hence

f0 = h2 − h1 +
t

3
= τ

′

2

τ2
− τ

′

1

τ1
+ t

3

f1 = h0 − h2 +
t

3
= τ

′

0

τ0
− τ

′

2

τ2
+ t

3

f2 = h1 − h0 +
t

3
= τ

′

1

τ1
− τ

′

0

τ0
+ t

3
.

(65)

Now we will represent the symmetric form of PIV in terms of h0, h1, h2 , so from
Equation (65) we can get

f0 − f1 = −h0 − h1 + 2h2

f1 − f2 = 2h0 − h1 − h2
f2 − f0 = −h0 + 2h1 − h2

(66)

so the symmetric form of PIV will be

f ′0 = f0(f1 − f2) + α0 Ô⇒ f ′0 = f0(2h0 − h1 − h2) + α0

f ′1 = f1(f2 − f0) + α1 Ô⇒ f ′1 = f1(−h0 + 2h1 − h2) + α1

f ′2 = f2(f0 − f1) + α2 Ô⇒ f ′2 = f2(−h0 − h1 + 2h2) + α2

(67)

from Equation (56) , we have h′0 = {H,h0} + ∂h0

∂f0
, and since h0 =H , then

h′0 = {h0, h0} +
∂h0
∂f0

= ∂h0
∂f0

= f1f2 +
1

3
(α1 − α2)

h′1 = π(h′0) = π(f1f2 +
1

3
(α1 − α2)) = f2f0 +

1

3
(α2 − α0)

h′2 = π(h′1) = π(f2f0 +
1

3
(α2 − α0)) = f0f1 +

1

3
(α0 − α1).

(68)

Bilinear differential equation for the τ -function, and bilinear means the linear with
respect to the individual τi, to get this we take the sum of the first two Equations

from (68), then using the formula hi = τ ′i
τi

h′0 + h′1 = f2(f0 + f1) +
1

3
(α1 − α0) (69)

and from f0 + f1 + f2 = t⇒ f0 + f1 = t − f2 then

h′0 + h′1 = f2(t − f2) −
1

3
(α0 − α1) (70)



by substituting f2 from (65) ,we get

h′0 + h′1 = (h1 − h0 +
t

3
)(h0 − h1 +

2t

3
) − 1

3
(α0 − α1)

= h20 + 2h0h1 − h21 +
t

3
h1 −

t

3
h0 +

2t2

9
− 1

3
(α0 − α1)

= −(h0 − h1)2 −
t

3
(h0 − h1) +

2t2

9
− 1

3
(α0 − α1)

(h0 − h1)′ + (h0 − h1)2 +
t

3
(h0 − h1) −

2t2

9
+ 1

3
(α0 − α1) = 0

(τ
′

0

τ0
− τ

′

1

τ1
)′ + (τ

′

0

τ0
− τ

′

1

τ1
)2 + t

3
(τ

′

0

τ0
− τ

′

1

τ1
) − 2t2

9
+ 1

3
(α0 − α1) = 0

(71)

multiply by τ0τ1

τ ′′0 τ1 − 2τ ′0τ
′

1 + τ0τ ′′1 +
t

3
(τ ′0τ1 − τ0τ ′1) − (2t2

9
− 1

3
(α0 − α1))τ0τ1 = 0 (72)

this is a bilinear differential equations for the pairs (τ0, τ1) and similar for (τ1, τ2)
and (τ0, τ2). Equation (72) is in fact the famous Hirota equation.

To have this in the standard form found in literature we define the Hirota deriva-
tives. The Hirota derivatives for given pair (f,g) of functions f and g is

Dt(f.g) = f ′g − fg′

D2
t (f.g) = f ′′g − 2f ′g′ + fg′′

(73)

and to compute the formula for Dn
t (f.g) apply the Leibniz rule. Now we will express

the bilinear Equation(72) in terms of Hirota derivatives

D2
t (τ0.τ1) +

t

3
Dt(τ0.τ1) − (2t2

9
− (α0 − α1)

3
)τ0.τ1 = 0

(D2
t +

t

3
Dt −

2t2

9
− (α0 − α1)

3
))τ0.τ1 = 0

(74)

and similar for (τ1, τ2) and (τ0, τ2), so we can write the differential equations for
three τ -functions for the symmetric form of PIV by bilinear differential equations
of Hirota derivatives as

(D2
t +

t

3
Dt −

2t2

9
− (α0 − α1)

3
))τ0.τ1 = 0

(D2
t +

t

3
Dt −

2t2

9
− (α1 − α2)

3
))τ1.τ2 = 0

(D2
t +

t

3
Dt −

2t2

9
− (α2 − α0)

3
))τ2.τ0 = 0.

