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Abstract 
Music is a kind of art and entertainment that reflects the real life of human beings. 
Normally, people could listen to the music recorded from disc or downloaded from the 
internet. This kind of music is created by musician while its content could not be 
changed after recording. The project of ‘Music from bio-signals’ is seeking a new way 
to synthesis music, which could be composed by the movement of human body in real-
time. During this process, physiological signals in body system would be converted to 
digital signals, and then synthesized to music by software in the computer.   

Previous students who involved in the project mainly focus on design of hardware 
design, therefore the software design of the project is still a blank field. In this project, 
which is the software design for music synthesis in ‘Music from Bio-Signals’, 
MATLAB is the main programming software for music composition. The design starts 
from the simple sound synthesized from static EMG signals. Since the real-time 
manipulation of music would be achieved in the final goal, a useful toolbox in 
MATLAB is introduced to stream out sound from real-time data. Afterwards 
harmonious music with multiple real-time controls is produced in the computer. In the 
end, some connecting tests between software and hardware would be carried on.  

This project has achieved real-time control of music in MATLAB with four different 
sounds and two different musical instruments. It has made a great progress for the 
software design in the project-‘Music from Bio-signals’. Further research in the 
software design could focus on the real-time controllability from the hardware terminals 
and the reduction of transmission latency between hardware and software.  
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1.0 Introduction 
Music is an abstract art which emerges long before the start of language that is used to 
express the thoughts and feelings in human history. With development of human labor, 
the original music produced by striking stone or wood is to celebrate the harvest and 
show the pleasure forming a prototype of music. Generally speaking, music is an art 
performance composed by sound with melody, rhythm, voice, harmony and a large 
variety of musical instruments. In recent years, researchers are studying the therapeutic 
effect of music inspired by lullaby in order to expand a new field of physical therapy 
and children rehabilitation.  

The project of Music from Bio-signals is seeking a way using bio-signals in human 
body to control the streaming music in computer in real-time. This form of music is 
different from the traditional type which is produced by musical instruments. All the 
specific parameters, such as the volume, pitch, length of notes and interval, as well as 
rhythm and melody are created by different kinds of physiological parameters in human 
body. The very slight variation of bio-signals in different regions of body would be 
detected and then converted into these parameters in a piece of music. It means that 
people could compose music when they move their limbs, walk on the road or do any 
other activities in any circumstances with a device of ‘Music from Bio-signals’. It is 
would be a significant design of this device which could not only be applied on the 
research of children rehabilitation and physical therapy, but also could be used on the 
art performance which could combine the dance and music into a new form of art 
enriching the entertainment life of the public.  

 

Figure 1. The Conversion process of ‘Music from Bio-signals’ 
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As bio-signals has been widely used in the field of medical diagnose and analysis in 
recent decades, the acquisition of these signals tends to simplicity. Regarding to this 
project, a semi-finished hardware has been researched and developed for acquiring the 
data from human body and converting the data into digital signals by previous students. 
However, the software component of music synthesis for bio-signals is still a blank 
field in this project. Therefore, making a reliable musical program for this project is a 
critical process to achieve the function of desired device. Figure 1 shows the overall 
process of ‘Music from Bio-signals’ while the highlight blue components illustrate the 
scope of this project.  

Before the start of this project, the segmented goals of project design in this year are 
listed as follows: 

 Investigate the characteristics of bio-signals in a digital expression such as the
frequency, amplitude, the waveform etc.

 Understand the basic knowledge of music theory including the rhythm, pitch,
volume and notes as well as musical instruments.

 Compare different software for music synthesis, select reliable software for
programming

 Write computer program to control every variable in a piece of music using the
static digital data of bio-signals

 Build a model for streaming continuous sound in the programming software
 Apply the previous static program on the dynamic model for music synthesis
 Revise the program to stream a harmonious music
 Add more input channels into this program to achieve multiple controls in

hardware terminals

Figure 2. The expected programming tasks in the project 

The additional tasks are planed if there are enough time reminded: 
 Test the input digital data which is introduced by the detecting and transmitting
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hardware developed in previous researches 
 Improve the compatibility of the software in this project with the designed 

hardware 
 Improve the stability and reduce the latency through the signal transmission 

process 
 Complete the real-time control of music from bio-signals 
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2.0 Literature Review 
Researchers have found that music is an effective therapeutic tool in the field of 
physical therapy (Novotney, 2013). In the trial at the University of Alberta, the pain and 
distress of forty-two children patients at three to eleven years old are reduced by the 
relaxing music (Hartling et al., 2013). As the widely application of bio-signals in the 
domain of disease analysis and diagnosis, acquisition of accurate bio-signals is easier 
and feasible than that in many years ago. These signals could be used to generate music 
for physical therapy as well as a new format of art performance using musical synthesis 
software. Based on the current situation, there is no university or individual providing 
the complete design of ‘Music from Bio-signals’. Therefore, some related concepts and 
researches should be investigated firstly before the explanation of this project.  

2.1 Bio-signals 

There are numerous physiological processes in the system of human body. Each 
process contains a lot of useful information which reflect the health condition of 
physiological system. For example, the voltage recorded on the surface of scalp, the 
blood pressure measured by electronic sphygmomanometer, the body temperature 
calculated by thermometer from patient (Brown & Gupta, 2008). Such information 
associated with the nature of human body are biomedical signals. Biomedical signals 
are divided into three types, biomechanical signals, bioelectrical signals and 
biochemical signals. Specifically, the bioelectrical signals detected directly by 
electrodes from human body are widely used to monitor and analyze the health 
condition in clinical medicine field. The commonly used biomedical signals include 
electromyogram (EMG) that indicates the electrical activity of muscular cells, 
electrocardiogram (ECG) that represents the heart health, and electroencephalogram 
(EEG) that shows the electrical activity of brain (Muthuswamy, 2004).  

2.1.1 Characteristics 
Signals could be classified into continuous and discrete types. For example, the 
algebraic expression y = x (t), t∈R contains variables, such as time or space while 
the other expression y = x (n), n=0, 1, 2, 3… includes finite number of points. During 
the process of digital signal analysis, researches often deal with the discrete signals. 
Signals could also be divided into deterministic and random types (Kabal, 2004). 
Deterministic signals can be explained by mathematical functions while random 
signals usually have uncertain components which can only be analyzed by statistic 
techniques. For example, both the ECG signal and blood pressure have deterministic 
sections while EMG signal could be analyzed by standard deviation or root mean 
square which is one of the methods of time-domain measurement of bio-signals. For 
example, the root mean square shows mechanical feature of muscular nerves, when 
the EMG signal is measured. Meanwhile, the smoothness of the signals could be 
explained by average rectified value through measurement. Besides, the frequency 
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domain characteristics of digital signals could be illustrated by Fourier transform 
techniques (Norali, Som & Kangar-arau, 2009).      

2.1.2 Electromyogram (EMG) 
In 1849, a German physiologist Dubois Reymond found that the electrical activity 
of muscle contraction could be recorded. In 1890 the term electromyogram is then 
introduced by Marey when he recorded the first contraction of skeleton muscle. 
(Cram & Kasman, 1998). In twentieth century, the acquisition method of myoelectric 
signal is gradually improved and applied for clinical diagnosis such as myopathic 
and neuropathic disorders. In principle, the electrical signals between muscles and 
central or peripheral system control the movement of extremities. These signals are 
the summation of action potential produced by motor units in the region detected by 
electrodes. Therefore, any abnormal changes in the spinal cord, neuromuscular 
conjunction or motor-neurons could reflect the occurrence of diseases in the 
electromyogram. Generally the measurement potential ranges from 20mV to 50mV 
while the bandwidth of the amplified myoelectric signal is greater than the range 
from 0 to 4k Hz (Brown & Gupta, 2008).  

 
Figure 3. Two channels of EMG signal from surface electrode and needle sensor 

 (De Luca et al., 2006) 

2.1.3 Electrocardiogram (ECG) 
Electrocardiogram is measured by skin electrodes as a voltage from electrical 
activity of myocardium in human body. It contains the features of action potential 
from different parts of heart. In clinical, there are 12 standard leads monitoring the 
condition of heart for further diagnosis according to the waveform of 
electrocardiogram. In the ECG diagram, the wave is split up as P wave, QRS wave, 
T wave and U wave (Olvera, 2006).The frequency and amplitude of each section 
explain the specific state of heart health. Usually the measured potential from 
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myocardium is about 90mV, but it would be reduced to 1-2mV when it is reached to 
the skin.  

2.1.4 Electroencephalogram (EEG) 
Electroencephalogram is often measured by 21 electrodes to monitor the post-
synaptic potentials in cerebral cortex clinically. The frequency range of EEG 
waveform could be classified as alpha, beta, theta and delta. These frequency ranges 
could be used to indicate the normal condition or pathological state of neurological 
patient. During the anesthesia process in intensive care unit, the effect of drug dose 
on brain activity performs clearly on EEG waveform with changes of frequency and 
amplitude. The amplitude range is normally 1 to 100mV while the frequency range 
could be up to 40Hz (Teplan, 2002). 

2.2 Music Generation  

When a guitarist pluck the strings by hand, the airs near the guitar vibrate and 
broadcast to the eardrums in human ears. Then the human ears capture this vibration 
as a sound which consists of complex oscillations. The continuous sound which has 
appropriate pitch, volume, harmonious rhythm and interval is the basic components 
of music.  

