
 FLINDERS UNIVERSITY

Music from Bio-Signals
Software design for music synthesis

Student Name: Chen Chen

Submission Date: 28/10/2016

Academic Supervisor: Kenneth Pope

(Reference: Treble on Music Score by yalorx2)

Submitted to the Computer Science, Engineering, and Mathematics in the

Faculty of Science and Engineering in partial fulfilment of the requirements for

the Master degree of biomedical engineering at Flinders University –

Adelaide Australia

Abstract
Music is a kind of art and entertainment that reflects the real life of human beings.
Normally, people could listen to the music recorded from disc or downloaded from the
internet. This kind of music is created by musician while its content could not be
changed after recording. The project of ‘Music from bio-signals’ is seeking a new way
to synthesis music, which could be composed by the movement of human body in real-
time. During this process, physiological signals in body system would be converted to
digital signals, and then synthesized to music by software in the computer.

Previous students who involved in the project mainly focus on design of hardware
design, therefore the software design of the project is still a blank field. In this project,
which is the software design for music synthesis in ‘Music from Bio-Signals’,
MATLAB is the main programming software for music composition. The design starts
from the simple sound synthesized from static EMG signals. Since the real-time
manipulation of music would be achieved in the final goal, a useful toolbox in
MATLAB is introduced to stream out sound from real-time data. Afterwards
harmonious music with multiple real-time controls is produced in the computer. In the
end, some connecting tests between software and hardware would be carried on.

This project has achieved real-time control of music in MATLAB with four different
sounds and two different musical instruments. It has made a great progress for the
software design in the project-‘Music from Bio-signals’. Further research in the
software design could focus on the real-time controllability from the hardware terminals
and the reduction of transmission latency between hardware and software.

Page 1

Declaration
I certify that this work does not incorporate without acknowledgment any material
previously submitted for a degree or diploma in any university; and that to the best of
my knowledge and belief it does not contain any material previously published or
written by another person except where due reference is made in the text.

Signed …… …… Date …… ……

Page 2

Contents
Abstract ... 1

Declaration .. 2

1.0 Introduction ... 6

2.0 Literature Review .. 9

2.1 Bio-signals .. 9

2.1.1 Characteristics ... 9

2.1.2 Electromyogram (EMG).. 10

2.1.3 Electrocardiogram (ECG).. 10

2.1.4 Electroencephalogram (EEG) .. 11

2.2 Music Generation .. 11

2.2.1 Sine Wave ... 11

2.2.2 Harmonics ... 12

2.2.3 Octaves .. 12

2.2.4 ADSR envelope ... 13

2.3 Sound Synthesis Tools .. 13

2.3.1 Max/Msp ... 13

2.3.2 Pure Data ... 14

2.3.3 MATLAB .. 14

2.3.4 Synthesis Toolkit ... 14

2.3.5 Super Collider ... 14

2.3.6 Open Source Control ... 15

2.3.7 MIDI .. 15

2.4 Related Researches ... 15

2.4.1 Music from Bio-signals ... 15

2.4.2 Interactive Instrument Technology in the Musical Performance 16

2.4.3 Digital Musical Instruments Driven by Bio-signals from Musicians 16

3.0 Project Design ... 17

3.1 Sound from static data .. 17

3.1.1 Test EMG signals .. 17

3.1.2 Create notes ... 17

Page 3

3.2 Music synthesis from sound .. 19

3.2.1 Add harmonics .. 19

3.2.2 Change ADSR envelope .. 20

3.2.3 Length of notes and pause ... 21

3.3 Streaming real-time sound .. 21

3.3.1 Principle of DSP system toolbox ... 21

3.3.2 Introduce ASIO driver ... 23

3.3.3 Test the function of DSP toolbox .. 23

3.3.4 Minimize the signal discontinuities of sound .. 25

3.4 Music composition from real-time sound ... 25

3.4.1 Apply the previous model of music composition .. 26

3.4.2 Introduce pentatonic scale ... 27

3.4.3 Implement multiple controls ... 27

3.5 Wireless transmission Test ... 28

3.5.1 Read data from hardware .. 28

3.5.2 Stream out sound from hardware .. 29

4.0 Results ... 30

4.1 Music from static data ... 30

4.1.1 Simple sound with notes ... 30

4.1.2 Simulating musical instruments .. 31

4.2 Music from real-time data ... 31

4.2.1 Streaming real-time sound .. 31

4.2.2 Streaming sound with notes .. 31

4.2.3 Simulating sound of flute .. 32

4.2.4 Streaming sound of flute in C major pentatonic .. 32

4.2.5 Combination first and second audios .. 32

4.2.6 Introduce third sound of piano with a new rhythm ... 33

4.2.7 Combination third and fourth audios ... 34

4.2.8 Play the four audios with two rhythms .. 34

4.3 Music test through wireless transmission ... 35

4.3.1 Test the program from one input pin in Bluetooth .. 35

4.3.2 Test the program from two input pins in Bluetooth .. 35

Page 4

4.3.3 Test the program using sine-wave input data through the bread board 36

5.0 Discussion ... 37

5.1 Music from static data ... 37

5.2 Music from real-time data ... 38

5.3 Music test through hardware in real-time ... 40

6.0 Conclusion ... 42

7.0 Recommendations ... 43

7.1 Software installation ... 43

7.2 Maneuverability and conciseness of programming .. 43

8.0 Acknowledgment ... 44

9.0 References ... 45

Appendix ... 48

1. Codes for creating notes from static data (undigested draft) 48

2. Codes for composition from static sound... 51

3. Codes for the function of ‘make_note’ in static composition 52

4. Codes for streaming real-time sound from sine-wave ... 52

5. Codes for streaming real-time music with multiple controls 53

6. Codes for the function of ‘frame_note’ in multiple controls (first flute) 56

7. Codes for the function of ‘frame_note_4’ in multiple controls (second flute) 56

8. Codes for the function of ‘frame_note_second_audio’ in multiple controls (piano) ... 57

Page 5

1.0 Introduction
Music is an abstract art which emerges long before the start of language that is used to
express the thoughts and feelings in human history. With development of human labor,
the original music produced by striking stone or wood is to celebrate the harvest and
show the pleasure forming a prototype of music. Generally speaking, music is an art
performance composed by sound with melody, rhythm, voice, harmony and a large
variety of musical instruments. In recent years, researchers are studying the therapeutic
effect of music inspired by lullaby in order to expand a new field of physical therapy
and children rehabilitation.

The project of Music from Bio-signals is seeking a way using bio-signals in human
body to control the streaming music in computer in real-time. This form of music is
different from the traditional type which is produced by musical instruments. All the
specific parameters, such as the volume, pitch, length of notes and interval, as well as
rhythm and melody are created by different kinds of physiological parameters in human
body. The very slight variation of bio-signals in different regions of body would be
detected and then converted into these parameters in a piece of music. It means that
people could compose music when they move their limbs, walk on the road or do any
other activities in any circumstances with a device of ‘Music from Bio-signals’. It is
would be a significant design of this device which could not only be applied on the
research of children rehabilitation and physical therapy, but also could be used on the
art performance which could combine the dance and music into a new form of art
enriching the entertainment life of the public.

Figure 1. The Conversion process of ‘Music from Bio-signals’

Page 6

As bio-signals has been widely used in the field of medical diagnose and analysis in
recent decades, the acquisition of these signals tends to simplicity. Regarding to this
project, a semi-finished hardware has been researched and developed for acquiring the
data from human body and converting the data into digital signals by previous students.
However, the software component of music synthesis for bio-signals is still a blank
field in this project. Therefore, making a reliable musical program for this project is a
critical process to achieve the function of desired device. Figure 1 shows the overall
process of ‘Music from Bio-signals’ while the highlight blue components illustrate the
scope of this project.

Before the start of this project, the segmented goals of project design in this year are
listed as follows:

 Investigate the characteristics of bio-signals in a digital expression such as the
frequency, amplitude, the waveform etc.

 Understand the basic knowledge of music theory including the rhythm, pitch,
volume and notes as well as musical instruments.

 Compare different software for music synthesis, select reliable software for
programming

 Write computer program to control every variable in a piece of music using the
static digital data of bio-signals

 Build a model for streaming continuous sound in the programming software
 Apply the previous static program on the dynamic model for music synthesis
 Revise the program to stream a harmonious music
 Add more input channels into this program to achieve multiple controls in

hardware terminals

Figure 2. The expected programming tasks in the project

The additional tasks are planed if there are enough time reminded:
 Test the input digital data which is introduced by the detecting and transmitting

Page 7

hardware developed in previous researches
 Improve the compatibility of the software in this project with the designed

hardware
 Improve the stability and reduce the latency through the signal transmission

process
 Complete the real-time control of music from bio-signals

Page 8

2.0 Literature Review
Researchers have found that music is an effective therapeutic tool in the field of
physical therapy (Novotney, 2013). In the trial at the University of Alberta, the pain and
distress of forty-two children patients at three to eleven years old are reduced by the
relaxing music (Hartling et al., 2013). As the widely application of bio-signals in the
domain of disease analysis and diagnosis, acquisition of accurate bio-signals is easier
and feasible than that in many years ago. These signals could be used to generate music
for physical therapy as well as a new format of art performance using musical synthesis
software. Based on the current situation, there is no university or individual providing
the complete design of ‘Music from Bio-signals’. Therefore, some related concepts and
researches should be investigated firstly before the explanation of this project.

2.1 Bio-signals

There are numerous physiological processes in the system of human body. Each
process contains a lot of useful information which reflect the health condition of
physiological system. For example, the voltage recorded on the surface of scalp, the
blood pressure measured by electronic sphygmomanometer, the body temperature
calculated by thermometer from patient (Brown & Gupta, 2008). Such information
associated with the nature of human body are biomedical signals. Biomedical signals
are divided into three types, biomechanical signals, bioelectrical signals and
biochemical signals. Specifically, the bioelectrical signals detected directly by
electrodes from human body are widely used to monitor and analyze the health
condition in clinical medicine field. The commonly used biomedical signals include
electromyogram (EMG) that indicates the electrical activity of muscular cells,
electrocardiogram (ECG) that represents the heart health, and electroencephalogram
(EEG) that shows the electrical activity of brain (Muthuswamy, 2004).