(75)

If we rewrite the first two equations of (75) using hi

(h0 − h1)′ + (h0 − h1)2 +
t

3
(h0 − h1) −

2t2

9
+ α0 − α1

3
= 0

(h1 − h2)′ + (h1 − h2)2 +
t

3
(h1 − h2) −

2t2

9
+ α1 − α2

3
= 0

(76)



by subtracting these two equations, we get

h′0 − h′2 + h20 − h22 − 2h1h0 + 2h1h2 +
t

3
(h0 − 2h1 + h2) +

α0 − 2α1 + α2

3
= 0

h′0 − h′1 + (h0 − h2)(h0 − 2h1 + h2) +
t

3
(h0 − 2h1 + h2) +

α0 + α1 + α2

3
− α1 = 0

(h0 − h2)′ − (h0 − h2 +
t

3
)(−h0 + 2h1 − h2) +

1

3
− α1 = 0

(h0 − h2)′ +
1

3
= (h0 − h2 +

t

3
)(−h0 + 2h1 − h2) + α1

(h0 − h2 +
t

3
)′ = (h0 − h2 +

t

3
)(−h0 + 2h1 − h2) + α1

(77)

and from (65) we have f1 = h0 − h2 + t
3

and also from (66) we have f2 − f0 =
−h0 + 2h1 − h2 then

f ′1 = f1(f2 − f0) + α1 (78)

which is one of the symmetric form of PIV , and similar for f0 and f2.

Now we derive the expression of τ -functions corresponding to the simple special
rational solution that is (α0, α1, α2; f0, f1, f2) = ( 1

3
, 1
3
, 1
3
; t
3
, t
3
, t
3
), and we know that

h0 = f0f1f2 +
1

3
(α1 − α2)f0 +

1

3
(α1 + 2α2)f1 −

1

3
(2α1 + α2)f2

h0 = ( t
3
)3 + 1

3
( t

3
) − 1

3
( t

3
) = t3

27

(79)

as

τ ′0
τ0

= h0

∫
τ ′0
τ0

= ∫
t3

27

ln ∣τ0∣ + a =
t4

108
+ b

τ0 = exp[
t4

108
+ c]

τ0 = C0exp[
t4

108
]

(80)

and similar τ1, τ2, hence

(τ0, τ1, τ2) = (C0exp[
t4

108
],C1exp[

t4

108
],C2exp[

t4

108
]). (81)

In this section, we derived various relations between the different sets of variables
of the PIV equations. That is the symmetric variables f0, f1, f2, Hamiltonians
h0, h1, h2, and the τ -functions τ0, τ1, τ2. These relations will be used when we in-
vestigate the relation between the ring of invariant polynomials of A2 type and
special rational solutions of PIV equation.



5. conclusion

In this thesis, we illustrated properties of Weyl groups on the context of the a
finite and affine Weyl groups of type A2. Moreover, we showed how we can write
the fourth Painlevé equations in symmetric form and formulated as a birational
realisation of the affine Weyl group of type (A2). Further, we gave Hamiltonian
structure of the PIV . Furthermore, for the fourth Painlevé equations we have dis-
cussed some special rational solutions. Finally, we looked at an example of the
τ -functions that correspond to the special case of the symmetric form of the PIV .

For future work, we will look at the invariant polynomials of Weyl group of type
A2. Also, we will derive the birational realisation of Weyl group of type A2 in
terms of the τ -function. Finally, we will interpret the τ -function for the case of
rational special solutions of the fourth Painlevé equations in terms of the invariant
polynomials of Weyl group of type A2.
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