2.2.1 Sine Wave 
Sine wave which has fixed frequency and volume is the simplest example of sound 
in a piece of music. Basically, sound is controlled by frequency, amplitude, and 
duration time in a sine wave. If a unit sine wave has the frequency with 440Hz in 10 
second, it would sound like a clear buzzing for ten second. The frequency range of 
sound which can be perceived by human ear is 20 Hz to 20k Hz. The agaric 
expression of a sine wave is P= A × sin (2πf × t) while P represents the air pressure 
(DiCanio, 2015). In a sine wave, the amplitude is related to the loudness of sound 
while the frequency dominates the pitch of sound. Hertz and Decibel are used to be 
the unit of frequency and amplitude in the waveform of a sound respectively.  

 

Figure 4. The effect of amplitude in Sine Wave on the loudness of sound 
(Schmidt-Jones, 2007)  
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2.2.2 Harmonics 
A musical sound is usually the combination of many sine waves with different 
frequencies. Among those frequencies the lowest one is fundamental frequency 
while the multiples of this specified frequency are the frequencies of harmonics 
(Bain, 2003). Figure 5 shows the relationship between harmonics and the 
fundamental frequency in musical notes of string. 

 
Figure 5. Fundamental and harmonics of string notes (Petersen, 2001) 

The sounds of different instruments could be distinguished by human ears because 
they have different harmonics and envelope of volume. For example, the variation 
of pressure against time in the waveform of flute, oboe and violin is shown in figure 
6. The volume and fundamental frequency of these instruments may be same, but 
their harmonics are different. These features could be used to synthesize the 
instrumental music from bio-signals as different timbres.  

 
Figure 6. Sound waveform of different instruments 

(Petersen, 2001) 

2.2.3 Octaves 
The space between one frequency of a pitch and its half or double is an octave in the 
musical notation. In the typical musical scales, one octave consists of twelve notes, 
so the interval between the initial C and the final C is one octave. The relationship 
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between the notes in octave and frequency is shown in Figure 6. For example, the 
4th octave A is fit as 440 Hz while the 3th octave A is set as half of 440 Hz, which is 
220 Hz. 

 
Figure 7. Octave and Frequency in Piano keyboard 

(De Leon, 2000)  

2.2.4 ADSR envelope 

 
Figure 8. The amplitude change of ADSR envelope                                                     

(Mathew, Abraham & Scaria, 2015) 

During the performance of musical instruments, musical tones usually take certain 
time reaching to the full volume then decay to zero gradually. This characteristic of 
tone makes the music soft and graceful for audience to hear. The rise period and 
decline phase are called attack and decay stage while the stable period of tone which 
hold by the executant is the sustain stage. At last, the tone would decay to zero in the 
release stage (Mathew, Abraham & Scaria, 2015).The whole process of volume 
change is named as Attack-Decay-Sustain-Release (ADSR) envelop.  

2.3 Sound Synthesis Tools 

2.3.1 Max/Msp 
Max/Msp is a programming environment of a software developed firstly in 1980 at 
IRCAM for interactive system of computer music. It is currently used for signal 
generator, user interface and digital operator for real-time synthesis system of 
interactive music. In this system, the input signals could be interpreted well by 
creating connections between different objects in the edit model (Wang, 2008).The 
widgets such as graphs, knobs and message boxes, could be manipulated in 
interactive interface in the run model. Therefore, it is a very popular programming 
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system for music synthesis. 

2.3.2 Pure Data 
Pure Data is a programming language which is similar to Max developed by Miller 
Puckette for interactive computer music in 1996. It is an open source software 
designed to process audio data and control flow rate through a public application 
programming interface. Therefore the language C, python and Scheme could be used 
by developers to add their own audio control blocks (Farnell, 2006).As there are 
various external libraries available, the Pure Data is a common real-time 
programming environment for audio processing.  

2.3.3 MATLAB 
MATLAB is a modern programming language environment originally produced as 
matrix accessing software by Mathwork. It mainly forces on the numerical 
computing achieving matrix manipulation, algorithm implementation, plotting 
functions and interfaces with other languages such as C and python. It also has 
collecting packages for specific applications as toolbox which is applied for 
simulation, symbolic computation, signals processing and engineering design 
(Houcque, 2005). Other functional package such as Simulink, is usually used for 
dynamic and embedded systems in graphical simulation field. Accordingly, it also 
includes the functions and toolbox for processing audio data and audio streaming 
packages for music synthesis. 

2.3.4 Synthesis Toolkit  
Synthesis Toolkit is a programming language for real-time musical synthesis 
introduced by Perry Cook in 1990. It can be compiled by any systems with C or C++ 
for audio digital signal processing in a fast prototyping environment. There are a 
variety of music synthesis algorithms compatible with STK for operating real-time 
sound and MIDI input signals on many platforms such as Tcl and Tk (Cook & 
Scavone, 1999). For example, there is a physical model of object named Mandolin 
for string instrument in STK. This model can be used to generate audio and for sound 
synthesis with C++ or Java language by programmers in real-time.  

2.3.5 Super Collider 
Supper Collider is a programming language and audio programming environment 
initially published by James McCartney in 1996, mainly used for real-time sound 
synthesis and Algorithmic Composition. Since then it has gradually become a 
common system for sound development and operation used by scientists and artists. 
Its environmental structure has been divide into two parts since the release of the 
version 3, the server (scsynth) and the client (sclang). The newest version Supper 
Collider 3.6.6 is released in November 2013 (Wang, 2008). Supper Collider 
combines object oriented characteristics, features from functional programming 
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languages and syntax which is similar to C language. As the server supports simple 
C extension of application program interface, it makes this environment very simple 
to write efficient sound algorithm. It is also very easy to use other languages or 
applications to operate this language because all the operations of server would be 
through the external open source control, a standard for sending control messages 
for sound over the network. 

2.3.6 Open Source Control  
Open Source Control (OSC) is considered as a protocol for real-time control of 
computer music synthesizer. It has been widely applied in the design of hardware 
and software since it is firstly released by Matthew Wright in 1997. OSC is not only 
adaptable with IP transport in a LAN currently but also matches with other 
transporting methods, such as serial port, Wi-Fi and USB (Arslan et al., 2005). 

2.3.7 MIDI 
Musical Instrument Digital Interface (MIDI) is an electrical communication protocol 
defining various notes and playing codes for musical instruments. It could connect, 
adjust and synchronize the operation of computer, cellphone or electronic musical 
instrument for data exchange. It emits the control signals of musical volume, tremolo 
and phase instead of sound in the computer. MIDI standard is published by the 
Engineer Dave Smith in audio engineering association in 1983. It enable the multi-
control and message exchange among computer, sound card, synthesizer, electrical 
musical instrument including electronic drum and keyboard, and synthesis of analog 
music realistically (Meister & Errede, 2011). Many musical formats are constructed 
based on MIDI. These files are usually only dozens of kilobytes, but enable play an 
intact piece of music by electronic musical instrument.  

2.4 Related Researches 

2.4.1 Music from Bio-signals 
The project of ‘Music from Bio-signals’ was initially commenced by two 
engineering students Darian Tregenza and Robert Wood in 2011. In 2013, another 
student Nicholas Rose continued to conduct the previous research forcing on the 
hardware design of a data collection device (Rose, 2013). In 2014, an engineer 
student Semisi Finau went on this research concentrating on the hardware design of 
data acquisition, signal conversion and transmission from bio-signals for further 
music synthesis in the computer (Finau, 2014). So far these researches with the same 
title of this project are all talking about the techniques of acquiring data of bio-
signals from human body and the approaches of analog-digital conversion. The 
majority of these designs are about hardware design while software design is rarely 
mentioned. Therefore, the music synthesis from bio-signals in the computer and the 
production of continuous music could fill the gap of these researches.  
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2.4.2 Interactive Instrument Technology in the Musical Performance 
The BioMuse system developed by Knapp and Hugh in 1990 could transform the 
data of neuroelectric and myoelectric signals to MIDI directly for musical instrument 
performance (Knapp & Lusted, 1990). Such interactive instrument technology 
interfacing with the Max environment is a useful tool in musical composition and 
rehabilitation field.   

2.4.3 Digital Musical Instruments Driven by Bio-signals from 

Musicians   

Two bio-musicians built a ‘Bio-Orchestra’ using EEG and EMG signals based on 
MATLAB and Max/Msp through sound synthesis algorithm in 2010. The two digital 
musical instruments that driven by bio-signals are MIDI instrument and accordion 
(Arslan et al, 2010). The algorithms in this study are written in MATLAB while the 
data acquisition codes are made in C ++. In addition, a Simulink block is also used 
for adjusting variable objects and parameter from bio-signals and digital instruments.   
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3.0 Project Design  

3.1 Sound from static data 
In order to investigate the characteristics of bio-signals, basically we can start to 
generate sound from static data. From various kinds of bio-signals, we choose EMG 
signals as the input data because EMG signal is non-periodic. The uncertain 
component in EMG signal is easier than the periodic signal to produce random notes, 
such as ECG signals during the process of music composition. Meantime, the software 
of MATLAB is used as the main programming tool for music synthesis, since it 
contains many useful functions and toolboxes for calculation and analysis.  

3.1.1 Test EMG signals  

A piece of normal EMG signals could be easily downloaded from the database of 
PhysioBank, which is a large online records of physiological signals used by 
biomedical research communities.  