2.1.1 Characteristics
Signals could be classified into continuous and discrete types. For example, the
algebraic expression y = x (t), t∈R contains variables, such as time or space while
the other expression y = x (n), n=0, 1, 2, 3… includes finite number of points. During
the process of digital signal analysis, researches often deal with the discrete signals.
Signals could also be divided into deterministic and random types (Kabal, 2004).
Deterministic signals can be explained by mathematical functions while random
signals usually have uncertain components which can only be analyzed by statistic
techniques. For example, both the ECG signal and blood pressure have deterministic
sections while EMG signal could be analyzed by standard deviation or root mean
square which is one of the methods of time-domain measurement of bio-signals. For
example, the root mean square shows mechanical feature of muscular nerves, when
the EMG signal is measured. Meanwhile, the smoothness of the signals could be
explained by average rectified value through measurement. Besides, the frequency

Page 9

domain characteristics of digital signals could be illustrated by Fourier transform
techniques (Norali, Som & Kangar-arau, 2009).

2.1.2 Electromyogram (EMG)
In 1849, a German physiologist Dubois Reymond found that the electrical activity
of muscle contraction could be recorded. In 1890 the term electromyogram is then
introduced by Marey when he recorded the first contraction of skeleton muscle.
(Cram & Kasman, 1998). In twentieth century, the acquisition method of myoelectric
signal is gradually improved and applied for clinical diagnosis such as myopathic
and neuropathic disorders. In principle, the electrical signals between muscles and
central or peripheral system control the movement of extremities. These signals are
the summation of action potential produced by motor units in the region detected by
electrodes. Therefore, any abnormal changes in the spinal cord, neuromuscular
conjunction or motor-neurons could reflect the occurrence of diseases in the
electromyogram. Generally the measurement potential ranges from 20mV to 50mV
while the bandwidth of the amplified myoelectric signal is greater than the range
from 0 to 4k Hz (Brown & Gupta, 2008).

Figure 3. Two channels of EMG signal from surface electrode and needle sensor

 (De Luca et al., 2006)

2.1.3 Electrocardiogram (ECG)
Electrocardiogram is measured by skin electrodes as a voltage from electrical
activity of myocardium in human body. It contains the features of action potential
from different parts of heart. In clinical, there are 12 standard leads monitoring the
condition of heart for further diagnosis according to the waveform of
electrocardiogram. In the ECG diagram, the wave is split up as P wave, QRS wave,
T wave and U wave (Olvera, 2006).The frequency and amplitude of each section
explain the specific state of heart health. Usually the measured potential from

Page 10

myocardium is about 90mV, but it would be reduced to 1-2mV when it is reached to
the skin.

2.1.4 Electroencephalogram (EEG)
Electroencephalogram is often measured by 21 electrodes to monitor the post-
synaptic potentials in cerebral cortex clinically. The frequency range of EEG
waveform could be classified as alpha, beta, theta and delta. These frequency ranges
could be used to indicate the normal condition or pathological state of neurological
patient. During the anesthesia process in intensive care unit, the effect of drug dose
on brain activity performs clearly on EEG waveform with changes of frequency and
amplitude. The amplitude range is normally 1 to 100mV while the frequency range
could be up to 40Hz (Teplan, 2002).

2.2 Music Generation

When a guitarist pluck the strings by hand, the airs near the guitar vibrate and
broadcast to the eardrums in human ears. Then the human ears capture this vibration
as a sound which consists of complex oscillations. The continuous sound which has
appropriate pitch, volume, harmonious rhythm and interval is the basic components
of music.

2.2.1 Sine Wave
Sine wave which has fixed frequency and volume is the simplest example of sound
in a piece of music. Basically, sound is controlled by frequency, amplitude, and
duration time in a sine wave. If a unit sine wave has the frequency with 440Hz in 10
second, it would sound like a clear buzzing for ten second. The frequency range of
sound which can be perceived by human ear is 20 Hz to 20k Hz. The agaric
expression of a sine wave is P= A × sin (2πf × t) while P represents the air pressure
(DiCanio, 2015). In a sine wave, the amplitude is related to the loudness of sound
while the frequency dominates the pitch of sound. Hertz and Decibel are used to be
the unit of frequency and amplitude in the waveform of a sound respectively.

Figure 4. The effect of amplitude in Sine Wave on the loudness of sound
(Schmidt-Jones, 2007)

Page 11

2.2.2 Harmonics
A musical sound is usually the combination of many sine waves with different
frequencies. Among those frequencies the lowest one is fundamental frequency
while the multiples of this specified frequency are the frequencies of harmonics
(Bain, 2003). Figure 5 shows the relationship between harmonics and the
fundamental frequency in musical notes of string.

Figure 5. Fundamental and harmonics of string notes (Petersen, 2001)

The sounds of different instruments could be distinguished by human ears because
they have different harmonics and envelope of volume. For example, the variation
of pressure against time in the waveform of flute, oboe and violin is shown in figure
6. The volume and fundamental frequency of these instruments may be same, but
their harmonics are different. These features could be used to synthesize the
instrumental music from bio-signals as different timbres.

Figure 6. Sound waveform of different instruments

(Petersen, 2001)

2.2.3 Octaves
The space between one frequency of a pitch and its half or double is an octave in the
musical notation. In the typical musical scales, one octave consists of twelve notes,
so the interval between the initial C and the final C is one octave. The relationship

Page 12

between the notes in octave and frequency is shown in Figure 6. For example, the
4th octave A is fit as 440 Hz while the 3th octave A is set as half of 440 Hz, which is
220 Hz.

Figure 7. Octave and Frequency in Piano keyboard

(De Leon, 2000)

2.2.4 ADSR envelope

Figure 8. The amplitude change of ADSR envelope

(Mathew, Abraham & Scaria, 2015)

During the performance of musical instruments, musical tones usually take certain
time reaching to the full volume then decay to zero gradually. This characteristic of
tone makes the music soft and graceful for audience to hear. The rise period and
decline phase are called attack and decay stage while the stable period of tone which
hold by the executant is the sustain stage. At last, the tone would decay to zero in the
release stage (Mathew, Abraham & Scaria, 2015).The whole process of volume
change is named as Attack-Decay-Sustain-Release (ADSR) envelop.

2.3 Sound Synthesis Tools

2.3.1 Max/Msp
Max/Msp is a programming environment of a software developed firstly in 1980 at
IRCAM for interactive system of computer music. It is currently used for signal
generator, user interface and digital operator for real-time synthesis system of
interactive music. In this system, the input signals could be interpreted well by
creating connections between different objects in the edit model (Wang, 2008).The
widgets such as graphs, knobs and message boxes, could be manipulated in
interactive interface in the run model. Therefore, it is a very popular programming

Page 13

system for music synthesis.

2.3.2 Pure Data
Pure Data is a programming language which is similar to Max developed by Miller
Puckette for interactive computer music in 1996. It is an open source software
designed to process audio data and control flow rate through a public application
programming interface. Therefore the language C, python and Scheme could be used
by developers to add their own audio control blocks (Farnell, 2006).As there are
various external libraries available, the Pure Data is a common real-time
programming environment for audio processing.

2.3.3 MATLAB
MATLAB is a modern programming language environment originally produced as
matrix accessing software by Mathwork. It mainly forces on the numerical
computing achieving matrix manipulation, algorithm implementation, plotting
functions and interfaces with other languages such as C and python. It also has
collecting packages for specific applications as toolbox which is applied for
simulation, symbolic computation, signals processing and engineering design
(Houcque, 2005). Other functional package such as Simulink, is usually used for
dynamic and embedded systems in graphical simulation field. Accordingly, it also
includes the functions and toolbox for processing audio data and audio streaming
packages for music synthesis.

2.3.4 Synthesis Toolkit
Synthesis Toolkit is a programming language for real-time musical synthesis
introduced by Perry Cook in 1990. It can be compiled by any systems with C or C++
for audio digital signal processing in a fast prototyping environment. There are a
variety of music synthesis algorithms compatible with STK for operating real-time
sound and MIDI input signals on many platforms such as Tcl and Tk (Cook &
Scavone, 1999). For example, there is a physical model of object named Mandolin
for string instrument in STK. This model can be used to generate audio and for sound
synthesis with C++ or Java language by programmers in real-time.

2.3.5 Super Collider
Supper Collider is a programming language and audio programming environment
initially published by James McCartney in 1996, mainly used for real-time sound
synthesis and Algorithmic Composition. Since then it has gradually become a
common system for sound development and operation used by scientists and artists.
Its environmental structure has been divide into two parts since the release of the
version 3, the server (scsynth) and the client (sclang). The newest version Supper
Collider 3.6.6 is released in November 2013 (Wang, 2008). Supper Collider
combines object oriented characteristics, features from functional programming

Page 14

languages and syntax which is similar to C language. As the server supports simple
C extension of application program interface, it makes this environment very simple
to write efficient sound algorithm. It is also very easy to use other languages or
applications to operate this language because all the operations of server would be
through the external open source control, a standard for sending control messages
for sound over the network.

2.3.6 Open Source Control
Open Source Control (OSC) is considered as a protocol for real-time control of
computer music synthesizer. It has been widely applied in the design of hardware
and software since it is firstly released by Matthew Wright in 1997. OSC is not only
adaptable with IP transport in a LAN currently but also matches with other
transporting methods, such as serial port, Wi-Fi and USB (Arslan et al., 2005).

2.3.7 MIDI
Musical Instrument Digital Interface (MIDI) is an electrical communication protocol
defining various notes and playing codes for musical instruments. It could connect,
adjust and synchronize the operation of computer, cellphone or electronic musical
instrument for data exchange. It emits the control signals of musical volume, tremolo
and phase instead of sound in the computer. MIDI standard is published by the
Engineer Dave Smith in audio engineering association in 1983. It enable the multi-
control and message exchange among computer, sound card, synthesizer, electrical
musical instrument including electronic drum and keyboard, and synthesis of analog
music realistically (Meister & Errede, 2011). Many musical formats are constructed
based on MIDI. These files are usually only dozens of kilobytes, but enable play an
intact piece of music by electronic musical instrument.

2.4 Related Researches

2.4.1 Music from Bio-signals
The project of ‘Music from Bio-signals’ was initially commenced by two
engineering students Darian Tregenza and Robert Wood in 2011. In 2013, another
student Nicholas Rose continued to conduct the previous research forcing on the
hardware design of a data collection device (Rose, 2013). In 2014, an engineer
student Semisi Finau went on this research concentrating on the hardware design of
data acquisition, signal conversion and transmission from bio-signals for further
music synthesis in the computer (Finau, 2014). So far these researches with the same
title of this project are all talking about the techniques of acquiring data of bio-
signals from human body and the approaches of analog-digital conversion. The
majority of these designs are about hardware design while software design is rarely
mentioned. Therefore, the music synthesis from bio-signals in the computer and the
production of continuous music could fill the gap of these researches.

Page 15

2.4.2 Interactive Instrument Technology in the Musical Performance
The BioMuse system developed by Knapp and Hugh in 1990 could transform the
data of neuroelectric and myoelectric signals to MIDI directly for musical instrument
performance (Knapp & Lusted, 1990). Such interactive instrument technology
interfacing with the Max environment is a useful tool in musical composition and
rehabilitation field.