 
Figure 9. A piece of digital EMG sample  
(Overall data has 50860 sets of numbers) 

The EMG sample in the testing file ‘EMG.txt’ has two channels. The left channel is 
the time with 12.715 seconds (sampling rate is 4000Hz), while the right channel is 
the corresponding voltage at that moment. The data from right channel could be 
picked out and played using ‘sound’ function in MATLAB to show the sound of raw 
digital EMG signals.  

3.1.2 Create notes 
Based on the characteristics of bio-signals, either the standard deviation or root mean 
square could be used as the algorithm to analysis digital data. In this step, root mean 
square is applied on the analysis. In the music theory, sine-wave is the simplest sound. 
The frequency of sine-wave determines the pitch of sound while the amplitude of 
sine-wave determines the volume. Each octave has a specific frequency range. For 
example, the frequency of 3rd octave range from 130.813 Hz to 246.942 Hz. Since 
there are twelve notes in each octave, the frequency increase from the first note to 
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the last one with a multiplier of 2
1
12  between two adjacent notes. Figure 10 

illustrates the flow diagram of making simple notes in MATLAB.  

 
Figure 10. The flow diagram of making notes from EMG signals 

Since root mean square is a very common mathematical algorithm, we use it 
directly in the project design, the formula is shown in Figure 11.  

 
Figure 11. Calculating the root mean square 

Firstly, in order to keep each musical note lasting for nearly one second, the digital 
EMG data in Figure 8 is divided into 16 average pieces because the overall dataset 
lasts for 12.715 seconds. It would be easier for human ears to distinguish the quality 
of sound in one second with each note. For each piece of data, the root mean square 
is used to calculate and derive a number. Since sixteen values would be achieved, a 
special number will be used to multiply by those sixteen values respectively to 
acquire final sixteen values which should be in the range of 20 to 20000. This special 
number is chosen through several computational tests depending on the final values 
which need to be in the frequency range of audible sound (the sound frequency 
ranges from 20Hz to 20 kHz). Secondly, the sixteen values of frequency would be 
added into sine-waves. It means the frequency of sine-wave will be manipulated by 
those numbers produced from the digital EMG signals. Since the audible sound has 
a large frequency range, the result sound is not expected to be very harmonious and 
beautiful, might be a little a bit sharp or uncomfortable for human ears.   
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3.2 Music synthesis from sound 

Since the notes with different frequencies has been achieved from EMG signals, it 
is the time to simulation sound of musical instruments. In the music theory, 
harmonics and ADSR envelope is the two main factors to affect the timbre of sound 
and to distinguish the type of musical instrument. Therefore, some modifications 
could be implemented on the notes through programming in MATLAB.  

 
Figure 12. The overall process of music synthesis  

3.2.1 Add harmonics 
Each musical instrument has its particular harmonics while the harmonics in each 
octave of one instrument is also different. For example, the ratio of harmonics for 
three common instruments at Middle A (fundamental frequency is 440 Hz) is shown 
in Figure 13.  

 
Figure 13. Ratio of harmonics for flute, oboe and violin at Middle A (440Hz) 

(Petersen, 2001) 

Page 19 
 



 
Figure 14. Add harmonics on notes in a new function in MATLAB 

Since there are sixteen notes that need to be modified, the calculation of harmonics 
for each note could not be completed in one formula. Therefore, a new function 
which is named as ‘make_note (freq, harmonics, note_length, fs)’, is made in 
MATLAB as shown in Appendix 2. Sometimes, the odd orders such as 3rd, 5th, and 
7th should be ignored because those harmonics might affect the performance of 
simulation in the practice. To be specific, the harmonics with even and odd orders 
have different effect on the quality of sound through several simple sound test during 
the design. When the odd harmonics are strong while the even harmonics are weak, 
the sound is stiff and grotesque. When the even harmonics are strong while odd 
harmonics are weak, there is a sense of transparency and pureness in the sound. 
Therefore, only the harmonics with even orders would be useful in the codes. 

3.2.2 Change ADSR envelope 
The six notes in the proposal sound have no envelope. In order to add envelope into 
the notes, the feature of envelope in musical instruments needs to be analysis. Figure 
15 shows the normal ADSR waveform and the envelope of strings. Generally, the 
strings such as guitar and violin, would take a while to reach the maximum volume, 
but the piano would reach to its peak volume in less than 125ms.  

 
Figure 15. Sound analysis of different instruments (De Leon, 2000)  

In MATLAB, ‘linspace’ is a common order to generate a specified number of 
points within a specified range. The calling method is ‘linspace(x1, x2, N)’, while 
x1, x2 and N are the beginning value, the end value, the number of elements. Since 
the sampling numbers has been known as 4500 Hz, the amplitude of each stage of 
ADSR envelope could be set in the previous function ‘make_note (freq, harmonics, 
note_length, fs)’. 
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Figure 16. Usage of ‘linspace’ to simulate ADSR envelope 

(Whiting, 2014)  

3.2.3 Length of notes and pause  
Since the notes of musical instruments has been made, it is necessary to define the 
rhythm of music. The rhythm could be set by changing the length of notes. In musical 
theory, notes could be divide into semibreve, minim, quarter, etc. Semibreve is the 
longest note in these notes while the length of minim is half of the semibreve. Other 
notes would continue to reduce in half than the previous one. In this part of design, 
three different lengths are used on the musical notes with 0.25 second, 0.5 second 
and 1 second. If the semibreve is 1 second, then minim is 0.5 second while the 
quarter is 0.25 second. These notes is arranged in a particular order in a piece of 
music. This order could be decided by several attempts in the design to make it 
pleasing to the ears. The final order is shown in Figure 17. In addition, length of 
pause could also be set up to create blank note between these notes in a music rhythm. 
However, the blank note is not applied on this section. 

 

Figure 17. The arrangement mode of music rhythm  

3.3 Streaming real-time sound 
From the previous design, music with the feature of musical instrument could be 
produced from static data of EMG signals. However, the aim of this project is to 
achieve the real-time control of music from bio-signals. Therefore, there is a task of 
seeking a way to stream out real-time sound in MATLAB.  

3.3.1 Principle of DSP system toolbox  
In MATLAB, there is a useful toolbox named as digital signal processing (DSP) 
toolbox that could be used for playing audio data using the audio device in the 
computer. The particular object in this toolbox used is in this toolbox is named as 
‘dsp.AudioPlayer’. The flow diagram of operation process of this object is shown in 
Figure 18.  
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Figure 18. The flow diagram of ‘dsp.AudioPlayer’ object  

The input data would be split into many frames before it enter into the object. Only 
one frame could be put into the ‘Queue’ before the frame in the queue is transmitted 
into the ‘Buffer’. Once the first frame is sent out to the physical device through the 
‘Buffer’, the ‘Buffer’ will be cleaned out while a new frame would enter into the 
‘Buffer’. Therefore, the ‘Buffer’ is used as a data memorizer in the object. The 
physical device could be a sound equipment or an audio device in the computer.  
Since there are a large numbers of data would be processed in the MATLAB, this 
object provides an efficiency method to stream audio data out to the audio devices.  

 
Figure 19. The conversion process of frames from digital data 

 

Figure 20. A model of ‘dsp.AudioPlayer’ object in MATLAB 
(MathWorks, 2016) 
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The definition of parameters in ‘dsp.AudioPlayer’ object is a critical part for the 
streaming process during the design. ‘SampleRate’ represents the number of samples 
per second while those samples would be sent to the audio device outside of 
MATLAB. Its default value is 44100 Hz while it is also a tunable value if it is 
predefined. ‘BufferSize’ is the size of buffer that is tunable when the 
‘BufferSizeSource’ is set to be ‘Property’. It is an important parameter which affects 
the latency of the streaming data. The latency is the duration of device to empty the 
buffer when the buffer communicates with the physical device. Another parameter, 
‘QueueDuration’ is also rated to the latency. It is the maximum length of signal 
which can be lagged by the data in seconds in the object. If the throughout rate of 
MATLAB is slower than that of physical device, there would be no sufficient data 
put into the buffer, then the underrun of buffer occurs. Therefore, the queue duration 
should be at least larger than buffer size. Moreover, ‘OutputNumUnderrunSamples’ 
could be used to monitor the underrun situation. A model of ‘dsp.AudioPlayer’ 
object is shown in Figure 19 while the application of this model is shown in Appendix 
4.  

3.3.2 Introduce ASIO driver 

  
Figure 21. The main board of ASIO driver 

The ASIO driver is a powerful interface between the software of sound synthesis 
and sound card in the computer. It could achieve a low latency and high-fidelity of 
sound streaming because it enables the sound card to access the physical device 
directly. In MATLAB, set the choice of ASIO driver instead of Windows’ direct 
sound driver by this path: File> Preferences > DSP System Toolbox, select ASIO 
driver in the list.   

3.3.3 Test the function of DSP toolbox  
Since the feature of ‘dsp.AudioPlayer’ object in the DSP toolbox has been illustrated 
while the interface of ASIO driver is ready, it is the time to test the performance of 
the audio streaming function.  
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Figure 22. A mouse pointer in the computer screen   

Firstly, a set of dynamic data is needed to simulate the real-time EMG signals from 
human body. Therefore the position of a mouse pointer in the computer screen is 
chosen as the streaming source to MATLAB. The order, ‘get (0,'ScreenSize')’ in 
MATLAB is used to calculate the length and width of the screen while the order, 
‘get( 0, 'PointerLocation')’ is used to calculate the corresponding value of location 
of mouse pointer in the desktop. In the end, a 1×2 matrix could be acquired from the 
value of screen size divided by the value of pointer location. Therefore, the two 
numbers in his matrix ranges from zero to one. It could be considered that there is a 
coordinate system in the computer screen, the coordinate of left bottom point is the 
original point (0, 0), while the coordinate of right top point is (1, 1). When the mouse 
pointer moves in the screen, there will be two numbers recorded in MATLAB.  

The location coordinate of mouse pointer, (x, y) (0≤x≤1, 0≤y≤1) in the screen 
coordinate could be used to control the frequency range of sound in the test. For 
example, if the frequency range is defined from 131 Hz to 494 Hz (include 3rd and 
4th octave), the output frequency is derived from f= 131 + y × (494-131). Since there 
are two numbers in the coordinate value, the other number could be used to control 
the volume of sound (amplitude value of volume).  
As the controller has been defined well, the digital sine-wave is used as the input 
data to create simplest sound in MATLAB. The flow diagram of the test is shown in 
Figure 23. In the ASIO driver, the latency compensation is set to be 128 samples 
while the sampling rate is set to be 48000 Hz. The expected outcome of this test is 
that sound changes from low pitch to high pitch when the mouse pointer moves from 
bottom to the top of screen. Meanwhile, the sound changes from small volume to 
large volume when the mouse pointer moves from left to the right of screen.  
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Figure 23. Test the performance of DSP toolbox 

3.3.4 Minimize the signal discontinuities of sound  
The potential failure of the test might be that there are some signal discontinuities 
which make the output sound discontinuous in the streaming process.  

 

Figure 24. The signal discontinuities between different frames in the output sound  

Since the first frame is taken out of buffer, another frame which is derived from the 
start of the queue is put into the buffer, such problem is shown in Figure 24. The 
sound would have the squeak or an uncomfortable noise. To solve this problem, the 
end value in the first frame needs to be calculated while the next frame of sine-wave 
would start from this value setting in the formula of output audio.  

Another method is to chop the original data into many pieces. When the information 
of first frame is taken from the streaming source, the program will chop out that part 
of frame from the original data with same length of first frame. Then the output audio 
would be continuous when the second frame comes from the original data.  

3.4 Music composition from real-time sound   
As the real-time sound has been streamed out from the test of the function of DSP 
toolbox, the programming codes made for the composition from the static EMG data 
could be applied on this sound. According to the music theory, musical notes could 
be produced from the sine-wave and ADSR envelope.  
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3.4.1 Apply the previous model of music composition   

 

Figure 25. The application of previous music synthesis theory 

Since the sine-wave is existing in the real-time sound, particular envelope could be 
added to making notes as shown in Figure 24. The controller of these notes is still 
the movement of mouse pointer. However, the difference of this sound from the 
previous one is expected to be that there will be a constant pitch when the mouse 
moves in range of a vertical axis in the computer screen. It means that those notes 
lies on the vertical axis in the screen with an increasing trend of pitch from the 
bottom to the top. Specifically, there are fourteen notes started from major C in 3rd 
octave (131Hz) to major B in 4th octave (494Hz).  

 
Figure 26. The definition of rhythm and harmonics  

Regarding to the simulation of musical instrument, harmonics are also need to be 
defined as show in Figure 26. The five numbers are the ratio of every order of 
harmonics in the flute. Similar to the composition from static data of EMG signals, 
the note length is used to define the rhythm of music as show in Figure 26. Moreover, 
the ADSR envelope and harmonics are predefined in a new function named as 
‘frame_note ( freq, harmonics, note_length, Fs, samplesPerFrame)’ shown in 
Appendix 5.  
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3.4.2 Introduce pentatonic scale   

 
Figure 27. The pentatonic scale in piano keyboard 

In the previous section of synthesizing music from static data, the order of different 
notes is preset before played. Meanwhile, the arrangement of those notes is the job 
of composer in the music field. However, those notes in this design would be 
originally produced from EMG signals in human body. According to the 
characteristic of EMG signals, there is no particular order for those signals. The 
random arrangement of these notes doesn’t sound so harmonious. Therefore, 
pentatonic scale is introduced. The biggest feature of pentatonic scale is that it could 
stream a harmonious song when the notes are played randomly. Basically, the 
general twelve notes in one octave is expressed as C, C#, D, D#, E, F, F#, G, G#, A, 
A# and B. Pentatonic scale consists of five notes which belong to one of the octaves. 
It picks particular five notes from the twelve notes in one octave which allow the 
random arrangement to make a beautiful song. To be more perceptible, the 
pentatonic scale is the black notes in a keyboard of the piano as shown in Figure 26. 
It can be classified as two kinds, the major pentatonic and the minor pentatonic. For 
example, the notes of C major pentatonic notes are C, D, E, G, A while the notes of 
A minor pentatonic are A, C, D, E, G. With this useful scale, the random movement 
of mouse pointer could compose a euphonic song in the computer.  

3.4.3 Implement multiple controls 

 
Figure 28. The design of multiple controls of music  

From the previous study, one set of data could control the fundamental frequency of 
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one sound. It means that if there is one sensor attached on human body, the 
fundamental frequency of one sound could be manipulated by people. However, one 
sensor might not be enough for people to play while single sound could only be 
called as drum in the music. Therefore, multiple controls of sound is necessary to be 
designed in this project.  
Since the sound of flute has been produced in the previous program, a similar sound 
of flute with different frequency range and note numbers could be easily generated 
in the same way. The combination of two similar sound could produce a special 
effect on the eardrum of human. The new sound could also rich the timbre of music.  
Moreover, a third sound of piano is produced based on the music theory of musical 
instruments. It is could be achieved by changing the ADSR envelope and harmonics 
of the parameters. Meanwhile, a new rhythm is used with a faster speed, which will 
make it be easier to distinguish from the sound of flute. In the same way, the fourth 
sound which is similar to the third one is produced, and combined together. However, 
the control mechanism is opposed to the first two sounds. The movement in 
horizontal axis in the screen is used to control the fundamental frequency of sound 
while the movement in vertical axis in the screen controls the volume.  

3.5 Wireless transmission Test 
A semi-finished hardware is produced by previous students in the study of ‘Music 
from Bio-signals’. Two of that hardware are the Arduino which is used as a micro-
controller and the Bluetooth shield which works for the wireless transmission to 
convert the data through Arduino to the computer. In order to test the connection 
between software and hardware, the setting of Bluetooth needs to be opened in the 
computer.  

3.5.1 Read data from hardware 

The program written in Arduino convert the voltage of two input pins on the 
Bluetooth shield to the computer. For receiving the data in the computer, the 
programming codes are written in MATLAB is shown in Figure 29.  

 
Figure 29. Read data from Arduino  
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3.5.2 Stream out sound from hardware 

 

Figure 30. Test the wireless transmission 

Since the DSP toolbox has already been tested to stream out real-time music 
successfully, the program has been made could also be useful in this process. For the 
running of hardware, a power supply is needed to active the two devices. Firstly, the 
control of signal sound by one input pin is tested as shown in Figure 30. Secondly, 
the double control of sounds by two input pins is implemented to stream the real-
time music out. Since there is no input signals onto the hardware terminals, the 
voltages on the two pins would be constant values. Therefore, the expected result is 
that the streaming music from one pin or two pins in the hardware terminals would 
has a constant pitch of sound.   

 

Figure 31. Test the controllability of hardware terminal for real-time music  

In the end of this design, a tunable sine-wave is generated from a wave-generator to 
test the streaming music in the computer through hardware with the amplifier circuits, 
Arduino and Bluetooth shield as shown in Figure 31. The expected result is that the 
pitch of streaming music in the computer could be adjusted in real-time by the 
change of frequency in wave-generator.  
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4.0 Results 
Since all the results of programming codes are sound and music, there is no picture 
that will be shown in the result. Those audio files from static EMG signals are 
produced by MATLAB codes in the computer while the real-time sound or music is 
recorded by the application software in a cell phone. All the audio files are the format 
of .mp3 and have been embedded into the .PDF file.  

Before the play of these audio files, a PDF reader software ‘Adobe Acrobat XI Pro’ 
and an independent audio player software ‘Adobe Flash Player’ need to be installed 
firstly in the computer.  

4.1 Music from static data 

4.1.1 Simple sound with notes 
Firstly, the original piece of digital data from EMG signals shown in Figure 8 will 
be played in Audio 1:  

Audio 1. A piece of raw digital data of EMG signals (6.36 second) 

It can be clearly heard that this piece of audio sounds very noisy, this audio could be 
used to produce a better sound.  

 

Audio 2. A piece of sine-wave with a frequency of 440 Hz (5 second) 

In MATLAB, a piece of sine-wave could be generated with specific duration and 
pitch, the sine-wave with a frequency of 440Hz in Audio 2 sounds like a whistle or 
a buzzer heard by human ears.  

 

Audio 3. The proposal sound with simple notes (9 second) 

In audio 3, 16 numbers are calculated from the digital data of EMG signals ((6.36 
second) through the algorithm of root mean square. These numbers are used to 
control the frequency of the sine-wave in Audio 2. The length of every note is 0.5 
second. The frequency of these sixteen notes are 297Hz, 165Hz, 392Hz, 357Hz, 
141Hz, 802Hz, 1056Hz, 347Hz, 244Hz, 225Hz, 181Hz, 177Hz, 285Hz, 391Hz, 
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144Hz, 144Hz.  