2.4.3 Digital Musical Instruments Driven by Bio-signals from

Musicians

Two bio-musicians built a ‘Bio-Orchestra’ using EEG and EMG signals based on
MATLAB and Max/Msp through sound synthesis algorithm in 2010. The two digital
musical instruments that driven by bio-signals are MIDI instrument and accordion
(Arslan et al, 2010). The algorithms in this study are written in MATLAB while the
data acquisition codes are made in C ++. In addition, a Simulink block is also used
for adjusting variable objects and parameter from bio-signals and digital instruments.

Page 16

3.0 Project Design

3.1 Sound from static data
In order to investigate the characteristics of bio-signals, basically we can start to
generate sound from static data. From various kinds of bio-signals, we choose EMG
signals as the input data because EMG signal is non-periodic. The uncertain
component in EMG signal is easier than the periodic signal to produce random notes,
such as ECG signals during the process of music composition. Meantime, the software
of MATLAB is used as the main programming tool for music synthesis, since it
contains many useful functions and toolboxes for calculation and analysis.

3.1.1 Test EMG signals

A piece of normal EMG signals could be easily downloaded from the database of
PhysioBank, which is a large online records of physiological signals used by
biomedical research communities.

Figure 9. A piece of digital EMG sample
(Overall data has 50860 sets of numbers)

The EMG sample in the testing file ‘EMG.txt’ has two channels. The left channel is
the time with 12.715 seconds (sampling rate is 4000Hz), while the right channel is
the corresponding voltage at that moment. The data from right channel could be
picked out and played using ‘sound’ function in MATLAB to show the sound of raw
digital EMG signals.

3.1.2 Create notes
Based on the characteristics of bio-signals, either the standard deviation or root mean
square could be used as the algorithm to analysis digital data. In this step, root mean
square is applied on the analysis. In the music theory, sine-wave is the simplest sound.
The frequency of sine-wave determines the pitch of sound while the amplitude of
sine-wave determines the volume. Each octave has a specific frequency range. For
example, the frequency of 3rd octave range from 130.813 Hz to 246.942 Hz. Since
there are twelve notes in each octave, the frequency increase from the first note to

Page 17

the last one with a multiplier of 2
1
12 between two adjacent notes. Figure 10

illustrates the flow diagram of making simple notes in MATLAB.

Figure 10. The flow diagram of making notes from EMG signals

Since root mean square is a very common mathematical algorithm, we use it
directly in the project design, the formula is shown in Figure 11.

Figure 11. Calculating the root mean square

Firstly, in order to keep each musical note lasting for nearly one second, the digital
EMG data in Figure 8 is divided into 16 average pieces because the overall dataset
lasts for 12.715 seconds. It would be easier for human ears to distinguish the quality
of sound in one second with each note. For each piece of data, the root mean square
is used to calculate and derive a number. Since sixteen values would be achieved, a
special number will be used to multiply by those sixteen values respectively to
acquire final sixteen values which should be in the range of 20 to 20000. This special
number is chosen through several computational tests depending on the final values
which need to be in the frequency range of audible sound (the sound frequency
ranges from 20Hz to 20 kHz). Secondly, the sixteen values of frequency would be
added into sine-waves. It means the frequency of sine-wave will be manipulated by
those numbers produced from the digital EMG signals. Since the audible sound has
a large frequency range, the result sound is not expected to be very harmonious and
beautiful, might be a little a bit sharp or uncomfortable for human ears.

Page 18

3.2 Music synthesis from sound

Since the notes with different frequencies has been achieved from EMG signals, it
is the time to simulation sound of musical instruments. In the music theory,
harmonics and ADSR envelope is the two main factors to affect the timbre of sound
and to distinguish the type of musical instrument. Therefore, some modifications
could be implemented on the notes through programming in MATLAB.

Figure 12. The overall process of music synthesis

3.2.1 Add harmonics
Each musical instrument has its particular harmonics while the harmonics in each
octave of one instrument is also different. For example, the ratio of harmonics for
three common instruments at Middle A (fundamental frequency is 440 Hz) is shown
in Figure 13.

Figure 13. Ratio of harmonics for flute, oboe and violin at Middle A (440Hz)

(Petersen, 2001)

Page 19

Figure 14. Add harmonics on notes in a new function in MATLAB

Since there are sixteen notes that need to be modified, the calculation of harmonics
for each note could not be completed in one formula. Therefore, a new function
which is named as ‘make_note (freq, harmonics, note_length, fs)’, is made in
MATLAB as shown in Appendix 2. Sometimes, the odd orders such as 3rd, 5th, and
7th should be ignored because those harmonics might affect the performance of
simulation in the practice. To be specific, the harmonics with even and odd orders
have different effect on the quality of sound through several simple sound test during
the design. When the odd harmonics are strong while the even harmonics are weak,
the sound is stiff and grotesque. When the even harmonics are strong while odd
harmonics are weak, there is a sense of transparency and pureness in the sound.
Therefore, only the harmonics with even orders would be useful in the codes.

3.2.2 Change ADSR envelope
The six notes in the proposal sound have no envelope. In order to add envelope into
the notes, the feature of envelope in musical instruments needs to be analysis. Figure
15 shows the normal ADSR waveform and the envelope of strings. Generally, the
strings such as guitar and violin, would take a while to reach the maximum volume,
but the piano would reach to its peak volume in less than 125ms.

Figure 15. Sound analysis of different instruments (De Leon, 2000)

In MATLAB, ‘linspace’ is a common order to generate a specified number of
points within a specified range. The calling method is ‘linspace(x1, x2, N)’, while
x1, x2 and N are the beginning value, the end value, the number of elements. Since
the sampling numbers has been known as 4500 Hz, the amplitude of each stage of
ADSR envelope could be set in the previous function ‘make_note (freq, harmonics,
note_length, fs)’.

Page 20

Figure 16. Usage of ‘linspace’ to simulate ADSR envelope

(Whiting, 2014)

3.2.3 Length of notes and pause
Since the notes of musical instruments has been made, it is necessary to define the
rhythm of music. The rhythm could be set by changing the length of notes. In musical
theory, notes could be divide into semibreve, minim, quarter, etc. Semibreve is the
longest note in these notes while the length of minim is half of the semibreve. Other
notes would continue to reduce in half than the previous one. In this part of design,
three different lengths are used on the musical notes with 0.25 second, 0.5 second
and 1 second. If the semibreve is 1 second, then minim is 0.5 second while the
quarter is 0.25 second. These notes is arranged in a particular order in a piece of
music. This order could be decided by several attempts in the design to make it
pleasing to the ears. The final order is shown in Figure 17. In addition, length of
pause could also be set up to create blank note between these notes in a music rhythm.
However, the blank note is not applied on this section.

Figure 17. The arrangement mode of music rhythm

3.3 Streaming real-time sound
From the previous design, music with the feature of musical instrument could be
produced from static data of EMG signals. However, the aim of this project is to
achieve the real-time control of music from bio-signals. Therefore, there is a task of
seeking a way to stream out real-time sound in MATLAB.

3.3.1 Principle of DSP system toolbox
In MATLAB, there is a useful toolbox named as digital signal processing (DSP)
toolbox that could be used for playing audio data using the audio device in the
computer. The particular object in this toolbox used is in this toolbox is named as
‘dsp.AudioPlayer’. The flow diagram of operation process of this object is shown in
Figure 18.

Page 21

Figure 18. The flow diagram of ‘dsp.AudioPlayer’ object

The input data would be split into many frames before it enter into the object. Only
one frame could be put into the ‘Queue’ before the frame in the queue is transmitted
into the ‘Buffer’. Once the first frame is sent out to the physical device through the
‘Buffer’, the ‘Buffer’ will be cleaned out while a new frame would enter into the
‘Buffer’. Therefore, the ‘Buffer’ is used as a data memorizer in the object. The
physical device could be a sound equipment or an audio device in the computer.
Since there are a large numbers of data would be processed in the MATLAB, this
object provides an efficiency method to stream audio data out to the audio devices.

Figure 19. The conversion process of frames from digital data

Figure 20. A model of ‘dsp.AudioPlayer’ object in MATLAB
(MathWorks, 2016)

Page 22

The definition of parameters in ‘dsp.AudioPlayer’ object is a critical part for the
streaming process during the design. ‘SampleRate’ represents the number of samples
per second while those samples would be sent to the audio device outside of
MATLAB. Its default value is 44100 Hz while it is also a tunable value if it is
predefined. ‘BufferSize’ is the size of buffer that is tunable when the
‘BufferSizeSource’ is set to be ‘Property’. It is an important parameter which affects
the latency of the streaming data. The latency is the duration of device to empty the
buffer when the buffer communicates with the physical device. Another parameter,
‘QueueDuration’ is also rated to the latency. It is the maximum length of signal
which can be lagged by the data in seconds in the object. If the throughout rate of
MATLAB is slower than that of physical device, there would be no sufficient data
put into the buffer, then the underrun of buffer occurs. Therefore, the queue duration
should be at least larger than buffer size. Moreover, ‘OutputNumUnderrunSamples’
could be used to monitor the underrun situation. A model of ‘dsp.AudioPlayer’
object is shown in Figure 19 while the application of this model is shown in Appendix
4.

3.3.2 Introduce ASIO driver

Figure 21. The main board of ASIO driver

The ASIO driver is a powerful interface between the software of sound synthesis
and sound card in the computer. It could achieve a low latency and high-fidelity of
sound streaming because it enables the sound card to access the physical device
directly. In MATLAB, set the choice of ASIO driver instead of Windows’ direct
sound driver by this path: File> Preferences > DSP System Toolbox, select ASIO
driver in the list.

3.3.3 Test the function of DSP toolbox
Since the feature of ‘dsp.AudioPlayer’ object in the DSP toolbox has been illustrated
while the interface of ASIO driver is ready, it is the time to test the performance of
the audio streaming function.

Page 23

Figure 22. A mouse pointer in the computer screen

Firstly, a set of dynamic data is needed to simulate the real-time EMG signals from
human body. Therefore the position of a mouse pointer in the computer screen is
chosen as the streaming source to MATLAB. The order, ‘get (0,'ScreenSize')’ in
MATLAB is used to calculate the length and width of the screen while the order,
‘get(0, 'PointerLocation')’ is used to calculate the corresponding value of location
of mouse pointer in the desktop. In the end, a 1×2 matrix could be acquired from the
value of screen size divided by the value of pointer location. Therefore, the two
numbers in his matrix ranges from zero to one. It could be considered that there is a
coordinate system in the computer screen, the coordinate of left bottom point is the
original point (0, 0), while the coordinate of right top point is (1, 1). When the mouse
pointer moves in the screen, there will be two numbers recorded in MATLAB.