4.1.2 Simulating musical instruments  

Audio 4. Simulating the sound of flute (9.6 second) 

In audio 4, some modification is made from the proposal sound in Audio 3 for 
simulating the sound of flute. Specifically, the frequency range of these notes is 
limited into octave 5 (523Hz- 988Hz) while major scale is used to create seven 
keys in one octave. There are three kinds of note length in this audio (0.25 second, 
0.5 second and 1 second). The ratio of harmonics of flute starting from the 
fundamental frequency (1st order) are 0.467, 0.3, 0.1, 0.1, and 0.003. The sampling 
frequency is set to be 8000Hz. 

4.2 Music from real-time data 

4.2.1 Streaming real-time sound  

Audio 5. Streaming dynamic sound controlled by computer mouse pointer 

This piece of sound is recorded from the running of MATLAB codes controlled by 
the mouse pointer in the computer. The movement of mouse pointer generates two 
dynamic numbers of the horizontal and vertical coordinates of pointer ranged from 
0 to 1 in the computer screen. The two numbers are added on the sine-wave for the 
control of pitch and volume of sound. 
From the Audio 5, firstly it can be clearly heard that the pitch of sound is gradually 
increased when the pointer is moved from the bottom to the top of computer screen. 
When it moves up and down faster, it sounds like a signaling whistle or the rolling 
wind. Secondly, the volume increases when the pointer is moved from the left to the 
right of the screen. Equally, the volume decreases when the pointer is moved from 
right to the left.  

4.2.2 Streaming sound with notes  

Audio 6. Real-time sound with notes 

This piece of sound is modified based on the sound in Audio 5. A simple envelope 

Page 31 
 


null

9.66531




38.904




33.216





is add on the sine-wave illustrated in Audio 5 controlled by the coordinates of the 
mouse pointer. The control mechanism is same to the Audio 5.  
From audio 6, it can be heard that different pitches of note can be clearly 
distinguished while the frequency ranges from 300Hz to 600Hz. In the envelope in 
every note, the attack time is T𝐴𝐴 = (500/48000) = 10.42ms while the decay time is 
T𝐷𝐷 = (5000/48000) = 104.17ms. The sustain time which is the time when the volume 
is held on in a constant value is T𝑠𝑠 = 1- T𝐴𝐴 - T𝐷𝐷 = 855.41ms.  

4.2.3 Simulating sound of flute   

Audio 7. Simulating real-time sound of flute 

In order to simulate the timbre of flute, specific ADSR envelope and harmonics are add 
into the sound with notes in Audio 6. The envelope. The envelope is made of straight 
lines which consist of 10% (0 – 0.4), 20% (0.4 - 1), 40% (1.0 – 0.9), 30% (0.9 – 0) 
(percentages represent horizontal axis while decimal numbers represent vertical axis). 
In addition, the ratio of different orders of harmonics in notes are 0.467(1st order), 
0.3(2nd order), 0.1(3rd order), 0.1(4th order) and 0.003(5th order) respectively.      

In Audio 7, it can be clearly heard that there is a rhythm looping in this piece of sound 
because the length of note is predetermined in the codes. The length notes in every six 
notes are 2 second, 1 second, 1 second, 0.5 second, 0.5 second and 1 second separately.  

4.2.4 Streaming sound of flute in C major pentatonic  

Audio 8. Streaming sound of flute in C major pentatonic 

In Audio 8, the sound of flute is very harmonious compared with the Audio 7. Since the 
C major pentatonic is used in the simulation process, the timbre of notes are much more 
similar to the notes of real musical instruments.  

4.2.5 Combination first and second audios   

Audio 9. Combination of first and second sounds 

In Audio 9, the two kinds of sound are all the simulation of flute with same ADSR 
envelope and harmonics but have a little difference in the definition of notes. The 
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frequency range of the first sound is from 130.81 Hz to 493.88 Hz (3rd octave and 
4th octave) with ten notes while the frequency range of second sound is from 
261.63 Hz to 493.88 Hz (4th octave) with 5 notes. However, they still have same 
length of notes which means that they have same rhythm. This combination is also 
an improvement optimization of timbre in Audio 8.  

4.2.6 Introduce third sound of piano with a new rhythm    

Audio 10. Third sound simulating the timbre of piano  
 

  
Figure 32. The expected spectrogram of piano  

In Audio 10, the sound of piano is introduced for the further synthesis of music. This 
new sound also use the C major pentatonic to simulate the sound of real musical 
instrument of piano. The ratio of the harmonics of notes in different orders are 
0.1842 (1st order), 0.1053 (2nd order), 0(3rd order), 0.2256 (4th order) and 0(5th order) 
0.0827 (6th order), 0(7th order), 0.0300(8th order)respectively. The envelope of piano 
note is more complicated than the envelope of flute because of the special structure 
of piano. The data of envelope is shown in the codes in Appendix 8. Moreover, the 
control mechanism is also different from that of flute while vertical coordinate is 
used to control the fundamental frequency of note instead of the horizontal 
coordinate in the computer screen. Identically, the volume control is also exchanged 
from that of flute. The length of piano note is also halved, therefore this sound has a 
double rate of rhythm compared with the sound of flute.   
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Figure 33. The simulating spectrogram of piano  

4.2.7 Combination third and fourth audios   

Audio 11. Combination of third and fourth sounds 

The Audio 11 is similar to the Audio 9 while two sounds of piano are combined 
together. Therefore, the two sounds of piano have same envelopes. However, the 
harmonics of the fourth sound is a little different in order to rich the timbre of the 
combination effect. The ratio of the harmonics of the fourth audio in different orders 
are 0.2078 (1st order), 0.1333 (2nd order), 0(3rd order), 0.1255 (4th order) and 0(5th 
order) 0.1804 (6th order), 0(7th order), 0.0157 (8th order) respectively. Regarding to 
the pitch of sound, the frequency range of this combination is also different. In the 
note of the third sound, the frequency ranges from 65.4 Hz to 246.94 Hz (2nd octave 
and 3rd octave) with ten notes while the frequency ranges from 65.4 Hz to 123.47 Hz 
with five notes (2nd octave).Since the third and fourth sounds have same rhythm, the 
note length of the combination in every ten notes are 2, 2, 1, 1, 1, 1, 0, 0, 0, 0, 1 and 
1 (unit: second).  

4.2.8 Play the four audios with two rhythms 

Audio 12. The combination of the four sounds 

Now all the four sounds are combined together in Audio 12. This music have two 
musical instruments as flute and piano with two different rhythms. The timbre can 
be distinguished by human ears. The control mechanism is that the movement of 
mouse pointer in the vertical coordinate in computer screen controls the fundamental 
frequency of first and second sound of flute and volume of the third and fourth sound 
of piano while the movement in horizontal axis controls the volume of first and 

Page 34 
 


29.568




55.272





second sound of flute and the fundamental frequency of third and fourth sound of 
piano.   

4.3 Music test through wireless transmission  

4.3.1 Test the program from one input pin in Bluetooth  

Audio 13. Test for one input pin on the Bluetooth 

Since there is no input signals input pin, the voltage value is expected to be a constant 
number. From Audio 13, it can be clearly heard that the pitch of sound change a little 
bit at first, then doesn’t change anymore.  

4.3.2 Test the program from two input pins in Bluetooth 

 

Figure 34. The dataset on the two input pins in Bluetooth 

Audio 14. Test for two input pins on the Bluetooth 

The result of the test of two input pin is expected to be the similar to Audio 13. In 
Audio 14, it can be heard that the sound of two different instruments are all steady 
at a particular pitch and don’t change anymore.  
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4.3.3 Test the program using sine-wave input data through the bread 

board 

Audio 15. Test for one input pin through the hardware 

Since the bread board is connected to the A/D converter (Arduino) and Bluetooth shield 
with a sine-wave input produced by a wave generator, the pitch of sound should be 
tunable by the change of frequency through wave generator. However, the streaming 
audio in Audio 15 sounds like a random composition when the frequency is changed in 
the wave generator.  
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5.0 Discussion 

5.1 Music from static data 

The first step of this project is to explore the function of MATLAB whether it can be 
applied on the audio production through programming. Since the raw data of EMG 
signals inputted though microcontroller from sensors could be one or more set of 
digital numbers, such sample as a piece of static data is used for testing. From the 
proposal sound in Audio 3, the basic components of music, the musical notes are made 
from a piece of EMG signals. To be specific, the frequency of sound in music could 
be controlled by EMG signals. This function could be applied on the control of the 
pitch of sound in music composition of real-time data in the future. Therefore, it is a 
simple but really useful step for the design.  

File number Audio 1 Audio 2 Audio 3 Audio 4 

File Name EMG signals Sine-wave  Sound from 
static data 

Music synthesis 
from sound 

Duration 6.36 second 5 second 9 second 9.6 second 

Parameters 
Random 
voltage 440Hz Random 

frequency 

Appropriate 
frequency range, 
rhythm and note 

length 

Performance  Noisy Constant 
buzzing Simple notes A piece of 

harmonious song  

Table 1. Compare the sounds from static data in audio files    

However, the simple notes are not sufficient to be called as music. So the concept of 
ADSR envelope and harmonics are introduced in the music theory while fundamental 
frequency is the 1st order of harmonic. Since the frequency of sound could be 
determined by EMG signals in Audio 3. This frequency is used as the fundamental 
frequency in the simulation process of flute, which is one of the normal musical 
instruments. Other parameters are predefined in the MATLAB codes, such as the 
ADSR envelope of flute and the note length which could affect the rhythm of music. 
Audio 4 shows good performance of the simulation of flute. Since the harmonics and 
ADSR envelope are the two main factors to distinguish different musical instruments 
while we have successfully prove it, any musical instruments could be simulated if 
the two parameters of them is known. The potential problem of the simulation for 
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other instruments might be that those parameters could not be achieved directly from 
existing articles. However, it is not difficult using MATLAB to analysis and acquire 
the ADSR envelope or harmonics from real musical instrument.  

The Audio 3 and Audio 4 provide a significant preparation for the further research of 
music from real-time data, because theory of music composition from digital data in 
programming software such as MATLAB has been proved to be feasible.  

5.2 Music from real-time data 
The step of streaming continuous sound shown in Audio 5 is a critical part of this 
project, because sine-wave is the simplest sound in music theory. Since the sine-wave 
could be streamed out frame by frame through the DSP toolbox in MATLAB and 
ASIO driver, the programming codes we have created for music from static data could 
be applied on this model. However, the adjustment of parameters from the 
dsp.AudioPlayer function needs to be cautious because the latency and dropout of data 
need to be balanced when the buffer size and frame size are set. Both overrun and 
underrun of buffer should be prevented in the design process. As a result, the sound 
in Audio 5 is seamless without latency or dropout of data in the practical 
demonstration.  

File number Audio 5 Audio 6 Audio 7 Audio 8 

File Name 
Streaming 
real-time 

sound 

Real-time 
sound with 

notes 
Real-time 

sound of flute  

Real-time sound of 
flute in C major 

pentatonic 

Parameters 
300 - 

600Hz 

300-600Hz 
14 notes 

with simple 
envelope 

Specific 
harmonics and 
envelope for 

flute 

10 notes in 
pentatonic scale  

Performance 
Sound of 
rolling 
wind 

Continuous 
simple notes  

Random 
arrangement 
of flute notes 

with particular 
rhythm  

Harmonious real-
time sound of flute  

Table 2. Compare the sounds from real-time data in audio files    
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Since the real-time audio could be streamed out in MATLAB, the programming codes 
of music from static data could be used on the DSP system model. The ADSR 
envelope and harmonics are created to simulate the sound of flute using the similar 
parameters in Audio 6 and Audio 7. However, the difference from the simulation from 
static data is that the pentatonic scale is introduced in Audio 8. As the input digital 
data could be random and unpredictable, such scale could make the random 
combination of notes sound like more harmonious than usage of the major or minor 
scale. The Audio 8 shows a good performance with the control of movement of mouse 
pointer in the computer screen. Such control could be used by one sensor in the 
hardware terminal, while the main control is about the fundamental frequency of 
sound and the supplementary control is about the volume of sound. However, the 
terminal sensor could not be only one, there might be three or sensors which could be 
attached on human body to manipulate on the composition. Therefore, multiple 
controls need to be built in the programming codes.  

File number Audio 9 Audio 10 Audio 11 Audio 12 

File Name 

Combination 
of first and 

second 
sounds 

Third sound 
simulating the 

timbre of 
piano 

Combination 
third and fourth 

sounds 

The combination of 
the four sounds 

Parameters 

Different 
frequency 
range and 

note 
numbers 

A new 
rhythm with 
an inverse 

control  

Different 
frequency 
ranges and 

note numbers 

Two sounds of 
flute and two 

sounds of piano 

Performance 
Richer 
timbre 

A faster 
rhythm 

compared 
with that of 

flute 

Richer timbre 
compared 
with signal 

sound 

Real-time music 
with harmonious 
sound and rich 

timbre  

Table 3. Compare the sounds from real-time data in audio files    

For the music composition from real-time data, a few steps need to take attention in 
the design process. Firstly, another common musical instrument, piano is introduced 
into the design. Obviously, piano is a different type of instrument from flute. They 
belong to the percussion and woodwind respectively. Therefore, new envelope and 
harmonics are used for simulation. However, the envelope of piano sound could not 
be reproduced so well because of the complex structure of piano. The harmonics of 
piano are also complicated since the notes in different octave have different harmonics. 
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Therefore, only 2nd and 3rd octave are applied to serve as the bass part in the music 
synthesis. A new rhythm is also used to distinguish the timbre of from piano from 
flute. The different between the two instruments could be heard between the Audio 8 
and Audio 10. Secondly, the combination of two similar sound with similar frequency 
but same harmonics and envelope has been proved to be effective to improve the 
quality of music if the Audio 9 and Audio 11 are compared. However, it is just a 
synthesis method of ‘beats’ in music theory, but the detailed mechanism haven’t been 
explored too much to control the performance of this technique. The only way 
implemented in this design is to combine the notes in 2nd and 3rd octave with 2nd octave 
for piano, then combine the notes in 4nd and 5rd octave with 4nd octave for flute. The 
result is surprisingly well but currently the operating mechanism of this method 
haven’t been controlled. Thirdly, as the four different kinds of sounds have already 
been obtained including two sound of flute and two sound of piano in Audio 12. The 
function of multiple controls have been achieved. When the hardware sends the data 
of EMG signals from four sensors, those data would be send into MATLAB with four 
digital numbers. In the programming codes in MATLAB, those four sets of numbers 
could be used to control the fundamental frequency of the four sounds as expected.  

5.3 Music test through hardware in real-time  

File number Audio 13 Audio 14 Audio 15 

File Name 

Test for one 
input pin on the 

Bluetooth 

Test for two 
input pins on the 

Bluetooth 

Test for one input 
pin on the hardware 

Parameters 

No input 
signals with 
Arduino and 

Bluetooth 
shield 

No input signals 
with Arduino 
and Bluetooth 

shield  

Input sine-wave 
through amplifier, 

Arduino and 
Bluetooth shield 

Performance 
A signal sound 
with a constant 

pitch 

Streaming out 
music with 

constant pitches 

Streaming out music 
with random   

notes (sound is no 
tunable from 

hardware) 

Table 4. Compare the music through hardware in real-time   

Since the Arduino and Bluetooth shield have been built before the establishment of 
sensors, we firstly test the data commission from the input terminals on the Bluetooth 
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shield. Audio 13 and Audio 14 illustrate the same characteristic of the input pins on 
the Bluetooth shield. Both of the two output sounds have a constant pitch which means 
that the voltage in the input pins have a constant value. It is also a reasonable 
performance since we don’t have any input signals yet.  

On the next stage, the sine-wave is used as an input signals transmit through the circuit 
in bread board and Arduino as well as Bluetooth shield into the computer. However, 
the pitch of sound cannot be changed when frequency of sine-wave is changed in the 
wave-generator. The sound is still a random composition since we have an input of 
simple sine-wave with a fixed frequency. For a preliminary analysis of this problem, 
we know that the input data has thousands of digital numbers per one second but only 
two numbers are exported in the computer. Therefore, the output sound could not 
reflect the real feature of the input signals in the hardware terminal. For further 
research, the first problem needs to be solved in this project is the controllability 
between the input terminals and the output sound.  
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6.0 Conclusion 

The project of “Music from bio-signals-software design for music synthesis” forces 
on the programming work for sound processing and music synthesis from both the 
static and real-time input signals using MATLAB and other related software and tools 
in the computer.  

The project design is divided into five components: the sound from static data, the 
music synthesis from static sound, streaming real-time sound, music composition 
from real-time sound and wireless transmission test. Firstly, some simple notes are 
made from a piece of raw digital EMG signals in MATLAB. Then those notes are 
used to simulate the sound of musical instruments with the definition of ADSR 
envelope and harmonics. Secondly, the DSP toolbox in MATLAB is introduced to 
stream out the real-time sound manipulated by the mouse pointer in computer screen. 
Since the composition method has been illustrated during the synthesis of static data, 
that method is directed applied on the DSP toolbox to produce the sound of musical 
instruments. Thirdly, multiple controls are achieved by adding more sounds and 
rhythms in the existing codes. Then a beautiful and harmonious music with multiple 
controls and real-time inputs is completed. At last, some tests about the connection of 
hardware and software are carried on.  

Currently, this project could generated four different types of sound simultaneously 
including two different musical instruments with flute and piano controlled by the 
coordinates of mouse pointer in the computer screen in real-time. This manipulation 
could be used for four input signals derived from four sensors in human body for 
further testing. The connection between software and hardware has been proved to be 
feasible while the data in the hardware terminals could be transmitted to MATLAB 
without dropout in the test.  

In the future work, more tests about the reduction of latency and effective usage of the 
input data in the programming codes could be proceeded by other researches to 
achieve a better performance of the real-time control of music from bio-signals.  
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7.0 Recommendations 

7.1 Software installation  
To streaming the real-time data, the version of MATLAB should be at least MATALB 
2012a or higher with the subject of DSP toolbox. The ASIO driver is also necessary 
to be installed for streaming process preliminarily. In addition, the Arduino IDE is 
used for the compiling and burning of Arduino codes.  