The location coordinate of mouse pointer, (x, y) (0≤x≤1, 0≤y≤1) in the screen
coordinate could be used to control the frequency range of sound in the test. For
example, if the frequency range is defined from 131 Hz to 494 Hz (include 3rd and
4th octave), the output frequency is derived from f= 131 + y × (494-131). Since there
are two numbers in the coordinate value, the other number could be used to control
the volume of sound (amplitude value of volume).
As the controller has been defined well, the digital sine-wave is used as the input
data to create simplest sound in MATLAB. The flow diagram of the test is shown in
Figure 23. In the ASIO driver, the latency compensation is set to be 128 samples
while the sampling rate is set to be 48000 Hz. The expected outcome of this test is
that sound changes from low pitch to high pitch when the mouse pointer moves from
bottom to the top of screen. Meanwhile, the sound changes from small volume to
large volume when the mouse pointer moves from left to the right of screen.

Page 24

Figure 23. Test the performance of DSP toolbox

3.3.4 Minimize the signal discontinuities of sound
The potential failure of the test might be that there are some signal discontinuities
which make the output sound discontinuous in the streaming process.

Figure 24. The signal discontinuities between different frames in the output sound

Since the first frame is taken out of buffer, another frame which is derived from the
start of the queue is put into the buffer, such problem is shown in Figure 24. The
sound would have the squeak or an uncomfortable noise. To solve this problem, the
end value in the first frame needs to be calculated while the next frame of sine-wave
would start from this value setting in the formula of output audio.

Another method is to chop the original data into many pieces. When the information
of first frame is taken from the streaming source, the program will chop out that part
of frame from the original data with same length of first frame. Then the output audio
would be continuous when the second frame comes from the original data.

3.4 Music composition from real-time sound
As the real-time sound has been streamed out from the test of the function of DSP
toolbox, the programming codes made for the composition from the static EMG data
could be applied on this sound. According to the music theory, musical notes could
be produced from the sine-wave and ADSR envelope.

Page 25

3.4.1 Apply the previous model of music composition

Figure 25. The application of previous music synthesis theory

Since the sine-wave is existing in the real-time sound, particular envelope could be
added to making notes as shown in Figure 24. The controller of these notes is still
the movement of mouse pointer. However, the difference of this sound from the
previous one is expected to be that there will be a constant pitch when the mouse
moves in range of a vertical axis in the computer screen. It means that those notes
lies on the vertical axis in the screen with an increasing trend of pitch from the
bottom to the top. Specifically, there are fourteen notes started from major C in 3rd
octave (131Hz) to major B in 4th octave (494Hz).

Figure 26. The definition of rhythm and harmonics

Regarding to the simulation of musical instrument, harmonics are also need to be
defined as show in Figure 26. The five numbers are the ratio of every order of
harmonics in the flute. Similar to the composition from static data of EMG signals,
the note length is used to define the rhythm of music as show in Figure 26. Moreover,
the ADSR envelope and harmonics are predefined in a new function named as
‘frame_note (freq, harmonics, note_length, Fs, samplesPerFrame)’ shown in
Appendix 5.

Page 26

3.4.2 Introduce pentatonic scale

Figure 27. The pentatonic scale in piano keyboard

In the previous section of synthesizing music from static data, the order of different
notes is preset before played. Meanwhile, the arrangement of those notes is the job
of composer in the music field. However, those notes in this design would be
originally produced from EMG signals in human body. According to the
characteristic of EMG signals, there is no particular order for those signals. The
random arrangement of these notes doesn’t sound so harmonious. Therefore,
pentatonic scale is introduced. The biggest feature of pentatonic scale is that it could
stream a harmonious song when the notes are played randomly. Basically, the
general twelve notes in one octave is expressed as C, C#, D, D#, E, F, F#, G, G#, A,
A# and B. Pentatonic scale consists of five notes which belong to one of the octaves.
It picks particular five notes from the twelve notes in one octave which allow the
random arrangement to make a beautiful song. To be more perceptible, the
pentatonic scale is the black notes in a keyboard of the piano as shown in Figure 26.
It can be classified as two kinds, the major pentatonic and the minor pentatonic. For
example, the notes of C major pentatonic notes are C, D, E, G, A while the notes of
A minor pentatonic are A, C, D, E, G. With this useful scale, the random movement
of mouse pointer could compose a euphonic song in the computer.

3.4.3 Implement multiple controls

Figure 28. The design of multiple controls of music

From the previous study, one set of data could control the fundamental frequency of

Page 27

one sound. It means that if there is one sensor attached on human body, the
fundamental frequency of one sound could be manipulated by people. However, one
sensor might not be enough for people to play while single sound could only be
called as drum in the music. Therefore, multiple controls of sound is necessary to be
designed in this project.
Since the sound of flute has been produced in the previous program, a similar sound
of flute with different frequency range and note numbers could be easily generated
in the same way. The combination of two similar sound could produce a special
effect on the eardrum of human. The new sound could also rich the timbre of music.
Moreover, a third sound of piano is produced based on the music theory of musical
instruments. It is could be achieved by changing the ADSR envelope and harmonics
of the parameters. Meanwhile, a new rhythm is used with a faster speed, which will
make it be easier to distinguish from the sound of flute. In the same way, the fourth
sound which is similar to the third one is produced, and combined together. However,
the control mechanism is opposed to the first two sounds. The movement in
horizontal axis in the screen is used to control the fundamental frequency of sound
while the movement in vertical axis in the screen controls the volume.

3.5 Wireless transmission Test
A semi-finished hardware is produced by previous students in the study of ‘Music
from Bio-signals’. Two of that hardware are the Arduino which is used as a micro-
controller and the Bluetooth shield which works for the wireless transmission to
convert the data through Arduino to the computer. In order to test the connection
between software and hardware, the setting of Bluetooth needs to be opened in the
computer.

3.5.1 Read data from hardware

The program written in Arduino convert the voltage of two input pins on the
Bluetooth shield to the computer. For receiving the data in the computer, the
programming codes are written in MATLAB is shown in Figure 29.

Figure 29. Read data from Arduino

Page 28

3.5.2 Stream out sound from hardware

Figure 30. Test the wireless transmission

Since the DSP toolbox has already been tested to stream out real-time music
successfully, the program has been made could also be useful in this process. For the
running of hardware, a power supply is needed to active the two devices. Firstly, the
control of signal sound by one input pin is tested as shown in Figure 30. Secondly,
the double control of sounds by two input pins is implemented to stream the real-
time music out. Since there is no input signals onto the hardware terminals, the
voltages on the two pins would be constant values. Therefore, the expected result is
that the streaming music from one pin or two pins in the hardware terminals would
has a constant pitch of sound.

Figure 31. Test the controllability of hardware terminal for real-time music

In the end of this design, a tunable sine-wave is generated from a wave-generator to
test the streaming music in the computer through hardware with the amplifier circuits,
Arduino and Bluetooth shield as shown in Figure 31. The expected result is that the
pitch of streaming music in the computer could be adjusted in real-time by the
change of frequency in wave-generator.

Page 29

4.0 Results
Since all the results of programming codes are sound and music, there is no picture
that will be shown in the result. Those audio files from static EMG signals are
produced by MATLAB codes in the computer while the real-time sound or music is
recorded by the application software in a cell phone. All the audio files are the format
of .mp3 and have been embedded into the .PDF file.

Before the play of these audio files, a PDF reader software ‘Adobe Acrobat XI Pro’
and an independent audio player software ‘Adobe Flash Player’ need to be installed
firstly in the computer.

4.1 Music from static data

4.1.1 Simple sound with notes
Firstly, the original piece of digital data from EMG signals shown in Figure 8 will
be played in Audio 1:

Audio 1. A piece of raw digital data of EMG signals (6.36 second)

It can be clearly heard that this piece of audio sounds very noisy, this audio could be
used to produce a better sound.

Audio 2. A piece of sine-wave with a frequency of 440 Hz (5 second)

In MATLAB, a piece of sine-wave could be generated with specific duration and
pitch, the sine-wave with a frequency of 440Hz in Audio 2 sounds like a whistle or
a buzzer heard by human ears.

Audio 3. The proposal sound with simple notes (9 second)

In audio 3, 16 numbers are calculated from the digital data of EMG signals ((6.36
second) through the algorithm of root mean square. These numbers are used to
control the frequency of the sine-wave in Audio 2. The length of every note is 0.5
second. The frequency of these sixteen notes are 297Hz, 165Hz, 392Hz, 357Hz,
141Hz, 802Hz, 1056Hz, 347Hz, 244Hz, 225Hz, 181Hz, 177Hz, 285Hz, 391Hz,

Page 30

null

6.42614

null

5.0677667

null

9.064502

144Hz, 144Hz.

4.1.2 Simulating musical instruments

Audio 4. Simulating the sound of flute (9.6 second)

In audio 4, some modification is made from the proposal sound in Audio 3 for
simulating the sound of flute. Specifically, the frequency range of these notes is
limited into octave 5 (523Hz- 988Hz) while major scale is used to create seven
keys in one octave. There are three kinds of note length in this audio (0.25 second,
0.5 second and 1 second). The ratio of harmonics of flute starting from the
fundamental frequency (1st order) are 0.467, 0.3, 0.1, 0.1, and 0.003. The sampling
frequency is set to be 8000Hz.

4.2 Music from real-time data

4.2.1 Streaming real-time sound

Audio 5. Streaming dynamic sound controlled by computer mouse pointer

This piece of sound is recorded from the running of MATLAB codes controlled by
the mouse pointer in the computer. The movement of mouse pointer generates two
dynamic numbers of the horizontal and vertical coordinates of pointer ranged from
0 to 1 in the computer screen. The two numbers are added on the sine-wave for the
control of pitch and volume of sound.
From the Audio 5, firstly it can be clearly heard that the pitch of sound is gradually
increased when the pointer is moved from the bottom to the top of computer screen.
When it moves up and down faster, it sounds like a signaling whistle or the rolling
wind. Secondly, the volume increases when the pointer is moved from the left to the
right of the screen. Equally, the volume decreases when the pointer is moved from
right to the left.

4.2.2 Streaming sound with notes

Audio 6. Real-time sound with notes

This piece of sound is modified based on the sound in Audio 5. A simple envelope

Page 31

null

9.66531

38.904

33.216

is add on the sine-wave illustrated in Audio 5 controlled by the coordinates of the
mouse pointer. The control mechanism is same to the Audio 5.
From audio 6, it can be heard that different pitches of note can be clearly
distinguished while the frequency ranges from 300Hz to 600Hz. In the envelope in
every note, the attack time is T𝐴𝐴 = (500/48000) = 10.42ms while the decay time is
T𝐷𝐷 = (5000/48000) = 104.17ms. The sustain time which is the time when the volume
is held on in a constant value is T𝑠𝑠 = 1- T𝐴𝐴 - T𝐷𝐷 = 855.41ms.

4.2.3 Simulating sound of flute

Audio 7. Simulating real-time sound of flute

In order to simulate the timbre of flute, specific ADSR envelope and harmonics are add
into the sound with notes in Audio 6. The envelope. The envelope is made of straight
lines which consist of 10% (0 – 0.4), 20% (0.4 - 1), 40% (1.0 – 0.9), 30% (0.9 – 0)
(percentages represent horizontal axis while decimal numbers represent vertical axis).
In addition, the ratio of different orders of harmonics in notes are 0.467(1st order),
0.3(2nd order), 0.1(3rd order), 0.1(4th order) and 0.003(5th order) respectively.

In Audio 7, it can be clearly heard that there is a rhythm looping in this piece of sound
because the length of note is predetermined in the codes. The length notes in every six
notes are 2 second, 1 second, 1 second, 0.5 second, 0.5 second and 1 second separately.

4.2.4 Streaming sound of flute in C major pentatonic

Audio 8. Streaming sound of flute in C major pentatonic

In Audio 8, the sound of flute is very harmonious compared with the Audio 7. Since the
C major pentatonic is used in the simulation process, the timbre of notes are much more
similar to the notes of real musical instruments.

4.2.5 Combination first and second audios

Audio 9. Combination of first and second sounds

In Audio 9, the two kinds of sound are all the simulation of flute with same ADSR
envelope and harmonics but have a little difference in the definition of notes. The

Page 32

32.04

37.32

34.152

frequency range of the first sound is from 130.81 Hz to 493.88 Hz (3rd octave and
4th octave) with ten notes while the frequency range of second sound is from
261.63 Hz to 493.88 Hz (4th octave) with 5 notes. However, they still have same
length of notes which means that they have same rhythm. This combination is also
an improvement optimization of timbre in Audio 8.

4.2.6 Introduce third sound of piano with a new rhythm

Audio 10. Third sound simulating the timbre of piano

Figure 32. The expected spectrogram of piano

In Audio 10, the sound of piano is introduced for the further synthesis of music. This
new sound also use the C major pentatonic to simulate the sound of real musical
instrument of piano. The ratio of the harmonics of notes in different orders are
0.1842 (1st order), 0.1053 (2nd order), 0(3rd order), 0.2256 (4th order) and 0(5th order)
0.0827 (6th order), 0(7th order), 0.0300(8th order)respectively. The envelope of piano
note is more complicated than the envelope of flute because of the special structure
of piano. The data of envelope is shown in the codes in Appendix 8. Moreover, the
control mechanism is also different from that of flute while vertical coordinate is
used to control the fundamental frequency of note instead of the horizontal
coordinate in the computer screen. Identically, the volume control is also exchanged
from that of flute. The length of piano note is also halved, therefore this sound has a
double rate of rhythm compared with the sound of flute.

Page 33

35.664

Figure 33. The simulating spectrogram of piano

4.2.7 Combination third and fourth audios

Audio 11. Combination of third and fourth sounds

The Audio 11 is similar to the Audio 9 while two sounds of piano are combined
together. Therefore, the two sounds of piano have same envelopes. However, the
harmonics of the fourth sound is a little different in order to rich the timbre of the
combination effect. The ratio of the harmonics of the fourth audio in different orders
are 0.2078 (1st order), 0.1333 (2nd order), 0(3rd order), 0.1255 (4th order) and 0(5th
order) 0.1804 (6th order), 0(7th order), 0.0157 (8th order) respectively. Regarding to
the pitch of sound, the frequency range of this combination is also different. In the
note of the third sound, the frequency ranges from 65.4 Hz to 246.94 Hz (2nd octave
and 3rd octave) with ten notes while the frequency ranges from 65.4 Hz to 123.47 Hz
with five notes (2nd octave).Since the third and fourth sounds have same rhythm, the
note length of the combination in every ten notes are 2, 2, 1, 1, 1, 1, 0, 0, 0, 0, 1 and
1 (unit: second).

4.2.8 Play the four audios with two rhythms

Audio 12. The combination of the four sounds

Now all the four sounds are combined together in Audio 12. This music have two
musical instruments as flute and piano with two different rhythms. The timbre can
be distinguished by human ears. The control mechanism is that the movement of
mouse pointer in the vertical coordinate in computer screen controls the fundamental
frequency of first and second sound of flute and volume of the third and fourth sound
of piano while the movement in horizontal axis controls the volume of first and

Page 34

29.568

55.272

second sound of flute and the fundamental frequency of third and fourth sound of
piano.

4.3 Music test through wireless transmission

4.3.1 Test the program from one input pin in Bluetooth

Audio 13. Test for one input pin on the Bluetooth

Since there is no input signals input pin, the voltage value is expected to be a constant
number. From Audio 13, it can be clearly heard that the pitch of sound change a little
bit at first, then doesn’t change anymore.

4.3.2 Test the program from two input pins in Bluetooth

Figure 34. The dataset on the two input pins in Bluetooth

Audio 14. Test for two input pins on the Bluetooth

The result of the test of two input pin is expected to be the similar to Audio 13. In
Audio 14, it can be heard that the sound of two different instruments are all steady
at a particular pitch and don’t change anymore.

Page 35

15.432

17.952

4.3.3 Test the program using sine-wave input data through the bread

board

Audio 15. Test for one input pin through the hardware

Since the bread board is connected to the A/D converter (Arduino) and Bluetooth shield
with a sine-wave input produced by a wave generator, the pitch of sound should be
tunable by the change of frequency through wave generator. However, the streaming
audio in Audio 15 sounds like a random composition when the frequency is changed in
the wave generator.

Page 36

32.952

5.0 Discussion

5.1 Music from static data

The first step of this project is to explore the function of MATLAB whether it can be
applied on the audio production through programming. Since the raw data of EMG
signals inputted though microcontroller from sensors could be one or more set of
digital numbers, such sample as a piece of static data is used for testing. From the
proposal sound in Audio 3, the basic components of music, the musical notes are made
from a piece of EMG signals. To be specific, the frequency of sound in music could
be controlled by EMG signals. This function could be applied on the control of the
pitch of sound in music composition of real-time data in the future. Therefore, it is a
simple but really useful step for the design.

File number Audio 1 Audio 2 Audio 3 Audio 4

File Name EMG signals Sine-wave Sound from
static data

Music synthesis
from sound

Duration 6.36 second 5 second 9 second 9.6 second

Parameters
Random
voltage 440Hz Random

frequency

Appropriate
frequency range,
rhythm and note

length

Performance Noisy Constant
buzzing Simple notes A piece of

harmonious song

Table 1. Compare the sounds from static data in audio files

However, the simple notes are not sufficient to be called as music. So the concept of
ADSR envelope and harmonics are introduced in the music theory while fundamental
frequency is the 1st order of harmonic. Since the frequency of sound could be
determined by EMG signals in Audio 3. This frequency is used as the fundamental
frequency in the simulation process of flute, which is one of the normal musical
instruments. Other parameters are predefined in the MATLAB codes, such as the
ADSR envelope of flute and the note length which could affect the rhythm of music.
Audio 4 shows good performance of the simulation of flute. Since the harmonics and
ADSR envelope are the two main factors to distinguish different musical instruments
while we have successfully prove it, any musical instruments could be simulated if
the two parameters of them is known. The potential problem of the simulation for

Page 37

other instruments might be that those parameters could not be achieved directly from
existing articles. However, it is not difficult using MATLAB to analysis and acquire
the ADSR envelope or harmonics from real musical instrument.

The Audio 3 and Audio 4 provide a significant preparation for the further research of
music from real-time data, because theory of music composition from digital data in
programming software such as MATLAB has been proved to be feasible.

5.2 Music from real-time data
The step of streaming continuous sound shown in Audio 5 is a critical part of this
project, because sine-wave is the simplest sound in music theory. Since the sine-wave
could be streamed out frame by frame through the DSP toolbox in MATLAB and
ASIO driver, the programming codes we have created for music from static data could
be applied on this model. However, the adjustment of parameters from the
dsp.AudioPlayer function needs to be cautious because the latency and dropout of data
need to be balanced when the buffer size and frame size are set. Both overrun and
underrun of buffer should be prevented in the design process. As a result, the sound
in Audio 5 is seamless without latency or dropout of data in the practical
demonstration.

File number Audio 5 Audio 6 Audio 7 Audio 8

File Name
Streaming
real-time

sound

Real-time
sound with

notes
Real-time

sound of flute

Real-time sound of
flute in C major

pentatonic

Parameters
300 -

600Hz

300-600Hz
14 notes

with simple
envelope

Specific
harmonics and
envelope for

flute

10 notes in
pentatonic scale

Performance
Sound of
rolling
wind

Continuous
simple notes

Random
arrangement
of flute notes

with particular
rhythm

Harmonious real-
time sound of flute

Table 2. Compare the sounds from real-time data in audio files

Page 38

Since the real-time audio could be streamed out in MATLAB, the programming codes
of music from static data could be used on the DSP system model. The ADSR
envelope and harmonics are created to simulate the sound of flute using the similar
parameters in Audio 6 and Audio 7. However, the difference from the simulation from
static data is that the pentatonic scale is introduced in Audio 8. As the input digital
data could be random and unpredictable, such scale could make the random
combination of notes sound like more harmonious than usage of the major or minor
scale. The Audio 8 shows a good performance with the control of movement of mouse
pointer in the computer screen. Such control could be used by one sensor in the
hardware terminal, while the main control is about the fundamental frequency of
sound and the supplementary control is about the volume of sound. However, the
terminal sensor could not be only one, there might be three or sensors which could be
attached on human body to manipulate on the composition. Therefore, multiple
controls need to be built in the programming codes.

File number Audio 9 Audio 10 Audio 11 Audio 12

File Name

Combination
of first and

second
sounds

Third sound
simulating the

timbre of
piano

Combination
third and fourth

sounds

The combination of
the four sounds

Parameters

Different
frequency
range and

note
numbers

A new
rhythm with
an inverse

control

Different
frequency
ranges and

note numbers

Two sounds of
flute and two

sounds of piano

Performance
Richer
timbre

A faster
rhythm

compared
with that of

flute

Richer timbre
compared
with signal

sound

Real-time music
with harmonious
sound and rich

timbre

Table 3. Compare the sounds from real-time data in audio files

For the music composition from real-time data, a few steps need to take attention in
the design process. Firstly, another common musical instrument, piano is introduced
into the design. Obviously, piano is a different type of instrument from flute. They
belong to the percussion and woodwind respectively. Therefore, new envelope and
harmonics are used for simulation. However, the envelope of piano sound could not
be reproduced so well because of the complex structure of piano. The harmonics of
piano are also complicated since the notes in different octave have different harmonics.