7.2 Maneuverability and conciseness of programming 
The maneuverability of programming codes is also important in the design process. 
All the parameters should be defined at the beginning of program because one 
parameter might be called many times in the following codes. With the pre-definition, 
the programmers don’t need to waste time changing same parameter for too many 
times. In addition, some loop programs and calling programs are necessary to simplify 
the codes and provide a clear logic of the overall program.  
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Appendix   

1. Codes for creating notes from static data (undigested draft)  
clear all; 
emg = load('EMG.txt'); 
left=emg(:,1); 
right=emg(:,2); 
X1=right(1:2500 ,1); 
X2=right(2501:5000 ,1); 
X3=right(5001:7500 ,1); 
X4=right(7501:10000 ,1); 
X5=right(10001:12500 ,1); 
X6=right(12501:15000 ,1); 
X7=right(15001:17500 ,1); 
X8=right(17501:20000 ,1); 
X9=right(20001:22500 ,1); 
X10=right(22501:25000 ,1); 
X11=right(25001:27500 ,1); 
X12=right(27501:30000 ,1); 
X13=right(30001:32500 ,1); 
X14=right(32501:35000 ,1); 
X15=right(35001:37500 ,1); 
X16=right(35001:37500 ,1); 
MS1= sum(X1.^2)/length(X1); 
MS2= sum(X2.^2)/length(X2); 
MS3= sum(X3.^2)/length(X3); 
MS4= sum(X4.^2)/length(X4); 
MS5= sum(X5.^2)/length(X5); 
MS6= sum(X6.^2)/length(X6); 
MS7= sum(X7.^2)/length(X7); 
MS8= sum(X8.^2)/length(X8); 
MS9= sum(X9.^2)/length(X9); 
MS10= sum(X10.^2)/length(X10); 
MS11= sum(X11.^2)/length(X11); 
MS12= sum(X12.^2)/length(X12); 
MS13= sum(X13.^2)/length(X13); 
MS14= sum(X14.^2)/length(X14); 
MS15= sum(X15.^2)/length(X15); 
MS16= sum(X16.^2)/length(X16); 
ff1=MS1*7500; 
ff2=MS2*7500; 
ff3=MS3*7500; 
ff4=MS4*7500; 
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ff5=MS5*7500; 
ff6=MS6*7500; 
ff7=MS7*7500; 
ff8=MS8*7500; 
ff9=MS9*7500; 
ff10=MS10*7500; 
ff11=MS11*7500; 
ff12=MS12*7500; 
ff13=MS13*7500; 
ff14=MS14*7500; 
ff15=MS15*7500; 
ff16=MS16*7500; 
f1=ff1*10; 
f2=ff2*10; 
f3=ff3*10; 
f4=ff4*10; 
f5=ff5*10; 
f6=ff6*10; 
f7=ff7*10; 
f8=ff8*10; 
f9=ff9*10; 
f10=ff10*10; 
f11=ff11*10; 
f12=ff12*10; 
f13=ff13*10; 
f14=ff14*10; 
f15=ff15*10; 
f16=ff16*10; 
F= [f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15 f16]; 
N=16; 
for i=1:N 
      if          65<=F(1,i) & F(1,i)<130 
                       F(1,i)=4*F(1,i) 
      elseif   130<=F(1,i) & F(1,i)<262     
                       F(1,i)=2*F(1,i) 
      elseif    523<=F(1,i) & F(1,i)<1047   
                       F(1,i)=F(1,i)/2 
      elseif    1047<=F(1,i) & F(1,i)<2097   
                       F(1,i)=F(1,i)/4 
      end; 
end 
for i=1:N 
      if    262<=F(1,i) & F(1,i)<294  
                       F(1,i)= 262 
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      elseif    294<=F(1,i) & F(1,i)<329  
                       F(1,i)= 294 
      elseif    329<=F(1,i) & F(1,i)<349    
                       F(1,i)= 329 
      elseif    349<=F(1,i) & F(1,i)<392   
                       F(1,i)= 349 
      elseif    392<=F(1,i) & F(1,i)<440    
                       F(1,i)= 392 
      elseif    440<=F(1,i) & F(1,i)<493    
                       F(1,i)= 440 
      elseif    493<=F(1,i) & F(1,i)<523    
                       F(1,i)= 493 
      end; 
end 
f1= F(1,1); 
f2= F(1,2); 
f3= F(1,3); 
f4= F(1,4); 
f5= F(1,5); 
f6= F(1,6); 
f7= F(1,7); 
f8= F(1,8); 
f9= F(1,9); 
f10= F(1,10); 
f11= F(1,11); 
f12= F(1,12); 
f13= F(1,13); 
f14= F(1,14); 
f15= F(1,15); 
f16= F(1,16); 
fs=4500; 
duration_1=1-1/fs; 
n0= [0:fs*duration_1/2]; 
duration_1=1-1/fs; 
n1 = [0:fs*duration_1]; 
duration_2=duration_1*2; 
n2 = [0:fs*duration_2]; 
x1 = sin(2*pi*n2*f1/fs); 
x2 = sin(2*pi*n0*f2/fs); 
x3 = sin(2*pi*n1*f3/fs); 
x4 = sin(2*pi*n2*f4/fs); 
x5 = sin(2*pi*n0*f5/fs); 
x6 = sin(2*pi*n1*f6/fs); 
x7 = sin(2*pi*n1*f7/fs); 
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x8 = sin(2*pi*n1*f8/fs); 
x9= sin(2*pi*n1*f9/fs); 
x10 = sin(2*pi*n1*f10/fs); 
x11 = sin(2*pi*n2*f11/fs); 
x12 = sin(2*pi*n1*f12/fs); 
x13 = sin(2*pi*n2*f13/fs); 
x14= sin(2*pi*n0*f14/fs); 
x15 = sin(2*pi*n1*f15/fs); 
x16 = sin(2*pi*n1*f16/fs); 
p0=sin(2*pi*n0*0/fs); 
p1=sin(2*pi*n1*0/fs); 
music=[x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,p0,x13,x14,x15,x16]; 
sound(music); 

2. Codes for composition from static sound 
%% definitions 
file_in = 'EMG.txt'; 
Nblock = 2500; 
Nnotes = 16; 
ms2n = 340; 
major_scale = 2 .^ ( [ 0 2 4 5 7 9 11] / 12); 
f0 = 523; 
harmonics = [ 0.467 0.3 0.1 0.1 0.003]; 
% fs = 44100; 
fs = 8000; 
%set the length of notes 
beat_length = 0.25; 
note_length = beat_length * 2 .^[ 0 0 1 2 1 1 0 0 2 1 0 0 1 1 1 2]; 
%% load the data 
emg = load( file_in); 
left=emg(:,1); 
right=emg(:,2); 
%% measure the input data 
sright = right( 1:Nblock * Nnotes) .^ 2; 
ms = mean( reshape( sright, Nblock, []), 1); 
%% create the notes 
notes = ceil( ms * ms2n); 
freq = f0 * major_scale( notes) 
music = []; 
for i = 1:Nnotes 
    note = make_note( freq( i), harmonics, note_length( i), fs); 
    music = [ music, note];  
end 
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%% play the music 
sound( music, fs) 

3. Codes for the function of ‘make_note’ in static composition  
function note = make_note(  freq, harmonics, note_length, fs) 
% derived 
N = note_length * fs; 
% make the basic note 
t = ( 1:N) / fs; 
note = zeros( 1, N); 
for i = 1:numel( harmonics) 
    note = note + harmonics( i) * sin( 2 * pi * freq * i * t); 
end 
% impose envelope 
A = linspace( 0,     0.7,    N * 0.1); %rise 10% of signal 
D = linspace( 0.7,   0.5,     N * 0.2); %drop of 20% of signal 
S = linspace( 0.5,   0.3,     N * 0.4); %delay of 40% of signal 
R = linspace( 0.3,   0,       N * 0.3); %drop of 30% of signal 
note = note .* [ A D S R]; 

4. Codes for streaming real-time sound from sine-wave 
%% Definition 
Fs=48000; 
f0 = 300; 
duration = 50; 
samplesPerFrame = 128;                %Block_Size = samplesPerFrame/Fs = 
2.7ms 
frame_size = 0.125;                   %queue_duration = 125ms 
Buffer_Size = 512;                    %Buffer = 11ms 
%% Create Audio File 
% t = linspace(0, duration, duration*Fs)'; 
t = (1:samplesPerFrame) / Fs; 
% data = sin(2 * pi * f0 * t); 
% audiowrite('Test.wav',[t,data],Fs); 
%% Create Audio File Read System Objects 
%% Create File Player System Objects 
AP = dsp.AudioPlayer('SampleRate',Fs, ... 
    'BufferSizeSource','Property',... 
    'BufferSize',Buffer_Size,... 
    'QueueDuration',frame_size, ... 
    'OutputNumUnderrunSamples',true); 
%% Loop for Playing Input Audio 
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% while ~isDone(AFR) 
%   audio = step(AFR); 
scrsz = get(0,'ScreenSize'); 
pl = 1000; 
theta = rand * 2 * pi; 
while pl > 10 
    pl = get( 0, 'PointerLocation'); 
    %      audio = audio * pl( 1) / scrsz( 3); 
    freq = f0 * ( 1 + pl( 2) /scrsz( 4));                          
    audio =  sin(2 * pi * freq * t + theta) * pl( 1) / scrsz( 3);   
    theta = rem( theta + 2 * pi * freq * samplesPerFrame / Fs, 2 * pi); 
    nUnderrun = step(AP,[ audio; audio]'); 
    if nUnderrun > 0 
        fprintf('Audio player queue underrun by %d samples.\n'... 
            ,nUnderrun); 
    end 
end 
pause(AP.QueueDuration);                 % wait until audio is played to the 
end 
% release(AFR);                            % close the input file 
release(AP);                             % close the audio output device  
%% 
%scrsz = get(0,'ScreenSize'); 
%pl = get( 0, 'PointerLocation'); 
%audio = audio * pl( 1) / scrsz( 3); 