Page 39

Therefore, only 2nd and 3rd octave are applied to serve as the bass part in the music
synthesis. A new rhythm is also used to distinguish the timbre of from piano from
flute. The different between the two instruments could be heard between the Audio 8
and Audio 10. Secondly, the combination of two similar sound with similar frequency
but same harmonics and envelope has been proved to be effective to improve the
quality of music if the Audio 9 and Audio 11 are compared. However, it is just a
synthesis method of ‘beats’ in music theory, but the detailed mechanism haven’t been
explored too much to control the performance of this technique. The only way
implemented in this design is to combine the notes in 2nd and 3rd octave with 2nd octave
for piano, then combine the notes in 4nd and 5rd octave with 4nd octave for flute. The
result is surprisingly well but currently the operating mechanism of this method
haven’t been controlled. Thirdly, as the four different kinds of sounds have already
been obtained including two sound of flute and two sound of piano in Audio 12. The
function of multiple controls have been achieved. When the hardware sends the data
of EMG signals from four sensors, those data would be send into MATLAB with four
digital numbers. In the programming codes in MATLAB, those four sets of numbers
could be used to control the fundamental frequency of the four sounds as expected.

5.3 Music test through hardware in real-time

File number Audio 13 Audio 14 Audio 15

File Name

Test for one
input pin on the

Bluetooth

Test for two
input pins on the

Bluetooth

Test for one input
pin on the hardware

Parameters

No input
signals with
Arduino and

Bluetooth
shield

No input signals
with Arduino
and Bluetooth

shield

Input sine-wave
through amplifier,

Arduino and
Bluetooth shield

Performance
A signal sound
with a constant

pitch

Streaming out
music with

constant pitches

Streaming out music
with random

notes (sound is no
tunable from

hardware)

Table 4. Compare the music through hardware in real-time

Since the Arduino and Bluetooth shield have been built before the establishment of
sensors, we firstly test the data commission from the input terminals on the Bluetooth

Page 40

shield. Audio 13 and Audio 14 illustrate the same characteristic of the input pins on
the Bluetooth shield. Both of the two output sounds have a constant pitch which means
that the voltage in the input pins have a constant value. It is also a reasonable
performance since we don’t have any input signals yet.

On the next stage, the sine-wave is used as an input signals transmit through the circuit
in bread board and Arduino as well as Bluetooth shield into the computer. However,
the pitch of sound cannot be changed when frequency of sine-wave is changed in the
wave-generator. The sound is still a random composition since we have an input of
simple sine-wave with a fixed frequency. For a preliminary analysis of this problem,
we know that the input data has thousands of digital numbers per one second but only
two numbers are exported in the computer. Therefore, the output sound could not
reflect the real feature of the input signals in the hardware terminal. For further
research, the first problem needs to be solved in this project is the controllability
between the input terminals and the output sound.

Page 41

6.0 Conclusion

The project of “Music from bio-signals-software design for music synthesis” forces
on the programming work for sound processing and music synthesis from both the
static and real-time input signals using MATLAB and other related software and tools
in the computer.

The project design is divided into five components: the sound from static data, the
music synthesis from static sound, streaming real-time sound, music composition
from real-time sound and wireless transmission test. Firstly, some simple notes are
made from a piece of raw digital EMG signals in MATLAB. Then those notes are
used to simulate the sound of musical instruments with the definition of ADSR
envelope and harmonics. Secondly, the DSP toolbox in MATLAB is introduced to
stream out the real-time sound manipulated by the mouse pointer in computer screen.
Since the composition method has been illustrated during the synthesis of static data,
that method is directed applied on the DSP toolbox to produce the sound of musical
instruments. Thirdly, multiple controls are achieved by adding more sounds and
rhythms in the existing codes. Then a beautiful and harmonious music with multiple
controls and real-time inputs is completed. At last, some tests about the connection of
hardware and software are carried on.

Currently, this project could generated four different types of sound simultaneously
including two different musical instruments with flute and piano controlled by the
coordinates of mouse pointer in the computer screen in real-time. This manipulation
could be used for four input signals derived from four sensors in human body for
further testing. The connection between software and hardware has been proved to be
feasible while the data in the hardware terminals could be transmitted to MATLAB
without dropout in the test.

In the future work, more tests about the reduction of latency and effective usage of the
input data in the programming codes could be proceeded by other researches to
achieve a better performance of the real-time control of music from bio-signals.

Page 42

7.0 Recommendations

7.1 Software installation
To streaming the real-time data, the version of MATLAB should be at least MATALB
2012a or higher with the subject of DSP toolbox. The ASIO driver is also necessary
to be installed for streaming process preliminarily. In addition, the Arduino IDE is
used for the compiling and burning of Arduino codes.

7.2 Maneuverability and conciseness of programming
The maneuverability of programming codes is also important in the design process.
All the parameters should be defined at the beginning of program because one
parameter might be called many times in the following codes. With the pre-definition,
the programmers don’t need to waste time changing same parameter for too many
times. In addition, some loop programs and calling programs are necessary to simplify
the codes and provide a clear logic of the overall program.

Page 43

8.0 Acknowledgment
I would like to express my heartfelt gratitude to those who helped me during the
writing of my thesis. I gratefully acknowledge the help of my supervisor Kenneth
Pope for his constant guidance and suggestions through the whole design process.
Without his illuminating instruction and patient teaching, the completion of this thesis
would not be possible. Also, I would like to thank Chris Hatswell, who kindly be
patient to cooperate with me during the test of software. Last but not least, I am
indebted to my parents for their continuous support and encouragement.

Page 44

9.0 References
Arslan, B., Brouse, A., Castet, J., Filatriau, J.J., Léhembre, R., Noirhomme, Q. & Simon,
C. 2005. ‘From biological signals to music’. In 2nd International Conference on
Enactive Interfaces, Genoa, Italy, November 17th-18th, 2005.

Arslan, B., Brouse, A., Castet, J., Léhembre, R., Simon, C., Filatriau, J.J. & Noirhomme,
Q. 2006. ‘A real time music synthesis environment driven with biological signals’, In
2006 IEEE International Conference on Acoustics Speech and Signal Processing
Proceedings, Vol. 2, pp. II-II, IEEE.

Bain, R. 2003. ‘The Harmonic Series-A path to understanding musical intervals, scales,
tuning and timbre’, University of South Carolina, Columbia, USA.

Brown, Z. & Gupta, B. 2008. ‘Biological Signals and their Measurement’, Update in
Anaesthesia, pp 164-69.

Cook, P.R. & Scavone, G. 1999. ‘The synthesis toolkit (stk)’, In Proceedings of the
International Computer Music Conference, October, 1999, pp 164-66.

Cram, J.R. & Kasman, G.S. 1998. The basics of surface electromyography. Introduction
to surface electromyography. USA: Aspen Publishers, Inc, pp 1-8.

De Leon, P.L. 2000. ‘Computer Music in Undergraduate Digital Signal Processing’,
American Society for Engineering Education/Gulf Southwestern Region (Las Cruces,
NM.).

De Luca, C.J., Adam, A., Wotiz, R., Gilmore, L.D. & Nawab, S.H. 2006.
‘Decomposition of surface EMG signals’, Journal of neurophysiology, 96(3), pp 1646-
657.

DiCanio, C.T. 2015. ‘Introduction to acoustic phonetics’, University at Buffalo, New
York, USA, 8 October.

Farnell, Andy. 2006. ‘Practical synthetic sound design for film, games and interactive
media using dataflow’, Designing Sound, Applied Scientific Press, London, England,

Finau, S. 2014. ‘Music from Bio-signals, making music from EMG signals’, Flinders
University, 28th November, 2014.

Hartling, L., Newton, A.S., Liang, Y., Jou, H., Hewson, K., Klassen, T.P. & Curtis, S.
2013. ‘Music to reduce pain and distress in the pediatric emergency department: a
randomized clinical trial’, JAMA pediatrics, 167(9), pp.826-835.

Page 45

Houcque, D. 2005. Introduction to Matlab for engineering students, version 1.2,
Northwestern University, August 2005.

Kabal, P. 2004. ‘Discrete Time Signal Processing’, Department of Electrical and
Computer Engineering, McGill University, Montreal , Canada, pp 5-12.

Knapp, R.B. & Lusted, H.S. 1990. ‘A bioelectric controller for computer music
applications’, Computer music journal, 14(1), pp 42-7.

Mathew, T., Abraham, B.M. & Scaria, R., ‘Music Synthesis using Sinusoid Generator,
ADSR Envelope Generator and Composer Code’, International Journal of Scientific
Engineering and Research (IJSER), ISSN: 2347-3878, Volume 3, Issue 2, 2015, pp 23-
5.

Mathworks 2016, dsp.AudioPlayer System object, United States, viewed 27 October
2016, <http://au.mathworks.com/help/dsp/ref/dsp.audioplayer-class.html>.

Meister, J. & Errede, S.M. 2011. ‘MIDI: A History and Technical Overview’, Physics
of Music, University of Illinois at Urbana-Champaign.

Muthuswamy, J., 2004. ‘Biomedical Signal Analysis’. Standard Handbook Of
Biomedical Engineering And Design, 14, pp.18-1.

Norali, A.N., Som, M.M. and Kangar-arau, J., 2009. ‘Surface electromyography signal
processing and application: A review’, In Proceedings of the International Conference
on Man-Machine Systems (ICoMMS), pp 11-3.

Novotney, A., 2013. ‘Music as medicine’. American Psychological Association,
pp.10-46.

Olvera, F.E. 2006. ‘Electrocardiogram waveform feature extraction using the matched
filter’, Statistical Signal Processing II, ECE SIO Stat Proc.

Petersen, M., 2001. ‘Mathematical Harmonies’ Mathematical Association of America
College, Mathematics Journal, Vol. 35, No. 5, November 2004, pp 396-401.

Rose, N. 2013. ‘Music from Bio-signals, Hardware Design of a Data Collection Device’,
Flinders University, 15th November, 2013.

Schmidt-Jones, C. & Jones, R. 2011. Understanding basic music theory. Connexions,
Rice University, Houston, Texas.

Teplan, M. 2002. ‘Fundamental of EEG Measurement’, Measurement Science Review,
Volume 2, Section 2, pp 1-11.