5. Codes for streaming real-time music with multiple controls 
%% Definition 
Fs = 48000; 
f0 = 130.81; 
f0_2 = 65.4; 
f0_3 = 65.4; 
f0_4 = 261.63; 
samplesPerFrame = 0.5 * Fs; 
samplesPerFrame_2 = samplesPerFrame / 2; 
samplesPerFrame_3 = samplesPerFrame / 2 ; 
samplesPerFrame_4 = samplesPerFrame ; 
queue_duration = 0.002; 
Buffer_Size = 640; 
harmonics = [0.38 0.2 0 0.18 0 0.22 0 0.22]; 
harmonics_2 = [0.1842 0.1053 0 0.2256 0 0.0827 0 0.0300];  
harmonics_3 = [0.2078 0.1333 0 0.1255 0 0.1804 0 0.0157];  
harmonics_4= [0.467 0.3 0.1 0.1 0.003];         
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beat_length = 0.5; 
beat_length_2 = beat_length; 
note_length = beat_length * 2 .^[2 1 1 0 0 1]; 
note_length_2 = beat_length *  2 .^[2 2 1 1 1 1 0 0 0 0 1 1]; 
note_length_3 = beat_length *  2 .^[2 2 1 1 1 1 0 0 0 0 1 1]; 
note_length_4 = beat_length *  2 .^[2 1 1 0 0 1]; 
major_scale = 2 .^ ( [0 2 4 7 9 12 14 16 19 21] / 12); 
major_scale_2 = 2 .^ ( [0 2 4 7 9 12 14 16 19 21] / 12); 
major_scale_3= 2 .^ ( [0 2 4 7 9] / 12); 
major_scale_4= 2 .^ ( [0 2 4 7 9] / 12); 
Nnotes = length ( note_length); 
Nscales = length ( major_scale); 
Nscales_2 = length ( major_scale_2); 
Nscales_3 = length ( major_scale_3); 
Nscales_4 = length ( major_scale_4); 
Blance_1 = 0.4; %0.2;0.4 
Blance_2 = 1.6; %0.8;1.6 
Blance_3 = 2.0; %1.4;2.0 
Blance_4 = 0.4; %0.2;0.4 
%% Create File Player System Objects 
AP = dsp.AudioPlayer('SampleRate',Fs, ... 
    'BufferSizeSource','Property',... 
    'BufferSize',Buffer_Size,... 
    'QueueDuration',queue_duration, ... 
    'OutputNumUnderrunSamples',true); 
%% Loop for Playing Input Audio 
pl = 1000; 
scrsz = get(0,'ScreenSize'); 
ind = 0; 
r = 1:( queue_duration * Fs); 
while pl > 10 
    ind = rem( ind, Nnotes) + 1; 
    a = 2 * ind - 1; 
    b = 2 * ind; 
    %pause(0.95 * AP.QueueDuration);  % wait until audio is nearly all played 
    %AP.QueueDuration 
    %% first_audio 
    pl = get( 0, 'PointerLocation'); 
    notes = ceil( Nscales * pl( 2) /scrsz( 4)); 
    freq = f0 * major_scale( notes); 
    note = frame_note( freq, harmonics, note_length( ind), Fs, samplesPerFrame); 
    audio = Blance_1 * note * pl( 1) / scrsz( 3); 
    %% second_audio 
    notes_2 = ceil( Nscales_2 * pl( 1) / scrsz( 3)); 
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    freq_2 = f0_2 * major_scale_2( notes_2); 
    note_2_a = frame_note_second_audio( freq_2, harmonics_2, note_length_2( a), 
Fs, samplesPerFrame_2); 
    note_2_b = frame_note_second_audio( freq_2, harmonics_2, 
note_length_2( b), Fs, samplesPerFrame_2); 
    note_2 = [note_2_a note_2_b]; 
    audio_2 = Blance_2 * note_2 * pl( 2) /scrsz( 4); 
    %% third_audio 
    notes_3 = ceil( Nscales_3 * pl( 1) / scrsz( 3)); 
    freq_3 = f0_3 * major_scale_3( notes_3); 
    %note_3 = frame_note_second_audio_A2( freq_3, harmonics_3, 
note_length_3( ind), Fs, samplesPerFrame); 
    note_3_a = frame_note_second_audio( freq_3, harmonics_3, note_length_3( a), 
Fs, samplesPerFrame_3); 
    note_3_b = frame_note_second_audio( freq_3, harmonics_3, 
note_length_3( b), Fs, samplesPerFrame_3); 
    note_3 = [note_3_a note_3_b]; 
    audio_3 = Blance_3 * note_3 * pl( 2) /scrsz( 4); 
    %% forth_audio  
    notes_4 = ceil( Nscales_4 * pl( 2) / scrsz( 4)); 
    freq_4 = f0_4 * major_scale_4( notes_4); 
    %note_4_a = frame_note_4( freq_4, harmonics_4, note_length_4( a), Fs, 
samplesPerFrame_4); 
    %note_4_b = frame_note_4( freq_4, harmonics_4, note_length_4( b), Fs, 
samplesPerFrame_4); 
    %note_4 = [note_4_a note_4_b]; 
    note_4 = frame_note_4( freq_4, harmonics_4, note_length_4( ind), Fs, 
samplesPerFrame_4); 
    audio_4 = Blance_4 * note_4 * pl( 1) /scrsz( 3); 
    %% loop_for_one_frame 
    while size( audio, 2) > 0 
        frame = [ audio( r) + audio_2( r) + audio_3( r) + audio_4( r);audio( r) + 
audio_2( r) + audio_3( r) + audio_4( r)  ]'; 
        nUnderrun = step(AP, frame); 
        audio( r)=[]; 
        audio_2( r)=[]; 
        audio_3( r)=[]; 
        audio_4( r)=[]; 
        if nUnderrun > 0 
            fprintf('Audio player queue underrun by %d samples.\n'... 
                ,nUnderrun); 
        end 
    end 
end 
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pause(AP.QueueDuration);                 % wait until audio is played to the 
end 
release(AP);                             % close the audio output device 

6. Codes for the function of ‘frame_note’ in multiple controls (first 

flute) 
function note = frame_note(  freq, harmonics, note_length, Fs, samplesPerFrame) 
% derived 
N = note_length * samplesPerFrame; 
% make the basic note 
t = ( 1:N) / Fs; 
note = zeros( 1, N); 
for i = 1:numel( harmonics) 
    note = note + harmonics( i) * sin( 2 * pi * freq * i * t); 
end 
% impose envelope 
A = linspace( 0,     0.4,    N * 0.2); %rise 10% of signal 
D = linspace( 0.4,   1.0,    N * 0.1); %drop of 20% of signal 
S = linspace( 1.0,   0.9,    N * 0.4); %delay of 40% of signal 
R = linspace( 0.9,   0.0,    N * 0.3); %drop of 30% of signal 
note = note .* [ A D S R]; 

7. Codes for the function of ‘frame_note_4’ in multiple controls (second 

flute) 
function note = frame_note_4(  freq_4, harmonics_4, note_length_4, Fs, 
samplesPerFrame_4) 
% derived 
N = note_length_4 * samplesPerFrame_4; 
% make the basic note 
t = ( 1:N) / Fs; 
note = zeros( 1, N); 
for i = 1:numel( harmonics_4) 
    note = note + harmonics_4( i) * sin( 2 * pi * freq_4 * i * t); 
end 
% impose envelope 
A = linspace( 0,     0.4,    N * 0.2); %rise 10% of signal 
D = linspace( 0.4,   1.0,    N * 0.2); %drop of 20% of signal 
S = linspace( 1.0,   1.0,    N * 0.4); %delay of 40% of signal 
R = linspace( 1.0,   0.0,    N * 0.2); %drop of 30% of signal 
note = note .* [ A D S R]; 
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8. Codes for the function of ‘frame_note_second_audio’ in multiple 

controls (piano) 
function note = frame_note_second_audio(  freq_2, harmonics_2, note_length_2, 
Fs, samplesPerFrame_2) 
% derived 
N = note_length_2 * samplesPerFrame_2; 
% make the basic note 
t = ( 1:N) / Fs; 
note = zeros( 1, N); 
for i = 1:numel( harmonics_2) 
    note = note + harmonics_2( i) * sin( 2 * pi * freq_2 * i * t); 
end 
% impose envelope 
A = linspace( 0,       0.8,        N * 0.02); %rise 10% of signal 
D = linspace( 0.8,     0.6,        N * 0.04); %drop of 20% of signal 
A_1 = linspace( 0.6,     0.9,      N * 0.02); %rise 10% of signal 
D_1 = linspace( 0.9,     0.7,      N * 0.04); %drop of 20% of signal 
A_2 = linspace( 0.7,     0.9,      N * 0.02); %rise 10% of signal 
D_2 = linspace( 0.9,     0.6,      N * 0.04); %drop of 20% of signal 
A_3 = linspace( 0.6,     0.7,      N * 0.02); %rise 10% of signal 
D_3 = linspace( 0.7,     0.6,      N * 0.04); %drop of 20% of signal 
S = linspace( 0.6,     0.2,        N * 0.66); %delay of 40% of signal 
R = linspace(0.2,      0.0,        N * 0.1); %drop of 30% of signal 
note = note .* [ A D A_1 D_1 A_2 D_2 A_3 D_3 S R]; 
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