Page 46

Wang, G. 2008. The chuck audio programming language. A strongly-timed and on-the-
fly environ/mentality, Princeton University, Princeton, New Jersey, United States.

Whiting, C. 2014. ‘Added necessary files for the music with matlab program’. Web log
post, Github, 28 Aug, 2014, viewed 27 October 2016, retrieved from <
https://github.com/mpro34/matlab/blob/master/matlab_music/Envelope.m>

Page 47

Appendix

1. Codes for creating notes from static data (undigested draft)
clear all;
emg = load('EMG.txt');
left=emg(:,1);
right=emg(:,2);
X1=right(1:2500 ,1);
X2=right(2501:5000 ,1);
X3=right(5001:7500 ,1);
X4=right(7501:10000 ,1);
X5=right(10001:12500 ,1);
X6=right(12501:15000 ,1);
X7=right(15001:17500 ,1);
X8=right(17501:20000 ,1);
X9=right(20001:22500 ,1);
X10=right(22501:25000 ,1);
X11=right(25001:27500 ,1);
X12=right(27501:30000 ,1);
X13=right(30001:32500 ,1);
X14=right(32501:35000 ,1);
X15=right(35001:37500 ,1);
X16=right(35001:37500 ,1);
MS1= sum(X1.^2)/length(X1);
MS2= sum(X2.^2)/length(X2);
MS3= sum(X3.^2)/length(X3);
MS4= sum(X4.^2)/length(X4);
MS5= sum(X5.^2)/length(X5);
MS6= sum(X6.^2)/length(X6);
MS7= sum(X7.^2)/length(X7);
MS8= sum(X8.^2)/length(X8);
MS9= sum(X9.^2)/length(X9);
MS10= sum(X10.^2)/length(X10);
MS11= sum(X11.^2)/length(X11);
MS12= sum(X12.^2)/length(X12);
MS13= sum(X13.^2)/length(X13);
MS14= sum(X14.^2)/length(X14);
MS15= sum(X15.^2)/length(X15);
MS16= sum(X16.^2)/length(X16);
ff1=MS1*7500;
ff2=MS2*7500;
ff3=MS3*7500;
ff4=MS4*7500;

Page 48

ff5=MS5*7500;
ff6=MS6*7500;
ff7=MS7*7500;
ff8=MS8*7500;
ff9=MS9*7500;
ff10=MS10*7500;
ff11=MS11*7500;
ff12=MS12*7500;
ff13=MS13*7500;
ff14=MS14*7500;
ff15=MS15*7500;
ff16=MS16*7500;
f1=ff1*10;
f2=ff2*10;
f3=ff3*10;
f4=ff4*10;
f5=ff5*10;
f6=ff6*10;
f7=ff7*10;
f8=ff8*10;
f9=ff9*10;
f10=ff10*10;
f11=ff11*10;
f12=ff12*10;
f13=ff13*10;
f14=ff14*10;
f15=ff15*10;
f16=ff16*10;
F= [f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15 f16];
N=16;
for i=1:N
 if 65<=F(1,i) & F(1,i)<130
 F(1,i)=4*F(1,i)
 elseif 130<=F(1,i) & F(1,i)<262
 F(1,i)=2*F(1,i)
 elseif 523<=F(1,i) & F(1,i)<1047
 F(1,i)=F(1,i)/2
 elseif 1047<=F(1,i) & F(1,i)<2097
 F(1,i)=F(1,i)/4
 end;
end
for i=1:N
 if 262<=F(1,i) & F(1,i)<294
 F(1,i)= 262

Page 49

 elseif 294<=F(1,i) & F(1,i)<329
 F(1,i)= 294
 elseif 329<=F(1,i) & F(1,i)<349
 F(1,i)= 329
 elseif 349<=F(1,i) & F(1,i)<392
 F(1,i)= 349
 elseif 392<=F(1,i) & F(1,i)<440
 F(1,i)= 392
 elseif 440<=F(1,i) & F(1,i)<493
 F(1,i)= 440
 elseif 493<=F(1,i) & F(1,i)<523
 F(1,i)= 493
 end;
end
f1= F(1,1);
f2= F(1,2);
f3= F(1,3);
f4= F(1,4);
f5= F(1,5);
f6= F(1,6);
f7= F(1,7);
f8= F(1,8);
f9= F(1,9);
f10= F(1,10);
f11= F(1,11);
f12= F(1,12);
f13= F(1,13);
f14= F(1,14);
f15= F(1,15);
f16= F(1,16);
fs=4500;
duration_1=1-1/fs;
n0= [0:fs*duration_1/2];
duration_1=1-1/fs;
n1 = [0:fs*duration_1];
duration_2=duration_1*2;
n2 = [0:fs*duration_2];
x1 = sin(2*pi*n2*f1/fs);
x2 = sin(2*pi*n0*f2/fs);
x3 = sin(2*pi*n1*f3/fs);
x4 = sin(2*pi*n2*f4/fs);
x5 = sin(2*pi*n0*f5/fs);
x6 = sin(2*pi*n1*f6/fs);
x7 = sin(2*pi*n1*f7/fs);

Page 50

x8 = sin(2*pi*n1*f8/fs);
x9= sin(2*pi*n1*f9/fs);
x10 = sin(2*pi*n1*f10/fs);
x11 = sin(2*pi*n2*f11/fs);
x12 = sin(2*pi*n1*f12/fs);
x13 = sin(2*pi*n2*f13/fs);
x14= sin(2*pi*n0*f14/fs);
x15 = sin(2*pi*n1*f15/fs);
x16 = sin(2*pi*n1*f16/fs);
p0=sin(2*pi*n0*0/fs);
p1=sin(2*pi*n1*0/fs);
music=[x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,p0,x13,x14,x15,x16];
sound(music);

2. Codes for composition from static sound
%% definitions
file_in = 'EMG.txt';
Nblock = 2500;
Nnotes = 16;
ms2n = 340;
major_scale = 2 .^ ([0 2 4 5 7 9 11] / 12);
f0 = 523;
harmonics = [0.467 0.3 0.1 0.1 0.003];
% fs = 44100;
fs = 8000;
%set the length of notes
beat_length = 0.25;
note_length = beat_length * 2 .^[0 0 1 2 1 1 0 0 2 1 0 0 1 1 1 2];
%% load the data
emg = load(file_in);
left=emg(:,1);
right=emg(:,2);
%% measure the input data
sright = right(1:Nblock * Nnotes) .^ 2;
ms = mean(reshape(sright, Nblock, []), 1);
%% create the notes
notes = ceil(ms * ms2n);
freq = f0 * major_scale(notes)
music = [];
for i = 1:Nnotes
 note = make_note(freq(i), harmonics, note_length(i), fs);
 music = [music, note];
end

Page 51

%% play the music
sound(music, fs)

3. Codes for the function of ‘make_note’ in static composition
function note = make_note(freq, harmonics, note_length, fs)
% derived
N = note_length * fs;
% make the basic note
t = (1:N) / fs;
note = zeros(1, N);
for i = 1:numel(harmonics)
 note = note + harmonics(i) * sin(2 * pi * freq * i * t);
end
% impose envelope
A = linspace(0, 0.7, N * 0.1); %rise 10% of signal
D = linspace(0.7, 0.5, N * 0.2); %drop of 20% of signal
S = linspace(0.5, 0.3, N * 0.4); %delay of 40% of signal
R = linspace(0.3, 0, N * 0.3); %drop of 30% of signal
note = note .* [A D S R];

4. Codes for streaming real-time sound from sine-wave
%% Definition
Fs=48000;
f0 = 300;
duration = 50;
samplesPerFrame = 128; %Block_Size = samplesPerFrame/Fs =
2.7ms
frame_size = 0.125; %queue_duration = 125ms
Buffer_Size = 512; %Buffer = 11ms
%% Create Audio File
% t = linspace(0, duration, duration*Fs)';
t = (1:samplesPerFrame) / Fs;
% data = sin(2 * pi * f0 * t);
% audiowrite('Test.wav',[t,data],Fs);
%% Create Audio File Read System Objects
%% Create File Player System Objects
AP = dsp.AudioPlayer('SampleRate',Fs, ...
 'BufferSizeSource','Property',...
 'BufferSize',Buffer_Size,...
 'QueueDuration',frame_size, ...
 'OutputNumUnderrunSamples',true);
%% Loop for Playing Input Audio

Page 52

% while ~isDone(AFR)
% audio = step(AFR);
scrsz = get(0,'ScreenSize');
pl = 1000;
theta = rand * 2 * pi;
while pl > 10
 pl = get(0, 'PointerLocation');
 % audio = audio * pl(1) / scrsz(3);
 freq = f0 * (1 + pl(2) /scrsz(4));
 audio = sin(2 * pi * freq * t + theta) * pl(1) / scrsz(3);
 theta = rem(theta + 2 * pi * freq * samplesPerFrame / Fs, 2 * pi);
 nUnderrun = step(AP,[audio; audio]');
 if nUnderrun > 0
 fprintf('Audio player queue underrun by %d samples.\n'...
 ,nUnderrun);
 end
end
pause(AP.QueueDuration); % wait until audio is played to the
end
% release(AFR); % close the input file
release(AP); % close the audio output device
%%
%scrsz = get(0,'ScreenSize');
%pl = get(0, 'PointerLocation');
%audio = audio * pl(1) / scrsz(3);

5. Codes for streaming real-time music with multiple controls
%% Definition
Fs = 48000;
f0 = 130.81;
f0_2 = 65.4;
f0_3 = 65.4;
f0_4 = 261.63;
samplesPerFrame = 0.5 * Fs;
samplesPerFrame_2 = samplesPerFrame / 2;
samplesPerFrame_3 = samplesPerFrame / 2 ;
samplesPerFrame_4 = samplesPerFrame ;
queue_duration = 0.002;
Buffer_Size = 640;
harmonics = [0.38 0.2 0 0.18 0 0.22 0 0.22];
harmonics_2 = [0.1842 0.1053 0 0.2256 0 0.0827 0 0.0300];
harmonics_3 = [0.2078 0.1333 0 0.1255 0 0.1804 0 0.0157];
harmonics_4= [0.467 0.3 0.1 0.1 0.003];

Page 53

beat_length = 0.5;
beat_length_2 = beat_length;
note_length = beat_length * 2 .^[2 1 1 0 0 1];
note_length_2 = beat_length * 2 .^[2 2 1 1 1 1 0 0 0 0 1 1];
note_length_3 = beat_length * 2 .^[2 2 1 1 1 1 0 0 0 0 1 1];
note_length_4 = beat_length * 2 .^[2 1 1 0 0 1];
major_scale = 2 .^ ([0 2 4 7 9 12 14 16 19 21] / 12);
major_scale_2 = 2 .^ ([0 2 4 7 9 12 14 16 19 21] / 12);
major_scale_3= 2 .^ ([0 2 4 7 9] / 12);
major_scale_4= 2 .^ ([0 2 4 7 9] / 12);
Nnotes = length (note_length);
Nscales = length (major_scale);
Nscales_2 = length (major_scale_2);
Nscales_3 = length (major_scale_3);
Nscales_4 = length (major_scale_4);
Blance_1 = 0.4; %0.2;0.4
Blance_2 = 1.6; %0.8;1.6
Blance_3 = 2.0; %1.4;2.0
Blance_4 = 0.4; %0.2;0.4
%% Create File Player System Objects
AP = dsp.AudioPlayer('SampleRate',Fs, ...
 'BufferSizeSource','Property',...
 'BufferSize',Buffer_Size,...
 'QueueDuration',queue_duration, ...
 'OutputNumUnderrunSamples',true);
%% Loop for Playing Input Audio
pl = 1000;
scrsz = get(0,'ScreenSize');
ind = 0;
r = 1:(queue_duration * Fs);
while pl > 10
 ind = rem(ind, Nnotes) + 1;
 a = 2 * ind - 1;
 b = 2 * ind;
 %pause(0.95 * AP.QueueDuration); % wait until audio is nearly all played
 %AP.QueueDuration
 %% first_audio
 pl = get(0, 'PointerLocation');
 notes = ceil(Nscales * pl(2) /scrsz(4));
 freq = f0 * major_scale(notes);
 note = frame_note(freq, harmonics, note_length(ind), Fs, samplesPerFrame);
 audio = Blance_1 * note * pl(1) / scrsz(3);
 %% second_audio
 notes_2 = ceil(Nscales_2 * pl(1) / scrsz(3));

Page 54

 freq_2 = f0_2 * major_scale_2(notes_2);
 note_2_a = frame_note_second_audio(freq_2, harmonics_2, note_length_2(a),
Fs, samplesPerFrame_2);
 note_2_b = frame_note_second_audio(freq_2, harmonics_2,
note_length_2(b), Fs, samplesPerFrame_2);
 note_2 = [note_2_a note_2_b];
 audio_2 = Blance_2 * note_2 * pl(2) /scrsz(4);
 %% third_audio
 notes_3 = ceil(Nscales_3 * pl(1) / scrsz(3));
 freq_3 = f0_3 * major_scale_3(notes_3);
 %note_3 = frame_note_second_audio_A2(freq_3, harmonics_3,
note_length_3(ind), Fs, samplesPerFrame);
 note_3_a = frame_note_second_audio(freq_3, harmonics_3, note_length_3(a),
Fs, samplesPerFrame_3);
 note_3_b = frame_note_second_audio(freq_3, harmonics_3,
note_length_3(b), Fs, samplesPerFrame_3);
 note_3 = [note_3_a note_3_b];
 audio_3 = Blance_3 * note_3 * pl(2) /scrsz(4);
 %% forth_audio
 notes_4 = ceil(Nscales_4 * pl(2) / scrsz(4));
 freq_4 = f0_4 * major_scale_4(notes_4);
 %note_4_a = frame_note_4(freq_4, harmonics_4, note_length_4(a), Fs,
samplesPerFrame_4);
 %note_4_b = frame_note_4(freq_4, harmonics_4, note_length_4(b), Fs,
samplesPerFrame_4);
 %note_4 = [note_4_a note_4_b];
 note_4 = frame_note_4(freq_4, harmonics_4, note_length_4(ind), Fs,
samplesPerFrame_4);
 audio_4 = Blance_4 * note_4 * pl(1) /scrsz(3);
 %% loop_for_one_frame
 while size(audio, 2) > 0
 frame = [audio(r) + audio_2(r) + audio_3(r) + audio_4(r);audio(r) +
audio_2(r) + audio_3(r) + audio_4(r)]';
 nUnderrun = step(AP, frame);
 audio(r)=[];
 audio_2(r)=[];
 audio_3(r)=[];
 audio_4(r)=[];
 if nUnderrun > 0
 fprintf('Audio player queue underrun by %d samples.\n'...
 ,nUnderrun);
 end
 end
end

Page 55

pause(AP.QueueDuration); % wait until audio is played to the
end
release(AP); % close the audio output device

6. Codes for the function of ‘frame_note’ in multiple controls (first

flute)
function note = frame_note(freq, harmonics, note_length, Fs, samplesPerFrame)
% derived
N = note_length * samplesPerFrame;
% make the basic note
t = (1:N) / Fs;
note = zeros(1, N);
for i = 1:numel(harmonics)
 note = note + harmonics(i) * sin(2 * pi * freq * i * t);
end
% impose envelope
A = linspace(0, 0.4, N * 0.2); %rise 10% of signal
D = linspace(0.4, 1.0, N * 0.1); %drop of 20% of signal
S = linspace(1.0, 0.9, N * 0.4); %delay of 40% of signal
R = linspace(0.9, 0.0, N * 0.3); %drop of 30% of signal
note = note .* [A D S R];

7. Codes for the function of ‘frame_note_4’ in multiple controls (second

flute)
function note = frame_note_4(freq_4, harmonics_4, note_length_4, Fs,
samplesPerFrame_4)
% derived
N = note_length_4 * samplesPerFrame_4;
% make the basic note
t = (1:N) / Fs;
note = zeros(1, N);
for i = 1:numel(harmonics_4)
 note = note + harmonics_4(i) * sin(2 * pi * freq_4 * i * t);
end
% impose envelope
A = linspace(0, 0.4, N * 0.2); %rise 10% of signal
D = linspace(0.4, 1.0, N * 0.2); %drop of 20% of signal
S = linspace(1.0, 1.0, N * 0.4); %delay of 40% of signal
R = linspace(1.0, 0.0, N * 0.2); %drop of 30% of signal
note = note .* [A D S R];

Page 56

8. Codes for the function of ‘frame_note_second_audio’ in multiple

controls (piano)
function note = frame_note_second_audio(freq_2, harmonics_2, note_length_2,
Fs, samplesPerFrame_2)
% derived
N = note_length_2 * samplesPerFrame_2;
% make the basic note
t = (1:N) / Fs;
note = zeros(1, N);
for i = 1:numel(harmonics_2)
 note = note + harmonics_2(i) * sin(2 * pi * freq_2 * i * t);
end
% impose envelope
A = linspace(0, 0.8, N * 0.02); %rise 10% of signal
D = linspace(0.8, 0.6, N * 0.04); %drop of 20% of signal
A_1 = linspace(0.6, 0.9, N * 0.02); %rise 10% of signal
D_1 = linspace(0.9, 0.7, N * 0.04); %drop of 20% of signal
A_2 = linspace(0.7, 0.9, N * 0.02); %rise 10% of signal
D_2 = linspace(0.9, 0.6, N * 0.04); %drop of 20% of signal
A_3 = linspace(0.6, 0.7, N * 0.02); %rise 10% of signal
D_3 = linspace(0.7, 0.6, N * 0.04); %drop of 20% of signal
S = linspace(0.6, 0.2, N * 0.66); %delay of 40% of signal
R = linspace(0.2, 0.0, N * 0.1); %drop of 30% of signal
note = note .* [A D A_1 D_1 A_2 D_2 A_3 D_3 S R];

Page 57

	Abstract
	Declaration
	1.0 Introduction
	2.0 Literature Review
	2.1 Bio-signals
	2.1.1 Characteristics
	2.1.2 Electromyogram (EMG)
	2.1.3 Electrocardiogram (ECG)
	2.1.4 Electroencephalogram (EEG)

	2.2 Music Generation
	2.2.1 Sine Wave
	2.2.2 Harmonics
	2.2.3 Octaves
	2.2.4 ADSR envelope

	2.3 Sound Synthesis Tools
	2.3.1 Max/Msp
	2.3.2 Pure Data
	2.3.3 MATLAB
	2.3.4 Synthesis Toolkit
	2.3.5 Super Collider
	2.3.6 Open Source Control
	2.3.7 MIDI

	2.4 Related Researches
	2.4.1 Music from Bio-signals
	2.4.2 Interactive Instrument Technology in the Musical Performance
	2.4.3 Digital Musical Instruments Driven by Bio-signals from Musicians

	3.0 Project Design
	3.1 Sound from static data
	3.1.1 Test EMG signals
	3.1.2 Create notes

	3.2 Music synthesis from sound
	3.2.1 Add harmonics
	3.2.2 Change ADSR envelope
	3.2.3 Length of notes and pause

	3.3 Streaming real-time sound
	3.3.1 Principle of DSP system toolbox
	3.3.2 Introduce ASIO driver
	3.3.3 Test the function of DSP toolbox
	3.3.4 Minimize the signal discontinuities of sound

	3.4 Music composition from real-time sound
	3.4.1 Apply the previous model of music composition
	3.4.2 Introduce pentatonic scale
	3.4.3 Implement multiple controls

	3.5 Wireless transmission Test
	3.5.1 Read data from hardware
	3.5.2 Stream out sound from hardware

	4.0 Results
	4.1 Music from static data
	4.1.1 Simple sound with notes
	4.1.2 Simulating musical instruments

	4.2 Music from real-time data
	4.2.1 Streaming real-time sound
	4.2.2 Streaming sound with notes
	4.2.3 Simulating sound of flute
	4.2.4 Streaming sound of flute in C major pentatonic
	4.2.5 Combination first and second audios
	4.2.6 Introduce third sound of piano with a new rhythm
	4.2.7 Combination third and fourth audios
	4.2.8 Play the four audios with two rhythms

	4.3 Music test through wireless transmission
	4.3.1 Test the program from one input pin in Bluetooth
	4.3.2 Test the program from two input pins in Bluetooth
	4.3.3 Test the program using sine-wave input data through the bread board

	5.0 Discussion
	5.1 Music from static data
	5.2 Music from real-time data
	5.3 Music test through hardware in real-time

	6.0 Conclusion
	7.0 Recommendations
	7.1 Software installation
	7.2 Maneuverability and conciseness of programming

	8.0 Acknowledgment
	9.0 References
	Appendix
	1. Codes for creating notes from static data (undigested draft)
	2. Codes for composition from static sound
	3. Codes for the function of ‘make_note’ in static composition
	4. Codes for streaming real-time sound from sine-wave
	5. Codes for streaming real-time music with multiple controls
	6. Codes for the function of ‘frame_note’ in multiple controls (first flute)
	7. Codes for the function of ‘frame_note_4’ in multiple controls (second flute)
	8. Codes for the function of ‘frame_note_second_audio’ in multiple controls (piano)

